Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2016, Semihalf
   4 *	Author: Tomasz Nowicki <tn@semihalf.com>
   5 *
   6 * This file implements early detection/parsing of I/O mapping
   7 * reported to OS through firmware via I/O Remapping Table (IORT)
   8 * IORT document number: ARM DEN 0049A
   9 */
  10
  11#define pr_fmt(fmt)	"ACPI: IORT: " fmt
  12
  13#include <linux/acpi_iort.h>
  14#include <linux/bitfield.h>
  15#include <linux/iommu.h>
  16#include <linux/kernel.h>
  17#include <linux/list.h>
  18#include <linux/pci.h>
  19#include <linux/platform_device.h>
  20#include <linux/slab.h>
  21#include <linux/dma-map-ops.h>
  22#include "init.h"
  23
  24#define IORT_TYPE_MASK(type)	(1 << (type))
  25#define IORT_MSI_TYPE		(1 << ACPI_IORT_NODE_ITS_GROUP)
  26#define IORT_IOMMU_TYPE		((1 << ACPI_IORT_NODE_SMMU) |	\
  27				(1 << ACPI_IORT_NODE_SMMU_V3))
  28
  29struct iort_its_msi_chip {
  30	struct list_head	list;
  31	struct fwnode_handle	*fw_node;
  32	phys_addr_t		base_addr;
  33	u32			translation_id;
  34};
  35
  36struct iort_fwnode {
  37	struct list_head list;
  38	struct acpi_iort_node *iort_node;
  39	struct fwnode_handle *fwnode;
  40};
  41static LIST_HEAD(iort_fwnode_list);
  42static DEFINE_SPINLOCK(iort_fwnode_lock);
  43
  44/**
  45 * iort_set_fwnode() - Create iort_fwnode and use it to register
  46 *		       iommu data in the iort_fwnode_list
  47 *
  48 * @iort_node: IORT table node associated with the IOMMU
  49 * @fwnode: fwnode associated with the IORT node
  50 *
  51 * Returns: 0 on success
  52 *          <0 on failure
  53 */
  54static inline int iort_set_fwnode(struct acpi_iort_node *iort_node,
  55				  struct fwnode_handle *fwnode)
  56{
  57	struct iort_fwnode *np;
  58
  59	np = kzalloc(sizeof(struct iort_fwnode), GFP_ATOMIC);
  60
  61	if (WARN_ON(!np))
  62		return -ENOMEM;
  63
  64	INIT_LIST_HEAD(&np->list);
  65	np->iort_node = iort_node;
  66	np->fwnode = fwnode;
  67
  68	spin_lock(&iort_fwnode_lock);
  69	list_add_tail(&np->list, &iort_fwnode_list);
  70	spin_unlock(&iort_fwnode_lock);
  71
  72	return 0;
  73}
  74
  75/**
  76 * iort_get_fwnode() - Retrieve fwnode associated with an IORT node
  77 *
  78 * @node: IORT table node to be looked-up
  79 *
  80 * Returns: fwnode_handle pointer on success, NULL on failure
  81 */
  82static inline struct fwnode_handle *iort_get_fwnode(
  83			struct acpi_iort_node *node)
  84{
  85	struct iort_fwnode *curr;
  86	struct fwnode_handle *fwnode = NULL;
  87
  88	spin_lock(&iort_fwnode_lock);
  89	list_for_each_entry(curr, &iort_fwnode_list, list) {
  90		if (curr->iort_node == node) {
  91			fwnode = curr->fwnode;
  92			break;
  93		}
  94	}
  95	spin_unlock(&iort_fwnode_lock);
  96
  97	return fwnode;
  98}
  99
 100/**
 101 * iort_delete_fwnode() - Delete fwnode associated with an IORT node
 102 *
 103 * @node: IORT table node associated with fwnode to delete
 104 */
 105static inline void iort_delete_fwnode(struct acpi_iort_node *node)
 106{
 107	struct iort_fwnode *curr, *tmp;
 108
 109	spin_lock(&iort_fwnode_lock);
 110	list_for_each_entry_safe(curr, tmp, &iort_fwnode_list, list) {
 111		if (curr->iort_node == node) {
 112			list_del(&curr->list);
 113			kfree(curr);
 114			break;
 115		}
 116	}
 117	spin_unlock(&iort_fwnode_lock);
 118}
 119
 120/**
 121 * iort_get_iort_node() - Retrieve iort_node associated with an fwnode
 122 *
 123 * @fwnode: fwnode associated with device to be looked-up
 124 *
 125 * Returns: iort_node pointer on success, NULL on failure
 126 */
 127static inline struct acpi_iort_node *iort_get_iort_node(
 128			struct fwnode_handle *fwnode)
 129{
 130	struct iort_fwnode *curr;
 131	struct acpi_iort_node *iort_node = NULL;
 132
 133	spin_lock(&iort_fwnode_lock);
 134	list_for_each_entry(curr, &iort_fwnode_list, list) {
 135		if (curr->fwnode == fwnode) {
 136			iort_node = curr->iort_node;
 137			break;
 138		}
 139	}
 140	spin_unlock(&iort_fwnode_lock);
 141
 142	return iort_node;
 143}
 144
 145typedef acpi_status (*iort_find_node_callback)
 146	(struct acpi_iort_node *node, void *context);
 147
 148/* Root pointer to the mapped IORT table */
 149static struct acpi_table_header *iort_table;
 150
 151static LIST_HEAD(iort_msi_chip_list);
 152static DEFINE_SPINLOCK(iort_msi_chip_lock);
 153
 154/**
 155 * iort_register_domain_token() - register domain token along with related
 156 * ITS ID and base address to the list from where we can get it back later on.
 157 * @trans_id: ITS ID.
 158 * @base: ITS base address.
 159 * @fw_node: Domain token.
 160 *
 161 * Returns: 0 on success, -ENOMEM if no memory when allocating list element
 162 */
 163int iort_register_domain_token(int trans_id, phys_addr_t base,
 164			       struct fwnode_handle *fw_node)
 165{
 166	struct iort_its_msi_chip *its_msi_chip;
 167
 168	its_msi_chip = kzalloc(sizeof(*its_msi_chip), GFP_KERNEL);
 169	if (!its_msi_chip)
 170		return -ENOMEM;
 171
 172	its_msi_chip->fw_node = fw_node;
 173	its_msi_chip->translation_id = trans_id;
 174	its_msi_chip->base_addr = base;
 175
 176	spin_lock(&iort_msi_chip_lock);
 177	list_add(&its_msi_chip->list, &iort_msi_chip_list);
 178	spin_unlock(&iort_msi_chip_lock);
 179
 180	return 0;
 181}
 182
 183/**
 184 * iort_deregister_domain_token() - Deregister domain token based on ITS ID
 185 * @trans_id: ITS ID.
 186 *
 187 * Returns: none.
 188 */
 189void iort_deregister_domain_token(int trans_id)
 190{
 191	struct iort_its_msi_chip *its_msi_chip, *t;
 192
 193	spin_lock(&iort_msi_chip_lock);
 194	list_for_each_entry_safe(its_msi_chip, t, &iort_msi_chip_list, list) {
 195		if (its_msi_chip->translation_id == trans_id) {
 196			list_del(&its_msi_chip->list);
 197			kfree(its_msi_chip);
 198			break;
 199		}
 200	}
 201	spin_unlock(&iort_msi_chip_lock);
 202}
 203
 204/**
 205 * iort_find_domain_token() - Find domain token based on given ITS ID
 206 * @trans_id: ITS ID.
 207 *
 208 * Returns: domain token when find on the list, NULL otherwise
 209 */
 210struct fwnode_handle *iort_find_domain_token(int trans_id)
 211{
 212	struct fwnode_handle *fw_node = NULL;
 213	struct iort_its_msi_chip *its_msi_chip;
 214
 215	spin_lock(&iort_msi_chip_lock);
 216	list_for_each_entry(its_msi_chip, &iort_msi_chip_list, list) {
 217		if (its_msi_chip->translation_id == trans_id) {
 218			fw_node = its_msi_chip->fw_node;
 219			break;
 220		}
 221	}
 222	spin_unlock(&iort_msi_chip_lock);
 223
 224	return fw_node;
 225}
 226
 227static struct acpi_iort_node *iort_scan_node(enum acpi_iort_node_type type,
 228					     iort_find_node_callback callback,
 229					     void *context)
 230{
 231	struct acpi_iort_node *iort_node, *iort_end;
 232	struct acpi_table_iort *iort;
 233	int i;
 234
 235	if (!iort_table)
 236		return NULL;
 237
 238	/* Get the first IORT node */
 239	iort = (struct acpi_table_iort *)iort_table;
 240	iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort,
 241				 iort->node_offset);
 242	iort_end = ACPI_ADD_PTR(struct acpi_iort_node, iort_table,
 243				iort_table->length);
 244
 245	for (i = 0; i < iort->node_count; i++) {
 246		if (WARN_TAINT(iort_node >= iort_end, TAINT_FIRMWARE_WORKAROUND,
 247			       "IORT node pointer overflows, bad table!\n"))
 248			return NULL;
 249
 250		if (iort_node->type == type &&
 251		    ACPI_SUCCESS(callback(iort_node, context)))
 252			return iort_node;
 253
 254		iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort_node,
 255					 iort_node->length);
 256	}
 257
 258	return NULL;
 259}
 260
 261static acpi_status iort_match_node_callback(struct acpi_iort_node *node,
 262					    void *context)
 263{
 264	struct device *dev = context;
 265	acpi_status status = AE_NOT_FOUND;
 266
 267	if (node->type == ACPI_IORT_NODE_NAMED_COMPONENT) {
 268		struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
 269		struct acpi_device *adev;
 270		struct acpi_iort_named_component *ncomp;
 271		struct device *nc_dev = dev;
 272
 273		/*
 274		 * Walk the device tree to find a device with an
 275		 * ACPI companion; there is no point in scanning
 276		 * IORT for a device matching a named component if
 277		 * the device does not have an ACPI companion to
 278		 * start with.
 279		 */
 280		do {
 281			adev = ACPI_COMPANION(nc_dev);
 282			if (adev)
 283				break;
 284
 285			nc_dev = nc_dev->parent;
 286		} while (nc_dev);
 287
 288		if (!adev)
 289			goto out;
 290
 291		status = acpi_get_name(adev->handle, ACPI_FULL_PATHNAME, &buf);
 292		if (ACPI_FAILURE(status)) {
 293			dev_warn(nc_dev, "Can't get device full path name\n");
 294			goto out;
 295		}
 296
 297		ncomp = (struct acpi_iort_named_component *)node->node_data;
 298		status = !strcmp(ncomp->device_name, buf.pointer) ?
 299							AE_OK : AE_NOT_FOUND;
 300		acpi_os_free(buf.pointer);
 301	} else if (node->type == ACPI_IORT_NODE_PCI_ROOT_COMPLEX) {
 302		struct acpi_iort_root_complex *pci_rc;
 303		struct pci_bus *bus;
 304
 305		bus = to_pci_bus(dev);
 306		pci_rc = (struct acpi_iort_root_complex *)node->node_data;
 307
 308		/*
 309		 * It is assumed that PCI segment numbers maps one-to-one
 310		 * with root complexes. Each segment number can represent only
 311		 * one root complex.
 312		 */
 313		status = pci_rc->pci_segment_number == pci_domain_nr(bus) ?
 314							AE_OK : AE_NOT_FOUND;
 315	}
 316out:
 317	return status;
 318}
 319
 320static int iort_id_map(struct acpi_iort_id_mapping *map, u8 type, u32 rid_in,
 321		       u32 *rid_out, bool check_overlap)
 322{
 323	/* Single mapping does not care for input id */
 324	if (map->flags & ACPI_IORT_ID_SINGLE_MAPPING) {
 325		if (type == ACPI_IORT_NODE_NAMED_COMPONENT ||
 326		    type == ACPI_IORT_NODE_PCI_ROOT_COMPLEX) {
 327			*rid_out = map->output_base;
 328			return 0;
 329		}
 330
 331		pr_warn(FW_BUG "[map %p] SINGLE MAPPING flag not allowed for node type %d, skipping ID map\n",
 332			map, type);
 333		return -ENXIO;
 334	}
 335
 336	if (rid_in < map->input_base ||
 337	    (rid_in > map->input_base + map->id_count))
 338		return -ENXIO;
 339
 340	if (check_overlap) {
 341		/*
 342		 * We already found a mapping for this input ID at the end of
 343		 * another region. If it coincides with the start of this
 344		 * region, we assume the prior match was due to the off-by-1
 345		 * issue mentioned below, and allow it to be superseded.
 346		 * Otherwise, things are *really* broken, and we just disregard
 347		 * duplicate matches entirely to retain compatibility.
 348		 */
 349		pr_err(FW_BUG "[map %p] conflicting mapping for input ID 0x%x\n",
 350		       map, rid_in);
 351		if (rid_in != map->input_base)
 352			return -ENXIO;
 353
 354		pr_err(FW_BUG "applying workaround.\n");
 355	}
 356
 357	*rid_out = map->output_base + (rid_in - map->input_base);
 358
 359	/*
 360	 * Due to confusion regarding the meaning of the id_count field (which
 361	 * carries the number of IDs *minus 1*), we may have to disregard this
 362	 * match if it is at the end of the range, and overlaps with the start
 363	 * of another one.
 364	 */
 365	if (map->id_count > 0 && rid_in == map->input_base + map->id_count)
 366		return -EAGAIN;
 367	return 0;
 368}
 369
 370static struct acpi_iort_node *iort_node_get_id(struct acpi_iort_node *node,
 371					       u32 *id_out, int index)
 372{
 373	struct acpi_iort_node *parent;
 374	struct acpi_iort_id_mapping *map;
 375
 376	if (!node->mapping_offset || !node->mapping_count ||
 377				     index >= node->mapping_count)
 378		return NULL;
 379
 380	map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, node,
 381			   node->mapping_offset + index * sizeof(*map));
 382
 383	/* Firmware bug! */
 384	if (!map->output_reference) {
 385		pr_err(FW_BUG "[node %p type %d] ID map has NULL parent reference\n",
 386		       node, node->type);
 387		return NULL;
 388	}
 389
 390	parent = ACPI_ADD_PTR(struct acpi_iort_node, iort_table,
 391			       map->output_reference);
 392
 393	if (map->flags & ACPI_IORT_ID_SINGLE_MAPPING) {
 394		if (node->type == ACPI_IORT_NODE_NAMED_COMPONENT ||
 395		    node->type == ACPI_IORT_NODE_PCI_ROOT_COMPLEX ||
 396		    node->type == ACPI_IORT_NODE_SMMU_V3 ||
 397		    node->type == ACPI_IORT_NODE_PMCG) {
 398			*id_out = map->output_base;
 399			return parent;
 400		}
 401	}
 402
 403	return NULL;
 404}
 405
 406#ifndef ACPI_IORT_SMMU_V3_DEVICEID_VALID
 407#define ACPI_IORT_SMMU_V3_DEVICEID_VALID (1 << 4)
 408#endif
 409
 410static int iort_get_id_mapping_index(struct acpi_iort_node *node)
 411{
 412	struct acpi_iort_smmu_v3 *smmu;
 413	struct acpi_iort_pmcg *pmcg;
 414
 415	switch (node->type) {
 416	case ACPI_IORT_NODE_SMMU_V3:
 417		/*
 418		 * SMMUv3 dev ID mapping index was introduced in revision 1
 419		 * table, not available in revision 0
 420		 */
 421		if (node->revision < 1)
 422			return -EINVAL;
 423
 424		smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
 425		/*
 426		 * Until IORT E.e (node rev. 5), the ID mapping index was
 427		 * defined to be valid unless all interrupts are GSIV-based.
 428		 */
 429		if (node->revision < 5) {
 430			if (smmu->event_gsiv && smmu->pri_gsiv &&
 431			    smmu->gerr_gsiv && smmu->sync_gsiv)
 432				return -EINVAL;
 433		} else if (!(smmu->flags & ACPI_IORT_SMMU_V3_DEVICEID_VALID)) {
 434			return -EINVAL;
 435		}
 436
 437		if (smmu->id_mapping_index >= node->mapping_count) {
 438			pr_err(FW_BUG "[node %p type %d] ID mapping index overflows valid mappings\n",
 439			       node, node->type);
 440			return -EINVAL;
 441		}
 442
 443		return smmu->id_mapping_index;
 444	case ACPI_IORT_NODE_PMCG:
 445		pmcg = (struct acpi_iort_pmcg *)node->node_data;
 446		if (pmcg->overflow_gsiv || node->mapping_count == 0)
 447			return -EINVAL;
 448
 449		return 0;
 450	default:
 451		return -EINVAL;
 452	}
 453}
 454
 455static struct acpi_iort_node *iort_node_map_id(struct acpi_iort_node *node,
 456					       u32 id_in, u32 *id_out,
 457					       u8 type_mask)
 458{
 459	u32 id = id_in;
 460
 461	/* Parse the ID mapping tree to find specified node type */
 462	while (node) {
 463		struct acpi_iort_id_mapping *map;
 464		int i, index, rc = 0;
 465		u32 out_ref = 0, map_id = id;
 466
 467		if (IORT_TYPE_MASK(node->type) & type_mask) {
 468			if (id_out)
 469				*id_out = id;
 470			return node;
 471		}
 472
 473		if (!node->mapping_offset || !node->mapping_count)
 474			goto fail_map;
 475
 476		map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, node,
 477				   node->mapping_offset);
 478
 479		/* Firmware bug! */
 480		if (!map->output_reference) {
 481			pr_err(FW_BUG "[node %p type %d] ID map has NULL parent reference\n",
 482			       node, node->type);
 483			goto fail_map;
 484		}
 485
 486		/*
 487		 * Get the special ID mapping index (if any) and skip its
 488		 * associated ID map to prevent erroneous multi-stage
 489		 * IORT ID translations.
 490		 */
 491		index = iort_get_id_mapping_index(node);
 492
 493		/* Do the ID translation */
 494		for (i = 0; i < node->mapping_count; i++, map++) {
 495			/* if it is special mapping index, skip it */
 496			if (i == index)
 497				continue;
 498
 499			rc = iort_id_map(map, node->type, map_id, &id, out_ref);
 500			if (!rc)
 501				break;
 502			if (rc == -EAGAIN)
 503				out_ref = map->output_reference;
 504		}
 505
 506		if (i == node->mapping_count && !out_ref)
 507			goto fail_map;
 508
 509		node = ACPI_ADD_PTR(struct acpi_iort_node, iort_table,
 510				    rc ? out_ref : map->output_reference);
 511	}
 512
 513fail_map:
 514	/* Map input ID to output ID unchanged on mapping failure */
 515	if (id_out)
 516		*id_out = id_in;
 517
 518	return NULL;
 519}
 520
 521static struct acpi_iort_node *iort_node_map_platform_id(
 522		struct acpi_iort_node *node, u32 *id_out, u8 type_mask,
 523		int index)
 524{
 525	struct acpi_iort_node *parent;
 526	u32 id;
 527
 528	/* step 1: retrieve the initial dev id */
 529	parent = iort_node_get_id(node, &id, index);
 530	if (!parent)
 531		return NULL;
 532
 533	/*
 534	 * optional step 2: map the initial dev id if its parent is not
 535	 * the target type we want, map it again for the use cases such
 536	 * as NC (named component) -> SMMU -> ITS. If the type is matched,
 537	 * return the initial dev id and its parent pointer directly.
 538	 */
 539	if (!(IORT_TYPE_MASK(parent->type) & type_mask))
 540		parent = iort_node_map_id(parent, id, id_out, type_mask);
 541	else
 542		if (id_out)
 543			*id_out = id;
 544
 545	return parent;
 546}
 547
 548static struct acpi_iort_node *iort_find_dev_node(struct device *dev)
 549{
 550	struct pci_bus *pbus;
 551
 552	if (!dev_is_pci(dev)) {
 553		struct acpi_iort_node *node;
 554		/*
 555		 * scan iort_fwnode_list to see if it's an iort platform
 556		 * device (such as SMMU, PMCG),its iort node already cached
 557		 * and associated with fwnode when iort platform devices
 558		 * were initialized.
 559		 */
 560		node = iort_get_iort_node(dev->fwnode);
 561		if (node)
 562			return node;
 563		/*
 564		 * if not, then it should be a platform device defined in
 565		 * DSDT/SSDT (with Named Component node in IORT)
 566		 */
 567		return iort_scan_node(ACPI_IORT_NODE_NAMED_COMPONENT,
 568				      iort_match_node_callback, dev);
 569	}
 570
 571	pbus = to_pci_dev(dev)->bus;
 572
 573	return iort_scan_node(ACPI_IORT_NODE_PCI_ROOT_COMPLEX,
 574			      iort_match_node_callback, &pbus->dev);
 575}
 576
 577/**
 578 * iort_msi_map_id() - Map a MSI input ID for a device
 579 * @dev: The device for which the mapping is to be done.
 580 * @input_id: The device input ID.
 581 *
 582 * Returns: mapped MSI ID on success, input ID otherwise
 583 */
 584u32 iort_msi_map_id(struct device *dev, u32 input_id)
 585{
 586	struct acpi_iort_node *node;
 587	u32 dev_id;
 588
 589	node = iort_find_dev_node(dev);
 590	if (!node)
 591		return input_id;
 592
 593	iort_node_map_id(node, input_id, &dev_id, IORT_MSI_TYPE);
 594	return dev_id;
 595}
 596
 597/**
 598 * iort_pmsi_get_dev_id() - Get the device id for a device
 599 * @dev: The device for which the mapping is to be done.
 600 * @dev_id: The device ID found.
 601 *
 602 * Returns: 0 for successful find a dev id, -ENODEV on error
 603 */
 604int iort_pmsi_get_dev_id(struct device *dev, u32 *dev_id)
 605{
 606	int i, index;
 607	struct acpi_iort_node *node;
 608
 609	node = iort_find_dev_node(dev);
 610	if (!node)
 611		return -ENODEV;
 612
 613	index = iort_get_id_mapping_index(node);
 614	/* if there is a valid index, go get the dev_id directly */
 615	if (index >= 0) {
 616		if (iort_node_get_id(node, dev_id, index))
 617			return 0;
 618	} else {
 619		for (i = 0; i < node->mapping_count; i++) {
 620			if (iort_node_map_platform_id(node, dev_id,
 621						      IORT_MSI_TYPE, i))
 622				return 0;
 623		}
 624	}
 625
 626	return -ENODEV;
 627}
 628
 629static int __maybe_unused iort_find_its_base(u32 its_id, phys_addr_t *base)
 630{
 631	struct iort_its_msi_chip *its_msi_chip;
 632	int ret = -ENODEV;
 633
 634	spin_lock(&iort_msi_chip_lock);
 635	list_for_each_entry(its_msi_chip, &iort_msi_chip_list, list) {
 636		if (its_msi_chip->translation_id == its_id) {
 637			*base = its_msi_chip->base_addr;
 638			ret = 0;
 639			break;
 640		}
 641	}
 642	spin_unlock(&iort_msi_chip_lock);
 643
 644	return ret;
 645}
 646
 647/**
 648 * iort_dev_find_its_id() - Find the ITS identifier for a device
 649 * @dev: The device.
 650 * @id: Device's ID
 651 * @idx: Index of the ITS identifier list.
 652 * @its_id: ITS identifier.
 653 *
 654 * Returns: 0 on success, appropriate error value otherwise
 655 */
 656static int iort_dev_find_its_id(struct device *dev, u32 id,
 657				unsigned int idx, int *its_id)
 658{
 659	struct acpi_iort_its_group *its;
 660	struct acpi_iort_node *node;
 661
 662	node = iort_find_dev_node(dev);
 663	if (!node)
 664		return -ENXIO;
 665
 666	node = iort_node_map_id(node, id, NULL, IORT_MSI_TYPE);
 667	if (!node)
 668		return -ENXIO;
 669
 670	/* Move to ITS specific data */
 671	its = (struct acpi_iort_its_group *)node->node_data;
 672	if (idx >= its->its_count) {
 673		dev_err(dev, "requested ITS ID index [%d] overruns ITS entries [%d]\n",
 674			idx, its->its_count);
 675		return -ENXIO;
 676	}
 677
 678	*its_id = its->identifiers[idx];
 679	return 0;
 680}
 681
 682/**
 683 * iort_get_device_domain() - Find MSI domain related to a device
 684 * @dev: The device.
 685 * @id: Requester ID for the device.
 686 * @bus_token: irq domain bus token.
 687 *
 688 * Returns: the MSI domain for this device, NULL otherwise
 689 */
 690struct irq_domain *iort_get_device_domain(struct device *dev, u32 id,
 691					  enum irq_domain_bus_token bus_token)
 692{
 693	struct fwnode_handle *handle;
 694	int its_id;
 695
 696	if (iort_dev_find_its_id(dev, id, 0, &its_id))
 697		return NULL;
 698
 699	handle = iort_find_domain_token(its_id);
 700	if (!handle)
 701		return NULL;
 702
 703	return irq_find_matching_fwnode(handle, bus_token);
 704}
 705
 706static void iort_set_device_domain(struct device *dev,
 707				   struct acpi_iort_node *node)
 708{
 709	struct acpi_iort_its_group *its;
 710	struct acpi_iort_node *msi_parent;
 711	struct acpi_iort_id_mapping *map;
 712	struct fwnode_handle *iort_fwnode;
 713	struct irq_domain *domain;
 714	int index;
 715
 716	index = iort_get_id_mapping_index(node);
 717	if (index < 0)
 718		return;
 719
 720	map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, node,
 721			   node->mapping_offset + index * sizeof(*map));
 722
 723	/* Firmware bug! */
 724	if (!map->output_reference ||
 725	    !(map->flags & ACPI_IORT_ID_SINGLE_MAPPING)) {
 726		pr_err(FW_BUG "[node %p type %d] Invalid MSI mapping\n",
 727		       node, node->type);
 728		return;
 729	}
 730
 731	msi_parent = ACPI_ADD_PTR(struct acpi_iort_node, iort_table,
 732				  map->output_reference);
 733
 734	if (!msi_parent || msi_parent->type != ACPI_IORT_NODE_ITS_GROUP)
 735		return;
 736
 737	/* Move to ITS specific data */
 738	its = (struct acpi_iort_its_group *)msi_parent->node_data;
 739
 740	iort_fwnode = iort_find_domain_token(its->identifiers[0]);
 741	if (!iort_fwnode)
 742		return;
 743
 744	domain = irq_find_matching_fwnode(iort_fwnode, DOMAIN_BUS_PLATFORM_MSI);
 745	if (domain)
 746		dev_set_msi_domain(dev, domain);
 747}
 748
 749/**
 750 * iort_get_platform_device_domain() - Find MSI domain related to a
 751 * platform device
 752 * @dev: the dev pointer associated with the platform device
 753 *
 754 * Returns: the MSI domain for this device, NULL otherwise
 755 */
 756static struct irq_domain *iort_get_platform_device_domain(struct device *dev)
 757{
 758	struct acpi_iort_node *node, *msi_parent = NULL;
 759	struct fwnode_handle *iort_fwnode;
 760	struct acpi_iort_its_group *its;
 761	int i;
 762
 763	/* find its associated iort node */
 764	node = iort_scan_node(ACPI_IORT_NODE_NAMED_COMPONENT,
 765			      iort_match_node_callback, dev);
 766	if (!node)
 767		return NULL;
 768
 769	/* then find its msi parent node */
 770	for (i = 0; i < node->mapping_count; i++) {
 771		msi_parent = iort_node_map_platform_id(node, NULL,
 772						       IORT_MSI_TYPE, i);
 773		if (msi_parent)
 774			break;
 775	}
 776
 777	if (!msi_parent)
 778		return NULL;
 779
 780	/* Move to ITS specific data */
 781	its = (struct acpi_iort_its_group *)msi_parent->node_data;
 782
 783	iort_fwnode = iort_find_domain_token(its->identifiers[0]);
 784	if (!iort_fwnode)
 785		return NULL;
 786
 787	return irq_find_matching_fwnode(iort_fwnode, DOMAIN_BUS_PLATFORM_MSI);
 788}
 789
 790void acpi_configure_pmsi_domain(struct device *dev)
 791{
 792	struct irq_domain *msi_domain;
 793
 794	msi_domain = iort_get_platform_device_domain(dev);
 795	if (msi_domain)
 796		dev_set_msi_domain(dev, msi_domain);
 797}
 798
 799#ifdef CONFIG_IOMMU_API
 800static void iort_rmr_free(struct device *dev,
 801			  struct iommu_resv_region *region)
 802{
 803	struct iommu_iort_rmr_data *rmr_data;
 804
 805	rmr_data = container_of(region, struct iommu_iort_rmr_data, rr);
 806	kfree(rmr_data->sids);
 807	kfree(rmr_data);
 808}
 809
 810static struct iommu_iort_rmr_data *iort_rmr_alloc(
 811					struct acpi_iort_rmr_desc *rmr_desc,
 812					int prot, enum iommu_resv_type type,
 813					u32 *sids, u32 num_sids)
 814{
 815	struct iommu_iort_rmr_data *rmr_data;
 816	struct iommu_resv_region *region;
 817	u32 *sids_copy;
 818	u64 addr = rmr_desc->base_address, size = rmr_desc->length;
 819
 820	rmr_data = kmalloc(sizeof(*rmr_data), GFP_KERNEL);
 821	if (!rmr_data)
 822		return NULL;
 823
 824	/* Create a copy of SIDs array to associate with this rmr_data */
 825	sids_copy = kmemdup_array(sids, num_sids, sizeof(*sids), GFP_KERNEL);
 826	if (!sids_copy) {
 827		kfree(rmr_data);
 828		return NULL;
 829	}
 830	rmr_data->sids = sids_copy;
 831	rmr_data->num_sids = num_sids;
 832
 833	if (!IS_ALIGNED(addr, SZ_64K) || !IS_ALIGNED(size, SZ_64K)) {
 834		/* PAGE align base addr and size */
 835		addr &= PAGE_MASK;
 836		size = PAGE_ALIGN(size + offset_in_page(rmr_desc->base_address));
 837
 838		pr_err(FW_BUG "RMR descriptor[0x%llx - 0x%llx] not aligned to 64K, continue with [0x%llx - 0x%llx]\n",
 839		       rmr_desc->base_address,
 840		       rmr_desc->base_address + rmr_desc->length - 1,
 841		       addr, addr + size - 1);
 842	}
 843
 844	region = &rmr_data->rr;
 845	INIT_LIST_HEAD(&region->list);
 846	region->start = addr;
 847	region->length = size;
 848	region->prot = prot;
 849	region->type = type;
 850	region->free = iort_rmr_free;
 851
 852	return rmr_data;
 853}
 854
 855static void iort_rmr_desc_check_overlap(struct acpi_iort_rmr_desc *desc,
 856					u32 count)
 857{
 858	int i, j;
 859
 860	for (i = 0; i < count; i++) {
 861		u64 end, start = desc[i].base_address, length = desc[i].length;
 862
 863		if (!length) {
 864			pr_err(FW_BUG "RMR descriptor[0x%llx] with zero length, continue anyway\n",
 865			       start);
 866			continue;
 867		}
 868
 869		end = start + length - 1;
 870
 871		/* Check for address overlap */
 872		for (j = i + 1; j < count; j++) {
 873			u64 e_start = desc[j].base_address;
 874			u64 e_end = e_start + desc[j].length - 1;
 875
 876			if (start <= e_end && end >= e_start)
 877				pr_err(FW_BUG "RMR descriptor[0x%llx - 0x%llx] overlaps, continue anyway\n",
 878				       start, end);
 879		}
 880	}
 881}
 882
 883/*
 884 * Please note, we will keep the already allocated RMR reserve
 885 * regions in case of a memory allocation failure.
 886 */
 887static void iort_get_rmrs(struct acpi_iort_node *node,
 888			  struct acpi_iort_node *smmu,
 889			  u32 *sids, u32 num_sids,
 890			  struct list_head *head)
 891{
 892	struct acpi_iort_rmr *rmr = (struct acpi_iort_rmr *)node->node_data;
 893	struct acpi_iort_rmr_desc *rmr_desc;
 894	int i;
 895
 896	rmr_desc = ACPI_ADD_PTR(struct acpi_iort_rmr_desc, node,
 897				rmr->rmr_offset);
 898
 899	iort_rmr_desc_check_overlap(rmr_desc, rmr->rmr_count);
 900
 901	for (i = 0; i < rmr->rmr_count; i++, rmr_desc++) {
 902		struct iommu_iort_rmr_data *rmr_data;
 903		enum iommu_resv_type type;
 904		int prot = IOMMU_READ | IOMMU_WRITE;
 905
 906		if (rmr->flags & ACPI_IORT_RMR_REMAP_PERMITTED)
 907			type = IOMMU_RESV_DIRECT_RELAXABLE;
 908		else
 909			type = IOMMU_RESV_DIRECT;
 910
 911		if (rmr->flags & ACPI_IORT_RMR_ACCESS_PRIVILEGE)
 912			prot |= IOMMU_PRIV;
 913
 914		/* Attributes 0x00 - 0x03 represents device memory */
 915		if (ACPI_IORT_RMR_ACCESS_ATTRIBUTES(rmr->flags) <=
 916				ACPI_IORT_RMR_ATTR_DEVICE_GRE)
 917			prot |= IOMMU_MMIO;
 918		else if (ACPI_IORT_RMR_ACCESS_ATTRIBUTES(rmr->flags) ==
 919				ACPI_IORT_RMR_ATTR_NORMAL_IWB_OWB)
 920			prot |= IOMMU_CACHE;
 921
 922		rmr_data = iort_rmr_alloc(rmr_desc, prot, type,
 923					  sids, num_sids);
 924		if (!rmr_data)
 925			return;
 926
 927		list_add_tail(&rmr_data->rr.list, head);
 928	}
 929}
 930
 931static u32 *iort_rmr_alloc_sids(u32 *sids, u32 count, u32 id_start,
 932				u32 new_count)
 933{
 934	u32 *new_sids;
 935	u32 total_count = count + new_count;
 936	int i;
 937
 938	new_sids = krealloc_array(sids, count + new_count,
 939				  sizeof(*new_sids), GFP_KERNEL);
 940	if (!new_sids)
 941		return NULL;
 942
 943	for (i = count; i < total_count; i++)
 944		new_sids[i] = id_start++;
 945
 946	return new_sids;
 947}
 948
 949static bool iort_rmr_has_dev(struct device *dev, u32 id_start,
 950			     u32 id_count)
 951{
 952	int i;
 953	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
 954
 955	/*
 956	 * Make sure the kernel has preserved the boot firmware PCIe
 957	 * configuration. This is required to ensure that the RMR PCIe
 958	 * StreamIDs are still valid (Refer: ARM DEN 0049E.d Section 3.1.1.5).
 959	 */
 960	if (dev_is_pci(dev)) {
 961		struct pci_dev *pdev = to_pci_dev(dev);
 962		struct pci_host_bridge *host = pci_find_host_bridge(pdev->bus);
 963
 964		if (!host->preserve_config)
 965			return false;
 966	}
 967
 968	for (i = 0; i < fwspec->num_ids; i++) {
 969		if (fwspec->ids[i] >= id_start &&
 970		    fwspec->ids[i] <= id_start + id_count)
 971			return true;
 972	}
 973
 974	return false;
 975}
 976
 977static void iort_node_get_rmr_info(struct acpi_iort_node *node,
 978				   struct acpi_iort_node *iommu,
 979				   struct device *dev, struct list_head *head)
 980{
 981	struct acpi_iort_node *smmu = NULL;
 982	struct acpi_iort_rmr *rmr;
 983	struct acpi_iort_id_mapping *map;
 984	u32 *sids = NULL;
 985	u32 num_sids = 0;
 986	int i;
 987
 988	if (!node->mapping_offset || !node->mapping_count) {
 989		pr_err(FW_BUG "Invalid ID mapping, skipping RMR node %p\n",
 990		       node);
 991		return;
 992	}
 993
 994	rmr = (struct acpi_iort_rmr *)node->node_data;
 995	if (!rmr->rmr_offset || !rmr->rmr_count)
 996		return;
 997
 998	map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, node,
 999			   node->mapping_offset);
1000
1001	/*
1002	 * Go through the ID mappings and see if we have a match for SMMU
1003	 * and dev(if !NULL). If found, get the sids for the Node.
1004	 * Please note, id_count is equal to the number of IDs  in the
1005	 * range minus one.
1006	 */
1007	for (i = 0; i < node->mapping_count; i++, map++) {
1008		struct acpi_iort_node *parent;
1009
1010		parent = ACPI_ADD_PTR(struct acpi_iort_node, iort_table,
1011				      map->output_reference);
1012		if (parent != iommu)
1013			continue;
1014
1015		/* If dev is valid, check RMR node corresponds to the dev SID */
1016		if (dev && !iort_rmr_has_dev(dev, map->output_base,
1017					     map->id_count))
1018			continue;
1019
1020		/* Retrieve SIDs associated with the Node. */
1021		sids = iort_rmr_alloc_sids(sids, num_sids, map->output_base,
1022					   map->id_count + 1);
1023		if (!sids)
1024			return;
1025
1026		num_sids += map->id_count + 1;
1027	}
1028
1029	if (!sids)
1030		return;
1031
1032	iort_get_rmrs(node, smmu, sids, num_sids, head);
1033	kfree(sids);
1034}
1035
1036static void iort_find_rmrs(struct acpi_iort_node *iommu, struct device *dev,
1037			   struct list_head *head)
1038{
1039	struct acpi_table_iort *iort;
1040	struct acpi_iort_node *iort_node, *iort_end;
1041	int i;
1042
1043	/* Only supports ARM DEN 0049E.d onwards */
1044	if (iort_table->revision < 5)
1045		return;
1046
1047	iort = (struct acpi_table_iort *)iort_table;
1048
1049	iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort,
1050				 iort->node_offset);
1051	iort_end = ACPI_ADD_PTR(struct acpi_iort_node, iort,
1052				iort_table->length);
1053
1054	for (i = 0; i < iort->node_count; i++) {
1055		if (WARN_TAINT(iort_node >= iort_end, TAINT_FIRMWARE_WORKAROUND,
1056			       "IORT node pointer overflows, bad table!\n"))
1057			return;
1058
1059		if (iort_node->type == ACPI_IORT_NODE_RMR)
1060			iort_node_get_rmr_info(iort_node, iommu, dev, head);
1061
1062		iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort_node,
1063					 iort_node->length);
1064	}
1065}
1066
1067/*
1068 * Populate the RMR list associated with a given IOMMU and dev(if provided).
1069 * If dev is NULL, the function populates all the RMRs associated with the
1070 * given IOMMU.
1071 */
1072static void iort_iommu_rmr_get_resv_regions(struct fwnode_handle *iommu_fwnode,
1073					    struct device *dev,
1074					    struct list_head *head)
1075{
1076	struct acpi_iort_node *iommu;
1077
1078	iommu = iort_get_iort_node(iommu_fwnode);
1079	if (!iommu)
1080		return;
1081
1082	iort_find_rmrs(iommu, dev, head);
1083}
1084
1085static struct acpi_iort_node *iort_get_msi_resv_iommu(struct device *dev)
1086{
1087	struct acpi_iort_node *iommu;
1088	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
1089
1090	iommu = iort_get_iort_node(fwspec->iommu_fwnode);
1091
1092	if (iommu && (iommu->type == ACPI_IORT_NODE_SMMU_V3)) {
1093		struct acpi_iort_smmu_v3 *smmu;
1094
1095		smmu = (struct acpi_iort_smmu_v3 *)iommu->node_data;
1096		if (smmu->model == ACPI_IORT_SMMU_V3_HISILICON_HI161X)
1097			return iommu;
1098	}
1099
1100	return NULL;
1101}
1102
1103/*
1104 * Retrieve platform specific HW MSI reserve regions.
1105 * The ITS interrupt translation spaces (ITS_base + SZ_64K, SZ_64K)
1106 * associated with the device are the HW MSI reserved regions.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1107 */
1108static void iort_iommu_msi_get_resv_regions(struct device *dev,
1109					    struct list_head *head)
1110{
1111	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
1112	struct acpi_iort_its_group *its;
1113	struct acpi_iort_node *iommu_node, *its_node = NULL;
1114	int i;
1115
1116	iommu_node = iort_get_msi_resv_iommu(dev);
1117	if (!iommu_node)
1118		return;
1119
1120	/*
1121	 * Current logic to reserve ITS regions relies on HW topologies
1122	 * where a given PCI or named component maps its IDs to only one
1123	 * ITS group; if a PCI or named component can map its IDs to
1124	 * different ITS groups through IORT mappings this function has
1125	 * to be reworked to ensure we reserve regions for all ITS groups
1126	 * a given PCI or named component may map IDs to.
1127	 */
1128
1129	for (i = 0; i < fwspec->num_ids; i++) {
1130		its_node = iort_node_map_id(iommu_node,
1131					fwspec->ids[i],
1132					NULL, IORT_MSI_TYPE);
1133		if (its_node)
1134			break;
1135	}
1136
1137	if (!its_node)
1138		return;
1139
1140	/* Move to ITS specific data */
1141	its = (struct acpi_iort_its_group *)its_node->node_data;
1142
1143	for (i = 0; i < its->its_count; i++) {
1144		phys_addr_t base;
1145
1146		if (!iort_find_its_base(its->identifiers[i], &base)) {
1147			int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
1148			struct iommu_resv_region *region;
1149
1150			region = iommu_alloc_resv_region(base + SZ_64K, SZ_64K,
1151							 prot, IOMMU_RESV_MSI,
1152							 GFP_KERNEL);
1153			if (region)
1154				list_add_tail(&region->list, head);
 
 
1155		}
1156	}
1157}
1158
1159/**
1160 * iort_iommu_get_resv_regions - Generic helper to retrieve reserved regions.
1161 * @dev: Device from iommu_get_resv_regions()
1162 * @head: Reserved region list from iommu_get_resv_regions()
1163 */
1164void iort_iommu_get_resv_regions(struct device *dev, struct list_head *head)
1165{
1166	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
1167
1168	iort_iommu_msi_get_resv_regions(dev, head);
1169	iort_iommu_rmr_get_resv_regions(fwspec->iommu_fwnode, dev, head);
1170}
1171
1172/**
1173 * iort_get_rmr_sids - Retrieve IORT RMR node reserved regions with
1174 *                     associated StreamIDs information.
1175 * @iommu_fwnode: fwnode associated with IOMMU
1176 * @head: Resereved region list
1177 */
1178void iort_get_rmr_sids(struct fwnode_handle *iommu_fwnode,
1179		       struct list_head *head)
1180{
1181	iort_iommu_rmr_get_resv_regions(iommu_fwnode, NULL, head);
1182}
1183EXPORT_SYMBOL_GPL(iort_get_rmr_sids);
1184
1185/**
1186 * iort_put_rmr_sids - Free memory allocated for RMR reserved regions.
1187 * @iommu_fwnode: fwnode associated with IOMMU
1188 * @head: Resereved region list
1189 */
1190void iort_put_rmr_sids(struct fwnode_handle *iommu_fwnode,
1191		       struct list_head *head)
1192{
1193	struct iommu_resv_region *entry, *next;
1194
1195	list_for_each_entry_safe(entry, next, head, list)
1196		entry->free(NULL, entry);
1197}
1198EXPORT_SYMBOL_GPL(iort_put_rmr_sids);
1199
1200static inline bool iort_iommu_driver_enabled(u8 type)
1201{
1202	switch (type) {
1203	case ACPI_IORT_NODE_SMMU_V3:
1204		return IS_ENABLED(CONFIG_ARM_SMMU_V3);
1205	case ACPI_IORT_NODE_SMMU:
1206		return IS_ENABLED(CONFIG_ARM_SMMU);
1207	default:
1208		pr_warn("IORT node type %u does not describe an SMMU\n", type);
1209		return false;
1210	}
1211}
1212
1213static bool iort_pci_rc_supports_ats(struct acpi_iort_node *node)
 
 
1214{
1215	struct acpi_iort_root_complex *pci_rc;
1216
1217	pci_rc = (struct acpi_iort_root_complex *)node->node_data;
1218	return pci_rc->ats_attribute & ACPI_IORT_ATS_SUPPORTED;
 
 
1219}
1220
1221static bool iort_pci_rc_supports_canwbs(struct acpi_iort_node *node)
1222{
1223	struct acpi_iort_memory_access *memory_access;
1224	struct acpi_iort_root_complex *pci_rc;
1225
1226	pci_rc = (struct acpi_iort_root_complex *)node->node_data;
1227	memory_access =
1228		(struct acpi_iort_memory_access *)&pci_rc->memory_properties;
1229	return memory_access->memory_flags & ACPI_IORT_MF_CANWBS;
1230}
1231
1232static int iort_iommu_xlate(struct device *dev, struct acpi_iort_node *node,
1233			    u32 streamid)
1234{
 
1235	struct fwnode_handle *iort_fwnode;
1236
1237	/* If there's no SMMU driver at all, give up now */
1238	if (!node || !iort_iommu_driver_enabled(node->type))
1239		return -ENODEV;
1240
1241	iort_fwnode = iort_get_fwnode(node);
1242	if (!iort_fwnode)
1243		return -ENODEV;
1244
1245	/*
1246	 * If the SMMU drivers are enabled but not loaded/probed
1247	 * yet, this will defer.
 
 
 
 
1248	 */
1249	return acpi_iommu_fwspec_init(dev, streamid, iort_fwnode);
 
 
 
 
 
1250}
1251
1252struct iort_pci_alias_info {
1253	struct device *dev;
1254	struct acpi_iort_node *node;
1255};
1256
1257static int iort_pci_iommu_init(struct pci_dev *pdev, u16 alias, void *data)
1258{
1259	struct iort_pci_alias_info *info = data;
1260	struct acpi_iort_node *parent;
1261	u32 streamid;
1262
1263	parent = iort_node_map_id(info->node, alias, &streamid,
1264				  IORT_IOMMU_TYPE);
1265	return iort_iommu_xlate(info->dev, parent, streamid);
1266}
1267
1268static void iort_named_component_init(struct device *dev,
1269				      struct acpi_iort_node *node)
1270{
1271	struct property_entry props[3] = {};
1272	struct acpi_iort_named_component *nc;
 
1273
1274	nc = (struct acpi_iort_named_component *)node->node_data;
1275	props[0] = PROPERTY_ENTRY_U32("pasid-num-bits",
1276				      FIELD_GET(ACPI_IORT_NC_PASID_BITS,
1277						nc->node_flags));
1278	if (nc->node_flags & ACPI_IORT_NC_STALL_SUPPORTED)
1279		props[1] = PROPERTY_ENTRY_BOOL("dma-can-stall");
1280
1281	if (device_create_managed_software_node(dev, props, NULL))
1282		dev_warn(dev, "Could not add device properties\n");
 
1283}
1284
1285static int iort_nc_iommu_map(struct device *dev, struct acpi_iort_node *node)
1286{
1287	struct acpi_iort_node *parent;
1288	int err = -ENODEV, i = 0;
1289	u32 streamid = 0;
1290
1291	do {
1292
1293		parent = iort_node_map_platform_id(node, &streamid,
1294						   IORT_IOMMU_TYPE,
1295						   i++);
1296
1297		if (parent)
1298			err = iort_iommu_xlate(dev, parent, streamid);
1299	} while (parent && !err);
1300
1301	return err;
1302}
1303
1304static int iort_nc_iommu_map_id(struct device *dev,
1305				struct acpi_iort_node *node,
1306				const u32 *in_id)
1307{
1308	struct acpi_iort_node *parent;
1309	u32 streamid;
1310
1311	parent = iort_node_map_id(node, *in_id, &streamid, IORT_IOMMU_TYPE);
1312	if (parent)
1313		return iort_iommu_xlate(dev, parent, streamid);
1314
1315	return -ENODEV;
1316}
1317
1318
1319/**
1320 * iort_iommu_configure_id - Set-up IOMMU configuration for a device.
1321 *
1322 * @dev: device to configure
1323 * @id_in: optional input id const value pointer
1324 *
1325 * Returns: 0 on success, <0 on failure
 
1326 */
1327int iort_iommu_configure_id(struct device *dev, const u32 *id_in)
 
1328{
1329	struct acpi_iort_node *node;
 
1330	int err = -ENODEV;
1331
 
 
 
 
 
 
 
 
1332	if (dev_is_pci(dev)) {
1333		struct iommu_fwspec *fwspec;
1334		struct pci_bus *bus = to_pci_dev(dev)->bus;
1335		struct iort_pci_alias_info info = { .dev = dev };
1336
1337		node = iort_scan_node(ACPI_IORT_NODE_PCI_ROOT_COMPLEX,
1338				      iort_match_node_callback, &bus->dev);
1339		if (!node)
1340			return -ENODEV;
1341
1342		info.node = node;
1343		err = pci_for_each_dma_alias(to_pci_dev(dev),
1344					     iort_pci_iommu_init, &info);
1345
1346		fwspec = dev_iommu_fwspec_get(dev);
1347		if (fwspec && iort_pci_rc_supports_ats(node))
1348			fwspec->flags |= IOMMU_FWSPEC_PCI_RC_ATS;
1349		if (fwspec && iort_pci_rc_supports_canwbs(node))
1350			fwspec->flags |= IOMMU_FWSPEC_PCI_RC_CANWBS;
1351	} else {
1352		node = iort_scan_node(ACPI_IORT_NODE_NAMED_COMPONENT,
1353				      iort_match_node_callback, dev);
1354		if (!node)
1355			return -ENODEV;
1356
1357		err = id_in ? iort_nc_iommu_map_id(dev, node, id_in) :
1358			      iort_nc_iommu_map(dev, node);
1359
1360		if (!err)
1361			iort_named_component_init(dev, node);
1362	}
1363
1364	return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1365}
1366
1367#else
1368void iort_iommu_get_resv_regions(struct device *dev, struct list_head *head)
1369{ }
1370int iort_iommu_configure_id(struct device *dev, const u32 *input_id)
1371{ return -ENODEV; }
 
 
 
 
 
 
1372#endif
1373
1374static int nc_dma_get_range(struct device *dev, u64 *limit)
1375{
1376	struct acpi_iort_node *node;
1377	struct acpi_iort_named_component *ncomp;
1378
1379	node = iort_scan_node(ACPI_IORT_NODE_NAMED_COMPONENT,
1380			      iort_match_node_callback, dev);
1381	if (!node)
1382		return -ENODEV;
1383
1384	ncomp = (struct acpi_iort_named_component *)node->node_data;
1385
1386	if (!ncomp->memory_address_limit) {
1387		pr_warn(FW_BUG "Named component missing memory address limit\n");
1388		return -EINVAL;
1389	}
1390
1391	*limit = ncomp->memory_address_limit >= 64 ? U64_MAX :
1392			(1ULL << ncomp->memory_address_limit) - 1;
1393
1394	return 0;
1395}
1396
1397static int rc_dma_get_range(struct device *dev, u64 *limit)
1398{
1399	struct acpi_iort_node *node;
1400	struct acpi_iort_root_complex *rc;
1401	struct pci_bus *pbus = to_pci_dev(dev)->bus;
1402
1403	node = iort_scan_node(ACPI_IORT_NODE_PCI_ROOT_COMPLEX,
1404			      iort_match_node_callback, &pbus->dev);
1405	if (!node || node->revision < 1)
1406		return -ENODEV;
1407
1408	rc = (struct acpi_iort_root_complex *)node->node_data;
1409
1410	if (!rc->memory_address_limit) {
1411		pr_warn(FW_BUG "Root complex missing memory address limit\n");
1412		return -EINVAL;
1413	}
1414
1415	*limit = rc->memory_address_limit >= 64 ? U64_MAX :
1416			(1ULL << rc->memory_address_limit) - 1;
1417
1418	return 0;
1419}
1420
1421/**
1422 * iort_dma_get_ranges() - Look up DMA addressing limit for the device
1423 * @dev: device to lookup
1424 * @limit: DMA limit result pointer
1425 *
1426 * Return: 0 on success, an error otherwise.
 
 
1427 */
1428int iort_dma_get_ranges(struct device *dev, u64 *limit)
1429{
1430	if (dev_is_pci(dev))
1431		return rc_dma_get_range(dev, limit);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1432	else
1433		return nc_dma_get_range(dev, limit);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1434}
1435
1436static void __init acpi_iort_register_irq(int hwirq, const char *name,
1437					  int trigger,
1438					  struct resource *res)
1439{
1440	int irq = acpi_register_gsi(NULL, hwirq, trigger,
1441				    ACPI_ACTIVE_HIGH);
1442
1443	if (irq <= 0) {
1444		pr_err("could not register gsi hwirq %d name [%s]\n", hwirq,
1445								      name);
1446		return;
1447	}
1448
1449	res->start = irq;
1450	res->end = irq;
1451	res->flags = IORESOURCE_IRQ;
1452	res->name = name;
1453}
1454
1455static int __init arm_smmu_v3_count_resources(struct acpi_iort_node *node)
1456{
1457	struct acpi_iort_smmu_v3 *smmu;
1458	/* Always present mem resource */
1459	int num_res = 1;
1460
1461	/* Retrieve SMMUv3 specific data */
1462	smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
1463
1464	if (smmu->event_gsiv)
1465		num_res++;
1466
1467	if (smmu->pri_gsiv)
1468		num_res++;
1469
1470	if (smmu->gerr_gsiv)
1471		num_res++;
1472
1473	if (smmu->sync_gsiv)
1474		num_res++;
1475
1476	return num_res;
1477}
1478
1479static bool arm_smmu_v3_is_combined_irq(struct acpi_iort_smmu_v3 *smmu)
1480{
1481	/*
1482	 * Cavium ThunderX2 implementation doesn't not support unique
1483	 * irq line. Use single irq line for all the SMMUv3 interrupts.
1484	 */
1485	if (smmu->model != ACPI_IORT_SMMU_V3_CAVIUM_CN99XX)
1486		return false;
1487
1488	/*
1489	 * ThunderX2 doesn't support MSIs from the SMMU, so we're checking
1490	 * SPI numbers here.
1491	 */
1492	return smmu->event_gsiv == smmu->pri_gsiv &&
1493	       smmu->event_gsiv == smmu->gerr_gsiv &&
1494	       smmu->event_gsiv == smmu->sync_gsiv;
1495}
1496
1497static unsigned long arm_smmu_v3_resource_size(struct acpi_iort_smmu_v3 *smmu)
1498{
1499	/*
1500	 * Override the size, for Cavium ThunderX2 implementation
1501	 * which doesn't support the page 1 SMMU register space.
1502	 */
1503	if (smmu->model == ACPI_IORT_SMMU_V3_CAVIUM_CN99XX)
1504		return SZ_64K;
1505
1506	return SZ_128K;
1507}
1508
1509static void __init arm_smmu_v3_init_resources(struct resource *res,
1510					      struct acpi_iort_node *node)
1511{
1512	struct acpi_iort_smmu_v3 *smmu;
1513	int num_res = 0;
1514
1515	/* Retrieve SMMUv3 specific data */
1516	smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
1517
1518	res[num_res].start = smmu->base_address;
1519	res[num_res].end = smmu->base_address +
1520				arm_smmu_v3_resource_size(smmu) - 1;
1521	res[num_res].flags = IORESOURCE_MEM;
1522
1523	num_res++;
1524	if (arm_smmu_v3_is_combined_irq(smmu)) {
1525		if (smmu->event_gsiv)
1526			acpi_iort_register_irq(smmu->event_gsiv, "combined",
1527					       ACPI_EDGE_SENSITIVE,
1528					       &res[num_res++]);
1529	} else {
1530
1531		if (smmu->event_gsiv)
1532			acpi_iort_register_irq(smmu->event_gsiv, "eventq",
1533					       ACPI_EDGE_SENSITIVE,
1534					       &res[num_res++]);
1535
1536		if (smmu->pri_gsiv)
1537			acpi_iort_register_irq(smmu->pri_gsiv, "priq",
1538					       ACPI_EDGE_SENSITIVE,
1539					       &res[num_res++]);
1540
1541		if (smmu->gerr_gsiv)
1542			acpi_iort_register_irq(smmu->gerr_gsiv, "gerror",
1543					       ACPI_EDGE_SENSITIVE,
1544					       &res[num_res++]);
1545
1546		if (smmu->sync_gsiv)
1547			acpi_iort_register_irq(smmu->sync_gsiv, "cmdq-sync",
1548					       ACPI_EDGE_SENSITIVE,
1549					       &res[num_res++]);
1550	}
1551}
1552
1553static void __init arm_smmu_v3_dma_configure(struct device *dev,
1554					     struct acpi_iort_node *node)
1555{
1556	struct acpi_iort_smmu_v3 *smmu;
1557	enum dev_dma_attr attr;
1558
1559	/* Retrieve SMMUv3 specific data */
1560	smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
1561
1562	attr = (smmu->flags & ACPI_IORT_SMMU_V3_COHACC_OVERRIDE) ?
1563			DEV_DMA_COHERENT : DEV_DMA_NON_COHERENT;
1564
1565	/* We expect the dma masks to be equivalent for all SMMUv3 set-ups */
1566	dev->dma_mask = &dev->coherent_dma_mask;
1567
1568	/* Configure DMA for the page table walker */
1569	acpi_dma_configure(dev, attr);
1570}
1571
1572#if defined(CONFIG_ACPI_NUMA)
1573/*
1574 * set numa proximity domain for smmuv3 device
1575 */
1576static int  __init arm_smmu_v3_set_proximity(struct device *dev,
1577					      struct acpi_iort_node *node)
1578{
1579	struct acpi_iort_smmu_v3 *smmu;
1580
1581	smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
1582	if (smmu->flags & ACPI_IORT_SMMU_V3_PXM_VALID) {
1583		int dev_node = pxm_to_node(smmu->pxm);
1584
1585		if (dev_node != NUMA_NO_NODE && !node_online(dev_node))
1586			return -EINVAL;
1587
1588		set_dev_node(dev, dev_node);
1589		pr_info("SMMU-v3[%llx] Mapped to Proximity domain %d\n",
1590			smmu->base_address,
1591			smmu->pxm);
1592	}
1593	return 0;
1594}
1595#else
1596#define arm_smmu_v3_set_proximity NULL
1597#endif
1598
1599static int __init arm_smmu_count_resources(struct acpi_iort_node *node)
1600{
1601	struct acpi_iort_smmu *smmu;
1602
1603	/* Retrieve SMMU specific data */
1604	smmu = (struct acpi_iort_smmu *)node->node_data;
1605
1606	/*
1607	 * Only consider the global fault interrupt and ignore the
1608	 * configuration access interrupt.
1609	 *
1610	 * MMIO address and global fault interrupt resources are always
1611	 * present so add them to the context interrupt count as a static
1612	 * value.
1613	 */
1614	return smmu->context_interrupt_count + 2;
1615}
1616
1617static void __init arm_smmu_init_resources(struct resource *res,
1618					   struct acpi_iort_node *node)
1619{
1620	struct acpi_iort_smmu *smmu;
1621	int i, hw_irq, trigger, num_res = 0;
1622	u64 *ctx_irq, *glb_irq;
1623
1624	/* Retrieve SMMU specific data */
1625	smmu = (struct acpi_iort_smmu *)node->node_data;
1626
1627	res[num_res].start = smmu->base_address;
1628	res[num_res].end = smmu->base_address + smmu->span - 1;
1629	res[num_res].flags = IORESOURCE_MEM;
1630	num_res++;
1631
1632	glb_irq = ACPI_ADD_PTR(u64, node, smmu->global_interrupt_offset);
1633	/* Global IRQs */
1634	hw_irq = IORT_IRQ_MASK(glb_irq[0]);
1635	trigger = IORT_IRQ_TRIGGER_MASK(glb_irq[0]);
1636
1637	acpi_iort_register_irq(hw_irq, "arm-smmu-global", trigger,
1638				     &res[num_res++]);
1639
1640	/* Context IRQs */
1641	ctx_irq = ACPI_ADD_PTR(u64, node, smmu->context_interrupt_offset);
1642	for (i = 0; i < smmu->context_interrupt_count; i++) {
1643		hw_irq = IORT_IRQ_MASK(ctx_irq[i]);
1644		trigger = IORT_IRQ_TRIGGER_MASK(ctx_irq[i]);
1645
1646		acpi_iort_register_irq(hw_irq, "arm-smmu-context", trigger,
1647				       &res[num_res++]);
1648	}
1649}
1650
1651static void __init arm_smmu_dma_configure(struct device *dev,
1652					  struct acpi_iort_node *node)
1653{
1654	struct acpi_iort_smmu *smmu;
1655	enum dev_dma_attr attr;
1656
1657	/* Retrieve SMMU specific data */
1658	smmu = (struct acpi_iort_smmu *)node->node_data;
1659
1660	attr = (smmu->flags & ACPI_IORT_SMMU_COHERENT_WALK) ?
1661			DEV_DMA_COHERENT : DEV_DMA_NON_COHERENT;
1662
1663	/* We expect the dma masks to be equivalent for SMMU set-ups */
1664	dev->dma_mask = &dev->coherent_dma_mask;
1665
1666	/* Configure DMA for the page table walker */
1667	acpi_dma_configure(dev, attr);
1668}
1669
1670static int __init arm_smmu_v3_pmcg_count_resources(struct acpi_iort_node *node)
1671{
1672	struct acpi_iort_pmcg *pmcg;
1673
1674	/* Retrieve PMCG specific data */
1675	pmcg = (struct acpi_iort_pmcg *)node->node_data;
1676
1677	/*
1678	 * There are always 2 memory resources.
1679	 * If the overflow_gsiv is present then add that for a total of 3.
1680	 */
1681	return pmcg->overflow_gsiv ? 3 : 2;
1682}
1683
1684static void __init arm_smmu_v3_pmcg_init_resources(struct resource *res,
1685						   struct acpi_iort_node *node)
1686{
1687	struct acpi_iort_pmcg *pmcg;
1688
1689	/* Retrieve PMCG specific data */
1690	pmcg = (struct acpi_iort_pmcg *)node->node_data;
1691
1692	res[0].start = pmcg->page0_base_address;
1693	res[0].end = pmcg->page0_base_address + SZ_4K - 1;
1694	res[0].flags = IORESOURCE_MEM;
1695	/*
1696	 * The initial version in DEN0049C lacked a way to describe register
1697	 * page 1, which makes it broken for most PMCG implementations; in
1698	 * that case, just let the driver fail gracefully if it expects to
1699	 * find a second memory resource.
1700	 */
1701	if (node->revision > 0) {
1702		res[1].start = pmcg->page1_base_address;
1703		res[1].end = pmcg->page1_base_address + SZ_4K - 1;
1704		res[1].flags = IORESOURCE_MEM;
1705	}
1706
1707	if (pmcg->overflow_gsiv)
1708		acpi_iort_register_irq(pmcg->overflow_gsiv, "overflow",
1709				       ACPI_EDGE_SENSITIVE, &res[2]);
1710}
1711
1712static struct acpi_platform_list pmcg_plat_info[] __initdata = {
1713	/* HiSilicon Hip08 Platform */
1714	{"HISI  ", "HIP08   ", 0, ACPI_SIG_IORT, greater_than_or_equal,
1715	 "Erratum #162001800, Erratum #162001900", IORT_SMMU_V3_PMCG_HISI_HIP08},
1716	/* HiSilicon Hip09 Platform */
1717	{"HISI  ", "HIP09   ", 0, ACPI_SIG_IORT, greater_than_or_equal,
1718	 "Erratum #162001900", IORT_SMMU_V3_PMCG_HISI_HIP09},
1719	{"HISI  ", "HIP09A  ", 0, ACPI_SIG_IORT, greater_than_or_equal,
1720	 "Erratum #162001900", IORT_SMMU_V3_PMCG_HISI_HIP09},
1721	/* HiSilicon Hip10/11 Platform uses the same SMMU IP with Hip09 */
1722	{"HISI  ", "HIP10   ", 0, ACPI_SIG_IORT, greater_than_or_equal,
1723	 "Erratum #162001900", IORT_SMMU_V3_PMCG_HISI_HIP09},
1724	{"HISI  ", "HIP10C  ", 0, ACPI_SIG_IORT, greater_than_or_equal,
1725	 "Erratum #162001900", IORT_SMMU_V3_PMCG_HISI_HIP09},
1726	{"HISI  ", "HIP11   ", 0, ACPI_SIG_IORT, greater_than_or_equal,
1727	 "Erratum #162001900", IORT_SMMU_V3_PMCG_HISI_HIP09},
1728	{ }
1729};
1730
1731static int __init arm_smmu_v3_pmcg_add_platdata(struct platform_device *pdev)
1732{
1733	u32 model;
1734	int idx;
1735
1736	idx = acpi_match_platform_list(pmcg_plat_info);
1737	if (idx >= 0)
1738		model = pmcg_plat_info[idx].data;
1739	else
1740		model = IORT_SMMU_V3_PMCG_GENERIC;
1741
1742	return platform_device_add_data(pdev, &model, sizeof(model));
1743}
1744
1745struct iort_dev_config {
1746	const char *name;
1747	int (*dev_init)(struct acpi_iort_node *node);
1748	void (*dev_dma_configure)(struct device *dev,
1749				  struct acpi_iort_node *node);
1750	int (*dev_count_resources)(struct acpi_iort_node *node);
1751	void (*dev_init_resources)(struct resource *res,
1752				     struct acpi_iort_node *node);
1753	int (*dev_set_proximity)(struct device *dev,
1754				    struct acpi_iort_node *node);
1755	int (*dev_add_platdata)(struct platform_device *pdev);
1756};
1757
1758static const struct iort_dev_config iort_arm_smmu_v3_cfg __initconst = {
1759	.name = "arm-smmu-v3",
1760	.dev_dma_configure = arm_smmu_v3_dma_configure,
1761	.dev_count_resources = arm_smmu_v3_count_resources,
1762	.dev_init_resources = arm_smmu_v3_init_resources,
1763	.dev_set_proximity = arm_smmu_v3_set_proximity,
1764};
1765
1766static const struct iort_dev_config iort_arm_smmu_cfg __initconst = {
1767	.name = "arm-smmu",
1768	.dev_dma_configure = arm_smmu_dma_configure,
1769	.dev_count_resources = arm_smmu_count_resources,
1770	.dev_init_resources = arm_smmu_init_resources,
1771};
1772
1773static const struct iort_dev_config iort_arm_smmu_v3_pmcg_cfg __initconst = {
1774	.name = "arm-smmu-v3-pmcg",
1775	.dev_count_resources = arm_smmu_v3_pmcg_count_resources,
1776	.dev_init_resources = arm_smmu_v3_pmcg_init_resources,
1777	.dev_add_platdata = arm_smmu_v3_pmcg_add_platdata,
1778};
1779
1780static __init const struct iort_dev_config *iort_get_dev_cfg(
1781			struct acpi_iort_node *node)
1782{
1783	switch (node->type) {
1784	case ACPI_IORT_NODE_SMMU_V3:
1785		return &iort_arm_smmu_v3_cfg;
1786	case ACPI_IORT_NODE_SMMU:
1787		return &iort_arm_smmu_cfg;
1788	case ACPI_IORT_NODE_PMCG:
1789		return &iort_arm_smmu_v3_pmcg_cfg;
1790	default:
1791		return NULL;
1792	}
1793}
1794
1795/**
1796 * iort_add_platform_device() - Allocate a platform device for IORT node
1797 * @node: Pointer to device ACPI IORT node
1798 * @ops: Pointer to IORT device config struct
1799 *
1800 * Returns: 0 on success, <0 failure
1801 */
1802static int __init iort_add_platform_device(struct acpi_iort_node *node,
1803					   const struct iort_dev_config *ops)
1804{
1805	struct fwnode_handle *fwnode;
1806	struct platform_device *pdev;
1807	struct resource *r;
1808	int ret, count;
1809
1810	pdev = platform_device_alloc(ops->name, PLATFORM_DEVID_AUTO);
1811	if (!pdev)
1812		return -ENOMEM;
1813
1814	if (ops->dev_set_proximity) {
1815		ret = ops->dev_set_proximity(&pdev->dev, node);
1816		if (ret)
1817			goto dev_put;
1818	}
1819
1820	count = ops->dev_count_resources(node);
1821
1822	r = kcalloc(count, sizeof(*r), GFP_KERNEL);
1823	if (!r) {
1824		ret = -ENOMEM;
1825		goto dev_put;
1826	}
1827
1828	ops->dev_init_resources(r, node);
1829
1830	ret = platform_device_add_resources(pdev, r, count);
1831	/*
1832	 * Resources are duplicated in platform_device_add_resources,
1833	 * free their allocated memory
1834	 */
1835	kfree(r);
1836
1837	if (ret)
1838		goto dev_put;
1839
1840	/*
1841	 * Platform devices based on PMCG nodes uses platform_data to
1842	 * pass the hardware model info to the driver. For others, add
1843	 * a copy of IORT node pointer to platform_data to be used to
1844	 * retrieve IORT data information.
1845	 */
1846	if (ops->dev_add_platdata)
1847		ret = ops->dev_add_platdata(pdev);
1848	else
1849		ret = platform_device_add_data(pdev, &node, sizeof(node));
1850
1851	if (ret)
1852		goto dev_put;
1853
1854	fwnode = iort_get_fwnode(node);
1855
1856	if (!fwnode) {
1857		ret = -ENODEV;
1858		goto dev_put;
1859	}
1860
1861	pdev->dev.fwnode = fwnode;
1862
1863	if (ops->dev_dma_configure)
1864		ops->dev_dma_configure(&pdev->dev, node);
1865
1866	iort_set_device_domain(&pdev->dev, node);
1867
1868	ret = platform_device_add(pdev);
1869	if (ret)
1870		goto dma_deconfigure;
1871
1872	return 0;
1873
1874dma_deconfigure:
1875	arch_teardown_dma_ops(&pdev->dev);
1876dev_put:
1877	platform_device_put(pdev);
1878
1879	return ret;
1880}
1881
1882#ifdef CONFIG_PCI
1883static void __init iort_enable_acs(struct acpi_iort_node *iort_node)
1884{
1885	static bool acs_enabled __initdata;
1886
1887	if (acs_enabled)
1888		return;
1889
1890	if (iort_node->type == ACPI_IORT_NODE_PCI_ROOT_COMPLEX) {
1891		struct acpi_iort_node *parent;
1892		struct acpi_iort_id_mapping *map;
1893		int i;
1894
1895		map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, iort_node,
1896				   iort_node->mapping_offset);
1897
1898		for (i = 0; i < iort_node->mapping_count; i++, map++) {
1899			if (!map->output_reference)
1900				continue;
1901
1902			parent = ACPI_ADD_PTR(struct acpi_iort_node,
1903					iort_table,  map->output_reference);
1904			/*
1905			 * If we detect a RC->SMMU mapping, make sure
1906			 * we enable ACS on the system.
1907			 */
1908			if ((parent->type == ACPI_IORT_NODE_SMMU) ||
1909				(parent->type == ACPI_IORT_NODE_SMMU_V3)) {
1910				pci_request_acs();
1911				acs_enabled = true;
1912				return;
1913			}
1914		}
1915	}
1916}
1917#else
1918static inline void iort_enable_acs(struct acpi_iort_node *iort_node) { }
1919#endif
1920
1921static void __init iort_init_platform_devices(void)
1922{
1923	struct acpi_iort_node *iort_node, *iort_end;
1924	struct acpi_table_iort *iort;
1925	struct fwnode_handle *fwnode;
1926	int i, ret;
1927	const struct iort_dev_config *ops;
1928
1929	/*
1930	 * iort_table and iort both point to the start of IORT table, but
1931	 * have different struct types
1932	 */
1933	iort = (struct acpi_table_iort *)iort_table;
1934
1935	/* Get the first IORT node */
1936	iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort,
1937				 iort->node_offset);
1938	iort_end = ACPI_ADD_PTR(struct acpi_iort_node, iort,
1939				iort_table->length);
1940
1941	for (i = 0; i < iort->node_count; i++) {
1942		if (iort_node >= iort_end) {
1943			pr_err("iort node pointer overflows, bad table\n");
1944			return;
1945		}
1946
1947		iort_enable_acs(iort_node);
1948
1949		ops = iort_get_dev_cfg(iort_node);
1950		if (ops) {
1951			fwnode = acpi_alloc_fwnode_static();
1952			if (!fwnode)
1953				return;
1954
1955			iort_set_fwnode(iort_node, fwnode);
1956
1957			ret = iort_add_platform_device(iort_node, ops);
1958			if (ret) {
1959				iort_delete_fwnode(iort_node);
1960				acpi_free_fwnode_static(fwnode);
1961				return;
1962			}
1963		}
1964
1965		iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort_node,
1966					 iort_node->length);
1967	}
1968}
1969
1970void __init acpi_iort_init(void)
1971{
1972	acpi_status status;
1973
1974	/* iort_table will be used at runtime after the iort init,
1975	 * so we don't need to call acpi_put_table() to release
1976	 * the IORT table mapping.
1977	 */
1978	status = acpi_get_table(ACPI_SIG_IORT, 0, &iort_table);
1979	if (ACPI_FAILURE(status)) {
1980		if (status != AE_NOT_FOUND) {
1981			const char *msg = acpi_format_exception(status);
1982
1983			pr_err("Failed to get table, %s\n", msg);
1984		}
1985
1986		return;
1987	}
1988
1989	iort_init_platform_devices();
1990}
1991
1992#ifdef CONFIG_ZONE_DMA
1993/*
1994 * Extract the highest CPU physical address accessible to all DMA masters in
1995 * the system. PHYS_ADDR_MAX is returned when no constrained device is found.
1996 */
1997phys_addr_t __init acpi_iort_dma_get_max_cpu_address(void)
1998{
1999	phys_addr_t limit = PHYS_ADDR_MAX;
2000	struct acpi_iort_node *node, *end;
2001	struct acpi_table_iort *iort;
2002	acpi_status status;
2003	int i;
2004
2005	if (acpi_disabled)
2006		return limit;
2007
2008	status = acpi_get_table(ACPI_SIG_IORT, 0,
2009				(struct acpi_table_header **)&iort);
2010	if (ACPI_FAILURE(status))
2011		return limit;
2012
2013	node = ACPI_ADD_PTR(struct acpi_iort_node, iort, iort->node_offset);
2014	end = ACPI_ADD_PTR(struct acpi_iort_node, iort, iort->header.length);
2015
2016	for (i = 0; i < iort->node_count; i++) {
2017		if (node >= end)
2018			break;
2019
2020		switch (node->type) {
2021			struct acpi_iort_named_component *ncomp;
2022			struct acpi_iort_root_complex *rc;
2023			phys_addr_t local_limit;
2024
2025		case ACPI_IORT_NODE_NAMED_COMPONENT:
2026			ncomp = (struct acpi_iort_named_component *)node->node_data;
2027			local_limit = DMA_BIT_MASK(ncomp->memory_address_limit);
2028			limit = min_not_zero(limit, local_limit);
2029			break;
2030
2031		case ACPI_IORT_NODE_PCI_ROOT_COMPLEX:
2032			if (node->revision < 1)
2033				break;
2034
2035			rc = (struct acpi_iort_root_complex *)node->node_data;
2036			local_limit = DMA_BIT_MASK(rc->memory_address_limit);
2037			limit = min_not_zero(limit, local_limit);
2038			break;
2039		}
2040		node = ACPI_ADD_PTR(struct acpi_iort_node, node, node->length);
2041	}
2042	acpi_put_table(&iort->header);
2043	return limit;
2044}
2045#endif
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2016, Semihalf
   4 *	Author: Tomasz Nowicki <tn@semihalf.com>
   5 *
   6 * This file implements early detection/parsing of I/O mapping
   7 * reported to OS through firmware via I/O Remapping Table (IORT)
   8 * IORT document number: ARM DEN 0049A
   9 */
  10
  11#define pr_fmt(fmt)	"ACPI: IORT: " fmt
  12
  13#include <linux/acpi_iort.h>
  14#include <linux/bitfield.h>
  15#include <linux/iommu.h>
  16#include <linux/kernel.h>
  17#include <linux/list.h>
  18#include <linux/pci.h>
  19#include <linux/platform_device.h>
  20#include <linux/slab.h>
 
 
  21
  22#define IORT_TYPE_MASK(type)	(1 << (type))
  23#define IORT_MSI_TYPE		(1 << ACPI_IORT_NODE_ITS_GROUP)
  24#define IORT_IOMMU_TYPE		((1 << ACPI_IORT_NODE_SMMU) |	\
  25				(1 << ACPI_IORT_NODE_SMMU_V3))
  26
  27struct iort_its_msi_chip {
  28	struct list_head	list;
  29	struct fwnode_handle	*fw_node;
  30	phys_addr_t		base_addr;
  31	u32			translation_id;
  32};
  33
  34struct iort_fwnode {
  35	struct list_head list;
  36	struct acpi_iort_node *iort_node;
  37	struct fwnode_handle *fwnode;
  38};
  39static LIST_HEAD(iort_fwnode_list);
  40static DEFINE_SPINLOCK(iort_fwnode_lock);
  41
  42/**
  43 * iort_set_fwnode() - Create iort_fwnode and use it to register
  44 *		       iommu data in the iort_fwnode_list
  45 *
  46 * @node: IORT table node associated with the IOMMU
  47 * @fwnode: fwnode associated with the IORT node
  48 *
  49 * Returns: 0 on success
  50 *          <0 on failure
  51 */
  52static inline int iort_set_fwnode(struct acpi_iort_node *iort_node,
  53				  struct fwnode_handle *fwnode)
  54{
  55	struct iort_fwnode *np;
  56
  57	np = kzalloc(sizeof(struct iort_fwnode), GFP_ATOMIC);
  58
  59	if (WARN_ON(!np))
  60		return -ENOMEM;
  61
  62	INIT_LIST_HEAD(&np->list);
  63	np->iort_node = iort_node;
  64	np->fwnode = fwnode;
  65
  66	spin_lock(&iort_fwnode_lock);
  67	list_add_tail(&np->list, &iort_fwnode_list);
  68	spin_unlock(&iort_fwnode_lock);
  69
  70	return 0;
  71}
  72
  73/**
  74 * iort_get_fwnode() - Retrieve fwnode associated with an IORT node
  75 *
  76 * @node: IORT table node to be looked-up
  77 *
  78 * Returns: fwnode_handle pointer on success, NULL on failure
  79 */
  80static inline struct fwnode_handle *iort_get_fwnode(
  81			struct acpi_iort_node *node)
  82{
  83	struct iort_fwnode *curr;
  84	struct fwnode_handle *fwnode = NULL;
  85
  86	spin_lock(&iort_fwnode_lock);
  87	list_for_each_entry(curr, &iort_fwnode_list, list) {
  88		if (curr->iort_node == node) {
  89			fwnode = curr->fwnode;
  90			break;
  91		}
  92	}
  93	spin_unlock(&iort_fwnode_lock);
  94
  95	return fwnode;
  96}
  97
  98/**
  99 * iort_delete_fwnode() - Delete fwnode associated with an IORT node
 100 *
 101 * @node: IORT table node associated with fwnode to delete
 102 */
 103static inline void iort_delete_fwnode(struct acpi_iort_node *node)
 104{
 105	struct iort_fwnode *curr, *tmp;
 106
 107	spin_lock(&iort_fwnode_lock);
 108	list_for_each_entry_safe(curr, tmp, &iort_fwnode_list, list) {
 109		if (curr->iort_node == node) {
 110			list_del(&curr->list);
 111			kfree(curr);
 112			break;
 113		}
 114	}
 115	spin_unlock(&iort_fwnode_lock);
 116}
 117
 118/**
 119 * iort_get_iort_node() - Retrieve iort_node associated with an fwnode
 120 *
 121 * @fwnode: fwnode associated with device to be looked-up
 122 *
 123 * Returns: iort_node pointer on success, NULL on failure
 124 */
 125static inline struct acpi_iort_node *iort_get_iort_node(
 126			struct fwnode_handle *fwnode)
 127{
 128	struct iort_fwnode *curr;
 129	struct acpi_iort_node *iort_node = NULL;
 130
 131	spin_lock(&iort_fwnode_lock);
 132	list_for_each_entry(curr, &iort_fwnode_list, list) {
 133		if (curr->fwnode == fwnode) {
 134			iort_node = curr->iort_node;
 135			break;
 136		}
 137	}
 138	spin_unlock(&iort_fwnode_lock);
 139
 140	return iort_node;
 141}
 142
 143typedef acpi_status (*iort_find_node_callback)
 144	(struct acpi_iort_node *node, void *context);
 145
 146/* Root pointer to the mapped IORT table */
 147static struct acpi_table_header *iort_table;
 148
 149static LIST_HEAD(iort_msi_chip_list);
 150static DEFINE_SPINLOCK(iort_msi_chip_lock);
 151
 152/**
 153 * iort_register_domain_token() - register domain token along with related
 154 * ITS ID and base address to the list from where we can get it back later on.
 155 * @trans_id: ITS ID.
 156 * @base: ITS base address.
 157 * @fw_node: Domain token.
 158 *
 159 * Returns: 0 on success, -ENOMEM if no memory when allocating list element
 160 */
 161int iort_register_domain_token(int trans_id, phys_addr_t base,
 162			       struct fwnode_handle *fw_node)
 163{
 164	struct iort_its_msi_chip *its_msi_chip;
 165
 166	its_msi_chip = kzalloc(sizeof(*its_msi_chip), GFP_KERNEL);
 167	if (!its_msi_chip)
 168		return -ENOMEM;
 169
 170	its_msi_chip->fw_node = fw_node;
 171	its_msi_chip->translation_id = trans_id;
 172	its_msi_chip->base_addr = base;
 173
 174	spin_lock(&iort_msi_chip_lock);
 175	list_add(&its_msi_chip->list, &iort_msi_chip_list);
 176	spin_unlock(&iort_msi_chip_lock);
 177
 178	return 0;
 179}
 180
 181/**
 182 * iort_deregister_domain_token() - Deregister domain token based on ITS ID
 183 * @trans_id: ITS ID.
 184 *
 185 * Returns: none.
 186 */
 187void iort_deregister_domain_token(int trans_id)
 188{
 189	struct iort_its_msi_chip *its_msi_chip, *t;
 190
 191	spin_lock(&iort_msi_chip_lock);
 192	list_for_each_entry_safe(its_msi_chip, t, &iort_msi_chip_list, list) {
 193		if (its_msi_chip->translation_id == trans_id) {
 194			list_del(&its_msi_chip->list);
 195			kfree(its_msi_chip);
 196			break;
 197		}
 198	}
 199	spin_unlock(&iort_msi_chip_lock);
 200}
 201
 202/**
 203 * iort_find_domain_token() - Find domain token based on given ITS ID
 204 * @trans_id: ITS ID.
 205 *
 206 * Returns: domain token when find on the list, NULL otherwise
 207 */
 208struct fwnode_handle *iort_find_domain_token(int trans_id)
 209{
 210	struct fwnode_handle *fw_node = NULL;
 211	struct iort_its_msi_chip *its_msi_chip;
 212
 213	spin_lock(&iort_msi_chip_lock);
 214	list_for_each_entry(its_msi_chip, &iort_msi_chip_list, list) {
 215		if (its_msi_chip->translation_id == trans_id) {
 216			fw_node = its_msi_chip->fw_node;
 217			break;
 218		}
 219	}
 220	spin_unlock(&iort_msi_chip_lock);
 221
 222	return fw_node;
 223}
 224
 225static struct acpi_iort_node *iort_scan_node(enum acpi_iort_node_type type,
 226					     iort_find_node_callback callback,
 227					     void *context)
 228{
 229	struct acpi_iort_node *iort_node, *iort_end;
 230	struct acpi_table_iort *iort;
 231	int i;
 232
 233	if (!iort_table)
 234		return NULL;
 235
 236	/* Get the first IORT node */
 237	iort = (struct acpi_table_iort *)iort_table;
 238	iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort,
 239				 iort->node_offset);
 240	iort_end = ACPI_ADD_PTR(struct acpi_iort_node, iort_table,
 241				iort_table->length);
 242
 243	for (i = 0; i < iort->node_count; i++) {
 244		if (WARN_TAINT(iort_node >= iort_end, TAINT_FIRMWARE_WORKAROUND,
 245			       "IORT node pointer overflows, bad table!\n"))
 246			return NULL;
 247
 248		if (iort_node->type == type &&
 249		    ACPI_SUCCESS(callback(iort_node, context)))
 250			return iort_node;
 251
 252		iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort_node,
 253					 iort_node->length);
 254	}
 255
 256	return NULL;
 257}
 258
 259static acpi_status iort_match_node_callback(struct acpi_iort_node *node,
 260					    void *context)
 261{
 262	struct device *dev = context;
 263	acpi_status status = AE_NOT_FOUND;
 264
 265	if (node->type == ACPI_IORT_NODE_NAMED_COMPONENT) {
 266		struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
 267		struct acpi_device *adev;
 268		struct acpi_iort_named_component *ncomp;
 269		struct device *nc_dev = dev;
 270
 271		/*
 272		 * Walk the device tree to find a device with an
 273		 * ACPI companion; there is no point in scanning
 274		 * IORT for a device matching a named component if
 275		 * the device does not have an ACPI companion to
 276		 * start with.
 277		 */
 278		do {
 279			adev = ACPI_COMPANION(nc_dev);
 280			if (adev)
 281				break;
 282
 283			nc_dev = nc_dev->parent;
 284		} while (nc_dev);
 285
 286		if (!adev)
 287			goto out;
 288
 289		status = acpi_get_name(adev->handle, ACPI_FULL_PATHNAME, &buf);
 290		if (ACPI_FAILURE(status)) {
 291			dev_warn(nc_dev, "Can't get device full path name\n");
 292			goto out;
 293		}
 294
 295		ncomp = (struct acpi_iort_named_component *)node->node_data;
 296		status = !strcmp(ncomp->device_name, buf.pointer) ?
 297							AE_OK : AE_NOT_FOUND;
 298		acpi_os_free(buf.pointer);
 299	} else if (node->type == ACPI_IORT_NODE_PCI_ROOT_COMPLEX) {
 300		struct acpi_iort_root_complex *pci_rc;
 301		struct pci_bus *bus;
 302
 303		bus = to_pci_bus(dev);
 304		pci_rc = (struct acpi_iort_root_complex *)node->node_data;
 305
 306		/*
 307		 * It is assumed that PCI segment numbers maps one-to-one
 308		 * with root complexes. Each segment number can represent only
 309		 * one root complex.
 310		 */
 311		status = pci_rc->pci_segment_number == pci_domain_nr(bus) ?
 312							AE_OK : AE_NOT_FOUND;
 313	}
 314out:
 315	return status;
 316}
 317
 318static int iort_id_map(struct acpi_iort_id_mapping *map, u8 type, u32 rid_in,
 319		       u32 *rid_out, bool check_overlap)
 320{
 321	/* Single mapping does not care for input id */
 322	if (map->flags & ACPI_IORT_ID_SINGLE_MAPPING) {
 323		if (type == ACPI_IORT_NODE_NAMED_COMPONENT ||
 324		    type == ACPI_IORT_NODE_PCI_ROOT_COMPLEX) {
 325			*rid_out = map->output_base;
 326			return 0;
 327		}
 328
 329		pr_warn(FW_BUG "[map %p] SINGLE MAPPING flag not allowed for node type %d, skipping ID map\n",
 330			map, type);
 331		return -ENXIO;
 332	}
 333
 334	if (rid_in < map->input_base ||
 335	    (rid_in > map->input_base + map->id_count))
 336		return -ENXIO;
 337
 338	if (check_overlap) {
 339		/*
 340		 * We already found a mapping for this input ID at the end of
 341		 * another region. If it coincides with the start of this
 342		 * region, we assume the prior match was due to the off-by-1
 343		 * issue mentioned below, and allow it to be superseded.
 344		 * Otherwise, things are *really* broken, and we just disregard
 345		 * duplicate matches entirely to retain compatibility.
 346		 */
 347		pr_err(FW_BUG "[map %p] conflicting mapping for input ID 0x%x\n",
 348		       map, rid_in);
 349		if (rid_in != map->input_base)
 350			return -ENXIO;
 351
 352		pr_err(FW_BUG "applying workaround.\n");
 353	}
 354
 355	*rid_out = map->output_base + (rid_in - map->input_base);
 356
 357	/*
 358	 * Due to confusion regarding the meaning of the id_count field (which
 359	 * carries the number of IDs *minus 1*), we may have to disregard this
 360	 * match if it is at the end of the range, and overlaps with the start
 361	 * of another one.
 362	 */
 363	if (map->id_count > 0 && rid_in == map->input_base + map->id_count)
 364		return -EAGAIN;
 365	return 0;
 366}
 367
 368static struct acpi_iort_node *iort_node_get_id(struct acpi_iort_node *node,
 369					       u32 *id_out, int index)
 370{
 371	struct acpi_iort_node *parent;
 372	struct acpi_iort_id_mapping *map;
 373
 374	if (!node->mapping_offset || !node->mapping_count ||
 375				     index >= node->mapping_count)
 376		return NULL;
 377
 378	map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, node,
 379			   node->mapping_offset + index * sizeof(*map));
 380
 381	/* Firmware bug! */
 382	if (!map->output_reference) {
 383		pr_err(FW_BUG "[node %p type %d] ID map has NULL parent reference\n",
 384		       node, node->type);
 385		return NULL;
 386	}
 387
 388	parent = ACPI_ADD_PTR(struct acpi_iort_node, iort_table,
 389			       map->output_reference);
 390
 391	if (map->flags & ACPI_IORT_ID_SINGLE_MAPPING) {
 392		if (node->type == ACPI_IORT_NODE_NAMED_COMPONENT ||
 393		    node->type == ACPI_IORT_NODE_PCI_ROOT_COMPLEX ||
 394		    node->type == ACPI_IORT_NODE_SMMU_V3 ||
 395		    node->type == ACPI_IORT_NODE_PMCG) {
 396			*id_out = map->output_base;
 397			return parent;
 398		}
 399	}
 400
 401	return NULL;
 402}
 403
 
 
 
 
 404static int iort_get_id_mapping_index(struct acpi_iort_node *node)
 405{
 406	struct acpi_iort_smmu_v3 *smmu;
 407	struct acpi_iort_pmcg *pmcg;
 408
 409	switch (node->type) {
 410	case ACPI_IORT_NODE_SMMU_V3:
 411		/*
 412		 * SMMUv3 dev ID mapping index was introduced in revision 1
 413		 * table, not available in revision 0
 414		 */
 415		if (node->revision < 1)
 416			return -EINVAL;
 417
 418		smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
 419		/*
 420		 * ID mapping index is only ignored if all interrupts are
 421		 * GSIV based
 422		 */
 423		if (smmu->event_gsiv && smmu->pri_gsiv && smmu->gerr_gsiv
 424		    && smmu->sync_gsiv)
 
 
 
 425			return -EINVAL;
 
 426
 427		if (smmu->id_mapping_index >= node->mapping_count) {
 428			pr_err(FW_BUG "[node %p type %d] ID mapping index overflows valid mappings\n",
 429			       node, node->type);
 430			return -EINVAL;
 431		}
 432
 433		return smmu->id_mapping_index;
 434	case ACPI_IORT_NODE_PMCG:
 435		pmcg = (struct acpi_iort_pmcg *)node->node_data;
 436		if (pmcg->overflow_gsiv || node->mapping_count == 0)
 437			return -EINVAL;
 438
 439		return 0;
 440	default:
 441		return -EINVAL;
 442	}
 443}
 444
 445static struct acpi_iort_node *iort_node_map_id(struct acpi_iort_node *node,
 446					       u32 id_in, u32 *id_out,
 447					       u8 type_mask)
 448{
 449	u32 id = id_in;
 450
 451	/* Parse the ID mapping tree to find specified node type */
 452	while (node) {
 453		struct acpi_iort_id_mapping *map;
 454		int i, index, rc = 0;
 455		u32 out_ref = 0, map_id = id;
 456
 457		if (IORT_TYPE_MASK(node->type) & type_mask) {
 458			if (id_out)
 459				*id_out = id;
 460			return node;
 461		}
 462
 463		if (!node->mapping_offset || !node->mapping_count)
 464			goto fail_map;
 465
 466		map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, node,
 467				   node->mapping_offset);
 468
 469		/* Firmware bug! */
 470		if (!map->output_reference) {
 471			pr_err(FW_BUG "[node %p type %d] ID map has NULL parent reference\n",
 472			       node, node->type);
 473			goto fail_map;
 474		}
 475
 476		/*
 477		 * Get the special ID mapping index (if any) and skip its
 478		 * associated ID map to prevent erroneous multi-stage
 479		 * IORT ID translations.
 480		 */
 481		index = iort_get_id_mapping_index(node);
 482
 483		/* Do the ID translation */
 484		for (i = 0; i < node->mapping_count; i++, map++) {
 485			/* if it is special mapping index, skip it */
 486			if (i == index)
 487				continue;
 488
 489			rc = iort_id_map(map, node->type, map_id, &id, out_ref);
 490			if (!rc)
 491				break;
 492			if (rc == -EAGAIN)
 493				out_ref = map->output_reference;
 494		}
 495
 496		if (i == node->mapping_count && !out_ref)
 497			goto fail_map;
 498
 499		node = ACPI_ADD_PTR(struct acpi_iort_node, iort_table,
 500				    rc ? out_ref : map->output_reference);
 501	}
 502
 503fail_map:
 504	/* Map input ID to output ID unchanged on mapping failure */
 505	if (id_out)
 506		*id_out = id_in;
 507
 508	return NULL;
 509}
 510
 511static struct acpi_iort_node *iort_node_map_platform_id(
 512		struct acpi_iort_node *node, u32 *id_out, u8 type_mask,
 513		int index)
 514{
 515	struct acpi_iort_node *parent;
 516	u32 id;
 517
 518	/* step 1: retrieve the initial dev id */
 519	parent = iort_node_get_id(node, &id, index);
 520	if (!parent)
 521		return NULL;
 522
 523	/*
 524	 * optional step 2: map the initial dev id if its parent is not
 525	 * the target type we want, map it again for the use cases such
 526	 * as NC (named component) -> SMMU -> ITS. If the type is matched,
 527	 * return the initial dev id and its parent pointer directly.
 528	 */
 529	if (!(IORT_TYPE_MASK(parent->type) & type_mask))
 530		parent = iort_node_map_id(parent, id, id_out, type_mask);
 531	else
 532		if (id_out)
 533			*id_out = id;
 534
 535	return parent;
 536}
 537
 538static struct acpi_iort_node *iort_find_dev_node(struct device *dev)
 539{
 540	struct pci_bus *pbus;
 541
 542	if (!dev_is_pci(dev)) {
 543		struct acpi_iort_node *node;
 544		/*
 545		 * scan iort_fwnode_list to see if it's an iort platform
 546		 * device (such as SMMU, PMCG),its iort node already cached
 547		 * and associated with fwnode when iort platform devices
 548		 * were initialized.
 549		 */
 550		node = iort_get_iort_node(dev->fwnode);
 551		if (node)
 552			return node;
 553		/*
 554		 * if not, then it should be a platform device defined in
 555		 * DSDT/SSDT (with Named Component node in IORT)
 556		 */
 557		return iort_scan_node(ACPI_IORT_NODE_NAMED_COMPONENT,
 558				      iort_match_node_callback, dev);
 559	}
 560
 561	pbus = to_pci_dev(dev)->bus;
 562
 563	return iort_scan_node(ACPI_IORT_NODE_PCI_ROOT_COMPLEX,
 564			      iort_match_node_callback, &pbus->dev);
 565}
 566
 567/**
 568 * iort_msi_map_id() - Map a MSI input ID for a device
 569 * @dev: The device for which the mapping is to be done.
 570 * @input_id: The device input ID.
 571 *
 572 * Returns: mapped MSI ID on success, input ID otherwise
 573 */
 574u32 iort_msi_map_id(struct device *dev, u32 input_id)
 575{
 576	struct acpi_iort_node *node;
 577	u32 dev_id;
 578
 579	node = iort_find_dev_node(dev);
 580	if (!node)
 581		return input_id;
 582
 583	iort_node_map_id(node, input_id, &dev_id, IORT_MSI_TYPE);
 584	return dev_id;
 585}
 586
 587/**
 588 * iort_pmsi_get_dev_id() - Get the device id for a device
 589 * @dev: The device for which the mapping is to be done.
 590 * @dev_id: The device ID found.
 591 *
 592 * Returns: 0 for successful find a dev id, -ENODEV on error
 593 */
 594int iort_pmsi_get_dev_id(struct device *dev, u32 *dev_id)
 595{
 596	int i, index;
 597	struct acpi_iort_node *node;
 598
 599	node = iort_find_dev_node(dev);
 600	if (!node)
 601		return -ENODEV;
 602
 603	index = iort_get_id_mapping_index(node);
 604	/* if there is a valid index, go get the dev_id directly */
 605	if (index >= 0) {
 606		if (iort_node_get_id(node, dev_id, index))
 607			return 0;
 608	} else {
 609		for (i = 0; i < node->mapping_count; i++) {
 610			if (iort_node_map_platform_id(node, dev_id,
 611						      IORT_MSI_TYPE, i))
 612				return 0;
 613		}
 614	}
 615
 616	return -ENODEV;
 617}
 618
 619static int __maybe_unused iort_find_its_base(u32 its_id, phys_addr_t *base)
 620{
 621	struct iort_its_msi_chip *its_msi_chip;
 622	int ret = -ENODEV;
 623
 624	spin_lock(&iort_msi_chip_lock);
 625	list_for_each_entry(its_msi_chip, &iort_msi_chip_list, list) {
 626		if (its_msi_chip->translation_id == its_id) {
 627			*base = its_msi_chip->base_addr;
 628			ret = 0;
 629			break;
 630		}
 631	}
 632	spin_unlock(&iort_msi_chip_lock);
 633
 634	return ret;
 635}
 636
 637/**
 638 * iort_dev_find_its_id() - Find the ITS identifier for a device
 639 * @dev: The device.
 640 * @id: Device's ID
 641 * @idx: Index of the ITS identifier list.
 642 * @its_id: ITS identifier.
 643 *
 644 * Returns: 0 on success, appropriate error value otherwise
 645 */
 646static int iort_dev_find_its_id(struct device *dev, u32 id,
 647				unsigned int idx, int *its_id)
 648{
 649	struct acpi_iort_its_group *its;
 650	struct acpi_iort_node *node;
 651
 652	node = iort_find_dev_node(dev);
 653	if (!node)
 654		return -ENXIO;
 655
 656	node = iort_node_map_id(node, id, NULL, IORT_MSI_TYPE);
 657	if (!node)
 658		return -ENXIO;
 659
 660	/* Move to ITS specific data */
 661	its = (struct acpi_iort_its_group *)node->node_data;
 662	if (idx >= its->its_count) {
 663		dev_err(dev, "requested ITS ID index [%d] overruns ITS entries [%d]\n",
 664			idx, its->its_count);
 665		return -ENXIO;
 666	}
 667
 668	*its_id = its->identifiers[idx];
 669	return 0;
 670}
 671
 672/**
 673 * iort_get_device_domain() - Find MSI domain related to a device
 674 * @dev: The device.
 675 * @req_id: Requester ID for the device.
 
 676 *
 677 * Returns: the MSI domain for this device, NULL otherwise
 678 */
 679struct irq_domain *iort_get_device_domain(struct device *dev, u32 id,
 680					  enum irq_domain_bus_token bus_token)
 681{
 682	struct fwnode_handle *handle;
 683	int its_id;
 684
 685	if (iort_dev_find_its_id(dev, id, 0, &its_id))
 686		return NULL;
 687
 688	handle = iort_find_domain_token(its_id);
 689	if (!handle)
 690		return NULL;
 691
 692	return irq_find_matching_fwnode(handle, bus_token);
 693}
 694
 695static void iort_set_device_domain(struct device *dev,
 696				   struct acpi_iort_node *node)
 697{
 698	struct acpi_iort_its_group *its;
 699	struct acpi_iort_node *msi_parent;
 700	struct acpi_iort_id_mapping *map;
 701	struct fwnode_handle *iort_fwnode;
 702	struct irq_domain *domain;
 703	int index;
 704
 705	index = iort_get_id_mapping_index(node);
 706	if (index < 0)
 707		return;
 708
 709	map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, node,
 710			   node->mapping_offset + index * sizeof(*map));
 711
 712	/* Firmware bug! */
 713	if (!map->output_reference ||
 714	    !(map->flags & ACPI_IORT_ID_SINGLE_MAPPING)) {
 715		pr_err(FW_BUG "[node %p type %d] Invalid MSI mapping\n",
 716		       node, node->type);
 717		return;
 718	}
 719
 720	msi_parent = ACPI_ADD_PTR(struct acpi_iort_node, iort_table,
 721				  map->output_reference);
 722
 723	if (!msi_parent || msi_parent->type != ACPI_IORT_NODE_ITS_GROUP)
 724		return;
 725
 726	/* Move to ITS specific data */
 727	its = (struct acpi_iort_its_group *)msi_parent->node_data;
 728
 729	iort_fwnode = iort_find_domain_token(its->identifiers[0]);
 730	if (!iort_fwnode)
 731		return;
 732
 733	domain = irq_find_matching_fwnode(iort_fwnode, DOMAIN_BUS_PLATFORM_MSI);
 734	if (domain)
 735		dev_set_msi_domain(dev, domain);
 736}
 737
 738/**
 739 * iort_get_platform_device_domain() - Find MSI domain related to a
 740 * platform device
 741 * @dev: the dev pointer associated with the platform device
 742 *
 743 * Returns: the MSI domain for this device, NULL otherwise
 744 */
 745static struct irq_domain *iort_get_platform_device_domain(struct device *dev)
 746{
 747	struct acpi_iort_node *node, *msi_parent = NULL;
 748	struct fwnode_handle *iort_fwnode;
 749	struct acpi_iort_its_group *its;
 750	int i;
 751
 752	/* find its associated iort node */
 753	node = iort_scan_node(ACPI_IORT_NODE_NAMED_COMPONENT,
 754			      iort_match_node_callback, dev);
 755	if (!node)
 756		return NULL;
 757
 758	/* then find its msi parent node */
 759	for (i = 0; i < node->mapping_count; i++) {
 760		msi_parent = iort_node_map_platform_id(node, NULL,
 761						       IORT_MSI_TYPE, i);
 762		if (msi_parent)
 763			break;
 764	}
 765
 766	if (!msi_parent)
 767		return NULL;
 768
 769	/* Move to ITS specific data */
 770	its = (struct acpi_iort_its_group *)msi_parent->node_data;
 771
 772	iort_fwnode = iort_find_domain_token(its->identifiers[0]);
 773	if (!iort_fwnode)
 774		return NULL;
 775
 776	return irq_find_matching_fwnode(iort_fwnode, DOMAIN_BUS_PLATFORM_MSI);
 777}
 778
 779void acpi_configure_pmsi_domain(struct device *dev)
 780{
 781	struct irq_domain *msi_domain;
 782
 783	msi_domain = iort_get_platform_device_domain(dev);
 784	if (msi_domain)
 785		dev_set_msi_domain(dev, msi_domain);
 786}
 787
 788#ifdef CONFIG_IOMMU_API
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 789static struct acpi_iort_node *iort_get_msi_resv_iommu(struct device *dev)
 790{
 791	struct acpi_iort_node *iommu;
 792	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
 793
 794	iommu = iort_get_iort_node(fwspec->iommu_fwnode);
 795
 796	if (iommu && (iommu->type == ACPI_IORT_NODE_SMMU_V3)) {
 797		struct acpi_iort_smmu_v3 *smmu;
 798
 799		smmu = (struct acpi_iort_smmu_v3 *)iommu->node_data;
 800		if (smmu->model == ACPI_IORT_SMMU_V3_HISILICON_HI161X)
 801			return iommu;
 802	}
 803
 804	return NULL;
 805}
 806
 807static inline const struct iommu_ops *iort_fwspec_iommu_ops(struct device *dev)
 808{
 809	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
 810
 811	return (fwspec && fwspec->ops) ? fwspec->ops : NULL;
 812}
 813
 814static inline int iort_add_device_replay(const struct iommu_ops *ops,
 815					 struct device *dev)
 816{
 817	int err = 0;
 818
 819	if (dev->bus && !device_iommu_mapped(dev))
 820		err = iommu_probe_device(dev);
 821
 822	return err;
 823}
 824
 825/**
 826 * iort_iommu_msi_get_resv_regions - Reserved region driver helper
 827 * @dev: Device from iommu_get_resv_regions()
 828 * @head: Reserved region list from iommu_get_resv_regions()
 829 *
 830 * Returns: Number of msi reserved regions on success (0 if platform
 831 *          doesn't require the reservation or no associated msi regions),
 832 *          appropriate error value otherwise. The ITS interrupt translation
 833 *          spaces (ITS_base + SZ_64K, SZ_64K) associated with the device
 834 *          are the msi reserved regions.
 835 */
 836int iort_iommu_msi_get_resv_regions(struct device *dev, struct list_head *head)
 
 837{
 838	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
 839	struct acpi_iort_its_group *its;
 840	struct acpi_iort_node *iommu_node, *its_node = NULL;
 841	int i, resv = 0;
 842
 843	iommu_node = iort_get_msi_resv_iommu(dev);
 844	if (!iommu_node)
 845		return 0;
 846
 847	/*
 848	 * Current logic to reserve ITS regions relies on HW topologies
 849	 * where a given PCI or named component maps its IDs to only one
 850	 * ITS group; if a PCI or named component can map its IDs to
 851	 * different ITS groups through IORT mappings this function has
 852	 * to be reworked to ensure we reserve regions for all ITS groups
 853	 * a given PCI or named component may map IDs to.
 854	 */
 855
 856	for (i = 0; i < fwspec->num_ids; i++) {
 857		its_node = iort_node_map_id(iommu_node,
 858					fwspec->ids[i],
 859					NULL, IORT_MSI_TYPE);
 860		if (its_node)
 861			break;
 862	}
 863
 864	if (!its_node)
 865		return 0;
 866
 867	/* Move to ITS specific data */
 868	its = (struct acpi_iort_its_group *)its_node->node_data;
 869
 870	for (i = 0; i < its->its_count; i++) {
 871		phys_addr_t base;
 872
 873		if (!iort_find_its_base(its->identifiers[i], &base)) {
 874			int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
 875			struct iommu_resv_region *region;
 876
 877			region = iommu_alloc_resv_region(base + SZ_64K, SZ_64K,
 878							 prot, IOMMU_RESV_MSI);
 879			if (region) {
 
 880				list_add_tail(&region->list, head);
 881				resv++;
 882			}
 883		}
 884	}
 
 885
 886	return (resv == its->its_count) ? resv : -ENODEV;
 
 
 
 
 
 
 
 
 
 
 887}
 888
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 889static inline bool iort_iommu_driver_enabled(u8 type)
 890{
 891	switch (type) {
 892	case ACPI_IORT_NODE_SMMU_V3:
 893		return IS_ENABLED(CONFIG_ARM_SMMU_V3);
 894	case ACPI_IORT_NODE_SMMU:
 895		return IS_ENABLED(CONFIG_ARM_SMMU);
 896	default:
 897		pr_warn("IORT node type %u does not describe an SMMU\n", type);
 898		return false;
 899	}
 900}
 901
 902static int arm_smmu_iort_xlate(struct device *dev, u32 streamid,
 903			       struct fwnode_handle *fwnode,
 904			       const struct iommu_ops *ops)
 905{
 906	int ret = iommu_fwspec_init(dev, fwnode, ops);
 907
 908	if (!ret)
 909		ret = iommu_fwspec_add_ids(dev, &streamid, 1);
 910
 911	return ret;
 912}
 913
 914static bool iort_pci_rc_supports_ats(struct acpi_iort_node *node)
 915{
 
 916	struct acpi_iort_root_complex *pci_rc;
 917
 918	pci_rc = (struct acpi_iort_root_complex *)node->node_data;
 919	return pci_rc->ats_attribute & ACPI_IORT_ATS_SUPPORTED;
 
 
 920}
 921
 922static int iort_iommu_xlate(struct device *dev, struct acpi_iort_node *node,
 923			    u32 streamid)
 924{
 925	const struct iommu_ops *ops;
 926	struct fwnode_handle *iort_fwnode;
 927
 928	if (!node)
 
 929		return -ENODEV;
 930
 931	iort_fwnode = iort_get_fwnode(node);
 932	if (!iort_fwnode)
 933		return -ENODEV;
 934
 935	/*
 936	 * If the ops look-up fails, this means that either
 937	 * the SMMU drivers have not been probed yet or that
 938	 * the SMMU drivers are not built in the kernel;
 939	 * Depending on whether the SMMU drivers are built-in
 940	 * in the kernel or not, defer the IOMMU configuration
 941	 * or just abort it.
 942	 */
 943	ops = iommu_ops_from_fwnode(iort_fwnode);
 944	if (!ops)
 945		return iort_iommu_driver_enabled(node->type) ?
 946		       -EPROBE_DEFER : -ENODEV;
 947
 948	return arm_smmu_iort_xlate(dev, streamid, iort_fwnode, ops);
 949}
 950
 951struct iort_pci_alias_info {
 952	struct device *dev;
 953	struct acpi_iort_node *node;
 954};
 955
 956static int iort_pci_iommu_init(struct pci_dev *pdev, u16 alias, void *data)
 957{
 958	struct iort_pci_alias_info *info = data;
 959	struct acpi_iort_node *parent;
 960	u32 streamid;
 961
 962	parent = iort_node_map_id(info->node, alias, &streamid,
 963				  IORT_IOMMU_TYPE);
 964	return iort_iommu_xlate(info->dev, parent, streamid);
 965}
 966
 967static void iort_named_component_init(struct device *dev,
 968				      struct acpi_iort_node *node)
 969{
 
 970	struct acpi_iort_named_component *nc;
 971	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
 972
 973	if (!fwspec)
 974		return;
 
 
 
 
 975
 976	nc = (struct acpi_iort_named_component *)node->node_data;
 977	fwspec->num_pasid_bits = FIELD_GET(ACPI_IORT_NC_PASID_BITS,
 978					   nc->node_flags);
 979}
 980
 981static int iort_nc_iommu_map(struct device *dev, struct acpi_iort_node *node)
 982{
 983	struct acpi_iort_node *parent;
 984	int err = -ENODEV, i = 0;
 985	u32 streamid = 0;
 986
 987	do {
 988
 989		parent = iort_node_map_platform_id(node, &streamid,
 990						   IORT_IOMMU_TYPE,
 991						   i++);
 992
 993		if (parent)
 994			err = iort_iommu_xlate(dev, parent, streamid);
 995	} while (parent && !err);
 996
 997	return err;
 998}
 999
1000static int iort_nc_iommu_map_id(struct device *dev,
1001				struct acpi_iort_node *node,
1002				const u32 *in_id)
1003{
1004	struct acpi_iort_node *parent;
1005	u32 streamid;
1006
1007	parent = iort_node_map_id(node, *in_id, &streamid, IORT_IOMMU_TYPE);
1008	if (parent)
1009		return iort_iommu_xlate(dev, parent, streamid);
1010
1011	return -ENODEV;
1012}
1013
1014
1015/**
1016 * iort_iommu_configure_id - Set-up IOMMU configuration for a device.
1017 *
1018 * @dev: device to configure
1019 * @id_in: optional input id const value pointer
1020 *
1021 * Returns: iommu_ops pointer on configuration success
1022 *          NULL on configuration failure
1023 */
1024const struct iommu_ops *iort_iommu_configure_id(struct device *dev,
1025						const u32 *id_in)
1026{
1027	struct acpi_iort_node *node;
1028	const struct iommu_ops *ops;
1029	int err = -ENODEV;
1030
1031	/*
1032	 * If we already translated the fwspec there
1033	 * is nothing left to do, return the iommu_ops.
1034	 */
1035	ops = iort_fwspec_iommu_ops(dev);
1036	if (ops)
1037		return ops;
1038
1039	if (dev_is_pci(dev)) {
1040		struct iommu_fwspec *fwspec;
1041		struct pci_bus *bus = to_pci_dev(dev)->bus;
1042		struct iort_pci_alias_info info = { .dev = dev };
1043
1044		node = iort_scan_node(ACPI_IORT_NODE_PCI_ROOT_COMPLEX,
1045				      iort_match_node_callback, &bus->dev);
1046		if (!node)
1047			return NULL;
1048
1049		info.node = node;
1050		err = pci_for_each_dma_alias(to_pci_dev(dev),
1051					     iort_pci_iommu_init, &info);
1052
1053		fwspec = dev_iommu_fwspec_get(dev);
1054		if (fwspec && iort_pci_rc_supports_ats(node))
1055			fwspec->flags |= IOMMU_FWSPEC_PCI_RC_ATS;
 
 
1056	} else {
1057		node = iort_scan_node(ACPI_IORT_NODE_NAMED_COMPONENT,
1058				      iort_match_node_callback, dev);
1059		if (!node)
1060			return NULL;
1061
1062		err = id_in ? iort_nc_iommu_map_id(dev, node, id_in) :
1063			      iort_nc_iommu_map(dev, node);
1064
1065		if (!err)
1066			iort_named_component_init(dev, node);
1067	}
1068
1069	/*
1070	 * If we have reason to believe the IOMMU driver missed the initial
1071	 * add_device callback for dev, replay it to get things in order.
1072	 */
1073	if (!err) {
1074		ops = iort_fwspec_iommu_ops(dev);
1075		err = iort_add_device_replay(ops, dev);
1076	}
1077
1078	/* Ignore all other errors apart from EPROBE_DEFER */
1079	if (err == -EPROBE_DEFER) {
1080		ops = ERR_PTR(err);
1081	} else if (err) {
1082		dev_dbg(dev, "Adding to IOMMU failed: %d\n", err);
1083		ops = NULL;
1084	}
1085
1086	return ops;
1087}
1088
1089#else
1090static inline const struct iommu_ops *iort_fwspec_iommu_ops(struct device *dev)
1091{ return NULL; }
1092static inline int iort_add_device_replay(const struct iommu_ops *ops,
1093					 struct device *dev)
1094{ return 0; }
1095int iort_iommu_msi_get_resv_regions(struct device *dev, struct list_head *head)
1096{ return 0; }
1097const struct iommu_ops *iort_iommu_configure_id(struct device *dev,
1098						const u32 *input_id)
1099{ return NULL; }
1100#endif
1101
1102static int nc_dma_get_range(struct device *dev, u64 *size)
1103{
1104	struct acpi_iort_node *node;
1105	struct acpi_iort_named_component *ncomp;
1106
1107	node = iort_scan_node(ACPI_IORT_NODE_NAMED_COMPONENT,
1108			      iort_match_node_callback, dev);
1109	if (!node)
1110		return -ENODEV;
1111
1112	ncomp = (struct acpi_iort_named_component *)node->node_data;
1113
1114	*size = ncomp->memory_address_limit >= 64 ? U64_MAX :
1115			1ULL<<ncomp->memory_address_limit;
 
 
 
 
 
1116
1117	return 0;
1118}
1119
1120static int rc_dma_get_range(struct device *dev, u64 *size)
1121{
1122	struct acpi_iort_node *node;
1123	struct acpi_iort_root_complex *rc;
1124	struct pci_bus *pbus = to_pci_dev(dev)->bus;
1125
1126	node = iort_scan_node(ACPI_IORT_NODE_PCI_ROOT_COMPLEX,
1127			      iort_match_node_callback, &pbus->dev);
1128	if (!node || node->revision < 1)
1129		return -ENODEV;
1130
1131	rc = (struct acpi_iort_root_complex *)node->node_data;
1132
1133	*size = rc->memory_address_limit >= 64 ? U64_MAX :
1134			1ULL<<rc->memory_address_limit;
 
 
 
 
 
1135
1136	return 0;
1137}
1138
1139/**
1140 * iort_dma_setup() - Set-up device DMA parameters.
 
 
1141 *
1142 * @dev: device to configure
1143 * @dma_addr: device DMA address result pointer
1144 * @size: DMA range size result pointer
1145 */
1146void iort_dma_setup(struct device *dev, u64 *dma_addr, u64 *dma_size)
1147{
1148	u64 end, mask, dmaaddr = 0, size = 0, offset = 0;
1149	int ret;
1150
1151	/*
1152	 * If @dev is expected to be DMA-capable then the bus code that created
1153	 * it should have initialised its dma_mask pointer by this point. For
1154	 * now, we'll continue the legacy behaviour of coercing it to the
1155	 * coherent mask if not, but we'll no longer do so quietly.
1156	 */
1157	if (!dev->dma_mask) {
1158		dev_warn(dev, "DMA mask not set\n");
1159		dev->dma_mask = &dev->coherent_dma_mask;
1160	}
1161
1162	if (dev->coherent_dma_mask)
1163		size = max(dev->coherent_dma_mask, dev->coherent_dma_mask + 1);
1164	else
1165		size = 1ULL << 32;
1166
1167	ret = acpi_dma_get_range(dev, &dmaaddr, &offset, &size);
1168	if (ret == -ENODEV)
1169		ret = dev_is_pci(dev) ? rc_dma_get_range(dev, &size)
1170				      : nc_dma_get_range(dev, &size);
1171
1172	if (!ret) {
1173		/*
1174		 * Limit coherent and dma mask based on size retrieved from
1175		 * firmware.
1176		 */
1177		end = dmaaddr + size - 1;
1178		mask = DMA_BIT_MASK(ilog2(end) + 1);
1179		dev->bus_dma_limit = end;
1180		dev->coherent_dma_mask = mask;
1181		*dev->dma_mask = mask;
1182	}
1183
1184	*dma_addr = dmaaddr;
1185	*dma_size = size;
1186
1187	dev->dma_pfn_offset = PFN_DOWN(offset);
1188	dev_dbg(dev, "dma_pfn_offset(%#08llx)\n", offset);
1189}
1190
1191static void __init acpi_iort_register_irq(int hwirq, const char *name,
1192					  int trigger,
1193					  struct resource *res)
1194{
1195	int irq = acpi_register_gsi(NULL, hwirq, trigger,
1196				    ACPI_ACTIVE_HIGH);
1197
1198	if (irq <= 0) {
1199		pr_err("could not register gsi hwirq %d name [%s]\n", hwirq,
1200								      name);
1201		return;
1202	}
1203
1204	res->start = irq;
1205	res->end = irq;
1206	res->flags = IORESOURCE_IRQ;
1207	res->name = name;
1208}
1209
1210static int __init arm_smmu_v3_count_resources(struct acpi_iort_node *node)
1211{
1212	struct acpi_iort_smmu_v3 *smmu;
1213	/* Always present mem resource */
1214	int num_res = 1;
1215
1216	/* Retrieve SMMUv3 specific data */
1217	smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
1218
1219	if (smmu->event_gsiv)
1220		num_res++;
1221
1222	if (smmu->pri_gsiv)
1223		num_res++;
1224
1225	if (smmu->gerr_gsiv)
1226		num_res++;
1227
1228	if (smmu->sync_gsiv)
1229		num_res++;
1230
1231	return num_res;
1232}
1233
1234static bool arm_smmu_v3_is_combined_irq(struct acpi_iort_smmu_v3 *smmu)
1235{
1236	/*
1237	 * Cavium ThunderX2 implementation doesn't not support unique
1238	 * irq line. Use single irq line for all the SMMUv3 interrupts.
1239	 */
1240	if (smmu->model != ACPI_IORT_SMMU_V3_CAVIUM_CN99XX)
1241		return false;
1242
1243	/*
1244	 * ThunderX2 doesn't support MSIs from the SMMU, so we're checking
1245	 * SPI numbers here.
1246	 */
1247	return smmu->event_gsiv == smmu->pri_gsiv &&
1248	       smmu->event_gsiv == smmu->gerr_gsiv &&
1249	       smmu->event_gsiv == smmu->sync_gsiv;
1250}
1251
1252static unsigned long arm_smmu_v3_resource_size(struct acpi_iort_smmu_v3 *smmu)
1253{
1254	/*
1255	 * Override the size, for Cavium ThunderX2 implementation
1256	 * which doesn't support the page 1 SMMU register space.
1257	 */
1258	if (smmu->model == ACPI_IORT_SMMU_V3_CAVIUM_CN99XX)
1259		return SZ_64K;
1260
1261	return SZ_128K;
1262}
1263
1264static void __init arm_smmu_v3_init_resources(struct resource *res,
1265					      struct acpi_iort_node *node)
1266{
1267	struct acpi_iort_smmu_v3 *smmu;
1268	int num_res = 0;
1269
1270	/* Retrieve SMMUv3 specific data */
1271	smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
1272
1273	res[num_res].start = smmu->base_address;
1274	res[num_res].end = smmu->base_address +
1275				arm_smmu_v3_resource_size(smmu) - 1;
1276	res[num_res].flags = IORESOURCE_MEM;
1277
1278	num_res++;
1279	if (arm_smmu_v3_is_combined_irq(smmu)) {
1280		if (smmu->event_gsiv)
1281			acpi_iort_register_irq(smmu->event_gsiv, "combined",
1282					       ACPI_EDGE_SENSITIVE,
1283					       &res[num_res++]);
1284	} else {
1285
1286		if (smmu->event_gsiv)
1287			acpi_iort_register_irq(smmu->event_gsiv, "eventq",
1288					       ACPI_EDGE_SENSITIVE,
1289					       &res[num_res++]);
1290
1291		if (smmu->pri_gsiv)
1292			acpi_iort_register_irq(smmu->pri_gsiv, "priq",
1293					       ACPI_EDGE_SENSITIVE,
1294					       &res[num_res++]);
1295
1296		if (smmu->gerr_gsiv)
1297			acpi_iort_register_irq(smmu->gerr_gsiv, "gerror",
1298					       ACPI_EDGE_SENSITIVE,
1299					       &res[num_res++]);
1300
1301		if (smmu->sync_gsiv)
1302			acpi_iort_register_irq(smmu->sync_gsiv, "cmdq-sync",
1303					       ACPI_EDGE_SENSITIVE,
1304					       &res[num_res++]);
1305	}
1306}
1307
1308static void __init arm_smmu_v3_dma_configure(struct device *dev,
1309					     struct acpi_iort_node *node)
1310{
1311	struct acpi_iort_smmu_v3 *smmu;
1312	enum dev_dma_attr attr;
1313
1314	/* Retrieve SMMUv3 specific data */
1315	smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
1316
1317	attr = (smmu->flags & ACPI_IORT_SMMU_V3_COHACC_OVERRIDE) ?
1318			DEV_DMA_COHERENT : DEV_DMA_NON_COHERENT;
1319
1320	/* We expect the dma masks to be equivalent for all SMMUv3 set-ups */
1321	dev->dma_mask = &dev->coherent_dma_mask;
1322
1323	/* Configure DMA for the page table walker */
1324	acpi_dma_configure(dev, attr);
1325}
1326
1327#if defined(CONFIG_ACPI_NUMA)
1328/*
1329 * set numa proximity domain for smmuv3 device
1330 */
1331static int  __init arm_smmu_v3_set_proximity(struct device *dev,
1332					      struct acpi_iort_node *node)
1333{
1334	struct acpi_iort_smmu_v3 *smmu;
1335
1336	smmu = (struct acpi_iort_smmu_v3 *)node->node_data;
1337	if (smmu->flags & ACPI_IORT_SMMU_V3_PXM_VALID) {
1338		int dev_node = acpi_map_pxm_to_node(smmu->pxm);
1339
1340		if (dev_node != NUMA_NO_NODE && !node_online(dev_node))
1341			return -EINVAL;
1342
1343		set_dev_node(dev, dev_node);
1344		pr_info("SMMU-v3[%llx] Mapped to Proximity domain %d\n",
1345			smmu->base_address,
1346			smmu->pxm);
1347	}
1348	return 0;
1349}
1350#else
1351#define arm_smmu_v3_set_proximity NULL
1352#endif
1353
1354static int __init arm_smmu_count_resources(struct acpi_iort_node *node)
1355{
1356	struct acpi_iort_smmu *smmu;
1357
1358	/* Retrieve SMMU specific data */
1359	smmu = (struct acpi_iort_smmu *)node->node_data;
1360
1361	/*
1362	 * Only consider the global fault interrupt and ignore the
1363	 * configuration access interrupt.
1364	 *
1365	 * MMIO address and global fault interrupt resources are always
1366	 * present so add them to the context interrupt count as a static
1367	 * value.
1368	 */
1369	return smmu->context_interrupt_count + 2;
1370}
1371
1372static void __init arm_smmu_init_resources(struct resource *res,
1373					   struct acpi_iort_node *node)
1374{
1375	struct acpi_iort_smmu *smmu;
1376	int i, hw_irq, trigger, num_res = 0;
1377	u64 *ctx_irq, *glb_irq;
1378
1379	/* Retrieve SMMU specific data */
1380	smmu = (struct acpi_iort_smmu *)node->node_data;
1381
1382	res[num_res].start = smmu->base_address;
1383	res[num_res].end = smmu->base_address + smmu->span - 1;
1384	res[num_res].flags = IORESOURCE_MEM;
1385	num_res++;
1386
1387	glb_irq = ACPI_ADD_PTR(u64, node, smmu->global_interrupt_offset);
1388	/* Global IRQs */
1389	hw_irq = IORT_IRQ_MASK(glb_irq[0]);
1390	trigger = IORT_IRQ_TRIGGER_MASK(glb_irq[0]);
1391
1392	acpi_iort_register_irq(hw_irq, "arm-smmu-global", trigger,
1393				     &res[num_res++]);
1394
1395	/* Context IRQs */
1396	ctx_irq = ACPI_ADD_PTR(u64, node, smmu->context_interrupt_offset);
1397	for (i = 0; i < smmu->context_interrupt_count; i++) {
1398		hw_irq = IORT_IRQ_MASK(ctx_irq[i]);
1399		trigger = IORT_IRQ_TRIGGER_MASK(ctx_irq[i]);
1400
1401		acpi_iort_register_irq(hw_irq, "arm-smmu-context", trigger,
1402				       &res[num_res++]);
1403	}
1404}
1405
1406static void __init arm_smmu_dma_configure(struct device *dev,
1407					  struct acpi_iort_node *node)
1408{
1409	struct acpi_iort_smmu *smmu;
1410	enum dev_dma_attr attr;
1411
1412	/* Retrieve SMMU specific data */
1413	smmu = (struct acpi_iort_smmu *)node->node_data;
1414
1415	attr = (smmu->flags & ACPI_IORT_SMMU_COHERENT_WALK) ?
1416			DEV_DMA_COHERENT : DEV_DMA_NON_COHERENT;
1417
1418	/* We expect the dma masks to be equivalent for SMMU set-ups */
1419	dev->dma_mask = &dev->coherent_dma_mask;
1420
1421	/* Configure DMA for the page table walker */
1422	acpi_dma_configure(dev, attr);
1423}
1424
1425static int __init arm_smmu_v3_pmcg_count_resources(struct acpi_iort_node *node)
1426{
1427	struct acpi_iort_pmcg *pmcg;
1428
1429	/* Retrieve PMCG specific data */
1430	pmcg = (struct acpi_iort_pmcg *)node->node_data;
1431
1432	/*
1433	 * There are always 2 memory resources.
1434	 * If the overflow_gsiv is present then add that for a total of 3.
1435	 */
1436	return pmcg->overflow_gsiv ? 3 : 2;
1437}
1438
1439static void __init arm_smmu_v3_pmcg_init_resources(struct resource *res,
1440						   struct acpi_iort_node *node)
1441{
1442	struct acpi_iort_pmcg *pmcg;
1443
1444	/* Retrieve PMCG specific data */
1445	pmcg = (struct acpi_iort_pmcg *)node->node_data;
1446
1447	res[0].start = pmcg->page0_base_address;
1448	res[0].end = pmcg->page0_base_address + SZ_4K - 1;
1449	res[0].flags = IORESOURCE_MEM;
1450	res[1].start = pmcg->page1_base_address;
1451	res[1].end = pmcg->page1_base_address + SZ_4K - 1;
1452	res[1].flags = IORESOURCE_MEM;
 
 
 
 
 
 
 
 
1453
1454	if (pmcg->overflow_gsiv)
1455		acpi_iort_register_irq(pmcg->overflow_gsiv, "overflow",
1456				       ACPI_EDGE_SENSITIVE, &res[2]);
1457}
1458
1459static struct acpi_platform_list pmcg_plat_info[] __initdata = {
1460	/* HiSilicon Hip08 Platform */
1461	{"HISI  ", "HIP08   ", 0, ACPI_SIG_IORT, greater_than_or_equal,
1462	 "Erratum #162001800", IORT_SMMU_V3_PMCG_HISI_HIP08},
 
 
 
 
 
 
 
 
 
 
 
 
1463	{ }
1464};
1465
1466static int __init arm_smmu_v3_pmcg_add_platdata(struct platform_device *pdev)
1467{
1468	u32 model;
1469	int idx;
1470
1471	idx = acpi_match_platform_list(pmcg_plat_info);
1472	if (idx >= 0)
1473		model = pmcg_plat_info[idx].data;
1474	else
1475		model = IORT_SMMU_V3_PMCG_GENERIC;
1476
1477	return platform_device_add_data(pdev, &model, sizeof(model));
1478}
1479
1480struct iort_dev_config {
1481	const char *name;
1482	int (*dev_init)(struct acpi_iort_node *node);
1483	void (*dev_dma_configure)(struct device *dev,
1484				  struct acpi_iort_node *node);
1485	int (*dev_count_resources)(struct acpi_iort_node *node);
1486	void (*dev_init_resources)(struct resource *res,
1487				     struct acpi_iort_node *node);
1488	int (*dev_set_proximity)(struct device *dev,
1489				    struct acpi_iort_node *node);
1490	int (*dev_add_platdata)(struct platform_device *pdev);
1491};
1492
1493static const struct iort_dev_config iort_arm_smmu_v3_cfg __initconst = {
1494	.name = "arm-smmu-v3",
1495	.dev_dma_configure = arm_smmu_v3_dma_configure,
1496	.dev_count_resources = arm_smmu_v3_count_resources,
1497	.dev_init_resources = arm_smmu_v3_init_resources,
1498	.dev_set_proximity = arm_smmu_v3_set_proximity,
1499};
1500
1501static const struct iort_dev_config iort_arm_smmu_cfg __initconst = {
1502	.name = "arm-smmu",
1503	.dev_dma_configure = arm_smmu_dma_configure,
1504	.dev_count_resources = arm_smmu_count_resources,
1505	.dev_init_resources = arm_smmu_init_resources,
1506};
1507
1508static const struct iort_dev_config iort_arm_smmu_v3_pmcg_cfg __initconst = {
1509	.name = "arm-smmu-v3-pmcg",
1510	.dev_count_resources = arm_smmu_v3_pmcg_count_resources,
1511	.dev_init_resources = arm_smmu_v3_pmcg_init_resources,
1512	.dev_add_platdata = arm_smmu_v3_pmcg_add_platdata,
1513};
1514
1515static __init const struct iort_dev_config *iort_get_dev_cfg(
1516			struct acpi_iort_node *node)
1517{
1518	switch (node->type) {
1519	case ACPI_IORT_NODE_SMMU_V3:
1520		return &iort_arm_smmu_v3_cfg;
1521	case ACPI_IORT_NODE_SMMU:
1522		return &iort_arm_smmu_cfg;
1523	case ACPI_IORT_NODE_PMCG:
1524		return &iort_arm_smmu_v3_pmcg_cfg;
1525	default:
1526		return NULL;
1527	}
1528}
1529
1530/**
1531 * iort_add_platform_device() - Allocate a platform device for IORT node
1532 * @node: Pointer to device ACPI IORT node
 
1533 *
1534 * Returns: 0 on success, <0 failure
1535 */
1536static int __init iort_add_platform_device(struct acpi_iort_node *node,
1537					   const struct iort_dev_config *ops)
1538{
1539	struct fwnode_handle *fwnode;
1540	struct platform_device *pdev;
1541	struct resource *r;
1542	int ret, count;
1543
1544	pdev = platform_device_alloc(ops->name, PLATFORM_DEVID_AUTO);
1545	if (!pdev)
1546		return -ENOMEM;
1547
1548	if (ops->dev_set_proximity) {
1549		ret = ops->dev_set_proximity(&pdev->dev, node);
1550		if (ret)
1551			goto dev_put;
1552	}
1553
1554	count = ops->dev_count_resources(node);
1555
1556	r = kcalloc(count, sizeof(*r), GFP_KERNEL);
1557	if (!r) {
1558		ret = -ENOMEM;
1559		goto dev_put;
1560	}
1561
1562	ops->dev_init_resources(r, node);
1563
1564	ret = platform_device_add_resources(pdev, r, count);
1565	/*
1566	 * Resources are duplicated in platform_device_add_resources,
1567	 * free their allocated memory
1568	 */
1569	kfree(r);
1570
1571	if (ret)
1572		goto dev_put;
1573
1574	/*
1575	 * Platform devices based on PMCG nodes uses platform_data to
1576	 * pass the hardware model info to the driver. For others, add
1577	 * a copy of IORT node pointer to platform_data to be used to
1578	 * retrieve IORT data information.
1579	 */
1580	if (ops->dev_add_platdata)
1581		ret = ops->dev_add_platdata(pdev);
1582	else
1583		ret = platform_device_add_data(pdev, &node, sizeof(node));
1584
1585	if (ret)
1586		goto dev_put;
1587
1588	fwnode = iort_get_fwnode(node);
1589
1590	if (!fwnode) {
1591		ret = -ENODEV;
1592		goto dev_put;
1593	}
1594
1595	pdev->dev.fwnode = fwnode;
1596
1597	if (ops->dev_dma_configure)
1598		ops->dev_dma_configure(&pdev->dev, node);
1599
1600	iort_set_device_domain(&pdev->dev, node);
1601
1602	ret = platform_device_add(pdev);
1603	if (ret)
1604		goto dma_deconfigure;
1605
1606	return 0;
1607
1608dma_deconfigure:
1609	arch_teardown_dma_ops(&pdev->dev);
1610dev_put:
1611	platform_device_put(pdev);
1612
1613	return ret;
1614}
1615
1616#ifdef CONFIG_PCI
1617static void __init iort_enable_acs(struct acpi_iort_node *iort_node)
1618{
1619	static bool acs_enabled __initdata;
1620
1621	if (acs_enabled)
1622		return;
1623
1624	if (iort_node->type == ACPI_IORT_NODE_PCI_ROOT_COMPLEX) {
1625		struct acpi_iort_node *parent;
1626		struct acpi_iort_id_mapping *map;
1627		int i;
1628
1629		map = ACPI_ADD_PTR(struct acpi_iort_id_mapping, iort_node,
1630				   iort_node->mapping_offset);
1631
1632		for (i = 0; i < iort_node->mapping_count; i++, map++) {
1633			if (!map->output_reference)
1634				continue;
1635
1636			parent = ACPI_ADD_PTR(struct acpi_iort_node,
1637					iort_table,  map->output_reference);
1638			/*
1639			 * If we detect a RC->SMMU mapping, make sure
1640			 * we enable ACS on the system.
1641			 */
1642			if ((parent->type == ACPI_IORT_NODE_SMMU) ||
1643				(parent->type == ACPI_IORT_NODE_SMMU_V3)) {
1644				pci_request_acs();
1645				acs_enabled = true;
1646				return;
1647			}
1648		}
1649	}
1650}
1651#else
1652static inline void iort_enable_acs(struct acpi_iort_node *iort_node) { }
1653#endif
1654
1655static void __init iort_init_platform_devices(void)
1656{
1657	struct acpi_iort_node *iort_node, *iort_end;
1658	struct acpi_table_iort *iort;
1659	struct fwnode_handle *fwnode;
1660	int i, ret;
1661	const struct iort_dev_config *ops;
1662
1663	/*
1664	 * iort_table and iort both point to the start of IORT table, but
1665	 * have different struct types
1666	 */
1667	iort = (struct acpi_table_iort *)iort_table;
1668
1669	/* Get the first IORT node */
1670	iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort,
1671				 iort->node_offset);
1672	iort_end = ACPI_ADD_PTR(struct acpi_iort_node, iort,
1673				iort_table->length);
1674
1675	for (i = 0; i < iort->node_count; i++) {
1676		if (iort_node >= iort_end) {
1677			pr_err("iort node pointer overflows, bad table\n");
1678			return;
1679		}
1680
1681		iort_enable_acs(iort_node);
1682
1683		ops = iort_get_dev_cfg(iort_node);
1684		if (ops) {
1685			fwnode = acpi_alloc_fwnode_static();
1686			if (!fwnode)
1687				return;
1688
1689			iort_set_fwnode(iort_node, fwnode);
1690
1691			ret = iort_add_platform_device(iort_node, ops);
1692			if (ret) {
1693				iort_delete_fwnode(iort_node);
1694				acpi_free_fwnode_static(fwnode);
1695				return;
1696			}
1697		}
1698
1699		iort_node = ACPI_ADD_PTR(struct acpi_iort_node, iort_node,
1700					 iort_node->length);
1701	}
1702}
1703
1704void __init acpi_iort_init(void)
1705{
1706	acpi_status status;
1707
1708	/* iort_table will be used at runtime after the iort init,
1709	 * so we don't need to call acpi_put_table() to release
1710	 * the IORT table mapping.
1711	 */
1712	status = acpi_get_table(ACPI_SIG_IORT, 0, &iort_table);
1713	if (ACPI_FAILURE(status)) {
1714		if (status != AE_NOT_FOUND) {
1715			const char *msg = acpi_format_exception(status);
1716
1717			pr_err("Failed to get table, %s\n", msg);
1718		}
1719
1720		return;
1721	}
1722
1723	iort_init_platform_devices();
1724}