Loading...
1// SPDX-License-Identifier: GPL-2.0
2#include <errno.h>
3#include <inttypes.h>
4#include "string2.h"
5#include <sys/param.h>
6#include <sys/types.h>
7#include <byteswap.h>
8#include <unistd.h>
9#include <regex.h>
10#include <stdio.h>
11#include <stdlib.h>
12#include <linux/compiler.h>
13#include <linux/list.h>
14#include <linux/kernel.h>
15#include <linux/bitops.h>
16#include <linux/string.h>
17#include <linux/stringify.h>
18#include <linux/zalloc.h>
19#include <sys/stat.h>
20#include <sys/utsname.h>
21#include <linux/time64.h>
22#include <dirent.h>
23#ifdef HAVE_LIBBPF_SUPPORT
24#include <bpf/libbpf.h>
25#endif
26#include <perf/cpumap.h>
27#include <tools/libc_compat.h> // reallocarray
28
29#include "dso.h"
30#include "evlist.h"
31#include "evsel.h"
32#include "util/evsel_fprintf.h"
33#include "header.h"
34#include "memswap.h"
35#include "trace-event.h"
36#include "session.h"
37#include "symbol.h"
38#include "debug.h"
39#include "cpumap.h"
40#include "pmu.h"
41#include "pmus.h"
42#include "vdso.h"
43#include "strbuf.h"
44#include "build-id.h"
45#include "data.h"
46#include <api/fs/fs.h>
47#include "asm/bug.h"
48#include "tool.h"
49#include "time-utils.h"
50#include "units.h"
51#include "util/util.h" // perf_exe()
52#include "cputopo.h"
53#include "bpf-event.h"
54#include "bpf-utils.h"
55#include "clockid.h"
56
57#include <linux/ctype.h>
58#include <internal/lib.h>
59
60#ifdef HAVE_LIBTRACEEVENT
61#include <event-parse.h>
62#endif
63
64/*
65 * magic2 = "PERFILE2"
66 * must be a numerical value to let the endianness
67 * determine the memory layout. That way we are able
68 * to detect endianness when reading the perf.data file
69 * back.
70 *
71 * we check for legacy (PERFFILE) format.
72 */
73static const char *__perf_magic1 = "PERFFILE";
74static const u64 __perf_magic2 = 0x32454c4946524550ULL;
75static const u64 __perf_magic2_sw = 0x50455246494c4532ULL;
76
77#define PERF_MAGIC __perf_magic2
78
79const char perf_version_string[] = PERF_VERSION;
80
81struct perf_file_attr {
82 struct perf_event_attr attr;
83 struct perf_file_section ids;
84};
85
86void perf_header__set_feat(struct perf_header *header, int feat)
87{
88 __set_bit(feat, header->adds_features);
89}
90
91void perf_header__clear_feat(struct perf_header *header, int feat)
92{
93 __clear_bit(feat, header->adds_features);
94}
95
96bool perf_header__has_feat(const struct perf_header *header, int feat)
97{
98 return test_bit(feat, header->adds_features);
99}
100
101static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size)
102{
103 ssize_t ret = writen(ff->fd, buf, size);
104
105 if (ret != (ssize_t)size)
106 return ret < 0 ? (int)ret : -1;
107 return 0;
108}
109
110static int __do_write_buf(struct feat_fd *ff, const void *buf, size_t size)
111{
112 /* struct perf_event_header::size is u16 */
113 const size_t max_size = 0xffff - sizeof(struct perf_event_header);
114 size_t new_size = ff->size;
115 void *addr;
116
117 if (size + ff->offset > max_size)
118 return -E2BIG;
119
120 while (size > (new_size - ff->offset))
121 new_size <<= 1;
122 new_size = min(max_size, new_size);
123
124 if (ff->size < new_size) {
125 addr = realloc(ff->buf, new_size);
126 if (!addr)
127 return -ENOMEM;
128 ff->buf = addr;
129 ff->size = new_size;
130 }
131
132 memcpy(ff->buf + ff->offset, buf, size);
133 ff->offset += size;
134
135 return 0;
136}
137
138/* Return: 0 if succeeded, -ERR if failed. */
139int do_write(struct feat_fd *ff, const void *buf, size_t size)
140{
141 if (!ff->buf)
142 return __do_write_fd(ff, buf, size);
143 return __do_write_buf(ff, buf, size);
144}
145
146/* Return: 0 if succeeded, -ERR if failed. */
147static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size)
148{
149 u64 *p = (u64 *) set;
150 int i, ret;
151
152 ret = do_write(ff, &size, sizeof(size));
153 if (ret < 0)
154 return ret;
155
156 for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
157 ret = do_write(ff, p + i, sizeof(*p));
158 if (ret < 0)
159 return ret;
160 }
161
162 return 0;
163}
164
165/* Return: 0 if succeeded, -ERR if failed. */
166int write_padded(struct feat_fd *ff, const void *bf,
167 size_t count, size_t count_aligned)
168{
169 static const char zero_buf[NAME_ALIGN];
170 int err = do_write(ff, bf, count);
171
172 if (!err)
173 err = do_write(ff, zero_buf, count_aligned - count);
174
175 return err;
176}
177
178#define string_size(str) \
179 (PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32))
180
181/* Return: 0 if succeeded, -ERR if failed. */
182static int do_write_string(struct feat_fd *ff, const char *str)
183{
184 u32 len, olen;
185 int ret;
186
187 olen = strlen(str) + 1;
188 len = PERF_ALIGN(olen, NAME_ALIGN);
189
190 /* write len, incl. \0 */
191 ret = do_write(ff, &len, sizeof(len));
192 if (ret < 0)
193 return ret;
194
195 return write_padded(ff, str, olen, len);
196}
197
198static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size)
199{
200 ssize_t ret = readn(ff->fd, addr, size);
201
202 if (ret != size)
203 return ret < 0 ? (int)ret : -1;
204 return 0;
205}
206
207static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size)
208{
209 if (size > (ssize_t)ff->size - ff->offset)
210 return -1;
211
212 memcpy(addr, ff->buf + ff->offset, size);
213 ff->offset += size;
214
215 return 0;
216
217}
218
219static int __do_read(struct feat_fd *ff, void *addr, ssize_t size)
220{
221 if (!ff->buf)
222 return __do_read_fd(ff, addr, size);
223 return __do_read_buf(ff, addr, size);
224}
225
226static int do_read_u32(struct feat_fd *ff, u32 *addr)
227{
228 int ret;
229
230 ret = __do_read(ff, addr, sizeof(*addr));
231 if (ret)
232 return ret;
233
234 if (ff->ph->needs_swap)
235 *addr = bswap_32(*addr);
236 return 0;
237}
238
239static int do_read_u64(struct feat_fd *ff, u64 *addr)
240{
241 int ret;
242
243 ret = __do_read(ff, addr, sizeof(*addr));
244 if (ret)
245 return ret;
246
247 if (ff->ph->needs_swap)
248 *addr = bswap_64(*addr);
249 return 0;
250}
251
252static char *do_read_string(struct feat_fd *ff)
253{
254 u32 len;
255 char *buf;
256
257 if (do_read_u32(ff, &len))
258 return NULL;
259
260 buf = malloc(len);
261 if (!buf)
262 return NULL;
263
264 if (!__do_read(ff, buf, len)) {
265 /*
266 * strings are padded by zeroes
267 * thus the actual strlen of buf
268 * may be less than len
269 */
270 return buf;
271 }
272
273 free(buf);
274 return NULL;
275}
276
277/* Return: 0 if succeeded, -ERR if failed. */
278static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize)
279{
280 unsigned long *set;
281 u64 size, *p;
282 int i, ret;
283
284 ret = do_read_u64(ff, &size);
285 if (ret)
286 return ret;
287
288 set = bitmap_zalloc(size);
289 if (!set)
290 return -ENOMEM;
291
292 p = (u64 *) set;
293
294 for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
295 ret = do_read_u64(ff, p + i);
296 if (ret < 0) {
297 free(set);
298 return ret;
299 }
300 }
301
302 *pset = set;
303 *psize = size;
304 return 0;
305}
306
307#ifdef HAVE_LIBTRACEEVENT
308static int write_tracing_data(struct feat_fd *ff,
309 struct evlist *evlist)
310{
311 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
312 return -1;
313
314 return read_tracing_data(ff->fd, &evlist->core.entries);
315}
316#endif
317
318static int write_build_id(struct feat_fd *ff,
319 struct evlist *evlist __maybe_unused)
320{
321 struct perf_session *session;
322 int err;
323
324 session = container_of(ff->ph, struct perf_session, header);
325
326 if (!perf_session__read_build_ids(session, true))
327 return -1;
328
329 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
330 return -1;
331
332 err = perf_session__write_buildid_table(session, ff);
333 if (err < 0) {
334 pr_debug("failed to write buildid table\n");
335 return err;
336 }
337 perf_session__cache_build_ids(session);
338
339 return 0;
340}
341
342static int write_hostname(struct feat_fd *ff,
343 struct evlist *evlist __maybe_unused)
344{
345 struct utsname uts;
346 int ret;
347
348 ret = uname(&uts);
349 if (ret < 0)
350 return -1;
351
352 return do_write_string(ff, uts.nodename);
353}
354
355static int write_osrelease(struct feat_fd *ff,
356 struct evlist *evlist __maybe_unused)
357{
358 struct utsname uts;
359 int ret;
360
361 ret = uname(&uts);
362 if (ret < 0)
363 return -1;
364
365 return do_write_string(ff, uts.release);
366}
367
368static int write_arch(struct feat_fd *ff,
369 struct evlist *evlist __maybe_unused)
370{
371 struct utsname uts;
372 int ret;
373
374 ret = uname(&uts);
375 if (ret < 0)
376 return -1;
377
378 return do_write_string(ff, uts.machine);
379}
380
381static int write_version(struct feat_fd *ff,
382 struct evlist *evlist __maybe_unused)
383{
384 return do_write_string(ff, perf_version_string);
385}
386
387static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc)
388{
389 FILE *file;
390 char *buf = NULL;
391 char *s, *p;
392 const char *search = cpuinfo_proc;
393 size_t len = 0;
394 int ret = -1;
395
396 if (!search)
397 return -1;
398
399 file = fopen("/proc/cpuinfo", "r");
400 if (!file)
401 return -1;
402
403 while (getline(&buf, &len, file) > 0) {
404 ret = strncmp(buf, search, strlen(search));
405 if (!ret)
406 break;
407 }
408
409 if (ret) {
410 ret = -1;
411 goto done;
412 }
413
414 s = buf;
415
416 p = strchr(buf, ':');
417 if (p && *(p+1) == ' ' && *(p+2))
418 s = p + 2;
419 p = strchr(s, '\n');
420 if (p)
421 *p = '\0';
422
423 /* squash extra space characters (branding string) */
424 p = s;
425 while (*p) {
426 if (isspace(*p)) {
427 char *r = p + 1;
428 char *q = skip_spaces(r);
429 *p = ' ';
430 if (q != (p+1))
431 while ((*r++ = *q++));
432 }
433 p++;
434 }
435 ret = do_write_string(ff, s);
436done:
437 free(buf);
438 fclose(file);
439 return ret;
440}
441
442static int write_cpudesc(struct feat_fd *ff,
443 struct evlist *evlist __maybe_unused)
444{
445#if defined(__powerpc__) || defined(__hppa__) || defined(__sparc__)
446#define CPUINFO_PROC { "cpu", }
447#elif defined(__s390__)
448#define CPUINFO_PROC { "vendor_id", }
449#elif defined(__sh__)
450#define CPUINFO_PROC { "cpu type", }
451#elif defined(__alpha__) || defined(__mips__)
452#define CPUINFO_PROC { "cpu model", }
453#elif defined(__arm__)
454#define CPUINFO_PROC { "model name", "Processor", }
455#elif defined(__arc__)
456#define CPUINFO_PROC { "Processor", }
457#elif defined(__xtensa__)
458#define CPUINFO_PROC { "core ID", }
459#elif defined(__loongarch__)
460#define CPUINFO_PROC { "Model Name", }
461#else
462#define CPUINFO_PROC { "model name", }
463#endif
464 const char *cpuinfo_procs[] = CPUINFO_PROC;
465#undef CPUINFO_PROC
466 unsigned int i;
467
468 for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) {
469 int ret;
470 ret = __write_cpudesc(ff, cpuinfo_procs[i]);
471 if (ret >= 0)
472 return ret;
473 }
474 return -1;
475}
476
477
478static int write_nrcpus(struct feat_fd *ff,
479 struct evlist *evlist __maybe_unused)
480{
481 long nr;
482 u32 nrc, nra;
483 int ret;
484
485 nrc = cpu__max_present_cpu().cpu;
486
487 nr = sysconf(_SC_NPROCESSORS_ONLN);
488 if (nr < 0)
489 return -1;
490
491 nra = (u32)(nr & UINT_MAX);
492
493 ret = do_write(ff, &nrc, sizeof(nrc));
494 if (ret < 0)
495 return ret;
496
497 return do_write(ff, &nra, sizeof(nra));
498}
499
500static int write_event_desc(struct feat_fd *ff,
501 struct evlist *evlist)
502{
503 struct evsel *evsel;
504 u32 nre, nri, sz;
505 int ret;
506
507 nre = evlist->core.nr_entries;
508
509 /*
510 * write number of events
511 */
512 ret = do_write(ff, &nre, sizeof(nre));
513 if (ret < 0)
514 return ret;
515
516 /*
517 * size of perf_event_attr struct
518 */
519 sz = (u32)sizeof(evsel->core.attr);
520 ret = do_write(ff, &sz, sizeof(sz));
521 if (ret < 0)
522 return ret;
523
524 evlist__for_each_entry(evlist, evsel) {
525 ret = do_write(ff, &evsel->core.attr, sz);
526 if (ret < 0)
527 return ret;
528 /*
529 * write number of unique id per event
530 * there is one id per instance of an event
531 *
532 * copy into an nri to be independent of the
533 * type of ids,
534 */
535 nri = evsel->core.ids;
536 ret = do_write(ff, &nri, sizeof(nri));
537 if (ret < 0)
538 return ret;
539
540 /*
541 * write event string as passed on cmdline
542 */
543 ret = do_write_string(ff, evsel__name(evsel));
544 if (ret < 0)
545 return ret;
546 /*
547 * write unique ids for this event
548 */
549 ret = do_write(ff, evsel->core.id, evsel->core.ids * sizeof(u64));
550 if (ret < 0)
551 return ret;
552 }
553 return 0;
554}
555
556static int write_cmdline(struct feat_fd *ff,
557 struct evlist *evlist __maybe_unused)
558{
559 char pbuf[MAXPATHLEN], *buf;
560 int i, ret, n;
561
562 /* actual path to perf binary */
563 buf = perf_exe(pbuf, MAXPATHLEN);
564
565 /* account for binary path */
566 n = perf_env.nr_cmdline + 1;
567
568 ret = do_write(ff, &n, sizeof(n));
569 if (ret < 0)
570 return ret;
571
572 ret = do_write_string(ff, buf);
573 if (ret < 0)
574 return ret;
575
576 for (i = 0 ; i < perf_env.nr_cmdline; i++) {
577 ret = do_write_string(ff, perf_env.cmdline_argv[i]);
578 if (ret < 0)
579 return ret;
580 }
581 return 0;
582}
583
584
585static int write_cpu_topology(struct feat_fd *ff,
586 struct evlist *evlist __maybe_unused)
587{
588 struct cpu_topology *tp;
589 u32 i;
590 int ret, j;
591
592 tp = cpu_topology__new();
593 if (!tp)
594 return -1;
595
596 ret = do_write(ff, &tp->package_cpus_lists, sizeof(tp->package_cpus_lists));
597 if (ret < 0)
598 goto done;
599
600 for (i = 0; i < tp->package_cpus_lists; i++) {
601 ret = do_write_string(ff, tp->package_cpus_list[i]);
602 if (ret < 0)
603 goto done;
604 }
605 ret = do_write(ff, &tp->core_cpus_lists, sizeof(tp->core_cpus_lists));
606 if (ret < 0)
607 goto done;
608
609 for (i = 0; i < tp->core_cpus_lists; i++) {
610 ret = do_write_string(ff, tp->core_cpus_list[i]);
611 if (ret < 0)
612 break;
613 }
614
615 ret = perf_env__read_cpu_topology_map(&perf_env);
616 if (ret < 0)
617 goto done;
618
619 for (j = 0; j < perf_env.nr_cpus_avail; j++) {
620 ret = do_write(ff, &perf_env.cpu[j].core_id,
621 sizeof(perf_env.cpu[j].core_id));
622 if (ret < 0)
623 return ret;
624 ret = do_write(ff, &perf_env.cpu[j].socket_id,
625 sizeof(perf_env.cpu[j].socket_id));
626 if (ret < 0)
627 return ret;
628 }
629
630 if (!tp->die_cpus_lists)
631 goto done;
632
633 ret = do_write(ff, &tp->die_cpus_lists, sizeof(tp->die_cpus_lists));
634 if (ret < 0)
635 goto done;
636
637 for (i = 0; i < tp->die_cpus_lists; i++) {
638 ret = do_write_string(ff, tp->die_cpus_list[i]);
639 if (ret < 0)
640 goto done;
641 }
642
643 for (j = 0; j < perf_env.nr_cpus_avail; j++) {
644 ret = do_write(ff, &perf_env.cpu[j].die_id,
645 sizeof(perf_env.cpu[j].die_id));
646 if (ret < 0)
647 return ret;
648 }
649
650done:
651 cpu_topology__delete(tp);
652 return ret;
653}
654
655
656
657static int write_total_mem(struct feat_fd *ff,
658 struct evlist *evlist __maybe_unused)
659{
660 char *buf = NULL;
661 FILE *fp;
662 size_t len = 0;
663 int ret = -1, n;
664 uint64_t mem;
665
666 fp = fopen("/proc/meminfo", "r");
667 if (!fp)
668 return -1;
669
670 while (getline(&buf, &len, fp) > 0) {
671 ret = strncmp(buf, "MemTotal:", 9);
672 if (!ret)
673 break;
674 }
675 if (!ret) {
676 n = sscanf(buf, "%*s %"PRIu64, &mem);
677 if (n == 1)
678 ret = do_write(ff, &mem, sizeof(mem));
679 } else
680 ret = -1;
681 free(buf);
682 fclose(fp);
683 return ret;
684}
685
686static int write_numa_topology(struct feat_fd *ff,
687 struct evlist *evlist __maybe_unused)
688{
689 struct numa_topology *tp;
690 int ret = -1;
691 u32 i;
692
693 tp = numa_topology__new();
694 if (!tp)
695 return -ENOMEM;
696
697 ret = do_write(ff, &tp->nr, sizeof(u32));
698 if (ret < 0)
699 goto err;
700
701 for (i = 0; i < tp->nr; i++) {
702 struct numa_topology_node *n = &tp->nodes[i];
703
704 ret = do_write(ff, &n->node, sizeof(u32));
705 if (ret < 0)
706 goto err;
707
708 ret = do_write(ff, &n->mem_total, sizeof(u64));
709 if (ret)
710 goto err;
711
712 ret = do_write(ff, &n->mem_free, sizeof(u64));
713 if (ret)
714 goto err;
715
716 ret = do_write_string(ff, n->cpus);
717 if (ret < 0)
718 goto err;
719 }
720
721 ret = 0;
722
723err:
724 numa_topology__delete(tp);
725 return ret;
726}
727
728/*
729 * File format:
730 *
731 * struct pmu_mappings {
732 * u32 pmu_num;
733 * struct pmu_map {
734 * u32 type;
735 * char name[];
736 * }[pmu_num];
737 * };
738 */
739
740static int write_pmu_mappings(struct feat_fd *ff,
741 struct evlist *evlist __maybe_unused)
742{
743 struct perf_pmu *pmu = NULL;
744 u32 pmu_num = 0;
745 int ret;
746
747 /*
748 * Do a first pass to count number of pmu to avoid lseek so this
749 * works in pipe mode as well.
750 */
751 while ((pmu = perf_pmus__scan(pmu)))
752 pmu_num++;
753
754 ret = do_write(ff, &pmu_num, sizeof(pmu_num));
755 if (ret < 0)
756 return ret;
757
758 while ((pmu = perf_pmus__scan(pmu))) {
759 ret = do_write(ff, &pmu->type, sizeof(pmu->type));
760 if (ret < 0)
761 return ret;
762
763 ret = do_write_string(ff, pmu->name);
764 if (ret < 0)
765 return ret;
766 }
767
768 return 0;
769}
770
771/*
772 * File format:
773 *
774 * struct group_descs {
775 * u32 nr_groups;
776 * struct group_desc {
777 * char name[];
778 * u32 leader_idx;
779 * u32 nr_members;
780 * }[nr_groups];
781 * };
782 */
783static int write_group_desc(struct feat_fd *ff,
784 struct evlist *evlist)
785{
786 u32 nr_groups = evlist__nr_groups(evlist);
787 struct evsel *evsel;
788 int ret;
789
790 ret = do_write(ff, &nr_groups, sizeof(nr_groups));
791 if (ret < 0)
792 return ret;
793
794 evlist__for_each_entry(evlist, evsel) {
795 if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) {
796 const char *name = evsel->group_name ?: "{anon_group}";
797 u32 leader_idx = evsel->core.idx;
798 u32 nr_members = evsel->core.nr_members;
799
800 ret = do_write_string(ff, name);
801 if (ret < 0)
802 return ret;
803
804 ret = do_write(ff, &leader_idx, sizeof(leader_idx));
805 if (ret < 0)
806 return ret;
807
808 ret = do_write(ff, &nr_members, sizeof(nr_members));
809 if (ret < 0)
810 return ret;
811 }
812 }
813 return 0;
814}
815
816/*
817 * Return the CPU id as a raw string.
818 *
819 * Each architecture should provide a more precise id string that
820 * can be use to match the architecture's "mapfile".
821 */
822char * __weak get_cpuid_str(struct perf_cpu cpu __maybe_unused)
823{
824 return NULL;
825}
826
827char *get_cpuid_allow_env_override(struct perf_cpu cpu)
828{
829 char *cpuid;
830 static bool printed;
831
832 cpuid = getenv("PERF_CPUID");
833 if (cpuid)
834 cpuid = strdup(cpuid);
835 if (!cpuid)
836 cpuid = get_cpuid_str(cpu);
837 if (!cpuid)
838 return NULL;
839
840 if (!printed) {
841 pr_debug("Using CPUID %s\n", cpuid);
842 printed = true;
843 }
844 return cpuid;
845}
846
847/* Return zero when the cpuid from the mapfile.csv matches the
848 * cpuid string generated on this platform.
849 * Otherwise return non-zero.
850 */
851int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid)
852{
853 regex_t re;
854 regmatch_t pmatch[1];
855 int match;
856
857 if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) {
858 /* Warn unable to generate match particular string. */
859 pr_info("Invalid regular expression %s\n", mapcpuid);
860 return 1;
861 }
862
863 match = !regexec(&re, cpuid, 1, pmatch, 0);
864 regfree(&re);
865 if (match) {
866 size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so);
867
868 /* Verify the entire string matched. */
869 if (match_len == strlen(cpuid))
870 return 0;
871 }
872 return 1;
873}
874
875/*
876 * default get_cpuid(): nothing gets recorded
877 * actual implementation must be in arch/$(SRCARCH)/util/header.c
878 */
879int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused,
880 struct perf_cpu cpu __maybe_unused)
881{
882 return ENOSYS; /* Not implemented */
883}
884
885static int write_cpuid(struct feat_fd *ff, struct evlist *evlist)
886{
887 struct perf_cpu cpu = perf_cpu_map__min(evlist->core.all_cpus);
888 char buffer[64];
889 int ret;
890
891 ret = get_cpuid(buffer, sizeof(buffer), cpu);
892 if (ret)
893 return -1;
894
895 return do_write_string(ff, buffer);
896}
897
898static int write_branch_stack(struct feat_fd *ff __maybe_unused,
899 struct evlist *evlist __maybe_unused)
900{
901 return 0;
902}
903
904static int write_auxtrace(struct feat_fd *ff,
905 struct evlist *evlist __maybe_unused)
906{
907 struct perf_session *session;
908 int err;
909
910 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
911 return -1;
912
913 session = container_of(ff->ph, struct perf_session, header);
914
915 err = auxtrace_index__write(ff->fd, &session->auxtrace_index);
916 if (err < 0)
917 pr_err("Failed to write auxtrace index\n");
918 return err;
919}
920
921static int write_clockid(struct feat_fd *ff,
922 struct evlist *evlist __maybe_unused)
923{
924 return do_write(ff, &ff->ph->env.clock.clockid_res_ns,
925 sizeof(ff->ph->env.clock.clockid_res_ns));
926}
927
928static int write_clock_data(struct feat_fd *ff,
929 struct evlist *evlist __maybe_unused)
930{
931 u64 *data64;
932 u32 data32;
933 int ret;
934
935 /* version */
936 data32 = 1;
937
938 ret = do_write(ff, &data32, sizeof(data32));
939 if (ret < 0)
940 return ret;
941
942 /* clockid */
943 data32 = ff->ph->env.clock.clockid;
944
945 ret = do_write(ff, &data32, sizeof(data32));
946 if (ret < 0)
947 return ret;
948
949 /* TOD ref time */
950 data64 = &ff->ph->env.clock.tod_ns;
951
952 ret = do_write(ff, data64, sizeof(*data64));
953 if (ret < 0)
954 return ret;
955
956 /* clockid ref time */
957 data64 = &ff->ph->env.clock.clockid_ns;
958
959 return do_write(ff, data64, sizeof(*data64));
960}
961
962static int write_hybrid_topology(struct feat_fd *ff,
963 struct evlist *evlist __maybe_unused)
964{
965 struct hybrid_topology *tp;
966 int ret;
967 u32 i;
968
969 tp = hybrid_topology__new();
970 if (!tp)
971 return -ENOENT;
972
973 ret = do_write(ff, &tp->nr, sizeof(u32));
974 if (ret < 0)
975 goto err;
976
977 for (i = 0; i < tp->nr; i++) {
978 struct hybrid_topology_node *n = &tp->nodes[i];
979
980 ret = do_write_string(ff, n->pmu_name);
981 if (ret < 0)
982 goto err;
983
984 ret = do_write_string(ff, n->cpus);
985 if (ret < 0)
986 goto err;
987 }
988
989 ret = 0;
990
991err:
992 hybrid_topology__delete(tp);
993 return ret;
994}
995
996static int write_dir_format(struct feat_fd *ff,
997 struct evlist *evlist __maybe_unused)
998{
999 struct perf_session *session;
1000 struct perf_data *data;
1001
1002 session = container_of(ff->ph, struct perf_session, header);
1003 data = session->data;
1004
1005 if (WARN_ON(!perf_data__is_dir(data)))
1006 return -1;
1007
1008 return do_write(ff, &data->dir.version, sizeof(data->dir.version));
1009}
1010
1011#ifdef HAVE_LIBBPF_SUPPORT
1012static int write_bpf_prog_info(struct feat_fd *ff,
1013 struct evlist *evlist __maybe_unused)
1014{
1015 struct perf_env *env = &ff->ph->env;
1016 struct rb_root *root;
1017 struct rb_node *next;
1018 int ret;
1019
1020 down_read(&env->bpf_progs.lock);
1021
1022 ret = do_write(ff, &env->bpf_progs.infos_cnt,
1023 sizeof(env->bpf_progs.infos_cnt));
1024 if (ret < 0)
1025 goto out;
1026
1027 root = &env->bpf_progs.infos;
1028 next = rb_first(root);
1029 while (next) {
1030 struct bpf_prog_info_node *node;
1031 size_t len;
1032
1033 node = rb_entry(next, struct bpf_prog_info_node, rb_node);
1034 next = rb_next(&node->rb_node);
1035 len = sizeof(struct perf_bpil) +
1036 node->info_linear->data_len;
1037
1038 /* before writing to file, translate address to offset */
1039 bpil_addr_to_offs(node->info_linear);
1040 ret = do_write(ff, node->info_linear, len);
1041 /*
1042 * translate back to address even when do_write() fails,
1043 * so that this function never changes the data.
1044 */
1045 bpil_offs_to_addr(node->info_linear);
1046 if (ret < 0)
1047 goto out;
1048 }
1049out:
1050 up_read(&env->bpf_progs.lock);
1051 return ret;
1052}
1053
1054static int write_bpf_btf(struct feat_fd *ff,
1055 struct evlist *evlist __maybe_unused)
1056{
1057 struct perf_env *env = &ff->ph->env;
1058 struct rb_root *root;
1059 struct rb_node *next;
1060 int ret;
1061
1062 down_read(&env->bpf_progs.lock);
1063
1064 ret = do_write(ff, &env->bpf_progs.btfs_cnt,
1065 sizeof(env->bpf_progs.btfs_cnt));
1066
1067 if (ret < 0)
1068 goto out;
1069
1070 root = &env->bpf_progs.btfs;
1071 next = rb_first(root);
1072 while (next) {
1073 struct btf_node *node;
1074
1075 node = rb_entry(next, struct btf_node, rb_node);
1076 next = rb_next(&node->rb_node);
1077 ret = do_write(ff, &node->id,
1078 sizeof(u32) * 2 + node->data_size);
1079 if (ret < 0)
1080 goto out;
1081 }
1082out:
1083 up_read(&env->bpf_progs.lock);
1084 return ret;
1085}
1086#endif // HAVE_LIBBPF_SUPPORT
1087
1088static int cpu_cache_level__sort(const void *a, const void *b)
1089{
1090 struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a;
1091 struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b;
1092
1093 return cache_a->level - cache_b->level;
1094}
1095
1096static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b)
1097{
1098 if (a->level != b->level)
1099 return false;
1100
1101 if (a->line_size != b->line_size)
1102 return false;
1103
1104 if (a->sets != b->sets)
1105 return false;
1106
1107 if (a->ways != b->ways)
1108 return false;
1109
1110 if (strcmp(a->type, b->type))
1111 return false;
1112
1113 if (strcmp(a->size, b->size))
1114 return false;
1115
1116 if (strcmp(a->map, b->map))
1117 return false;
1118
1119 return true;
1120}
1121
1122static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level)
1123{
1124 char path[PATH_MAX], file[PATH_MAX];
1125 struct stat st;
1126 size_t len;
1127
1128 scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level);
1129 scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path);
1130
1131 if (stat(file, &st))
1132 return 1;
1133
1134 scnprintf(file, PATH_MAX, "%s/level", path);
1135 if (sysfs__read_int(file, (int *) &cache->level))
1136 return -1;
1137
1138 scnprintf(file, PATH_MAX, "%s/coherency_line_size", path);
1139 if (sysfs__read_int(file, (int *) &cache->line_size))
1140 return -1;
1141
1142 scnprintf(file, PATH_MAX, "%s/number_of_sets", path);
1143 if (sysfs__read_int(file, (int *) &cache->sets))
1144 return -1;
1145
1146 scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path);
1147 if (sysfs__read_int(file, (int *) &cache->ways))
1148 return -1;
1149
1150 scnprintf(file, PATH_MAX, "%s/type", path);
1151 if (sysfs__read_str(file, &cache->type, &len))
1152 return -1;
1153
1154 cache->type[len] = 0;
1155 cache->type = strim(cache->type);
1156
1157 scnprintf(file, PATH_MAX, "%s/size", path);
1158 if (sysfs__read_str(file, &cache->size, &len)) {
1159 zfree(&cache->type);
1160 return -1;
1161 }
1162
1163 cache->size[len] = 0;
1164 cache->size = strim(cache->size);
1165
1166 scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path);
1167 if (sysfs__read_str(file, &cache->map, &len)) {
1168 zfree(&cache->size);
1169 zfree(&cache->type);
1170 return -1;
1171 }
1172
1173 cache->map[len] = 0;
1174 cache->map = strim(cache->map);
1175 return 0;
1176}
1177
1178static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c)
1179{
1180 fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map);
1181}
1182
1183/*
1184 * Build caches levels for a particular CPU from the data in
1185 * /sys/devices/system/cpu/cpu<cpu>/cache/
1186 * The cache level data is stored in caches[] from index at
1187 * *cntp.
1188 */
1189int build_caches_for_cpu(u32 cpu, struct cpu_cache_level caches[], u32 *cntp)
1190{
1191 u16 level;
1192
1193 for (level = 0; level < MAX_CACHE_LVL; level++) {
1194 struct cpu_cache_level c;
1195 int err;
1196 u32 i;
1197
1198 err = cpu_cache_level__read(&c, cpu, level);
1199 if (err < 0)
1200 return err;
1201
1202 if (err == 1)
1203 break;
1204
1205 for (i = 0; i < *cntp; i++) {
1206 if (cpu_cache_level__cmp(&c, &caches[i]))
1207 break;
1208 }
1209
1210 if (i == *cntp) {
1211 caches[*cntp] = c;
1212 *cntp = *cntp + 1;
1213 } else
1214 cpu_cache_level__free(&c);
1215 }
1216
1217 return 0;
1218}
1219
1220static int build_caches(struct cpu_cache_level caches[], u32 *cntp)
1221{
1222 u32 nr, cpu, cnt = 0;
1223
1224 nr = cpu__max_cpu().cpu;
1225
1226 for (cpu = 0; cpu < nr; cpu++) {
1227 int ret = build_caches_for_cpu(cpu, caches, &cnt);
1228
1229 if (ret)
1230 return ret;
1231 }
1232 *cntp = cnt;
1233 return 0;
1234}
1235
1236static int write_cache(struct feat_fd *ff,
1237 struct evlist *evlist __maybe_unused)
1238{
1239 u32 max_caches = cpu__max_cpu().cpu * MAX_CACHE_LVL;
1240 struct cpu_cache_level caches[max_caches];
1241 u32 cnt = 0, i, version = 1;
1242 int ret;
1243
1244 ret = build_caches(caches, &cnt);
1245 if (ret)
1246 goto out;
1247
1248 qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort);
1249
1250 ret = do_write(ff, &version, sizeof(u32));
1251 if (ret < 0)
1252 goto out;
1253
1254 ret = do_write(ff, &cnt, sizeof(u32));
1255 if (ret < 0)
1256 goto out;
1257
1258 for (i = 0; i < cnt; i++) {
1259 struct cpu_cache_level *c = &caches[i];
1260
1261 #define _W(v) \
1262 ret = do_write(ff, &c->v, sizeof(u32)); \
1263 if (ret < 0) \
1264 goto out;
1265
1266 _W(level)
1267 _W(line_size)
1268 _W(sets)
1269 _W(ways)
1270 #undef _W
1271
1272 #define _W(v) \
1273 ret = do_write_string(ff, (const char *) c->v); \
1274 if (ret < 0) \
1275 goto out;
1276
1277 _W(type)
1278 _W(size)
1279 _W(map)
1280 #undef _W
1281 }
1282
1283out:
1284 for (i = 0; i < cnt; i++)
1285 cpu_cache_level__free(&caches[i]);
1286 return ret;
1287}
1288
1289static int write_stat(struct feat_fd *ff __maybe_unused,
1290 struct evlist *evlist __maybe_unused)
1291{
1292 return 0;
1293}
1294
1295static int write_sample_time(struct feat_fd *ff,
1296 struct evlist *evlist)
1297{
1298 int ret;
1299
1300 ret = do_write(ff, &evlist->first_sample_time,
1301 sizeof(evlist->first_sample_time));
1302 if (ret < 0)
1303 return ret;
1304
1305 return do_write(ff, &evlist->last_sample_time,
1306 sizeof(evlist->last_sample_time));
1307}
1308
1309
1310static int memory_node__read(struct memory_node *n, unsigned long idx)
1311{
1312 unsigned int phys, size = 0;
1313 char path[PATH_MAX];
1314 struct dirent *ent;
1315 DIR *dir;
1316
1317#define for_each_memory(mem, dir) \
1318 while ((ent = readdir(dir))) \
1319 if (strcmp(ent->d_name, ".") && \
1320 strcmp(ent->d_name, "..") && \
1321 sscanf(ent->d_name, "memory%u", &mem) == 1)
1322
1323 scnprintf(path, PATH_MAX,
1324 "%s/devices/system/node/node%lu",
1325 sysfs__mountpoint(), idx);
1326
1327 dir = opendir(path);
1328 if (!dir) {
1329 pr_warning("failed: can't open memory sysfs data\n");
1330 return -1;
1331 }
1332
1333 for_each_memory(phys, dir) {
1334 size = max(phys, size);
1335 }
1336
1337 size++;
1338
1339 n->set = bitmap_zalloc(size);
1340 if (!n->set) {
1341 closedir(dir);
1342 return -ENOMEM;
1343 }
1344
1345 n->node = idx;
1346 n->size = size;
1347
1348 rewinddir(dir);
1349
1350 for_each_memory(phys, dir) {
1351 __set_bit(phys, n->set);
1352 }
1353
1354 closedir(dir);
1355 return 0;
1356}
1357
1358static void memory_node__delete_nodes(struct memory_node *nodesp, u64 cnt)
1359{
1360 for (u64 i = 0; i < cnt; i++)
1361 bitmap_free(nodesp[i].set);
1362
1363 free(nodesp);
1364}
1365
1366static int memory_node__sort(const void *a, const void *b)
1367{
1368 const struct memory_node *na = a;
1369 const struct memory_node *nb = b;
1370
1371 return na->node - nb->node;
1372}
1373
1374static int build_mem_topology(struct memory_node **nodesp, u64 *cntp)
1375{
1376 char path[PATH_MAX];
1377 struct dirent *ent;
1378 DIR *dir;
1379 int ret = 0;
1380 size_t cnt = 0, size = 0;
1381 struct memory_node *nodes = NULL;
1382
1383 scnprintf(path, PATH_MAX, "%s/devices/system/node/",
1384 sysfs__mountpoint());
1385
1386 dir = opendir(path);
1387 if (!dir) {
1388 pr_debug2("%s: couldn't read %s, does this arch have topology information?\n",
1389 __func__, path);
1390 return -1;
1391 }
1392
1393 while (!ret && (ent = readdir(dir))) {
1394 unsigned int idx;
1395 int r;
1396
1397 if (!strcmp(ent->d_name, ".") ||
1398 !strcmp(ent->d_name, ".."))
1399 continue;
1400
1401 r = sscanf(ent->d_name, "node%u", &idx);
1402 if (r != 1)
1403 continue;
1404
1405 if (cnt >= size) {
1406 struct memory_node *new_nodes =
1407 reallocarray(nodes, cnt + 4, sizeof(*nodes));
1408
1409 if (!new_nodes) {
1410 pr_err("Failed to write MEM_TOPOLOGY, size %zd nodes\n", size);
1411 ret = -ENOMEM;
1412 goto out;
1413 }
1414 nodes = new_nodes;
1415 size += 4;
1416 }
1417 ret = memory_node__read(&nodes[cnt], idx);
1418 if (!ret)
1419 cnt += 1;
1420 }
1421out:
1422 closedir(dir);
1423 if (!ret) {
1424 *cntp = cnt;
1425 *nodesp = nodes;
1426 qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort);
1427 } else
1428 memory_node__delete_nodes(nodes, cnt);
1429
1430 return ret;
1431}
1432
1433/*
1434 * The MEM_TOPOLOGY holds physical memory map for every
1435 * node in system. The format of data is as follows:
1436 *
1437 * 0 - version | for future changes
1438 * 8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes
1439 * 16 - count | number of nodes
1440 *
1441 * For each node we store map of physical indexes for
1442 * each node:
1443 *
1444 * 32 - node id | node index
1445 * 40 - size | size of bitmap
1446 * 48 - bitmap | bitmap of memory indexes that belongs to node
1447 */
1448static int write_mem_topology(struct feat_fd *ff __maybe_unused,
1449 struct evlist *evlist __maybe_unused)
1450{
1451 struct memory_node *nodes = NULL;
1452 u64 bsize, version = 1, i, nr = 0;
1453 int ret;
1454
1455 ret = sysfs__read_xll("devices/system/memory/block_size_bytes",
1456 (unsigned long long *) &bsize);
1457 if (ret)
1458 return ret;
1459
1460 ret = build_mem_topology(&nodes, &nr);
1461 if (ret)
1462 return ret;
1463
1464 ret = do_write(ff, &version, sizeof(version));
1465 if (ret < 0)
1466 goto out;
1467
1468 ret = do_write(ff, &bsize, sizeof(bsize));
1469 if (ret < 0)
1470 goto out;
1471
1472 ret = do_write(ff, &nr, sizeof(nr));
1473 if (ret < 0)
1474 goto out;
1475
1476 for (i = 0; i < nr; i++) {
1477 struct memory_node *n = &nodes[i];
1478
1479 #define _W(v) \
1480 ret = do_write(ff, &n->v, sizeof(n->v)); \
1481 if (ret < 0) \
1482 goto out;
1483
1484 _W(node)
1485 _W(size)
1486
1487 #undef _W
1488
1489 ret = do_write_bitmap(ff, n->set, n->size);
1490 if (ret < 0)
1491 goto out;
1492 }
1493
1494out:
1495 memory_node__delete_nodes(nodes, nr);
1496 return ret;
1497}
1498
1499static int write_compressed(struct feat_fd *ff __maybe_unused,
1500 struct evlist *evlist __maybe_unused)
1501{
1502 int ret;
1503
1504 ret = do_write(ff, &(ff->ph->env.comp_ver), sizeof(ff->ph->env.comp_ver));
1505 if (ret)
1506 return ret;
1507
1508 ret = do_write(ff, &(ff->ph->env.comp_type), sizeof(ff->ph->env.comp_type));
1509 if (ret)
1510 return ret;
1511
1512 ret = do_write(ff, &(ff->ph->env.comp_level), sizeof(ff->ph->env.comp_level));
1513 if (ret)
1514 return ret;
1515
1516 ret = do_write(ff, &(ff->ph->env.comp_ratio), sizeof(ff->ph->env.comp_ratio));
1517 if (ret)
1518 return ret;
1519
1520 return do_write(ff, &(ff->ph->env.comp_mmap_len), sizeof(ff->ph->env.comp_mmap_len));
1521}
1522
1523static int __write_pmu_caps(struct feat_fd *ff, struct perf_pmu *pmu,
1524 bool write_pmu)
1525{
1526 struct perf_pmu_caps *caps = NULL;
1527 int ret;
1528
1529 ret = do_write(ff, &pmu->nr_caps, sizeof(pmu->nr_caps));
1530 if (ret < 0)
1531 return ret;
1532
1533 list_for_each_entry(caps, &pmu->caps, list) {
1534 ret = do_write_string(ff, caps->name);
1535 if (ret < 0)
1536 return ret;
1537
1538 ret = do_write_string(ff, caps->value);
1539 if (ret < 0)
1540 return ret;
1541 }
1542
1543 if (write_pmu) {
1544 ret = do_write_string(ff, pmu->name);
1545 if (ret < 0)
1546 return ret;
1547 }
1548
1549 return ret;
1550}
1551
1552static int write_cpu_pmu_caps(struct feat_fd *ff,
1553 struct evlist *evlist __maybe_unused)
1554{
1555 struct perf_pmu *cpu_pmu = perf_pmus__find("cpu");
1556 int ret;
1557
1558 if (!cpu_pmu)
1559 return -ENOENT;
1560
1561 ret = perf_pmu__caps_parse(cpu_pmu);
1562 if (ret < 0)
1563 return ret;
1564
1565 return __write_pmu_caps(ff, cpu_pmu, false);
1566}
1567
1568static int write_pmu_caps(struct feat_fd *ff,
1569 struct evlist *evlist __maybe_unused)
1570{
1571 struct perf_pmu *pmu = NULL;
1572 int nr_pmu = 0;
1573 int ret;
1574
1575 while ((pmu = perf_pmus__scan(pmu))) {
1576 if (!strcmp(pmu->name, "cpu")) {
1577 /*
1578 * The "cpu" PMU is special and covered by
1579 * HEADER_CPU_PMU_CAPS. Note, core PMUs are
1580 * counted/written here for ARM, s390 and Intel hybrid.
1581 */
1582 continue;
1583 }
1584 if (perf_pmu__caps_parse(pmu) <= 0)
1585 continue;
1586 nr_pmu++;
1587 }
1588
1589 ret = do_write(ff, &nr_pmu, sizeof(nr_pmu));
1590 if (ret < 0)
1591 return ret;
1592
1593 if (!nr_pmu)
1594 return 0;
1595
1596 /*
1597 * Note older perf tools assume core PMUs come first, this is a property
1598 * of perf_pmus__scan.
1599 */
1600 pmu = NULL;
1601 while ((pmu = perf_pmus__scan(pmu))) {
1602 if (!strcmp(pmu->name, "cpu")) {
1603 /* Skip as above. */
1604 continue;
1605 }
1606 if (perf_pmu__caps_parse(pmu) <= 0)
1607 continue;
1608 ret = __write_pmu_caps(ff, pmu, true);
1609 if (ret < 0)
1610 return ret;
1611 }
1612 return 0;
1613}
1614
1615static void print_hostname(struct feat_fd *ff, FILE *fp)
1616{
1617 fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname);
1618}
1619
1620static void print_osrelease(struct feat_fd *ff, FILE *fp)
1621{
1622 fprintf(fp, "# os release : %s\n", ff->ph->env.os_release);
1623}
1624
1625static void print_arch(struct feat_fd *ff, FILE *fp)
1626{
1627 fprintf(fp, "# arch : %s\n", ff->ph->env.arch);
1628}
1629
1630static void print_cpudesc(struct feat_fd *ff, FILE *fp)
1631{
1632 fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc);
1633}
1634
1635static void print_nrcpus(struct feat_fd *ff, FILE *fp)
1636{
1637 fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online);
1638 fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail);
1639}
1640
1641static void print_version(struct feat_fd *ff, FILE *fp)
1642{
1643 fprintf(fp, "# perf version : %s\n", ff->ph->env.version);
1644}
1645
1646static void print_cmdline(struct feat_fd *ff, FILE *fp)
1647{
1648 int nr, i;
1649
1650 nr = ff->ph->env.nr_cmdline;
1651
1652 fprintf(fp, "# cmdline : ");
1653
1654 for (i = 0; i < nr; i++) {
1655 char *argv_i = strdup(ff->ph->env.cmdline_argv[i]);
1656 if (!argv_i) {
1657 fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]);
1658 } else {
1659 char *mem = argv_i;
1660 do {
1661 char *quote = strchr(argv_i, '\'');
1662 if (!quote)
1663 break;
1664 *quote++ = '\0';
1665 fprintf(fp, "%s\\\'", argv_i);
1666 argv_i = quote;
1667 } while (1);
1668 fprintf(fp, "%s ", argv_i);
1669 free(mem);
1670 }
1671 }
1672 fputc('\n', fp);
1673}
1674
1675static void print_cpu_topology(struct feat_fd *ff, FILE *fp)
1676{
1677 struct perf_header *ph = ff->ph;
1678 int cpu_nr = ph->env.nr_cpus_avail;
1679 int nr, i;
1680 char *str;
1681
1682 nr = ph->env.nr_sibling_cores;
1683 str = ph->env.sibling_cores;
1684
1685 for (i = 0; i < nr; i++) {
1686 fprintf(fp, "# sibling sockets : %s\n", str);
1687 str += strlen(str) + 1;
1688 }
1689
1690 if (ph->env.nr_sibling_dies) {
1691 nr = ph->env.nr_sibling_dies;
1692 str = ph->env.sibling_dies;
1693
1694 for (i = 0; i < nr; i++) {
1695 fprintf(fp, "# sibling dies : %s\n", str);
1696 str += strlen(str) + 1;
1697 }
1698 }
1699
1700 nr = ph->env.nr_sibling_threads;
1701 str = ph->env.sibling_threads;
1702
1703 for (i = 0; i < nr; i++) {
1704 fprintf(fp, "# sibling threads : %s\n", str);
1705 str += strlen(str) + 1;
1706 }
1707
1708 if (ph->env.nr_sibling_dies) {
1709 if (ph->env.cpu != NULL) {
1710 for (i = 0; i < cpu_nr; i++)
1711 fprintf(fp, "# CPU %d: Core ID %d, "
1712 "Die ID %d, Socket ID %d\n",
1713 i, ph->env.cpu[i].core_id,
1714 ph->env.cpu[i].die_id,
1715 ph->env.cpu[i].socket_id);
1716 } else
1717 fprintf(fp, "# Core ID, Die ID and Socket ID "
1718 "information is not available\n");
1719 } else {
1720 if (ph->env.cpu != NULL) {
1721 for (i = 0; i < cpu_nr; i++)
1722 fprintf(fp, "# CPU %d: Core ID %d, "
1723 "Socket ID %d\n",
1724 i, ph->env.cpu[i].core_id,
1725 ph->env.cpu[i].socket_id);
1726 } else
1727 fprintf(fp, "# Core ID and Socket ID "
1728 "information is not available\n");
1729 }
1730}
1731
1732static void print_clockid(struct feat_fd *ff, FILE *fp)
1733{
1734 fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n",
1735 ff->ph->env.clock.clockid_res_ns * 1000);
1736}
1737
1738static void print_clock_data(struct feat_fd *ff, FILE *fp)
1739{
1740 struct timespec clockid_ns;
1741 char tstr[64], date[64];
1742 struct timeval tod_ns;
1743 clockid_t clockid;
1744 struct tm ltime;
1745 u64 ref;
1746
1747 if (!ff->ph->env.clock.enabled) {
1748 fprintf(fp, "# reference time disabled\n");
1749 return;
1750 }
1751
1752 /* Compute TOD time. */
1753 ref = ff->ph->env.clock.tod_ns;
1754 tod_ns.tv_sec = ref / NSEC_PER_SEC;
1755 ref -= tod_ns.tv_sec * NSEC_PER_SEC;
1756 tod_ns.tv_usec = ref / NSEC_PER_USEC;
1757
1758 /* Compute clockid time. */
1759 ref = ff->ph->env.clock.clockid_ns;
1760 clockid_ns.tv_sec = ref / NSEC_PER_SEC;
1761 ref -= clockid_ns.tv_sec * NSEC_PER_SEC;
1762 clockid_ns.tv_nsec = ref;
1763
1764 clockid = ff->ph->env.clock.clockid;
1765
1766 if (localtime_r(&tod_ns.tv_sec, <ime) == NULL)
1767 snprintf(tstr, sizeof(tstr), "<error>");
1768 else {
1769 strftime(date, sizeof(date), "%F %T", <ime);
1770 scnprintf(tstr, sizeof(tstr), "%s.%06d",
1771 date, (int) tod_ns.tv_usec);
1772 }
1773
1774 fprintf(fp, "# clockid: %s (%u)\n", clockid_name(clockid), clockid);
1775 fprintf(fp, "# reference time: %s = %ld.%06d (TOD) = %ld.%09ld (%s)\n",
1776 tstr, (long) tod_ns.tv_sec, (int) tod_ns.tv_usec,
1777 (long) clockid_ns.tv_sec, clockid_ns.tv_nsec,
1778 clockid_name(clockid));
1779}
1780
1781static void print_hybrid_topology(struct feat_fd *ff, FILE *fp)
1782{
1783 int i;
1784 struct hybrid_node *n;
1785
1786 fprintf(fp, "# hybrid cpu system:\n");
1787 for (i = 0; i < ff->ph->env.nr_hybrid_nodes; i++) {
1788 n = &ff->ph->env.hybrid_nodes[i];
1789 fprintf(fp, "# %s cpu list : %s\n", n->pmu_name, n->cpus);
1790 }
1791}
1792
1793static void print_dir_format(struct feat_fd *ff, FILE *fp)
1794{
1795 struct perf_session *session;
1796 struct perf_data *data;
1797
1798 session = container_of(ff->ph, struct perf_session, header);
1799 data = session->data;
1800
1801 fprintf(fp, "# directory data version : %"PRIu64"\n", data->dir.version);
1802}
1803
1804#ifdef HAVE_LIBBPF_SUPPORT
1805static void print_bpf_prog_info(struct feat_fd *ff, FILE *fp)
1806{
1807 struct perf_env *env = &ff->ph->env;
1808 struct rb_root *root;
1809 struct rb_node *next;
1810
1811 down_read(&env->bpf_progs.lock);
1812
1813 root = &env->bpf_progs.infos;
1814 next = rb_first(root);
1815
1816 while (next) {
1817 struct bpf_prog_info_node *node;
1818
1819 node = rb_entry(next, struct bpf_prog_info_node, rb_node);
1820 next = rb_next(&node->rb_node);
1821
1822 __bpf_event__print_bpf_prog_info(&node->info_linear->info,
1823 env, fp);
1824 }
1825
1826 up_read(&env->bpf_progs.lock);
1827}
1828
1829static void print_bpf_btf(struct feat_fd *ff, FILE *fp)
1830{
1831 struct perf_env *env = &ff->ph->env;
1832 struct rb_root *root;
1833 struct rb_node *next;
1834
1835 down_read(&env->bpf_progs.lock);
1836
1837 root = &env->bpf_progs.btfs;
1838 next = rb_first(root);
1839
1840 while (next) {
1841 struct btf_node *node;
1842
1843 node = rb_entry(next, struct btf_node, rb_node);
1844 next = rb_next(&node->rb_node);
1845 fprintf(fp, "# btf info of id %u\n", node->id);
1846 }
1847
1848 up_read(&env->bpf_progs.lock);
1849}
1850#endif // HAVE_LIBBPF_SUPPORT
1851
1852static void free_event_desc(struct evsel *events)
1853{
1854 struct evsel *evsel;
1855
1856 if (!events)
1857 return;
1858
1859 for (evsel = events; evsel->core.attr.size; evsel++) {
1860 zfree(&evsel->name);
1861 zfree(&evsel->core.id);
1862 }
1863
1864 free(events);
1865}
1866
1867static bool perf_attr_check(struct perf_event_attr *attr)
1868{
1869 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) {
1870 pr_warning("Reserved bits are set unexpectedly. "
1871 "Please update perf tool.\n");
1872 return false;
1873 }
1874
1875 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) {
1876 pr_warning("Unknown sample type (0x%llx) is detected. "
1877 "Please update perf tool.\n",
1878 attr->sample_type);
1879 return false;
1880 }
1881
1882 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) {
1883 pr_warning("Unknown read format (0x%llx) is detected. "
1884 "Please update perf tool.\n",
1885 attr->read_format);
1886 return false;
1887 }
1888
1889 if ((attr->sample_type & PERF_SAMPLE_BRANCH_STACK) &&
1890 (attr->branch_sample_type & ~(PERF_SAMPLE_BRANCH_MAX-1))) {
1891 pr_warning("Unknown branch sample type (0x%llx) is detected. "
1892 "Please update perf tool.\n",
1893 attr->branch_sample_type);
1894
1895 return false;
1896 }
1897
1898 return true;
1899}
1900
1901static struct evsel *read_event_desc(struct feat_fd *ff)
1902{
1903 struct evsel *evsel, *events = NULL;
1904 u64 *id;
1905 void *buf = NULL;
1906 u32 nre, sz, nr, i, j;
1907 size_t msz;
1908
1909 /* number of events */
1910 if (do_read_u32(ff, &nre))
1911 goto error;
1912
1913 if (do_read_u32(ff, &sz))
1914 goto error;
1915
1916 /* buffer to hold on file attr struct */
1917 buf = malloc(sz);
1918 if (!buf)
1919 goto error;
1920
1921 /* the last event terminates with evsel->core.attr.size == 0: */
1922 events = calloc(nre + 1, sizeof(*events));
1923 if (!events)
1924 goto error;
1925
1926 msz = sizeof(evsel->core.attr);
1927 if (sz < msz)
1928 msz = sz;
1929
1930 for (i = 0, evsel = events; i < nre; evsel++, i++) {
1931 evsel->core.idx = i;
1932
1933 /*
1934 * must read entire on-file attr struct to
1935 * sync up with layout.
1936 */
1937 if (__do_read(ff, buf, sz))
1938 goto error;
1939
1940 if (ff->ph->needs_swap)
1941 perf_event__attr_swap(buf);
1942
1943 memcpy(&evsel->core.attr, buf, msz);
1944
1945 if (!perf_attr_check(&evsel->core.attr))
1946 goto error;
1947
1948 if (do_read_u32(ff, &nr))
1949 goto error;
1950
1951 if (ff->ph->needs_swap)
1952 evsel->needs_swap = true;
1953
1954 evsel->name = do_read_string(ff);
1955 if (!evsel->name)
1956 goto error;
1957
1958 if (!nr)
1959 continue;
1960
1961 id = calloc(nr, sizeof(*id));
1962 if (!id)
1963 goto error;
1964 evsel->core.ids = nr;
1965 evsel->core.id = id;
1966
1967 for (j = 0 ; j < nr; j++) {
1968 if (do_read_u64(ff, id))
1969 goto error;
1970 id++;
1971 }
1972 }
1973out:
1974 free(buf);
1975 return events;
1976error:
1977 free_event_desc(events);
1978 events = NULL;
1979 goto out;
1980}
1981
1982static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val,
1983 void *priv __maybe_unused)
1984{
1985 return fprintf(fp, ", %s = %s", name, val);
1986}
1987
1988static void print_event_desc(struct feat_fd *ff, FILE *fp)
1989{
1990 struct evsel *evsel, *events;
1991 u32 j;
1992 u64 *id;
1993
1994 if (ff->events)
1995 events = ff->events;
1996 else
1997 events = read_event_desc(ff);
1998
1999 if (!events) {
2000 fprintf(fp, "# event desc: not available or unable to read\n");
2001 return;
2002 }
2003
2004 for (evsel = events; evsel->core.attr.size; evsel++) {
2005 fprintf(fp, "# event : name = %s, ", evsel->name);
2006
2007 if (evsel->core.ids) {
2008 fprintf(fp, ", id = {");
2009 for (j = 0, id = evsel->core.id; j < evsel->core.ids; j++, id++) {
2010 if (j)
2011 fputc(',', fp);
2012 fprintf(fp, " %"PRIu64, *id);
2013 }
2014 fprintf(fp, " }");
2015 }
2016
2017 perf_event_attr__fprintf(fp, &evsel->core.attr, __desc_attr__fprintf, NULL);
2018
2019 fputc('\n', fp);
2020 }
2021
2022 free_event_desc(events);
2023 ff->events = NULL;
2024}
2025
2026static void print_total_mem(struct feat_fd *ff, FILE *fp)
2027{
2028 fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem);
2029}
2030
2031static void print_numa_topology(struct feat_fd *ff, FILE *fp)
2032{
2033 int i;
2034 struct numa_node *n;
2035
2036 for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) {
2037 n = &ff->ph->env.numa_nodes[i];
2038
2039 fprintf(fp, "# node%u meminfo : total = %"PRIu64" kB,"
2040 " free = %"PRIu64" kB\n",
2041 n->node, n->mem_total, n->mem_free);
2042
2043 fprintf(fp, "# node%u cpu list : ", n->node);
2044 cpu_map__fprintf(n->map, fp);
2045 }
2046}
2047
2048static void print_cpuid(struct feat_fd *ff, FILE *fp)
2049{
2050 fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid);
2051}
2052
2053static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp)
2054{
2055 fprintf(fp, "# contains samples with branch stack\n");
2056}
2057
2058static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp)
2059{
2060 fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n");
2061}
2062
2063static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp)
2064{
2065 fprintf(fp, "# contains stat data\n");
2066}
2067
2068static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused)
2069{
2070 int i;
2071
2072 fprintf(fp, "# CPU cache info:\n");
2073 for (i = 0; i < ff->ph->env.caches_cnt; i++) {
2074 fprintf(fp, "# ");
2075 cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]);
2076 }
2077}
2078
2079static void print_compressed(struct feat_fd *ff, FILE *fp)
2080{
2081 fprintf(fp, "# compressed : %s, level = %d, ratio = %d\n",
2082 ff->ph->env.comp_type == PERF_COMP_ZSTD ? "Zstd" : "Unknown",
2083 ff->ph->env.comp_level, ff->ph->env.comp_ratio);
2084}
2085
2086static void __print_pmu_caps(FILE *fp, int nr_caps, char **caps, char *pmu_name)
2087{
2088 const char *delimiter = "";
2089 int i;
2090
2091 if (!nr_caps) {
2092 fprintf(fp, "# %s pmu capabilities: not available\n", pmu_name);
2093 return;
2094 }
2095
2096 fprintf(fp, "# %s pmu capabilities: ", pmu_name);
2097 for (i = 0; i < nr_caps; i++) {
2098 fprintf(fp, "%s%s", delimiter, caps[i]);
2099 delimiter = ", ";
2100 }
2101
2102 fprintf(fp, "\n");
2103}
2104
2105static void print_cpu_pmu_caps(struct feat_fd *ff, FILE *fp)
2106{
2107 __print_pmu_caps(fp, ff->ph->env.nr_cpu_pmu_caps,
2108 ff->ph->env.cpu_pmu_caps, (char *)"cpu");
2109}
2110
2111static void print_pmu_caps(struct feat_fd *ff, FILE *fp)
2112{
2113 struct pmu_caps *pmu_caps;
2114
2115 for (int i = 0; i < ff->ph->env.nr_pmus_with_caps; i++) {
2116 pmu_caps = &ff->ph->env.pmu_caps[i];
2117 __print_pmu_caps(fp, pmu_caps->nr_caps, pmu_caps->caps,
2118 pmu_caps->pmu_name);
2119 }
2120
2121 if (strcmp(perf_env__arch(&ff->ph->env), "x86") == 0 &&
2122 perf_env__has_pmu_mapping(&ff->ph->env, "ibs_op")) {
2123 char *max_precise = perf_env__find_pmu_cap(&ff->ph->env, "cpu", "max_precise");
2124
2125 if (max_precise != NULL && atoi(max_precise) == 0)
2126 fprintf(fp, "# AMD systems uses ibs_op// PMU for some precise events, e.g.: cycles:p, see the 'perf list' man page for further details.\n");
2127 }
2128}
2129
2130static void print_pmu_mappings(struct feat_fd *ff, FILE *fp)
2131{
2132 const char *delimiter = "# pmu mappings: ";
2133 char *str, *tmp;
2134 u32 pmu_num;
2135 u32 type;
2136
2137 pmu_num = ff->ph->env.nr_pmu_mappings;
2138 if (!pmu_num) {
2139 fprintf(fp, "# pmu mappings: not available\n");
2140 return;
2141 }
2142
2143 str = ff->ph->env.pmu_mappings;
2144
2145 while (pmu_num) {
2146 type = strtoul(str, &tmp, 0);
2147 if (*tmp != ':')
2148 goto error;
2149
2150 str = tmp + 1;
2151 fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type);
2152
2153 delimiter = ", ";
2154 str += strlen(str) + 1;
2155 pmu_num--;
2156 }
2157
2158 fprintf(fp, "\n");
2159
2160 if (!pmu_num)
2161 return;
2162error:
2163 fprintf(fp, "# pmu mappings: unable to read\n");
2164}
2165
2166static void print_group_desc(struct feat_fd *ff, FILE *fp)
2167{
2168 struct perf_session *session;
2169 struct evsel *evsel;
2170 u32 nr = 0;
2171
2172 session = container_of(ff->ph, struct perf_session, header);
2173
2174 evlist__for_each_entry(session->evlist, evsel) {
2175 if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) {
2176 fprintf(fp, "# group: %s{%s", evsel->group_name ?: "", evsel__name(evsel));
2177
2178 nr = evsel->core.nr_members - 1;
2179 } else if (nr) {
2180 fprintf(fp, ",%s", evsel__name(evsel));
2181
2182 if (--nr == 0)
2183 fprintf(fp, "}\n");
2184 }
2185 }
2186}
2187
2188static void print_sample_time(struct feat_fd *ff, FILE *fp)
2189{
2190 struct perf_session *session;
2191 char time_buf[32];
2192 double d;
2193
2194 session = container_of(ff->ph, struct perf_session, header);
2195
2196 timestamp__scnprintf_usec(session->evlist->first_sample_time,
2197 time_buf, sizeof(time_buf));
2198 fprintf(fp, "# time of first sample : %s\n", time_buf);
2199
2200 timestamp__scnprintf_usec(session->evlist->last_sample_time,
2201 time_buf, sizeof(time_buf));
2202 fprintf(fp, "# time of last sample : %s\n", time_buf);
2203
2204 d = (double)(session->evlist->last_sample_time -
2205 session->evlist->first_sample_time) / NSEC_PER_MSEC;
2206
2207 fprintf(fp, "# sample duration : %10.3f ms\n", d);
2208}
2209
2210static void memory_node__fprintf(struct memory_node *n,
2211 unsigned long long bsize, FILE *fp)
2212{
2213 char buf_map[100], buf_size[50];
2214 unsigned long long size;
2215
2216 size = bsize * bitmap_weight(n->set, n->size);
2217 unit_number__scnprintf(buf_size, 50, size);
2218
2219 bitmap_scnprintf(n->set, n->size, buf_map, 100);
2220 fprintf(fp, "# %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map);
2221}
2222
2223static void print_mem_topology(struct feat_fd *ff, FILE *fp)
2224{
2225 struct memory_node *nodes;
2226 int i, nr;
2227
2228 nodes = ff->ph->env.memory_nodes;
2229 nr = ff->ph->env.nr_memory_nodes;
2230
2231 fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n",
2232 nr, ff->ph->env.memory_bsize);
2233
2234 for (i = 0; i < nr; i++) {
2235 memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp);
2236 }
2237}
2238
2239static int __event_process_build_id(struct perf_record_header_build_id *bev,
2240 char *filename,
2241 struct perf_session *session)
2242{
2243 int err = -1;
2244 struct machine *machine;
2245 u16 cpumode;
2246 struct dso *dso;
2247 enum dso_space_type dso_space;
2248
2249 machine = perf_session__findnew_machine(session, bev->pid);
2250 if (!machine)
2251 goto out;
2252
2253 cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
2254
2255 switch (cpumode) {
2256 case PERF_RECORD_MISC_KERNEL:
2257 dso_space = DSO_SPACE__KERNEL;
2258 break;
2259 case PERF_RECORD_MISC_GUEST_KERNEL:
2260 dso_space = DSO_SPACE__KERNEL_GUEST;
2261 break;
2262 case PERF_RECORD_MISC_USER:
2263 case PERF_RECORD_MISC_GUEST_USER:
2264 dso_space = DSO_SPACE__USER;
2265 break;
2266 default:
2267 goto out;
2268 }
2269
2270 dso = machine__findnew_dso(machine, filename);
2271 if (dso != NULL) {
2272 char sbuild_id[SBUILD_ID_SIZE];
2273 struct build_id bid;
2274 size_t size = BUILD_ID_SIZE;
2275
2276 if (bev->header.misc & PERF_RECORD_MISC_BUILD_ID_SIZE)
2277 size = bev->size;
2278
2279 build_id__init(&bid, bev->data, size);
2280 dso__set_build_id(dso, &bid);
2281 dso__set_header_build_id(dso, true);
2282
2283 if (dso_space != DSO_SPACE__USER) {
2284 struct kmod_path m = { .name = NULL, };
2285
2286 if (!kmod_path__parse_name(&m, filename) && m.kmod)
2287 dso__set_module_info(dso, &m, machine);
2288
2289 dso__set_kernel(dso, dso_space);
2290 free(m.name);
2291 }
2292
2293 build_id__sprintf(dso__bid(dso), sbuild_id);
2294 pr_debug("build id event received for %s: %s [%zu]\n",
2295 dso__long_name(dso), sbuild_id, size);
2296 dso__put(dso);
2297 }
2298
2299 err = 0;
2300out:
2301 return err;
2302}
2303
2304static int perf_header__read_build_ids_abi_quirk(struct perf_header *header,
2305 int input, u64 offset, u64 size)
2306{
2307 struct perf_session *session = container_of(header, struct perf_session, header);
2308 struct {
2309 struct perf_event_header header;
2310 u8 build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))];
2311 char filename[0];
2312 } old_bev;
2313 struct perf_record_header_build_id bev;
2314 char filename[PATH_MAX];
2315 u64 limit = offset + size;
2316
2317 while (offset < limit) {
2318 ssize_t len;
2319
2320 if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev))
2321 return -1;
2322
2323 if (header->needs_swap)
2324 perf_event_header__bswap(&old_bev.header);
2325
2326 len = old_bev.header.size - sizeof(old_bev);
2327 if (readn(input, filename, len) != len)
2328 return -1;
2329
2330 bev.header = old_bev.header;
2331
2332 /*
2333 * As the pid is the missing value, we need to fill
2334 * it properly. The header.misc value give us nice hint.
2335 */
2336 bev.pid = HOST_KERNEL_ID;
2337 if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER ||
2338 bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL)
2339 bev.pid = DEFAULT_GUEST_KERNEL_ID;
2340
2341 memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id));
2342 __event_process_build_id(&bev, filename, session);
2343
2344 offset += bev.header.size;
2345 }
2346
2347 return 0;
2348}
2349
2350static int perf_header__read_build_ids(struct perf_header *header,
2351 int input, u64 offset, u64 size)
2352{
2353 struct perf_session *session = container_of(header, struct perf_session, header);
2354 struct perf_record_header_build_id bev;
2355 char filename[PATH_MAX];
2356 u64 limit = offset + size, orig_offset = offset;
2357 int err = -1;
2358
2359 while (offset < limit) {
2360 ssize_t len;
2361
2362 if (readn(input, &bev, sizeof(bev)) != sizeof(bev))
2363 goto out;
2364
2365 if (header->needs_swap)
2366 perf_event_header__bswap(&bev.header);
2367
2368 len = bev.header.size - sizeof(bev);
2369 if (readn(input, filename, len) != len)
2370 goto out;
2371 /*
2372 * The a1645ce1 changeset:
2373 *
2374 * "perf: 'perf kvm' tool for monitoring guest performance from host"
2375 *
2376 * Added a field to struct perf_record_header_build_id that broke the file
2377 * format.
2378 *
2379 * Since the kernel build-id is the first entry, process the
2380 * table using the old format if the well known
2381 * '[kernel.kallsyms]' string for the kernel build-id has the
2382 * first 4 characters chopped off (where the pid_t sits).
2383 */
2384 if (memcmp(filename, "nel.kallsyms]", 13) == 0) {
2385 if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1)
2386 return -1;
2387 return perf_header__read_build_ids_abi_quirk(header, input, offset, size);
2388 }
2389
2390 __event_process_build_id(&bev, filename, session);
2391
2392 offset += bev.header.size;
2393 }
2394 err = 0;
2395out:
2396 return err;
2397}
2398
2399/* Macro for features that simply need to read and store a string. */
2400#define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \
2401static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \
2402{\
2403 free(ff->ph->env.__feat_env); \
2404 ff->ph->env.__feat_env = do_read_string(ff); \
2405 return ff->ph->env.__feat_env ? 0 : -ENOMEM; \
2406}
2407
2408FEAT_PROCESS_STR_FUN(hostname, hostname);
2409FEAT_PROCESS_STR_FUN(osrelease, os_release);
2410FEAT_PROCESS_STR_FUN(version, version);
2411FEAT_PROCESS_STR_FUN(arch, arch);
2412FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc);
2413FEAT_PROCESS_STR_FUN(cpuid, cpuid);
2414
2415#ifdef HAVE_LIBTRACEEVENT
2416static int process_tracing_data(struct feat_fd *ff, void *data)
2417{
2418 ssize_t ret = trace_report(ff->fd, data, false);
2419
2420 return ret < 0 ? -1 : 0;
2421}
2422#endif
2423
2424static int process_build_id(struct feat_fd *ff, void *data __maybe_unused)
2425{
2426 if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size))
2427 pr_debug("Failed to read buildids, continuing...\n");
2428 return 0;
2429}
2430
2431static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused)
2432{
2433 int ret;
2434 u32 nr_cpus_avail, nr_cpus_online;
2435
2436 ret = do_read_u32(ff, &nr_cpus_avail);
2437 if (ret)
2438 return ret;
2439
2440 ret = do_read_u32(ff, &nr_cpus_online);
2441 if (ret)
2442 return ret;
2443 ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail;
2444 ff->ph->env.nr_cpus_online = (int)nr_cpus_online;
2445 return 0;
2446}
2447
2448static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused)
2449{
2450 u64 total_mem;
2451 int ret;
2452
2453 ret = do_read_u64(ff, &total_mem);
2454 if (ret)
2455 return -1;
2456 ff->ph->env.total_mem = (unsigned long long)total_mem;
2457 return 0;
2458}
2459
2460static struct evsel *evlist__find_by_index(struct evlist *evlist, int idx)
2461{
2462 struct evsel *evsel;
2463
2464 evlist__for_each_entry(evlist, evsel) {
2465 if (evsel->core.idx == idx)
2466 return evsel;
2467 }
2468
2469 return NULL;
2470}
2471
2472static void evlist__set_event_name(struct evlist *evlist, struct evsel *event)
2473{
2474 struct evsel *evsel;
2475
2476 if (!event->name)
2477 return;
2478
2479 evsel = evlist__find_by_index(evlist, event->core.idx);
2480 if (!evsel)
2481 return;
2482
2483 if (evsel->name)
2484 return;
2485
2486 evsel->name = strdup(event->name);
2487}
2488
2489static int
2490process_event_desc(struct feat_fd *ff, void *data __maybe_unused)
2491{
2492 struct perf_session *session;
2493 struct evsel *evsel, *events = read_event_desc(ff);
2494
2495 if (!events)
2496 return 0;
2497
2498 session = container_of(ff->ph, struct perf_session, header);
2499
2500 if (session->data->is_pipe) {
2501 /* Save events for reading later by print_event_desc,
2502 * since they can't be read again in pipe mode. */
2503 ff->events = events;
2504 }
2505
2506 for (evsel = events; evsel->core.attr.size; evsel++)
2507 evlist__set_event_name(session->evlist, evsel);
2508
2509 if (!session->data->is_pipe)
2510 free_event_desc(events);
2511
2512 return 0;
2513}
2514
2515static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused)
2516{
2517 char *str, *cmdline = NULL, **argv = NULL;
2518 u32 nr, i, len = 0;
2519
2520 if (do_read_u32(ff, &nr))
2521 return -1;
2522
2523 ff->ph->env.nr_cmdline = nr;
2524
2525 cmdline = zalloc(ff->size + nr + 1);
2526 if (!cmdline)
2527 return -1;
2528
2529 argv = zalloc(sizeof(char *) * (nr + 1));
2530 if (!argv)
2531 goto error;
2532
2533 for (i = 0; i < nr; i++) {
2534 str = do_read_string(ff);
2535 if (!str)
2536 goto error;
2537
2538 argv[i] = cmdline + len;
2539 memcpy(argv[i], str, strlen(str) + 1);
2540 len += strlen(str) + 1;
2541 free(str);
2542 }
2543 ff->ph->env.cmdline = cmdline;
2544 ff->ph->env.cmdline_argv = (const char **) argv;
2545 return 0;
2546
2547error:
2548 free(argv);
2549 free(cmdline);
2550 return -1;
2551}
2552
2553static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused)
2554{
2555 u32 nr, i;
2556 char *str = NULL;
2557 struct strbuf sb;
2558 int cpu_nr = ff->ph->env.nr_cpus_avail;
2559 u64 size = 0;
2560 struct perf_header *ph = ff->ph;
2561 bool do_core_id_test = true;
2562
2563 ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu));
2564 if (!ph->env.cpu)
2565 return -1;
2566
2567 if (do_read_u32(ff, &nr))
2568 goto free_cpu;
2569
2570 ph->env.nr_sibling_cores = nr;
2571 size += sizeof(u32);
2572 if (strbuf_init(&sb, 128) < 0)
2573 goto free_cpu;
2574
2575 for (i = 0; i < nr; i++) {
2576 str = do_read_string(ff);
2577 if (!str)
2578 goto error;
2579
2580 /* include a NULL character at the end */
2581 if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2582 goto error;
2583 size += string_size(str);
2584 zfree(&str);
2585 }
2586 ph->env.sibling_cores = strbuf_detach(&sb, NULL);
2587
2588 if (do_read_u32(ff, &nr))
2589 return -1;
2590
2591 ph->env.nr_sibling_threads = nr;
2592 size += sizeof(u32);
2593
2594 for (i = 0; i < nr; i++) {
2595 str = do_read_string(ff);
2596 if (!str)
2597 goto error;
2598
2599 /* include a NULL character at the end */
2600 if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2601 goto error;
2602 size += string_size(str);
2603 zfree(&str);
2604 }
2605 ph->env.sibling_threads = strbuf_detach(&sb, NULL);
2606
2607 /*
2608 * The header may be from old perf,
2609 * which doesn't include core id and socket id information.
2610 */
2611 if (ff->size <= size) {
2612 zfree(&ph->env.cpu);
2613 return 0;
2614 }
2615
2616 /* On s390 the socket_id number is not related to the numbers of cpus.
2617 * The socket_id number might be higher than the numbers of cpus.
2618 * This depends on the configuration.
2619 * AArch64 is the same.
2620 */
2621 if (ph->env.arch && (!strncmp(ph->env.arch, "s390", 4)
2622 || !strncmp(ph->env.arch, "aarch64", 7)))
2623 do_core_id_test = false;
2624
2625 for (i = 0; i < (u32)cpu_nr; i++) {
2626 if (do_read_u32(ff, &nr))
2627 goto free_cpu;
2628
2629 ph->env.cpu[i].core_id = nr;
2630 size += sizeof(u32);
2631
2632 if (do_read_u32(ff, &nr))
2633 goto free_cpu;
2634
2635 if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) {
2636 pr_debug("socket_id number is too big."
2637 "You may need to upgrade the perf tool.\n");
2638 goto free_cpu;
2639 }
2640
2641 ph->env.cpu[i].socket_id = nr;
2642 size += sizeof(u32);
2643 }
2644
2645 /*
2646 * The header may be from old perf,
2647 * which doesn't include die information.
2648 */
2649 if (ff->size <= size)
2650 return 0;
2651
2652 if (do_read_u32(ff, &nr))
2653 return -1;
2654
2655 ph->env.nr_sibling_dies = nr;
2656 size += sizeof(u32);
2657
2658 for (i = 0; i < nr; i++) {
2659 str = do_read_string(ff);
2660 if (!str)
2661 goto error;
2662
2663 /* include a NULL character at the end */
2664 if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2665 goto error;
2666 size += string_size(str);
2667 zfree(&str);
2668 }
2669 ph->env.sibling_dies = strbuf_detach(&sb, NULL);
2670
2671 for (i = 0; i < (u32)cpu_nr; i++) {
2672 if (do_read_u32(ff, &nr))
2673 goto free_cpu;
2674
2675 ph->env.cpu[i].die_id = nr;
2676 }
2677
2678 return 0;
2679
2680error:
2681 strbuf_release(&sb);
2682 zfree(&str);
2683free_cpu:
2684 zfree(&ph->env.cpu);
2685 return -1;
2686}
2687
2688static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused)
2689{
2690 struct numa_node *nodes, *n;
2691 u32 nr, i;
2692 char *str;
2693
2694 /* nr nodes */
2695 if (do_read_u32(ff, &nr))
2696 return -1;
2697
2698 nodes = zalloc(sizeof(*nodes) * nr);
2699 if (!nodes)
2700 return -ENOMEM;
2701
2702 for (i = 0; i < nr; i++) {
2703 n = &nodes[i];
2704
2705 /* node number */
2706 if (do_read_u32(ff, &n->node))
2707 goto error;
2708
2709 if (do_read_u64(ff, &n->mem_total))
2710 goto error;
2711
2712 if (do_read_u64(ff, &n->mem_free))
2713 goto error;
2714
2715 str = do_read_string(ff);
2716 if (!str)
2717 goto error;
2718
2719 n->map = perf_cpu_map__new(str);
2720 free(str);
2721 if (!n->map)
2722 goto error;
2723 }
2724 ff->ph->env.nr_numa_nodes = nr;
2725 ff->ph->env.numa_nodes = nodes;
2726 return 0;
2727
2728error:
2729 free(nodes);
2730 return -1;
2731}
2732
2733static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused)
2734{
2735 char *name;
2736 u32 pmu_num;
2737 u32 type;
2738 struct strbuf sb;
2739
2740 if (do_read_u32(ff, &pmu_num))
2741 return -1;
2742
2743 if (!pmu_num) {
2744 pr_debug("pmu mappings not available\n");
2745 return 0;
2746 }
2747
2748 ff->ph->env.nr_pmu_mappings = pmu_num;
2749 if (strbuf_init(&sb, 128) < 0)
2750 return -1;
2751
2752 while (pmu_num) {
2753 if (do_read_u32(ff, &type))
2754 goto error;
2755
2756 name = do_read_string(ff);
2757 if (!name)
2758 goto error;
2759
2760 if (strbuf_addf(&sb, "%u:%s", type, name) < 0)
2761 goto error;
2762 /* include a NULL character at the end */
2763 if (strbuf_add(&sb, "", 1) < 0)
2764 goto error;
2765
2766 if (!strcmp(name, "msr"))
2767 ff->ph->env.msr_pmu_type = type;
2768
2769 free(name);
2770 pmu_num--;
2771 }
2772 ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL);
2773 return 0;
2774
2775error:
2776 strbuf_release(&sb);
2777 return -1;
2778}
2779
2780static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused)
2781{
2782 size_t ret = -1;
2783 u32 i, nr, nr_groups;
2784 struct perf_session *session;
2785 struct evsel *evsel, *leader = NULL;
2786 struct group_desc {
2787 char *name;
2788 u32 leader_idx;
2789 u32 nr_members;
2790 } *desc;
2791
2792 if (do_read_u32(ff, &nr_groups))
2793 return -1;
2794
2795 ff->ph->env.nr_groups = nr_groups;
2796 if (!nr_groups) {
2797 pr_debug("group desc not available\n");
2798 return 0;
2799 }
2800
2801 desc = calloc(nr_groups, sizeof(*desc));
2802 if (!desc)
2803 return -1;
2804
2805 for (i = 0; i < nr_groups; i++) {
2806 desc[i].name = do_read_string(ff);
2807 if (!desc[i].name)
2808 goto out_free;
2809
2810 if (do_read_u32(ff, &desc[i].leader_idx))
2811 goto out_free;
2812
2813 if (do_read_u32(ff, &desc[i].nr_members))
2814 goto out_free;
2815 }
2816
2817 /*
2818 * Rebuild group relationship based on the group_desc
2819 */
2820 session = container_of(ff->ph, struct perf_session, header);
2821
2822 i = nr = 0;
2823 evlist__for_each_entry(session->evlist, evsel) {
2824 if (i < nr_groups && evsel->core.idx == (int) desc[i].leader_idx) {
2825 evsel__set_leader(evsel, evsel);
2826 /* {anon_group} is a dummy name */
2827 if (strcmp(desc[i].name, "{anon_group}")) {
2828 evsel->group_name = desc[i].name;
2829 desc[i].name = NULL;
2830 }
2831 evsel->core.nr_members = desc[i].nr_members;
2832
2833 if (i >= nr_groups || nr > 0) {
2834 pr_debug("invalid group desc\n");
2835 goto out_free;
2836 }
2837
2838 leader = evsel;
2839 nr = evsel->core.nr_members - 1;
2840 i++;
2841 } else if (nr) {
2842 /* This is a group member */
2843 evsel__set_leader(evsel, leader);
2844
2845 nr--;
2846 }
2847 }
2848
2849 if (i != nr_groups || nr != 0) {
2850 pr_debug("invalid group desc\n");
2851 goto out_free;
2852 }
2853
2854 ret = 0;
2855out_free:
2856 for (i = 0; i < nr_groups; i++)
2857 zfree(&desc[i].name);
2858 free(desc);
2859
2860 return ret;
2861}
2862
2863static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused)
2864{
2865 struct perf_session *session;
2866 int err;
2867
2868 session = container_of(ff->ph, struct perf_session, header);
2869
2870 err = auxtrace_index__process(ff->fd, ff->size, session,
2871 ff->ph->needs_swap);
2872 if (err < 0)
2873 pr_err("Failed to process auxtrace index\n");
2874 return err;
2875}
2876
2877static int process_cache(struct feat_fd *ff, void *data __maybe_unused)
2878{
2879 struct cpu_cache_level *caches;
2880 u32 cnt, i, version;
2881
2882 if (do_read_u32(ff, &version))
2883 return -1;
2884
2885 if (version != 1)
2886 return -1;
2887
2888 if (do_read_u32(ff, &cnt))
2889 return -1;
2890
2891 caches = zalloc(sizeof(*caches) * cnt);
2892 if (!caches)
2893 return -1;
2894
2895 for (i = 0; i < cnt; i++) {
2896 struct cpu_cache_level *c = &caches[i];
2897
2898 #define _R(v) \
2899 if (do_read_u32(ff, &c->v)) \
2900 goto out_free_caches; \
2901
2902 _R(level)
2903 _R(line_size)
2904 _R(sets)
2905 _R(ways)
2906 #undef _R
2907
2908 #define _R(v) \
2909 c->v = do_read_string(ff); \
2910 if (!c->v) \
2911 goto out_free_caches; \
2912
2913 _R(type)
2914 _R(size)
2915 _R(map)
2916 #undef _R
2917 }
2918
2919 ff->ph->env.caches = caches;
2920 ff->ph->env.caches_cnt = cnt;
2921 return 0;
2922out_free_caches:
2923 for (i = 0; i < cnt; i++) {
2924 free(caches[i].type);
2925 free(caches[i].size);
2926 free(caches[i].map);
2927 }
2928 free(caches);
2929 return -1;
2930}
2931
2932static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused)
2933{
2934 struct perf_session *session;
2935 u64 first_sample_time, last_sample_time;
2936 int ret;
2937
2938 session = container_of(ff->ph, struct perf_session, header);
2939
2940 ret = do_read_u64(ff, &first_sample_time);
2941 if (ret)
2942 return -1;
2943
2944 ret = do_read_u64(ff, &last_sample_time);
2945 if (ret)
2946 return -1;
2947
2948 session->evlist->first_sample_time = first_sample_time;
2949 session->evlist->last_sample_time = last_sample_time;
2950 return 0;
2951}
2952
2953static int process_mem_topology(struct feat_fd *ff,
2954 void *data __maybe_unused)
2955{
2956 struct memory_node *nodes;
2957 u64 version, i, nr, bsize;
2958 int ret = -1;
2959
2960 if (do_read_u64(ff, &version))
2961 return -1;
2962
2963 if (version != 1)
2964 return -1;
2965
2966 if (do_read_u64(ff, &bsize))
2967 return -1;
2968
2969 if (do_read_u64(ff, &nr))
2970 return -1;
2971
2972 nodes = zalloc(sizeof(*nodes) * nr);
2973 if (!nodes)
2974 return -1;
2975
2976 for (i = 0; i < nr; i++) {
2977 struct memory_node n;
2978
2979 #define _R(v) \
2980 if (do_read_u64(ff, &n.v)) \
2981 goto out; \
2982
2983 _R(node)
2984 _R(size)
2985
2986 #undef _R
2987
2988 if (do_read_bitmap(ff, &n.set, &n.size))
2989 goto out;
2990
2991 nodes[i] = n;
2992 }
2993
2994 ff->ph->env.memory_bsize = bsize;
2995 ff->ph->env.memory_nodes = nodes;
2996 ff->ph->env.nr_memory_nodes = nr;
2997 ret = 0;
2998
2999out:
3000 if (ret)
3001 free(nodes);
3002 return ret;
3003}
3004
3005static int process_clockid(struct feat_fd *ff,
3006 void *data __maybe_unused)
3007{
3008 if (do_read_u64(ff, &ff->ph->env.clock.clockid_res_ns))
3009 return -1;
3010
3011 return 0;
3012}
3013
3014static int process_clock_data(struct feat_fd *ff,
3015 void *_data __maybe_unused)
3016{
3017 u32 data32;
3018 u64 data64;
3019
3020 /* version */
3021 if (do_read_u32(ff, &data32))
3022 return -1;
3023
3024 if (data32 != 1)
3025 return -1;
3026
3027 /* clockid */
3028 if (do_read_u32(ff, &data32))
3029 return -1;
3030
3031 ff->ph->env.clock.clockid = data32;
3032
3033 /* TOD ref time */
3034 if (do_read_u64(ff, &data64))
3035 return -1;
3036
3037 ff->ph->env.clock.tod_ns = data64;
3038
3039 /* clockid ref time */
3040 if (do_read_u64(ff, &data64))
3041 return -1;
3042
3043 ff->ph->env.clock.clockid_ns = data64;
3044 ff->ph->env.clock.enabled = true;
3045 return 0;
3046}
3047
3048static int process_hybrid_topology(struct feat_fd *ff,
3049 void *data __maybe_unused)
3050{
3051 struct hybrid_node *nodes, *n;
3052 u32 nr, i;
3053
3054 /* nr nodes */
3055 if (do_read_u32(ff, &nr))
3056 return -1;
3057
3058 nodes = zalloc(sizeof(*nodes) * nr);
3059 if (!nodes)
3060 return -ENOMEM;
3061
3062 for (i = 0; i < nr; i++) {
3063 n = &nodes[i];
3064
3065 n->pmu_name = do_read_string(ff);
3066 if (!n->pmu_name)
3067 goto error;
3068
3069 n->cpus = do_read_string(ff);
3070 if (!n->cpus)
3071 goto error;
3072 }
3073
3074 ff->ph->env.nr_hybrid_nodes = nr;
3075 ff->ph->env.hybrid_nodes = nodes;
3076 return 0;
3077
3078error:
3079 for (i = 0; i < nr; i++) {
3080 free(nodes[i].pmu_name);
3081 free(nodes[i].cpus);
3082 }
3083
3084 free(nodes);
3085 return -1;
3086}
3087
3088static int process_dir_format(struct feat_fd *ff,
3089 void *_data __maybe_unused)
3090{
3091 struct perf_session *session;
3092 struct perf_data *data;
3093
3094 session = container_of(ff->ph, struct perf_session, header);
3095 data = session->data;
3096
3097 if (WARN_ON(!perf_data__is_dir(data)))
3098 return -1;
3099
3100 return do_read_u64(ff, &data->dir.version);
3101}
3102
3103#ifdef HAVE_LIBBPF_SUPPORT
3104static int process_bpf_prog_info(struct feat_fd *ff, void *data __maybe_unused)
3105{
3106 struct bpf_prog_info_node *info_node;
3107 struct perf_env *env = &ff->ph->env;
3108 struct perf_bpil *info_linear;
3109 u32 count, i;
3110 int err = -1;
3111
3112 if (ff->ph->needs_swap) {
3113 pr_warning("interpreting bpf_prog_info from systems with endianness is not yet supported\n");
3114 return 0;
3115 }
3116
3117 if (do_read_u32(ff, &count))
3118 return -1;
3119
3120 down_write(&env->bpf_progs.lock);
3121
3122 for (i = 0; i < count; ++i) {
3123 u32 info_len, data_len;
3124
3125 info_linear = NULL;
3126 info_node = NULL;
3127 if (do_read_u32(ff, &info_len))
3128 goto out;
3129 if (do_read_u32(ff, &data_len))
3130 goto out;
3131
3132 if (info_len > sizeof(struct bpf_prog_info)) {
3133 pr_warning("detected invalid bpf_prog_info\n");
3134 goto out;
3135 }
3136
3137 info_linear = malloc(sizeof(struct perf_bpil) +
3138 data_len);
3139 if (!info_linear)
3140 goto out;
3141 info_linear->info_len = sizeof(struct bpf_prog_info);
3142 info_linear->data_len = data_len;
3143 if (do_read_u64(ff, (u64 *)(&info_linear->arrays)))
3144 goto out;
3145 if (__do_read(ff, &info_linear->info, info_len))
3146 goto out;
3147 if (info_len < sizeof(struct bpf_prog_info))
3148 memset(((void *)(&info_linear->info)) + info_len, 0,
3149 sizeof(struct bpf_prog_info) - info_len);
3150
3151 if (__do_read(ff, info_linear->data, data_len))
3152 goto out;
3153
3154 info_node = malloc(sizeof(struct bpf_prog_info_node));
3155 if (!info_node)
3156 goto out;
3157
3158 /* after reading from file, translate offset to address */
3159 bpil_offs_to_addr(info_linear);
3160 info_node->info_linear = info_linear;
3161 if (!__perf_env__insert_bpf_prog_info(env, info_node)) {
3162 free(info_linear);
3163 free(info_node);
3164 }
3165 }
3166
3167 up_write(&env->bpf_progs.lock);
3168 return 0;
3169out:
3170 free(info_linear);
3171 free(info_node);
3172 up_write(&env->bpf_progs.lock);
3173 return err;
3174}
3175
3176static int process_bpf_btf(struct feat_fd *ff, void *data __maybe_unused)
3177{
3178 struct perf_env *env = &ff->ph->env;
3179 struct btf_node *node = NULL;
3180 u32 count, i;
3181 int err = -1;
3182
3183 if (ff->ph->needs_swap) {
3184 pr_warning("interpreting btf from systems with endianness is not yet supported\n");
3185 return 0;
3186 }
3187
3188 if (do_read_u32(ff, &count))
3189 return -1;
3190
3191 down_write(&env->bpf_progs.lock);
3192
3193 for (i = 0; i < count; ++i) {
3194 u32 id, data_size;
3195
3196 if (do_read_u32(ff, &id))
3197 goto out;
3198 if (do_read_u32(ff, &data_size))
3199 goto out;
3200
3201 node = malloc(sizeof(struct btf_node) + data_size);
3202 if (!node)
3203 goto out;
3204
3205 node->id = id;
3206 node->data_size = data_size;
3207
3208 if (__do_read(ff, node->data, data_size))
3209 goto out;
3210
3211 if (!__perf_env__insert_btf(env, node))
3212 free(node);
3213 node = NULL;
3214 }
3215
3216 err = 0;
3217out:
3218 up_write(&env->bpf_progs.lock);
3219 free(node);
3220 return err;
3221}
3222#endif // HAVE_LIBBPF_SUPPORT
3223
3224static int process_compressed(struct feat_fd *ff,
3225 void *data __maybe_unused)
3226{
3227 if (do_read_u32(ff, &(ff->ph->env.comp_ver)))
3228 return -1;
3229
3230 if (do_read_u32(ff, &(ff->ph->env.comp_type)))
3231 return -1;
3232
3233 if (do_read_u32(ff, &(ff->ph->env.comp_level)))
3234 return -1;
3235
3236 if (do_read_u32(ff, &(ff->ph->env.comp_ratio)))
3237 return -1;
3238
3239 if (do_read_u32(ff, &(ff->ph->env.comp_mmap_len)))
3240 return -1;
3241
3242 return 0;
3243}
3244
3245static int __process_pmu_caps(struct feat_fd *ff, int *nr_caps,
3246 char ***caps, unsigned int *max_branches,
3247 unsigned int *br_cntr_nr,
3248 unsigned int *br_cntr_width)
3249{
3250 char *name, *value, *ptr;
3251 u32 nr_pmu_caps, i;
3252
3253 *nr_caps = 0;
3254 *caps = NULL;
3255
3256 if (do_read_u32(ff, &nr_pmu_caps))
3257 return -1;
3258
3259 if (!nr_pmu_caps)
3260 return 0;
3261
3262 *caps = zalloc(sizeof(char *) * nr_pmu_caps);
3263 if (!*caps)
3264 return -1;
3265
3266 for (i = 0; i < nr_pmu_caps; i++) {
3267 name = do_read_string(ff);
3268 if (!name)
3269 goto error;
3270
3271 value = do_read_string(ff);
3272 if (!value)
3273 goto free_name;
3274
3275 if (asprintf(&ptr, "%s=%s", name, value) < 0)
3276 goto free_value;
3277
3278 (*caps)[i] = ptr;
3279
3280 if (!strcmp(name, "branches"))
3281 *max_branches = atoi(value);
3282
3283 if (!strcmp(name, "branch_counter_nr"))
3284 *br_cntr_nr = atoi(value);
3285
3286 if (!strcmp(name, "branch_counter_width"))
3287 *br_cntr_width = atoi(value);
3288
3289 free(value);
3290 free(name);
3291 }
3292 *nr_caps = nr_pmu_caps;
3293 return 0;
3294
3295free_value:
3296 free(value);
3297free_name:
3298 free(name);
3299error:
3300 for (; i > 0; i--)
3301 free((*caps)[i - 1]);
3302 free(*caps);
3303 *caps = NULL;
3304 *nr_caps = 0;
3305 return -1;
3306}
3307
3308static int process_cpu_pmu_caps(struct feat_fd *ff,
3309 void *data __maybe_unused)
3310{
3311 int ret = __process_pmu_caps(ff, &ff->ph->env.nr_cpu_pmu_caps,
3312 &ff->ph->env.cpu_pmu_caps,
3313 &ff->ph->env.max_branches,
3314 &ff->ph->env.br_cntr_nr,
3315 &ff->ph->env.br_cntr_width);
3316
3317 if (!ret && !ff->ph->env.cpu_pmu_caps)
3318 pr_debug("cpu pmu capabilities not available\n");
3319 return ret;
3320}
3321
3322static int process_pmu_caps(struct feat_fd *ff, void *data __maybe_unused)
3323{
3324 struct pmu_caps *pmu_caps;
3325 u32 nr_pmu, i;
3326 int ret;
3327 int j;
3328
3329 if (do_read_u32(ff, &nr_pmu))
3330 return -1;
3331
3332 if (!nr_pmu) {
3333 pr_debug("pmu capabilities not available\n");
3334 return 0;
3335 }
3336
3337 pmu_caps = zalloc(sizeof(*pmu_caps) * nr_pmu);
3338 if (!pmu_caps)
3339 return -ENOMEM;
3340
3341 for (i = 0; i < nr_pmu; i++) {
3342 ret = __process_pmu_caps(ff, &pmu_caps[i].nr_caps,
3343 &pmu_caps[i].caps,
3344 &pmu_caps[i].max_branches,
3345 &pmu_caps[i].br_cntr_nr,
3346 &pmu_caps[i].br_cntr_width);
3347 if (ret)
3348 goto err;
3349
3350 pmu_caps[i].pmu_name = do_read_string(ff);
3351 if (!pmu_caps[i].pmu_name) {
3352 ret = -1;
3353 goto err;
3354 }
3355 if (!pmu_caps[i].nr_caps) {
3356 pr_debug("%s pmu capabilities not available\n",
3357 pmu_caps[i].pmu_name);
3358 }
3359 }
3360
3361 ff->ph->env.nr_pmus_with_caps = nr_pmu;
3362 ff->ph->env.pmu_caps = pmu_caps;
3363 return 0;
3364
3365err:
3366 for (i = 0; i < nr_pmu; i++) {
3367 for (j = 0; j < pmu_caps[i].nr_caps; j++)
3368 free(pmu_caps[i].caps[j]);
3369 free(pmu_caps[i].caps);
3370 free(pmu_caps[i].pmu_name);
3371 }
3372
3373 free(pmu_caps);
3374 return ret;
3375}
3376
3377#define FEAT_OPR(n, func, __full_only) \
3378 [HEADER_##n] = { \
3379 .name = __stringify(n), \
3380 .write = write_##func, \
3381 .print = print_##func, \
3382 .full_only = __full_only, \
3383 .process = process_##func, \
3384 .synthesize = true \
3385 }
3386
3387#define FEAT_OPN(n, func, __full_only) \
3388 [HEADER_##n] = { \
3389 .name = __stringify(n), \
3390 .write = write_##func, \
3391 .print = print_##func, \
3392 .full_only = __full_only, \
3393 .process = process_##func \
3394 }
3395
3396/* feature_ops not implemented: */
3397#define print_tracing_data NULL
3398#define print_build_id NULL
3399
3400#define process_branch_stack NULL
3401#define process_stat NULL
3402
3403// Only used in util/synthetic-events.c
3404const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE];
3405
3406const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE] = {
3407#ifdef HAVE_LIBTRACEEVENT
3408 FEAT_OPN(TRACING_DATA, tracing_data, false),
3409#endif
3410 FEAT_OPN(BUILD_ID, build_id, false),
3411 FEAT_OPR(HOSTNAME, hostname, false),
3412 FEAT_OPR(OSRELEASE, osrelease, false),
3413 FEAT_OPR(VERSION, version, false),
3414 FEAT_OPR(ARCH, arch, false),
3415 FEAT_OPR(NRCPUS, nrcpus, false),
3416 FEAT_OPR(CPUDESC, cpudesc, false),
3417 FEAT_OPR(CPUID, cpuid, false),
3418 FEAT_OPR(TOTAL_MEM, total_mem, false),
3419 FEAT_OPR(EVENT_DESC, event_desc, false),
3420 FEAT_OPR(CMDLINE, cmdline, false),
3421 FEAT_OPR(CPU_TOPOLOGY, cpu_topology, true),
3422 FEAT_OPR(NUMA_TOPOLOGY, numa_topology, true),
3423 FEAT_OPN(BRANCH_STACK, branch_stack, false),
3424 FEAT_OPR(PMU_MAPPINGS, pmu_mappings, false),
3425 FEAT_OPR(GROUP_DESC, group_desc, false),
3426 FEAT_OPN(AUXTRACE, auxtrace, false),
3427 FEAT_OPN(STAT, stat, false),
3428 FEAT_OPN(CACHE, cache, true),
3429 FEAT_OPR(SAMPLE_TIME, sample_time, false),
3430 FEAT_OPR(MEM_TOPOLOGY, mem_topology, true),
3431 FEAT_OPR(CLOCKID, clockid, false),
3432 FEAT_OPN(DIR_FORMAT, dir_format, false),
3433#ifdef HAVE_LIBBPF_SUPPORT
3434 FEAT_OPR(BPF_PROG_INFO, bpf_prog_info, false),
3435 FEAT_OPR(BPF_BTF, bpf_btf, false),
3436#endif
3437 FEAT_OPR(COMPRESSED, compressed, false),
3438 FEAT_OPR(CPU_PMU_CAPS, cpu_pmu_caps, false),
3439 FEAT_OPR(CLOCK_DATA, clock_data, false),
3440 FEAT_OPN(HYBRID_TOPOLOGY, hybrid_topology, true),
3441 FEAT_OPR(PMU_CAPS, pmu_caps, false),
3442};
3443
3444struct header_print_data {
3445 FILE *fp;
3446 bool full; /* extended list of headers */
3447};
3448
3449static int perf_file_section__fprintf_info(struct perf_file_section *section,
3450 struct perf_header *ph,
3451 int feat, int fd, void *data)
3452{
3453 struct header_print_data *hd = data;
3454 struct feat_fd ff;
3455
3456 if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3457 pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3458 "%d, continuing...\n", section->offset, feat);
3459 return 0;
3460 }
3461 if (feat >= HEADER_LAST_FEATURE) {
3462 pr_warning("unknown feature %d\n", feat);
3463 return 0;
3464 }
3465 if (!feat_ops[feat].print)
3466 return 0;
3467
3468 ff = (struct feat_fd) {
3469 .fd = fd,
3470 .ph = ph,
3471 };
3472
3473 if (!feat_ops[feat].full_only || hd->full)
3474 feat_ops[feat].print(&ff, hd->fp);
3475 else
3476 fprintf(hd->fp, "# %s info available, use -I to display\n",
3477 feat_ops[feat].name);
3478
3479 return 0;
3480}
3481
3482int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full)
3483{
3484 struct header_print_data hd;
3485 struct perf_header *header = &session->header;
3486 int fd = perf_data__fd(session->data);
3487 struct stat st;
3488 time_t stctime;
3489 int ret, bit;
3490
3491 hd.fp = fp;
3492 hd.full = full;
3493
3494 ret = fstat(fd, &st);
3495 if (ret == -1)
3496 return -1;
3497
3498 stctime = st.st_mtime;
3499 fprintf(fp, "# captured on : %s", ctime(&stctime));
3500
3501 fprintf(fp, "# header version : %u\n", header->version);
3502 fprintf(fp, "# data offset : %" PRIu64 "\n", header->data_offset);
3503 fprintf(fp, "# data size : %" PRIu64 "\n", header->data_size);
3504 fprintf(fp, "# feat offset : %" PRIu64 "\n", header->feat_offset);
3505
3506 perf_header__process_sections(header, fd, &hd,
3507 perf_file_section__fprintf_info);
3508
3509 if (session->data->is_pipe)
3510 return 0;
3511
3512 fprintf(fp, "# missing features: ");
3513 for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) {
3514 if (bit)
3515 fprintf(fp, "%s ", feat_ops[bit].name);
3516 }
3517
3518 fprintf(fp, "\n");
3519 return 0;
3520}
3521
3522struct header_fw {
3523 struct feat_writer fw;
3524 struct feat_fd *ff;
3525};
3526
3527static int feat_writer_cb(struct feat_writer *fw, void *buf, size_t sz)
3528{
3529 struct header_fw *h = container_of(fw, struct header_fw, fw);
3530
3531 return do_write(h->ff, buf, sz);
3532}
3533
3534static int do_write_feat(struct feat_fd *ff, int type,
3535 struct perf_file_section **p,
3536 struct evlist *evlist,
3537 struct feat_copier *fc)
3538{
3539 int err;
3540 int ret = 0;
3541
3542 if (perf_header__has_feat(ff->ph, type)) {
3543 if (!feat_ops[type].write)
3544 return -1;
3545
3546 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
3547 return -1;
3548
3549 (*p)->offset = lseek(ff->fd, 0, SEEK_CUR);
3550
3551 /*
3552 * Hook to let perf inject copy features sections from the input
3553 * file.
3554 */
3555 if (fc && fc->copy) {
3556 struct header_fw h = {
3557 .fw.write = feat_writer_cb,
3558 .ff = ff,
3559 };
3560
3561 /* ->copy() returns 0 if the feature was not copied */
3562 err = fc->copy(fc, type, &h.fw);
3563 } else {
3564 err = 0;
3565 }
3566 if (!err)
3567 err = feat_ops[type].write(ff, evlist);
3568 if (err < 0) {
3569 pr_debug("failed to write feature %s\n", feat_ops[type].name);
3570
3571 /* undo anything written */
3572 lseek(ff->fd, (*p)->offset, SEEK_SET);
3573
3574 return -1;
3575 }
3576 (*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset;
3577 (*p)++;
3578 }
3579 return ret;
3580}
3581
3582static int perf_header__adds_write(struct perf_header *header,
3583 struct evlist *evlist, int fd,
3584 struct feat_copier *fc)
3585{
3586 int nr_sections;
3587 struct feat_fd ff = {
3588 .fd = fd,
3589 .ph = header,
3590 };
3591 struct perf_file_section *feat_sec, *p;
3592 int sec_size;
3593 u64 sec_start;
3594 int feat;
3595 int err;
3596
3597 nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3598 if (!nr_sections)
3599 return 0;
3600
3601 feat_sec = p = calloc(nr_sections, sizeof(*feat_sec));
3602 if (feat_sec == NULL)
3603 return -ENOMEM;
3604
3605 sec_size = sizeof(*feat_sec) * nr_sections;
3606
3607 sec_start = header->feat_offset;
3608 lseek(fd, sec_start + sec_size, SEEK_SET);
3609
3610 for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
3611 if (do_write_feat(&ff, feat, &p, evlist, fc))
3612 perf_header__clear_feat(header, feat);
3613 }
3614
3615 lseek(fd, sec_start, SEEK_SET);
3616 /*
3617 * may write more than needed due to dropped feature, but
3618 * this is okay, reader will skip the missing entries
3619 */
3620 err = do_write(&ff, feat_sec, sec_size);
3621 if (err < 0)
3622 pr_debug("failed to write feature section\n");
3623 free(ff.buf); /* TODO: added to silence clang-tidy. */
3624 free(feat_sec);
3625 return err;
3626}
3627
3628int perf_header__write_pipe(int fd)
3629{
3630 struct perf_pipe_file_header f_header;
3631 struct feat_fd ff = {
3632 .fd = fd,
3633 };
3634 int err;
3635
3636 f_header = (struct perf_pipe_file_header){
3637 .magic = PERF_MAGIC,
3638 .size = sizeof(f_header),
3639 };
3640
3641 err = do_write(&ff, &f_header, sizeof(f_header));
3642 if (err < 0) {
3643 pr_debug("failed to write perf pipe header\n");
3644 return err;
3645 }
3646 free(ff.buf);
3647 return 0;
3648}
3649
3650static int perf_session__do_write_header(struct perf_session *session,
3651 struct evlist *evlist,
3652 int fd, bool at_exit,
3653 struct feat_copier *fc,
3654 bool write_attrs_after_data)
3655{
3656 struct perf_file_header f_header;
3657 struct perf_header *header = &session->header;
3658 struct evsel *evsel;
3659 struct feat_fd ff = {
3660 .fd = fd,
3661 };
3662 u64 attr_offset = sizeof(f_header), attr_size = 0;
3663 int err;
3664
3665 if (write_attrs_after_data && at_exit) {
3666 /*
3667 * Write features at the end of the file first so that
3668 * attributes may come after them.
3669 */
3670 if (!header->data_offset && header->data_size) {
3671 pr_err("File contains data but offset unknown\n");
3672 err = -1;
3673 goto err_out;
3674 }
3675 header->feat_offset = header->data_offset + header->data_size;
3676 err = perf_header__adds_write(header, evlist, fd, fc);
3677 if (err < 0)
3678 goto err_out;
3679 attr_offset = lseek(fd, 0, SEEK_CUR);
3680 } else {
3681 lseek(fd, attr_offset, SEEK_SET);
3682 }
3683
3684 evlist__for_each_entry(session->evlist, evsel) {
3685 evsel->id_offset = attr_offset;
3686 /* Avoid writing at the end of the file until the session is exiting. */
3687 if (!write_attrs_after_data || at_exit) {
3688 err = do_write(&ff, evsel->core.id, evsel->core.ids * sizeof(u64));
3689 if (err < 0) {
3690 pr_debug("failed to write perf header\n");
3691 goto err_out;
3692 }
3693 }
3694 attr_offset += evsel->core.ids * sizeof(u64);
3695 }
3696
3697 evlist__for_each_entry(evlist, evsel) {
3698 if (evsel->core.attr.size < sizeof(evsel->core.attr)) {
3699 /*
3700 * We are likely in "perf inject" and have read
3701 * from an older file. Update attr size so that
3702 * reader gets the right offset to the ids.
3703 */
3704 evsel->core.attr.size = sizeof(evsel->core.attr);
3705 }
3706 /* Avoid writing at the end of the file until the session is exiting. */
3707 if (!write_attrs_after_data || at_exit) {
3708 struct perf_file_attr f_attr = {
3709 .attr = evsel->core.attr,
3710 .ids = {
3711 .offset = evsel->id_offset,
3712 .size = evsel->core.ids * sizeof(u64),
3713 }
3714 };
3715 err = do_write(&ff, &f_attr, sizeof(f_attr));
3716 if (err < 0) {
3717 pr_debug("failed to write perf header attribute\n");
3718 goto err_out;
3719 }
3720 }
3721 attr_size += sizeof(struct perf_file_attr);
3722 }
3723
3724 if (!header->data_offset) {
3725 if (write_attrs_after_data)
3726 header->data_offset = sizeof(f_header);
3727 else
3728 header->data_offset = attr_offset + attr_size;
3729 }
3730 header->feat_offset = header->data_offset + header->data_size;
3731
3732 if (!write_attrs_after_data && at_exit) {
3733 /* Write features now feat_offset is known. */
3734 err = perf_header__adds_write(header, evlist, fd, fc);
3735 if (err < 0)
3736 goto err_out;
3737 }
3738
3739 f_header = (struct perf_file_header){
3740 .magic = PERF_MAGIC,
3741 .size = sizeof(f_header),
3742 .attr_size = sizeof(struct perf_file_attr),
3743 .attrs = {
3744 .offset = attr_offset,
3745 .size = attr_size,
3746 },
3747 .data = {
3748 .offset = header->data_offset,
3749 .size = header->data_size,
3750 },
3751 /* event_types is ignored, store zeros */
3752 };
3753
3754 memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features));
3755
3756 lseek(fd, 0, SEEK_SET);
3757 err = do_write(&ff, &f_header, sizeof(f_header));
3758 if (err < 0) {
3759 pr_debug("failed to write perf header\n");
3760 goto err_out;
3761 } else {
3762 lseek(fd, 0, SEEK_END);
3763 err = 0;
3764 }
3765err_out:
3766 free(ff.buf);
3767 return err;
3768}
3769
3770int perf_session__write_header(struct perf_session *session,
3771 struct evlist *evlist,
3772 int fd, bool at_exit)
3773{
3774 return perf_session__do_write_header(session, evlist, fd, at_exit, /*fc=*/NULL,
3775 /*write_attrs_after_data=*/false);
3776}
3777
3778size_t perf_session__data_offset(const struct evlist *evlist)
3779{
3780 struct evsel *evsel;
3781 size_t data_offset;
3782
3783 data_offset = sizeof(struct perf_file_header);
3784 evlist__for_each_entry(evlist, evsel) {
3785 data_offset += evsel->core.ids * sizeof(u64);
3786 }
3787 data_offset += evlist->core.nr_entries * sizeof(struct perf_file_attr);
3788
3789 return data_offset;
3790}
3791
3792int perf_session__inject_header(struct perf_session *session,
3793 struct evlist *evlist,
3794 int fd,
3795 struct feat_copier *fc,
3796 bool write_attrs_after_data)
3797{
3798 return perf_session__do_write_header(session, evlist, fd, true, fc,
3799 write_attrs_after_data);
3800}
3801
3802static int perf_header__getbuffer64(struct perf_header *header,
3803 int fd, void *buf, size_t size)
3804{
3805 if (readn(fd, buf, size) <= 0)
3806 return -1;
3807
3808 if (header->needs_swap)
3809 mem_bswap_64(buf, size);
3810
3811 return 0;
3812}
3813
3814int perf_header__process_sections(struct perf_header *header, int fd,
3815 void *data,
3816 int (*process)(struct perf_file_section *section,
3817 struct perf_header *ph,
3818 int feat, int fd, void *data))
3819{
3820 struct perf_file_section *feat_sec, *sec;
3821 int nr_sections;
3822 int sec_size;
3823 int feat;
3824 int err;
3825
3826 nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3827 if (!nr_sections)
3828 return 0;
3829
3830 feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec));
3831 if (!feat_sec)
3832 return -1;
3833
3834 sec_size = sizeof(*feat_sec) * nr_sections;
3835
3836 lseek(fd, header->feat_offset, SEEK_SET);
3837
3838 err = perf_header__getbuffer64(header, fd, feat_sec, sec_size);
3839 if (err < 0)
3840 goto out_free;
3841
3842 for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) {
3843 err = process(sec++, header, feat, fd, data);
3844 if (err < 0)
3845 goto out_free;
3846 }
3847 err = 0;
3848out_free:
3849 free(feat_sec);
3850 return err;
3851}
3852
3853static const int attr_file_abi_sizes[] = {
3854 [0] = PERF_ATTR_SIZE_VER0,
3855 [1] = PERF_ATTR_SIZE_VER1,
3856 [2] = PERF_ATTR_SIZE_VER2,
3857 [3] = PERF_ATTR_SIZE_VER3,
3858 [4] = PERF_ATTR_SIZE_VER4,
3859 0,
3860};
3861
3862/*
3863 * In the legacy file format, the magic number is not used to encode endianness.
3864 * hdr_sz was used to encode endianness. But given that hdr_sz can vary based
3865 * on ABI revisions, we need to try all combinations for all endianness to
3866 * detect the endianness.
3867 */
3868static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph)
3869{
3870 uint64_t ref_size, attr_size;
3871 int i;
3872
3873 for (i = 0 ; attr_file_abi_sizes[i]; i++) {
3874 ref_size = attr_file_abi_sizes[i]
3875 + sizeof(struct perf_file_section);
3876 if (hdr_sz != ref_size) {
3877 attr_size = bswap_64(hdr_sz);
3878 if (attr_size != ref_size)
3879 continue;
3880
3881 ph->needs_swap = true;
3882 }
3883 pr_debug("ABI%d perf.data file detected, need_swap=%d\n",
3884 i,
3885 ph->needs_swap);
3886 return 0;
3887 }
3888 /* could not determine endianness */
3889 return -1;
3890}
3891
3892#define PERF_PIPE_HDR_VER0 16
3893
3894static const size_t attr_pipe_abi_sizes[] = {
3895 [0] = PERF_PIPE_HDR_VER0,
3896 0,
3897};
3898
3899/*
3900 * In the legacy pipe format, there is an implicit assumption that endianness
3901 * between host recording the samples, and host parsing the samples is the
3902 * same. This is not always the case given that the pipe output may always be
3903 * redirected into a file and analyzed on a different machine with possibly a
3904 * different endianness and perf_event ABI revisions in the perf tool itself.
3905 */
3906static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph)
3907{
3908 u64 attr_size;
3909 int i;
3910
3911 for (i = 0 ; attr_pipe_abi_sizes[i]; i++) {
3912 if (hdr_sz != attr_pipe_abi_sizes[i]) {
3913 attr_size = bswap_64(hdr_sz);
3914 if (attr_size != hdr_sz)
3915 continue;
3916
3917 ph->needs_swap = true;
3918 }
3919 pr_debug("Pipe ABI%d perf.data file detected\n", i);
3920 return 0;
3921 }
3922 return -1;
3923}
3924
3925bool is_perf_magic(u64 magic)
3926{
3927 if (!memcmp(&magic, __perf_magic1, sizeof(magic))
3928 || magic == __perf_magic2
3929 || magic == __perf_magic2_sw)
3930 return true;
3931
3932 return false;
3933}
3934
3935static int check_magic_endian(u64 magic, uint64_t hdr_sz,
3936 bool is_pipe, struct perf_header *ph)
3937{
3938 int ret;
3939
3940 /* check for legacy format */
3941 ret = memcmp(&magic, __perf_magic1, sizeof(magic));
3942 if (ret == 0) {
3943 ph->version = PERF_HEADER_VERSION_1;
3944 pr_debug("legacy perf.data format\n");
3945 if (is_pipe)
3946 return try_all_pipe_abis(hdr_sz, ph);
3947
3948 return try_all_file_abis(hdr_sz, ph);
3949 }
3950 /*
3951 * the new magic number serves two purposes:
3952 * - unique number to identify actual perf.data files
3953 * - encode endianness of file
3954 */
3955 ph->version = PERF_HEADER_VERSION_2;
3956
3957 /* check magic number with one endianness */
3958 if (magic == __perf_magic2)
3959 return 0;
3960
3961 /* check magic number with opposite endianness */
3962 if (magic != __perf_magic2_sw)
3963 return -1;
3964
3965 ph->needs_swap = true;
3966
3967 return 0;
3968}
3969
3970int perf_file_header__read(struct perf_file_header *header,
3971 struct perf_header *ph, int fd)
3972{
3973 ssize_t ret;
3974
3975 lseek(fd, 0, SEEK_SET);
3976
3977 ret = readn(fd, header, sizeof(*header));
3978 if (ret <= 0)
3979 return -1;
3980
3981 if (check_magic_endian(header->magic,
3982 header->attr_size, false, ph) < 0) {
3983 pr_debug("magic/endian check failed\n");
3984 return -1;
3985 }
3986
3987 if (ph->needs_swap) {
3988 mem_bswap_64(header, offsetof(struct perf_file_header,
3989 adds_features));
3990 }
3991
3992 if (header->size > header->attrs.offset) {
3993 pr_err("Perf file header corrupt: header overlaps attrs\n");
3994 return -1;
3995 }
3996
3997 if (header->size > header->data.offset) {
3998 pr_err("Perf file header corrupt: header overlaps data\n");
3999 return -1;
4000 }
4001
4002 if ((header->attrs.offset <= header->data.offset &&
4003 header->attrs.offset + header->attrs.size > header->data.offset) ||
4004 (header->attrs.offset > header->data.offset &&
4005 header->data.offset + header->data.size > header->attrs.offset)) {
4006 pr_err("Perf file header corrupt: Attributes and data overlap\n");
4007 return -1;
4008 }
4009
4010 if (header->size != sizeof(*header)) {
4011 /* Support the previous format */
4012 if (header->size == offsetof(typeof(*header), adds_features))
4013 bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
4014 else
4015 return -1;
4016 } else if (ph->needs_swap) {
4017 /*
4018 * feature bitmap is declared as an array of unsigned longs --
4019 * not good since its size can differ between the host that
4020 * generated the data file and the host analyzing the file.
4021 *
4022 * We need to handle endianness, but we don't know the size of
4023 * the unsigned long where the file was generated. Take a best
4024 * guess at determining it: try 64-bit swap first (ie., file
4025 * created on a 64-bit host), and check if the hostname feature
4026 * bit is set (this feature bit is forced on as of fbe96f2).
4027 * If the bit is not, undo the 64-bit swap and try a 32-bit
4028 * swap. If the hostname bit is still not set (e.g., older data
4029 * file), punt and fallback to the original behavior --
4030 * clearing all feature bits and setting buildid.
4031 */
4032 mem_bswap_64(&header->adds_features,
4033 BITS_TO_U64(HEADER_FEAT_BITS));
4034
4035 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
4036 /* unswap as u64 */
4037 mem_bswap_64(&header->adds_features,
4038 BITS_TO_U64(HEADER_FEAT_BITS));
4039
4040 /* unswap as u32 */
4041 mem_bswap_32(&header->adds_features,
4042 BITS_TO_U32(HEADER_FEAT_BITS));
4043 }
4044
4045 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
4046 bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
4047 __set_bit(HEADER_BUILD_ID, header->adds_features);
4048 }
4049 }
4050
4051 memcpy(&ph->adds_features, &header->adds_features,
4052 sizeof(ph->adds_features));
4053
4054 ph->data_offset = header->data.offset;
4055 ph->data_size = header->data.size;
4056 ph->feat_offset = header->data.offset + header->data.size;
4057 return 0;
4058}
4059
4060static int perf_file_section__process(struct perf_file_section *section,
4061 struct perf_header *ph,
4062 int feat, int fd, void *data)
4063{
4064 struct feat_fd fdd = {
4065 .fd = fd,
4066 .ph = ph,
4067 .size = section->size,
4068 .offset = section->offset,
4069 };
4070
4071 if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
4072 pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
4073 "%d, continuing...\n", section->offset, feat);
4074 return 0;
4075 }
4076
4077 if (feat >= HEADER_LAST_FEATURE) {
4078 pr_debug("unknown feature %d, continuing...\n", feat);
4079 return 0;
4080 }
4081
4082 if (!feat_ops[feat].process)
4083 return 0;
4084
4085 return feat_ops[feat].process(&fdd, data);
4086}
4087
4088static int perf_file_header__read_pipe(struct perf_pipe_file_header *header,
4089 struct perf_header *ph,
4090 struct perf_data *data)
4091{
4092 ssize_t ret;
4093
4094 ret = perf_data__read(data, header, sizeof(*header));
4095 if (ret <= 0)
4096 return -1;
4097
4098 if (check_magic_endian(header->magic, header->size, true, ph) < 0) {
4099 pr_debug("endian/magic failed\n");
4100 return -1;
4101 }
4102
4103 if (ph->needs_swap)
4104 header->size = bswap_64(header->size);
4105
4106 return 0;
4107}
4108
4109static int perf_header__read_pipe(struct perf_session *session)
4110{
4111 struct perf_header *header = &session->header;
4112 struct perf_pipe_file_header f_header;
4113
4114 if (perf_file_header__read_pipe(&f_header, header, session->data) < 0) {
4115 pr_debug("incompatible file format\n");
4116 return -EINVAL;
4117 }
4118
4119 return f_header.size == sizeof(f_header) ? 0 : -1;
4120}
4121
4122static int read_attr(int fd, struct perf_header *ph,
4123 struct perf_file_attr *f_attr)
4124{
4125 struct perf_event_attr *attr = &f_attr->attr;
4126 size_t sz, left;
4127 size_t our_sz = sizeof(f_attr->attr);
4128 ssize_t ret;
4129
4130 memset(f_attr, 0, sizeof(*f_attr));
4131
4132 /* read minimal guaranteed structure */
4133 ret = readn(fd, attr, PERF_ATTR_SIZE_VER0);
4134 if (ret <= 0) {
4135 pr_debug("cannot read %d bytes of header attr\n",
4136 PERF_ATTR_SIZE_VER0);
4137 return -1;
4138 }
4139
4140 /* on file perf_event_attr size */
4141 sz = attr->size;
4142
4143 if (ph->needs_swap)
4144 sz = bswap_32(sz);
4145
4146 if (sz == 0) {
4147 /* assume ABI0 */
4148 sz = PERF_ATTR_SIZE_VER0;
4149 } else if (sz > our_sz) {
4150 pr_debug("file uses a more recent and unsupported ABI"
4151 " (%zu bytes extra)\n", sz - our_sz);
4152 return -1;
4153 }
4154 /* what we have not yet read and that we know about */
4155 left = sz - PERF_ATTR_SIZE_VER0;
4156 if (left) {
4157 void *ptr = attr;
4158 ptr += PERF_ATTR_SIZE_VER0;
4159
4160 ret = readn(fd, ptr, left);
4161 }
4162 /* read perf_file_section, ids are read in caller */
4163 ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids));
4164
4165 return ret <= 0 ? -1 : 0;
4166}
4167
4168#ifdef HAVE_LIBTRACEEVENT
4169static int evsel__prepare_tracepoint_event(struct evsel *evsel, struct tep_handle *pevent)
4170{
4171 struct tep_event *event;
4172 char bf[128];
4173
4174 /* already prepared */
4175 if (evsel->tp_format)
4176 return 0;
4177
4178 if (pevent == NULL) {
4179 pr_debug("broken or missing trace data\n");
4180 return -1;
4181 }
4182
4183 event = tep_find_event(pevent, evsel->core.attr.config);
4184 if (event == NULL) {
4185 pr_debug("cannot find event format for %d\n", (int)evsel->core.attr.config);
4186 return -1;
4187 }
4188
4189 if (!evsel->name) {
4190 snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name);
4191 evsel->name = strdup(bf);
4192 if (evsel->name == NULL)
4193 return -1;
4194 }
4195
4196 evsel->tp_format = event;
4197 return 0;
4198}
4199
4200static int evlist__prepare_tracepoint_events(struct evlist *evlist, struct tep_handle *pevent)
4201{
4202 struct evsel *pos;
4203
4204 evlist__for_each_entry(evlist, pos) {
4205 if (pos->core.attr.type == PERF_TYPE_TRACEPOINT &&
4206 evsel__prepare_tracepoint_event(pos, pevent))
4207 return -1;
4208 }
4209
4210 return 0;
4211}
4212#endif
4213
4214int perf_session__read_header(struct perf_session *session)
4215{
4216 struct perf_data *data = session->data;
4217 struct perf_header *header = &session->header;
4218 struct perf_file_header f_header;
4219 struct perf_file_attr f_attr;
4220 u64 f_id;
4221 int nr_attrs, nr_ids, i, j, err;
4222 int fd = perf_data__fd(data);
4223
4224 session->evlist = evlist__new();
4225 if (session->evlist == NULL)
4226 return -ENOMEM;
4227
4228 session->evlist->env = &header->env;
4229 session->machines.host.env = &header->env;
4230
4231 /*
4232 * We can read 'pipe' data event from regular file,
4233 * check for the pipe header regardless of source.
4234 */
4235 err = perf_header__read_pipe(session);
4236 if (!err || perf_data__is_pipe(data)) {
4237 data->is_pipe = true;
4238 return err;
4239 }
4240
4241 if (perf_file_header__read(&f_header, header, fd) < 0)
4242 return -EINVAL;
4243
4244 if (header->needs_swap && data->in_place_update) {
4245 pr_err("In-place update not supported when byte-swapping is required\n");
4246 return -EINVAL;
4247 }
4248
4249 /*
4250 * Sanity check that perf.data was written cleanly; data size is
4251 * initialized to 0 and updated only if the on_exit function is run.
4252 * If data size is still 0 then the file contains only partial
4253 * information. Just warn user and process it as much as it can.
4254 */
4255 if (f_header.data.size == 0) {
4256 pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n"
4257 "Was the 'perf record' command properly terminated?\n",
4258 data->file.path);
4259 }
4260
4261 if (f_header.attr_size == 0) {
4262 pr_err("ERROR: The %s file's attr size field is 0 which is unexpected.\n"
4263 "Was the 'perf record' command properly terminated?\n",
4264 data->file.path);
4265 return -EINVAL;
4266 }
4267
4268 nr_attrs = f_header.attrs.size / f_header.attr_size;
4269 lseek(fd, f_header.attrs.offset, SEEK_SET);
4270
4271 for (i = 0; i < nr_attrs; i++) {
4272 struct evsel *evsel;
4273 off_t tmp;
4274
4275 if (read_attr(fd, header, &f_attr) < 0)
4276 goto out_errno;
4277
4278 if (header->needs_swap) {
4279 f_attr.ids.size = bswap_64(f_attr.ids.size);
4280 f_attr.ids.offset = bswap_64(f_attr.ids.offset);
4281 perf_event__attr_swap(&f_attr.attr);
4282 }
4283
4284 tmp = lseek(fd, 0, SEEK_CUR);
4285 evsel = evsel__new(&f_attr.attr);
4286
4287 if (evsel == NULL)
4288 goto out_delete_evlist;
4289
4290 evsel->needs_swap = header->needs_swap;
4291 /*
4292 * Do it before so that if perf_evsel__alloc_id fails, this
4293 * entry gets purged too at evlist__delete().
4294 */
4295 evlist__add(session->evlist, evsel);
4296
4297 nr_ids = f_attr.ids.size / sizeof(u64);
4298 /*
4299 * We don't have the cpu and thread maps on the header, so
4300 * for allocating the perf_sample_id table we fake 1 cpu and
4301 * hattr->ids threads.
4302 */
4303 if (perf_evsel__alloc_id(&evsel->core, 1, nr_ids))
4304 goto out_delete_evlist;
4305
4306 lseek(fd, f_attr.ids.offset, SEEK_SET);
4307
4308 for (j = 0; j < nr_ids; j++) {
4309 if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id)))
4310 goto out_errno;
4311
4312 perf_evlist__id_add(&session->evlist->core, &evsel->core, 0, j, f_id);
4313 }
4314
4315 lseek(fd, tmp, SEEK_SET);
4316 }
4317
4318#ifdef HAVE_LIBTRACEEVENT
4319 perf_header__process_sections(header, fd, &session->tevent,
4320 perf_file_section__process);
4321
4322 if (evlist__prepare_tracepoint_events(session->evlist, session->tevent.pevent))
4323 goto out_delete_evlist;
4324#else
4325 perf_header__process_sections(header, fd, NULL, perf_file_section__process);
4326#endif
4327
4328 return 0;
4329out_errno:
4330 return -errno;
4331
4332out_delete_evlist:
4333 evlist__delete(session->evlist);
4334 session->evlist = NULL;
4335 return -ENOMEM;
4336}
4337
4338int perf_event__process_feature(struct perf_session *session,
4339 union perf_event *event)
4340{
4341 const struct perf_tool *tool = session->tool;
4342 struct feat_fd ff = { .fd = 0 };
4343 struct perf_record_header_feature *fe = (struct perf_record_header_feature *)event;
4344 int type = fe->header.type;
4345 u64 feat = fe->feat_id;
4346 int ret = 0;
4347
4348 if (type < 0 || type >= PERF_RECORD_HEADER_MAX) {
4349 pr_warning("invalid record type %d in pipe-mode\n", type);
4350 return 0;
4351 }
4352 if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) {
4353 pr_warning("invalid record type %d in pipe-mode\n", type);
4354 return -1;
4355 }
4356
4357 if (!feat_ops[feat].process)
4358 return 0;
4359
4360 ff.buf = (void *)fe->data;
4361 ff.size = event->header.size - sizeof(*fe);
4362 ff.ph = &session->header;
4363
4364 if (feat_ops[feat].process(&ff, NULL)) {
4365 ret = -1;
4366 goto out;
4367 }
4368
4369 if (!feat_ops[feat].print || !tool->show_feat_hdr)
4370 goto out;
4371
4372 if (!feat_ops[feat].full_only ||
4373 tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) {
4374 feat_ops[feat].print(&ff, stdout);
4375 } else {
4376 fprintf(stdout, "# %s info available, use -I to display\n",
4377 feat_ops[feat].name);
4378 }
4379out:
4380 free_event_desc(ff.events);
4381 return ret;
4382}
4383
4384size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp)
4385{
4386 struct perf_record_event_update *ev = &event->event_update;
4387 struct perf_cpu_map *map;
4388 size_t ret;
4389
4390 ret = fprintf(fp, "\n... id: %" PRI_lu64 "\n", ev->id);
4391
4392 switch (ev->type) {
4393 case PERF_EVENT_UPDATE__SCALE:
4394 ret += fprintf(fp, "... scale: %f\n", ev->scale.scale);
4395 break;
4396 case PERF_EVENT_UPDATE__UNIT:
4397 ret += fprintf(fp, "... unit: %s\n", ev->unit);
4398 break;
4399 case PERF_EVENT_UPDATE__NAME:
4400 ret += fprintf(fp, "... name: %s\n", ev->name);
4401 break;
4402 case PERF_EVENT_UPDATE__CPUS:
4403 ret += fprintf(fp, "... ");
4404
4405 map = cpu_map__new_data(&ev->cpus.cpus);
4406 if (map) {
4407 ret += cpu_map__fprintf(map, fp);
4408 perf_cpu_map__put(map);
4409 } else
4410 ret += fprintf(fp, "failed to get cpus\n");
4411 break;
4412 default:
4413 ret += fprintf(fp, "... unknown type\n");
4414 break;
4415 }
4416
4417 return ret;
4418}
4419
4420int perf_event__process_attr(const struct perf_tool *tool __maybe_unused,
4421 union perf_event *event,
4422 struct evlist **pevlist)
4423{
4424 u32 i, n_ids;
4425 u64 *ids;
4426 struct evsel *evsel;
4427 struct evlist *evlist = *pevlist;
4428
4429 if (evlist == NULL) {
4430 *pevlist = evlist = evlist__new();
4431 if (evlist == NULL)
4432 return -ENOMEM;
4433 }
4434
4435 evsel = evsel__new(&event->attr.attr);
4436 if (evsel == NULL)
4437 return -ENOMEM;
4438
4439 evlist__add(evlist, evsel);
4440
4441 n_ids = event->header.size - sizeof(event->header) - event->attr.attr.size;
4442 n_ids = n_ids / sizeof(u64);
4443 /*
4444 * We don't have the cpu and thread maps on the header, so
4445 * for allocating the perf_sample_id table we fake 1 cpu and
4446 * hattr->ids threads.
4447 */
4448 if (perf_evsel__alloc_id(&evsel->core, 1, n_ids))
4449 return -ENOMEM;
4450
4451 ids = perf_record_header_attr_id(event);
4452 for (i = 0; i < n_ids; i++) {
4453 perf_evlist__id_add(&evlist->core, &evsel->core, 0, i, ids[i]);
4454 }
4455
4456 return 0;
4457}
4458
4459int perf_event__process_event_update(const struct perf_tool *tool __maybe_unused,
4460 union perf_event *event,
4461 struct evlist **pevlist)
4462{
4463 struct perf_record_event_update *ev = &event->event_update;
4464 struct evlist *evlist;
4465 struct evsel *evsel;
4466 struct perf_cpu_map *map;
4467
4468 if (dump_trace)
4469 perf_event__fprintf_event_update(event, stdout);
4470
4471 if (!pevlist || *pevlist == NULL)
4472 return -EINVAL;
4473
4474 evlist = *pevlist;
4475
4476 evsel = evlist__id2evsel(evlist, ev->id);
4477 if (evsel == NULL)
4478 return -EINVAL;
4479
4480 switch (ev->type) {
4481 case PERF_EVENT_UPDATE__UNIT:
4482 free((char *)evsel->unit);
4483 evsel->unit = strdup(ev->unit);
4484 break;
4485 case PERF_EVENT_UPDATE__NAME:
4486 free(evsel->name);
4487 evsel->name = strdup(ev->name);
4488 break;
4489 case PERF_EVENT_UPDATE__SCALE:
4490 evsel->scale = ev->scale.scale;
4491 break;
4492 case PERF_EVENT_UPDATE__CPUS:
4493 map = cpu_map__new_data(&ev->cpus.cpus);
4494 if (map) {
4495 perf_cpu_map__put(evsel->core.own_cpus);
4496 evsel->core.own_cpus = map;
4497 } else
4498 pr_err("failed to get event_update cpus\n");
4499 default:
4500 break;
4501 }
4502
4503 return 0;
4504}
4505
4506#ifdef HAVE_LIBTRACEEVENT
4507int perf_event__process_tracing_data(struct perf_session *session,
4508 union perf_event *event)
4509{
4510 ssize_t size_read, padding, size = event->tracing_data.size;
4511 int fd = perf_data__fd(session->data);
4512 char buf[BUFSIZ];
4513
4514 /*
4515 * The pipe fd is already in proper place and in any case
4516 * we can't move it, and we'd screw the case where we read
4517 * 'pipe' data from regular file. The trace_report reads
4518 * data from 'fd' so we need to set it directly behind the
4519 * event, where the tracing data starts.
4520 */
4521 if (!perf_data__is_pipe(session->data)) {
4522 off_t offset = lseek(fd, 0, SEEK_CUR);
4523
4524 /* setup for reading amidst mmap */
4525 lseek(fd, offset + sizeof(struct perf_record_header_tracing_data),
4526 SEEK_SET);
4527 }
4528
4529 size_read = trace_report(fd, &session->tevent, session->trace_event_repipe);
4530 padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read;
4531
4532 if (readn(fd, buf, padding) < 0) {
4533 pr_err("%s: reading input file", __func__);
4534 return -1;
4535 }
4536 if (session->trace_event_repipe) {
4537 int retw = write(STDOUT_FILENO, buf, padding);
4538 if (retw <= 0 || retw != padding) {
4539 pr_err("%s: repiping tracing data padding", __func__);
4540 return -1;
4541 }
4542 }
4543
4544 if (size_read + padding != size) {
4545 pr_err("%s: tracing data size mismatch", __func__);
4546 return -1;
4547 }
4548
4549 evlist__prepare_tracepoint_events(session->evlist, session->tevent.pevent);
4550
4551 return size_read + padding;
4552}
4553#endif
4554
4555int perf_event__process_build_id(struct perf_session *session,
4556 union perf_event *event)
4557{
4558 __event_process_build_id(&event->build_id,
4559 event->build_id.filename,
4560 session);
4561 return 0;
4562}
1// SPDX-License-Identifier: GPL-2.0
2#include <errno.h>
3#include <inttypes.h>
4#include "string2.h"
5#include <sys/param.h>
6#include <sys/types.h>
7#include <byteswap.h>
8#include <unistd.h>
9#include <stdio.h>
10#include <stdlib.h>
11#include <linux/compiler.h>
12#include <linux/list.h>
13#include <linux/kernel.h>
14#include <linux/bitops.h>
15#include <linux/string.h>
16#include <linux/stringify.h>
17#include <linux/zalloc.h>
18#include <sys/stat.h>
19#include <sys/utsname.h>
20#include <linux/time64.h>
21#include <dirent.h>
22#include <bpf/libbpf.h>
23#include <perf/cpumap.h>
24
25#include "dso.h"
26#include "evlist.h"
27#include "evsel.h"
28#include "util/evsel_fprintf.h"
29#include "header.h"
30#include "memswap.h"
31#include "trace-event.h"
32#include "session.h"
33#include "symbol.h"
34#include "debug.h"
35#include "cpumap.h"
36#include "pmu.h"
37#include "vdso.h"
38#include "strbuf.h"
39#include "build-id.h"
40#include "data.h"
41#include <api/fs/fs.h>
42#include "asm/bug.h"
43#include "tool.h"
44#include "time-utils.h"
45#include "units.h"
46#include "util/util.h" // perf_exe()
47#include "cputopo.h"
48#include "bpf-event.h"
49
50#include <linux/ctype.h>
51#include <internal/lib.h>
52
53/*
54 * magic2 = "PERFILE2"
55 * must be a numerical value to let the endianness
56 * determine the memory layout. That way we are able
57 * to detect endianness when reading the perf.data file
58 * back.
59 *
60 * we check for legacy (PERFFILE) format.
61 */
62static const char *__perf_magic1 = "PERFFILE";
63static const u64 __perf_magic2 = 0x32454c4946524550ULL;
64static const u64 __perf_magic2_sw = 0x50455246494c4532ULL;
65
66#define PERF_MAGIC __perf_magic2
67
68const char perf_version_string[] = PERF_VERSION;
69
70struct perf_file_attr {
71 struct perf_event_attr attr;
72 struct perf_file_section ids;
73};
74
75void perf_header__set_feat(struct perf_header *header, int feat)
76{
77 set_bit(feat, header->adds_features);
78}
79
80void perf_header__clear_feat(struct perf_header *header, int feat)
81{
82 clear_bit(feat, header->adds_features);
83}
84
85bool perf_header__has_feat(const struct perf_header *header, int feat)
86{
87 return test_bit(feat, header->adds_features);
88}
89
90static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size)
91{
92 ssize_t ret = writen(ff->fd, buf, size);
93
94 if (ret != (ssize_t)size)
95 return ret < 0 ? (int)ret : -1;
96 return 0;
97}
98
99static int __do_write_buf(struct feat_fd *ff, const void *buf, size_t size)
100{
101 /* struct perf_event_header::size is u16 */
102 const size_t max_size = 0xffff - sizeof(struct perf_event_header);
103 size_t new_size = ff->size;
104 void *addr;
105
106 if (size + ff->offset > max_size)
107 return -E2BIG;
108
109 while (size > (new_size - ff->offset))
110 new_size <<= 1;
111 new_size = min(max_size, new_size);
112
113 if (ff->size < new_size) {
114 addr = realloc(ff->buf, new_size);
115 if (!addr)
116 return -ENOMEM;
117 ff->buf = addr;
118 ff->size = new_size;
119 }
120
121 memcpy(ff->buf + ff->offset, buf, size);
122 ff->offset += size;
123
124 return 0;
125}
126
127/* Return: 0 if succeded, -ERR if failed. */
128int do_write(struct feat_fd *ff, const void *buf, size_t size)
129{
130 if (!ff->buf)
131 return __do_write_fd(ff, buf, size);
132 return __do_write_buf(ff, buf, size);
133}
134
135/* Return: 0 if succeded, -ERR if failed. */
136static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size)
137{
138 u64 *p = (u64 *) set;
139 int i, ret;
140
141 ret = do_write(ff, &size, sizeof(size));
142 if (ret < 0)
143 return ret;
144
145 for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
146 ret = do_write(ff, p + i, sizeof(*p));
147 if (ret < 0)
148 return ret;
149 }
150
151 return 0;
152}
153
154/* Return: 0 if succeded, -ERR if failed. */
155int write_padded(struct feat_fd *ff, const void *bf,
156 size_t count, size_t count_aligned)
157{
158 static const char zero_buf[NAME_ALIGN];
159 int err = do_write(ff, bf, count);
160
161 if (!err)
162 err = do_write(ff, zero_buf, count_aligned - count);
163
164 return err;
165}
166
167#define string_size(str) \
168 (PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32))
169
170/* Return: 0 if succeded, -ERR if failed. */
171static int do_write_string(struct feat_fd *ff, const char *str)
172{
173 u32 len, olen;
174 int ret;
175
176 olen = strlen(str) + 1;
177 len = PERF_ALIGN(olen, NAME_ALIGN);
178
179 /* write len, incl. \0 */
180 ret = do_write(ff, &len, sizeof(len));
181 if (ret < 0)
182 return ret;
183
184 return write_padded(ff, str, olen, len);
185}
186
187static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size)
188{
189 ssize_t ret = readn(ff->fd, addr, size);
190
191 if (ret != size)
192 return ret < 0 ? (int)ret : -1;
193 return 0;
194}
195
196static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size)
197{
198 if (size > (ssize_t)ff->size - ff->offset)
199 return -1;
200
201 memcpy(addr, ff->buf + ff->offset, size);
202 ff->offset += size;
203
204 return 0;
205
206}
207
208static int __do_read(struct feat_fd *ff, void *addr, ssize_t size)
209{
210 if (!ff->buf)
211 return __do_read_fd(ff, addr, size);
212 return __do_read_buf(ff, addr, size);
213}
214
215static int do_read_u32(struct feat_fd *ff, u32 *addr)
216{
217 int ret;
218
219 ret = __do_read(ff, addr, sizeof(*addr));
220 if (ret)
221 return ret;
222
223 if (ff->ph->needs_swap)
224 *addr = bswap_32(*addr);
225 return 0;
226}
227
228static int do_read_u64(struct feat_fd *ff, u64 *addr)
229{
230 int ret;
231
232 ret = __do_read(ff, addr, sizeof(*addr));
233 if (ret)
234 return ret;
235
236 if (ff->ph->needs_swap)
237 *addr = bswap_64(*addr);
238 return 0;
239}
240
241static char *do_read_string(struct feat_fd *ff)
242{
243 u32 len;
244 char *buf;
245
246 if (do_read_u32(ff, &len))
247 return NULL;
248
249 buf = malloc(len);
250 if (!buf)
251 return NULL;
252
253 if (!__do_read(ff, buf, len)) {
254 /*
255 * strings are padded by zeroes
256 * thus the actual strlen of buf
257 * may be less than len
258 */
259 return buf;
260 }
261
262 free(buf);
263 return NULL;
264}
265
266/* Return: 0 if succeded, -ERR if failed. */
267static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize)
268{
269 unsigned long *set;
270 u64 size, *p;
271 int i, ret;
272
273 ret = do_read_u64(ff, &size);
274 if (ret)
275 return ret;
276
277 set = bitmap_alloc(size);
278 if (!set)
279 return -ENOMEM;
280
281 p = (u64 *) set;
282
283 for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
284 ret = do_read_u64(ff, p + i);
285 if (ret < 0) {
286 free(set);
287 return ret;
288 }
289 }
290
291 *pset = set;
292 *psize = size;
293 return 0;
294}
295
296static int write_tracing_data(struct feat_fd *ff,
297 struct evlist *evlist)
298{
299 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
300 return -1;
301
302 return read_tracing_data(ff->fd, &evlist->core.entries);
303}
304
305static int write_build_id(struct feat_fd *ff,
306 struct evlist *evlist __maybe_unused)
307{
308 struct perf_session *session;
309 int err;
310
311 session = container_of(ff->ph, struct perf_session, header);
312
313 if (!perf_session__read_build_ids(session, true))
314 return -1;
315
316 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
317 return -1;
318
319 err = perf_session__write_buildid_table(session, ff);
320 if (err < 0) {
321 pr_debug("failed to write buildid table\n");
322 return err;
323 }
324 perf_session__cache_build_ids(session);
325
326 return 0;
327}
328
329static int write_hostname(struct feat_fd *ff,
330 struct evlist *evlist __maybe_unused)
331{
332 struct utsname uts;
333 int ret;
334
335 ret = uname(&uts);
336 if (ret < 0)
337 return -1;
338
339 return do_write_string(ff, uts.nodename);
340}
341
342static int write_osrelease(struct feat_fd *ff,
343 struct evlist *evlist __maybe_unused)
344{
345 struct utsname uts;
346 int ret;
347
348 ret = uname(&uts);
349 if (ret < 0)
350 return -1;
351
352 return do_write_string(ff, uts.release);
353}
354
355static int write_arch(struct feat_fd *ff,
356 struct evlist *evlist __maybe_unused)
357{
358 struct utsname uts;
359 int ret;
360
361 ret = uname(&uts);
362 if (ret < 0)
363 return -1;
364
365 return do_write_string(ff, uts.machine);
366}
367
368static int write_version(struct feat_fd *ff,
369 struct evlist *evlist __maybe_unused)
370{
371 return do_write_string(ff, perf_version_string);
372}
373
374static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc)
375{
376 FILE *file;
377 char *buf = NULL;
378 char *s, *p;
379 const char *search = cpuinfo_proc;
380 size_t len = 0;
381 int ret = -1;
382
383 if (!search)
384 return -1;
385
386 file = fopen("/proc/cpuinfo", "r");
387 if (!file)
388 return -1;
389
390 while (getline(&buf, &len, file) > 0) {
391 ret = strncmp(buf, search, strlen(search));
392 if (!ret)
393 break;
394 }
395
396 if (ret) {
397 ret = -1;
398 goto done;
399 }
400
401 s = buf;
402
403 p = strchr(buf, ':');
404 if (p && *(p+1) == ' ' && *(p+2))
405 s = p + 2;
406 p = strchr(s, '\n');
407 if (p)
408 *p = '\0';
409
410 /* squash extra space characters (branding string) */
411 p = s;
412 while (*p) {
413 if (isspace(*p)) {
414 char *r = p + 1;
415 char *q = skip_spaces(r);
416 *p = ' ';
417 if (q != (p+1))
418 while ((*r++ = *q++));
419 }
420 p++;
421 }
422 ret = do_write_string(ff, s);
423done:
424 free(buf);
425 fclose(file);
426 return ret;
427}
428
429static int write_cpudesc(struct feat_fd *ff,
430 struct evlist *evlist __maybe_unused)
431{
432#if defined(__powerpc__) || defined(__hppa__) || defined(__sparc__)
433#define CPUINFO_PROC { "cpu", }
434#elif defined(__s390__)
435#define CPUINFO_PROC { "vendor_id", }
436#elif defined(__sh__)
437#define CPUINFO_PROC { "cpu type", }
438#elif defined(__alpha__) || defined(__mips__)
439#define CPUINFO_PROC { "cpu model", }
440#elif defined(__arm__)
441#define CPUINFO_PROC { "model name", "Processor", }
442#elif defined(__arc__)
443#define CPUINFO_PROC { "Processor", }
444#elif defined(__xtensa__)
445#define CPUINFO_PROC { "core ID", }
446#else
447#define CPUINFO_PROC { "model name", }
448#endif
449 const char *cpuinfo_procs[] = CPUINFO_PROC;
450#undef CPUINFO_PROC
451 unsigned int i;
452
453 for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) {
454 int ret;
455 ret = __write_cpudesc(ff, cpuinfo_procs[i]);
456 if (ret >= 0)
457 return ret;
458 }
459 return -1;
460}
461
462
463static int write_nrcpus(struct feat_fd *ff,
464 struct evlist *evlist __maybe_unused)
465{
466 long nr;
467 u32 nrc, nra;
468 int ret;
469
470 nrc = cpu__max_present_cpu();
471
472 nr = sysconf(_SC_NPROCESSORS_ONLN);
473 if (nr < 0)
474 return -1;
475
476 nra = (u32)(nr & UINT_MAX);
477
478 ret = do_write(ff, &nrc, sizeof(nrc));
479 if (ret < 0)
480 return ret;
481
482 return do_write(ff, &nra, sizeof(nra));
483}
484
485static int write_event_desc(struct feat_fd *ff,
486 struct evlist *evlist)
487{
488 struct evsel *evsel;
489 u32 nre, nri, sz;
490 int ret;
491
492 nre = evlist->core.nr_entries;
493
494 /*
495 * write number of events
496 */
497 ret = do_write(ff, &nre, sizeof(nre));
498 if (ret < 0)
499 return ret;
500
501 /*
502 * size of perf_event_attr struct
503 */
504 sz = (u32)sizeof(evsel->core.attr);
505 ret = do_write(ff, &sz, sizeof(sz));
506 if (ret < 0)
507 return ret;
508
509 evlist__for_each_entry(evlist, evsel) {
510 ret = do_write(ff, &evsel->core.attr, sz);
511 if (ret < 0)
512 return ret;
513 /*
514 * write number of unique id per event
515 * there is one id per instance of an event
516 *
517 * copy into an nri to be independent of the
518 * type of ids,
519 */
520 nri = evsel->core.ids;
521 ret = do_write(ff, &nri, sizeof(nri));
522 if (ret < 0)
523 return ret;
524
525 /*
526 * write event string as passed on cmdline
527 */
528 ret = do_write_string(ff, perf_evsel__name(evsel));
529 if (ret < 0)
530 return ret;
531 /*
532 * write unique ids for this event
533 */
534 ret = do_write(ff, evsel->core.id, evsel->core.ids * sizeof(u64));
535 if (ret < 0)
536 return ret;
537 }
538 return 0;
539}
540
541static int write_cmdline(struct feat_fd *ff,
542 struct evlist *evlist __maybe_unused)
543{
544 char pbuf[MAXPATHLEN], *buf;
545 int i, ret, n;
546
547 /* actual path to perf binary */
548 buf = perf_exe(pbuf, MAXPATHLEN);
549
550 /* account for binary path */
551 n = perf_env.nr_cmdline + 1;
552
553 ret = do_write(ff, &n, sizeof(n));
554 if (ret < 0)
555 return ret;
556
557 ret = do_write_string(ff, buf);
558 if (ret < 0)
559 return ret;
560
561 for (i = 0 ; i < perf_env.nr_cmdline; i++) {
562 ret = do_write_string(ff, perf_env.cmdline_argv[i]);
563 if (ret < 0)
564 return ret;
565 }
566 return 0;
567}
568
569
570static int write_cpu_topology(struct feat_fd *ff,
571 struct evlist *evlist __maybe_unused)
572{
573 struct cpu_topology *tp;
574 u32 i;
575 int ret, j;
576
577 tp = cpu_topology__new();
578 if (!tp)
579 return -1;
580
581 ret = do_write(ff, &tp->core_sib, sizeof(tp->core_sib));
582 if (ret < 0)
583 goto done;
584
585 for (i = 0; i < tp->core_sib; i++) {
586 ret = do_write_string(ff, tp->core_siblings[i]);
587 if (ret < 0)
588 goto done;
589 }
590 ret = do_write(ff, &tp->thread_sib, sizeof(tp->thread_sib));
591 if (ret < 0)
592 goto done;
593
594 for (i = 0; i < tp->thread_sib; i++) {
595 ret = do_write_string(ff, tp->thread_siblings[i]);
596 if (ret < 0)
597 break;
598 }
599
600 ret = perf_env__read_cpu_topology_map(&perf_env);
601 if (ret < 0)
602 goto done;
603
604 for (j = 0; j < perf_env.nr_cpus_avail; j++) {
605 ret = do_write(ff, &perf_env.cpu[j].core_id,
606 sizeof(perf_env.cpu[j].core_id));
607 if (ret < 0)
608 return ret;
609 ret = do_write(ff, &perf_env.cpu[j].socket_id,
610 sizeof(perf_env.cpu[j].socket_id));
611 if (ret < 0)
612 return ret;
613 }
614
615 if (!tp->die_sib)
616 goto done;
617
618 ret = do_write(ff, &tp->die_sib, sizeof(tp->die_sib));
619 if (ret < 0)
620 goto done;
621
622 for (i = 0; i < tp->die_sib; i++) {
623 ret = do_write_string(ff, tp->die_siblings[i]);
624 if (ret < 0)
625 goto done;
626 }
627
628 for (j = 0; j < perf_env.nr_cpus_avail; j++) {
629 ret = do_write(ff, &perf_env.cpu[j].die_id,
630 sizeof(perf_env.cpu[j].die_id));
631 if (ret < 0)
632 return ret;
633 }
634
635done:
636 cpu_topology__delete(tp);
637 return ret;
638}
639
640
641
642static int write_total_mem(struct feat_fd *ff,
643 struct evlist *evlist __maybe_unused)
644{
645 char *buf = NULL;
646 FILE *fp;
647 size_t len = 0;
648 int ret = -1, n;
649 uint64_t mem;
650
651 fp = fopen("/proc/meminfo", "r");
652 if (!fp)
653 return -1;
654
655 while (getline(&buf, &len, fp) > 0) {
656 ret = strncmp(buf, "MemTotal:", 9);
657 if (!ret)
658 break;
659 }
660 if (!ret) {
661 n = sscanf(buf, "%*s %"PRIu64, &mem);
662 if (n == 1)
663 ret = do_write(ff, &mem, sizeof(mem));
664 } else
665 ret = -1;
666 free(buf);
667 fclose(fp);
668 return ret;
669}
670
671static int write_numa_topology(struct feat_fd *ff,
672 struct evlist *evlist __maybe_unused)
673{
674 struct numa_topology *tp;
675 int ret = -1;
676 u32 i;
677
678 tp = numa_topology__new();
679 if (!tp)
680 return -ENOMEM;
681
682 ret = do_write(ff, &tp->nr, sizeof(u32));
683 if (ret < 0)
684 goto err;
685
686 for (i = 0; i < tp->nr; i++) {
687 struct numa_topology_node *n = &tp->nodes[i];
688
689 ret = do_write(ff, &n->node, sizeof(u32));
690 if (ret < 0)
691 goto err;
692
693 ret = do_write(ff, &n->mem_total, sizeof(u64));
694 if (ret)
695 goto err;
696
697 ret = do_write(ff, &n->mem_free, sizeof(u64));
698 if (ret)
699 goto err;
700
701 ret = do_write_string(ff, n->cpus);
702 if (ret < 0)
703 goto err;
704 }
705
706 ret = 0;
707
708err:
709 numa_topology__delete(tp);
710 return ret;
711}
712
713/*
714 * File format:
715 *
716 * struct pmu_mappings {
717 * u32 pmu_num;
718 * struct pmu_map {
719 * u32 type;
720 * char name[];
721 * }[pmu_num];
722 * };
723 */
724
725static int write_pmu_mappings(struct feat_fd *ff,
726 struct evlist *evlist __maybe_unused)
727{
728 struct perf_pmu *pmu = NULL;
729 u32 pmu_num = 0;
730 int ret;
731
732 /*
733 * Do a first pass to count number of pmu to avoid lseek so this
734 * works in pipe mode as well.
735 */
736 while ((pmu = perf_pmu__scan(pmu))) {
737 if (!pmu->name)
738 continue;
739 pmu_num++;
740 }
741
742 ret = do_write(ff, &pmu_num, sizeof(pmu_num));
743 if (ret < 0)
744 return ret;
745
746 while ((pmu = perf_pmu__scan(pmu))) {
747 if (!pmu->name)
748 continue;
749
750 ret = do_write(ff, &pmu->type, sizeof(pmu->type));
751 if (ret < 0)
752 return ret;
753
754 ret = do_write_string(ff, pmu->name);
755 if (ret < 0)
756 return ret;
757 }
758
759 return 0;
760}
761
762/*
763 * File format:
764 *
765 * struct group_descs {
766 * u32 nr_groups;
767 * struct group_desc {
768 * char name[];
769 * u32 leader_idx;
770 * u32 nr_members;
771 * }[nr_groups];
772 * };
773 */
774static int write_group_desc(struct feat_fd *ff,
775 struct evlist *evlist)
776{
777 u32 nr_groups = evlist->nr_groups;
778 struct evsel *evsel;
779 int ret;
780
781 ret = do_write(ff, &nr_groups, sizeof(nr_groups));
782 if (ret < 0)
783 return ret;
784
785 evlist__for_each_entry(evlist, evsel) {
786 if (perf_evsel__is_group_leader(evsel) &&
787 evsel->core.nr_members > 1) {
788 const char *name = evsel->group_name ?: "{anon_group}";
789 u32 leader_idx = evsel->idx;
790 u32 nr_members = evsel->core.nr_members;
791
792 ret = do_write_string(ff, name);
793 if (ret < 0)
794 return ret;
795
796 ret = do_write(ff, &leader_idx, sizeof(leader_idx));
797 if (ret < 0)
798 return ret;
799
800 ret = do_write(ff, &nr_members, sizeof(nr_members));
801 if (ret < 0)
802 return ret;
803 }
804 }
805 return 0;
806}
807
808/*
809 * Return the CPU id as a raw string.
810 *
811 * Each architecture should provide a more precise id string that
812 * can be use to match the architecture's "mapfile".
813 */
814char * __weak get_cpuid_str(struct perf_pmu *pmu __maybe_unused)
815{
816 return NULL;
817}
818
819/* Return zero when the cpuid from the mapfile.csv matches the
820 * cpuid string generated on this platform.
821 * Otherwise return non-zero.
822 */
823int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid)
824{
825 regex_t re;
826 regmatch_t pmatch[1];
827 int match;
828
829 if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) {
830 /* Warn unable to generate match particular string. */
831 pr_info("Invalid regular expression %s\n", mapcpuid);
832 return 1;
833 }
834
835 match = !regexec(&re, cpuid, 1, pmatch, 0);
836 regfree(&re);
837 if (match) {
838 size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so);
839
840 /* Verify the entire string matched. */
841 if (match_len == strlen(cpuid))
842 return 0;
843 }
844 return 1;
845}
846
847/*
848 * default get_cpuid(): nothing gets recorded
849 * actual implementation must be in arch/$(SRCARCH)/util/header.c
850 */
851int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused)
852{
853 return -1;
854}
855
856static int write_cpuid(struct feat_fd *ff,
857 struct evlist *evlist __maybe_unused)
858{
859 char buffer[64];
860 int ret;
861
862 ret = get_cpuid(buffer, sizeof(buffer));
863 if (ret)
864 return -1;
865
866 return do_write_string(ff, buffer);
867}
868
869static int write_branch_stack(struct feat_fd *ff __maybe_unused,
870 struct evlist *evlist __maybe_unused)
871{
872 return 0;
873}
874
875static int write_auxtrace(struct feat_fd *ff,
876 struct evlist *evlist __maybe_unused)
877{
878 struct perf_session *session;
879 int err;
880
881 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
882 return -1;
883
884 session = container_of(ff->ph, struct perf_session, header);
885
886 err = auxtrace_index__write(ff->fd, &session->auxtrace_index);
887 if (err < 0)
888 pr_err("Failed to write auxtrace index\n");
889 return err;
890}
891
892static int write_clockid(struct feat_fd *ff,
893 struct evlist *evlist __maybe_unused)
894{
895 return do_write(ff, &ff->ph->env.clockid_res_ns,
896 sizeof(ff->ph->env.clockid_res_ns));
897}
898
899static int write_dir_format(struct feat_fd *ff,
900 struct evlist *evlist __maybe_unused)
901{
902 struct perf_session *session;
903 struct perf_data *data;
904
905 session = container_of(ff->ph, struct perf_session, header);
906 data = session->data;
907
908 if (WARN_ON(!perf_data__is_dir(data)))
909 return -1;
910
911 return do_write(ff, &data->dir.version, sizeof(data->dir.version));
912}
913
914#ifdef HAVE_LIBBPF_SUPPORT
915static int write_bpf_prog_info(struct feat_fd *ff,
916 struct evlist *evlist __maybe_unused)
917{
918 struct perf_env *env = &ff->ph->env;
919 struct rb_root *root;
920 struct rb_node *next;
921 int ret;
922
923 down_read(&env->bpf_progs.lock);
924
925 ret = do_write(ff, &env->bpf_progs.infos_cnt,
926 sizeof(env->bpf_progs.infos_cnt));
927 if (ret < 0)
928 goto out;
929
930 root = &env->bpf_progs.infos;
931 next = rb_first(root);
932 while (next) {
933 struct bpf_prog_info_node *node;
934 size_t len;
935
936 node = rb_entry(next, struct bpf_prog_info_node, rb_node);
937 next = rb_next(&node->rb_node);
938 len = sizeof(struct bpf_prog_info_linear) +
939 node->info_linear->data_len;
940
941 /* before writing to file, translate address to offset */
942 bpf_program__bpil_addr_to_offs(node->info_linear);
943 ret = do_write(ff, node->info_linear, len);
944 /*
945 * translate back to address even when do_write() fails,
946 * so that this function never changes the data.
947 */
948 bpf_program__bpil_offs_to_addr(node->info_linear);
949 if (ret < 0)
950 goto out;
951 }
952out:
953 up_read(&env->bpf_progs.lock);
954 return ret;
955}
956#else // HAVE_LIBBPF_SUPPORT
957static int write_bpf_prog_info(struct feat_fd *ff __maybe_unused,
958 struct evlist *evlist __maybe_unused)
959{
960 return 0;
961}
962#endif // HAVE_LIBBPF_SUPPORT
963
964static int write_bpf_btf(struct feat_fd *ff,
965 struct evlist *evlist __maybe_unused)
966{
967 struct perf_env *env = &ff->ph->env;
968 struct rb_root *root;
969 struct rb_node *next;
970 int ret;
971
972 down_read(&env->bpf_progs.lock);
973
974 ret = do_write(ff, &env->bpf_progs.btfs_cnt,
975 sizeof(env->bpf_progs.btfs_cnt));
976
977 if (ret < 0)
978 goto out;
979
980 root = &env->bpf_progs.btfs;
981 next = rb_first(root);
982 while (next) {
983 struct btf_node *node;
984
985 node = rb_entry(next, struct btf_node, rb_node);
986 next = rb_next(&node->rb_node);
987 ret = do_write(ff, &node->id,
988 sizeof(u32) * 2 + node->data_size);
989 if (ret < 0)
990 goto out;
991 }
992out:
993 up_read(&env->bpf_progs.lock);
994 return ret;
995}
996
997static int cpu_cache_level__sort(const void *a, const void *b)
998{
999 struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a;
1000 struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b;
1001
1002 return cache_a->level - cache_b->level;
1003}
1004
1005static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b)
1006{
1007 if (a->level != b->level)
1008 return false;
1009
1010 if (a->line_size != b->line_size)
1011 return false;
1012
1013 if (a->sets != b->sets)
1014 return false;
1015
1016 if (a->ways != b->ways)
1017 return false;
1018
1019 if (strcmp(a->type, b->type))
1020 return false;
1021
1022 if (strcmp(a->size, b->size))
1023 return false;
1024
1025 if (strcmp(a->map, b->map))
1026 return false;
1027
1028 return true;
1029}
1030
1031static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level)
1032{
1033 char path[PATH_MAX], file[PATH_MAX];
1034 struct stat st;
1035 size_t len;
1036
1037 scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level);
1038 scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path);
1039
1040 if (stat(file, &st))
1041 return 1;
1042
1043 scnprintf(file, PATH_MAX, "%s/level", path);
1044 if (sysfs__read_int(file, (int *) &cache->level))
1045 return -1;
1046
1047 scnprintf(file, PATH_MAX, "%s/coherency_line_size", path);
1048 if (sysfs__read_int(file, (int *) &cache->line_size))
1049 return -1;
1050
1051 scnprintf(file, PATH_MAX, "%s/number_of_sets", path);
1052 if (sysfs__read_int(file, (int *) &cache->sets))
1053 return -1;
1054
1055 scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path);
1056 if (sysfs__read_int(file, (int *) &cache->ways))
1057 return -1;
1058
1059 scnprintf(file, PATH_MAX, "%s/type", path);
1060 if (sysfs__read_str(file, &cache->type, &len))
1061 return -1;
1062
1063 cache->type[len] = 0;
1064 cache->type = strim(cache->type);
1065
1066 scnprintf(file, PATH_MAX, "%s/size", path);
1067 if (sysfs__read_str(file, &cache->size, &len)) {
1068 zfree(&cache->type);
1069 return -1;
1070 }
1071
1072 cache->size[len] = 0;
1073 cache->size = strim(cache->size);
1074
1075 scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path);
1076 if (sysfs__read_str(file, &cache->map, &len)) {
1077 zfree(&cache->size);
1078 zfree(&cache->type);
1079 return -1;
1080 }
1081
1082 cache->map[len] = 0;
1083 cache->map = strim(cache->map);
1084 return 0;
1085}
1086
1087static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c)
1088{
1089 fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map);
1090}
1091
1092static int build_caches(struct cpu_cache_level caches[], u32 size, u32 *cntp)
1093{
1094 u32 i, cnt = 0;
1095 long ncpus;
1096 u32 nr, cpu;
1097 u16 level;
1098
1099 ncpus = sysconf(_SC_NPROCESSORS_CONF);
1100 if (ncpus < 0)
1101 return -1;
1102
1103 nr = (u32)(ncpus & UINT_MAX);
1104
1105 for (cpu = 0; cpu < nr; cpu++) {
1106 for (level = 0; level < 10; level++) {
1107 struct cpu_cache_level c;
1108 int err;
1109
1110 err = cpu_cache_level__read(&c, cpu, level);
1111 if (err < 0)
1112 return err;
1113
1114 if (err == 1)
1115 break;
1116
1117 for (i = 0; i < cnt; i++) {
1118 if (cpu_cache_level__cmp(&c, &caches[i]))
1119 break;
1120 }
1121
1122 if (i == cnt)
1123 caches[cnt++] = c;
1124 else
1125 cpu_cache_level__free(&c);
1126
1127 if (WARN_ONCE(cnt == size, "way too many cpu caches.."))
1128 goto out;
1129 }
1130 }
1131 out:
1132 *cntp = cnt;
1133 return 0;
1134}
1135
1136#define MAX_CACHE_LVL 4
1137
1138static int write_cache(struct feat_fd *ff,
1139 struct evlist *evlist __maybe_unused)
1140{
1141 u32 max_caches = cpu__max_cpu() * MAX_CACHE_LVL;
1142 struct cpu_cache_level caches[max_caches];
1143 u32 cnt = 0, i, version = 1;
1144 int ret;
1145
1146 ret = build_caches(caches, max_caches, &cnt);
1147 if (ret)
1148 goto out;
1149
1150 qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort);
1151
1152 ret = do_write(ff, &version, sizeof(u32));
1153 if (ret < 0)
1154 goto out;
1155
1156 ret = do_write(ff, &cnt, sizeof(u32));
1157 if (ret < 0)
1158 goto out;
1159
1160 for (i = 0; i < cnt; i++) {
1161 struct cpu_cache_level *c = &caches[i];
1162
1163 #define _W(v) \
1164 ret = do_write(ff, &c->v, sizeof(u32)); \
1165 if (ret < 0) \
1166 goto out;
1167
1168 _W(level)
1169 _W(line_size)
1170 _W(sets)
1171 _W(ways)
1172 #undef _W
1173
1174 #define _W(v) \
1175 ret = do_write_string(ff, (const char *) c->v); \
1176 if (ret < 0) \
1177 goto out;
1178
1179 _W(type)
1180 _W(size)
1181 _W(map)
1182 #undef _W
1183 }
1184
1185out:
1186 for (i = 0; i < cnt; i++)
1187 cpu_cache_level__free(&caches[i]);
1188 return ret;
1189}
1190
1191static int write_stat(struct feat_fd *ff __maybe_unused,
1192 struct evlist *evlist __maybe_unused)
1193{
1194 return 0;
1195}
1196
1197static int write_sample_time(struct feat_fd *ff,
1198 struct evlist *evlist)
1199{
1200 int ret;
1201
1202 ret = do_write(ff, &evlist->first_sample_time,
1203 sizeof(evlist->first_sample_time));
1204 if (ret < 0)
1205 return ret;
1206
1207 return do_write(ff, &evlist->last_sample_time,
1208 sizeof(evlist->last_sample_time));
1209}
1210
1211
1212static int memory_node__read(struct memory_node *n, unsigned long idx)
1213{
1214 unsigned int phys, size = 0;
1215 char path[PATH_MAX];
1216 struct dirent *ent;
1217 DIR *dir;
1218
1219#define for_each_memory(mem, dir) \
1220 while ((ent = readdir(dir))) \
1221 if (strcmp(ent->d_name, ".") && \
1222 strcmp(ent->d_name, "..") && \
1223 sscanf(ent->d_name, "memory%u", &mem) == 1)
1224
1225 scnprintf(path, PATH_MAX,
1226 "%s/devices/system/node/node%lu",
1227 sysfs__mountpoint(), idx);
1228
1229 dir = opendir(path);
1230 if (!dir) {
1231 pr_warning("failed: cant' open memory sysfs data\n");
1232 return -1;
1233 }
1234
1235 for_each_memory(phys, dir) {
1236 size = max(phys, size);
1237 }
1238
1239 size++;
1240
1241 n->set = bitmap_alloc(size);
1242 if (!n->set) {
1243 closedir(dir);
1244 return -ENOMEM;
1245 }
1246
1247 n->node = idx;
1248 n->size = size;
1249
1250 rewinddir(dir);
1251
1252 for_each_memory(phys, dir) {
1253 set_bit(phys, n->set);
1254 }
1255
1256 closedir(dir);
1257 return 0;
1258}
1259
1260static int memory_node__sort(const void *a, const void *b)
1261{
1262 const struct memory_node *na = a;
1263 const struct memory_node *nb = b;
1264
1265 return na->node - nb->node;
1266}
1267
1268static int build_mem_topology(struct memory_node *nodes, u64 size, u64 *cntp)
1269{
1270 char path[PATH_MAX];
1271 struct dirent *ent;
1272 DIR *dir;
1273 u64 cnt = 0;
1274 int ret = 0;
1275
1276 scnprintf(path, PATH_MAX, "%s/devices/system/node/",
1277 sysfs__mountpoint());
1278
1279 dir = opendir(path);
1280 if (!dir) {
1281 pr_debug2("%s: could't read %s, does this arch have topology information?\n",
1282 __func__, path);
1283 return -1;
1284 }
1285
1286 while (!ret && (ent = readdir(dir))) {
1287 unsigned int idx;
1288 int r;
1289
1290 if (!strcmp(ent->d_name, ".") ||
1291 !strcmp(ent->d_name, ".."))
1292 continue;
1293
1294 r = sscanf(ent->d_name, "node%u", &idx);
1295 if (r != 1)
1296 continue;
1297
1298 if (WARN_ONCE(cnt >= size,
1299 "failed to write MEM_TOPOLOGY, way too many nodes\n")) {
1300 closedir(dir);
1301 return -1;
1302 }
1303
1304 ret = memory_node__read(&nodes[cnt++], idx);
1305 }
1306
1307 *cntp = cnt;
1308 closedir(dir);
1309
1310 if (!ret)
1311 qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort);
1312
1313 return ret;
1314}
1315
1316#define MAX_MEMORY_NODES 2000
1317
1318/*
1319 * The MEM_TOPOLOGY holds physical memory map for every
1320 * node in system. The format of data is as follows:
1321 *
1322 * 0 - version | for future changes
1323 * 8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes
1324 * 16 - count | number of nodes
1325 *
1326 * For each node we store map of physical indexes for
1327 * each node:
1328 *
1329 * 32 - node id | node index
1330 * 40 - size | size of bitmap
1331 * 48 - bitmap | bitmap of memory indexes that belongs to node
1332 */
1333static int write_mem_topology(struct feat_fd *ff __maybe_unused,
1334 struct evlist *evlist __maybe_unused)
1335{
1336 static struct memory_node nodes[MAX_MEMORY_NODES];
1337 u64 bsize, version = 1, i, nr;
1338 int ret;
1339
1340 ret = sysfs__read_xll("devices/system/memory/block_size_bytes",
1341 (unsigned long long *) &bsize);
1342 if (ret)
1343 return ret;
1344
1345 ret = build_mem_topology(&nodes[0], MAX_MEMORY_NODES, &nr);
1346 if (ret)
1347 return ret;
1348
1349 ret = do_write(ff, &version, sizeof(version));
1350 if (ret < 0)
1351 goto out;
1352
1353 ret = do_write(ff, &bsize, sizeof(bsize));
1354 if (ret < 0)
1355 goto out;
1356
1357 ret = do_write(ff, &nr, sizeof(nr));
1358 if (ret < 0)
1359 goto out;
1360
1361 for (i = 0; i < nr; i++) {
1362 struct memory_node *n = &nodes[i];
1363
1364 #define _W(v) \
1365 ret = do_write(ff, &n->v, sizeof(n->v)); \
1366 if (ret < 0) \
1367 goto out;
1368
1369 _W(node)
1370 _W(size)
1371
1372 #undef _W
1373
1374 ret = do_write_bitmap(ff, n->set, n->size);
1375 if (ret < 0)
1376 goto out;
1377 }
1378
1379out:
1380 return ret;
1381}
1382
1383static int write_compressed(struct feat_fd *ff __maybe_unused,
1384 struct evlist *evlist __maybe_unused)
1385{
1386 int ret;
1387
1388 ret = do_write(ff, &(ff->ph->env.comp_ver), sizeof(ff->ph->env.comp_ver));
1389 if (ret)
1390 return ret;
1391
1392 ret = do_write(ff, &(ff->ph->env.comp_type), sizeof(ff->ph->env.comp_type));
1393 if (ret)
1394 return ret;
1395
1396 ret = do_write(ff, &(ff->ph->env.comp_level), sizeof(ff->ph->env.comp_level));
1397 if (ret)
1398 return ret;
1399
1400 ret = do_write(ff, &(ff->ph->env.comp_ratio), sizeof(ff->ph->env.comp_ratio));
1401 if (ret)
1402 return ret;
1403
1404 return do_write(ff, &(ff->ph->env.comp_mmap_len), sizeof(ff->ph->env.comp_mmap_len));
1405}
1406
1407static void print_hostname(struct feat_fd *ff, FILE *fp)
1408{
1409 fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname);
1410}
1411
1412static void print_osrelease(struct feat_fd *ff, FILE *fp)
1413{
1414 fprintf(fp, "# os release : %s\n", ff->ph->env.os_release);
1415}
1416
1417static void print_arch(struct feat_fd *ff, FILE *fp)
1418{
1419 fprintf(fp, "# arch : %s\n", ff->ph->env.arch);
1420}
1421
1422static void print_cpudesc(struct feat_fd *ff, FILE *fp)
1423{
1424 fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc);
1425}
1426
1427static void print_nrcpus(struct feat_fd *ff, FILE *fp)
1428{
1429 fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online);
1430 fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail);
1431}
1432
1433static void print_version(struct feat_fd *ff, FILE *fp)
1434{
1435 fprintf(fp, "# perf version : %s\n", ff->ph->env.version);
1436}
1437
1438static void print_cmdline(struct feat_fd *ff, FILE *fp)
1439{
1440 int nr, i;
1441
1442 nr = ff->ph->env.nr_cmdline;
1443
1444 fprintf(fp, "# cmdline : ");
1445
1446 for (i = 0; i < nr; i++) {
1447 char *argv_i = strdup(ff->ph->env.cmdline_argv[i]);
1448 if (!argv_i) {
1449 fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]);
1450 } else {
1451 char *mem = argv_i;
1452 do {
1453 char *quote = strchr(argv_i, '\'');
1454 if (!quote)
1455 break;
1456 *quote++ = '\0';
1457 fprintf(fp, "%s\\\'", argv_i);
1458 argv_i = quote;
1459 } while (1);
1460 fprintf(fp, "%s ", argv_i);
1461 free(mem);
1462 }
1463 }
1464 fputc('\n', fp);
1465}
1466
1467static void print_cpu_topology(struct feat_fd *ff, FILE *fp)
1468{
1469 struct perf_header *ph = ff->ph;
1470 int cpu_nr = ph->env.nr_cpus_avail;
1471 int nr, i;
1472 char *str;
1473
1474 nr = ph->env.nr_sibling_cores;
1475 str = ph->env.sibling_cores;
1476
1477 for (i = 0; i < nr; i++) {
1478 fprintf(fp, "# sibling sockets : %s\n", str);
1479 str += strlen(str) + 1;
1480 }
1481
1482 if (ph->env.nr_sibling_dies) {
1483 nr = ph->env.nr_sibling_dies;
1484 str = ph->env.sibling_dies;
1485
1486 for (i = 0; i < nr; i++) {
1487 fprintf(fp, "# sibling dies : %s\n", str);
1488 str += strlen(str) + 1;
1489 }
1490 }
1491
1492 nr = ph->env.nr_sibling_threads;
1493 str = ph->env.sibling_threads;
1494
1495 for (i = 0; i < nr; i++) {
1496 fprintf(fp, "# sibling threads : %s\n", str);
1497 str += strlen(str) + 1;
1498 }
1499
1500 if (ph->env.nr_sibling_dies) {
1501 if (ph->env.cpu != NULL) {
1502 for (i = 0; i < cpu_nr; i++)
1503 fprintf(fp, "# CPU %d: Core ID %d, "
1504 "Die ID %d, Socket ID %d\n",
1505 i, ph->env.cpu[i].core_id,
1506 ph->env.cpu[i].die_id,
1507 ph->env.cpu[i].socket_id);
1508 } else
1509 fprintf(fp, "# Core ID, Die ID and Socket ID "
1510 "information is not available\n");
1511 } else {
1512 if (ph->env.cpu != NULL) {
1513 for (i = 0; i < cpu_nr; i++)
1514 fprintf(fp, "# CPU %d: Core ID %d, "
1515 "Socket ID %d\n",
1516 i, ph->env.cpu[i].core_id,
1517 ph->env.cpu[i].socket_id);
1518 } else
1519 fprintf(fp, "# Core ID and Socket ID "
1520 "information is not available\n");
1521 }
1522}
1523
1524static void print_clockid(struct feat_fd *ff, FILE *fp)
1525{
1526 fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n",
1527 ff->ph->env.clockid_res_ns * 1000);
1528}
1529
1530static void print_dir_format(struct feat_fd *ff, FILE *fp)
1531{
1532 struct perf_session *session;
1533 struct perf_data *data;
1534
1535 session = container_of(ff->ph, struct perf_session, header);
1536 data = session->data;
1537
1538 fprintf(fp, "# directory data version : %"PRIu64"\n", data->dir.version);
1539}
1540
1541static void print_bpf_prog_info(struct feat_fd *ff, FILE *fp)
1542{
1543 struct perf_env *env = &ff->ph->env;
1544 struct rb_root *root;
1545 struct rb_node *next;
1546
1547 down_read(&env->bpf_progs.lock);
1548
1549 root = &env->bpf_progs.infos;
1550 next = rb_first(root);
1551
1552 while (next) {
1553 struct bpf_prog_info_node *node;
1554
1555 node = rb_entry(next, struct bpf_prog_info_node, rb_node);
1556 next = rb_next(&node->rb_node);
1557
1558 bpf_event__print_bpf_prog_info(&node->info_linear->info,
1559 env, fp);
1560 }
1561
1562 up_read(&env->bpf_progs.lock);
1563}
1564
1565static void print_bpf_btf(struct feat_fd *ff, FILE *fp)
1566{
1567 struct perf_env *env = &ff->ph->env;
1568 struct rb_root *root;
1569 struct rb_node *next;
1570
1571 down_read(&env->bpf_progs.lock);
1572
1573 root = &env->bpf_progs.btfs;
1574 next = rb_first(root);
1575
1576 while (next) {
1577 struct btf_node *node;
1578
1579 node = rb_entry(next, struct btf_node, rb_node);
1580 next = rb_next(&node->rb_node);
1581 fprintf(fp, "# btf info of id %u\n", node->id);
1582 }
1583
1584 up_read(&env->bpf_progs.lock);
1585}
1586
1587static void free_event_desc(struct evsel *events)
1588{
1589 struct evsel *evsel;
1590
1591 if (!events)
1592 return;
1593
1594 for (evsel = events; evsel->core.attr.size; evsel++) {
1595 zfree(&evsel->name);
1596 zfree(&evsel->core.id);
1597 }
1598
1599 free(events);
1600}
1601
1602static struct evsel *read_event_desc(struct feat_fd *ff)
1603{
1604 struct evsel *evsel, *events = NULL;
1605 u64 *id;
1606 void *buf = NULL;
1607 u32 nre, sz, nr, i, j;
1608 size_t msz;
1609
1610 /* number of events */
1611 if (do_read_u32(ff, &nre))
1612 goto error;
1613
1614 if (do_read_u32(ff, &sz))
1615 goto error;
1616
1617 /* buffer to hold on file attr struct */
1618 buf = malloc(sz);
1619 if (!buf)
1620 goto error;
1621
1622 /* the last event terminates with evsel->core.attr.size == 0: */
1623 events = calloc(nre + 1, sizeof(*events));
1624 if (!events)
1625 goto error;
1626
1627 msz = sizeof(evsel->core.attr);
1628 if (sz < msz)
1629 msz = sz;
1630
1631 for (i = 0, evsel = events; i < nre; evsel++, i++) {
1632 evsel->idx = i;
1633
1634 /*
1635 * must read entire on-file attr struct to
1636 * sync up with layout.
1637 */
1638 if (__do_read(ff, buf, sz))
1639 goto error;
1640
1641 if (ff->ph->needs_swap)
1642 perf_event__attr_swap(buf);
1643
1644 memcpy(&evsel->core.attr, buf, msz);
1645
1646 if (do_read_u32(ff, &nr))
1647 goto error;
1648
1649 if (ff->ph->needs_swap)
1650 evsel->needs_swap = true;
1651
1652 evsel->name = do_read_string(ff);
1653 if (!evsel->name)
1654 goto error;
1655
1656 if (!nr)
1657 continue;
1658
1659 id = calloc(nr, sizeof(*id));
1660 if (!id)
1661 goto error;
1662 evsel->core.ids = nr;
1663 evsel->core.id = id;
1664
1665 for (j = 0 ; j < nr; j++) {
1666 if (do_read_u64(ff, id))
1667 goto error;
1668 id++;
1669 }
1670 }
1671out:
1672 free(buf);
1673 return events;
1674error:
1675 free_event_desc(events);
1676 events = NULL;
1677 goto out;
1678}
1679
1680static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val,
1681 void *priv __maybe_unused)
1682{
1683 return fprintf(fp, ", %s = %s", name, val);
1684}
1685
1686static void print_event_desc(struct feat_fd *ff, FILE *fp)
1687{
1688 struct evsel *evsel, *events;
1689 u32 j;
1690 u64 *id;
1691
1692 if (ff->events)
1693 events = ff->events;
1694 else
1695 events = read_event_desc(ff);
1696
1697 if (!events) {
1698 fprintf(fp, "# event desc: not available or unable to read\n");
1699 return;
1700 }
1701
1702 for (evsel = events; evsel->core.attr.size; evsel++) {
1703 fprintf(fp, "# event : name = %s, ", evsel->name);
1704
1705 if (evsel->core.ids) {
1706 fprintf(fp, ", id = {");
1707 for (j = 0, id = evsel->core.id; j < evsel->core.ids; j++, id++) {
1708 if (j)
1709 fputc(',', fp);
1710 fprintf(fp, " %"PRIu64, *id);
1711 }
1712 fprintf(fp, " }");
1713 }
1714
1715 perf_event_attr__fprintf(fp, &evsel->core.attr, __desc_attr__fprintf, NULL);
1716
1717 fputc('\n', fp);
1718 }
1719
1720 free_event_desc(events);
1721 ff->events = NULL;
1722}
1723
1724static void print_total_mem(struct feat_fd *ff, FILE *fp)
1725{
1726 fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem);
1727}
1728
1729static void print_numa_topology(struct feat_fd *ff, FILE *fp)
1730{
1731 int i;
1732 struct numa_node *n;
1733
1734 for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) {
1735 n = &ff->ph->env.numa_nodes[i];
1736
1737 fprintf(fp, "# node%u meminfo : total = %"PRIu64" kB,"
1738 " free = %"PRIu64" kB\n",
1739 n->node, n->mem_total, n->mem_free);
1740
1741 fprintf(fp, "# node%u cpu list : ", n->node);
1742 cpu_map__fprintf(n->map, fp);
1743 }
1744}
1745
1746static void print_cpuid(struct feat_fd *ff, FILE *fp)
1747{
1748 fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid);
1749}
1750
1751static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp)
1752{
1753 fprintf(fp, "# contains samples with branch stack\n");
1754}
1755
1756static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp)
1757{
1758 fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n");
1759}
1760
1761static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp)
1762{
1763 fprintf(fp, "# contains stat data\n");
1764}
1765
1766static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused)
1767{
1768 int i;
1769
1770 fprintf(fp, "# CPU cache info:\n");
1771 for (i = 0; i < ff->ph->env.caches_cnt; i++) {
1772 fprintf(fp, "# ");
1773 cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]);
1774 }
1775}
1776
1777static void print_compressed(struct feat_fd *ff, FILE *fp)
1778{
1779 fprintf(fp, "# compressed : %s, level = %d, ratio = %d\n",
1780 ff->ph->env.comp_type == PERF_COMP_ZSTD ? "Zstd" : "Unknown",
1781 ff->ph->env.comp_level, ff->ph->env.comp_ratio);
1782}
1783
1784static void print_pmu_mappings(struct feat_fd *ff, FILE *fp)
1785{
1786 const char *delimiter = "# pmu mappings: ";
1787 char *str, *tmp;
1788 u32 pmu_num;
1789 u32 type;
1790
1791 pmu_num = ff->ph->env.nr_pmu_mappings;
1792 if (!pmu_num) {
1793 fprintf(fp, "# pmu mappings: not available\n");
1794 return;
1795 }
1796
1797 str = ff->ph->env.pmu_mappings;
1798
1799 while (pmu_num) {
1800 type = strtoul(str, &tmp, 0);
1801 if (*tmp != ':')
1802 goto error;
1803
1804 str = tmp + 1;
1805 fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type);
1806
1807 delimiter = ", ";
1808 str += strlen(str) + 1;
1809 pmu_num--;
1810 }
1811
1812 fprintf(fp, "\n");
1813
1814 if (!pmu_num)
1815 return;
1816error:
1817 fprintf(fp, "# pmu mappings: unable to read\n");
1818}
1819
1820static void print_group_desc(struct feat_fd *ff, FILE *fp)
1821{
1822 struct perf_session *session;
1823 struct evsel *evsel;
1824 u32 nr = 0;
1825
1826 session = container_of(ff->ph, struct perf_session, header);
1827
1828 evlist__for_each_entry(session->evlist, evsel) {
1829 if (perf_evsel__is_group_leader(evsel) &&
1830 evsel->core.nr_members > 1) {
1831 fprintf(fp, "# group: %s{%s", evsel->group_name ?: "",
1832 perf_evsel__name(evsel));
1833
1834 nr = evsel->core.nr_members - 1;
1835 } else if (nr) {
1836 fprintf(fp, ",%s", perf_evsel__name(evsel));
1837
1838 if (--nr == 0)
1839 fprintf(fp, "}\n");
1840 }
1841 }
1842}
1843
1844static void print_sample_time(struct feat_fd *ff, FILE *fp)
1845{
1846 struct perf_session *session;
1847 char time_buf[32];
1848 double d;
1849
1850 session = container_of(ff->ph, struct perf_session, header);
1851
1852 timestamp__scnprintf_usec(session->evlist->first_sample_time,
1853 time_buf, sizeof(time_buf));
1854 fprintf(fp, "# time of first sample : %s\n", time_buf);
1855
1856 timestamp__scnprintf_usec(session->evlist->last_sample_time,
1857 time_buf, sizeof(time_buf));
1858 fprintf(fp, "# time of last sample : %s\n", time_buf);
1859
1860 d = (double)(session->evlist->last_sample_time -
1861 session->evlist->first_sample_time) / NSEC_PER_MSEC;
1862
1863 fprintf(fp, "# sample duration : %10.3f ms\n", d);
1864}
1865
1866static void memory_node__fprintf(struct memory_node *n,
1867 unsigned long long bsize, FILE *fp)
1868{
1869 char buf_map[100], buf_size[50];
1870 unsigned long long size;
1871
1872 size = bsize * bitmap_weight(n->set, n->size);
1873 unit_number__scnprintf(buf_size, 50, size);
1874
1875 bitmap_scnprintf(n->set, n->size, buf_map, 100);
1876 fprintf(fp, "# %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map);
1877}
1878
1879static void print_mem_topology(struct feat_fd *ff, FILE *fp)
1880{
1881 struct memory_node *nodes;
1882 int i, nr;
1883
1884 nodes = ff->ph->env.memory_nodes;
1885 nr = ff->ph->env.nr_memory_nodes;
1886
1887 fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n",
1888 nr, ff->ph->env.memory_bsize);
1889
1890 for (i = 0; i < nr; i++) {
1891 memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp);
1892 }
1893}
1894
1895static int __event_process_build_id(struct perf_record_header_build_id *bev,
1896 char *filename,
1897 struct perf_session *session)
1898{
1899 int err = -1;
1900 struct machine *machine;
1901 u16 cpumode;
1902 struct dso *dso;
1903 enum dso_kernel_type dso_type;
1904
1905 machine = perf_session__findnew_machine(session, bev->pid);
1906 if (!machine)
1907 goto out;
1908
1909 cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
1910
1911 switch (cpumode) {
1912 case PERF_RECORD_MISC_KERNEL:
1913 dso_type = DSO_TYPE_KERNEL;
1914 break;
1915 case PERF_RECORD_MISC_GUEST_KERNEL:
1916 dso_type = DSO_TYPE_GUEST_KERNEL;
1917 break;
1918 case PERF_RECORD_MISC_USER:
1919 case PERF_RECORD_MISC_GUEST_USER:
1920 dso_type = DSO_TYPE_USER;
1921 break;
1922 default:
1923 goto out;
1924 }
1925
1926 dso = machine__findnew_dso(machine, filename);
1927 if (dso != NULL) {
1928 char sbuild_id[SBUILD_ID_SIZE];
1929
1930 dso__set_build_id(dso, &bev->build_id);
1931
1932 if (dso_type != DSO_TYPE_USER) {
1933 struct kmod_path m = { .name = NULL, };
1934
1935 if (!kmod_path__parse_name(&m, filename) && m.kmod)
1936 dso__set_module_info(dso, &m, machine);
1937 else
1938 dso->kernel = dso_type;
1939
1940 free(m.name);
1941 }
1942
1943 build_id__sprintf(dso->build_id, sizeof(dso->build_id),
1944 sbuild_id);
1945 pr_debug("build id event received for %s: %s\n",
1946 dso->long_name, sbuild_id);
1947 dso__put(dso);
1948 }
1949
1950 err = 0;
1951out:
1952 return err;
1953}
1954
1955static int perf_header__read_build_ids_abi_quirk(struct perf_header *header,
1956 int input, u64 offset, u64 size)
1957{
1958 struct perf_session *session = container_of(header, struct perf_session, header);
1959 struct {
1960 struct perf_event_header header;
1961 u8 build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))];
1962 char filename[0];
1963 } old_bev;
1964 struct perf_record_header_build_id bev;
1965 char filename[PATH_MAX];
1966 u64 limit = offset + size;
1967
1968 while (offset < limit) {
1969 ssize_t len;
1970
1971 if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev))
1972 return -1;
1973
1974 if (header->needs_swap)
1975 perf_event_header__bswap(&old_bev.header);
1976
1977 len = old_bev.header.size - sizeof(old_bev);
1978 if (readn(input, filename, len) != len)
1979 return -1;
1980
1981 bev.header = old_bev.header;
1982
1983 /*
1984 * As the pid is the missing value, we need to fill
1985 * it properly. The header.misc value give us nice hint.
1986 */
1987 bev.pid = HOST_KERNEL_ID;
1988 if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER ||
1989 bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL)
1990 bev.pid = DEFAULT_GUEST_KERNEL_ID;
1991
1992 memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id));
1993 __event_process_build_id(&bev, filename, session);
1994
1995 offset += bev.header.size;
1996 }
1997
1998 return 0;
1999}
2000
2001static int perf_header__read_build_ids(struct perf_header *header,
2002 int input, u64 offset, u64 size)
2003{
2004 struct perf_session *session = container_of(header, struct perf_session, header);
2005 struct perf_record_header_build_id bev;
2006 char filename[PATH_MAX];
2007 u64 limit = offset + size, orig_offset = offset;
2008 int err = -1;
2009
2010 while (offset < limit) {
2011 ssize_t len;
2012
2013 if (readn(input, &bev, sizeof(bev)) != sizeof(bev))
2014 goto out;
2015
2016 if (header->needs_swap)
2017 perf_event_header__bswap(&bev.header);
2018
2019 len = bev.header.size - sizeof(bev);
2020 if (readn(input, filename, len) != len)
2021 goto out;
2022 /*
2023 * The a1645ce1 changeset:
2024 *
2025 * "perf: 'perf kvm' tool for monitoring guest performance from host"
2026 *
2027 * Added a field to struct perf_record_header_build_id that broke the file
2028 * format.
2029 *
2030 * Since the kernel build-id is the first entry, process the
2031 * table using the old format if the well known
2032 * '[kernel.kallsyms]' string for the kernel build-id has the
2033 * first 4 characters chopped off (where the pid_t sits).
2034 */
2035 if (memcmp(filename, "nel.kallsyms]", 13) == 0) {
2036 if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1)
2037 return -1;
2038 return perf_header__read_build_ids_abi_quirk(header, input, offset, size);
2039 }
2040
2041 __event_process_build_id(&bev, filename, session);
2042
2043 offset += bev.header.size;
2044 }
2045 err = 0;
2046out:
2047 return err;
2048}
2049
2050/* Macro for features that simply need to read and store a string. */
2051#define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \
2052static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \
2053{\
2054 ff->ph->env.__feat_env = do_read_string(ff); \
2055 return ff->ph->env.__feat_env ? 0 : -ENOMEM; \
2056}
2057
2058FEAT_PROCESS_STR_FUN(hostname, hostname);
2059FEAT_PROCESS_STR_FUN(osrelease, os_release);
2060FEAT_PROCESS_STR_FUN(version, version);
2061FEAT_PROCESS_STR_FUN(arch, arch);
2062FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc);
2063FEAT_PROCESS_STR_FUN(cpuid, cpuid);
2064
2065static int process_tracing_data(struct feat_fd *ff, void *data)
2066{
2067 ssize_t ret = trace_report(ff->fd, data, false);
2068
2069 return ret < 0 ? -1 : 0;
2070}
2071
2072static int process_build_id(struct feat_fd *ff, void *data __maybe_unused)
2073{
2074 if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size))
2075 pr_debug("Failed to read buildids, continuing...\n");
2076 return 0;
2077}
2078
2079static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused)
2080{
2081 int ret;
2082 u32 nr_cpus_avail, nr_cpus_online;
2083
2084 ret = do_read_u32(ff, &nr_cpus_avail);
2085 if (ret)
2086 return ret;
2087
2088 ret = do_read_u32(ff, &nr_cpus_online);
2089 if (ret)
2090 return ret;
2091 ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail;
2092 ff->ph->env.nr_cpus_online = (int)nr_cpus_online;
2093 return 0;
2094}
2095
2096static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused)
2097{
2098 u64 total_mem;
2099 int ret;
2100
2101 ret = do_read_u64(ff, &total_mem);
2102 if (ret)
2103 return -1;
2104 ff->ph->env.total_mem = (unsigned long long)total_mem;
2105 return 0;
2106}
2107
2108static struct evsel *
2109perf_evlist__find_by_index(struct evlist *evlist, int idx)
2110{
2111 struct evsel *evsel;
2112
2113 evlist__for_each_entry(evlist, evsel) {
2114 if (evsel->idx == idx)
2115 return evsel;
2116 }
2117
2118 return NULL;
2119}
2120
2121static void
2122perf_evlist__set_event_name(struct evlist *evlist,
2123 struct evsel *event)
2124{
2125 struct evsel *evsel;
2126
2127 if (!event->name)
2128 return;
2129
2130 evsel = perf_evlist__find_by_index(evlist, event->idx);
2131 if (!evsel)
2132 return;
2133
2134 if (evsel->name)
2135 return;
2136
2137 evsel->name = strdup(event->name);
2138}
2139
2140static int
2141process_event_desc(struct feat_fd *ff, void *data __maybe_unused)
2142{
2143 struct perf_session *session;
2144 struct evsel *evsel, *events = read_event_desc(ff);
2145
2146 if (!events)
2147 return 0;
2148
2149 session = container_of(ff->ph, struct perf_session, header);
2150
2151 if (session->data->is_pipe) {
2152 /* Save events for reading later by print_event_desc,
2153 * since they can't be read again in pipe mode. */
2154 ff->events = events;
2155 }
2156
2157 for (evsel = events; evsel->core.attr.size; evsel++)
2158 perf_evlist__set_event_name(session->evlist, evsel);
2159
2160 if (!session->data->is_pipe)
2161 free_event_desc(events);
2162
2163 return 0;
2164}
2165
2166static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused)
2167{
2168 char *str, *cmdline = NULL, **argv = NULL;
2169 u32 nr, i, len = 0;
2170
2171 if (do_read_u32(ff, &nr))
2172 return -1;
2173
2174 ff->ph->env.nr_cmdline = nr;
2175
2176 cmdline = zalloc(ff->size + nr + 1);
2177 if (!cmdline)
2178 return -1;
2179
2180 argv = zalloc(sizeof(char *) * (nr + 1));
2181 if (!argv)
2182 goto error;
2183
2184 for (i = 0; i < nr; i++) {
2185 str = do_read_string(ff);
2186 if (!str)
2187 goto error;
2188
2189 argv[i] = cmdline + len;
2190 memcpy(argv[i], str, strlen(str) + 1);
2191 len += strlen(str) + 1;
2192 free(str);
2193 }
2194 ff->ph->env.cmdline = cmdline;
2195 ff->ph->env.cmdline_argv = (const char **) argv;
2196 return 0;
2197
2198error:
2199 free(argv);
2200 free(cmdline);
2201 return -1;
2202}
2203
2204static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused)
2205{
2206 u32 nr, i;
2207 char *str;
2208 struct strbuf sb;
2209 int cpu_nr = ff->ph->env.nr_cpus_avail;
2210 u64 size = 0;
2211 struct perf_header *ph = ff->ph;
2212 bool do_core_id_test = true;
2213
2214 ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu));
2215 if (!ph->env.cpu)
2216 return -1;
2217
2218 if (do_read_u32(ff, &nr))
2219 goto free_cpu;
2220
2221 ph->env.nr_sibling_cores = nr;
2222 size += sizeof(u32);
2223 if (strbuf_init(&sb, 128) < 0)
2224 goto free_cpu;
2225
2226 for (i = 0; i < nr; i++) {
2227 str = do_read_string(ff);
2228 if (!str)
2229 goto error;
2230
2231 /* include a NULL character at the end */
2232 if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2233 goto error;
2234 size += string_size(str);
2235 free(str);
2236 }
2237 ph->env.sibling_cores = strbuf_detach(&sb, NULL);
2238
2239 if (do_read_u32(ff, &nr))
2240 return -1;
2241
2242 ph->env.nr_sibling_threads = nr;
2243 size += sizeof(u32);
2244
2245 for (i = 0; i < nr; i++) {
2246 str = do_read_string(ff);
2247 if (!str)
2248 goto error;
2249
2250 /* include a NULL character at the end */
2251 if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2252 goto error;
2253 size += string_size(str);
2254 free(str);
2255 }
2256 ph->env.sibling_threads = strbuf_detach(&sb, NULL);
2257
2258 /*
2259 * The header may be from old perf,
2260 * which doesn't include core id and socket id information.
2261 */
2262 if (ff->size <= size) {
2263 zfree(&ph->env.cpu);
2264 return 0;
2265 }
2266
2267 /* On s390 the socket_id number is not related to the numbers of cpus.
2268 * The socket_id number might be higher than the numbers of cpus.
2269 * This depends on the configuration.
2270 * AArch64 is the same.
2271 */
2272 if (ph->env.arch && (!strncmp(ph->env.arch, "s390", 4)
2273 || !strncmp(ph->env.arch, "aarch64", 7)))
2274 do_core_id_test = false;
2275
2276 for (i = 0; i < (u32)cpu_nr; i++) {
2277 if (do_read_u32(ff, &nr))
2278 goto free_cpu;
2279
2280 ph->env.cpu[i].core_id = nr;
2281 size += sizeof(u32);
2282
2283 if (do_read_u32(ff, &nr))
2284 goto free_cpu;
2285
2286 if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) {
2287 pr_debug("socket_id number is too big."
2288 "You may need to upgrade the perf tool.\n");
2289 goto free_cpu;
2290 }
2291
2292 ph->env.cpu[i].socket_id = nr;
2293 size += sizeof(u32);
2294 }
2295
2296 /*
2297 * The header may be from old perf,
2298 * which doesn't include die information.
2299 */
2300 if (ff->size <= size)
2301 return 0;
2302
2303 if (do_read_u32(ff, &nr))
2304 return -1;
2305
2306 ph->env.nr_sibling_dies = nr;
2307 size += sizeof(u32);
2308
2309 for (i = 0; i < nr; i++) {
2310 str = do_read_string(ff);
2311 if (!str)
2312 goto error;
2313
2314 /* include a NULL character at the end */
2315 if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2316 goto error;
2317 size += string_size(str);
2318 free(str);
2319 }
2320 ph->env.sibling_dies = strbuf_detach(&sb, NULL);
2321
2322 for (i = 0; i < (u32)cpu_nr; i++) {
2323 if (do_read_u32(ff, &nr))
2324 goto free_cpu;
2325
2326 ph->env.cpu[i].die_id = nr;
2327 }
2328
2329 return 0;
2330
2331error:
2332 strbuf_release(&sb);
2333free_cpu:
2334 zfree(&ph->env.cpu);
2335 return -1;
2336}
2337
2338static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused)
2339{
2340 struct numa_node *nodes, *n;
2341 u32 nr, i;
2342 char *str;
2343
2344 /* nr nodes */
2345 if (do_read_u32(ff, &nr))
2346 return -1;
2347
2348 nodes = zalloc(sizeof(*nodes) * nr);
2349 if (!nodes)
2350 return -ENOMEM;
2351
2352 for (i = 0; i < nr; i++) {
2353 n = &nodes[i];
2354
2355 /* node number */
2356 if (do_read_u32(ff, &n->node))
2357 goto error;
2358
2359 if (do_read_u64(ff, &n->mem_total))
2360 goto error;
2361
2362 if (do_read_u64(ff, &n->mem_free))
2363 goto error;
2364
2365 str = do_read_string(ff);
2366 if (!str)
2367 goto error;
2368
2369 n->map = perf_cpu_map__new(str);
2370 if (!n->map)
2371 goto error;
2372
2373 free(str);
2374 }
2375 ff->ph->env.nr_numa_nodes = nr;
2376 ff->ph->env.numa_nodes = nodes;
2377 return 0;
2378
2379error:
2380 free(nodes);
2381 return -1;
2382}
2383
2384static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused)
2385{
2386 char *name;
2387 u32 pmu_num;
2388 u32 type;
2389 struct strbuf sb;
2390
2391 if (do_read_u32(ff, &pmu_num))
2392 return -1;
2393
2394 if (!pmu_num) {
2395 pr_debug("pmu mappings not available\n");
2396 return 0;
2397 }
2398
2399 ff->ph->env.nr_pmu_mappings = pmu_num;
2400 if (strbuf_init(&sb, 128) < 0)
2401 return -1;
2402
2403 while (pmu_num) {
2404 if (do_read_u32(ff, &type))
2405 goto error;
2406
2407 name = do_read_string(ff);
2408 if (!name)
2409 goto error;
2410
2411 if (strbuf_addf(&sb, "%u:%s", type, name) < 0)
2412 goto error;
2413 /* include a NULL character at the end */
2414 if (strbuf_add(&sb, "", 1) < 0)
2415 goto error;
2416
2417 if (!strcmp(name, "msr"))
2418 ff->ph->env.msr_pmu_type = type;
2419
2420 free(name);
2421 pmu_num--;
2422 }
2423 ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL);
2424 return 0;
2425
2426error:
2427 strbuf_release(&sb);
2428 return -1;
2429}
2430
2431static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused)
2432{
2433 size_t ret = -1;
2434 u32 i, nr, nr_groups;
2435 struct perf_session *session;
2436 struct evsel *evsel, *leader = NULL;
2437 struct group_desc {
2438 char *name;
2439 u32 leader_idx;
2440 u32 nr_members;
2441 } *desc;
2442
2443 if (do_read_u32(ff, &nr_groups))
2444 return -1;
2445
2446 ff->ph->env.nr_groups = nr_groups;
2447 if (!nr_groups) {
2448 pr_debug("group desc not available\n");
2449 return 0;
2450 }
2451
2452 desc = calloc(nr_groups, sizeof(*desc));
2453 if (!desc)
2454 return -1;
2455
2456 for (i = 0; i < nr_groups; i++) {
2457 desc[i].name = do_read_string(ff);
2458 if (!desc[i].name)
2459 goto out_free;
2460
2461 if (do_read_u32(ff, &desc[i].leader_idx))
2462 goto out_free;
2463
2464 if (do_read_u32(ff, &desc[i].nr_members))
2465 goto out_free;
2466 }
2467
2468 /*
2469 * Rebuild group relationship based on the group_desc
2470 */
2471 session = container_of(ff->ph, struct perf_session, header);
2472 session->evlist->nr_groups = nr_groups;
2473
2474 i = nr = 0;
2475 evlist__for_each_entry(session->evlist, evsel) {
2476 if (evsel->idx == (int) desc[i].leader_idx) {
2477 evsel->leader = evsel;
2478 /* {anon_group} is a dummy name */
2479 if (strcmp(desc[i].name, "{anon_group}")) {
2480 evsel->group_name = desc[i].name;
2481 desc[i].name = NULL;
2482 }
2483 evsel->core.nr_members = desc[i].nr_members;
2484
2485 if (i >= nr_groups || nr > 0) {
2486 pr_debug("invalid group desc\n");
2487 goto out_free;
2488 }
2489
2490 leader = evsel;
2491 nr = evsel->core.nr_members - 1;
2492 i++;
2493 } else if (nr) {
2494 /* This is a group member */
2495 evsel->leader = leader;
2496
2497 nr--;
2498 }
2499 }
2500
2501 if (i != nr_groups || nr != 0) {
2502 pr_debug("invalid group desc\n");
2503 goto out_free;
2504 }
2505
2506 ret = 0;
2507out_free:
2508 for (i = 0; i < nr_groups; i++)
2509 zfree(&desc[i].name);
2510 free(desc);
2511
2512 return ret;
2513}
2514
2515static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused)
2516{
2517 struct perf_session *session;
2518 int err;
2519
2520 session = container_of(ff->ph, struct perf_session, header);
2521
2522 err = auxtrace_index__process(ff->fd, ff->size, session,
2523 ff->ph->needs_swap);
2524 if (err < 0)
2525 pr_err("Failed to process auxtrace index\n");
2526 return err;
2527}
2528
2529static int process_cache(struct feat_fd *ff, void *data __maybe_unused)
2530{
2531 struct cpu_cache_level *caches;
2532 u32 cnt, i, version;
2533
2534 if (do_read_u32(ff, &version))
2535 return -1;
2536
2537 if (version != 1)
2538 return -1;
2539
2540 if (do_read_u32(ff, &cnt))
2541 return -1;
2542
2543 caches = zalloc(sizeof(*caches) * cnt);
2544 if (!caches)
2545 return -1;
2546
2547 for (i = 0; i < cnt; i++) {
2548 struct cpu_cache_level c;
2549
2550 #define _R(v) \
2551 if (do_read_u32(ff, &c.v))\
2552 goto out_free_caches; \
2553
2554 _R(level)
2555 _R(line_size)
2556 _R(sets)
2557 _R(ways)
2558 #undef _R
2559
2560 #define _R(v) \
2561 c.v = do_read_string(ff); \
2562 if (!c.v) \
2563 goto out_free_caches;
2564
2565 _R(type)
2566 _R(size)
2567 _R(map)
2568 #undef _R
2569
2570 caches[i] = c;
2571 }
2572
2573 ff->ph->env.caches = caches;
2574 ff->ph->env.caches_cnt = cnt;
2575 return 0;
2576out_free_caches:
2577 free(caches);
2578 return -1;
2579}
2580
2581static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused)
2582{
2583 struct perf_session *session;
2584 u64 first_sample_time, last_sample_time;
2585 int ret;
2586
2587 session = container_of(ff->ph, struct perf_session, header);
2588
2589 ret = do_read_u64(ff, &first_sample_time);
2590 if (ret)
2591 return -1;
2592
2593 ret = do_read_u64(ff, &last_sample_time);
2594 if (ret)
2595 return -1;
2596
2597 session->evlist->first_sample_time = first_sample_time;
2598 session->evlist->last_sample_time = last_sample_time;
2599 return 0;
2600}
2601
2602static int process_mem_topology(struct feat_fd *ff,
2603 void *data __maybe_unused)
2604{
2605 struct memory_node *nodes;
2606 u64 version, i, nr, bsize;
2607 int ret = -1;
2608
2609 if (do_read_u64(ff, &version))
2610 return -1;
2611
2612 if (version != 1)
2613 return -1;
2614
2615 if (do_read_u64(ff, &bsize))
2616 return -1;
2617
2618 if (do_read_u64(ff, &nr))
2619 return -1;
2620
2621 nodes = zalloc(sizeof(*nodes) * nr);
2622 if (!nodes)
2623 return -1;
2624
2625 for (i = 0; i < nr; i++) {
2626 struct memory_node n;
2627
2628 #define _R(v) \
2629 if (do_read_u64(ff, &n.v)) \
2630 goto out; \
2631
2632 _R(node)
2633 _R(size)
2634
2635 #undef _R
2636
2637 if (do_read_bitmap(ff, &n.set, &n.size))
2638 goto out;
2639
2640 nodes[i] = n;
2641 }
2642
2643 ff->ph->env.memory_bsize = bsize;
2644 ff->ph->env.memory_nodes = nodes;
2645 ff->ph->env.nr_memory_nodes = nr;
2646 ret = 0;
2647
2648out:
2649 if (ret)
2650 free(nodes);
2651 return ret;
2652}
2653
2654static int process_clockid(struct feat_fd *ff,
2655 void *data __maybe_unused)
2656{
2657 if (do_read_u64(ff, &ff->ph->env.clockid_res_ns))
2658 return -1;
2659
2660 return 0;
2661}
2662
2663static int process_dir_format(struct feat_fd *ff,
2664 void *_data __maybe_unused)
2665{
2666 struct perf_session *session;
2667 struct perf_data *data;
2668
2669 session = container_of(ff->ph, struct perf_session, header);
2670 data = session->data;
2671
2672 if (WARN_ON(!perf_data__is_dir(data)))
2673 return -1;
2674
2675 return do_read_u64(ff, &data->dir.version);
2676}
2677
2678#ifdef HAVE_LIBBPF_SUPPORT
2679static int process_bpf_prog_info(struct feat_fd *ff, void *data __maybe_unused)
2680{
2681 struct bpf_prog_info_linear *info_linear;
2682 struct bpf_prog_info_node *info_node;
2683 struct perf_env *env = &ff->ph->env;
2684 u32 count, i;
2685 int err = -1;
2686
2687 if (ff->ph->needs_swap) {
2688 pr_warning("interpreting bpf_prog_info from systems with endianity is not yet supported\n");
2689 return 0;
2690 }
2691
2692 if (do_read_u32(ff, &count))
2693 return -1;
2694
2695 down_write(&env->bpf_progs.lock);
2696
2697 for (i = 0; i < count; ++i) {
2698 u32 info_len, data_len;
2699
2700 info_linear = NULL;
2701 info_node = NULL;
2702 if (do_read_u32(ff, &info_len))
2703 goto out;
2704 if (do_read_u32(ff, &data_len))
2705 goto out;
2706
2707 if (info_len > sizeof(struct bpf_prog_info)) {
2708 pr_warning("detected invalid bpf_prog_info\n");
2709 goto out;
2710 }
2711
2712 info_linear = malloc(sizeof(struct bpf_prog_info_linear) +
2713 data_len);
2714 if (!info_linear)
2715 goto out;
2716 info_linear->info_len = sizeof(struct bpf_prog_info);
2717 info_linear->data_len = data_len;
2718 if (do_read_u64(ff, (u64 *)(&info_linear->arrays)))
2719 goto out;
2720 if (__do_read(ff, &info_linear->info, info_len))
2721 goto out;
2722 if (info_len < sizeof(struct bpf_prog_info))
2723 memset(((void *)(&info_linear->info)) + info_len, 0,
2724 sizeof(struct bpf_prog_info) - info_len);
2725
2726 if (__do_read(ff, info_linear->data, data_len))
2727 goto out;
2728
2729 info_node = malloc(sizeof(struct bpf_prog_info_node));
2730 if (!info_node)
2731 goto out;
2732
2733 /* after reading from file, translate offset to address */
2734 bpf_program__bpil_offs_to_addr(info_linear);
2735 info_node->info_linear = info_linear;
2736 perf_env__insert_bpf_prog_info(env, info_node);
2737 }
2738
2739 up_write(&env->bpf_progs.lock);
2740 return 0;
2741out:
2742 free(info_linear);
2743 free(info_node);
2744 up_write(&env->bpf_progs.lock);
2745 return err;
2746}
2747#else // HAVE_LIBBPF_SUPPORT
2748static int process_bpf_prog_info(struct feat_fd *ff __maybe_unused, void *data __maybe_unused)
2749{
2750 return 0;
2751}
2752#endif // HAVE_LIBBPF_SUPPORT
2753
2754static int process_bpf_btf(struct feat_fd *ff, void *data __maybe_unused)
2755{
2756 struct perf_env *env = &ff->ph->env;
2757 struct btf_node *node = NULL;
2758 u32 count, i;
2759 int err = -1;
2760
2761 if (ff->ph->needs_swap) {
2762 pr_warning("interpreting btf from systems with endianity is not yet supported\n");
2763 return 0;
2764 }
2765
2766 if (do_read_u32(ff, &count))
2767 return -1;
2768
2769 down_write(&env->bpf_progs.lock);
2770
2771 for (i = 0; i < count; ++i) {
2772 u32 id, data_size;
2773
2774 if (do_read_u32(ff, &id))
2775 goto out;
2776 if (do_read_u32(ff, &data_size))
2777 goto out;
2778
2779 node = malloc(sizeof(struct btf_node) + data_size);
2780 if (!node)
2781 goto out;
2782
2783 node->id = id;
2784 node->data_size = data_size;
2785
2786 if (__do_read(ff, node->data, data_size))
2787 goto out;
2788
2789 perf_env__insert_btf(env, node);
2790 node = NULL;
2791 }
2792
2793 err = 0;
2794out:
2795 up_write(&env->bpf_progs.lock);
2796 free(node);
2797 return err;
2798}
2799
2800static int process_compressed(struct feat_fd *ff,
2801 void *data __maybe_unused)
2802{
2803 if (do_read_u32(ff, &(ff->ph->env.comp_ver)))
2804 return -1;
2805
2806 if (do_read_u32(ff, &(ff->ph->env.comp_type)))
2807 return -1;
2808
2809 if (do_read_u32(ff, &(ff->ph->env.comp_level)))
2810 return -1;
2811
2812 if (do_read_u32(ff, &(ff->ph->env.comp_ratio)))
2813 return -1;
2814
2815 if (do_read_u32(ff, &(ff->ph->env.comp_mmap_len)))
2816 return -1;
2817
2818 return 0;
2819}
2820
2821#define FEAT_OPR(n, func, __full_only) \
2822 [HEADER_##n] = { \
2823 .name = __stringify(n), \
2824 .write = write_##func, \
2825 .print = print_##func, \
2826 .full_only = __full_only, \
2827 .process = process_##func, \
2828 .synthesize = true \
2829 }
2830
2831#define FEAT_OPN(n, func, __full_only) \
2832 [HEADER_##n] = { \
2833 .name = __stringify(n), \
2834 .write = write_##func, \
2835 .print = print_##func, \
2836 .full_only = __full_only, \
2837 .process = process_##func \
2838 }
2839
2840/* feature_ops not implemented: */
2841#define print_tracing_data NULL
2842#define print_build_id NULL
2843
2844#define process_branch_stack NULL
2845#define process_stat NULL
2846
2847// Only used in util/synthetic-events.c
2848const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE];
2849
2850const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE] = {
2851 FEAT_OPN(TRACING_DATA, tracing_data, false),
2852 FEAT_OPN(BUILD_ID, build_id, false),
2853 FEAT_OPR(HOSTNAME, hostname, false),
2854 FEAT_OPR(OSRELEASE, osrelease, false),
2855 FEAT_OPR(VERSION, version, false),
2856 FEAT_OPR(ARCH, arch, false),
2857 FEAT_OPR(NRCPUS, nrcpus, false),
2858 FEAT_OPR(CPUDESC, cpudesc, false),
2859 FEAT_OPR(CPUID, cpuid, false),
2860 FEAT_OPR(TOTAL_MEM, total_mem, false),
2861 FEAT_OPR(EVENT_DESC, event_desc, false),
2862 FEAT_OPR(CMDLINE, cmdline, false),
2863 FEAT_OPR(CPU_TOPOLOGY, cpu_topology, true),
2864 FEAT_OPR(NUMA_TOPOLOGY, numa_topology, true),
2865 FEAT_OPN(BRANCH_STACK, branch_stack, false),
2866 FEAT_OPR(PMU_MAPPINGS, pmu_mappings, false),
2867 FEAT_OPR(GROUP_DESC, group_desc, false),
2868 FEAT_OPN(AUXTRACE, auxtrace, false),
2869 FEAT_OPN(STAT, stat, false),
2870 FEAT_OPN(CACHE, cache, true),
2871 FEAT_OPR(SAMPLE_TIME, sample_time, false),
2872 FEAT_OPR(MEM_TOPOLOGY, mem_topology, true),
2873 FEAT_OPR(CLOCKID, clockid, false),
2874 FEAT_OPN(DIR_FORMAT, dir_format, false),
2875 FEAT_OPR(BPF_PROG_INFO, bpf_prog_info, false),
2876 FEAT_OPR(BPF_BTF, bpf_btf, false),
2877 FEAT_OPR(COMPRESSED, compressed, false),
2878};
2879
2880struct header_print_data {
2881 FILE *fp;
2882 bool full; /* extended list of headers */
2883};
2884
2885static int perf_file_section__fprintf_info(struct perf_file_section *section,
2886 struct perf_header *ph,
2887 int feat, int fd, void *data)
2888{
2889 struct header_print_data *hd = data;
2890 struct feat_fd ff;
2891
2892 if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
2893 pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
2894 "%d, continuing...\n", section->offset, feat);
2895 return 0;
2896 }
2897 if (feat >= HEADER_LAST_FEATURE) {
2898 pr_warning("unknown feature %d\n", feat);
2899 return 0;
2900 }
2901 if (!feat_ops[feat].print)
2902 return 0;
2903
2904 ff = (struct feat_fd) {
2905 .fd = fd,
2906 .ph = ph,
2907 };
2908
2909 if (!feat_ops[feat].full_only || hd->full)
2910 feat_ops[feat].print(&ff, hd->fp);
2911 else
2912 fprintf(hd->fp, "# %s info available, use -I to display\n",
2913 feat_ops[feat].name);
2914
2915 return 0;
2916}
2917
2918int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full)
2919{
2920 struct header_print_data hd;
2921 struct perf_header *header = &session->header;
2922 int fd = perf_data__fd(session->data);
2923 struct stat st;
2924 time_t stctime;
2925 int ret, bit;
2926
2927 hd.fp = fp;
2928 hd.full = full;
2929
2930 ret = fstat(fd, &st);
2931 if (ret == -1)
2932 return -1;
2933
2934 stctime = st.st_ctime;
2935 fprintf(fp, "# captured on : %s", ctime(&stctime));
2936
2937 fprintf(fp, "# header version : %u\n", header->version);
2938 fprintf(fp, "# data offset : %" PRIu64 "\n", header->data_offset);
2939 fprintf(fp, "# data size : %" PRIu64 "\n", header->data_size);
2940 fprintf(fp, "# feat offset : %" PRIu64 "\n", header->feat_offset);
2941
2942 perf_header__process_sections(header, fd, &hd,
2943 perf_file_section__fprintf_info);
2944
2945 if (session->data->is_pipe)
2946 return 0;
2947
2948 fprintf(fp, "# missing features: ");
2949 for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) {
2950 if (bit)
2951 fprintf(fp, "%s ", feat_ops[bit].name);
2952 }
2953
2954 fprintf(fp, "\n");
2955 return 0;
2956}
2957
2958static int do_write_feat(struct feat_fd *ff, int type,
2959 struct perf_file_section **p,
2960 struct evlist *evlist)
2961{
2962 int err;
2963 int ret = 0;
2964
2965 if (perf_header__has_feat(ff->ph, type)) {
2966 if (!feat_ops[type].write)
2967 return -1;
2968
2969 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
2970 return -1;
2971
2972 (*p)->offset = lseek(ff->fd, 0, SEEK_CUR);
2973
2974 err = feat_ops[type].write(ff, evlist);
2975 if (err < 0) {
2976 pr_debug("failed to write feature %s\n", feat_ops[type].name);
2977
2978 /* undo anything written */
2979 lseek(ff->fd, (*p)->offset, SEEK_SET);
2980
2981 return -1;
2982 }
2983 (*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset;
2984 (*p)++;
2985 }
2986 return ret;
2987}
2988
2989static int perf_header__adds_write(struct perf_header *header,
2990 struct evlist *evlist, int fd)
2991{
2992 int nr_sections;
2993 struct feat_fd ff;
2994 struct perf_file_section *feat_sec, *p;
2995 int sec_size;
2996 u64 sec_start;
2997 int feat;
2998 int err;
2999
3000 ff = (struct feat_fd){
3001 .fd = fd,
3002 .ph = header,
3003 };
3004
3005 nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3006 if (!nr_sections)
3007 return 0;
3008
3009 feat_sec = p = calloc(nr_sections, sizeof(*feat_sec));
3010 if (feat_sec == NULL)
3011 return -ENOMEM;
3012
3013 sec_size = sizeof(*feat_sec) * nr_sections;
3014
3015 sec_start = header->feat_offset;
3016 lseek(fd, sec_start + sec_size, SEEK_SET);
3017
3018 for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
3019 if (do_write_feat(&ff, feat, &p, evlist))
3020 perf_header__clear_feat(header, feat);
3021 }
3022
3023 lseek(fd, sec_start, SEEK_SET);
3024 /*
3025 * may write more than needed due to dropped feature, but
3026 * this is okay, reader will skip the missing entries
3027 */
3028 err = do_write(&ff, feat_sec, sec_size);
3029 if (err < 0)
3030 pr_debug("failed to write feature section\n");
3031 free(feat_sec);
3032 return err;
3033}
3034
3035int perf_header__write_pipe(int fd)
3036{
3037 struct perf_pipe_file_header f_header;
3038 struct feat_fd ff;
3039 int err;
3040
3041 ff = (struct feat_fd){ .fd = fd };
3042
3043 f_header = (struct perf_pipe_file_header){
3044 .magic = PERF_MAGIC,
3045 .size = sizeof(f_header),
3046 };
3047
3048 err = do_write(&ff, &f_header, sizeof(f_header));
3049 if (err < 0) {
3050 pr_debug("failed to write perf pipe header\n");
3051 return err;
3052 }
3053
3054 return 0;
3055}
3056
3057int perf_session__write_header(struct perf_session *session,
3058 struct evlist *evlist,
3059 int fd, bool at_exit)
3060{
3061 struct perf_file_header f_header;
3062 struct perf_file_attr f_attr;
3063 struct perf_header *header = &session->header;
3064 struct evsel *evsel;
3065 struct feat_fd ff;
3066 u64 attr_offset;
3067 int err;
3068
3069 ff = (struct feat_fd){ .fd = fd};
3070 lseek(fd, sizeof(f_header), SEEK_SET);
3071
3072 evlist__for_each_entry(session->evlist, evsel) {
3073 evsel->id_offset = lseek(fd, 0, SEEK_CUR);
3074 err = do_write(&ff, evsel->core.id, evsel->core.ids * sizeof(u64));
3075 if (err < 0) {
3076 pr_debug("failed to write perf header\n");
3077 return err;
3078 }
3079 }
3080
3081 attr_offset = lseek(ff.fd, 0, SEEK_CUR);
3082
3083 evlist__for_each_entry(evlist, evsel) {
3084 f_attr = (struct perf_file_attr){
3085 .attr = evsel->core.attr,
3086 .ids = {
3087 .offset = evsel->id_offset,
3088 .size = evsel->core.ids * sizeof(u64),
3089 }
3090 };
3091 err = do_write(&ff, &f_attr, sizeof(f_attr));
3092 if (err < 0) {
3093 pr_debug("failed to write perf header attribute\n");
3094 return err;
3095 }
3096 }
3097
3098 if (!header->data_offset)
3099 header->data_offset = lseek(fd, 0, SEEK_CUR);
3100 header->feat_offset = header->data_offset + header->data_size;
3101
3102 if (at_exit) {
3103 err = perf_header__adds_write(header, evlist, fd);
3104 if (err < 0)
3105 return err;
3106 }
3107
3108 f_header = (struct perf_file_header){
3109 .magic = PERF_MAGIC,
3110 .size = sizeof(f_header),
3111 .attr_size = sizeof(f_attr),
3112 .attrs = {
3113 .offset = attr_offset,
3114 .size = evlist->core.nr_entries * sizeof(f_attr),
3115 },
3116 .data = {
3117 .offset = header->data_offset,
3118 .size = header->data_size,
3119 },
3120 /* event_types is ignored, store zeros */
3121 };
3122
3123 memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features));
3124
3125 lseek(fd, 0, SEEK_SET);
3126 err = do_write(&ff, &f_header, sizeof(f_header));
3127 if (err < 0) {
3128 pr_debug("failed to write perf header\n");
3129 return err;
3130 }
3131 lseek(fd, header->data_offset + header->data_size, SEEK_SET);
3132
3133 return 0;
3134}
3135
3136static int perf_header__getbuffer64(struct perf_header *header,
3137 int fd, void *buf, size_t size)
3138{
3139 if (readn(fd, buf, size) <= 0)
3140 return -1;
3141
3142 if (header->needs_swap)
3143 mem_bswap_64(buf, size);
3144
3145 return 0;
3146}
3147
3148int perf_header__process_sections(struct perf_header *header, int fd,
3149 void *data,
3150 int (*process)(struct perf_file_section *section,
3151 struct perf_header *ph,
3152 int feat, int fd, void *data))
3153{
3154 struct perf_file_section *feat_sec, *sec;
3155 int nr_sections;
3156 int sec_size;
3157 int feat;
3158 int err;
3159
3160 nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3161 if (!nr_sections)
3162 return 0;
3163
3164 feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec));
3165 if (!feat_sec)
3166 return -1;
3167
3168 sec_size = sizeof(*feat_sec) * nr_sections;
3169
3170 lseek(fd, header->feat_offset, SEEK_SET);
3171
3172 err = perf_header__getbuffer64(header, fd, feat_sec, sec_size);
3173 if (err < 0)
3174 goto out_free;
3175
3176 for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) {
3177 err = process(sec++, header, feat, fd, data);
3178 if (err < 0)
3179 goto out_free;
3180 }
3181 err = 0;
3182out_free:
3183 free(feat_sec);
3184 return err;
3185}
3186
3187static const int attr_file_abi_sizes[] = {
3188 [0] = PERF_ATTR_SIZE_VER0,
3189 [1] = PERF_ATTR_SIZE_VER1,
3190 [2] = PERF_ATTR_SIZE_VER2,
3191 [3] = PERF_ATTR_SIZE_VER3,
3192 [4] = PERF_ATTR_SIZE_VER4,
3193 0,
3194};
3195
3196/*
3197 * In the legacy file format, the magic number is not used to encode endianness.
3198 * hdr_sz was used to encode endianness. But given that hdr_sz can vary based
3199 * on ABI revisions, we need to try all combinations for all endianness to
3200 * detect the endianness.
3201 */
3202static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph)
3203{
3204 uint64_t ref_size, attr_size;
3205 int i;
3206
3207 for (i = 0 ; attr_file_abi_sizes[i]; i++) {
3208 ref_size = attr_file_abi_sizes[i]
3209 + sizeof(struct perf_file_section);
3210 if (hdr_sz != ref_size) {
3211 attr_size = bswap_64(hdr_sz);
3212 if (attr_size != ref_size)
3213 continue;
3214
3215 ph->needs_swap = true;
3216 }
3217 pr_debug("ABI%d perf.data file detected, need_swap=%d\n",
3218 i,
3219 ph->needs_swap);
3220 return 0;
3221 }
3222 /* could not determine endianness */
3223 return -1;
3224}
3225
3226#define PERF_PIPE_HDR_VER0 16
3227
3228static const size_t attr_pipe_abi_sizes[] = {
3229 [0] = PERF_PIPE_HDR_VER0,
3230 0,
3231};
3232
3233/*
3234 * In the legacy pipe format, there is an implicit assumption that endiannesss
3235 * between host recording the samples, and host parsing the samples is the
3236 * same. This is not always the case given that the pipe output may always be
3237 * redirected into a file and analyzed on a different machine with possibly a
3238 * different endianness and perf_event ABI revsions in the perf tool itself.
3239 */
3240static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph)
3241{
3242 u64 attr_size;
3243 int i;
3244
3245 for (i = 0 ; attr_pipe_abi_sizes[i]; i++) {
3246 if (hdr_sz != attr_pipe_abi_sizes[i]) {
3247 attr_size = bswap_64(hdr_sz);
3248 if (attr_size != hdr_sz)
3249 continue;
3250
3251 ph->needs_swap = true;
3252 }
3253 pr_debug("Pipe ABI%d perf.data file detected\n", i);
3254 return 0;
3255 }
3256 return -1;
3257}
3258
3259bool is_perf_magic(u64 magic)
3260{
3261 if (!memcmp(&magic, __perf_magic1, sizeof(magic))
3262 || magic == __perf_magic2
3263 || magic == __perf_magic2_sw)
3264 return true;
3265
3266 return false;
3267}
3268
3269static int check_magic_endian(u64 magic, uint64_t hdr_sz,
3270 bool is_pipe, struct perf_header *ph)
3271{
3272 int ret;
3273
3274 /* check for legacy format */
3275 ret = memcmp(&magic, __perf_magic1, sizeof(magic));
3276 if (ret == 0) {
3277 ph->version = PERF_HEADER_VERSION_1;
3278 pr_debug("legacy perf.data format\n");
3279 if (is_pipe)
3280 return try_all_pipe_abis(hdr_sz, ph);
3281
3282 return try_all_file_abis(hdr_sz, ph);
3283 }
3284 /*
3285 * the new magic number serves two purposes:
3286 * - unique number to identify actual perf.data files
3287 * - encode endianness of file
3288 */
3289 ph->version = PERF_HEADER_VERSION_2;
3290
3291 /* check magic number with one endianness */
3292 if (magic == __perf_magic2)
3293 return 0;
3294
3295 /* check magic number with opposite endianness */
3296 if (magic != __perf_magic2_sw)
3297 return -1;
3298
3299 ph->needs_swap = true;
3300
3301 return 0;
3302}
3303
3304int perf_file_header__read(struct perf_file_header *header,
3305 struct perf_header *ph, int fd)
3306{
3307 ssize_t ret;
3308
3309 lseek(fd, 0, SEEK_SET);
3310
3311 ret = readn(fd, header, sizeof(*header));
3312 if (ret <= 0)
3313 return -1;
3314
3315 if (check_magic_endian(header->magic,
3316 header->attr_size, false, ph) < 0) {
3317 pr_debug("magic/endian check failed\n");
3318 return -1;
3319 }
3320
3321 if (ph->needs_swap) {
3322 mem_bswap_64(header, offsetof(struct perf_file_header,
3323 adds_features));
3324 }
3325
3326 if (header->size != sizeof(*header)) {
3327 /* Support the previous format */
3328 if (header->size == offsetof(typeof(*header), adds_features))
3329 bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3330 else
3331 return -1;
3332 } else if (ph->needs_swap) {
3333 /*
3334 * feature bitmap is declared as an array of unsigned longs --
3335 * not good since its size can differ between the host that
3336 * generated the data file and the host analyzing the file.
3337 *
3338 * We need to handle endianness, but we don't know the size of
3339 * the unsigned long where the file was generated. Take a best
3340 * guess at determining it: try 64-bit swap first (ie., file
3341 * created on a 64-bit host), and check if the hostname feature
3342 * bit is set (this feature bit is forced on as of fbe96f2).
3343 * If the bit is not, undo the 64-bit swap and try a 32-bit
3344 * swap. If the hostname bit is still not set (e.g., older data
3345 * file), punt and fallback to the original behavior --
3346 * clearing all feature bits and setting buildid.
3347 */
3348 mem_bswap_64(&header->adds_features,
3349 BITS_TO_U64(HEADER_FEAT_BITS));
3350
3351 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3352 /* unswap as u64 */
3353 mem_bswap_64(&header->adds_features,
3354 BITS_TO_U64(HEADER_FEAT_BITS));
3355
3356 /* unswap as u32 */
3357 mem_bswap_32(&header->adds_features,
3358 BITS_TO_U32(HEADER_FEAT_BITS));
3359 }
3360
3361 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3362 bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3363 set_bit(HEADER_BUILD_ID, header->adds_features);
3364 }
3365 }
3366
3367 memcpy(&ph->adds_features, &header->adds_features,
3368 sizeof(ph->adds_features));
3369
3370 ph->data_offset = header->data.offset;
3371 ph->data_size = header->data.size;
3372 ph->feat_offset = header->data.offset + header->data.size;
3373 return 0;
3374}
3375
3376static int perf_file_section__process(struct perf_file_section *section,
3377 struct perf_header *ph,
3378 int feat, int fd, void *data)
3379{
3380 struct feat_fd fdd = {
3381 .fd = fd,
3382 .ph = ph,
3383 .size = section->size,
3384 .offset = section->offset,
3385 };
3386
3387 if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3388 pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3389 "%d, continuing...\n", section->offset, feat);
3390 return 0;
3391 }
3392
3393 if (feat >= HEADER_LAST_FEATURE) {
3394 pr_debug("unknown feature %d, continuing...\n", feat);
3395 return 0;
3396 }
3397
3398 if (!feat_ops[feat].process)
3399 return 0;
3400
3401 return feat_ops[feat].process(&fdd, data);
3402}
3403
3404static int perf_file_header__read_pipe(struct perf_pipe_file_header *header,
3405 struct perf_header *ph, int fd,
3406 bool repipe)
3407{
3408 struct feat_fd ff = {
3409 .fd = STDOUT_FILENO,
3410 .ph = ph,
3411 };
3412 ssize_t ret;
3413
3414 ret = readn(fd, header, sizeof(*header));
3415 if (ret <= 0)
3416 return -1;
3417
3418 if (check_magic_endian(header->magic, header->size, true, ph) < 0) {
3419 pr_debug("endian/magic failed\n");
3420 return -1;
3421 }
3422
3423 if (ph->needs_swap)
3424 header->size = bswap_64(header->size);
3425
3426 if (repipe && do_write(&ff, header, sizeof(*header)) < 0)
3427 return -1;
3428
3429 return 0;
3430}
3431
3432static int perf_header__read_pipe(struct perf_session *session)
3433{
3434 struct perf_header *header = &session->header;
3435 struct perf_pipe_file_header f_header;
3436
3437 if (perf_file_header__read_pipe(&f_header, header,
3438 perf_data__fd(session->data),
3439 session->repipe) < 0) {
3440 pr_debug("incompatible file format\n");
3441 return -EINVAL;
3442 }
3443
3444 return 0;
3445}
3446
3447static int read_attr(int fd, struct perf_header *ph,
3448 struct perf_file_attr *f_attr)
3449{
3450 struct perf_event_attr *attr = &f_attr->attr;
3451 size_t sz, left;
3452 size_t our_sz = sizeof(f_attr->attr);
3453 ssize_t ret;
3454
3455 memset(f_attr, 0, sizeof(*f_attr));
3456
3457 /* read minimal guaranteed structure */
3458 ret = readn(fd, attr, PERF_ATTR_SIZE_VER0);
3459 if (ret <= 0) {
3460 pr_debug("cannot read %d bytes of header attr\n",
3461 PERF_ATTR_SIZE_VER0);
3462 return -1;
3463 }
3464
3465 /* on file perf_event_attr size */
3466 sz = attr->size;
3467
3468 if (ph->needs_swap)
3469 sz = bswap_32(sz);
3470
3471 if (sz == 0) {
3472 /* assume ABI0 */
3473 sz = PERF_ATTR_SIZE_VER0;
3474 } else if (sz > our_sz) {
3475 pr_debug("file uses a more recent and unsupported ABI"
3476 " (%zu bytes extra)\n", sz - our_sz);
3477 return -1;
3478 }
3479 /* what we have not yet read and that we know about */
3480 left = sz - PERF_ATTR_SIZE_VER0;
3481 if (left) {
3482 void *ptr = attr;
3483 ptr += PERF_ATTR_SIZE_VER0;
3484
3485 ret = readn(fd, ptr, left);
3486 }
3487 /* read perf_file_section, ids are read in caller */
3488 ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids));
3489
3490 return ret <= 0 ? -1 : 0;
3491}
3492
3493static int perf_evsel__prepare_tracepoint_event(struct evsel *evsel,
3494 struct tep_handle *pevent)
3495{
3496 struct tep_event *event;
3497 char bf[128];
3498
3499 /* already prepared */
3500 if (evsel->tp_format)
3501 return 0;
3502
3503 if (pevent == NULL) {
3504 pr_debug("broken or missing trace data\n");
3505 return -1;
3506 }
3507
3508 event = tep_find_event(pevent, evsel->core.attr.config);
3509 if (event == NULL) {
3510 pr_debug("cannot find event format for %d\n", (int)evsel->core.attr.config);
3511 return -1;
3512 }
3513
3514 if (!evsel->name) {
3515 snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name);
3516 evsel->name = strdup(bf);
3517 if (evsel->name == NULL)
3518 return -1;
3519 }
3520
3521 evsel->tp_format = event;
3522 return 0;
3523}
3524
3525static int perf_evlist__prepare_tracepoint_events(struct evlist *evlist,
3526 struct tep_handle *pevent)
3527{
3528 struct evsel *pos;
3529
3530 evlist__for_each_entry(evlist, pos) {
3531 if (pos->core.attr.type == PERF_TYPE_TRACEPOINT &&
3532 perf_evsel__prepare_tracepoint_event(pos, pevent))
3533 return -1;
3534 }
3535
3536 return 0;
3537}
3538
3539int perf_session__read_header(struct perf_session *session)
3540{
3541 struct perf_data *data = session->data;
3542 struct perf_header *header = &session->header;
3543 struct perf_file_header f_header;
3544 struct perf_file_attr f_attr;
3545 u64 f_id;
3546 int nr_attrs, nr_ids, i, j;
3547 int fd = perf_data__fd(data);
3548
3549 session->evlist = evlist__new();
3550 if (session->evlist == NULL)
3551 return -ENOMEM;
3552
3553 session->evlist->env = &header->env;
3554 session->machines.host.env = &header->env;
3555 if (perf_data__is_pipe(data))
3556 return perf_header__read_pipe(session);
3557
3558 if (perf_file_header__read(&f_header, header, fd) < 0)
3559 return -EINVAL;
3560
3561 /*
3562 * Sanity check that perf.data was written cleanly; data size is
3563 * initialized to 0 and updated only if the on_exit function is run.
3564 * If data size is still 0 then the file contains only partial
3565 * information. Just warn user and process it as much as it can.
3566 */
3567 if (f_header.data.size == 0) {
3568 pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n"
3569 "Was the 'perf record' command properly terminated?\n",
3570 data->file.path);
3571 }
3572
3573 if (f_header.attr_size == 0) {
3574 pr_err("ERROR: The %s file's attr size field is 0 which is unexpected.\n"
3575 "Was the 'perf record' command properly terminated?\n",
3576 data->file.path);
3577 return -EINVAL;
3578 }
3579
3580 nr_attrs = f_header.attrs.size / f_header.attr_size;
3581 lseek(fd, f_header.attrs.offset, SEEK_SET);
3582
3583 for (i = 0; i < nr_attrs; i++) {
3584 struct evsel *evsel;
3585 off_t tmp;
3586
3587 if (read_attr(fd, header, &f_attr) < 0)
3588 goto out_errno;
3589
3590 if (header->needs_swap) {
3591 f_attr.ids.size = bswap_64(f_attr.ids.size);
3592 f_attr.ids.offset = bswap_64(f_attr.ids.offset);
3593 perf_event__attr_swap(&f_attr.attr);
3594 }
3595
3596 tmp = lseek(fd, 0, SEEK_CUR);
3597 evsel = evsel__new(&f_attr.attr);
3598
3599 if (evsel == NULL)
3600 goto out_delete_evlist;
3601
3602 evsel->needs_swap = header->needs_swap;
3603 /*
3604 * Do it before so that if perf_evsel__alloc_id fails, this
3605 * entry gets purged too at evlist__delete().
3606 */
3607 evlist__add(session->evlist, evsel);
3608
3609 nr_ids = f_attr.ids.size / sizeof(u64);
3610 /*
3611 * We don't have the cpu and thread maps on the header, so
3612 * for allocating the perf_sample_id table we fake 1 cpu and
3613 * hattr->ids threads.
3614 */
3615 if (perf_evsel__alloc_id(&evsel->core, 1, nr_ids))
3616 goto out_delete_evlist;
3617
3618 lseek(fd, f_attr.ids.offset, SEEK_SET);
3619
3620 for (j = 0; j < nr_ids; j++) {
3621 if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id)))
3622 goto out_errno;
3623
3624 perf_evlist__id_add(&session->evlist->core, &evsel->core, 0, j, f_id);
3625 }
3626
3627 lseek(fd, tmp, SEEK_SET);
3628 }
3629
3630 perf_header__process_sections(header, fd, &session->tevent,
3631 perf_file_section__process);
3632
3633 if (perf_evlist__prepare_tracepoint_events(session->evlist,
3634 session->tevent.pevent))
3635 goto out_delete_evlist;
3636
3637 return 0;
3638out_errno:
3639 return -errno;
3640
3641out_delete_evlist:
3642 evlist__delete(session->evlist);
3643 session->evlist = NULL;
3644 return -ENOMEM;
3645}
3646
3647int perf_event__process_feature(struct perf_session *session,
3648 union perf_event *event)
3649{
3650 struct perf_tool *tool = session->tool;
3651 struct feat_fd ff = { .fd = 0 };
3652 struct perf_record_header_feature *fe = (struct perf_record_header_feature *)event;
3653 int type = fe->header.type;
3654 u64 feat = fe->feat_id;
3655
3656 if (type < 0 || type >= PERF_RECORD_HEADER_MAX) {
3657 pr_warning("invalid record type %d in pipe-mode\n", type);
3658 return 0;
3659 }
3660 if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) {
3661 pr_warning("invalid record type %d in pipe-mode\n", type);
3662 return -1;
3663 }
3664
3665 if (!feat_ops[feat].process)
3666 return 0;
3667
3668 ff.buf = (void *)fe->data;
3669 ff.size = event->header.size - sizeof(*fe);
3670 ff.ph = &session->header;
3671
3672 if (feat_ops[feat].process(&ff, NULL))
3673 return -1;
3674
3675 if (!feat_ops[feat].print || !tool->show_feat_hdr)
3676 return 0;
3677
3678 if (!feat_ops[feat].full_only ||
3679 tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) {
3680 feat_ops[feat].print(&ff, stdout);
3681 } else {
3682 fprintf(stdout, "# %s info available, use -I to display\n",
3683 feat_ops[feat].name);
3684 }
3685
3686 return 0;
3687}
3688
3689size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp)
3690{
3691 struct perf_record_event_update *ev = &event->event_update;
3692 struct perf_record_event_update_scale *ev_scale;
3693 struct perf_record_event_update_cpus *ev_cpus;
3694 struct perf_cpu_map *map;
3695 size_t ret;
3696
3697 ret = fprintf(fp, "\n... id: %" PRI_lu64 "\n", ev->id);
3698
3699 switch (ev->type) {
3700 case PERF_EVENT_UPDATE__SCALE:
3701 ev_scale = (struct perf_record_event_update_scale *)ev->data;
3702 ret += fprintf(fp, "... scale: %f\n", ev_scale->scale);
3703 break;
3704 case PERF_EVENT_UPDATE__UNIT:
3705 ret += fprintf(fp, "... unit: %s\n", ev->data);
3706 break;
3707 case PERF_EVENT_UPDATE__NAME:
3708 ret += fprintf(fp, "... name: %s\n", ev->data);
3709 break;
3710 case PERF_EVENT_UPDATE__CPUS:
3711 ev_cpus = (struct perf_record_event_update_cpus *)ev->data;
3712 ret += fprintf(fp, "... ");
3713
3714 map = cpu_map__new_data(&ev_cpus->cpus);
3715 if (map)
3716 ret += cpu_map__fprintf(map, fp);
3717 else
3718 ret += fprintf(fp, "failed to get cpus\n");
3719 break;
3720 default:
3721 ret += fprintf(fp, "... unknown type\n");
3722 break;
3723 }
3724
3725 return ret;
3726}
3727
3728int perf_event__process_attr(struct perf_tool *tool __maybe_unused,
3729 union perf_event *event,
3730 struct evlist **pevlist)
3731{
3732 u32 i, ids, n_ids;
3733 struct evsel *evsel;
3734 struct evlist *evlist = *pevlist;
3735
3736 if (evlist == NULL) {
3737 *pevlist = evlist = evlist__new();
3738 if (evlist == NULL)
3739 return -ENOMEM;
3740 }
3741
3742 evsel = evsel__new(&event->attr.attr);
3743 if (evsel == NULL)
3744 return -ENOMEM;
3745
3746 evlist__add(evlist, evsel);
3747
3748 ids = event->header.size;
3749 ids -= (void *)&event->attr.id - (void *)event;
3750 n_ids = ids / sizeof(u64);
3751 /*
3752 * We don't have the cpu and thread maps on the header, so
3753 * for allocating the perf_sample_id table we fake 1 cpu and
3754 * hattr->ids threads.
3755 */
3756 if (perf_evsel__alloc_id(&evsel->core, 1, n_ids))
3757 return -ENOMEM;
3758
3759 for (i = 0; i < n_ids; i++) {
3760 perf_evlist__id_add(&evlist->core, &evsel->core, 0, i, event->attr.id[i]);
3761 }
3762
3763 return 0;
3764}
3765
3766int perf_event__process_event_update(struct perf_tool *tool __maybe_unused,
3767 union perf_event *event,
3768 struct evlist **pevlist)
3769{
3770 struct perf_record_event_update *ev = &event->event_update;
3771 struct perf_record_event_update_scale *ev_scale;
3772 struct perf_record_event_update_cpus *ev_cpus;
3773 struct evlist *evlist;
3774 struct evsel *evsel;
3775 struct perf_cpu_map *map;
3776
3777 if (!pevlist || *pevlist == NULL)
3778 return -EINVAL;
3779
3780 evlist = *pevlist;
3781
3782 evsel = perf_evlist__id2evsel(evlist, ev->id);
3783 if (evsel == NULL)
3784 return -EINVAL;
3785
3786 switch (ev->type) {
3787 case PERF_EVENT_UPDATE__UNIT:
3788 evsel->unit = strdup(ev->data);
3789 break;
3790 case PERF_EVENT_UPDATE__NAME:
3791 evsel->name = strdup(ev->data);
3792 break;
3793 case PERF_EVENT_UPDATE__SCALE:
3794 ev_scale = (struct perf_record_event_update_scale *)ev->data;
3795 evsel->scale = ev_scale->scale;
3796 break;
3797 case PERF_EVENT_UPDATE__CPUS:
3798 ev_cpus = (struct perf_record_event_update_cpus *)ev->data;
3799
3800 map = cpu_map__new_data(&ev_cpus->cpus);
3801 if (map)
3802 evsel->core.own_cpus = map;
3803 else
3804 pr_err("failed to get event_update cpus\n");
3805 default:
3806 break;
3807 }
3808
3809 return 0;
3810}
3811
3812int perf_event__process_tracing_data(struct perf_session *session,
3813 union perf_event *event)
3814{
3815 ssize_t size_read, padding, size = event->tracing_data.size;
3816 int fd = perf_data__fd(session->data);
3817 off_t offset = lseek(fd, 0, SEEK_CUR);
3818 char buf[BUFSIZ];
3819
3820 /* setup for reading amidst mmap */
3821 lseek(fd, offset + sizeof(struct perf_record_header_tracing_data),
3822 SEEK_SET);
3823
3824 size_read = trace_report(fd, &session->tevent,
3825 session->repipe);
3826 padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read;
3827
3828 if (readn(fd, buf, padding) < 0) {
3829 pr_err("%s: reading input file", __func__);
3830 return -1;
3831 }
3832 if (session->repipe) {
3833 int retw = write(STDOUT_FILENO, buf, padding);
3834 if (retw <= 0 || retw != padding) {
3835 pr_err("%s: repiping tracing data padding", __func__);
3836 return -1;
3837 }
3838 }
3839
3840 if (size_read + padding != size) {
3841 pr_err("%s: tracing data size mismatch", __func__);
3842 return -1;
3843 }
3844
3845 perf_evlist__prepare_tracepoint_events(session->evlist,
3846 session->tevent.pevent);
3847
3848 return size_read + padding;
3849}
3850
3851int perf_event__process_build_id(struct perf_session *session,
3852 union perf_event *event)
3853{
3854 __event_process_build_id(&event->build_id,
3855 event->build_id.filename,
3856 session);
3857 return 0;
3858}