Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *  Kernel Probes (KProbes)
   4 *
   5 * Copyright (C) IBM Corporation, 2002, 2004
   6 *
   7 * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
   8 *		Probes initial implementation ( includes contributions from
   9 *		Rusty Russell).
  10 * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
  11 *		interface to access function arguments.
  12 * 2004-Oct	Jim Keniston <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
  13 *		<prasanna@in.ibm.com> adapted for x86_64 from i386.
  14 * 2005-Mar	Roland McGrath <roland@redhat.com>
  15 *		Fixed to handle %rip-relative addressing mode correctly.
  16 * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
  17 *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
  18 *		<prasanna@in.ibm.com> added function-return probes.
  19 * 2005-May	Rusty Lynch <rusty.lynch@intel.com>
  20 *		Added function return probes functionality
  21 * 2006-Feb	Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> added
  22 *		kprobe-booster and kretprobe-booster for i386.
  23 * 2007-Dec	Masami Hiramatsu <mhiramat@redhat.com> added kprobe-booster
  24 *		and kretprobe-booster for x86-64
  25 * 2007-Dec	Masami Hiramatsu <mhiramat@redhat.com>, Arjan van de Ven
  26 *		<arjan@infradead.org> and Jim Keniston <jkenisto@us.ibm.com>
  27 *		unified x86 kprobes code.
  28 */
  29#include <linux/kprobes.h>
  30#include <linux/ptrace.h>
  31#include <linux/string.h>
  32#include <linux/slab.h>
  33#include <linux/hardirq.h>
  34#include <linux/preempt.h>
  35#include <linux/sched/debug.h>
  36#include <linux/perf_event.h>
  37#include <linux/extable.h>
  38#include <linux/kdebug.h>
  39#include <linux/kallsyms.h>
  40#include <linux/kgdb.h>
  41#include <linux/ftrace.h>
 
  42#include <linux/kasan.h>
  43#include <linux/objtool.h>
  44#include <linux/vmalloc.h>
  45#include <linux/pgtable.h>
  46#include <linux/set_memory.h>
  47#include <linux/cfi.h>
  48#include <linux/execmem.h>
  49
  50#include <asm/text-patching.h>
  51#include <asm/cacheflush.h>
  52#include <asm/desc.h>
  53#include <linux/uaccess.h>
  54#include <asm/alternative.h>
  55#include <asm/insn.h>
  56#include <asm/debugreg.h>
  57#include <asm/ibt.h>
  58
  59#include "common.h"
  60
  61DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
  62DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
  63
 
 
  64#define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
  65	(((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) |   \
  66	  (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) |   \
  67	  (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) |   \
  68	  (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf))    \
  69	 << (row % 32))
  70	/*
  71	 * Undefined/reserved opcodes, conditional jump, Opcode Extension
  72	 * Groups, and some special opcodes can not boost.
  73	 * This is non-const and volatile to keep gcc from statically
  74	 * optimizing it out, as variable_test_bit makes gcc think only
  75	 * *(unsigned long*) is used.
  76	 */
  77static volatile u32 twobyte_is_boostable[256 / 32] = {
  78	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f          */
  79	/*      ----------------------------------------------          */
  80	W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */
  81	W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) , /* 10 */
  82	W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */
  83	W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */
  84	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
  85	W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */
  86	W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */
  87	W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */
  88	W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */
  89	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
  90	W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */
  91	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */
  92	W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
  93	W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */
  94	W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */
  95	W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0)   /* f0 */
  96	/*      -----------------------------------------------         */
  97	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f          */
  98};
  99#undef W
 100
 101struct kretprobe_blackpoint kretprobe_blacklist[] = {
 102	{"__switch_to", }, /* This function switches only current task, but
 103			      doesn't switch kernel stack.*/
 104	{NULL, NULL}	/* Terminator */
 105};
 106
 107const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist);
 108
 109static nokprobe_inline void
 110__synthesize_relative_insn(void *dest, void *from, void *to, u8 op)
 111{
 112	struct __arch_relative_insn {
 113		u8 op;
 114		s32 raddr;
 115	} __packed *insn;
 116
 117	insn = (struct __arch_relative_insn *)dest;
 118	insn->raddr = (s32)((long)(to) - ((long)(from) + 5));
 119	insn->op = op;
 120}
 121
 122/* Insert a jump instruction at address 'from', which jumps to address 'to'.*/
 123void synthesize_reljump(void *dest, void *from, void *to)
 124{
 125	__synthesize_relative_insn(dest, from, to, JMP32_INSN_OPCODE);
 126}
 127NOKPROBE_SYMBOL(synthesize_reljump);
 128
 129/* Insert a call instruction at address 'from', which calls address 'to'.*/
 130void synthesize_relcall(void *dest, void *from, void *to)
 131{
 132	__synthesize_relative_insn(dest, from, to, CALL_INSN_OPCODE);
 133}
 134NOKPROBE_SYMBOL(synthesize_relcall);
 135
 136/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 137 * Returns non-zero if INSN is boostable.
 138 * RIP relative instructions are adjusted at copying time in 64 bits mode
 139 */
 140bool can_boost(struct insn *insn, void *addr)
 141{
 142	kprobe_opcode_t opcode;
 143	insn_byte_t prefix;
 144	int i;
 145
 146	if (search_exception_tables((unsigned long)addr))
 147		return false;	/* Page fault may occur on this address. */
 148
 149	/* 2nd-byte opcode */
 150	if (insn->opcode.nbytes == 2)
 151		return test_bit(insn->opcode.bytes[1],
 152				(unsigned long *)twobyte_is_boostable);
 153
 154	if (insn->opcode.nbytes != 1)
 155		return false;
 156
 157	for_each_insn_prefix(insn, i, prefix) {
 158		insn_attr_t attr;
 159
 160		attr = inat_get_opcode_attribute(prefix);
 161		/* Can't boost Address-size override prefix and CS override prefix */
 162		if (prefix == 0x2e || inat_is_address_size_prefix(attr))
 163			return false;
 164	}
 165
 166	opcode = insn->opcode.bytes[0];
 167
 168	switch (opcode) {
 169	case 0x62:		/* bound */
 170	case 0x70 ... 0x7f:	/* Conditional jumps */
 171	case 0x9a:		/* Call far */
 172	case 0xcc ... 0xce:	/* software exceptions */
 173	case 0xd6:		/* (UD) */
 174	case 0xd8 ... 0xdf:	/* ESC */
 175	case 0xe0 ... 0xe3:	/* LOOP*, JCXZ */
 176	case 0xe8 ... 0xe9:	/* near Call, JMP */
 177	case 0xeb:		/* Short JMP */
 178	case 0xf0 ... 0xf4:	/* LOCK/REP, HLT */
 179		/* ... are not boostable */
 180		return false;
 181	case 0xc0 ... 0xc1:	/* Grp2 */
 182	case 0xd0 ... 0xd3:	/* Grp2 */
 183		/*
 184		 * AMD uses nnn == 110 as SHL/SAL, but Intel makes it reserved.
 185		 */
 186		return X86_MODRM_REG(insn->modrm.bytes[0]) != 0b110;
 187	case 0xf6 ... 0xf7:	/* Grp3 */
 188		/* AMD uses nnn == 001 as TEST, but Intel makes it reserved. */
 189		return X86_MODRM_REG(insn->modrm.bytes[0]) != 0b001;
 190	case 0xfe:		/* Grp4 */
 191		/* Only INC and DEC are boostable */
 192		return X86_MODRM_REG(insn->modrm.bytes[0]) == 0b000 ||
 193		       X86_MODRM_REG(insn->modrm.bytes[0]) == 0b001;
 194	case 0xff:		/* Grp5 */
 195		/* Only INC, DEC, and indirect JMP are boostable */
 196		return X86_MODRM_REG(insn->modrm.bytes[0]) == 0b000 ||
 197		       X86_MODRM_REG(insn->modrm.bytes[0]) == 0b001 ||
 198		       X86_MODRM_REG(insn->modrm.bytes[0]) == 0b100;
 199	default:
 200		return true;
 
 201	}
 202}
 203
 204static unsigned long
 205__recover_probed_insn(kprobe_opcode_t *buf, unsigned long addr)
 206{
 207	struct kprobe *kp;
 208	bool faddr;
 209
 210	kp = get_kprobe((void *)addr);
 211	faddr = ftrace_location(addr) == addr;
 
 
 
 
 
 
 
 212	/*
 213	 * Use the current code if it is not modified by Kprobe
 214	 * and it cannot be modified by ftrace.
 215	 */
 216	if (!kp && !faddr)
 217		return addr;
 218
 219	/*
 220	 * Basically, kp->ainsn.insn has an original instruction.
 221	 * However, RIP-relative instruction can not do single-stepping
 222	 * at different place, __copy_instruction() tweaks the displacement of
 223	 * that instruction. In that case, we can't recover the instruction
 224	 * from the kp->ainsn.insn.
 225	 *
 226	 * On the other hand, in case on normal Kprobe, kp->opcode has a copy
 227	 * of the first byte of the probed instruction, which is overwritten
 228	 * by int3. And the instruction at kp->addr is not modified by kprobes
 229	 * except for the first byte, we can recover the original instruction
 230	 * from it and kp->opcode.
 231	 *
 232	 * In case of Kprobes using ftrace, we do not have a copy of
 233	 * the original instruction. In fact, the ftrace location might
 234	 * be modified at anytime and even could be in an inconsistent state.
 235	 * Fortunately, we know that the original code is the ideal 5-byte
 236	 * long NOP.
 237	 */
 238	if (copy_from_kernel_nofault(buf, (void *)addr,
 239		MAX_INSN_SIZE * sizeof(kprobe_opcode_t)))
 240		return 0UL;
 241
 242	if (faddr)
 243		memcpy(buf, x86_nops[5], 5);
 244	else
 245		buf[0] = kp->opcode;
 246	return (unsigned long)buf;
 247}
 248
 249/*
 250 * Recover the probed instruction at addr for further analysis.
 251 * Caller must lock kprobes by kprobe_mutex, or disable preemption
 252 * for preventing to release referencing kprobes.
 253 * Returns zero if the instruction can not get recovered (or access failed).
 254 */
 255unsigned long recover_probed_instruction(kprobe_opcode_t *buf, unsigned long addr)
 256{
 257	unsigned long __addr;
 258
 259	__addr = __recover_optprobed_insn(buf, addr);
 260	if (__addr != addr)
 261		return __addr;
 262
 263	return __recover_probed_insn(buf, addr);
 264}
 265
 266/* Check if insn is INT or UD */
 267static inline bool is_exception_insn(struct insn *insn)
 268{
 269	/* UD uses 0f escape */
 270	if (insn->opcode.bytes[0] == 0x0f) {
 271		/* UD0 / UD1 / UD2 */
 272		return insn->opcode.bytes[1] == 0xff ||
 273		       insn->opcode.bytes[1] == 0xb9 ||
 274		       insn->opcode.bytes[1] == 0x0b;
 275	}
 276
 277	/* INT3 / INT n / INTO / INT1 */
 278	return insn->opcode.bytes[0] == 0xcc ||
 279	       insn->opcode.bytes[0] == 0xcd ||
 280	       insn->opcode.bytes[0] == 0xce ||
 281	       insn->opcode.bytes[0] == 0xf1;
 282}
 283
 284/*
 285 * Check if paddr is at an instruction boundary and that instruction can
 286 * be probed
 287 */
 288static bool can_probe(unsigned long paddr)
 289{
 290	unsigned long addr, __addr, offset = 0;
 291	struct insn insn;
 292	kprobe_opcode_t buf[MAX_INSN_SIZE];
 293
 294	if (!kallsyms_lookup_size_offset(paddr, NULL, &offset))
 295		return false;
 296
 297	/* Decode instructions */
 298	addr = paddr - offset;
 299	while (addr < paddr) {
 300		/*
 301		 * Check if the instruction has been modified by another
 302		 * kprobe, in which case we replace the breakpoint by the
 303		 * original instruction in our buffer.
 304		 * Also, jump optimization will change the breakpoint to
 305		 * relative-jump. Since the relative-jump itself is
 306		 * normally used, we just go through if there is no kprobe.
 307		 */
 308		__addr = recover_probed_instruction(buf, addr);
 309		if (!__addr)
 310			return false;
 311
 312		if (insn_decode_kernel(&insn, (void *)__addr) < 0)
 313			return false;
 314
 315#ifdef CONFIG_KGDB
 316		/*
 317		 * If there is a dynamically installed kgdb sw breakpoint,
 318		 * this function should not be probed.
 319		 */
 320		if (insn.opcode.bytes[0] == INT3_INSN_OPCODE &&
 321		    kgdb_has_hit_break(addr))
 322			return false;
 323#endif
 324		addr += insn.length;
 325	}
 326
 327	/* Check if paddr is at an instruction boundary */
 328	if (addr != paddr)
 329		return false;
 330
 331	__addr = recover_probed_instruction(buf, addr);
 332	if (!__addr)
 333		return false;
 334
 335	if (insn_decode_kernel(&insn, (void *)__addr) < 0)
 336		return false;
 337
 338	/* INT and UD are special and should not be kprobed */
 339	if (is_exception_insn(&insn))
 340		return false;
 341
 342	if (IS_ENABLED(CONFIG_CFI_CLANG)) {
 343		/*
 344		 * The compiler generates the following instruction sequence
 345		 * for indirect call checks and cfi.c decodes this;
 346		 *
 347		 *   movl    -<id>, %r10d       ; 6 bytes
 348		 *   addl    -4(%reg), %r10d    ; 4 bytes
 349		 *   je      .Ltmp1             ; 2 bytes
 350		 *   ud2                        ; <- regs->ip
 351		 *   .Ltmp1:
 352		 *
 353		 * Also, these movl and addl are used for showing expected
 354		 * type. So those must not be touched.
 355		 */
 356		if (insn.opcode.value == 0xBA)
 357			offset = 12;
 358		else if (insn.opcode.value == 0x3)
 359			offset = 6;
 360		else
 361			goto out;
 362
 363		/* This movl/addl is used for decoding CFI. */
 364		if (is_cfi_trap(addr + offset))
 365			return false;
 366	}
 367
 368out:
 369	return true;
 370}
 371
 372/* If x86 supports IBT (ENDBR) it must be skipped. */
 373kprobe_opcode_t *arch_adjust_kprobe_addr(unsigned long addr, unsigned long offset,
 374					 bool *on_func_entry)
 
 375{
 376	u32 insn;
 377
 378	/*
 379	 * Since 'addr' is not guaranteed to be safe to access, use
 380	 * copy_from_kernel_nofault() to read the instruction:
 381	 */
 382	if (copy_from_kernel_nofault(&insn, (void *)addr, sizeof(u32)))
 383		return NULL;
 384
 385	if (is_endbr(insn)) {
 386		*on_func_entry = !offset || offset == 4;
 387		if (*on_func_entry)
 388			offset = 4;
 389
 390	} else {
 391		*on_func_entry = !offset;
 
 
 
 
 392	}
 393
 394	return (kprobe_opcode_t *)(addr + offset);
 395}
 396
 397/*
 398 * Copy an instruction with recovering modified instruction by kprobes
 399 * and adjust the displacement if the instruction uses the %rip-relative
 400 * addressing mode. Note that since @real will be the final place of copied
 401 * instruction, displacement must be adjust by @real, not @dest.
 402 * This returns the length of copied instruction, or 0 if it has an error.
 403 */
 404int __copy_instruction(u8 *dest, u8 *src, u8 *real, struct insn *insn)
 405{
 406	kprobe_opcode_t buf[MAX_INSN_SIZE];
 407	unsigned long recovered_insn = recover_probed_instruction(buf, (unsigned long)src);
 408	int ret;
 409
 410	if (!recovered_insn || !insn)
 411		return 0;
 412
 413	/* This can access kernel text if given address is not recovered */
 414	if (copy_from_kernel_nofault(dest, (void *)recovered_insn,
 415			MAX_INSN_SIZE))
 416		return 0;
 417
 418	ret = insn_decode_kernel(insn, dest);
 419	if (ret < 0)
 420		return 0;
 421
 422	/* We can not probe force emulate prefixed instruction */
 423	if (insn_has_emulate_prefix(insn))
 424		return 0;
 425
 426	/* Another subsystem puts a breakpoint, failed to recover */
 427	if (insn->opcode.bytes[0] == INT3_INSN_OPCODE)
 428		return 0;
 429
 430	/* We should not singlestep on the exception masking instructions */
 431	if (insn_masking_exception(insn))
 432		return 0;
 433
 434#ifdef CONFIG_X86_64
 435	/* Only x86_64 has RIP relative instructions */
 436	if (insn_rip_relative(insn)) {
 437		s64 newdisp;
 438		u8 *disp;
 439		/*
 440		 * The copied instruction uses the %rip-relative addressing
 441		 * mode.  Adjust the displacement for the difference between
 442		 * the original location of this instruction and the location
 443		 * of the copy that will actually be run.  The tricky bit here
 444		 * is making sure that the sign extension happens correctly in
 445		 * this calculation, since we need a signed 32-bit result to
 446		 * be sign-extended to 64 bits when it's added to the %rip
 447		 * value and yield the same 64-bit result that the sign-
 448		 * extension of the original signed 32-bit displacement would
 449		 * have given.
 450		 */
 451		newdisp = (u8 *) src + (s64) insn->displacement.value
 452			  - (u8 *) real;
 453		if ((s64) (s32) newdisp != newdisp) {
 454			pr_err("Kprobes error: new displacement does not fit into s32 (%llx)\n", newdisp);
 455			return 0;
 456		}
 457		disp = (u8 *) dest + insn_offset_displacement(insn);
 458		*(s32 *) disp = (s32) newdisp;
 459	}
 460#endif
 461	return insn->length;
 462}
 463
 464/* Prepare reljump or int3 right after instruction */
 465static int prepare_singlestep(kprobe_opcode_t *buf, struct kprobe *p,
 466			      struct insn *insn)
 467{
 468	int len = insn->length;
 469
 470	if (!IS_ENABLED(CONFIG_PREEMPTION) &&
 471	    !p->post_handler && can_boost(insn, p->addr) &&
 472	    MAX_INSN_SIZE - len >= JMP32_INSN_SIZE) {
 473		/*
 474		 * These instructions can be executed directly if it
 475		 * jumps back to correct address.
 476		 */
 477		synthesize_reljump(buf + len, p->ainsn.insn + len,
 478				   p->addr + insn->length);
 479		len += JMP32_INSN_SIZE;
 480		p->ainsn.boostable = 1;
 481	} else {
 482		/* Otherwise, put an int3 for trapping singlestep */
 483		if (MAX_INSN_SIZE - len < INT3_INSN_SIZE)
 484			return -ENOSPC;
 485
 486		buf[len] = INT3_INSN_OPCODE;
 487		len += INT3_INSN_SIZE;
 488	}
 489
 490	return len;
 491}
 492
 493/* Make page to RO mode when allocate it */
 494void *alloc_insn_page(void)
 495{
 496	void *page;
 497
 498	page = execmem_alloc(EXECMEM_KPROBES, PAGE_SIZE);
 499	if (!page)
 500		return NULL;
 501
 
 
 
 
 
 
 
 502	/*
 503	 * TODO: Once additional kernel code protection mechanisms are set, ensure
 504	 * that the page was not maliciously altered and it is still zeroed.
 505	 */
 506	set_memory_rox((unsigned long)page, 1);
 507
 508	return page;
 509}
 510
 511/* Kprobe x86 instruction emulation - only regs->ip or IF flag modifiers */
 512
 513static void kprobe_emulate_ifmodifiers(struct kprobe *p, struct pt_regs *regs)
 514{
 515	switch (p->ainsn.opcode) {
 516	case 0xfa:	/* cli */
 517		regs->flags &= ~(X86_EFLAGS_IF);
 518		break;
 519	case 0xfb:	/* sti */
 520		regs->flags |= X86_EFLAGS_IF;
 521		break;
 522	case 0x9c:	/* pushf */
 523		int3_emulate_push(regs, regs->flags);
 524		break;
 525	case 0x9d:	/* popf */
 526		regs->flags = int3_emulate_pop(regs);
 527		break;
 528	}
 529	regs->ip = regs->ip - INT3_INSN_SIZE + p->ainsn.size;
 530}
 531NOKPROBE_SYMBOL(kprobe_emulate_ifmodifiers);
 532
 533static void kprobe_emulate_ret(struct kprobe *p, struct pt_regs *regs)
 534{
 535	int3_emulate_ret(regs);
 536}
 537NOKPROBE_SYMBOL(kprobe_emulate_ret);
 538
 539static void kprobe_emulate_call(struct kprobe *p, struct pt_regs *regs)
 540{
 541	unsigned long func = regs->ip - INT3_INSN_SIZE + p->ainsn.size;
 542
 543	func += p->ainsn.rel32;
 544	int3_emulate_call(regs, func);
 545}
 546NOKPROBE_SYMBOL(kprobe_emulate_call);
 547
 548static void kprobe_emulate_jmp(struct kprobe *p, struct pt_regs *regs)
 549{
 550	unsigned long ip = regs->ip - INT3_INSN_SIZE + p->ainsn.size;
 551
 552	ip += p->ainsn.rel32;
 553	int3_emulate_jmp(regs, ip);
 554}
 555NOKPROBE_SYMBOL(kprobe_emulate_jmp);
 556
 557static void kprobe_emulate_jcc(struct kprobe *p, struct pt_regs *regs)
 558{
 559	unsigned long ip = regs->ip - INT3_INSN_SIZE + p->ainsn.size;
 560
 561	int3_emulate_jcc(regs, p->ainsn.jcc.type, ip, p->ainsn.rel32);
 562}
 563NOKPROBE_SYMBOL(kprobe_emulate_jcc);
 564
 565static void kprobe_emulate_loop(struct kprobe *p, struct pt_regs *regs)
 566{
 567	unsigned long ip = regs->ip - INT3_INSN_SIZE + p->ainsn.size;
 568	bool match;
 569
 570	if (p->ainsn.loop.type != 3) {	/* LOOP* */
 571		if (p->ainsn.loop.asize == 32)
 572			match = ((*(u32 *)&regs->cx)--) != 0;
 573#ifdef CONFIG_X86_64
 574		else if (p->ainsn.loop.asize == 64)
 575			match = ((*(u64 *)&regs->cx)--) != 0;
 576#endif
 577		else
 578			match = ((*(u16 *)&regs->cx)--) != 0;
 579	} else {			/* JCXZ */
 580		if (p->ainsn.loop.asize == 32)
 581			match = *(u32 *)(&regs->cx) == 0;
 582#ifdef CONFIG_X86_64
 583		else if (p->ainsn.loop.asize == 64)
 584			match = *(u64 *)(&regs->cx) == 0;
 585#endif
 586		else
 587			match = *(u16 *)(&regs->cx) == 0;
 588	}
 589
 590	if (p->ainsn.loop.type == 0)	/* LOOPNE */
 591		match = match && !(regs->flags & X86_EFLAGS_ZF);
 592	else if (p->ainsn.loop.type == 1)	/* LOOPE */
 593		match = match && (regs->flags & X86_EFLAGS_ZF);
 594
 595	if (match)
 596		ip += p->ainsn.rel32;
 597	int3_emulate_jmp(regs, ip);
 598}
 599NOKPROBE_SYMBOL(kprobe_emulate_loop);
 600
 601static const int addrmode_regoffs[] = {
 602	offsetof(struct pt_regs, ax),
 603	offsetof(struct pt_regs, cx),
 604	offsetof(struct pt_regs, dx),
 605	offsetof(struct pt_regs, bx),
 606	offsetof(struct pt_regs, sp),
 607	offsetof(struct pt_regs, bp),
 608	offsetof(struct pt_regs, si),
 609	offsetof(struct pt_regs, di),
 610#ifdef CONFIG_X86_64
 611	offsetof(struct pt_regs, r8),
 612	offsetof(struct pt_regs, r9),
 613	offsetof(struct pt_regs, r10),
 614	offsetof(struct pt_regs, r11),
 615	offsetof(struct pt_regs, r12),
 616	offsetof(struct pt_regs, r13),
 617	offsetof(struct pt_regs, r14),
 618	offsetof(struct pt_regs, r15),
 619#endif
 620};
 621
 622static void kprobe_emulate_call_indirect(struct kprobe *p, struct pt_regs *regs)
 623{
 624	unsigned long offs = addrmode_regoffs[p->ainsn.indirect.reg];
 625
 626	int3_emulate_push(regs, regs->ip - INT3_INSN_SIZE + p->ainsn.size);
 627	int3_emulate_jmp(regs, regs_get_register(regs, offs));
 628}
 629NOKPROBE_SYMBOL(kprobe_emulate_call_indirect);
 630
 631static void kprobe_emulate_jmp_indirect(struct kprobe *p, struct pt_regs *regs)
 632{
 633	unsigned long offs = addrmode_regoffs[p->ainsn.indirect.reg];
 634
 635	int3_emulate_jmp(regs, regs_get_register(regs, offs));
 636}
 637NOKPROBE_SYMBOL(kprobe_emulate_jmp_indirect);
 638
 639static int prepare_emulation(struct kprobe *p, struct insn *insn)
 640{
 641	insn_byte_t opcode = insn->opcode.bytes[0];
 642
 643	switch (opcode) {
 644	case 0xfa:		/* cli */
 645	case 0xfb:		/* sti */
 646	case 0x9c:		/* pushfl */
 647	case 0x9d:		/* popf/popfd */
 648		/*
 649		 * IF modifiers must be emulated since it will enable interrupt while
 650		 * int3 single stepping.
 651		 */
 652		p->ainsn.emulate_op = kprobe_emulate_ifmodifiers;
 653		p->ainsn.opcode = opcode;
 654		break;
 655	case 0xc2:	/* ret/lret */
 656	case 0xc3:
 657	case 0xca:
 658	case 0xcb:
 659		p->ainsn.emulate_op = kprobe_emulate_ret;
 660		break;
 661	case 0x9a:	/* far call absolute -- segment is not supported */
 662	case 0xea:	/* far jmp absolute -- segment is not supported */
 663	case 0xcc:	/* int3 */
 664	case 0xcf:	/* iret -- in-kernel IRET is not supported */
 665		return -EOPNOTSUPP;
 666		break;
 667	case 0xe8:	/* near call relative */
 668		p->ainsn.emulate_op = kprobe_emulate_call;
 669		if (insn->immediate.nbytes == 2)
 670			p->ainsn.rel32 = *(s16 *)&insn->immediate.value;
 671		else
 672			p->ainsn.rel32 = *(s32 *)&insn->immediate.value;
 673		break;
 674	case 0xeb:	/* short jump relative */
 675	case 0xe9:	/* near jump relative */
 676		p->ainsn.emulate_op = kprobe_emulate_jmp;
 677		if (insn->immediate.nbytes == 1)
 678			p->ainsn.rel32 = *(s8 *)&insn->immediate.value;
 679		else if (insn->immediate.nbytes == 2)
 680			p->ainsn.rel32 = *(s16 *)&insn->immediate.value;
 681		else
 682			p->ainsn.rel32 = *(s32 *)&insn->immediate.value;
 683		break;
 684	case 0x70 ... 0x7f:
 685		/* 1 byte conditional jump */
 686		p->ainsn.emulate_op = kprobe_emulate_jcc;
 687		p->ainsn.jcc.type = opcode & 0xf;
 688		p->ainsn.rel32 = insn->immediate.value;
 689		break;
 690	case 0x0f:
 691		opcode = insn->opcode.bytes[1];
 692		if ((opcode & 0xf0) == 0x80) {
 693			/* 2 bytes Conditional Jump */
 694			p->ainsn.emulate_op = kprobe_emulate_jcc;
 695			p->ainsn.jcc.type = opcode & 0xf;
 696			if (insn->immediate.nbytes == 2)
 697				p->ainsn.rel32 = *(s16 *)&insn->immediate.value;
 698			else
 699				p->ainsn.rel32 = *(s32 *)&insn->immediate.value;
 700		} else if (opcode == 0x01 &&
 701			   X86_MODRM_REG(insn->modrm.bytes[0]) == 0 &&
 702			   X86_MODRM_MOD(insn->modrm.bytes[0]) == 3) {
 703			/* VM extensions - not supported */
 704			return -EOPNOTSUPP;
 705		}
 706		break;
 707	case 0xe0:	/* Loop NZ */
 708	case 0xe1:	/* Loop */
 709	case 0xe2:	/* Loop */
 710	case 0xe3:	/* J*CXZ */
 711		p->ainsn.emulate_op = kprobe_emulate_loop;
 712		p->ainsn.loop.type = opcode & 0x3;
 713		p->ainsn.loop.asize = insn->addr_bytes * 8;
 714		p->ainsn.rel32 = *(s8 *)&insn->immediate.value;
 715		break;
 716	case 0xff:
 717		/*
 718		 * Since the 0xff is an extended group opcode, the instruction
 719		 * is determined by the MOD/RM byte.
 720		 */
 721		opcode = insn->modrm.bytes[0];
 722		switch (X86_MODRM_REG(opcode)) {
 723		case 0b010:	/* FF /2, call near, absolute indirect */
 724			p->ainsn.emulate_op = kprobe_emulate_call_indirect;
 725			break;
 726		case 0b100:	/* FF /4, jmp near, absolute indirect */
 727			p->ainsn.emulate_op = kprobe_emulate_jmp_indirect;
 728			break;
 729		case 0b011:	/* FF /3, call far, absolute indirect */
 730		case 0b101:	/* FF /5, jmp far, absolute indirect */
 731			return -EOPNOTSUPP;
 732		}
 733
 734		if (!p->ainsn.emulate_op)
 735			break;
 736
 737		if (insn->addr_bytes != sizeof(unsigned long))
 738			return -EOPNOTSUPP;	/* Don't support different size */
 739		if (X86_MODRM_MOD(opcode) != 3)
 740			return -EOPNOTSUPP;	/* TODO: support memory addressing */
 741
 742		p->ainsn.indirect.reg = X86_MODRM_RM(opcode);
 743#ifdef CONFIG_X86_64
 744		if (X86_REX_B(insn->rex_prefix.value))
 745			p->ainsn.indirect.reg += 8;
 746#endif
 747		break;
 748	default:
 749		break;
 750	}
 751	p->ainsn.size = insn->length;
 752
 753	return 0;
 754}
 755
 756static int arch_copy_kprobe(struct kprobe *p)
 757{
 758	struct insn insn;
 759	kprobe_opcode_t buf[MAX_INSN_SIZE];
 760	int ret, len;
 761
 762	/* Copy an instruction with recovering if other optprobe modifies it.*/
 763	len = __copy_instruction(buf, p->addr, p->ainsn.insn, &insn);
 764	if (!len)
 765		return -EINVAL;
 766
 767	/* Analyze the opcode and setup emulate functions */
 768	ret = prepare_emulation(p, &insn);
 769	if (ret < 0)
 770		return ret;
 771
 772	/* Add int3 for single-step or booster jmp */
 773	len = prepare_singlestep(buf, p, &insn);
 774	if (len < 0)
 775		return len;
 776
 777	/* Also, displacement change doesn't affect the first byte */
 778	p->opcode = buf[0];
 779
 780	p->ainsn.tp_len = len;
 781	perf_event_text_poke(p->ainsn.insn, NULL, 0, buf, len);
 782
 783	/* OK, write back the instruction(s) into ROX insn buffer */
 784	text_poke(p->ainsn.insn, buf, len);
 785
 786	return 0;
 787}
 788
 789int arch_prepare_kprobe(struct kprobe *p)
 790{
 791	int ret;
 792
 793	if (alternatives_text_reserved(p->addr, p->addr))
 794		return -EINVAL;
 795
 796	if (!can_probe((unsigned long)p->addr))
 797		return -EILSEQ;
 798
 799	memset(&p->ainsn, 0, sizeof(p->ainsn));
 800
 801	/* insn: must be on special executable page on x86. */
 802	p->ainsn.insn = get_insn_slot();
 803	if (!p->ainsn.insn)
 804		return -ENOMEM;
 805
 806	ret = arch_copy_kprobe(p);
 807	if (ret) {
 808		free_insn_slot(p->ainsn.insn, 0);
 809		p->ainsn.insn = NULL;
 810	}
 811
 812	return ret;
 813}
 814
 815void arch_arm_kprobe(struct kprobe *p)
 816{
 817	u8 int3 = INT3_INSN_OPCODE;
 818
 819	text_poke(p->addr, &int3, 1);
 820	text_poke_sync();
 821	perf_event_text_poke(p->addr, &p->opcode, 1, &int3, 1);
 822}
 823
 824void arch_disarm_kprobe(struct kprobe *p)
 825{
 826	u8 int3 = INT3_INSN_OPCODE;
 827
 828	perf_event_text_poke(p->addr, &int3, 1, &p->opcode, 1);
 829	text_poke(p->addr, &p->opcode, 1);
 830	text_poke_sync();
 831}
 832
 833void arch_remove_kprobe(struct kprobe *p)
 834{
 835	if (p->ainsn.insn) {
 836		/* Record the perf event before freeing the slot */
 837		perf_event_text_poke(p->ainsn.insn, p->ainsn.insn,
 838				     p->ainsn.tp_len, NULL, 0);
 839		free_insn_slot(p->ainsn.insn, p->ainsn.boostable);
 840		p->ainsn.insn = NULL;
 841	}
 842}
 843
 844static nokprobe_inline void
 845save_previous_kprobe(struct kprobe_ctlblk *kcb)
 846{
 847	kcb->prev_kprobe.kp = kprobe_running();
 848	kcb->prev_kprobe.status = kcb->kprobe_status;
 849	kcb->prev_kprobe.old_flags = kcb->kprobe_old_flags;
 850	kcb->prev_kprobe.saved_flags = kcb->kprobe_saved_flags;
 851}
 852
 853static nokprobe_inline void
 854restore_previous_kprobe(struct kprobe_ctlblk *kcb)
 855{
 856	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
 857	kcb->kprobe_status = kcb->prev_kprobe.status;
 858	kcb->kprobe_old_flags = kcb->prev_kprobe.old_flags;
 859	kcb->kprobe_saved_flags = kcb->prev_kprobe.saved_flags;
 860}
 861
 862static nokprobe_inline void
 863set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
 864		   struct kprobe_ctlblk *kcb)
 865{
 866	__this_cpu_write(current_kprobe, p);
 867	kcb->kprobe_saved_flags = kcb->kprobe_old_flags
 868		= (regs->flags & X86_EFLAGS_IF);
 
 
 869}
 870
 871static void kprobe_post_process(struct kprobe *cur, struct pt_regs *regs,
 872			       struct kprobe_ctlblk *kcb)
 873{
 874	/* Restore back the original saved kprobes variables and continue. */
 875	if (kcb->kprobe_status == KPROBE_REENTER) {
 876		/* This will restore both kcb and current_kprobe */
 877		restore_previous_kprobe(kcb);
 878	} else {
 879		/*
 880		 * Always update the kcb status because
 881		 * reset_curent_kprobe() doesn't update kcb.
 882		 */
 883		kcb->kprobe_status = KPROBE_HIT_SSDONE;
 884		if (cur->post_handler)
 885			cur->post_handler(cur, regs, 0);
 886		reset_current_kprobe();
 
 
 887	}
 888}
 889NOKPROBE_SYMBOL(kprobe_post_process);
 
 
 
 
 
 
 
 
 
 
 
 890
 891static void setup_singlestep(struct kprobe *p, struct pt_regs *regs,
 892			     struct kprobe_ctlblk *kcb, int reenter)
 893{
 894	if (setup_detour_execution(p, regs, reenter))
 895		return;
 896
 897#if !defined(CONFIG_PREEMPTION)
 898	if (p->ainsn.boostable) {
 899		/* Boost up -- we can execute copied instructions directly */
 900		if (!reenter)
 901			reset_current_kprobe();
 902		/*
 903		 * Reentering boosted probe doesn't reset current_kprobe,
 904		 * nor set current_kprobe, because it doesn't use single
 905		 * stepping.
 906		 */
 907		regs->ip = (unsigned long)p->ainsn.insn;
 908		return;
 909	}
 910#endif
 911	if (reenter) {
 912		save_previous_kprobe(kcb);
 913		set_current_kprobe(p, regs, kcb);
 914		kcb->kprobe_status = KPROBE_REENTER;
 915	} else
 916		kcb->kprobe_status = KPROBE_HIT_SS;
 917
 918	if (p->ainsn.emulate_op) {
 919		p->ainsn.emulate_op(p, regs);
 920		kprobe_post_process(p, regs, kcb);
 921		return;
 922	}
 923
 924	/* Disable interrupt, and set ip register on trampoline */
 925	regs->flags &= ~X86_EFLAGS_IF;
 926	regs->ip = (unsigned long)p->ainsn.insn;
 
 
 
 
 927}
 928NOKPROBE_SYMBOL(setup_singlestep);
 929
 930/*
 931 * Called after single-stepping.  p->addr is the address of the
 932 * instruction whose first byte has been replaced by the "int3"
 933 * instruction.  To avoid the SMP problems that can occur when we
 934 * temporarily put back the original opcode to single-step, we
 935 * single-stepped a copy of the instruction.  The address of this
 936 * copy is p->ainsn.insn. We also doesn't use trap, but "int3" again
 937 * right after the copied instruction.
 938 * Different from the trap single-step, "int3" single-step can not
 939 * handle the instruction which changes the ip register, e.g. jmp,
 940 * call, conditional jmp, and the instructions which changes the IF
 941 * flags because interrupt must be disabled around the single-stepping.
 942 * Such instructions are software emulated, but others are single-stepped
 943 * using "int3".
 944 *
 945 * When the 2nd "int3" handled, the regs->ip and regs->flags needs to
 946 * be adjusted, so that we can resume execution on correct code.
 947 */
 948static void resume_singlestep(struct kprobe *p, struct pt_regs *regs,
 949			      struct kprobe_ctlblk *kcb)
 950{
 951	unsigned long copy_ip = (unsigned long)p->ainsn.insn;
 952	unsigned long orig_ip = (unsigned long)p->addr;
 953
 954	/* Restore saved interrupt flag and ip register */
 955	regs->flags |= kcb->kprobe_saved_flags;
 956	/* Note that regs->ip is executed int3 so must be a step back */
 957	regs->ip += (orig_ip - copy_ip) - INT3_INSN_SIZE;
 958}
 959NOKPROBE_SYMBOL(resume_singlestep);
 960
 961/*
 962 * We have reentered the kprobe_handler(), since another probe was hit while
 963 * within the handler. We save the original kprobes variables and just single
 964 * step on the instruction of the new probe without calling any user handlers.
 965 */
 966static int reenter_kprobe(struct kprobe *p, struct pt_regs *regs,
 967			  struct kprobe_ctlblk *kcb)
 968{
 969	switch (kcb->kprobe_status) {
 970	case KPROBE_HIT_SSDONE:
 971	case KPROBE_HIT_ACTIVE:
 972	case KPROBE_HIT_SS:
 973		kprobes_inc_nmissed_count(p);
 974		setup_singlestep(p, regs, kcb, 1);
 975		break;
 976	case KPROBE_REENTER:
 977		/* A probe has been hit in the codepath leading up to, or just
 978		 * after, single-stepping of a probed instruction. This entire
 979		 * codepath should strictly reside in .kprobes.text section.
 980		 * Raise a BUG or we'll continue in an endless reentering loop
 981		 * and eventually a stack overflow.
 982		 */
 983		pr_err("Unrecoverable kprobe detected.\n");
 984		dump_kprobe(p);
 985		BUG();
 986	default:
 987		/* impossible cases */
 988		WARN_ON(1);
 989		return 0;
 990	}
 991
 992	return 1;
 993}
 994NOKPROBE_SYMBOL(reenter_kprobe);
 995
 996static nokprobe_inline int kprobe_is_ss(struct kprobe_ctlblk *kcb)
 997{
 998	return (kcb->kprobe_status == KPROBE_HIT_SS ||
 999		kcb->kprobe_status == KPROBE_REENTER);
1000}
1001
1002/*
1003 * Interrupts are disabled on entry as trap3 is an interrupt gate and they
1004 * remain disabled throughout this function.
1005 */
1006int kprobe_int3_handler(struct pt_regs *regs)
1007{
1008	kprobe_opcode_t *addr;
1009	struct kprobe *p;
1010	struct kprobe_ctlblk *kcb;
1011
1012	if (user_mode(regs))
1013		return 0;
1014
1015	addr = (kprobe_opcode_t *)(regs->ip - sizeof(kprobe_opcode_t));
1016	/*
1017	 * We don't want to be preempted for the entire duration of kprobe
1018	 * processing. Since int3 and debug trap disables irqs and we clear
1019	 * IF while singlestepping, it must be no preemptible.
1020	 */
1021
1022	kcb = get_kprobe_ctlblk();
1023	p = get_kprobe(addr);
1024
1025	if (p) {
1026		if (kprobe_running()) {
1027			if (reenter_kprobe(p, regs, kcb))
1028				return 1;
1029		} else {
1030			set_current_kprobe(p, regs, kcb);
1031			kcb->kprobe_status = KPROBE_HIT_ACTIVE;
1032
1033			/*
1034			 * If we have no pre-handler or it returned 0, we
1035			 * continue with normal processing.  If we have a
1036			 * pre-handler and it returned non-zero, that means
1037			 * user handler setup registers to exit to another
1038			 * instruction, we must skip the single stepping.
1039			 */
1040			if (!p->pre_handler || !p->pre_handler(p, regs))
1041				setup_singlestep(p, regs, kcb, 0);
1042			else
1043				reset_current_kprobe();
1044			return 1;
1045		}
1046	} else if (kprobe_is_ss(kcb)) {
1047		p = kprobe_running();
1048		if ((unsigned long)p->ainsn.insn < regs->ip &&
1049		    (unsigned long)p->ainsn.insn + MAX_INSN_SIZE > regs->ip) {
1050			/* Most provably this is the second int3 for singlestep */
1051			resume_singlestep(p, regs, kcb);
1052			kprobe_post_process(p, regs, kcb);
1053			return 1;
1054		}
 
 
 
1055	} /* else: not a kprobe fault; let the kernel handle it */
1056
1057	return 0;
1058}
1059NOKPROBE_SYMBOL(kprobe_int3_handler);
1060
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1061int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
1062{
1063	struct kprobe *cur = kprobe_running();
1064	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1065
1066	if (unlikely(regs->ip == (unsigned long)cur->ainsn.insn)) {
1067		/* This must happen on single-stepping */
1068		WARN_ON(kcb->kprobe_status != KPROBE_HIT_SS &&
1069			kcb->kprobe_status != KPROBE_REENTER);
1070		/*
1071		 * We are here because the instruction being single
1072		 * stepped caused a page fault. We reset the current
1073		 * kprobe and the ip points back to the probe address
1074		 * and allow the page fault handler to continue as a
1075		 * normal page fault.
1076		 */
1077		regs->ip = (unsigned long)cur->addr;
 
 
 
 
 
 
1078
1079		/*
1080		 * If the IF flag was set before the kprobe hit,
1081		 * don't touch it:
1082		 */
1083		regs->flags |= kcb->kprobe_old_flags;
1084
1085		if (kcb->kprobe_status == KPROBE_REENTER)
1086			restore_previous_kprobe(kcb);
1087		else
1088			reset_current_kprobe();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1089	}
1090
1091	return 0;
1092}
1093NOKPROBE_SYMBOL(kprobe_fault_handler);
1094
1095int __init arch_populate_kprobe_blacklist(void)
1096{
1097	return kprobe_add_area_blacklist((unsigned long)__entry_text_start,
1098					 (unsigned long)__entry_text_end);
1099}
1100
1101int __init arch_init_kprobes(void)
1102{
1103	return 0;
1104}
1105
1106int arch_trampoline_kprobe(struct kprobe *p)
1107{
1108	return 0;
1109}
v5.9
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *  Kernel Probes (KProbes)
   4 *
   5 * Copyright (C) IBM Corporation, 2002, 2004
   6 *
   7 * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
   8 *		Probes initial implementation ( includes contributions from
   9 *		Rusty Russell).
  10 * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
  11 *		interface to access function arguments.
  12 * 2004-Oct	Jim Keniston <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
  13 *		<prasanna@in.ibm.com> adapted for x86_64 from i386.
  14 * 2005-Mar	Roland McGrath <roland@redhat.com>
  15 *		Fixed to handle %rip-relative addressing mode correctly.
  16 * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
  17 *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
  18 *		<prasanna@in.ibm.com> added function-return probes.
  19 * 2005-May	Rusty Lynch <rusty.lynch@intel.com>
  20 *		Added function return probes functionality
  21 * 2006-Feb	Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> added
  22 *		kprobe-booster and kretprobe-booster for i386.
  23 * 2007-Dec	Masami Hiramatsu <mhiramat@redhat.com> added kprobe-booster
  24 *		and kretprobe-booster for x86-64
  25 * 2007-Dec	Masami Hiramatsu <mhiramat@redhat.com>, Arjan van de Ven
  26 *		<arjan@infradead.org> and Jim Keniston <jkenisto@us.ibm.com>
  27 *		unified x86 kprobes code.
  28 */
  29#include <linux/kprobes.h>
  30#include <linux/ptrace.h>
  31#include <linux/string.h>
  32#include <linux/slab.h>
  33#include <linux/hardirq.h>
  34#include <linux/preempt.h>
  35#include <linux/sched/debug.h>
  36#include <linux/perf_event.h>
  37#include <linux/extable.h>
  38#include <linux/kdebug.h>
  39#include <linux/kallsyms.h>
 
  40#include <linux/ftrace.h>
  41#include <linux/frame.h>
  42#include <linux/kasan.h>
  43#include <linux/moduleloader.h>
  44#include <linux/vmalloc.h>
  45#include <linux/pgtable.h>
 
 
 
  46
  47#include <asm/text-patching.h>
  48#include <asm/cacheflush.h>
  49#include <asm/desc.h>
  50#include <linux/uaccess.h>
  51#include <asm/alternative.h>
  52#include <asm/insn.h>
  53#include <asm/debugreg.h>
  54#include <asm/set_memory.h>
  55
  56#include "common.h"
  57
  58DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
  59DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
  60
  61#define stack_addr(regs) ((unsigned long *)regs->sp)
  62
  63#define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
  64	(((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) |   \
  65	  (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) |   \
  66	  (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) |   \
  67	  (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf))    \
  68	 << (row % 32))
  69	/*
  70	 * Undefined/reserved opcodes, conditional jump, Opcode Extension
  71	 * Groups, and some special opcodes can not boost.
  72	 * This is non-const and volatile to keep gcc from statically
  73	 * optimizing it out, as variable_test_bit makes gcc think only
  74	 * *(unsigned long*) is used.
  75	 */
  76static volatile u32 twobyte_is_boostable[256 / 32] = {
  77	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f          */
  78	/*      ----------------------------------------------          */
  79	W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */
  80	W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) , /* 10 */
  81	W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */
  82	W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */
  83	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
  84	W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */
  85	W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */
  86	W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */
  87	W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */
  88	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
  89	W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */
  90	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */
  91	W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
  92	W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */
  93	W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */
  94	W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0)   /* f0 */
  95	/*      -----------------------------------------------         */
  96	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f          */
  97};
  98#undef W
  99
 100struct kretprobe_blackpoint kretprobe_blacklist[] = {
 101	{"__switch_to", }, /* This function switches only current task, but
 102			      doesn't switch kernel stack.*/
 103	{NULL, NULL}	/* Terminator */
 104};
 105
 106const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist);
 107
 108static nokprobe_inline void
 109__synthesize_relative_insn(void *dest, void *from, void *to, u8 op)
 110{
 111	struct __arch_relative_insn {
 112		u8 op;
 113		s32 raddr;
 114	} __packed *insn;
 115
 116	insn = (struct __arch_relative_insn *)dest;
 117	insn->raddr = (s32)((long)(to) - ((long)(from) + 5));
 118	insn->op = op;
 119}
 120
 121/* Insert a jump instruction at address 'from', which jumps to address 'to'.*/
 122void synthesize_reljump(void *dest, void *from, void *to)
 123{
 124	__synthesize_relative_insn(dest, from, to, JMP32_INSN_OPCODE);
 125}
 126NOKPROBE_SYMBOL(synthesize_reljump);
 127
 128/* Insert a call instruction at address 'from', which calls address 'to'.*/
 129void synthesize_relcall(void *dest, void *from, void *to)
 130{
 131	__synthesize_relative_insn(dest, from, to, CALL_INSN_OPCODE);
 132}
 133NOKPROBE_SYMBOL(synthesize_relcall);
 134
 135/*
 136 * Skip the prefixes of the instruction.
 137 */
 138static kprobe_opcode_t *skip_prefixes(kprobe_opcode_t *insn)
 139{
 140	insn_attr_t attr;
 141
 142	attr = inat_get_opcode_attribute((insn_byte_t)*insn);
 143	while (inat_is_legacy_prefix(attr)) {
 144		insn++;
 145		attr = inat_get_opcode_attribute((insn_byte_t)*insn);
 146	}
 147#ifdef CONFIG_X86_64
 148	if (inat_is_rex_prefix(attr))
 149		insn++;
 150#endif
 151	return insn;
 152}
 153NOKPROBE_SYMBOL(skip_prefixes);
 154
 155/*
 156 * Returns non-zero if INSN is boostable.
 157 * RIP relative instructions are adjusted at copying time in 64 bits mode
 158 */
 159int can_boost(struct insn *insn, void *addr)
 160{
 161	kprobe_opcode_t opcode;
 
 
 162
 163	if (search_exception_tables((unsigned long)addr))
 164		return 0;	/* Page fault may occur on this address. */
 165
 166	/* 2nd-byte opcode */
 167	if (insn->opcode.nbytes == 2)
 168		return test_bit(insn->opcode.bytes[1],
 169				(unsigned long *)twobyte_is_boostable);
 170
 171	if (insn->opcode.nbytes != 1)
 172		return 0;
 
 
 
 173
 174	/* Can't boost Address-size override prefix */
 175	if (unlikely(inat_is_address_size_prefix(insn->attr)))
 176		return 0;
 
 
 177
 178	opcode = insn->opcode.bytes[0];
 179
 180	switch (opcode & 0xf0) {
 181	case 0x60:
 182		/* can't boost "bound" */
 183		return (opcode != 0x62);
 184	case 0x70:
 185		return 0; /* can't boost conditional jump */
 186	case 0x90:
 187		return opcode != 0x9a;	/* can't boost call far */
 188	case 0xc0:
 189		/* can't boost software-interruptions */
 190		return (0xc1 < opcode && opcode < 0xcc) || opcode == 0xcf;
 191	case 0xd0:
 192		/* can boost AA* and XLAT */
 193		return (opcode == 0xd4 || opcode == 0xd5 || opcode == 0xd7);
 194	case 0xe0:
 195		/* can boost in/out and absolute jmps */
 196		return ((opcode & 0x04) || opcode == 0xea);
 197	case 0xf0:
 198		/* clear and set flags are boostable */
 199		return (opcode == 0xf5 || (0xf7 < opcode && opcode < 0xfe));
 
 
 
 
 
 
 
 
 
 
 
 200	default:
 201		/* CS override prefix and call are not boostable */
 202		return (opcode != 0x2e && opcode != 0x9a);
 203	}
 204}
 205
 206static unsigned long
 207__recover_probed_insn(kprobe_opcode_t *buf, unsigned long addr)
 208{
 209	struct kprobe *kp;
 210	unsigned long faddr;
 211
 212	kp = get_kprobe((void *)addr);
 213	faddr = ftrace_location(addr);
 214	/*
 215	 * Addresses inside the ftrace location are refused by
 216	 * arch_check_ftrace_location(). Something went terribly wrong
 217	 * if such an address is checked here.
 218	 */
 219	if (WARN_ON(faddr && faddr != addr))
 220		return 0UL;
 221	/*
 222	 * Use the current code if it is not modified by Kprobe
 223	 * and it cannot be modified by ftrace.
 224	 */
 225	if (!kp && !faddr)
 226		return addr;
 227
 228	/*
 229	 * Basically, kp->ainsn.insn has an original instruction.
 230	 * However, RIP-relative instruction can not do single-stepping
 231	 * at different place, __copy_instruction() tweaks the displacement of
 232	 * that instruction. In that case, we can't recover the instruction
 233	 * from the kp->ainsn.insn.
 234	 *
 235	 * On the other hand, in case on normal Kprobe, kp->opcode has a copy
 236	 * of the first byte of the probed instruction, which is overwritten
 237	 * by int3. And the instruction at kp->addr is not modified by kprobes
 238	 * except for the first byte, we can recover the original instruction
 239	 * from it and kp->opcode.
 240	 *
 241	 * In case of Kprobes using ftrace, we do not have a copy of
 242	 * the original instruction. In fact, the ftrace location might
 243	 * be modified at anytime and even could be in an inconsistent state.
 244	 * Fortunately, we know that the original code is the ideal 5-byte
 245	 * long NOP.
 246	 */
 247	if (copy_from_kernel_nofault(buf, (void *)addr,
 248		MAX_INSN_SIZE * sizeof(kprobe_opcode_t)))
 249		return 0UL;
 250
 251	if (faddr)
 252		memcpy(buf, ideal_nops[NOP_ATOMIC5], 5);
 253	else
 254		buf[0] = kp->opcode;
 255	return (unsigned long)buf;
 256}
 257
 258/*
 259 * Recover the probed instruction at addr for further analysis.
 260 * Caller must lock kprobes by kprobe_mutex, or disable preemption
 261 * for preventing to release referencing kprobes.
 262 * Returns zero if the instruction can not get recovered (or access failed).
 263 */
 264unsigned long recover_probed_instruction(kprobe_opcode_t *buf, unsigned long addr)
 265{
 266	unsigned long __addr;
 267
 268	__addr = __recover_optprobed_insn(buf, addr);
 269	if (__addr != addr)
 270		return __addr;
 271
 272	return __recover_probed_insn(buf, addr);
 273}
 274
 275/* Check if paddr is at an instruction boundary */
 276static int can_probe(unsigned long paddr)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 277{
 278	unsigned long addr, __addr, offset = 0;
 279	struct insn insn;
 280	kprobe_opcode_t buf[MAX_INSN_SIZE];
 281
 282	if (!kallsyms_lookup_size_offset(paddr, NULL, &offset))
 283		return 0;
 284
 285	/* Decode instructions */
 286	addr = paddr - offset;
 287	while (addr < paddr) {
 288		/*
 289		 * Check if the instruction has been modified by another
 290		 * kprobe, in which case we replace the breakpoint by the
 291		 * original instruction in our buffer.
 292		 * Also, jump optimization will change the breakpoint to
 293		 * relative-jump. Since the relative-jump itself is
 294		 * normally used, we just go through if there is no kprobe.
 295		 */
 296		__addr = recover_probed_instruction(buf, addr);
 297		if (!__addr)
 298			return 0;
 299		kernel_insn_init(&insn, (void *)__addr, MAX_INSN_SIZE);
 300		insn_get_length(&insn);
 
 301
 
 302		/*
 303		 * Another debugging subsystem might insert this breakpoint.
 304		 * In that case, we can't recover it.
 305		 */
 306		if (insn.opcode.bytes[0] == INT3_INSN_OPCODE)
 307			return 0;
 
 
 308		addr += insn.length;
 309	}
 310
 311	return (addr == paddr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 312}
 313
 314/*
 315 * Returns non-zero if opcode modifies the interrupt flag.
 316 */
 317static int is_IF_modifier(kprobe_opcode_t *insn)
 318{
 319	/* Skip prefixes */
 320	insn = skip_prefixes(insn);
 
 
 
 
 
 
 
 
 
 
 
 321
 322	switch (*insn) {
 323	case 0xfa:		/* cli */
 324	case 0xfb:		/* sti */
 325	case 0xcf:		/* iret/iretd */
 326	case 0x9d:		/* popf/popfd */
 327		return 1;
 328	}
 329
 330	return 0;
 331}
 332
 333/*
 334 * Copy an instruction with recovering modified instruction by kprobes
 335 * and adjust the displacement if the instruction uses the %rip-relative
 336 * addressing mode. Note that since @real will be the final place of copied
 337 * instruction, displacement must be adjust by @real, not @dest.
 338 * This returns the length of copied instruction, or 0 if it has an error.
 339 */
 340int __copy_instruction(u8 *dest, u8 *src, u8 *real, struct insn *insn)
 341{
 342	kprobe_opcode_t buf[MAX_INSN_SIZE];
 343	unsigned long recovered_insn =
 344		recover_probed_instruction(buf, (unsigned long)src);
 345
 346	if (!recovered_insn || !insn)
 347		return 0;
 348
 349	/* This can access kernel text if given address is not recovered */
 350	if (copy_from_kernel_nofault(dest, (void *)recovered_insn,
 351			MAX_INSN_SIZE))
 352		return 0;
 353
 354	kernel_insn_init(insn, dest, MAX_INSN_SIZE);
 355	insn_get_length(insn);
 
 356
 357	/* We can not probe force emulate prefixed instruction */
 358	if (insn_has_emulate_prefix(insn))
 359		return 0;
 360
 361	/* Another subsystem puts a breakpoint, failed to recover */
 362	if (insn->opcode.bytes[0] == INT3_INSN_OPCODE)
 363		return 0;
 364
 365	/* We should not singlestep on the exception masking instructions */
 366	if (insn_masking_exception(insn))
 367		return 0;
 368
 369#ifdef CONFIG_X86_64
 370	/* Only x86_64 has RIP relative instructions */
 371	if (insn_rip_relative(insn)) {
 372		s64 newdisp;
 373		u8 *disp;
 374		/*
 375		 * The copied instruction uses the %rip-relative addressing
 376		 * mode.  Adjust the displacement for the difference between
 377		 * the original location of this instruction and the location
 378		 * of the copy that will actually be run.  The tricky bit here
 379		 * is making sure that the sign extension happens correctly in
 380		 * this calculation, since we need a signed 32-bit result to
 381		 * be sign-extended to 64 bits when it's added to the %rip
 382		 * value and yield the same 64-bit result that the sign-
 383		 * extension of the original signed 32-bit displacement would
 384		 * have given.
 385		 */
 386		newdisp = (u8 *) src + (s64) insn->displacement.value
 387			  - (u8 *) real;
 388		if ((s64) (s32) newdisp != newdisp) {
 389			pr_err("Kprobes error: new displacement does not fit into s32 (%llx)\n", newdisp);
 390			return 0;
 391		}
 392		disp = (u8 *) dest + insn_offset_displacement(insn);
 393		*(s32 *) disp = (s32) newdisp;
 394	}
 395#endif
 396	return insn->length;
 397}
 398
 399/* Prepare reljump right after instruction to boost */
 400static int prepare_boost(kprobe_opcode_t *buf, struct kprobe *p,
 401			  struct insn *insn)
 402{
 403	int len = insn->length;
 404
 405	if (can_boost(insn, p->addr) &&
 
 406	    MAX_INSN_SIZE - len >= JMP32_INSN_SIZE) {
 407		/*
 408		 * These instructions can be executed directly if it
 409		 * jumps back to correct address.
 410		 */
 411		synthesize_reljump(buf + len, p->ainsn.insn + len,
 412				   p->addr + insn->length);
 413		len += JMP32_INSN_SIZE;
 414		p->ainsn.boostable = true;
 415	} else {
 416		p->ainsn.boostable = false;
 
 
 
 
 
 417	}
 418
 419	return len;
 420}
 421
 422/* Make page to RO mode when allocate it */
 423void *alloc_insn_page(void)
 424{
 425	void *page;
 426
 427	page = module_alloc(PAGE_SIZE);
 428	if (!page)
 429		return NULL;
 430
 431	set_vm_flush_reset_perms(page);
 432	/*
 433	 * First make the page read-only, and only then make it executable to
 434	 * prevent it from being W+X in between.
 435	 */
 436	set_memory_ro((unsigned long)page, 1);
 437
 438	/*
 439	 * TODO: Once additional kernel code protection mechanisms are set, ensure
 440	 * that the page was not maliciously altered and it is still zeroed.
 441	 */
 442	set_memory_x((unsigned long)page, 1);
 443
 444	return page;
 445}
 446
 447/* Recover page to RW mode before releasing it */
 448void free_insn_page(void *page)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 449{
 450	module_memfree(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 451}
 452
 453static int arch_copy_kprobe(struct kprobe *p)
 454{
 455	struct insn insn;
 456	kprobe_opcode_t buf[MAX_INSN_SIZE];
 457	int len;
 458
 459	/* Copy an instruction with recovering if other optprobe modifies it.*/
 460	len = __copy_instruction(buf, p->addr, p->ainsn.insn, &insn);
 461	if (!len)
 462		return -EINVAL;
 463
 464	/*
 465	 * __copy_instruction can modify the displacement of the instruction,
 466	 * but it doesn't affect boostable check.
 467	 */
 468	len = prepare_boost(buf, p, &insn);
 469
 470	/* Check whether the instruction modifies Interrupt Flag or not */
 471	p->ainsn.if_modifier = is_IF_modifier(buf);
 
 472
 473	/* Also, displacement change doesn't affect the first byte */
 474	p->opcode = buf[0];
 475
 476	p->ainsn.tp_len = len;
 477	perf_event_text_poke(p->ainsn.insn, NULL, 0, buf, len);
 478
 479	/* OK, write back the instruction(s) into ROX insn buffer */
 480	text_poke(p->ainsn.insn, buf, len);
 481
 482	return 0;
 483}
 484
 485int arch_prepare_kprobe(struct kprobe *p)
 486{
 487	int ret;
 488
 489	if (alternatives_text_reserved(p->addr, p->addr))
 490		return -EINVAL;
 491
 492	if (!can_probe((unsigned long)p->addr))
 493		return -EILSEQ;
 
 
 
 494	/* insn: must be on special executable page on x86. */
 495	p->ainsn.insn = get_insn_slot();
 496	if (!p->ainsn.insn)
 497		return -ENOMEM;
 498
 499	ret = arch_copy_kprobe(p);
 500	if (ret) {
 501		free_insn_slot(p->ainsn.insn, 0);
 502		p->ainsn.insn = NULL;
 503	}
 504
 505	return ret;
 506}
 507
 508void arch_arm_kprobe(struct kprobe *p)
 509{
 510	u8 int3 = INT3_INSN_OPCODE;
 511
 512	text_poke(p->addr, &int3, 1);
 513	text_poke_sync();
 514	perf_event_text_poke(p->addr, &p->opcode, 1, &int3, 1);
 515}
 516
 517void arch_disarm_kprobe(struct kprobe *p)
 518{
 519	u8 int3 = INT3_INSN_OPCODE;
 520
 521	perf_event_text_poke(p->addr, &int3, 1, &p->opcode, 1);
 522	text_poke(p->addr, &p->opcode, 1);
 523	text_poke_sync();
 524}
 525
 526void arch_remove_kprobe(struct kprobe *p)
 527{
 528	if (p->ainsn.insn) {
 529		/* Record the perf event before freeing the slot */
 530		perf_event_text_poke(p->ainsn.insn, p->ainsn.insn,
 531				     p->ainsn.tp_len, NULL, 0);
 532		free_insn_slot(p->ainsn.insn, p->ainsn.boostable);
 533		p->ainsn.insn = NULL;
 534	}
 535}
 536
 537static nokprobe_inline void
 538save_previous_kprobe(struct kprobe_ctlblk *kcb)
 539{
 540	kcb->prev_kprobe.kp = kprobe_running();
 541	kcb->prev_kprobe.status = kcb->kprobe_status;
 542	kcb->prev_kprobe.old_flags = kcb->kprobe_old_flags;
 543	kcb->prev_kprobe.saved_flags = kcb->kprobe_saved_flags;
 544}
 545
 546static nokprobe_inline void
 547restore_previous_kprobe(struct kprobe_ctlblk *kcb)
 548{
 549	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
 550	kcb->kprobe_status = kcb->prev_kprobe.status;
 551	kcb->kprobe_old_flags = kcb->prev_kprobe.old_flags;
 552	kcb->kprobe_saved_flags = kcb->prev_kprobe.saved_flags;
 553}
 554
 555static nokprobe_inline void
 556set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
 557		   struct kprobe_ctlblk *kcb)
 558{
 559	__this_cpu_write(current_kprobe, p);
 560	kcb->kprobe_saved_flags = kcb->kprobe_old_flags
 561		= (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF));
 562	if (p->ainsn.if_modifier)
 563		kcb->kprobe_saved_flags &= ~X86_EFLAGS_IF;
 564}
 565
 566static nokprobe_inline void clear_btf(void)
 
 567{
 568	if (test_thread_flag(TIF_BLOCKSTEP)) {
 569		unsigned long debugctl = get_debugctlmsr();
 570
 571		debugctl &= ~DEBUGCTLMSR_BTF;
 572		update_debugctlmsr(debugctl);
 573	}
 574}
 575
 576static nokprobe_inline void restore_btf(void)
 577{
 578	if (test_thread_flag(TIF_BLOCKSTEP)) {
 579		unsigned long debugctl = get_debugctlmsr();
 580
 581		debugctl |= DEBUGCTLMSR_BTF;
 582		update_debugctlmsr(debugctl);
 583	}
 584}
 585
 586void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
 587{
 588	unsigned long *sara = stack_addr(regs);
 589
 590	ri->ret_addr = (kprobe_opcode_t *) *sara;
 591	ri->fp = sara;
 592
 593	/* Replace the return addr with trampoline addr */
 594	*sara = (unsigned long) &kretprobe_trampoline;
 595}
 596NOKPROBE_SYMBOL(arch_prepare_kretprobe);
 597
 598static void setup_singlestep(struct kprobe *p, struct pt_regs *regs,
 599			     struct kprobe_ctlblk *kcb, int reenter)
 600{
 601	if (setup_detour_execution(p, regs, reenter))
 602		return;
 603
 604#if !defined(CONFIG_PREEMPTION)
 605	if (p->ainsn.boostable && !p->post_handler) {
 606		/* Boost up -- we can execute copied instructions directly */
 607		if (!reenter)
 608			reset_current_kprobe();
 609		/*
 610		 * Reentering boosted probe doesn't reset current_kprobe,
 611		 * nor set current_kprobe, because it doesn't use single
 612		 * stepping.
 613		 */
 614		regs->ip = (unsigned long)p->ainsn.insn;
 615		return;
 616	}
 617#endif
 618	if (reenter) {
 619		save_previous_kprobe(kcb);
 620		set_current_kprobe(p, regs, kcb);
 621		kcb->kprobe_status = KPROBE_REENTER;
 622	} else
 623		kcb->kprobe_status = KPROBE_HIT_SS;
 624	/* Prepare real single stepping */
 625	clear_btf();
 626	regs->flags |= X86_EFLAGS_TF;
 
 
 
 
 
 627	regs->flags &= ~X86_EFLAGS_IF;
 628	/* single step inline if the instruction is an int3 */
 629	if (p->opcode == INT3_INSN_OPCODE)
 630		regs->ip = (unsigned long)p->addr;
 631	else
 632		regs->ip = (unsigned long)p->ainsn.insn;
 633}
 634NOKPROBE_SYMBOL(setup_singlestep);
 635
 636/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 637 * We have reentered the kprobe_handler(), since another probe was hit while
 638 * within the handler. We save the original kprobes variables and just single
 639 * step on the instruction of the new probe without calling any user handlers.
 640 */
 641static int reenter_kprobe(struct kprobe *p, struct pt_regs *regs,
 642			  struct kprobe_ctlblk *kcb)
 643{
 644	switch (kcb->kprobe_status) {
 645	case KPROBE_HIT_SSDONE:
 646	case KPROBE_HIT_ACTIVE:
 647	case KPROBE_HIT_SS:
 648		kprobes_inc_nmissed_count(p);
 649		setup_singlestep(p, regs, kcb, 1);
 650		break;
 651	case KPROBE_REENTER:
 652		/* A probe has been hit in the codepath leading up to, or just
 653		 * after, single-stepping of a probed instruction. This entire
 654		 * codepath should strictly reside in .kprobes.text section.
 655		 * Raise a BUG or we'll continue in an endless reentering loop
 656		 * and eventually a stack overflow.
 657		 */
 658		pr_err("Unrecoverable kprobe detected.\n");
 659		dump_kprobe(p);
 660		BUG();
 661	default:
 662		/* impossible cases */
 663		WARN_ON(1);
 664		return 0;
 665	}
 666
 667	return 1;
 668}
 669NOKPROBE_SYMBOL(reenter_kprobe);
 670
 
 
 
 
 
 
 671/*
 672 * Interrupts are disabled on entry as trap3 is an interrupt gate and they
 673 * remain disabled throughout this function.
 674 */
 675int kprobe_int3_handler(struct pt_regs *regs)
 676{
 677	kprobe_opcode_t *addr;
 678	struct kprobe *p;
 679	struct kprobe_ctlblk *kcb;
 680
 681	if (user_mode(regs))
 682		return 0;
 683
 684	addr = (kprobe_opcode_t *)(regs->ip - sizeof(kprobe_opcode_t));
 685	/*
 686	 * We don't want to be preempted for the entire duration of kprobe
 687	 * processing. Since int3 and debug trap disables irqs and we clear
 688	 * IF while singlestepping, it must be no preemptible.
 689	 */
 690
 691	kcb = get_kprobe_ctlblk();
 692	p = get_kprobe(addr);
 693
 694	if (p) {
 695		if (kprobe_running()) {
 696			if (reenter_kprobe(p, regs, kcb))
 697				return 1;
 698		} else {
 699			set_current_kprobe(p, regs, kcb);
 700			kcb->kprobe_status = KPROBE_HIT_ACTIVE;
 701
 702			/*
 703			 * If we have no pre-handler or it returned 0, we
 704			 * continue with normal processing.  If we have a
 705			 * pre-handler and it returned non-zero, that means
 706			 * user handler setup registers to exit to another
 707			 * instruction, we must skip the single stepping.
 708			 */
 709			if (!p->pre_handler || !p->pre_handler(p, regs))
 710				setup_singlestep(p, regs, kcb, 0);
 711			else
 712				reset_current_kprobe();
 713			return 1;
 714		}
 715	} else if (*addr != INT3_INSN_OPCODE) {
 716		/*
 717		 * The breakpoint instruction was removed right
 718		 * after we hit it.  Another cpu has removed
 719		 * either a probepoint or a debugger breakpoint
 720		 * at this address.  In either case, no further
 721		 * handling of this interrupt is appropriate.
 722		 * Back up over the (now missing) int3 and run
 723		 * the original instruction.
 724		 */
 725		regs->ip = (unsigned long)addr;
 726		return 1;
 727	} /* else: not a kprobe fault; let the kernel handle it */
 728
 729	return 0;
 730}
 731NOKPROBE_SYMBOL(kprobe_int3_handler);
 732
 733/*
 734 * When a retprobed function returns, this code saves registers and
 735 * calls trampoline_handler() runs, which calls the kretprobe's handler.
 736 */
 737asm(
 738	".text\n"
 739	".global kretprobe_trampoline\n"
 740	".type kretprobe_trampoline, @function\n"
 741	"kretprobe_trampoline:\n"
 742	/* We don't bother saving the ss register */
 743#ifdef CONFIG_X86_64
 744	"	pushq %rsp\n"
 745	"	pushfq\n"
 746	SAVE_REGS_STRING
 747	"	movq %rsp, %rdi\n"
 748	"	call trampoline_handler\n"
 749	/* Replace saved sp with true return address. */
 750	"	movq %rax, 19*8(%rsp)\n"
 751	RESTORE_REGS_STRING
 752	"	popfq\n"
 753#else
 754	"	pushl %esp\n"
 755	"	pushfl\n"
 756	SAVE_REGS_STRING
 757	"	movl %esp, %eax\n"
 758	"	call trampoline_handler\n"
 759	/* Replace saved sp with true return address. */
 760	"	movl %eax, 15*4(%esp)\n"
 761	RESTORE_REGS_STRING
 762	"	popfl\n"
 763#endif
 764	"	ret\n"
 765	".size kretprobe_trampoline, .-kretprobe_trampoline\n"
 766);
 767NOKPROBE_SYMBOL(kretprobe_trampoline);
 768STACK_FRAME_NON_STANDARD(kretprobe_trampoline);
 769
 770/*
 771 * Called from kretprobe_trampoline
 772 */
 773__used __visible void *trampoline_handler(struct pt_regs *regs)
 774{
 775	struct kretprobe_instance *ri = NULL;
 776	struct hlist_head *head, empty_rp;
 777	struct hlist_node *tmp;
 778	unsigned long flags, orig_ret_address = 0;
 779	unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
 780	kprobe_opcode_t *correct_ret_addr = NULL;
 781	void *frame_pointer;
 782	bool skipped = false;
 783
 784	/*
 785	 * Set a dummy kprobe for avoiding kretprobe recursion.
 786	 * Since kretprobe never run in kprobe handler, kprobe must not
 787	 * be running at this point.
 788	 */
 789	kprobe_busy_begin();
 790
 791	INIT_HLIST_HEAD(&empty_rp);
 792	kretprobe_hash_lock(current, &head, &flags);
 793	/* fixup registers */
 794	regs->cs = __KERNEL_CS;
 795#ifdef CONFIG_X86_32
 796	regs->cs |= get_kernel_rpl();
 797	regs->gs = 0;
 798#endif
 799	/* We use pt_regs->sp for return address holder. */
 800	frame_pointer = &regs->sp;
 801	regs->ip = trampoline_address;
 802	regs->orig_ax = ~0UL;
 803
 804	/*
 805	 * It is possible to have multiple instances associated with a given
 806	 * task either because multiple functions in the call path have
 807	 * return probes installed on them, and/or more than one
 808	 * return probe was registered for a target function.
 809	 *
 810	 * We can handle this because:
 811	 *     - instances are always pushed into the head of the list
 812	 *     - when multiple return probes are registered for the same
 813	 *	 function, the (chronologically) first instance's ret_addr
 814	 *	 will be the real return address, and all the rest will
 815	 *	 point to kretprobe_trampoline.
 816	 */
 817	hlist_for_each_entry(ri, head, hlist) {
 818		if (ri->task != current)
 819			/* another task is sharing our hash bucket */
 820			continue;
 821		/*
 822		 * Return probes must be pushed on this hash list correct
 823		 * order (same as return order) so that it can be popped
 824		 * correctly. However, if we find it is pushed it incorrect
 825		 * order, this means we find a function which should not be
 826		 * probed, because the wrong order entry is pushed on the
 827		 * path of processing other kretprobe itself.
 828		 */
 829		if (ri->fp != frame_pointer) {
 830			if (!skipped)
 831				pr_warn("kretprobe is stacked incorrectly. Trying to fixup.\n");
 832			skipped = true;
 833			continue;
 834		}
 835
 836		orig_ret_address = (unsigned long)ri->ret_addr;
 837		if (skipped)
 838			pr_warn("%ps must be blacklisted because of incorrect kretprobe order\n",
 839				ri->rp->kp.addr);
 840
 841		if (orig_ret_address != trampoline_address)
 842			/*
 843			 * This is the real return address. Any other
 844			 * instances associated with this task are for
 845			 * other calls deeper on the call stack
 846			 */
 847			break;
 848	}
 849
 850	kretprobe_assert(ri, orig_ret_address, trampoline_address);
 851
 852	correct_ret_addr = ri->ret_addr;
 853	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
 854		if (ri->task != current)
 855			/* another task is sharing our hash bucket */
 856			continue;
 857		if (ri->fp != frame_pointer)
 858			continue;
 859
 860		orig_ret_address = (unsigned long)ri->ret_addr;
 861		if (ri->rp && ri->rp->handler) {
 862			__this_cpu_write(current_kprobe, &ri->rp->kp);
 863			ri->ret_addr = correct_ret_addr;
 864			ri->rp->handler(ri, regs);
 865			__this_cpu_write(current_kprobe, &kprobe_busy);
 866		}
 867
 868		recycle_rp_inst(ri, &empty_rp);
 869
 870		if (orig_ret_address != trampoline_address)
 871			/*
 872			 * This is the real return address. Any other
 873			 * instances associated with this task are for
 874			 * other calls deeper on the call stack
 875			 */
 876			break;
 877	}
 878
 879	kretprobe_hash_unlock(current, &flags);
 880
 881	kprobe_busy_end();
 882
 883	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
 884		hlist_del(&ri->hlist);
 885		kfree(ri);
 886	}
 887	return (void *)orig_ret_address;
 888}
 889NOKPROBE_SYMBOL(trampoline_handler);
 890
 891/*
 892 * Called after single-stepping.  p->addr is the address of the
 893 * instruction whose first byte has been replaced by the "int 3"
 894 * instruction.  To avoid the SMP problems that can occur when we
 895 * temporarily put back the original opcode to single-step, we
 896 * single-stepped a copy of the instruction.  The address of this
 897 * copy is p->ainsn.insn.
 898 *
 899 * This function prepares to return from the post-single-step
 900 * interrupt.  We have to fix up the stack as follows:
 901 *
 902 * 0) Except in the case of absolute or indirect jump or call instructions,
 903 * the new ip is relative to the copied instruction.  We need to make
 904 * it relative to the original instruction.
 905 *
 906 * 1) If the single-stepped instruction was pushfl, then the TF and IF
 907 * flags are set in the just-pushed flags, and may need to be cleared.
 908 *
 909 * 2) If the single-stepped instruction was a call, the return address
 910 * that is atop the stack is the address following the copied instruction.
 911 * We need to make it the address following the original instruction.
 912 *
 913 * If this is the first time we've single-stepped the instruction at
 914 * this probepoint, and the instruction is boostable, boost it: add a
 915 * jump instruction after the copied instruction, that jumps to the next
 916 * instruction after the probepoint.
 917 */
 918static void resume_execution(struct kprobe *p, struct pt_regs *regs,
 919			     struct kprobe_ctlblk *kcb)
 920{
 921	unsigned long *tos = stack_addr(regs);
 922	unsigned long copy_ip = (unsigned long)p->ainsn.insn;
 923	unsigned long orig_ip = (unsigned long)p->addr;
 924	kprobe_opcode_t *insn = p->ainsn.insn;
 925
 926	/* Skip prefixes */
 927	insn = skip_prefixes(insn);
 928
 929	regs->flags &= ~X86_EFLAGS_TF;
 930	switch (*insn) {
 931	case 0x9c:	/* pushfl */
 932		*tos &= ~(X86_EFLAGS_TF | X86_EFLAGS_IF);
 933		*tos |= kcb->kprobe_old_flags;
 934		break;
 935	case 0xc2:	/* iret/ret/lret */
 936	case 0xc3:
 937	case 0xca:
 938	case 0xcb:
 939	case 0xcf:
 940	case 0xea:	/* jmp absolute -- ip is correct */
 941		/* ip is already adjusted, no more changes required */
 942		p->ainsn.boostable = true;
 943		goto no_change;
 944	case 0xe8:	/* call relative - Fix return addr */
 945		*tos = orig_ip + (*tos - copy_ip);
 946		break;
 947#ifdef CONFIG_X86_32
 948	case 0x9a:	/* call absolute -- same as call absolute, indirect */
 949		*tos = orig_ip + (*tos - copy_ip);
 950		goto no_change;
 951#endif
 952	case 0xff:
 953		if ((insn[1] & 0x30) == 0x10) {
 954			/*
 955			 * call absolute, indirect
 956			 * Fix return addr; ip is correct.
 957			 * But this is not boostable
 958			 */
 959			*tos = orig_ip + (*tos - copy_ip);
 960			goto no_change;
 961		} else if (((insn[1] & 0x31) == 0x20) ||
 962			   ((insn[1] & 0x31) == 0x21)) {
 963			/*
 964			 * jmp near and far, absolute indirect
 965			 * ip is correct. And this is boostable
 966			 */
 967			p->ainsn.boostable = true;
 968			goto no_change;
 969		}
 970	default:
 971		break;
 972	}
 973
 974	regs->ip += orig_ip - copy_ip;
 975
 976no_change:
 977	restore_btf();
 978}
 979NOKPROBE_SYMBOL(resume_execution);
 980
 981/*
 982 * Interrupts are disabled on entry as trap1 is an interrupt gate and they
 983 * remain disabled throughout this function.
 984 */
 985int kprobe_debug_handler(struct pt_regs *regs)
 986{
 987	struct kprobe *cur = kprobe_running();
 988	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 989
 990	if (!cur)
 991		return 0;
 992
 993	resume_execution(cur, regs, kcb);
 994	regs->flags |= kcb->kprobe_saved_flags;
 995
 996	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
 997		kcb->kprobe_status = KPROBE_HIT_SSDONE;
 998		cur->post_handler(cur, regs, 0);
 999	}
1000
1001	/* Restore back the original saved kprobes variables and continue. */
1002	if (kcb->kprobe_status == KPROBE_REENTER) {
1003		restore_previous_kprobe(kcb);
1004		goto out;
1005	}
1006	reset_current_kprobe();
1007out:
1008	/*
1009	 * if somebody else is singlestepping across a probe point, flags
1010	 * will have TF set, in which case, continue the remaining processing
1011	 * of do_debug, as if this is not a probe hit.
1012	 */
1013	if (regs->flags & X86_EFLAGS_TF)
1014		return 0;
1015
1016	return 1;
1017}
1018NOKPROBE_SYMBOL(kprobe_debug_handler);
1019
1020int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
1021{
1022	struct kprobe *cur = kprobe_running();
1023	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
1024
1025	if (unlikely(regs->ip == (unsigned long)cur->ainsn.insn)) {
1026		/* This must happen on single-stepping */
1027		WARN_ON(kcb->kprobe_status != KPROBE_HIT_SS &&
1028			kcb->kprobe_status != KPROBE_REENTER);
1029		/*
1030		 * We are here because the instruction being single
1031		 * stepped caused a page fault. We reset the current
1032		 * kprobe and the ip points back to the probe address
1033		 * and allow the page fault handler to continue as a
1034		 * normal page fault.
1035		 */
1036		regs->ip = (unsigned long)cur->addr;
1037		/*
1038		 * Trap flag (TF) has been set here because this fault
1039		 * happened where the single stepping will be done.
1040		 * So clear it by resetting the current kprobe:
1041		 */
1042		regs->flags &= ~X86_EFLAGS_TF;
1043
1044		/*
1045		 * If the TF flag was set before the kprobe hit,
1046		 * don't touch it:
1047		 */
1048		regs->flags |= kcb->kprobe_old_flags;
1049
1050		if (kcb->kprobe_status == KPROBE_REENTER)
1051			restore_previous_kprobe(kcb);
1052		else
1053			reset_current_kprobe();
1054	} else if (kcb->kprobe_status == KPROBE_HIT_ACTIVE ||
1055		   kcb->kprobe_status == KPROBE_HIT_SSDONE) {
1056		/*
1057		 * We increment the nmissed count for accounting,
1058		 * we can also use npre/npostfault count for accounting
1059		 * these specific fault cases.
1060		 */
1061		kprobes_inc_nmissed_count(cur);
1062
1063		/*
1064		 * We come here because instructions in the pre/post
1065		 * handler caused the page_fault, this could happen
1066		 * if handler tries to access user space by
1067		 * copy_from_user(), get_user() etc. Let the
1068		 * user-specified handler try to fix it first.
1069		 */
1070		if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
1071			return 1;
1072	}
1073
1074	return 0;
1075}
1076NOKPROBE_SYMBOL(kprobe_fault_handler);
1077
1078int __init arch_populate_kprobe_blacklist(void)
1079{
1080	return kprobe_add_area_blacklist((unsigned long)__entry_text_start,
1081					 (unsigned long)__entry_text_end);
1082}
1083
1084int __init arch_init_kprobes(void)
1085{
1086	return 0;
1087}
1088
1089int arch_trampoline_kprobe(struct kprobe *p)
1090{
1091	return 0;
1092}