Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2#include <errno.h>
   3#include <inttypes.h>
   4#include "string2.h"
   5#include <sys/param.h>
   6#include <sys/types.h>
   7#include <byteswap.h>
   8#include <unistd.h>
   9#include <regex.h>
  10#include <stdio.h>
  11#include <stdlib.h>
  12#include <linux/compiler.h>
  13#include <linux/list.h>
  14#include <linux/kernel.h>
  15#include <linux/bitops.h>
  16#include <linux/string.h>
  17#include <linux/stringify.h>
  18#include <linux/zalloc.h>
  19#include <sys/stat.h>
  20#include <sys/utsname.h>
  21#include <linux/time64.h>
  22#include <dirent.h>
  23#ifdef HAVE_LIBBPF_SUPPORT
  24#include <bpf/libbpf.h>
  25#endif
  26#include <perf/cpumap.h>
  27#include <tools/libc_compat.h> // reallocarray
  28
  29#include "dso.h"
  30#include "evlist.h"
  31#include "evsel.h"
  32#include "util/evsel_fprintf.h"
  33#include "header.h"
  34#include "memswap.h"
  35#include "trace-event.h"
  36#include "session.h"
  37#include "symbol.h"
  38#include "debug.h"
  39#include "cpumap.h"
  40#include "pmu.h"
  41#include "pmus.h"
  42#include "vdso.h"
  43#include "strbuf.h"
  44#include "build-id.h"
  45#include "data.h"
  46#include <api/fs/fs.h>
  47#include "asm/bug.h"
  48#include "tool.h"
  49#include "time-utils.h"
  50#include "units.h"
  51#include "util/util.h" // perf_exe()
  52#include "cputopo.h"
  53#include "bpf-event.h"
  54#include "bpf-utils.h"
  55#include "clockid.h"
  56
  57#include <linux/ctype.h>
  58#include <internal/lib.h>
  59
  60#ifdef HAVE_LIBTRACEEVENT
  61#include <event-parse.h>
  62#endif
  63
  64/*
  65 * magic2 = "PERFILE2"
  66 * must be a numerical value to let the endianness
  67 * determine the memory layout. That way we are able
  68 * to detect endianness when reading the perf.data file
  69 * back.
  70 *
  71 * we check for legacy (PERFFILE) format.
  72 */
  73static const char *__perf_magic1 = "PERFFILE";
  74static const u64 __perf_magic2    = 0x32454c4946524550ULL;
  75static const u64 __perf_magic2_sw = 0x50455246494c4532ULL;
  76
  77#define PERF_MAGIC	__perf_magic2
  78
  79const char perf_version_string[] = PERF_VERSION;
  80
  81struct perf_file_attr {
  82	struct perf_event_attr	attr;
  83	struct perf_file_section	ids;
  84};
  85
  86void perf_header__set_feat(struct perf_header *header, int feat)
  87{
  88	__set_bit(feat, header->adds_features);
  89}
  90
  91void perf_header__clear_feat(struct perf_header *header, int feat)
  92{
  93	__clear_bit(feat, header->adds_features);
  94}
  95
  96bool perf_header__has_feat(const struct perf_header *header, int feat)
  97{
  98	return test_bit(feat, header->adds_features);
  99}
 100
 101static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size)
 102{
 103	ssize_t ret = writen(ff->fd, buf, size);
 104
 105	if (ret != (ssize_t)size)
 106		return ret < 0 ? (int)ret : -1;
 107	return 0;
 108}
 109
 110static int __do_write_buf(struct feat_fd *ff,  const void *buf, size_t size)
 111{
 112	/* struct perf_event_header::size is u16 */
 113	const size_t max_size = 0xffff - sizeof(struct perf_event_header);
 114	size_t new_size = ff->size;
 115	void *addr;
 116
 117	if (size + ff->offset > max_size)
 118		return -E2BIG;
 119
 120	while (size > (new_size - ff->offset))
 121		new_size <<= 1;
 122	new_size = min(max_size, new_size);
 123
 124	if (ff->size < new_size) {
 125		addr = realloc(ff->buf, new_size);
 126		if (!addr)
 127			return -ENOMEM;
 128		ff->buf = addr;
 129		ff->size = new_size;
 130	}
 131
 132	memcpy(ff->buf + ff->offset, buf, size);
 133	ff->offset += size;
 134
 135	return 0;
 136}
 137
 138/* Return: 0 if succeeded, -ERR if failed. */
 139int do_write(struct feat_fd *ff, const void *buf, size_t size)
 140{
 141	if (!ff->buf)
 142		return __do_write_fd(ff, buf, size);
 143	return __do_write_buf(ff, buf, size);
 144}
 145
 146/* Return: 0 if succeeded, -ERR if failed. */
 147static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size)
 148{
 149	u64 *p = (u64 *) set;
 150	int i, ret;
 151
 152	ret = do_write(ff, &size, sizeof(size));
 153	if (ret < 0)
 154		return ret;
 155
 156	for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
 157		ret = do_write(ff, p + i, sizeof(*p));
 158		if (ret < 0)
 159			return ret;
 160	}
 161
 162	return 0;
 163}
 164
 165/* Return: 0 if succeeded, -ERR if failed. */
 166int write_padded(struct feat_fd *ff, const void *bf,
 167		 size_t count, size_t count_aligned)
 168{
 169	static const char zero_buf[NAME_ALIGN];
 170	int err = do_write(ff, bf, count);
 171
 172	if (!err)
 173		err = do_write(ff, zero_buf, count_aligned - count);
 174
 175	return err;
 176}
 177
 178#define string_size(str)						\
 179	(PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32))
 180
 181/* Return: 0 if succeeded, -ERR if failed. */
 182static int do_write_string(struct feat_fd *ff, const char *str)
 183{
 184	u32 len, olen;
 185	int ret;
 186
 187	olen = strlen(str) + 1;
 188	len = PERF_ALIGN(olen, NAME_ALIGN);
 189
 190	/* write len, incl. \0 */
 191	ret = do_write(ff, &len, sizeof(len));
 192	if (ret < 0)
 193		return ret;
 194
 195	return write_padded(ff, str, olen, len);
 196}
 197
 198static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size)
 199{
 200	ssize_t ret = readn(ff->fd, addr, size);
 201
 202	if (ret != size)
 203		return ret < 0 ? (int)ret : -1;
 204	return 0;
 205}
 206
 207static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size)
 208{
 209	if (size > (ssize_t)ff->size - ff->offset)
 210		return -1;
 211
 212	memcpy(addr, ff->buf + ff->offset, size);
 213	ff->offset += size;
 214
 215	return 0;
 216
 217}
 218
 219static int __do_read(struct feat_fd *ff, void *addr, ssize_t size)
 220{
 221	if (!ff->buf)
 222		return __do_read_fd(ff, addr, size);
 223	return __do_read_buf(ff, addr, size);
 224}
 225
 226static int do_read_u32(struct feat_fd *ff, u32 *addr)
 227{
 228	int ret;
 229
 230	ret = __do_read(ff, addr, sizeof(*addr));
 231	if (ret)
 232		return ret;
 233
 234	if (ff->ph->needs_swap)
 235		*addr = bswap_32(*addr);
 236	return 0;
 237}
 238
 239static int do_read_u64(struct feat_fd *ff, u64 *addr)
 240{
 241	int ret;
 242
 243	ret = __do_read(ff, addr, sizeof(*addr));
 244	if (ret)
 245		return ret;
 246
 247	if (ff->ph->needs_swap)
 248		*addr = bswap_64(*addr);
 249	return 0;
 250}
 251
 252static char *do_read_string(struct feat_fd *ff)
 253{
 254	u32 len;
 255	char *buf;
 256
 257	if (do_read_u32(ff, &len))
 258		return NULL;
 259
 260	buf = malloc(len);
 261	if (!buf)
 262		return NULL;
 263
 264	if (!__do_read(ff, buf, len)) {
 265		/*
 266		 * strings are padded by zeroes
 267		 * thus the actual strlen of buf
 268		 * may be less than len
 269		 */
 270		return buf;
 271	}
 272
 273	free(buf);
 274	return NULL;
 275}
 276
 277/* Return: 0 if succeeded, -ERR if failed. */
 278static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize)
 279{
 280	unsigned long *set;
 281	u64 size, *p;
 282	int i, ret;
 283
 284	ret = do_read_u64(ff, &size);
 285	if (ret)
 286		return ret;
 287
 288	set = bitmap_zalloc(size);
 289	if (!set)
 290		return -ENOMEM;
 291
 292	p = (u64 *) set;
 293
 294	for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
 295		ret = do_read_u64(ff, p + i);
 296		if (ret < 0) {
 297			free(set);
 298			return ret;
 299		}
 300	}
 301
 302	*pset  = set;
 303	*psize = size;
 304	return 0;
 305}
 306
 307#ifdef HAVE_LIBTRACEEVENT
 308static int write_tracing_data(struct feat_fd *ff,
 309			      struct evlist *evlist)
 310{
 311	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
 312		return -1;
 313
 314	return read_tracing_data(ff->fd, &evlist->core.entries);
 315}
 316#endif
 317
 318static int write_build_id(struct feat_fd *ff,
 319			  struct evlist *evlist __maybe_unused)
 320{
 321	struct perf_session *session;
 322	int err;
 323
 324	session = container_of(ff->ph, struct perf_session, header);
 325
 326	if (!perf_session__read_build_ids(session, true))
 327		return -1;
 328
 329	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
 330		return -1;
 331
 332	err = perf_session__write_buildid_table(session, ff);
 333	if (err < 0) {
 334		pr_debug("failed to write buildid table\n");
 335		return err;
 336	}
 337	perf_session__cache_build_ids(session);
 338
 339	return 0;
 340}
 341
 342static int write_hostname(struct feat_fd *ff,
 343			  struct evlist *evlist __maybe_unused)
 344{
 345	struct utsname uts;
 346	int ret;
 347
 348	ret = uname(&uts);
 349	if (ret < 0)
 350		return -1;
 351
 352	return do_write_string(ff, uts.nodename);
 353}
 354
 355static int write_osrelease(struct feat_fd *ff,
 356			   struct evlist *evlist __maybe_unused)
 357{
 358	struct utsname uts;
 359	int ret;
 360
 361	ret = uname(&uts);
 362	if (ret < 0)
 363		return -1;
 364
 365	return do_write_string(ff, uts.release);
 366}
 367
 368static int write_arch(struct feat_fd *ff,
 369		      struct evlist *evlist __maybe_unused)
 370{
 371	struct utsname uts;
 372	int ret;
 373
 374	ret = uname(&uts);
 375	if (ret < 0)
 376		return -1;
 377
 378	return do_write_string(ff, uts.machine);
 379}
 380
 381static int write_version(struct feat_fd *ff,
 382			 struct evlist *evlist __maybe_unused)
 383{
 384	return do_write_string(ff, perf_version_string);
 385}
 386
 387static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc)
 388{
 389	FILE *file;
 390	char *buf = NULL;
 391	char *s, *p;
 392	const char *search = cpuinfo_proc;
 393	size_t len = 0;
 394	int ret = -1;
 395
 396	if (!search)
 397		return -1;
 398
 399	file = fopen("/proc/cpuinfo", "r");
 400	if (!file)
 401		return -1;
 402
 403	while (getline(&buf, &len, file) > 0) {
 404		ret = strncmp(buf, search, strlen(search));
 405		if (!ret)
 406			break;
 407	}
 408
 409	if (ret) {
 410		ret = -1;
 411		goto done;
 412	}
 413
 414	s = buf;
 415
 416	p = strchr(buf, ':');
 417	if (p && *(p+1) == ' ' && *(p+2))
 418		s = p + 2;
 419	p = strchr(s, '\n');
 420	if (p)
 421		*p = '\0';
 422
 423	/* squash extra space characters (branding string) */
 424	p = s;
 425	while (*p) {
 426		if (isspace(*p)) {
 427			char *r = p + 1;
 428			char *q = skip_spaces(r);
 429			*p = ' ';
 430			if (q != (p+1))
 431				while ((*r++ = *q++));
 432		}
 433		p++;
 434	}
 435	ret = do_write_string(ff, s);
 436done:
 437	free(buf);
 438	fclose(file);
 439	return ret;
 440}
 441
 442static int write_cpudesc(struct feat_fd *ff,
 443		       struct evlist *evlist __maybe_unused)
 444{
 445#if defined(__powerpc__) || defined(__hppa__) || defined(__sparc__)
 446#define CPUINFO_PROC	{ "cpu", }
 447#elif defined(__s390__)
 448#define CPUINFO_PROC	{ "vendor_id", }
 449#elif defined(__sh__)
 450#define CPUINFO_PROC	{ "cpu type", }
 451#elif defined(__alpha__) || defined(__mips__)
 452#define CPUINFO_PROC	{ "cpu model", }
 453#elif defined(__arm__)
 454#define CPUINFO_PROC	{ "model name", "Processor", }
 455#elif defined(__arc__)
 456#define CPUINFO_PROC	{ "Processor", }
 457#elif defined(__xtensa__)
 458#define CPUINFO_PROC	{ "core ID", }
 459#elif defined(__loongarch__)
 460#define CPUINFO_PROC	{ "Model Name", }
 461#else
 462#define CPUINFO_PROC	{ "model name", }
 463#endif
 464	const char *cpuinfo_procs[] = CPUINFO_PROC;
 465#undef CPUINFO_PROC
 466	unsigned int i;
 467
 468	for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) {
 469		int ret;
 470		ret = __write_cpudesc(ff, cpuinfo_procs[i]);
 471		if (ret >= 0)
 472			return ret;
 473	}
 474	return -1;
 475}
 476
 477
 478static int write_nrcpus(struct feat_fd *ff,
 479			struct evlist *evlist __maybe_unused)
 480{
 481	long nr;
 482	u32 nrc, nra;
 483	int ret;
 484
 485	nrc = cpu__max_present_cpu().cpu;
 486
 487	nr = sysconf(_SC_NPROCESSORS_ONLN);
 488	if (nr < 0)
 489		return -1;
 490
 491	nra = (u32)(nr & UINT_MAX);
 492
 493	ret = do_write(ff, &nrc, sizeof(nrc));
 494	if (ret < 0)
 495		return ret;
 496
 497	return do_write(ff, &nra, sizeof(nra));
 498}
 499
 500static int write_event_desc(struct feat_fd *ff,
 501			    struct evlist *evlist)
 502{
 503	struct evsel *evsel;
 504	u32 nre, nri, sz;
 505	int ret;
 506
 507	nre = evlist->core.nr_entries;
 508
 509	/*
 510	 * write number of events
 511	 */
 512	ret = do_write(ff, &nre, sizeof(nre));
 513	if (ret < 0)
 514		return ret;
 515
 516	/*
 517	 * size of perf_event_attr struct
 518	 */
 519	sz = (u32)sizeof(evsel->core.attr);
 520	ret = do_write(ff, &sz, sizeof(sz));
 521	if (ret < 0)
 522		return ret;
 523
 524	evlist__for_each_entry(evlist, evsel) {
 525		ret = do_write(ff, &evsel->core.attr, sz);
 526		if (ret < 0)
 527			return ret;
 528		/*
 529		 * write number of unique id per event
 530		 * there is one id per instance of an event
 531		 *
 532		 * copy into an nri to be independent of the
 533		 * type of ids,
 534		 */
 535		nri = evsel->core.ids;
 536		ret = do_write(ff, &nri, sizeof(nri));
 537		if (ret < 0)
 538			return ret;
 539
 540		/*
 541		 * write event string as passed on cmdline
 542		 */
 543		ret = do_write_string(ff, evsel__name(evsel));
 544		if (ret < 0)
 545			return ret;
 546		/*
 547		 * write unique ids for this event
 548		 */
 549		ret = do_write(ff, evsel->core.id, evsel->core.ids * sizeof(u64));
 550		if (ret < 0)
 551			return ret;
 552	}
 553	return 0;
 554}
 555
 556static int write_cmdline(struct feat_fd *ff,
 557			 struct evlist *evlist __maybe_unused)
 558{
 559	char pbuf[MAXPATHLEN], *buf;
 560	int i, ret, n;
 561
 562	/* actual path to perf binary */
 563	buf = perf_exe(pbuf, MAXPATHLEN);
 564
 565	/* account for binary path */
 566	n = perf_env.nr_cmdline + 1;
 567
 568	ret = do_write(ff, &n, sizeof(n));
 569	if (ret < 0)
 570		return ret;
 571
 572	ret = do_write_string(ff, buf);
 573	if (ret < 0)
 574		return ret;
 575
 576	for (i = 0 ; i < perf_env.nr_cmdline; i++) {
 577		ret = do_write_string(ff, perf_env.cmdline_argv[i]);
 578		if (ret < 0)
 579			return ret;
 580	}
 581	return 0;
 582}
 583
 584
 585static int write_cpu_topology(struct feat_fd *ff,
 586			      struct evlist *evlist __maybe_unused)
 587{
 588	struct cpu_topology *tp;
 589	u32 i;
 590	int ret, j;
 591
 592	tp = cpu_topology__new();
 593	if (!tp)
 594		return -1;
 595
 596	ret = do_write(ff, &tp->package_cpus_lists, sizeof(tp->package_cpus_lists));
 597	if (ret < 0)
 598		goto done;
 599
 600	for (i = 0; i < tp->package_cpus_lists; i++) {
 601		ret = do_write_string(ff, tp->package_cpus_list[i]);
 602		if (ret < 0)
 603			goto done;
 604	}
 605	ret = do_write(ff, &tp->core_cpus_lists, sizeof(tp->core_cpus_lists));
 606	if (ret < 0)
 607		goto done;
 608
 609	for (i = 0; i < tp->core_cpus_lists; i++) {
 610		ret = do_write_string(ff, tp->core_cpus_list[i]);
 611		if (ret < 0)
 612			break;
 613	}
 614
 615	ret = perf_env__read_cpu_topology_map(&perf_env);
 616	if (ret < 0)
 617		goto done;
 618
 619	for (j = 0; j < perf_env.nr_cpus_avail; j++) {
 620		ret = do_write(ff, &perf_env.cpu[j].core_id,
 621			       sizeof(perf_env.cpu[j].core_id));
 622		if (ret < 0)
 623			return ret;
 624		ret = do_write(ff, &perf_env.cpu[j].socket_id,
 625			       sizeof(perf_env.cpu[j].socket_id));
 626		if (ret < 0)
 627			return ret;
 628	}
 629
 630	if (!tp->die_cpus_lists)
 631		goto done;
 632
 633	ret = do_write(ff, &tp->die_cpus_lists, sizeof(tp->die_cpus_lists));
 634	if (ret < 0)
 635		goto done;
 636
 637	for (i = 0; i < tp->die_cpus_lists; i++) {
 638		ret = do_write_string(ff, tp->die_cpus_list[i]);
 639		if (ret < 0)
 640			goto done;
 641	}
 642
 643	for (j = 0; j < perf_env.nr_cpus_avail; j++) {
 644		ret = do_write(ff, &perf_env.cpu[j].die_id,
 645			       sizeof(perf_env.cpu[j].die_id));
 646		if (ret < 0)
 647			return ret;
 648	}
 649
 650done:
 651	cpu_topology__delete(tp);
 652	return ret;
 653}
 654
 655
 656
 657static int write_total_mem(struct feat_fd *ff,
 658			   struct evlist *evlist __maybe_unused)
 659{
 660	char *buf = NULL;
 661	FILE *fp;
 662	size_t len = 0;
 663	int ret = -1, n;
 664	uint64_t mem;
 665
 666	fp = fopen("/proc/meminfo", "r");
 667	if (!fp)
 668		return -1;
 669
 670	while (getline(&buf, &len, fp) > 0) {
 671		ret = strncmp(buf, "MemTotal:", 9);
 672		if (!ret)
 673			break;
 674	}
 675	if (!ret) {
 676		n = sscanf(buf, "%*s %"PRIu64, &mem);
 677		if (n == 1)
 678			ret = do_write(ff, &mem, sizeof(mem));
 679	} else
 680		ret = -1;
 681	free(buf);
 682	fclose(fp);
 683	return ret;
 684}
 685
 686static int write_numa_topology(struct feat_fd *ff,
 687			       struct evlist *evlist __maybe_unused)
 688{
 689	struct numa_topology *tp;
 690	int ret = -1;
 691	u32 i;
 692
 693	tp = numa_topology__new();
 694	if (!tp)
 695		return -ENOMEM;
 696
 697	ret = do_write(ff, &tp->nr, sizeof(u32));
 698	if (ret < 0)
 699		goto err;
 700
 701	for (i = 0; i < tp->nr; i++) {
 702		struct numa_topology_node *n = &tp->nodes[i];
 703
 704		ret = do_write(ff, &n->node, sizeof(u32));
 705		if (ret < 0)
 706			goto err;
 707
 708		ret = do_write(ff, &n->mem_total, sizeof(u64));
 709		if (ret)
 710			goto err;
 711
 712		ret = do_write(ff, &n->mem_free, sizeof(u64));
 713		if (ret)
 714			goto err;
 715
 716		ret = do_write_string(ff, n->cpus);
 717		if (ret < 0)
 718			goto err;
 719	}
 720
 721	ret = 0;
 722
 723err:
 724	numa_topology__delete(tp);
 725	return ret;
 726}
 727
 728/*
 729 * File format:
 730 *
 731 * struct pmu_mappings {
 732 *	u32	pmu_num;
 733 *	struct pmu_map {
 734 *		u32	type;
 735 *		char	name[];
 736 *	}[pmu_num];
 737 * };
 738 */
 739
 740static int write_pmu_mappings(struct feat_fd *ff,
 741			      struct evlist *evlist __maybe_unused)
 742{
 743	struct perf_pmu *pmu = NULL;
 744	u32 pmu_num = 0;
 745	int ret;
 746
 747	/*
 748	 * Do a first pass to count number of pmu to avoid lseek so this
 749	 * works in pipe mode as well.
 750	 */
 751	while ((pmu = perf_pmus__scan(pmu)))
 
 
 752		pmu_num++;
 
 753
 754	ret = do_write(ff, &pmu_num, sizeof(pmu_num));
 755	if (ret < 0)
 756		return ret;
 757
 758	while ((pmu = perf_pmus__scan(pmu))) {
 
 
 
 759		ret = do_write(ff, &pmu->type, sizeof(pmu->type));
 760		if (ret < 0)
 761			return ret;
 762
 763		ret = do_write_string(ff, pmu->name);
 764		if (ret < 0)
 765			return ret;
 766	}
 767
 768	return 0;
 769}
 770
 771/*
 772 * File format:
 773 *
 774 * struct group_descs {
 775 *	u32	nr_groups;
 776 *	struct group_desc {
 777 *		char	name[];
 778 *		u32	leader_idx;
 779 *		u32	nr_members;
 780 *	}[nr_groups];
 781 * };
 782 */
 783static int write_group_desc(struct feat_fd *ff,
 784			    struct evlist *evlist)
 785{
 786	u32 nr_groups = evlist__nr_groups(evlist);
 787	struct evsel *evsel;
 788	int ret;
 789
 790	ret = do_write(ff, &nr_groups, sizeof(nr_groups));
 791	if (ret < 0)
 792		return ret;
 793
 794	evlist__for_each_entry(evlist, evsel) {
 795		if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) {
 
 796			const char *name = evsel->group_name ?: "{anon_group}";
 797			u32 leader_idx = evsel->core.idx;
 798			u32 nr_members = evsel->core.nr_members;
 799
 800			ret = do_write_string(ff, name);
 801			if (ret < 0)
 802				return ret;
 803
 804			ret = do_write(ff, &leader_idx, sizeof(leader_idx));
 805			if (ret < 0)
 806				return ret;
 807
 808			ret = do_write(ff, &nr_members, sizeof(nr_members));
 809			if (ret < 0)
 810				return ret;
 811		}
 812	}
 813	return 0;
 814}
 815
 816/*
 817 * Return the CPU id as a raw string.
 818 *
 819 * Each architecture should provide a more precise id string that
 820 * can be use to match the architecture's "mapfile".
 821 */
 822char * __weak get_cpuid_str(struct perf_cpu cpu __maybe_unused)
 823{
 824	return NULL;
 825}
 826
 827char *get_cpuid_allow_env_override(struct perf_cpu cpu)
 828{
 829	char *cpuid;
 830	static bool printed;
 831
 832	cpuid = getenv("PERF_CPUID");
 833	if (cpuid)
 834		cpuid = strdup(cpuid);
 835	if (!cpuid)
 836		cpuid = get_cpuid_str(cpu);
 837	if (!cpuid)
 838		return NULL;
 839
 840	if (!printed) {
 841		pr_debug("Using CPUID %s\n", cpuid);
 842		printed = true;
 843	}
 844	return cpuid;
 845}
 846
 847/* Return zero when the cpuid from the mapfile.csv matches the
 848 * cpuid string generated on this platform.
 849 * Otherwise return non-zero.
 850 */
 851int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid)
 852{
 853	regex_t re;
 854	regmatch_t pmatch[1];
 855	int match;
 856
 857	if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) {
 858		/* Warn unable to generate match particular string. */
 859		pr_info("Invalid regular expression %s\n", mapcpuid);
 860		return 1;
 861	}
 862
 863	match = !regexec(&re, cpuid, 1, pmatch, 0);
 864	regfree(&re);
 865	if (match) {
 866		size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so);
 867
 868		/* Verify the entire string matched. */
 869		if (match_len == strlen(cpuid))
 870			return 0;
 871	}
 872	return 1;
 873}
 874
 875/*
 876 * default get_cpuid(): nothing gets recorded
 877 * actual implementation must be in arch/$(SRCARCH)/util/header.c
 878 */
 879int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused,
 880		     struct perf_cpu cpu __maybe_unused)
 881{
 882	return ENOSYS; /* Not implemented */
 883}
 884
 885static int write_cpuid(struct feat_fd *ff, struct evlist *evlist)
 
 886{
 887	struct perf_cpu cpu = perf_cpu_map__min(evlist->core.all_cpus);
 888	char buffer[64];
 889	int ret;
 890
 891	ret = get_cpuid(buffer, sizeof(buffer), cpu);
 892	if (ret)
 893		return -1;
 894
 895	return do_write_string(ff, buffer);
 896}
 897
 898static int write_branch_stack(struct feat_fd *ff __maybe_unused,
 899			      struct evlist *evlist __maybe_unused)
 900{
 901	return 0;
 902}
 903
 904static int write_auxtrace(struct feat_fd *ff,
 905			  struct evlist *evlist __maybe_unused)
 906{
 907	struct perf_session *session;
 908	int err;
 909
 910	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
 911		return -1;
 912
 913	session = container_of(ff->ph, struct perf_session, header);
 914
 915	err = auxtrace_index__write(ff->fd, &session->auxtrace_index);
 916	if (err < 0)
 917		pr_err("Failed to write auxtrace index\n");
 918	return err;
 919}
 920
 921static int write_clockid(struct feat_fd *ff,
 922			 struct evlist *evlist __maybe_unused)
 923{
 924	return do_write(ff, &ff->ph->env.clock.clockid_res_ns,
 925			sizeof(ff->ph->env.clock.clockid_res_ns));
 926}
 927
 928static int write_clock_data(struct feat_fd *ff,
 929			    struct evlist *evlist __maybe_unused)
 930{
 931	u64 *data64;
 932	u32 data32;
 933	int ret;
 934
 935	/* version */
 936	data32 = 1;
 937
 938	ret = do_write(ff, &data32, sizeof(data32));
 939	if (ret < 0)
 940		return ret;
 941
 942	/* clockid */
 943	data32 = ff->ph->env.clock.clockid;
 944
 945	ret = do_write(ff, &data32, sizeof(data32));
 946	if (ret < 0)
 947		return ret;
 948
 949	/* TOD ref time */
 950	data64 = &ff->ph->env.clock.tod_ns;
 951
 952	ret = do_write(ff, data64, sizeof(*data64));
 953	if (ret < 0)
 954		return ret;
 955
 956	/* clockid ref time */
 957	data64 = &ff->ph->env.clock.clockid_ns;
 958
 959	return do_write(ff, data64, sizeof(*data64));
 960}
 961
 962static int write_hybrid_topology(struct feat_fd *ff,
 963				 struct evlist *evlist __maybe_unused)
 964{
 965	struct hybrid_topology *tp;
 966	int ret;
 967	u32 i;
 968
 969	tp = hybrid_topology__new();
 970	if (!tp)
 971		return -ENOENT;
 972
 973	ret = do_write(ff, &tp->nr, sizeof(u32));
 974	if (ret < 0)
 975		goto err;
 976
 977	for (i = 0; i < tp->nr; i++) {
 978		struct hybrid_topology_node *n = &tp->nodes[i];
 979
 980		ret = do_write_string(ff, n->pmu_name);
 981		if (ret < 0)
 982			goto err;
 983
 984		ret = do_write_string(ff, n->cpus);
 985		if (ret < 0)
 986			goto err;
 987	}
 988
 989	ret = 0;
 990
 991err:
 992	hybrid_topology__delete(tp);
 993	return ret;
 994}
 995
 996static int write_dir_format(struct feat_fd *ff,
 997			    struct evlist *evlist __maybe_unused)
 998{
 999	struct perf_session *session;
1000	struct perf_data *data;
1001
1002	session = container_of(ff->ph, struct perf_session, header);
1003	data = session->data;
1004
1005	if (WARN_ON(!perf_data__is_dir(data)))
1006		return -1;
1007
1008	return do_write(ff, &data->dir.version, sizeof(data->dir.version));
1009}
1010
1011#ifdef HAVE_LIBBPF_SUPPORT
1012static int write_bpf_prog_info(struct feat_fd *ff,
1013			       struct evlist *evlist __maybe_unused)
1014{
1015	struct perf_env *env = &ff->ph->env;
1016	struct rb_root *root;
1017	struct rb_node *next;
1018	int ret;
1019
1020	down_read(&env->bpf_progs.lock);
1021
1022	ret = do_write(ff, &env->bpf_progs.infos_cnt,
1023		       sizeof(env->bpf_progs.infos_cnt));
1024	if (ret < 0)
1025		goto out;
1026
1027	root = &env->bpf_progs.infos;
1028	next = rb_first(root);
1029	while (next) {
1030		struct bpf_prog_info_node *node;
1031		size_t len;
1032
1033		node = rb_entry(next, struct bpf_prog_info_node, rb_node);
1034		next = rb_next(&node->rb_node);
1035		len = sizeof(struct perf_bpil) +
1036			node->info_linear->data_len;
1037
1038		/* before writing to file, translate address to offset */
1039		bpil_addr_to_offs(node->info_linear);
1040		ret = do_write(ff, node->info_linear, len);
1041		/*
1042		 * translate back to address even when do_write() fails,
1043		 * so that this function never changes the data.
1044		 */
1045		bpil_offs_to_addr(node->info_linear);
1046		if (ret < 0)
1047			goto out;
1048	}
1049out:
1050	up_read(&env->bpf_progs.lock);
1051	return ret;
1052}
 
 
 
 
 
 
 
1053
1054static int write_bpf_btf(struct feat_fd *ff,
1055			 struct evlist *evlist __maybe_unused)
1056{
1057	struct perf_env *env = &ff->ph->env;
1058	struct rb_root *root;
1059	struct rb_node *next;
1060	int ret;
1061
1062	down_read(&env->bpf_progs.lock);
1063
1064	ret = do_write(ff, &env->bpf_progs.btfs_cnt,
1065		       sizeof(env->bpf_progs.btfs_cnt));
1066
1067	if (ret < 0)
1068		goto out;
1069
1070	root = &env->bpf_progs.btfs;
1071	next = rb_first(root);
1072	while (next) {
1073		struct btf_node *node;
1074
1075		node = rb_entry(next, struct btf_node, rb_node);
1076		next = rb_next(&node->rb_node);
1077		ret = do_write(ff, &node->id,
1078			       sizeof(u32) * 2 + node->data_size);
1079		if (ret < 0)
1080			goto out;
1081	}
1082out:
1083	up_read(&env->bpf_progs.lock);
1084	return ret;
1085}
1086#endif // HAVE_LIBBPF_SUPPORT
1087
1088static int cpu_cache_level__sort(const void *a, const void *b)
1089{
1090	struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a;
1091	struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b;
1092
1093	return cache_a->level - cache_b->level;
1094}
1095
1096static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b)
1097{
1098	if (a->level != b->level)
1099		return false;
1100
1101	if (a->line_size != b->line_size)
1102		return false;
1103
1104	if (a->sets != b->sets)
1105		return false;
1106
1107	if (a->ways != b->ways)
1108		return false;
1109
1110	if (strcmp(a->type, b->type))
1111		return false;
1112
1113	if (strcmp(a->size, b->size))
1114		return false;
1115
1116	if (strcmp(a->map, b->map))
1117		return false;
1118
1119	return true;
1120}
1121
1122static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level)
1123{
1124	char path[PATH_MAX], file[PATH_MAX];
1125	struct stat st;
1126	size_t len;
1127
1128	scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level);
1129	scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path);
1130
1131	if (stat(file, &st))
1132		return 1;
1133
1134	scnprintf(file, PATH_MAX, "%s/level", path);
1135	if (sysfs__read_int(file, (int *) &cache->level))
1136		return -1;
1137
1138	scnprintf(file, PATH_MAX, "%s/coherency_line_size", path);
1139	if (sysfs__read_int(file, (int *) &cache->line_size))
1140		return -1;
1141
1142	scnprintf(file, PATH_MAX, "%s/number_of_sets", path);
1143	if (sysfs__read_int(file, (int *) &cache->sets))
1144		return -1;
1145
1146	scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path);
1147	if (sysfs__read_int(file, (int *) &cache->ways))
1148		return -1;
1149
1150	scnprintf(file, PATH_MAX, "%s/type", path);
1151	if (sysfs__read_str(file, &cache->type, &len))
1152		return -1;
1153
1154	cache->type[len] = 0;
1155	cache->type = strim(cache->type);
1156
1157	scnprintf(file, PATH_MAX, "%s/size", path);
1158	if (sysfs__read_str(file, &cache->size, &len)) {
1159		zfree(&cache->type);
1160		return -1;
1161	}
1162
1163	cache->size[len] = 0;
1164	cache->size = strim(cache->size);
1165
1166	scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path);
1167	if (sysfs__read_str(file, &cache->map, &len)) {
1168		zfree(&cache->size);
1169		zfree(&cache->type);
1170		return -1;
1171	}
1172
1173	cache->map[len] = 0;
1174	cache->map = strim(cache->map);
1175	return 0;
1176}
1177
1178static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c)
1179{
1180	fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map);
1181}
1182
1183/*
1184 * Build caches levels for a particular CPU from the data in
1185 * /sys/devices/system/cpu/cpu<cpu>/cache/
1186 * The cache level data is stored in caches[] from index at
1187 * *cntp.
1188 */
1189int build_caches_for_cpu(u32 cpu, struct cpu_cache_level caches[], u32 *cntp)
1190{
 
 
 
1191	u16 level;
1192
1193	for (level = 0; level < MAX_CACHE_LVL; level++) {
1194		struct cpu_cache_level c;
1195		int err;
1196		u32 i;
1197
1198		err = cpu_cache_level__read(&c, cpu, level);
1199		if (err < 0)
1200			return err;
1201
1202		if (err == 1)
1203			break;
 
 
 
 
 
 
1204
1205		for (i = 0; i < *cntp; i++) {
1206			if (cpu_cache_level__cmp(&c, &caches[i]))
1207				break;
1208		}
1209
1210		if (i == *cntp) {
1211			caches[*cntp] = c;
1212			*cntp = *cntp + 1;
1213		} else
1214			cpu_cache_level__free(&c);
1215	}
1216
1217	return 0;
1218}
1219
1220static int build_caches(struct cpu_cache_level caches[], u32 *cntp)
1221{
1222	u32 nr, cpu, cnt = 0;
1223
1224	nr = cpu__max_cpu().cpu;
1225
1226	for (cpu = 0; cpu < nr; cpu++) {
1227		int ret = build_caches_for_cpu(cpu, caches, &cnt);
 
 
1228
1229		if (ret)
1230			return ret;
 
1231	}
 
1232	*cntp = cnt;
1233	return 0;
1234}
1235
 
 
1236static int write_cache(struct feat_fd *ff,
1237		       struct evlist *evlist __maybe_unused)
1238{
1239	u32 max_caches = cpu__max_cpu().cpu * MAX_CACHE_LVL;
1240	struct cpu_cache_level caches[max_caches];
1241	u32 cnt = 0, i, version = 1;
1242	int ret;
1243
1244	ret = build_caches(caches, &cnt);
1245	if (ret)
1246		goto out;
1247
1248	qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort);
1249
1250	ret = do_write(ff, &version, sizeof(u32));
1251	if (ret < 0)
1252		goto out;
1253
1254	ret = do_write(ff, &cnt, sizeof(u32));
1255	if (ret < 0)
1256		goto out;
1257
1258	for (i = 0; i < cnt; i++) {
1259		struct cpu_cache_level *c = &caches[i];
1260
1261		#define _W(v)					\
1262			ret = do_write(ff, &c->v, sizeof(u32));	\
1263			if (ret < 0)				\
1264				goto out;
1265
1266		_W(level)
1267		_W(line_size)
1268		_W(sets)
1269		_W(ways)
1270		#undef _W
1271
1272		#define _W(v)						\
1273			ret = do_write_string(ff, (const char *) c->v);	\
1274			if (ret < 0)					\
1275				goto out;
1276
1277		_W(type)
1278		_W(size)
1279		_W(map)
1280		#undef _W
1281	}
1282
1283out:
1284	for (i = 0; i < cnt; i++)
1285		cpu_cache_level__free(&caches[i]);
1286	return ret;
1287}
1288
1289static int write_stat(struct feat_fd *ff __maybe_unused,
1290		      struct evlist *evlist __maybe_unused)
1291{
1292	return 0;
1293}
1294
1295static int write_sample_time(struct feat_fd *ff,
1296			     struct evlist *evlist)
1297{
1298	int ret;
1299
1300	ret = do_write(ff, &evlist->first_sample_time,
1301		       sizeof(evlist->first_sample_time));
1302	if (ret < 0)
1303		return ret;
1304
1305	return do_write(ff, &evlist->last_sample_time,
1306			sizeof(evlist->last_sample_time));
1307}
1308
1309
1310static int memory_node__read(struct memory_node *n, unsigned long idx)
1311{
1312	unsigned int phys, size = 0;
1313	char path[PATH_MAX];
1314	struct dirent *ent;
1315	DIR *dir;
1316
1317#define for_each_memory(mem, dir)					\
1318	while ((ent = readdir(dir)))					\
1319		if (strcmp(ent->d_name, ".") &&				\
1320		    strcmp(ent->d_name, "..") &&			\
1321		    sscanf(ent->d_name, "memory%u", &mem) == 1)
1322
1323	scnprintf(path, PATH_MAX,
1324		  "%s/devices/system/node/node%lu",
1325		  sysfs__mountpoint(), idx);
1326
1327	dir = opendir(path);
1328	if (!dir) {
1329		pr_warning("failed: can't open memory sysfs data\n");
1330		return -1;
1331	}
1332
1333	for_each_memory(phys, dir) {
1334		size = max(phys, size);
1335	}
1336
1337	size++;
1338
1339	n->set = bitmap_zalloc(size);
1340	if (!n->set) {
1341		closedir(dir);
1342		return -ENOMEM;
1343	}
1344
1345	n->node = idx;
1346	n->size = size;
1347
1348	rewinddir(dir);
1349
1350	for_each_memory(phys, dir) {
1351		__set_bit(phys, n->set);
1352	}
1353
1354	closedir(dir);
1355	return 0;
1356}
1357
1358static void memory_node__delete_nodes(struct memory_node *nodesp, u64 cnt)
1359{
1360	for (u64 i = 0; i < cnt; i++)
1361		bitmap_free(nodesp[i].set);
1362
1363	free(nodesp);
1364}
1365
1366static int memory_node__sort(const void *a, const void *b)
1367{
1368	const struct memory_node *na = a;
1369	const struct memory_node *nb = b;
1370
1371	return na->node - nb->node;
1372}
1373
1374static int build_mem_topology(struct memory_node **nodesp, u64 *cntp)
1375{
1376	char path[PATH_MAX];
1377	struct dirent *ent;
1378	DIR *dir;
 
1379	int ret = 0;
1380	size_t cnt = 0, size = 0;
1381	struct memory_node *nodes = NULL;
1382
1383	scnprintf(path, PATH_MAX, "%s/devices/system/node/",
1384		  sysfs__mountpoint());
1385
1386	dir = opendir(path);
1387	if (!dir) {
1388		pr_debug2("%s: couldn't read %s, does this arch have topology information?\n",
1389			  __func__, path);
1390		return -1;
1391	}
1392
1393	while (!ret && (ent = readdir(dir))) {
1394		unsigned int idx;
1395		int r;
1396
1397		if (!strcmp(ent->d_name, ".") ||
1398		    !strcmp(ent->d_name, ".."))
1399			continue;
1400
1401		r = sscanf(ent->d_name, "node%u", &idx);
1402		if (r != 1)
1403			continue;
1404
1405		if (cnt >= size) {
1406			struct memory_node *new_nodes =
1407				reallocarray(nodes, cnt + 4, sizeof(*nodes));
1408
1409			if (!new_nodes) {
1410				pr_err("Failed to write MEM_TOPOLOGY, size %zd nodes\n", size);
1411				ret = -ENOMEM;
1412				goto out;
1413			}
1414			nodes = new_nodes;
1415			size += 4;
1416		}
1417		ret = memory_node__read(&nodes[cnt], idx);
1418		if (!ret)
1419			cnt += 1;
1420	}
1421out:
 
1422	closedir(dir);
1423	if (!ret) {
1424		*cntp = cnt;
1425		*nodesp = nodes;
1426		qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort);
1427	} else
1428		memory_node__delete_nodes(nodes, cnt);
1429
1430	return ret;
1431}
1432
 
 
1433/*
1434 * The MEM_TOPOLOGY holds physical memory map for every
1435 * node in system. The format of data is as follows:
1436 *
1437 *  0 - version          | for future changes
1438 *  8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes
1439 * 16 - count            | number of nodes
1440 *
1441 * For each node we store map of physical indexes for
1442 * each node:
1443 *
1444 * 32 - node id          | node index
1445 * 40 - size             | size of bitmap
1446 * 48 - bitmap           | bitmap of memory indexes that belongs to node
1447 */
1448static int write_mem_topology(struct feat_fd *ff __maybe_unused,
1449			      struct evlist *evlist __maybe_unused)
1450{
1451	struct memory_node *nodes = NULL;
1452	u64 bsize, version = 1, i, nr = 0;
1453	int ret;
1454
1455	ret = sysfs__read_xll("devices/system/memory/block_size_bytes",
1456			      (unsigned long long *) &bsize);
1457	if (ret)
1458		return ret;
1459
1460	ret = build_mem_topology(&nodes, &nr);
1461	if (ret)
1462		return ret;
1463
1464	ret = do_write(ff, &version, sizeof(version));
1465	if (ret < 0)
1466		goto out;
1467
1468	ret = do_write(ff, &bsize, sizeof(bsize));
1469	if (ret < 0)
1470		goto out;
1471
1472	ret = do_write(ff, &nr, sizeof(nr));
1473	if (ret < 0)
1474		goto out;
1475
1476	for (i = 0; i < nr; i++) {
1477		struct memory_node *n = &nodes[i];
1478
1479		#define _W(v)						\
1480			ret = do_write(ff, &n->v, sizeof(n->v));	\
1481			if (ret < 0)					\
1482				goto out;
1483
1484		_W(node)
1485		_W(size)
1486
1487		#undef _W
1488
1489		ret = do_write_bitmap(ff, n->set, n->size);
1490		if (ret < 0)
1491			goto out;
1492	}
1493
1494out:
1495	memory_node__delete_nodes(nodes, nr);
1496	return ret;
1497}
1498
1499static int write_compressed(struct feat_fd *ff __maybe_unused,
1500			    struct evlist *evlist __maybe_unused)
1501{
1502	int ret;
1503
1504	ret = do_write(ff, &(ff->ph->env.comp_ver), sizeof(ff->ph->env.comp_ver));
1505	if (ret)
1506		return ret;
1507
1508	ret = do_write(ff, &(ff->ph->env.comp_type), sizeof(ff->ph->env.comp_type));
1509	if (ret)
1510		return ret;
1511
1512	ret = do_write(ff, &(ff->ph->env.comp_level), sizeof(ff->ph->env.comp_level));
1513	if (ret)
1514		return ret;
1515
1516	ret = do_write(ff, &(ff->ph->env.comp_ratio), sizeof(ff->ph->env.comp_ratio));
1517	if (ret)
1518		return ret;
1519
1520	return do_write(ff, &(ff->ph->env.comp_mmap_len), sizeof(ff->ph->env.comp_mmap_len));
1521}
1522
1523static int __write_pmu_caps(struct feat_fd *ff, struct perf_pmu *pmu,
1524			    bool write_pmu)
1525{
1526	struct perf_pmu_caps *caps = NULL;
1527	int ret;
1528
1529	ret = do_write(ff, &pmu->nr_caps, sizeof(pmu->nr_caps));
1530	if (ret < 0)
1531		return ret;
1532
1533	list_for_each_entry(caps, &pmu->caps, list) {
1534		ret = do_write_string(ff, caps->name);
1535		if (ret < 0)
1536			return ret;
1537
1538		ret = do_write_string(ff, caps->value);
1539		if (ret < 0)
1540			return ret;
1541	}
1542
1543	if (write_pmu) {
1544		ret = do_write_string(ff, pmu->name);
1545		if (ret < 0)
1546			return ret;
1547	}
1548
1549	return ret;
1550}
1551
1552static int write_cpu_pmu_caps(struct feat_fd *ff,
1553			      struct evlist *evlist __maybe_unused)
1554{
1555	struct perf_pmu *cpu_pmu = perf_pmus__find("cpu");
1556	int ret;
1557
1558	if (!cpu_pmu)
1559		return -ENOENT;
1560
1561	ret = perf_pmu__caps_parse(cpu_pmu);
1562	if (ret < 0)
1563		return ret;
1564
1565	return __write_pmu_caps(ff, cpu_pmu, false);
1566}
1567
1568static int write_pmu_caps(struct feat_fd *ff,
1569			  struct evlist *evlist __maybe_unused)
1570{
1571	struct perf_pmu *pmu = NULL;
1572	int nr_pmu = 0;
1573	int ret;
1574
1575	while ((pmu = perf_pmus__scan(pmu))) {
1576		if (!strcmp(pmu->name, "cpu")) {
1577			/*
1578			 * The "cpu" PMU is special and covered by
1579			 * HEADER_CPU_PMU_CAPS. Note, core PMUs are
1580			 * counted/written here for ARM, s390 and Intel hybrid.
1581			 */
1582			continue;
1583		}
1584		if (perf_pmu__caps_parse(pmu) <= 0)
1585			continue;
1586		nr_pmu++;
1587	}
1588
1589	ret = do_write(ff, &nr_pmu, sizeof(nr_pmu));
1590	if (ret < 0)
1591		return ret;
1592
1593	if (!nr_pmu)
1594		return 0;
1595
1596	/*
1597	 * Note older perf tools assume core PMUs come first, this is a property
1598	 * of perf_pmus__scan.
1599	 */
1600	pmu = NULL;
1601	while ((pmu = perf_pmus__scan(pmu))) {
1602		if (!strcmp(pmu->name, "cpu")) {
1603			/* Skip as above. */
1604			continue;
1605		}
1606		if (perf_pmu__caps_parse(pmu) <= 0)
1607			continue;
1608		ret = __write_pmu_caps(ff, pmu, true);
1609		if (ret < 0)
1610			return ret;
1611	}
1612	return 0;
1613}
1614
1615static void print_hostname(struct feat_fd *ff, FILE *fp)
1616{
1617	fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname);
1618}
1619
1620static void print_osrelease(struct feat_fd *ff, FILE *fp)
1621{
1622	fprintf(fp, "# os release : %s\n", ff->ph->env.os_release);
1623}
1624
1625static void print_arch(struct feat_fd *ff, FILE *fp)
1626{
1627	fprintf(fp, "# arch : %s\n", ff->ph->env.arch);
1628}
1629
1630static void print_cpudesc(struct feat_fd *ff, FILE *fp)
1631{
1632	fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc);
1633}
1634
1635static void print_nrcpus(struct feat_fd *ff, FILE *fp)
1636{
1637	fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online);
1638	fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail);
1639}
1640
1641static void print_version(struct feat_fd *ff, FILE *fp)
1642{
1643	fprintf(fp, "# perf version : %s\n", ff->ph->env.version);
1644}
1645
1646static void print_cmdline(struct feat_fd *ff, FILE *fp)
1647{
1648	int nr, i;
1649
1650	nr = ff->ph->env.nr_cmdline;
1651
1652	fprintf(fp, "# cmdline : ");
1653
1654	for (i = 0; i < nr; i++) {
1655		char *argv_i = strdup(ff->ph->env.cmdline_argv[i]);
1656		if (!argv_i) {
1657			fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]);
1658		} else {
1659			char *mem = argv_i;
1660			do {
1661				char *quote = strchr(argv_i, '\'');
1662				if (!quote)
1663					break;
1664				*quote++ = '\0';
1665				fprintf(fp, "%s\\\'", argv_i);
1666				argv_i = quote;
1667			} while (1);
1668			fprintf(fp, "%s ", argv_i);
1669			free(mem);
1670		}
1671	}
1672	fputc('\n', fp);
1673}
1674
1675static void print_cpu_topology(struct feat_fd *ff, FILE *fp)
1676{
1677	struct perf_header *ph = ff->ph;
1678	int cpu_nr = ph->env.nr_cpus_avail;
1679	int nr, i;
1680	char *str;
1681
1682	nr = ph->env.nr_sibling_cores;
1683	str = ph->env.sibling_cores;
1684
1685	for (i = 0; i < nr; i++) {
1686		fprintf(fp, "# sibling sockets : %s\n", str);
1687		str += strlen(str) + 1;
1688	}
1689
1690	if (ph->env.nr_sibling_dies) {
1691		nr = ph->env.nr_sibling_dies;
1692		str = ph->env.sibling_dies;
1693
1694		for (i = 0; i < nr; i++) {
1695			fprintf(fp, "# sibling dies    : %s\n", str);
1696			str += strlen(str) + 1;
1697		}
1698	}
1699
1700	nr = ph->env.nr_sibling_threads;
1701	str = ph->env.sibling_threads;
1702
1703	for (i = 0; i < nr; i++) {
1704		fprintf(fp, "# sibling threads : %s\n", str);
1705		str += strlen(str) + 1;
1706	}
1707
1708	if (ph->env.nr_sibling_dies) {
1709		if (ph->env.cpu != NULL) {
1710			for (i = 0; i < cpu_nr; i++)
1711				fprintf(fp, "# CPU %d: Core ID %d, "
1712					    "Die ID %d, Socket ID %d\n",
1713					    i, ph->env.cpu[i].core_id,
1714					    ph->env.cpu[i].die_id,
1715					    ph->env.cpu[i].socket_id);
1716		} else
1717			fprintf(fp, "# Core ID, Die ID and Socket ID "
1718				    "information is not available\n");
1719	} else {
1720		if (ph->env.cpu != NULL) {
1721			for (i = 0; i < cpu_nr; i++)
1722				fprintf(fp, "# CPU %d: Core ID %d, "
1723					    "Socket ID %d\n",
1724					    i, ph->env.cpu[i].core_id,
1725					    ph->env.cpu[i].socket_id);
1726		} else
1727			fprintf(fp, "# Core ID and Socket ID "
1728				    "information is not available\n");
1729	}
1730}
1731
1732static void print_clockid(struct feat_fd *ff, FILE *fp)
1733{
1734	fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n",
1735		ff->ph->env.clock.clockid_res_ns * 1000);
1736}
1737
1738static void print_clock_data(struct feat_fd *ff, FILE *fp)
1739{
1740	struct timespec clockid_ns;
1741	char tstr[64], date[64];
1742	struct timeval tod_ns;
1743	clockid_t clockid;
1744	struct tm ltime;
1745	u64 ref;
1746
1747	if (!ff->ph->env.clock.enabled) {
1748		fprintf(fp, "# reference time disabled\n");
1749		return;
1750	}
1751
1752	/* Compute TOD time. */
1753	ref = ff->ph->env.clock.tod_ns;
1754	tod_ns.tv_sec = ref / NSEC_PER_SEC;
1755	ref -= tod_ns.tv_sec * NSEC_PER_SEC;
1756	tod_ns.tv_usec = ref / NSEC_PER_USEC;
1757
1758	/* Compute clockid time. */
1759	ref = ff->ph->env.clock.clockid_ns;
1760	clockid_ns.tv_sec = ref / NSEC_PER_SEC;
1761	ref -= clockid_ns.tv_sec * NSEC_PER_SEC;
1762	clockid_ns.tv_nsec = ref;
1763
1764	clockid = ff->ph->env.clock.clockid;
1765
1766	if (localtime_r(&tod_ns.tv_sec, &ltime) == NULL)
1767		snprintf(tstr, sizeof(tstr), "<error>");
1768	else {
1769		strftime(date, sizeof(date), "%F %T", &ltime);
1770		scnprintf(tstr, sizeof(tstr), "%s.%06d",
1771			  date, (int) tod_ns.tv_usec);
1772	}
1773
1774	fprintf(fp, "# clockid: %s (%u)\n", clockid_name(clockid), clockid);
1775	fprintf(fp, "# reference time: %s = %ld.%06d (TOD) = %ld.%09ld (%s)\n",
1776		    tstr, (long) tod_ns.tv_sec, (int) tod_ns.tv_usec,
1777		    (long) clockid_ns.tv_sec, clockid_ns.tv_nsec,
1778		    clockid_name(clockid));
1779}
1780
1781static void print_hybrid_topology(struct feat_fd *ff, FILE *fp)
1782{
1783	int i;
1784	struct hybrid_node *n;
1785
1786	fprintf(fp, "# hybrid cpu system:\n");
1787	for (i = 0; i < ff->ph->env.nr_hybrid_nodes; i++) {
1788		n = &ff->ph->env.hybrid_nodes[i];
1789		fprintf(fp, "# %s cpu list : %s\n", n->pmu_name, n->cpus);
1790	}
1791}
1792
1793static void print_dir_format(struct feat_fd *ff, FILE *fp)
1794{
1795	struct perf_session *session;
1796	struct perf_data *data;
1797
1798	session = container_of(ff->ph, struct perf_session, header);
1799	data = session->data;
1800
1801	fprintf(fp, "# directory data version : %"PRIu64"\n", data->dir.version);
1802}
1803
1804#ifdef HAVE_LIBBPF_SUPPORT
1805static void print_bpf_prog_info(struct feat_fd *ff, FILE *fp)
1806{
1807	struct perf_env *env = &ff->ph->env;
1808	struct rb_root *root;
1809	struct rb_node *next;
1810
1811	down_read(&env->bpf_progs.lock);
1812
1813	root = &env->bpf_progs.infos;
1814	next = rb_first(root);
1815
1816	while (next) {
1817		struct bpf_prog_info_node *node;
1818
1819		node = rb_entry(next, struct bpf_prog_info_node, rb_node);
1820		next = rb_next(&node->rb_node);
1821
1822		__bpf_event__print_bpf_prog_info(&node->info_linear->info,
1823						 env, fp);
1824	}
1825
1826	up_read(&env->bpf_progs.lock);
1827}
1828
1829static void print_bpf_btf(struct feat_fd *ff, FILE *fp)
1830{
1831	struct perf_env *env = &ff->ph->env;
1832	struct rb_root *root;
1833	struct rb_node *next;
1834
1835	down_read(&env->bpf_progs.lock);
1836
1837	root = &env->bpf_progs.btfs;
1838	next = rb_first(root);
1839
1840	while (next) {
1841		struct btf_node *node;
1842
1843		node = rb_entry(next, struct btf_node, rb_node);
1844		next = rb_next(&node->rb_node);
1845		fprintf(fp, "# btf info of id %u\n", node->id);
1846	}
1847
1848	up_read(&env->bpf_progs.lock);
1849}
1850#endif // HAVE_LIBBPF_SUPPORT
1851
1852static void free_event_desc(struct evsel *events)
1853{
1854	struct evsel *evsel;
1855
1856	if (!events)
1857		return;
1858
1859	for (evsel = events; evsel->core.attr.size; evsel++) {
1860		zfree(&evsel->name);
1861		zfree(&evsel->core.id);
1862	}
1863
1864	free(events);
1865}
1866
1867static bool perf_attr_check(struct perf_event_attr *attr)
1868{
1869	if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) {
1870		pr_warning("Reserved bits are set unexpectedly. "
1871			   "Please update perf tool.\n");
1872		return false;
1873	}
1874
1875	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) {
1876		pr_warning("Unknown sample type (0x%llx) is detected. "
1877			   "Please update perf tool.\n",
1878			   attr->sample_type);
1879		return false;
1880	}
1881
1882	if (attr->read_format & ~(PERF_FORMAT_MAX-1)) {
1883		pr_warning("Unknown read format (0x%llx) is detected. "
1884			   "Please update perf tool.\n",
1885			   attr->read_format);
1886		return false;
1887	}
1888
1889	if ((attr->sample_type & PERF_SAMPLE_BRANCH_STACK) &&
1890	    (attr->branch_sample_type & ~(PERF_SAMPLE_BRANCH_MAX-1))) {
1891		pr_warning("Unknown branch sample type (0x%llx) is detected. "
1892			   "Please update perf tool.\n",
1893			   attr->branch_sample_type);
1894
1895		return false;
1896	}
1897
1898	return true;
1899}
1900
1901static struct evsel *read_event_desc(struct feat_fd *ff)
1902{
1903	struct evsel *evsel, *events = NULL;
1904	u64 *id;
1905	void *buf = NULL;
1906	u32 nre, sz, nr, i, j;
1907	size_t msz;
1908
1909	/* number of events */
1910	if (do_read_u32(ff, &nre))
1911		goto error;
1912
1913	if (do_read_u32(ff, &sz))
1914		goto error;
1915
1916	/* buffer to hold on file attr struct */
1917	buf = malloc(sz);
1918	if (!buf)
1919		goto error;
1920
1921	/* the last event terminates with evsel->core.attr.size == 0: */
1922	events = calloc(nre + 1, sizeof(*events));
1923	if (!events)
1924		goto error;
1925
1926	msz = sizeof(evsel->core.attr);
1927	if (sz < msz)
1928		msz = sz;
1929
1930	for (i = 0, evsel = events; i < nre; evsel++, i++) {
1931		evsel->core.idx = i;
1932
1933		/*
1934		 * must read entire on-file attr struct to
1935		 * sync up with layout.
1936		 */
1937		if (__do_read(ff, buf, sz))
1938			goto error;
1939
1940		if (ff->ph->needs_swap)
1941			perf_event__attr_swap(buf);
1942
1943		memcpy(&evsel->core.attr, buf, msz);
1944
1945		if (!perf_attr_check(&evsel->core.attr))
1946			goto error;
1947
1948		if (do_read_u32(ff, &nr))
1949			goto error;
1950
1951		if (ff->ph->needs_swap)
1952			evsel->needs_swap = true;
1953
1954		evsel->name = do_read_string(ff);
1955		if (!evsel->name)
1956			goto error;
1957
1958		if (!nr)
1959			continue;
1960
1961		id = calloc(nr, sizeof(*id));
1962		if (!id)
1963			goto error;
1964		evsel->core.ids = nr;
1965		evsel->core.id = id;
1966
1967		for (j = 0 ; j < nr; j++) {
1968			if (do_read_u64(ff, id))
1969				goto error;
1970			id++;
1971		}
1972	}
1973out:
1974	free(buf);
1975	return events;
1976error:
1977	free_event_desc(events);
1978	events = NULL;
1979	goto out;
1980}
1981
1982static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val,
1983				void *priv __maybe_unused)
1984{
1985	return fprintf(fp, ", %s = %s", name, val);
1986}
1987
1988static void print_event_desc(struct feat_fd *ff, FILE *fp)
1989{
1990	struct evsel *evsel, *events;
1991	u32 j;
1992	u64 *id;
1993
1994	if (ff->events)
1995		events = ff->events;
1996	else
1997		events = read_event_desc(ff);
1998
1999	if (!events) {
2000		fprintf(fp, "# event desc: not available or unable to read\n");
2001		return;
2002	}
2003
2004	for (evsel = events; evsel->core.attr.size; evsel++) {
2005		fprintf(fp, "# event : name = %s, ", evsel->name);
2006
2007		if (evsel->core.ids) {
2008			fprintf(fp, ", id = {");
2009			for (j = 0, id = evsel->core.id; j < evsel->core.ids; j++, id++) {
2010				if (j)
2011					fputc(',', fp);
2012				fprintf(fp, " %"PRIu64, *id);
2013			}
2014			fprintf(fp, " }");
2015		}
2016
2017		perf_event_attr__fprintf(fp, &evsel->core.attr, __desc_attr__fprintf, NULL);
2018
2019		fputc('\n', fp);
2020	}
2021
2022	free_event_desc(events);
2023	ff->events = NULL;
2024}
2025
2026static void print_total_mem(struct feat_fd *ff, FILE *fp)
2027{
2028	fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem);
2029}
2030
2031static void print_numa_topology(struct feat_fd *ff, FILE *fp)
2032{
2033	int i;
2034	struct numa_node *n;
2035
2036	for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) {
2037		n = &ff->ph->env.numa_nodes[i];
2038
2039		fprintf(fp, "# node%u meminfo  : total = %"PRIu64" kB,"
2040			    " free = %"PRIu64" kB\n",
2041			n->node, n->mem_total, n->mem_free);
2042
2043		fprintf(fp, "# node%u cpu list : ", n->node);
2044		cpu_map__fprintf(n->map, fp);
2045	}
2046}
2047
2048static void print_cpuid(struct feat_fd *ff, FILE *fp)
2049{
2050	fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid);
2051}
2052
2053static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp)
2054{
2055	fprintf(fp, "# contains samples with branch stack\n");
2056}
2057
2058static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp)
2059{
2060	fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n");
2061}
2062
2063static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp)
2064{
2065	fprintf(fp, "# contains stat data\n");
2066}
2067
2068static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused)
2069{
2070	int i;
2071
2072	fprintf(fp, "# CPU cache info:\n");
2073	for (i = 0; i < ff->ph->env.caches_cnt; i++) {
2074		fprintf(fp, "#  ");
2075		cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]);
2076	}
2077}
2078
2079static void print_compressed(struct feat_fd *ff, FILE *fp)
2080{
2081	fprintf(fp, "# compressed : %s, level = %d, ratio = %d\n",
2082		ff->ph->env.comp_type == PERF_COMP_ZSTD ? "Zstd" : "Unknown",
2083		ff->ph->env.comp_level, ff->ph->env.comp_ratio);
2084}
2085
2086static void __print_pmu_caps(FILE *fp, int nr_caps, char **caps, char *pmu_name)
2087{
2088	const char *delimiter = "";
2089	int i;
2090
2091	if (!nr_caps) {
2092		fprintf(fp, "# %s pmu capabilities: not available\n", pmu_name);
2093		return;
2094	}
2095
2096	fprintf(fp, "# %s pmu capabilities: ", pmu_name);
2097	for (i = 0; i < nr_caps; i++) {
2098		fprintf(fp, "%s%s", delimiter, caps[i]);
2099		delimiter = ", ";
2100	}
2101
2102	fprintf(fp, "\n");
2103}
2104
2105static void print_cpu_pmu_caps(struct feat_fd *ff, FILE *fp)
2106{
2107	__print_pmu_caps(fp, ff->ph->env.nr_cpu_pmu_caps,
2108			 ff->ph->env.cpu_pmu_caps, (char *)"cpu");
2109}
2110
2111static void print_pmu_caps(struct feat_fd *ff, FILE *fp)
2112{
2113	struct pmu_caps *pmu_caps;
2114
2115	for (int i = 0; i < ff->ph->env.nr_pmus_with_caps; i++) {
2116		pmu_caps = &ff->ph->env.pmu_caps[i];
2117		__print_pmu_caps(fp, pmu_caps->nr_caps, pmu_caps->caps,
2118				 pmu_caps->pmu_name);
2119	}
2120
2121	if (strcmp(perf_env__arch(&ff->ph->env), "x86") == 0 &&
2122	    perf_env__has_pmu_mapping(&ff->ph->env, "ibs_op")) {
2123		char *max_precise = perf_env__find_pmu_cap(&ff->ph->env, "cpu", "max_precise");
2124
2125		if (max_precise != NULL && atoi(max_precise) == 0)
2126			fprintf(fp, "# AMD systems uses ibs_op// PMU for some precise events, e.g.: cycles:p, see the 'perf list' man page for further details.\n");
2127	}
2128}
2129
2130static void print_pmu_mappings(struct feat_fd *ff, FILE *fp)
2131{
2132	const char *delimiter = "# pmu mappings: ";
2133	char *str, *tmp;
2134	u32 pmu_num;
2135	u32 type;
2136
2137	pmu_num = ff->ph->env.nr_pmu_mappings;
2138	if (!pmu_num) {
2139		fprintf(fp, "# pmu mappings: not available\n");
2140		return;
2141	}
2142
2143	str = ff->ph->env.pmu_mappings;
2144
2145	while (pmu_num) {
2146		type = strtoul(str, &tmp, 0);
2147		if (*tmp != ':')
2148			goto error;
2149
2150		str = tmp + 1;
2151		fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type);
2152
2153		delimiter = ", ";
2154		str += strlen(str) + 1;
2155		pmu_num--;
2156	}
2157
2158	fprintf(fp, "\n");
2159
2160	if (!pmu_num)
2161		return;
2162error:
2163	fprintf(fp, "# pmu mappings: unable to read\n");
2164}
2165
2166static void print_group_desc(struct feat_fd *ff, FILE *fp)
2167{
2168	struct perf_session *session;
2169	struct evsel *evsel;
2170	u32 nr = 0;
2171
2172	session = container_of(ff->ph, struct perf_session, header);
2173
2174	evlist__for_each_entry(session->evlist, evsel) {
2175		if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) {
2176			fprintf(fp, "# group: %s{%s", evsel->group_name ?: "", evsel__name(evsel));
 
 
2177
2178			nr = evsel->core.nr_members - 1;
2179		} else if (nr) {
2180			fprintf(fp, ",%s", evsel__name(evsel));
2181
2182			if (--nr == 0)
2183				fprintf(fp, "}\n");
2184		}
2185	}
2186}
2187
2188static void print_sample_time(struct feat_fd *ff, FILE *fp)
2189{
2190	struct perf_session *session;
2191	char time_buf[32];
2192	double d;
2193
2194	session = container_of(ff->ph, struct perf_session, header);
2195
2196	timestamp__scnprintf_usec(session->evlist->first_sample_time,
2197				  time_buf, sizeof(time_buf));
2198	fprintf(fp, "# time of first sample : %s\n", time_buf);
2199
2200	timestamp__scnprintf_usec(session->evlist->last_sample_time,
2201				  time_buf, sizeof(time_buf));
2202	fprintf(fp, "# time of last sample : %s\n", time_buf);
2203
2204	d = (double)(session->evlist->last_sample_time -
2205		session->evlist->first_sample_time) / NSEC_PER_MSEC;
2206
2207	fprintf(fp, "# sample duration : %10.3f ms\n", d);
2208}
2209
2210static void memory_node__fprintf(struct memory_node *n,
2211				 unsigned long long bsize, FILE *fp)
2212{
2213	char buf_map[100], buf_size[50];
2214	unsigned long long size;
2215
2216	size = bsize * bitmap_weight(n->set, n->size);
2217	unit_number__scnprintf(buf_size, 50, size);
2218
2219	bitmap_scnprintf(n->set, n->size, buf_map, 100);
2220	fprintf(fp, "#  %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map);
2221}
2222
2223static void print_mem_topology(struct feat_fd *ff, FILE *fp)
2224{
2225	struct memory_node *nodes;
2226	int i, nr;
2227
2228	nodes = ff->ph->env.memory_nodes;
2229	nr    = ff->ph->env.nr_memory_nodes;
2230
2231	fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n",
2232		nr, ff->ph->env.memory_bsize);
2233
2234	for (i = 0; i < nr; i++) {
2235		memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp);
2236	}
2237}
2238
2239static int __event_process_build_id(struct perf_record_header_build_id *bev,
2240				    char *filename,
2241				    struct perf_session *session)
2242{
2243	int err = -1;
2244	struct machine *machine;
2245	u16 cpumode;
2246	struct dso *dso;
2247	enum dso_space_type dso_space;
2248
2249	machine = perf_session__findnew_machine(session, bev->pid);
2250	if (!machine)
2251		goto out;
2252
2253	cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
2254
2255	switch (cpumode) {
2256	case PERF_RECORD_MISC_KERNEL:
2257		dso_space = DSO_SPACE__KERNEL;
2258		break;
2259	case PERF_RECORD_MISC_GUEST_KERNEL:
2260		dso_space = DSO_SPACE__KERNEL_GUEST;
2261		break;
2262	case PERF_RECORD_MISC_USER:
2263	case PERF_RECORD_MISC_GUEST_USER:
2264		dso_space = DSO_SPACE__USER;
2265		break;
2266	default:
2267		goto out;
2268	}
2269
2270	dso = machine__findnew_dso(machine, filename);
2271	if (dso != NULL) {
2272		char sbuild_id[SBUILD_ID_SIZE];
2273		struct build_id bid;
2274		size_t size = BUILD_ID_SIZE;
2275
2276		if (bev->header.misc & PERF_RECORD_MISC_BUILD_ID_SIZE)
2277			size = bev->size;
2278
2279		build_id__init(&bid, bev->data, size);
2280		dso__set_build_id(dso, &bid);
2281		dso__set_header_build_id(dso, true);
2282
2283		if (dso_space != DSO_SPACE__USER) {
2284			struct kmod_path m = { .name = NULL, };
2285
2286			if (!kmod_path__parse_name(&m, filename) && m.kmod)
2287				dso__set_module_info(dso, &m, machine);
 
 
2288
2289			dso__set_kernel(dso, dso_space);
2290			free(m.name);
2291		}
2292
2293		build_id__sprintf(dso__bid(dso), sbuild_id);
2294		pr_debug("build id event received for %s: %s [%zu]\n",
2295			 dso__long_name(dso), sbuild_id, size);
 
2296		dso__put(dso);
2297	}
2298
2299	err = 0;
2300out:
2301	return err;
2302}
2303
2304static int perf_header__read_build_ids_abi_quirk(struct perf_header *header,
2305						 int input, u64 offset, u64 size)
2306{
2307	struct perf_session *session = container_of(header, struct perf_session, header);
2308	struct {
2309		struct perf_event_header   header;
2310		u8			   build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))];
2311		char			   filename[0];
2312	} old_bev;
2313	struct perf_record_header_build_id bev;
2314	char filename[PATH_MAX];
2315	u64 limit = offset + size;
2316
2317	while (offset < limit) {
2318		ssize_t len;
2319
2320		if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev))
2321			return -1;
2322
2323		if (header->needs_swap)
2324			perf_event_header__bswap(&old_bev.header);
2325
2326		len = old_bev.header.size - sizeof(old_bev);
2327		if (readn(input, filename, len) != len)
2328			return -1;
2329
2330		bev.header = old_bev.header;
2331
2332		/*
2333		 * As the pid is the missing value, we need to fill
2334		 * it properly. The header.misc value give us nice hint.
2335		 */
2336		bev.pid	= HOST_KERNEL_ID;
2337		if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER ||
2338		    bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL)
2339			bev.pid	= DEFAULT_GUEST_KERNEL_ID;
2340
2341		memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id));
2342		__event_process_build_id(&bev, filename, session);
2343
2344		offset += bev.header.size;
2345	}
2346
2347	return 0;
2348}
2349
2350static int perf_header__read_build_ids(struct perf_header *header,
2351				       int input, u64 offset, u64 size)
2352{
2353	struct perf_session *session = container_of(header, struct perf_session, header);
2354	struct perf_record_header_build_id bev;
2355	char filename[PATH_MAX];
2356	u64 limit = offset + size, orig_offset = offset;
2357	int err = -1;
2358
2359	while (offset < limit) {
2360		ssize_t len;
2361
2362		if (readn(input, &bev, sizeof(bev)) != sizeof(bev))
2363			goto out;
2364
2365		if (header->needs_swap)
2366			perf_event_header__bswap(&bev.header);
2367
2368		len = bev.header.size - sizeof(bev);
2369		if (readn(input, filename, len) != len)
2370			goto out;
2371		/*
2372		 * The a1645ce1 changeset:
2373		 *
2374		 * "perf: 'perf kvm' tool for monitoring guest performance from host"
2375		 *
2376		 * Added a field to struct perf_record_header_build_id that broke the file
2377		 * format.
2378		 *
2379		 * Since the kernel build-id is the first entry, process the
2380		 * table using the old format if the well known
2381		 * '[kernel.kallsyms]' string for the kernel build-id has the
2382		 * first 4 characters chopped off (where the pid_t sits).
2383		 */
2384		if (memcmp(filename, "nel.kallsyms]", 13) == 0) {
2385			if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1)
2386				return -1;
2387			return perf_header__read_build_ids_abi_quirk(header, input, offset, size);
2388		}
2389
2390		__event_process_build_id(&bev, filename, session);
2391
2392		offset += bev.header.size;
2393	}
2394	err = 0;
2395out:
2396	return err;
2397}
2398
2399/* Macro for features that simply need to read and store a string. */
2400#define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \
2401static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \
2402{\
2403	free(ff->ph->env.__feat_env);		     \
2404	ff->ph->env.__feat_env = do_read_string(ff); \
2405	return ff->ph->env.__feat_env ? 0 : -ENOMEM; \
2406}
2407
2408FEAT_PROCESS_STR_FUN(hostname, hostname);
2409FEAT_PROCESS_STR_FUN(osrelease, os_release);
2410FEAT_PROCESS_STR_FUN(version, version);
2411FEAT_PROCESS_STR_FUN(arch, arch);
2412FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc);
2413FEAT_PROCESS_STR_FUN(cpuid, cpuid);
2414
2415#ifdef HAVE_LIBTRACEEVENT
2416static int process_tracing_data(struct feat_fd *ff, void *data)
2417{
2418	ssize_t ret = trace_report(ff->fd, data, false);
2419
2420	return ret < 0 ? -1 : 0;
2421}
2422#endif
2423
2424static int process_build_id(struct feat_fd *ff, void *data __maybe_unused)
2425{
2426	if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size))
2427		pr_debug("Failed to read buildids, continuing...\n");
2428	return 0;
2429}
2430
2431static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused)
2432{
2433	int ret;
2434	u32 nr_cpus_avail, nr_cpus_online;
2435
2436	ret = do_read_u32(ff, &nr_cpus_avail);
2437	if (ret)
2438		return ret;
2439
2440	ret = do_read_u32(ff, &nr_cpus_online);
2441	if (ret)
2442		return ret;
2443	ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail;
2444	ff->ph->env.nr_cpus_online = (int)nr_cpus_online;
2445	return 0;
2446}
2447
2448static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused)
2449{
2450	u64 total_mem;
2451	int ret;
2452
2453	ret = do_read_u64(ff, &total_mem);
2454	if (ret)
2455		return -1;
2456	ff->ph->env.total_mem = (unsigned long long)total_mem;
2457	return 0;
2458}
2459
2460static struct evsel *evlist__find_by_index(struct evlist *evlist, int idx)
 
2461{
2462	struct evsel *evsel;
2463
2464	evlist__for_each_entry(evlist, evsel) {
2465		if (evsel->core.idx == idx)
2466			return evsel;
2467	}
2468
2469	return NULL;
2470}
2471
2472static void evlist__set_event_name(struct evlist *evlist, struct evsel *event)
 
 
2473{
2474	struct evsel *evsel;
2475
2476	if (!event->name)
2477		return;
2478
2479	evsel = evlist__find_by_index(evlist, event->core.idx);
2480	if (!evsel)
2481		return;
2482
2483	if (evsel->name)
2484		return;
2485
2486	evsel->name = strdup(event->name);
2487}
2488
2489static int
2490process_event_desc(struct feat_fd *ff, void *data __maybe_unused)
2491{
2492	struct perf_session *session;
2493	struct evsel *evsel, *events = read_event_desc(ff);
2494
2495	if (!events)
2496		return 0;
2497
2498	session = container_of(ff->ph, struct perf_session, header);
2499
2500	if (session->data->is_pipe) {
2501		/* Save events for reading later by print_event_desc,
2502		 * since they can't be read again in pipe mode. */
2503		ff->events = events;
2504	}
2505
2506	for (evsel = events; evsel->core.attr.size; evsel++)
2507		evlist__set_event_name(session->evlist, evsel);
2508
2509	if (!session->data->is_pipe)
2510		free_event_desc(events);
2511
2512	return 0;
2513}
2514
2515static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused)
2516{
2517	char *str, *cmdline = NULL, **argv = NULL;
2518	u32 nr, i, len = 0;
2519
2520	if (do_read_u32(ff, &nr))
2521		return -1;
2522
2523	ff->ph->env.nr_cmdline = nr;
2524
2525	cmdline = zalloc(ff->size + nr + 1);
2526	if (!cmdline)
2527		return -1;
2528
2529	argv = zalloc(sizeof(char *) * (nr + 1));
2530	if (!argv)
2531		goto error;
2532
2533	for (i = 0; i < nr; i++) {
2534		str = do_read_string(ff);
2535		if (!str)
2536			goto error;
2537
2538		argv[i] = cmdline + len;
2539		memcpy(argv[i], str, strlen(str) + 1);
2540		len += strlen(str) + 1;
2541		free(str);
2542	}
2543	ff->ph->env.cmdline = cmdline;
2544	ff->ph->env.cmdline_argv = (const char **) argv;
2545	return 0;
2546
2547error:
2548	free(argv);
2549	free(cmdline);
2550	return -1;
2551}
2552
2553static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused)
2554{
2555	u32 nr, i;
2556	char *str = NULL;
2557	struct strbuf sb;
2558	int cpu_nr = ff->ph->env.nr_cpus_avail;
2559	u64 size = 0;
2560	struct perf_header *ph = ff->ph;
2561	bool do_core_id_test = true;
2562
2563	ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu));
2564	if (!ph->env.cpu)
2565		return -1;
2566
2567	if (do_read_u32(ff, &nr))
2568		goto free_cpu;
2569
2570	ph->env.nr_sibling_cores = nr;
2571	size += sizeof(u32);
2572	if (strbuf_init(&sb, 128) < 0)
2573		goto free_cpu;
2574
2575	for (i = 0; i < nr; i++) {
2576		str = do_read_string(ff);
2577		if (!str)
2578			goto error;
2579
2580		/* include a NULL character at the end */
2581		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2582			goto error;
2583		size += string_size(str);
2584		zfree(&str);
2585	}
2586	ph->env.sibling_cores = strbuf_detach(&sb, NULL);
2587
2588	if (do_read_u32(ff, &nr))
2589		return -1;
2590
2591	ph->env.nr_sibling_threads = nr;
2592	size += sizeof(u32);
2593
2594	for (i = 0; i < nr; i++) {
2595		str = do_read_string(ff);
2596		if (!str)
2597			goto error;
2598
2599		/* include a NULL character at the end */
2600		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2601			goto error;
2602		size += string_size(str);
2603		zfree(&str);
2604	}
2605	ph->env.sibling_threads = strbuf_detach(&sb, NULL);
2606
2607	/*
2608	 * The header may be from old perf,
2609	 * which doesn't include core id and socket id information.
2610	 */
2611	if (ff->size <= size) {
2612		zfree(&ph->env.cpu);
2613		return 0;
2614	}
2615
2616	/* On s390 the socket_id number is not related to the numbers of cpus.
2617	 * The socket_id number might be higher than the numbers of cpus.
2618	 * This depends on the configuration.
2619	 * AArch64 is the same.
2620	 */
2621	if (ph->env.arch && (!strncmp(ph->env.arch, "s390", 4)
2622			  || !strncmp(ph->env.arch, "aarch64", 7)))
2623		do_core_id_test = false;
2624
2625	for (i = 0; i < (u32)cpu_nr; i++) {
2626		if (do_read_u32(ff, &nr))
2627			goto free_cpu;
2628
2629		ph->env.cpu[i].core_id = nr;
2630		size += sizeof(u32);
2631
2632		if (do_read_u32(ff, &nr))
2633			goto free_cpu;
2634
2635		if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) {
2636			pr_debug("socket_id number is too big."
2637				 "You may need to upgrade the perf tool.\n");
2638			goto free_cpu;
2639		}
2640
2641		ph->env.cpu[i].socket_id = nr;
2642		size += sizeof(u32);
2643	}
2644
2645	/*
2646	 * The header may be from old perf,
2647	 * which doesn't include die information.
2648	 */
2649	if (ff->size <= size)
2650		return 0;
2651
2652	if (do_read_u32(ff, &nr))
2653		return -1;
2654
2655	ph->env.nr_sibling_dies = nr;
2656	size += sizeof(u32);
2657
2658	for (i = 0; i < nr; i++) {
2659		str = do_read_string(ff);
2660		if (!str)
2661			goto error;
2662
2663		/* include a NULL character at the end */
2664		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2665			goto error;
2666		size += string_size(str);
2667		zfree(&str);
2668	}
2669	ph->env.sibling_dies = strbuf_detach(&sb, NULL);
2670
2671	for (i = 0; i < (u32)cpu_nr; i++) {
2672		if (do_read_u32(ff, &nr))
2673			goto free_cpu;
2674
2675		ph->env.cpu[i].die_id = nr;
2676	}
2677
2678	return 0;
2679
2680error:
2681	strbuf_release(&sb);
2682	zfree(&str);
2683free_cpu:
2684	zfree(&ph->env.cpu);
2685	return -1;
2686}
2687
2688static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused)
2689{
2690	struct numa_node *nodes, *n;
2691	u32 nr, i;
2692	char *str;
2693
2694	/* nr nodes */
2695	if (do_read_u32(ff, &nr))
2696		return -1;
2697
2698	nodes = zalloc(sizeof(*nodes) * nr);
2699	if (!nodes)
2700		return -ENOMEM;
2701
2702	for (i = 0; i < nr; i++) {
2703		n = &nodes[i];
2704
2705		/* node number */
2706		if (do_read_u32(ff, &n->node))
2707			goto error;
2708
2709		if (do_read_u64(ff, &n->mem_total))
2710			goto error;
2711
2712		if (do_read_u64(ff, &n->mem_free))
2713			goto error;
2714
2715		str = do_read_string(ff);
2716		if (!str)
2717			goto error;
2718
2719		n->map = perf_cpu_map__new(str);
2720		free(str);
2721		if (!n->map)
2722			goto error;
 
 
2723	}
2724	ff->ph->env.nr_numa_nodes = nr;
2725	ff->ph->env.numa_nodes = nodes;
2726	return 0;
2727
2728error:
2729	free(nodes);
2730	return -1;
2731}
2732
2733static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused)
2734{
2735	char *name;
2736	u32 pmu_num;
2737	u32 type;
2738	struct strbuf sb;
2739
2740	if (do_read_u32(ff, &pmu_num))
2741		return -1;
2742
2743	if (!pmu_num) {
2744		pr_debug("pmu mappings not available\n");
2745		return 0;
2746	}
2747
2748	ff->ph->env.nr_pmu_mappings = pmu_num;
2749	if (strbuf_init(&sb, 128) < 0)
2750		return -1;
2751
2752	while (pmu_num) {
2753		if (do_read_u32(ff, &type))
2754			goto error;
2755
2756		name = do_read_string(ff);
2757		if (!name)
2758			goto error;
2759
2760		if (strbuf_addf(&sb, "%u:%s", type, name) < 0)
2761			goto error;
2762		/* include a NULL character at the end */
2763		if (strbuf_add(&sb, "", 1) < 0)
2764			goto error;
2765
2766		if (!strcmp(name, "msr"))
2767			ff->ph->env.msr_pmu_type = type;
2768
2769		free(name);
2770		pmu_num--;
2771	}
2772	ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL);
2773	return 0;
2774
2775error:
2776	strbuf_release(&sb);
2777	return -1;
2778}
2779
2780static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused)
2781{
2782	size_t ret = -1;
2783	u32 i, nr, nr_groups;
2784	struct perf_session *session;
2785	struct evsel *evsel, *leader = NULL;
2786	struct group_desc {
2787		char *name;
2788		u32 leader_idx;
2789		u32 nr_members;
2790	} *desc;
2791
2792	if (do_read_u32(ff, &nr_groups))
2793		return -1;
2794
2795	ff->ph->env.nr_groups = nr_groups;
2796	if (!nr_groups) {
2797		pr_debug("group desc not available\n");
2798		return 0;
2799	}
2800
2801	desc = calloc(nr_groups, sizeof(*desc));
2802	if (!desc)
2803		return -1;
2804
2805	for (i = 0; i < nr_groups; i++) {
2806		desc[i].name = do_read_string(ff);
2807		if (!desc[i].name)
2808			goto out_free;
2809
2810		if (do_read_u32(ff, &desc[i].leader_idx))
2811			goto out_free;
2812
2813		if (do_read_u32(ff, &desc[i].nr_members))
2814			goto out_free;
2815	}
2816
2817	/*
2818	 * Rebuild group relationship based on the group_desc
2819	 */
2820	session = container_of(ff->ph, struct perf_session, header);
 
2821
2822	i = nr = 0;
2823	evlist__for_each_entry(session->evlist, evsel) {
2824		if (i < nr_groups && evsel->core.idx == (int) desc[i].leader_idx) {
2825			evsel__set_leader(evsel, evsel);
2826			/* {anon_group} is a dummy name */
2827			if (strcmp(desc[i].name, "{anon_group}")) {
2828				evsel->group_name = desc[i].name;
2829				desc[i].name = NULL;
2830			}
2831			evsel->core.nr_members = desc[i].nr_members;
2832
2833			if (i >= nr_groups || nr > 0) {
2834				pr_debug("invalid group desc\n");
2835				goto out_free;
2836			}
2837
2838			leader = evsel;
2839			nr = evsel->core.nr_members - 1;
2840			i++;
2841		} else if (nr) {
2842			/* This is a group member */
2843			evsel__set_leader(evsel, leader);
2844
2845			nr--;
2846		}
2847	}
2848
2849	if (i != nr_groups || nr != 0) {
2850		pr_debug("invalid group desc\n");
2851		goto out_free;
2852	}
2853
2854	ret = 0;
2855out_free:
2856	for (i = 0; i < nr_groups; i++)
2857		zfree(&desc[i].name);
2858	free(desc);
2859
2860	return ret;
2861}
2862
2863static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused)
2864{
2865	struct perf_session *session;
2866	int err;
2867
2868	session = container_of(ff->ph, struct perf_session, header);
2869
2870	err = auxtrace_index__process(ff->fd, ff->size, session,
2871				      ff->ph->needs_swap);
2872	if (err < 0)
2873		pr_err("Failed to process auxtrace index\n");
2874	return err;
2875}
2876
2877static int process_cache(struct feat_fd *ff, void *data __maybe_unused)
2878{
2879	struct cpu_cache_level *caches;
2880	u32 cnt, i, version;
2881
2882	if (do_read_u32(ff, &version))
2883		return -1;
2884
2885	if (version != 1)
2886		return -1;
2887
2888	if (do_read_u32(ff, &cnt))
2889		return -1;
2890
2891	caches = zalloc(sizeof(*caches) * cnt);
2892	if (!caches)
2893		return -1;
2894
2895	for (i = 0; i < cnt; i++) {
2896		struct cpu_cache_level *c = &caches[i];
2897
2898		#define _R(v)						\
2899			if (do_read_u32(ff, &c->v))			\
2900				goto out_free_caches;			\
2901
2902		_R(level)
2903		_R(line_size)
2904		_R(sets)
2905		_R(ways)
2906		#undef _R
2907
2908		#define _R(v)					\
2909			c->v = do_read_string(ff);		\
2910			if (!c->v)				\
2911				goto out_free_caches;		\
2912
2913		_R(type)
2914		_R(size)
2915		_R(map)
2916		#undef _R
 
 
2917	}
2918
2919	ff->ph->env.caches = caches;
2920	ff->ph->env.caches_cnt = cnt;
2921	return 0;
2922out_free_caches:
2923	for (i = 0; i < cnt; i++) {
2924		free(caches[i].type);
2925		free(caches[i].size);
2926		free(caches[i].map);
2927	}
2928	free(caches);
2929	return -1;
2930}
2931
2932static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused)
2933{
2934	struct perf_session *session;
2935	u64 first_sample_time, last_sample_time;
2936	int ret;
2937
2938	session = container_of(ff->ph, struct perf_session, header);
2939
2940	ret = do_read_u64(ff, &first_sample_time);
2941	if (ret)
2942		return -1;
2943
2944	ret = do_read_u64(ff, &last_sample_time);
2945	if (ret)
2946		return -1;
2947
2948	session->evlist->first_sample_time = first_sample_time;
2949	session->evlist->last_sample_time = last_sample_time;
2950	return 0;
2951}
2952
2953static int process_mem_topology(struct feat_fd *ff,
2954				void *data __maybe_unused)
2955{
2956	struct memory_node *nodes;
2957	u64 version, i, nr, bsize;
2958	int ret = -1;
2959
2960	if (do_read_u64(ff, &version))
2961		return -1;
2962
2963	if (version != 1)
2964		return -1;
2965
2966	if (do_read_u64(ff, &bsize))
2967		return -1;
2968
2969	if (do_read_u64(ff, &nr))
2970		return -1;
2971
2972	nodes = zalloc(sizeof(*nodes) * nr);
2973	if (!nodes)
2974		return -1;
2975
2976	for (i = 0; i < nr; i++) {
2977		struct memory_node n;
2978
2979		#define _R(v)				\
2980			if (do_read_u64(ff, &n.v))	\
2981				goto out;		\
2982
2983		_R(node)
2984		_R(size)
2985
2986		#undef _R
2987
2988		if (do_read_bitmap(ff, &n.set, &n.size))
2989			goto out;
2990
2991		nodes[i] = n;
2992	}
2993
2994	ff->ph->env.memory_bsize    = bsize;
2995	ff->ph->env.memory_nodes    = nodes;
2996	ff->ph->env.nr_memory_nodes = nr;
2997	ret = 0;
2998
2999out:
3000	if (ret)
3001		free(nodes);
3002	return ret;
3003}
3004
3005static int process_clockid(struct feat_fd *ff,
3006			   void *data __maybe_unused)
3007{
3008	if (do_read_u64(ff, &ff->ph->env.clock.clockid_res_ns))
3009		return -1;
3010
3011	return 0;
3012}
3013
3014static int process_clock_data(struct feat_fd *ff,
3015			      void *_data __maybe_unused)
3016{
3017	u32 data32;
3018	u64 data64;
3019
3020	/* version */
3021	if (do_read_u32(ff, &data32))
3022		return -1;
3023
3024	if (data32 != 1)
3025		return -1;
3026
3027	/* clockid */
3028	if (do_read_u32(ff, &data32))
3029		return -1;
3030
3031	ff->ph->env.clock.clockid = data32;
3032
3033	/* TOD ref time */
3034	if (do_read_u64(ff, &data64))
3035		return -1;
3036
3037	ff->ph->env.clock.tod_ns = data64;
3038
3039	/* clockid ref time */
3040	if (do_read_u64(ff, &data64))
3041		return -1;
3042
3043	ff->ph->env.clock.clockid_ns = data64;
3044	ff->ph->env.clock.enabled = true;
3045	return 0;
3046}
3047
3048static int process_hybrid_topology(struct feat_fd *ff,
3049				   void *data __maybe_unused)
3050{
3051	struct hybrid_node *nodes, *n;
3052	u32 nr, i;
3053
3054	/* nr nodes */
3055	if (do_read_u32(ff, &nr))
3056		return -1;
3057
3058	nodes = zalloc(sizeof(*nodes) * nr);
3059	if (!nodes)
3060		return -ENOMEM;
3061
3062	for (i = 0; i < nr; i++) {
3063		n = &nodes[i];
3064
3065		n->pmu_name = do_read_string(ff);
3066		if (!n->pmu_name)
3067			goto error;
3068
3069		n->cpus = do_read_string(ff);
3070		if (!n->cpus)
3071			goto error;
3072	}
3073
3074	ff->ph->env.nr_hybrid_nodes = nr;
3075	ff->ph->env.hybrid_nodes = nodes;
3076	return 0;
3077
3078error:
3079	for (i = 0; i < nr; i++) {
3080		free(nodes[i].pmu_name);
3081		free(nodes[i].cpus);
3082	}
3083
3084	free(nodes);
3085	return -1;
3086}
3087
3088static int process_dir_format(struct feat_fd *ff,
3089			      void *_data __maybe_unused)
3090{
3091	struct perf_session *session;
3092	struct perf_data *data;
3093
3094	session = container_of(ff->ph, struct perf_session, header);
3095	data = session->data;
3096
3097	if (WARN_ON(!perf_data__is_dir(data)))
3098		return -1;
3099
3100	return do_read_u64(ff, &data->dir.version);
3101}
3102
3103#ifdef HAVE_LIBBPF_SUPPORT
3104static int process_bpf_prog_info(struct feat_fd *ff, void *data __maybe_unused)
3105{
 
3106	struct bpf_prog_info_node *info_node;
3107	struct perf_env *env = &ff->ph->env;
3108	struct perf_bpil *info_linear;
3109	u32 count, i;
3110	int err = -1;
3111
3112	if (ff->ph->needs_swap) {
3113		pr_warning("interpreting bpf_prog_info from systems with endianness is not yet supported\n");
3114		return 0;
3115	}
3116
3117	if (do_read_u32(ff, &count))
3118		return -1;
3119
3120	down_write(&env->bpf_progs.lock);
3121
3122	for (i = 0; i < count; ++i) {
3123		u32 info_len, data_len;
3124
3125		info_linear = NULL;
3126		info_node = NULL;
3127		if (do_read_u32(ff, &info_len))
3128			goto out;
3129		if (do_read_u32(ff, &data_len))
3130			goto out;
3131
3132		if (info_len > sizeof(struct bpf_prog_info)) {
3133			pr_warning("detected invalid bpf_prog_info\n");
3134			goto out;
3135		}
3136
3137		info_linear = malloc(sizeof(struct perf_bpil) +
3138				     data_len);
3139		if (!info_linear)
3140			goto out;
3141		info_linear->info_len = sizeof(struct bpf_prog_info);
3142		info_linear->data_len = data_len;
3143		if (do_read_u64(ff, (u64 *)(&info_linear->arrays)))
3144			goto out;
3145		if (__do_read(ff, &info_linear->info, info_len))
3146			goto out;
3147		if (info_len < sizeof(struct bpf_prog_info))
3148			memset(((void *)(&info_linear->info)) + info_len, 0,
3149			       sizeof(struct bpf_prog_info) - info_len);
3150
3151		if (__do_read(ff, info_linear->data, data_len))
3152			goto out;
3153
3154		info_node = malloc(sizeof(struct bpf_prog_info_node));
3155		if (!info_node)
3156			goto out;
3157
3158		/* after reading from file, translate offset to address */
3159		bpil_offs_to_addr(info_linear);
3160		info_node->info_linear = info_linear;
3161		if (!__perf_env__insert_bpf_prog_info(env, info_node)) {
3162			free(info_linear);
3163			free(info_node);
3164		}
3165	}
3166
3167	up_write(&env->bpf_progs.lock);
3168	return 0;
3169out:
3170	free(info_linear);
3171	free(info_node);
3172	up_write(&env->bpf_progs.lock);
3173	return err;
3174}
 
 
 
 
 
 
3175
3176static int process_bpf_btf(struct feat_fd *ff, void *data __maybe_unused)
3177{
3178	struct perf_env *env = &ff->ph->env;
3179	struct btf_node *node = NULL;
3180	u32 count, i;
3181	int err = -1;
3182
3183	if (ff->ph->needs_swap) {
3184		pr_warning("interpreting btf from systems with endianness is not yet supported\n");
3185		return 0;
3186	}
3187
3188	if (do_read_u32(ff, &count))
3189		return -1;
3190
3191	down_write(&env->bpf_progs.lock);
3192
3193	for (i = 0; i < count; ++i) {
3194		u32 id, data_size;
3195
3196		if (do_read_u32(ff, &id))
3197			goto out;
3198		if (do_read_u32(ff, &data_size))
3199			goto out;
3200
3201		node = malloc(sizeof(struct btf_node) + data_size);
3202		if (!node)
3203			goto out;
3204
3205		node->id = id;
3206		node->data_size = data_size;
3207
3208		if (__do_read(ff, node->data, data_size))
3209			goto out;
3210
3211		if (!__perf_env__insert_btf(env, node))
3212			free(node);
3213		node = NULL;
3214	}
3215
3216	err = 0;
3217out:
3218	up_write(&env->bpf_progs.lock);
3219	free(node);
3220	return err;
3221}
3222#endif // HAVE_LIBBPF_SUPPORT
3223
3224static int process_compressed(struct feat_fd *ff,
3225			      void *data __maybe_unused)
3226{
3227	if (do_read_u32(ff, &(ff->ph->env.comp_ver)))
3228		return -1;
3229
3230	if (do_read_u32(ff, &(ff->ph->env.comp_type)))
3231		return -1;
3232
3233	if (do_read_u32(ff, &(ff->ph->env.comp_level)))
3234		return -1;
3235
3236	if (do_read_u32(ff, &(ff->ph->env.comp_ratio)))
3237		return -1;
3238
3239	if (do_read_u32(ff, &(ff->ph->env.comp_mmap_len)))
3240		return -1;
3241
3242	return 0;
3243}
3244
3245static int __process_pmu_caps(struct feat_fd *ff, int *nr_caps,
3246			      char ***caps, unsigned int *max_branches,
3247			      unsigned int *br_cntr_nr,
3248			      unsigned int *br_cntr_width)
3249{
3250	char *name, *value, *ptr;
3251	u32 nr_pmu_caps, i;
3252
3253	*nr_caps = 0;
3254	*caps = NULL;
3255
3256	if (do_read_u32(ff, &nr_pmu_caps))
3257		return -1;
3258
3259	if (!nr_pmu_caps)
3260		return 0;
3261
3262	*caps = zalloc(sizeof(char *) * nr_pmu_caps);
3263	if (!*caps)
3264		return -1;
3265
3266	for (i = 0; i < nr_pmu_caps; i++) {
3267		name = do_read_string(ff);
3268		if (!name)
3269			goto error;
3270
3271		value = do_read_string(ff);
3272		if (!value)
3273			goto free_name;
3274
3275		if (asprintf(&ptr, "%s=%s", name, value) < 0)
3276			goto free_value;
3277
3278		(*caps)[i] = ptr;
3279
3280		if (!strcmp(name, "branches"))
3281			*max_branches = atoi(value);
3282
3283		if (!strcmp(name, "branch_counter_nr"))
3284			*br_cntr_nr = atoi(value);
3285
3286		if (!strcmp(name, "branch_counter_width"))
3287			*br_cntr_width = atoi(value);
3288
3289		free(value);
3290		free(name);
3291	}
3292	*nr_caps = nr_pmu_caps;
3293	return 0;
3294
3295free_value:
3296	free(value);
3297free_name:
3298	free(name);
3299error:
3300	for (; i > 0; i--)
3301		free((*caps)[i - 1]);
3302	free(*caps);
3303	*caps = NULL;
3304	*nr_caps = 0;
3305	return -1;
3306}
3307
3308static int process_cpu_pmu_caps(struct feat_fd *ff,
3309				void *data __maybe_unused)
3310{
3311	int ret = __process_pmu_caps(ff, &ff->ph->env.nr_cpu_pmu_caps,
3312				     &ff->ph->env.cpu_pmu_caps,
3313				     &ff->ph->env.max_branches,
3314				     &ff->ph->env.br_cntr_nr,
3315				     &ff->ph->env.br_cntr_width);
3316
3317	if (!ret && !ff->ph->env.cpu_pmu_caps)
3318		pr_debug("cpu pmu capabilities not available\n");
3319	return ret;
3320}
3321
3322static int process_pmu_caps(struct feat_fd *ff, void *data __maybe_unused)
3323{
3324	struct pmu_caps *pmu_caps;
3325	u32 nr_pmu, i;
3326	int ret;
3327	int j;
3328
3329	if (do_read_u32(ff, &nr_pmu))
3330		return -1;
3331
3332	if (!nr_pmu) {
3333		pr_debug("pmu capabilities not available\n");
3334		return 0;
3335	}
3336
3337	pmu_caps = zalloc(sizeof(*pmu_caps) * nr_pmu);
3338	if (!pmu_caps)
3339		return -ENOMEM;
3340
3341	for (i = 0; i < nr_pmu; i++) {
3342		ret = __process_pmu_caps(ff, &pmu_caps[i].nr_caps,
3343					 &pmu_caps[i].caps,
3344					 &pmu_caps[i].max_branches,
3345					 &pmu_caps[i].br_cntr_nr,
3346					 &pmu_caps[i].br_cntr_width);
3347		if (ret)
3348			goto err;
3349
3350		pmu_caps[i].pmu_name = do_read_string(ff);
3351		if (!pmu_caps[i].pmu_name) {
3352			ret = -1;
3353			goto err;
3354		}
3355		if (!pmu_caps[i].nr_caps) {
3356			pr_debug("%s pmu capabilities not available\n",
3357				 pmu_caps[i].pmu_name);
3358		}
3359	}
3360
3361	ff->ph->env.nr_pmus_with_caps = nr_pmu;
3362	ff->ph->env.pmu_caps = pmu_caps;
3363	return 0;
3364
3365err:
3366	for (i = 0; i < nr_pmu; i++) {
3367		for (j = 0; j < pmu_caps[i].nr_caps; j++)
3368			free(pmu_caps[i].caps[j]);
3369		free(pmu_caps[i].caps);
3370		free(pmu_caps[i].pmu_name);
3371	}
3372
3373	free(pmu_caps);
3374	return ret;
3375}
3376
3377#define FEAT_OPR(n, func, __full_only) \
3378	[HEADER_##n] = {					\
3379		.name	    = __stringify(n),			\
3380		.write	    = write_##func,			\
3381		.print	    = print_##func,			\
3382		.full_only  = __full_only,			\
3383		.process    = process_##func,			\
3384		.synthesize = true				\
3385	}
3386
3387#define FEAT_OPN(n, func, __full_only) \
3388	[HEADER_##n] = {					\
3389		.name	    = __stringify(n),			\
3390		.write	    = write_##func,			\
3391		.print	    = print_##func,			\
3392		.full_only  = __full_only,			\
3393		.process    = process_##func			\
3394	}
3395
3396/* feature_ops not implemented: */
3397#define print_tracing_data	NULL
3398#define print_build_id		NULL
3399
3400#define process_branch_stack	NULL
3401#define process_stat		NULL
3402
3403// Only used in util/synthetic-events.c
3404const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE];
3405
3406const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE] = {
3407#ifdef HAVE_LIBTRACEEVENT
3408	FEAT_OPN(TRACING_DATA,	tracing_data,	false),
3409#endif
3410	FEAT_OPN(BUILD_ID,	build_id,	false),
3411	FEAT_OPR(HOSTNAME,	hostname,	false),
3412	FEAT_OPR(OSRELEASE,	osrelease,	false),
3413	FEAT_OPR(VERSION,	version,	false),
3414	FEAT_OPR(ARCH,		arch,		false),
3415	FEAT_OPR(NRCPUS,	nrcpus,		false),
3416	FEAT_OPR(CPUDESC,	cpudesc,	false),
3417	FEAT_OPR(CPUID,		cpuid,		false),
3418	FEAT_OPR(TOTAL_MEM,	total_mem,	false),
3419	FEAT_OPR(EVENT_DESC,	event_desc,	false),
3420	FEAT_OPR(CMDLINE,	cmdline,	false),
3421	FEAT_OPR(CPU_TOPOLOGY,	cpu_topology,	true),
3422	FEAT_OPR(NUMA_TOPOLOGY,	numa_topology,	true),
3423	FEAT_OPN(BRANCH_STACK,	branch_stack,	false),
3424	FEAT_OPR(PMU_MAPPINGS,	pmu_mappings,	false),
3425	FEAT_OPR(GROUP_DESC,	group_desc,	false),
3426	FEAT_OPN(AUXTRACE,	auxtrace,	false),
3427	FEAT_OPN(STAT,		stat,		false),
3428	FEAT_OPN(CACHE,		cache,		true),
3429	FEAT_OPR(SAMPLE_TIME,	sample_time,	false),
3430	FEAT_OPR(MEM_TOPOLOGY,	mem_topology,	true),
3431	FEAT_OPR(CLOCKID,	clockid,	false),
3432	FEAT_OPN(DIR_FORMAT,	dir_format,	false),
3433#ifdef HAVE_LIBBPF_SUPPORT
3434	FEAT_OPR(BPF_PROG_INFO, bpf_prog_info,  false),
3435	FEAT_OPR(BPF_BTF,       bpf_btf,        false),
3436#endif
3437	FEAT_OPR(COMPRESSED,	compressed,	false),
3438	FEAT_OPR(CPU_PMU_CAPS,	cpu_pmu_caps,	false),
3439	FEAT_OPR(CLOCK_DATA,	clock_data,	false),
3440	FEAT_OPN(HYBRID_TOPOLOGY,	hybrid_topology,	true),
3441	FEAT_OPR(PMU_CAPS,	pmu_caps,	false),
3442};
3443
3444struct header_print_data {
3445	FILE *fp;
3446	bool full; /* extended list of headers */
3447};
3448
3449static int perf_file_section__fprintf_info(struct perf_file_section *section,
3450					   struct perf_header *ph,
3451					   int feat, int fd, void *data)
3452{
3453	struct header_print_data *hd = data;
3454	struct feat_fd ff;
3455
3456	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3457		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3458				"%d, continuing...\n", section->offset, feat);
3459		return 0;
3460	}
3461	if (feat >= HEADER_LAST_FEATURE) {
3462		pr_warning("unknown feature %d\n", feat);
3463		return 0;
3464	}
3465	if (!feat_ops[feat].print)
3466		return 0;
3467
3468	ff = (struct  feat_fd) {
3469		.fd = fd,
3470		.ph = ph,
3471	};
3472
3473	if (!feat_ops[feat].full_only || hd->full)
3474		feat_ops[feat].print(&ff, hd->fp);
3475	else
3476		fprintf(hd->fp, "# %s info available, use -I to display\n",
3477			feat_ops[feat].name);
3478
3479	return 0;
3480}
3481
3482int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full)
3483{
3484	struct header_print_data hd;
3485	struct perf_header *header = &session->header;
3486	int fd = perf_data__fd(session->data);
3487	struct stat st;
3488	time_t stctime;
3489	int ret, bit;
3490
3491	hd.fp = fp;
3492	hd.full = full;
3493
3494	ret = fstat(fd, &st);
3495	if (ret == -1)
3496		return -1;
3497
3498	stctime = st.st_mtime;
3499	fprintf(fp, "# captured on    : %s", ctime(&stctime));
3500
3501	fprintf(fp, "# header version : %u\n", header->version);
3502	fprintf(fp, "# data offset    : %" PRIu64 "\n", header->data_offset);
3503	fprintf(fp, "# data size      : %" PRIu64 "\n", header->data_size);
3504	fprintf(fp, "# feat offset    : %" PRIu64 "\n", header->feat_offset);
3505
3506	perf_header__process_sections(header, fd, &hd,
3507				      perf_file_section__fprintf_info);
3508
3509	if (session->data->is_pipe)
3510		return 0;
3511
3512	fprintf(fp, "# missing features: ");
3513	for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) {
3514		if (bit)
3515			fprintf(fp, "%s ", feat_ops[bit].name);
3516	}
3517
3518	fprintf(fp, "\n");
3519	return 0;
3520}
3521
3522struct header_fw {
3523	struct feat_writer	fw;
3524	struct feat_fd		*ff;
3525};
3526
3527static int feat_writer_cb(struct feat_writer *fw, void *buf, size_t sz)
3528{
3529	struct header_fw *h = container_of(fw, struct header_fw, fw);
3530
3531	return do_write(h->ff, buf, sz);
3532}
3533
3534static int do_write_feat(struct feat_fd *ff, int type,
3535			 struct perf_file_section **p,
3536			 struct evlist *evlist,
3537			 struct feat_copier *fc)
3538{
3539	int err;
3540	int ret = 0;
3541
3542	if (perf_header__has_feat(ff->ph, type)) {
3543		if (!feat_ops[type].write)
3544			return -1;
3545
3546		if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
3547			return -1;
3548
3549		(*p)->offset = lseek(ff->fd, 0, SEEK_CUR);
3550
3551		/*
3552		 * Hook to let perf inject copy features sections from the input
3553		 * file.
3554		 */
3555		if (fc && fc->copy) {
3556			struct header_fw h = {
3557				.fw.write = feat_writer_cb,
3558				.ff = ff,
3559			};
3560
3561			/* ->copy() returns 0 if the feature was not copied */
3562			err = fc->copy(fc, type, &h.fw);
3563		} else {
3564			err = 0;
3565		}
3566		if (!err)
3567			err = feat_ops[type].write(ff, evlist);
3568		if (err < 0) {
3569			pr_debug("failed to write feature %s\n", feat_ops[type].name);
3570
3571			/* undo anything written */
3572			lseek(ff->fd, (*p)->offset, SEEK_SET);
3573
3574			return -1;
3575		}
3576		(*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset;
3577		(*p)++;
3578	}
3579	return ret;
3580}
3581
3582static int perf_header__adds_write(struct perf_header *header,
3583				   struct evlist *evlist, int fd,
3584				   struct feat_copier *fc)
3585{
3586	int nr_sections;
3587	struct feat_fd ff = {
3588		.fd  = fd,
3589		.ph = header,
3590	};
3591	struct perf_file_section *feat_sec, *p;
3592	int sec_size;
3593	u64 sec_start;
3594	int feat;
3595	int err;
3596
 
 
 
 
 
3597	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3598	if (!nr_sections)
3599		return 0;
3600
3601	feat_sec = p = calloc(nr_sections, sizeof(*feat_sec));
3602	if (feat_sec == NULL)
3603		return -ENOMEM;
3604
3605	sec_size = sizeof(*feat_sec) * nr_sections;
3606
3607	sec_start = header->feat_offset;
3608	lseek(fd, sec_start + sec_size, SEEK_SET);
3609
3610	for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
3611		if (do_write_feat(&ff, feat, &p, evlist, fc))
3612			perf_header__clear_feat(header, feat);
3613	}
3614
3615	lseek(fd, sec_start, SEEK_SET);
3616	/*
3617	 * may write more than needed due to dropped feature, but
3618	 * this is okay, reader will skip the missing entries
3619	 */
3620	err = do_write(&ff, feat_sec, sec_size);
3621	if (err < 0)
3622		pr_debug("failed to write feature section\n");
3623	free(ff.buf); /* TODO: added to silence clang-tidy. */
3624	free(feat_sec);
3625	return err;
3626}
3627
3628int perf_header__write_pipe(int fd)
3629{
3630	struct perf_pipe_file_header f_header;
3631	struct feat_fd ff = {
3632		.fd = fd,
3633	};
3634	int err;
3635
 
 
3636	f_header = (struct perf_pipe_file_header){
3637		.magic	   = PERF_MAGIC,
3638		.size	   = sizeof(f_header),
3639	};
3640
3641	err = do_write(&ff, &f_header, sizeof(f_header));
3642	if (err < 0) {
3643		pr_debug("failed to write perf pipe header\n");
3644		return err;
3645	}
3646	free(ff.buf);
3647	return 0;
3648}
3649
3650static int perf_session__do_write_header(struct perf_session *session,
3651					 struct evlist *evlist,
3652					 int fd, bool at_exit,
3653					 struct feat_copier *fc,
3654					 bool write_attrs_after_data)
3655{
3656	struct perf_file_header f_header;
 
3657	struct perf_header *header = &session->header;
3658	struct evsel *evsel;
3659	struct feat_fd ff = {
3660		.fd = fd,
3661	};
3662	u64 attr_offset = sizeof(f_header), attr_size = 0;
3663	int err;
3664
3665	if (write_attrs_after_data && at_exit) {
3666		/*
3667		 * Write features at the end of the file first so that
3668		 * attributes may come after them.
3669		 */
3670		if (!header->data_offset && header->data_size) {
3671			pr_err("File contains data but offset unknown\n");
3672			err = -1;
3673			goto err_out;
3674		}
3675		header->feat_offset = header->data_offset + header->data_size;
3676		err = perf_header__adds_write(header, evlist, fd, fc);
3677		if (err < 0)
3678			goto err_out;
3679		attr_offset = lseek(fd, 0, SEEK_CUR);
3680	} else {
3681		lseek(fd, attr_offset, SEEK_SET);
3682	}
3683
3684	evlist__for_each_entry(session->evlist, evsel) {
3685		evsel->id_offset = attr_offset;
3686		/* Avoid writing at the end of the file until the session is exiting. */
3687		if (!write_attrs_after_data || at_exit) {
3688			err = do_write(&ff, evsel->core.id, evsel->core.ids * sizeof(u64));
3689			if (err < 0) {
3690				pr_debug("failed to write perf header\n");
3691				goto err_out;
3692			}
3693		}
3694		attr_offset += evsel->core.ids * sizeof(u64);
3695	}
3696
 
 
3697	evlist__for_each_entry(evlist, evsel) {
3698		if (evsel->core.attr.size < sizeof(evsel->core.attr)) {
3699			/*
3700			 * We are likely in "perf inject" and have read
3701			 * from an older file. Update attr size so that
3702			 * reader gets the right offset to the ids.
3703			 */
3704			evsel->core.attr.size = sizeof(evsel->core.attr);
3705		}
3706		/* Avoid writing at the end of the file until the session is exiting. */
3707		if (!write_attrs_after_data || at_exit) {
3708			struct perf_file_attr f_attr = {
3709				.attr = evsel->core.attr,
3710				.ids  = {
3711					.offset = evsel->id_offset,
3712					.size   = evsel->core.ids * sizeof(u64),
3713				}
3714			};
3715			err = do_write(&ff, &f_attr, sizeof(f_attr));
3716			if (err < 0) {
3717				pr_debug("failed to write perf header attribute\n");
3718				goto err_out;
3719			}
 
 
 
 
 
3720		}
3721		attr_size += sizeof(struct perf_file_attr);
3722	}
3723
3724	if (!header->data_offset) {
3725		if (write_attrs_after_data)
3726			header->data_offset = sizeof(f_header);
3727		else
3728			header->data_offset = attr_offset + attr_size;
3729	}
3730	header->feat_offset = header->data_offset + header->data_size;
3731
3732	if (!write_attrs_after_data && at_exit) {
3733		/* Write features now feat_offset is known. */
3734		err = perf_header__adds_write(header, evlist, fd, fc);
3735		if (err < 0)
3736			goto err_out;
3737	}
3738
3739	f_header = (struct perf_file_header){
3740		.magic	   = PERF_MAGIC,
3741		.size	   = sizeof(f_header),
3742		.attr_size = sizeof(struct perf_file_attr),
3743		.attrs = {
3744			.offset = attr_offset,
3745			.size   = attr_size,
3746		},
3747		.data = {
3748			.offset = header->data_offset,
3749			.size	= header->data_size,
3750		},
3751		/* event_types is ignored, store zeros */
3752	};
3753
3754	memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features));
3755
3756	lseek(fd, 0, SEEK_SET);
3757	err = do_write(&ff, &f_header, sizeof(f_header));
3758	if (err < 0) {
3759		pr_debug("failed to write perf header\n");
3760		goto err_out;
3761	} else {
3762		lseek(fd, 0, SEEK_END);
3763		err = 0;
3764	}
3765err_out:
3766	free(ff.buf);
3767	return err;
3768}
3769
3770int perf_session__write_header(struct perf_session *session,
3771			       struct evlist *evlist,
3772			       int fd, bool at_exit)
3773{
3774	return perf_session__do_write_header(session, evlist, fd, at_exit, /*fc=*/NULL,
3775					     /*write_attrs_after_data=*/false);
3776}
3777
3778size_t perf_session__data_offset(const struct evlist *evlist)
3779{
3780	struct evsel *evsel;
3781	size_t data_offset;
3782
3783	data_offset = sizeof(struct perf_file_header);
3784	evlist__for_each_entry(evlist, evsel) {
3785		data_offset += evsel->core.ids * sizeof(u64);
3786	}
3787	data_offset += evlist->core.nr_entries * sizeof(struct perf_file_attr);
3788
3789	return data_offset;
3790}
3791
3792int perf_session__inject_header(struct perf_session *session,
3793				struct evlist *evlist,
3794				int fd,
3795				struct feat_copier *fc,
3796				bool write_attrs_after_data)
3797{
3798	return perf_session__do_write_header(session, evlist, fd, true, fc,
3799					     write_attrs_after_data);
3800}
3801
3802static int perf_header__getbuffer64(struct perf_header *header,
3803				    int fd, void *buf, size_t size)
3804{
3805	if (readn(fd, buf, size) <= 0)
3806		return -1;
3807
3808	if (header->needs_swap)
3809		mem_bswap_64(buf, size);
3810
3811	return 0;
3812}
3813
3814int perf_header__process_sections(struct perf_header *header, int fd,
3815				  void *data,
3816				  int (*process)(struct perf_file_section *section,
3817						 struct perf_header *ph,
3818						 int feat, int fd, void *data))
3819{
3820	struct perf_file_section *feat_sec, *sec;
3821	int nr_sections;
3822	int sec_size;
3823	int feat;
3824	int err;
3825
3826	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3827	if (!nr_sections)
3828		return 0;
3829
3830	feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec));
3831	if (!feat_sec)
3832		return -1;
3833
3834	sec_size = sizeof(*feat_sec) * nr_sections;
3835
3836	lseek(fd, header->feat_offset, SEEK_SET);
3837
3838	err = perf_header__getbuffer64(header, fd, feat_sec, sec_size);
3839	if (err < 0)
3840		goto out_free;
3841
3842	for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) {
3843		err = process(sec++, header, feat, fd, data);
3844		if (err < 0)
3845			goto out_free;
3846	}
3847	err = 0;
3848out_free:
3849	free(feat_sec);
3850	return err;
3851}
3852
3853static const int attr_file_abi_sizes[] = {
3854	[0] = PERF_ATTR_SIZE_VER0,
3855	[1] = PERF_ATTR_SIZE_VER1,
3856	[2] = PERF_ATTR_SIZE_VER2,
3857	[3] = PERF_ATTR_SIZE_VER3,
3858	[4] = PERF_ATTR_SIZE_VER4,
3859	0,
3860};
3861
3862/*
3863 * In the legacy file format, the magic number is not used to encode endianness.
3864 * hdr_sz was used to encode endianness. But given that hdr_sz can vary based
3865 * on ABI revisions, we need to try all combinations for all endianness to
3866 * detect the endianness.
3867 */
3868static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph)
3869{
3870	uint64_t ref_size, attr_size;
3871	int i;
3872
3873	for (i = 0 ; attr_file_abi_sizes[i]; i++) {
3874		ref_size = attr_file_abi_sizes[i]
3875			 + sizeof(struct perf_file_section);
3876		if (hdr_sz != ref_size) {
3877			attr_size = bswap_64(hdr_sz);
3878			if (attr_size != ref_size)
3879				continue;
3880
3881			ph->needs_swap = true;
3882		}
3883		pr_debug("ABI%d perf.data file detected, need_swap=%d\n",
3884			 i,
3885			 ph->needs_swap);
3886		return 0;
3887	}
3888	/* could not determine endianness */
3889	return -1;
3890}
3891
3892#define PERF_PIPE_HDR_VER0	16
3893
3894static const size_t attr_pipe_abi_sizes[] = {
3895	[0] = PERF_PIPE_HDR_VER0,
3896	0,
3897};
3898
3899/*
3900 * In the legacy pipe format, there is an implicit assumption that endianness
3901 * between host recording the samples, and host parsing the samples is the
3902 * same. This is not always the case given that the pipe output may always be
3903 * redirected into a file and analyzed on a different machine with possibly a
3904 * different endianness and perf_event ABI revisions in the perf tool itself.
3905 */
3906static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph)
3907{
3908	u64 attr_size;
3909	int i;
3910
3911	for (i = 0 ; attr_pipe_abi_sizes[i]; i++) {
3912		if (hdr_sz != attr_pipe_abi_sizes[i]) {
3913			attr_size = bswap_64(hdr_sz);
3914			if (attr_size != hdr_sz)
3915				continue;
3916
3917			ph->needs_swap = true;
3918		}
3919		pr_debug("Pipe ABI%d perf.data file detected\n", i);
3920		return 0;
3921	}
3922	return -1;
3923}
3924
3925bool is_perf_magic(u64 magic)
3926{
3927	if (!memcmp(&magic, __perf_magic1, sizeof(magic))
3928		|| magic == __perf_magic2
3929		|| magic == __perf_magic2_sw)
3930		return true;
3931
3932	return false;
3933}
3934
3935static int check_magic_endian(u64 magic, uint64_t hdr_sz,
3936			      bool is_pipe, struct perf_header *ph)
3937{
3938	int ret;
3939
3940	/* check for legacy format */
3941	ret = memcmp(&magic, __perf_magic1, sizeof(magic));
3942	if (ret == 0) {
3943		ph->version = PERF_HEADER_VERSION_1;
3944		pr_debug("legacy perf.data format\n");
3945		if (is_pipe)
3946			return try_all_pipe_abis(hdr_sz, ph);
3947
3948		return try_all_file_abis(hdr_sz, ph);
3949	}
3950	/*
3951	 * the new magic number serves two purposes:
3952	 * - unique number to identify actual perf.data files
3953	 * - encode endianness of file
3954	 */
3955	ph->version = PERF_HEADER_VERSION_2;
3956
3957	/* check magic number with one endianness */
3958	if (magic == __perf_magic2)
3959		return 0;
3960
3961	/* check magic number with opposite endianness */
3962	if (magic != __perf_magic2_sw)
3963		return -1;
3964
3965	ph->needs_swap = true;
3966
3967	return 0;
3968}
3969
3970int perf_file_header__read(struct perf_file_header *header,
3971			   struct perf_header *ph, int fd)
3972{
3973	ssize_t ret;
3974
3975	lseek(fd, 0, SEEK_SET);
3976
3977	ret = readn(fd, header, sizeof(*header));
3978	if (ret <= 0)
3979		return -1;
3980
3981	if (check_magic_endian(header->magic,
3982			       header->attr_size, false, ph) < 0) {
3983		pr_debug("magic/endian check failed\n");
3984		return -1;
3985	}
3986
3987	if (ph->needs_swap) {
3988		mem_bswap_64(header, offsetof(struct perf_file_header,
3989			     adds_features));
3990	}
3991
3992	if (header->size > header->attrs.offset) {
3993		pr_err("Perf file header corrupt: header overlaps attrs\n");
3994		return -1;
3995	}
3996
3997	if (header->size > header->data.offset) {
3998		pr_err("Perf file header corrupt: header overlaps data\n");
3999		return -1;
4000	}
4001
4002	if ((header->attrs.offset <= header->data.offset &&
4003	     header->attrs.offset + header->attrs.size > header->data.offset) ||
4004	    (header->attrs.offset > header->data.offset &&
4005	     header->data.offset + header->data.size > header->attrs.offset)) {
4006		pr_err("Perf file header corrupt: Attributes and data overlap\n");
4007		return -1;
4008	}
4009
4010	if (header->size != sizeof(*header)) {
4011		/* Support the previous format */
4012		if (header->size == offsetof(typeof(*header), adds_features))
4013			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
4014		else
4015			return -1;
4016	} else if (ph->needs_swap) {
4017		/*
4018		 * feature bitmap is declared as an array of unsigned longs --
4019		 * not good since its size can differ between the host that
4020		 * generated the data file and the host analyzing the file.
4021		 *
4022		 * We need to handle endianness, but we don't know the size of
4023		 * the unsigned long where the file was generated. Take a best
4024		 * guess at determining it: try 64-bit swap first (ie., file
4025		 * created on a 64-bit host), and check if the hostname feature
4026		 * bit is set (this feature bit is forced on as of fbe96f2).
4027		 * If the bit is not, undo the 64-bit swap and try a 32-bit
4028		 * swap. If the hostname bit is still not set (e.g., older data
4029		 * file), punt and fallback to the original behavior --
4030		 * clearing all feature bits and setting buildid.
4031		 */
4032		mem_bswap_64(&header->adds_features,
4033			    BITS_TO_U64(HEADER_FEAT_BITS));
4034
4035		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
4036			/* unswap as u64 */
4037			mem_bswap_64(&header->adds_features,
4038				    BITS_TO_U64(HEADER_FEAT_BITS));
4039
4040			/* unswap as u32 */
4041			mem_bswap_32(&header->adds_features,
4042				    BITS_TO_U32(HEADER_FEAT_BITS));
4043		}
4044
4045		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
4046			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
4047			__set_bit(HEADER_BUILD_ID, header->adds_features);
4048		}
4049	}
4050
4051	memcpy(&ph->adds_features, &header->adds_features,
4052	       sizeof(ph->adds_features));
4053
4054	ph->data_offset  = header->data.offset;
4055	ph->data_size	 = header->data.size;
4056	ph->feat_offset  = header->data.offset + header->data.size;
4057	return 0;
4058}
4059
4060static int perf_file_section__process(struct perf_file_section *section,
4061				      struct perf_header *ph,
4062				      int feat, int fd, void *data)
4063{
4064	struct feat_fd fdd = {
4065		.fd	= fd,
4066		.ph	= ph,
4067		.size	= section->size,
4068		.offset	= section->offset,
4069	};
4070
4071	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
4072		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
4073			  "%d, continuing...\n", section->offset, feat);
4074		return 0;
4075	}
4076
4077	if (feat >= HEADER_LAST_FEATURE) {
4078		pr_debug("unknown feature %d, continuing...\n", feat);
4079		return 0;
4080	}
4081
4082	if (!feat_ops[feat].process)
4083		return 0;
4084
4085	return feat_ops[feat].process(&fdd, data);
4086}
4087
4088static int perf_file_header__read_pipe(struct perf_pipe_file_header *header,
4089				       struct perf_header *ph,
4090				       struct perf_data *data)
4091{
 
 
 
 
4092	ssize_t ret;
4093
4094	ret = perf_data__read(data, header, sizeof(*header));
4095	if (ret <= 0)
4096		return -1;
4097
4098	if (check_magic_endian(header->magic, header->size, true, ph) < 0) {
4099		pr_debug("endian/magic failed\n");
4100		return -1;
4101	}
4102
4103	if (ph->needs_swap)
4104		header->size = bswap_64(header->size);
4105
 
 
 
4106	return 0;
4107}
4108
4109static int perf_header__read_pipe(struct perf_session *session)
4110{
4111	struct perf_header *header = &session->header;
4112	struct perf_pipe_file_header f_header;
4113
4114	if (perf_file_header__read_pipe(&f_header, header, session->data) < 0) {
 
 
4115		pr_debug("incompatible file format\n");
4116		return -EINVAL;
4117	}
4118
4119	return f_header.size == sizeof(f_header) ? 0 : -1;
4120}
4121
4122static int read_attr(int fd, struct perf_header *ph,
4123		     struct perf_file_attr *f_attr)
4124{
4125	struct perf_event_attr *attr = &f_attr->attr;
4126	size_t sz, left;
4127	size_t our_sz = sizeof(f_attr->attr);
4128	ssize_t ret;
4129
4130	memset(f_attr, 0, sizeof(*f_attr));
4131
4132	/* read minimal guaranteed structure */
4133	ret = readn(fd, attr, PERF_ATTR_SIZE_VER0);
4134	if (ret <= 0) {
4135		pr_debug("cannot read %d bytes of header attr\n",
4136			 PERF_ATTR_SIZE_VER0);
4137		return -1;
4138	}
4139
4140	/* on file perf_event_attr size */
4141	sz = attr->size;
4142
4143	if (ph->needs_swap)
4144		sz = bswap_32(sz);
4145
4146	if (sz == 0) {
4147		/* assume ABI0 */
4148		sz =  PERF_ATTR_SIZE_VER0;
4149	} else if (sz > our_sz) {
4150		pr_debug("file uses a more recent and unsupported ABI"
4151			 " (%zu bytes extra)\n", sz - our_sz);
4152		return -1;
4153	}
4154	/* what we have not yet read and that we know about */
4155	left = sz - PERF_ATTR_SIZE_VER0;
4156	if (left) {
4157		void *ptr = attr;
4158		ptr += PERF_ATTR_SIZE_VER0;
4159
4160		ret = readn(fd, ptr, left);
4161	}
4162	/* read perf_file_section, ids are read in caller */
4163	ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids));
4164
4165	return ret <= 0 ? -1 : 0;
4166}
4167
4168#ifdef HAVE_LIBTRACEEVENT
4169static int evsel__prepare_tracepoint_event(struct evsel *evsel, struct tep_handle *pevent)
4170{
4171	struct tep_event *event;
4172	char bf[128];
4173
4174	/* already prepared */
4175	if (evsel->tp_format)
4176		return 0;
4177
4178	if (pevent == NULL) {
4179		pr_debug("broken or missing trace data\n");
4180		return -1;
4181	}
4182
4183	event = tep_find_event(pevent, evsel->core.attr.config);
4184	if (event == NULL) {
4185		pr_debug("cannot find event format for %d\n", (int)evsel->core.attr.config);
4186		return -1;
4187	}
4188
4189	if (!evsel->name) {
4190		snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name);
4191		evsel->name = strdup(bf);
4192		if (evsel->name == NULL)
4193			return -1;
4194	}
4195
4196	evsel->tp_format = event;
4197	return 0;
4198}
4199
4200static int evlist__prepare_tracepoint_events(struct evlist *evlist, struct tep_handle *pevent)
 
4201{
4202	struct evsel *pos;
4203
4204	evlist__for_each_entry(evlist, pos) {
4205		if (pos->core.attr.type == PERF_TYPE_TRACEPOINT &&
4206		    evsel__prepare_tracepoint_event(pos, pevent))
4207			return -1;
4208	}
4209
4210	return 0;
4211}
4212#endif
4213
4214int perf_session__read_header(struct perf_session *session)
4215{
4216	struct perf_data *data = session->data;
4217	struct perf_header *header = &session->header;
4218	struct perf_file_header	f_header;
4219	struct perf_file_attr	f_attr;
4220	u64			f_id;
4221	int nr_attrs, nr_ids, i, j, err;
4222	int fd = perf_data__fd(data);
4223
4224	session->evlist = evlist__new();
4225	if (session->evlist == NULL)
4226		return -ENOMEM;
4227
4228	session->evlist->env = &header->env;
4229	session->machines.host.env = &header->env;
4230
4231	/*
4232	 * We can read 'pipe' data event from regular file,
4233	 * check for the pipe header regardless of source.
4234	 */
4235	err = perf_header__read_pipe(session);
4236	if (!err || perf_data__is_pipe(data)) {
4237		data->is_pipe = true;
4238		return err;
4239	}
4240
4241	if (perf_file_header__read(&f_header, header, fd) < 0)
4242		return -EINVAL;
4243
4244	if (header->needs_swap && data->in_place_update) {
4245		pr_err("In-place update not supported when byte-swapping is required\n");
4246		return -EINVAL;
4247	}
4248
4249	/*
4250	 * Sanity check that perf.data was written cleanly; data size is
4251	 * initialized to 0 and updated only if the on_exit function is run.
4252	 * If data size is still 0 then the file contains only partial
4253	 * information.  Just warn user and process it as much as it can.
4254	 */
4255	if (f_header.data.size == 0) {
4256		pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n"
4257			   "Was the 'perf record' command properly terminated?\n",
4258			   data->file.path);
4259	}
4260
4261	if (f_header.attr_size == 0) {
4262		pr_err("ERROR: The %s file's attr size field is 0 which is unexpected.\n"
4263		       "Was the 'perf record' command properly terminated?\n",
4264		       data->file.path);
4265		return -EINVAL;
4266	}
4267
4268	nr_attrs = f_header.attrs.size / f_header.attr_size;
4269	lseek(fd, f_header.attrs.offset, SEEK_SET);
4270
4271	for (i = 0; i < nr_attrs; i++) {
4272		struct evsel *evsel;
4273		off_t tmp;
4274
4275		if (read_attr(fd, header, &f_attr) < 0)
4276			goto out_errno;
4277
4278		if (header->needs_swap) {
4279			f_attr.ids.size   = bswap_64(f_attr.ids.size);
4280			f_attr.ids.offset = bswap_64(f_attr.ids.offset);
4281			perf_event__attr_swap(&f_attr.attr);
4282		}
4283
4284		tmp = lseek(fd, 0, SEEK_CUR);
4285		evsel = evsel__new(&f_attr.attr);
4286
4287		if (evsel == NULL)
4288			goto out_delete_evlist;
4289
4290		evsel->needs_swap = header->needs_swap;
4291		/*
4292		 * Do it before so that if perf_evsel__alloc_id fails, this
4293		 * entry gets purged too at evlist__delete().
4294		 */
4295		evlist__add(session->evlist, evsel);
4296
4297		nr_ids = f_attr.ids.size / sizeof(u64);
4298		/*
4299		 * We don't have the cpu and thread maps on the header, so
4300		 * for allocating the perf_sample_id table we fake 1 cpu and
4301		 * hattr->ids threads.
4302		 */
4303		if (perf_evsel__alloc_id(&evsel->core, 1, nr_ids))
4304			goto out_delete_evlist;
4305
4306		lseek(fd, f_attr.ids.offset, SEEK_SET);
4307
4308		for (j = 0; j < nr_ids; j++) {
4309			if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id)))
4310				goto out_errno;
4311
4312			perf_evlist__id_add(&session->evlist->core, &evsel->core, 0, j, f_id);
4313		}
4314
4315		lseek(fd, tmp, SEEK_SET);
4316	}
4317
4318#ifdef HAVE_LIBTRACEEVENT
4319	perf_header__process_sections(header, fd, &session->tevent,
4320				      perf_file_section__process);
4321
4322	if (evlist__prepare_tracepoint_events(session->evlist, session->tevent.pevent))
 
4323		goto out_delete_evlist;
4324#else
4325	perf_header__process_sections(header, fd, NULL, perf_file_section__process);
4326#endif
4327
4328	return 0;
4329out_errno:
4330	return -errno;
4331
4332out_delete_evlist:
4333	evlist__delete(session->evlist);
4334	session->evlist = NULL;
4335	return -ENOMEM;
4336}
4337
4338int perf_event__process_feature(struct perf_session *session,
4339				union perf_event *event)
4340{
4341	const struct perf_tool *tool = session->tool;
4342	struct feat_fd ff = { .fd = 0 };
4343	struct perf_record_header_feature *fe = (struct perf_record_header_feature *)event;
4344	int type = fe->header.type;
4345	u64 feat = fe->feat_id;
4346	int ret = 0;
4347
4348	if (type < 0 || type >= PERF_RECORD_HEADER_MAX) {
4349		pr_warning("invalid record type %d in pipe-mode\n", type);
4350		return 0;
4351	}
4352	if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) {
4353		pr_warning("invalid record type %d in pipe-mode\n", type);
4354		return -1;
4355	}
4356
4357	if (!feat_ops[feat].process)
4358		return 0;
4359
4360	ff.buf  = (void *)fe->data;
4361	ff.size = event->header.size - sizeof(*fe);
4362	ff.ph = &session->header;
4363
4364	if (feat_ops[feat].process(&ff, NULL)) {
4365		ret = -1;
4366		goto out;
4367	}
4368
4369	if (!feat_ops[feat].print || !tool->show_feat_hdr)
4370		goto out;
4371
4372	if (!feat_ops[feat].full_only ||
4373	    tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) {
4374		feat_ops[feat].print(&ff, stdout);
4375	} else {
4376		fprintf(stdout, "# %s info available, use -I to display\n",
4377			feat_ops[feat].name);
4378	}
4379out:
4380	free_event_desc(ff.events);
4381	return ret;
4382}
4383
4384size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp)
4385{
4386	struct perf_record_event_update *ev = &event->event_update;
 
 
4387	struct perf_cpu_map *map;
4388	size_t ret;
4389
4390	ret = fprintf(fp, "\n... id:    %" PRI_lu64 "\n", ev->id);
4391
4392	switch (ev->type) {
4393	case PERF_EVENT_UPDATE__SCALE:
4394		ret += fprintf(fp, "... scale: %f\n", ev->scale.scale);
 
4395		break;
4396	case PERF_EVENT_UPDATE__UNIT:
4397		ret += fprintf(fp, "... unit:  %s\n", ev->unit);
4398		break;
4399	case PERF_EVENT_UPDATE__NAME:
4400		ret += fprintf(fp, "... name:  %s\n", ev->name);
4401		break;
4402	case PERF_EVENT_UPDATE__CPUS:
 
4403		ret += fprintf(fp, "... ");
4404
4405		map = cpu_map__new_data(&ev->cpus.cpus);
4406		if (map) {
4407			ret += cpu_map__fprintf(map, fp);
4408			perf_cpu_map__put(map);
4409		} else
4410			ret += fprintf(fp, "failed to get cpus\n");
4411		break;
4412	default:
4413		ret += fprintf(fp, "... unknown type\n");
4414		break;
4415	}
4416
4417	return ret;
4418}
4419
4420int perf_event__process_attr(const struct perf_tool *tool __maybe_unused,
4421			     union perf_event *event,
4422			     struct evlist **pevlist)
4423{
4424	u32 i, n_ids;
4425	u64 *ids;
4426	struct evsel *evsel;
4427	struct evlist *evlist = *pevlist;
4428
4429	if (evlist == NULL) {
4430		*pevlist = evlist = evlist__new();
4431		if (evlist == NULL)
4432			return -ENOMEM;
4433	}
4434
4435	evsel = evsel__new(&event->attr.attr);
4436	if (evsel == NULL)
4437		return -ENOMEM;
4438
4439	evlist__add(evlist, evsel);
4440
4441	n_ids = event->header.size - sizeof(event->header) - event->attr.attr.size;
4442	n_ids = n_ids / sizeof(u64);
 
4443	/*
4444	 * We don't have the cpu and thread maps on the header, so
4445	 * for allocating the perf_sample_id table we fake 1 cpu and
4446	 * hattr->ids threads.
4447	 */
4448	if (perf_evsel__alloc_id(&evsel->core, 1, n_ids))
4449		return -ENOMEM;
4450
4451	ids = perf_record_header_attr_id(event);
4452	for (i = 0; i < n_ids; i++) {
4453		perf_evlist__id_add(&evlist->core, &evsel->core, 0, i, ids[i]);
4454	}
4455
4456	return 0;
4457}
4458
4459int perf_event__process_event_update(const struct perf_tool *tool __maybe_unused,
4460				     union perf_event *event,
4461				     struct evlist **pevlist)
4462{
4463	struct perf_record_event_update *ev = &event->event_update;
 
 
4464	struct evlist *evlist;
4465	struct evsel *evsel;
4466	struct perf_cpu_map *map;
4467
4468	if (dump_trace)
4469		perf_event__fprintf_event_update(event, stdout);
4470
4471	if (!pevlist || *pevlist == NULL)
4472		return -EINVAL;
4473
4474	evlist = *pevlist;
4475
4476	evsel = evlist__id2evsel(evlist, ev->id);
4477	if (evsel == NULL)
4478		return -EINVAL;
4479
4480	switch (ev->type) {
4481	case PERF_EVENT_UPDATE__UNIT:
4482		free((char *)evsel->unit);
4483		evsel->unit = strdup(ev->unit);
4484		break;
4485	case PERF_EVENT_UPDATE__NAME:
4486		free(evsel->name);
4487		evsel->name = strdup(ev->name);
4488		break;
4489	case PERF_EVENT_UPDATE__SCALE:
4490		evsel->scale = ev->scale.scale;
 
4491		break;
4492	case PERF_EVENT_UPDATE__CPUS:
4493		map = cpu_map__new_data(&ev->cpus.cpus);
4494		if (map) {
4495			perf_cpu_map__put(evsel->core.own_cpus);
 
4496			evsel->core.own_cpus = map;
4497		} else
4498			pr_err("failed to get event_update cpus\n");
4499	default:
4500		break;
4501	}
4502
4503	return 0;
4504}
4505
4506#ifdef HAVE_LIBTRACEEVENT
4507int perf_event__process_tracing_data(struct perf_session *session,
4508				     union perf_event *event)
4509{
4510	ssize_t size_read, padding, size = event->tracing_data.size;
4511	int fd = perf_data__fd(session->data);
 
4512	char buf[BUFSIZ];
4513
4514	/*
4515	 * The pipe fd is already in proper place and in any case
4516	 * we can't move it, and we'd screw the case where we read
4517	 * 'pipe' data from regular file. The trace_report reads
4518	 * data from 'fd' so we need to set it directly behind the
4519	 * event, where the tracing data starts.
4520	 */
4521	if (!perf_data__is_pipe(session->data)) {
4522		off_t offset = lseek(fd, 0, SEEK_CUR);
4523
4524		/* setup for reading amidst mmap */
4525		lseek(fd, offset + sizeof(struct perf_record_header_tracing_data),
4526		      SEEK_SET);
4527	}
4528
4529	size_read = trace_report(fd, &session->tevent, session->trace_event_repipe);
4530	padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read;
4531
4532	if (readn(fd, buf, padding) < 0) {
4533		pr_err("%s: reading input file", __func__);
4534		return -1;
4535	}
4536	if (session->trace_event_repipe) {
4537		int retw = write(STDOUT_FILENO, buf, padding);
4538		if (retw <= 0 || retw != padding) {
4539			pr_err("%s: repiping tracing data padding", __func__);
4540			return -1;
4541		}
4542	}
4543
4544	if (size_read + padding != size) {
4545		pr_err("%s: tracing data size mismatch", __func__);
4546		return -1;
4547	}
4548
4549	evlist__prepare_tracepoint_events(session->evlist, session->tevent.pevent);
 
4550
4551	return size_read + padding;
4552}
4553#endif
4554
4555int perf_event__process_build_id(struct perf_session *session,
4556				 union perf_event *event)
4557{
4558	__event_process_build_id(&event->build_id,
4559				 event->build_id.filename,
4560				 session);
4561	return 0;
4562}
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2#include <errno.h>
   3#include <inttypes.h>
   4#include "string2.h"
   5#include <sys/param.h>
   6#include <sys/types.h>
   7#include <byteswap.h>
   8#include <unistd.h>
 
   9#include <stdio.h>
  10#include <stdlib.h>
  11#include <linux/compiler.h>
  12#include <linux/list.h>
  13#include <linux/kernel.h>
  14#include <linux/bitops.h>
  15#include <linux/string.h>
  16#include <linux/stringify.h>
  17#include <linux/zalloc.h>
  18#include <sys/stat.h>
  19#include <sys/utsname.h>
  20#include <linux/time64.h>
  21#include <dirent.h>
 
  22#include <bpf/libbpf.h>
 
  23#include <perf/cpumap.h>
 
  24
  25#include "dso.h"
  26#include "evlist.h"
  27#include "evsel.h"
  28#include "util/evsel_fprintf.h"
  29#include "header.h"
  30#include "memswap.h"
  31#include "trace-event.h"
  32#include "session.h"
  33#include "symbol.h"
  34#include "debug.h"
  35#include "cpumap.h"
  36#include "pmu.h"
 
  37#include "vdso.h"
  38#include "strbuf.h"
  39#include "build-id.h"
  40#include "data.h"
  41#include <api/fs/fs.h>
  42#include "asm/bug.h"
  43#include "tool.h"
  44#include "time-utils.h"
  45#include "units.h"
  46#include "util/util.h" // perf_exe()
  47#include "cputopo.h"
  48#include "bpf-event.h"
 
 
  49
  50#include <linux/ctype.h>
  51#include <internal/lib.h>
  52
 
 
 
 
  53/*
  54 * magic2 = "PERFILE2"
  55 * must be a numerical value to let the endianness
  56 * determine the memory layout. That way we are able
  57 * to detect endianness when reading the perf.data file
  58 * back.
  59 *
  60 * we check for legacy (PERFFILE) format.
  61 */
  62static const char *__perf_magic1 = "PERFFILE";
  63static const u64 __perf_magic2    = 0x32454c4946524550ULL;
  64static const u64 __perf_magic2_sw = 0x50455246494c4532ULL;
  65
  66#define PERF_MAGIC	__perf_magic2
  67
  68const char perf_version_string[] = PERF_VERSION;
  69
  70struct perf_file_attr {
  71	struct perf_event_attr	attr;
  72	struct perf_file_section	ids;
  73};
  74
  75void perf_header__set_feat(struct perf_header *header, int feat)
  76{
  77	set_bit(feat, header->adds_features);
  78}
  79
  80void perf_header__clear_feat(struct perf_header *header, int feat)
  81{
  82	clear_bit(feat, header->adds_features);
  83}
  84
  85bool perf_header__has_feat(const struct perf_header *header, int feat)
  86{
  87	return test_bit(feat, header->adds_features);
  88}
  89
  90static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size)
  91{
  92	ssize_t ret = writen(ff->fd, buf, size);
  93
  94	if (ret != (ssize_t)size)
  95		return ret < 0 ? (int)ret : -1;
  96	return 0;
  97}
  98
  99static int __do_write_buf(struct feat_fd *ff,  const void *buf, size_t size)
 100{
 101	/* struct perf_event_header::size is u16 */
 102	const size_t max_size = 0xffff - sizeof(struct perf_event_header);
 103	size_t new_size = ff->size;
 104	void *addr;
 105
 106	if (size + ff->offset > max_size)
 107		return -E2BIG;
 108
 109	while (size > (new_size - ff->offset))
 110		new_size <<= 1;
 111	new_size = min(max_size, new_size);
 112
 113	if (ff->size < new_size) {
 114		addr = realloc(ff->buf, new_size);
 115		if (!addr)
 116			return -ENOMEM;
 117		ff->buf = addr;
 118		ff->size = new_size;
 119	}
 120
 121	memcpy(ff->buf + ff->offset, buf, size);
 122	ff->offset += size;
 123
 124	return 0;
 125}
 126
 127/* Return: 0 if succeded, -ERR if failed. */
 128int do_write(struct feat_fd *ff, const void *buf, size_t size)
 129{
 130	if (!ff->buf)
 131		return __do_write_fd(ff, buf, size);
 132	return __do_write_buf(ff, buf, size);
 133}
 134
 135/* Return: 0 if succeded, -ERR if failed. */
 136static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size)
 137{
 138	u64 *p = (u64 *) set;
 139	int i, ret;
 140
 141	ret = do_write(ff, &size, sizeof(size));
 142	if (ret < 0)
 143		return ret;
 144
 145	for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
 146		ret = do_write(ff, p + i, sizeof(*p));
 147		if (ret < 0)
 148			return ret;
 149	}
 150
 151	return 0;
 152}
 153
 154/* Return: 0 if succeded, -ERR if failed. */
 155int write_padded(struct feat_fd *ff, const void *bf,
 156		 size_t count, size_t count_aligned)
 157{
 158	static const char zero_buf[NAME_ALIGN];
 159	int err = do_write(ff, bf, count);
 160
 161	if (!err)
 162		err = do_write(ff, zero_buf, count_aligned - count);
 163
 164	return err;
 165}
 166
 167#define string_size(str)						\
 168	(PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32))
 169
 170/* Return: 0 if succeded, -ERR if failed. */
 171static int do_write_string(struct feat_fd *ff, const char *str)
 172{
 173	u32 len, olen;
 174	int ret;
 175
 176	olen = strlen(str) + 1;
 177	len = PERF_ALIGN(olen, NAME_ALIGN);
 178
 179	/* write len, incl. \0 */
 180	ret = do_write(ff, &len, sizeof(len));
 181	if (ret < 0)
 182		return ret;
 183
 184	return write_padded(ff, str, olen, len);
 185}
 186
 187static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size)
 188{
 189	ssize_t ret = readn(ff->fd, addr, size);
 190
 191	if (ret != size)
 192		return ret < 0 ? (int)ret : -1;
 193	return 0;
 194}
 195
 196static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size)
 197{
 198	if (size > (ssize_t)ff->size - ff->offset)
 199		return -1;
 200
 201	memcpy(addr, ff->buf + ff->offset, size);
 202	ff->offset += size;
 203
 204	return 0;
 205
 206}
 207
 208static int __do_read(struct feat_fd *ff, void *addr, ssize_t size)
 209{
 210	if (!ff->buf)
 211		return __do_read_fd(ff, addr, size);
 212	return __do_read_buf(ff, addr, size);
 213}
 214
 215static int do_read_u32(struct feat_fd *ff, u32 *addr)
 216{
 217	int ret;
 218
 219	ret = __do_read(ff, addr, sizeof(*addr));
 220	if (ret)
 221		return ret;
 222
 223	if (ff->ph->needs_swap)
 224		*addr = bswap_32(*addr);
 225	return 0;
 226}
 227
 228static int do_read_u64(struct feat_fd *ff, u64 *addr)
 229{
 230	int ret;
 231
 232	ret = __do_read(ff, addr, sizeof(*addr));
 233	if (ret)
 234		return ret;
 235
 236	if (ff->ph->needs_swap)
 237		*addr = bswap_64(*addr);
 238	return 0;
 239}
 240
 241static char *do_read_string(struct feat_fd *ff)
 242{
 243	u32 len;
 244	char *buf;
 245
 246	if (do_read_u32(ff, &len))
 247		return NULL;
 248
 249	buf = malloc(len);
 250	if (!buf)
 251		return NULL;
 252
 253	if (!__do_read(ff, buf, len)) {
 254		/*
 255		 * strings are padded by zeroes
 256		 * thus the actual strlen of buf
 257		 * may be less than len
 258		 */
 259		return buf;
 260	}
 261
 262	free(buf);
 263	return NULL;
 264}
 265
 266/* Return: 0 if succeded, -ERR if failed. */
 267static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize)
 268{
 269	unsigned long *set;
 270	u64 size, *p;
 271	int i, ret;
 272
 273	ret = do_read_u64(ff, &size);
 274	if (ret)
 275		return ret;
 276
 277	set = bitmap_alloc(size);
 278	if (!set)
 279		return -ENOMEM;
 280
 281	p = (u64 *) set;
 282
 283	for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
 284		ret = do_read_u64(ff, p + i);
 285		if (ret < 0) {
 286			free(set);
 287			return ret;
 288		}
 289	}
 290
 291	*pset  = set;
 292	*psize = size;
 293	return 0;
 294}
 295
 
 296static int write_tracing_data(struct feat_fd *ff,
 297			      struct evlist *evlist)
 298{
 299	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
 300		return -1;
 301
 302	return read_tracing_data(ff->fd, &evlist->core.entries);
 303}
 
 304
 305static int write_build_id(struct feat_fd *ff,
 306			  struct evlist *evlist __maybe_unused)
 307{
 308	struct perf_session *session;
 309	int err;
 310
 311	session = container_of(ff->ph, struct perf_session, header);
 312
 313	if (!perf_session__read_build_ids(session, true))
 314		return -1;
 315
 316	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
 317		return -1;
 318
 319	err = perf_session__write_buildid_table(session, ff);
 320	if (err < 0) {
 321		pr_debug("failed to write buildid table\n");
 322		return err;
 323	}
 324	perf_session__cache_build_ids(session);
 325
 326	return 0;
 327}
 328
 329static int write_hostname(struct feat_fd *ff,
 330			  struct evlist *evlist __maybe_unused)
 331{
 332	struct utsname uts;
 333	int ret;
 334
 335	ret = uname(&uts);
 336	if (ret < 0)
 337		return -1;
 338
 339	return do_write_string(ff, uts.nodename);
 340}
 341
 342static int write_osrelease(struct feat_fd *ff,
 343			   struct evlist *evlist __maybe_unused)
 344{
 345	struct utsname uts;
 346	int ret;
 347
 348	ret = uname(&uts);
 349	if (ret < 0)
 350		return -1;
 351
 352	return do_write_string(ff, uts.release);
 353}
 354
 355static int write_arch(struct feat_fd *ff,
 356		      struct evlist *evlist __maybe_unused)
 357{
 358	struct utsname uts;
 359	int ret;
 360
 361	ret = uname(&uts);
 362	if (ret < 0)
 363		return -1;
 364
 365	return do_write_string(ff, uts.machine);
 366}
 367
 368static int write_version(struct feat_fd *ff,
 369			 struct evlist *evlist __maybe_unused)
 370{
 371	return do_write_string(ff, perf_version_string);
 372}
 373
 374static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc)
 375{
 376	FILE *file;
 377	char *buf = NULL;
 378	char *s, *p;
 379	const char *search = cpuinfo_proc;
 380	size_t len = 0;
 381	int ret = -1;
 382
 383	if (!search)
 384		return -1;
 385
 386	file = fopen("/proc/cpuinfo", "r");
 387	if (!file)
 388		return -1;
 389
 390	while (getline(&buf, &len, file) > 0) {
 391		ret = strncmp(buf, search, strlen(search));
 392		if (!ret)
 393			break;
 394	}
 395
 396	if (ret) {
 397		ret = -1;
 398		goto done;
 399	}
 400
 401	s = buf;
 402
 403	p = strchr(buf, ':');
 404	if (p && *(p+1) == ' ' && *(p+2))
 405		s = p + 2;
 406	p = strchr(s, '\n');
 407	if (p)
 408		*p = '\0';
 409
 410	/* squash extra space characters (branding string) */
 411	p = s;
 412	while (*p) {
 413		if (isspace(*p)) {
 414			char *r = p + 1;
 415			char *q = skip_spaces(r);
 416			*p = ' ';
 417			if (q != (p+1))
 418				while ((*r++ = *q++));
 419		}
 420		p++;
 421	}
 422	ret = do_write_string(ff, s);
 423done:
 424	free(buf);
 425	fclose(file);
 426	return ret;
 427}
 428
 429static int write_cpudesc(struct feat_fd *ff,
 430		       struct evlist *evlist __maybe_unused)
 431{
 432#if defined(__powerpc__) || defined(__hppa__) || defined(__sparc__)
 433#define CPUINFO_PROC	{ "cpu", }
 434#elif defined(__s390__)
 435#define CPUINFO_PROC	{ "vendor_id", }
 436#elif defined(__sh__)
 437#define CPUINFO_PROC	{ "cpu type", }
 438#elif defined(__alpha__) || defined(__mips__)
 439#define CPUINFO_PROC	{ "cpu model", }
 440#elif defined(__arm__)
 441#define CPUINFO_PROC	{ "model name", "Processor", }
 442#elif defined(__arc__)
 443#define CPUINFO_PROC	{ "Processor", }
 444#elif defined(__xtensa__)
 445#define CPUINFO_PROC	{ "core ID", }
 
 
 446#else
 447#define CPUINFO_PROC	{ "model name", }
 448#endif
 449	const char *cpuinfo_procs[] = CPUINFO_PROC;
 450#undef CPUINFO_PROC
 451	unsigned int i;
 452
 453	for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) {
 454		int ret;
 455		ret = __write_cpudesc(ff, cpuinfo_procs[i]);
 456		if (ret >= 0)
 457			return ret;
 458	}
 459	return -1;
 460}
 461
 462
 463static int write_nrcpus(struct feat_fd *ff,
 464			struct evlist *evlist __maybe_unused)
 465{
 466	long nr;
 467	u32 nrc, nra;
 468	int ret;
 469
 470	nrc = cpu__max_present_cpu();
 471
 472	nr = sysconf(_SC_NPROCESSORS_ONLN);
 473	if (nr < 0)
 474		return -1;
 475
 476	nra = (u32)(nr & UINT_MAX);
 477
 478	ret = do_write(ff, &nrc, sizeof(nrc));
 479	if (ret < 0)
 480		return ret;
 481
 482	return do_write(ff, &nra, sizeof(nra));
 483}
 484
 485static int write_event_desc(struct feat_fd *ff,
 486			    struct evlist *evlist)
 487{
 488	struct evsel *evsel;
 489	u32 nre, nri, sz;
 490	int ret;
 491
 492	nre = evlist->core.nr_entries;
 493
 494	/*
 495	 * write number of events
 496	 */
 497	ret = do_write(ff, &nre, sizeof(nre));
 498	if (ret < 0)
 499		return ret;
 500
 501	/*
 502	 * size of perf_event_attr struct
 503	 */
 504	sz = (u32)sizeof(evsel->core.attr);
 505	ret = do_write(ff, &sz, sizeof(sz));
 506	if (ret < 0)
 507		return ret;
 508
 509	evlist__for_each_entry(evlist, evsel) {
 510		ret = do_write(ff, &evsel->core.attr, sz);
 511		if (ret < 0)
 512			return ret;
 513		/*
 514		 * write number of unique id per event
 515		 * there is one id per instance of an event
 516		 *
 517		 * copy into an nri to be independent of the
 518		 * type of ids,
 519		 */
 520		nri = evsel->core.ids;
 521		ret = do_write(ff, &nri, sizeof(nri));
 522		if (ret < 0)
 523			return ret;
 524
 525		/*
 526		 * write event string as passed on cmdline
 527		 */
 528		ret = do_write_string(ff, perf_evsel__name(evsel));
 529		if (ret < 0)
 530			return ret;
 531		/*
 532		 * write unique ids for this event
 533		 */
 534		ret = do_write(ff, evsel->core.id, evsel->core.ids * sizeof(u64));
 535		if (ret < 0)
 536			return ret;
 537	}
 538	return 0;
 539}
 540
 541static int write_cmdline(struct feat_fd *ff,
 542			 struct evlist *evlist __maybe_unused)
 543{
 544	char pbuf[MAXPATHLEN], *buf;
 545	int i, ret, n;
 546
 547	/* actual path to perf binary */
 548	buf = perf_exe(pbuf, MAXPATHLEN);
 549
 550	/* account for binary path */
 551	n = perf_env.nr_cmdline + 1;
 552
 553	ret = do_write(ff, &n, sizeof(n));
 554	if (ret < 0)
 555		return ret;
 556
 557	ret = do_write_string(ff, buf);
 558	if (ret < 0)
 559		return ret;
 560
 561	for (i = 0 ; i < perf_env.nr_cmdline; i++) {
 562		ret = do_write_string(ff, perf_env.cmdline_argv[i]);
 563		if (ret < 0)
 564			return ret;
 565	}
 566	return 0;
 567}
 568
 569
 570static int write_cpu_topology(struct feat_fd *ff,
 571			      struct evlist *evlist __maybe_unused)
 572{
 573	struct cpu_topology *tp;
 574	u32 i;
 575	int ret, j;
 576
 577	tp = cpu_topology__new();
 578	if (!tp)
 579		return -1;
 580
 581	ret = do_write(ff, &tp->core_sib, sizeof(tp->core_sib));
 582	if (ret < 0)
 583		goto done;
 584
 585	for (i = 0; i < tp->core_sib; i++) {
 586		ret = do_write_string(ff, tp->core_siblings[i]);
 587		if (ret < 0)
 588			goto done;
 589	}
 590	ret = do_write(ff, &tp->thread_sib, sizeof(tp->thread_sib));
 591	if (ret < 0)
 592		goto done;
 593
 594	for (i = 0; i < tp->thread_sib; i++) {
 595		ret = do_write_string(ff, tp->thread_siblings[i]);
 596		if (ret < 0)
 597			break;
 598	}
 599
 600	ret = perf_env__read_cpu_topology_map(&perf_env);
 601	if (ret < 0)
 602		goto done;
 603
 604	for (j = 0; j < perf_env.nr_cpus_avail; j++) {
 605		ret = do_write(ff, &perf_env.cpu[j].core_id,
 606			       sizeof(perf_env.cpu[j].core_id));
 607		if (ret < 0)
 608			return ret;
 609		ret = do_write(ff, &perf_env.cpu[j].socket_id,
 610			       sizeof(perf_env.cpu[j].socket_id));
 611		if (ret < 0)
 612			return ret;
 613	}
 614
 615	if (!tp->die_sib)
 616		goto done;
 617
 618	ret = do_write(ff, &tp->die_sib, sizeof(tp->die_sib));
 619	if (ret < 0)
 620		goto done;
 621
 622	for (i = 0; i < tp->die_sib; i++) {
 623		ret = do_write_string(ff, tp->die_siblings[i]);
 624		if (ret < 0)
 625			goto done;
 626	}
 627
 628	for (j = 0; j < perf_env.nr_cpus_avail; j++) {
 629		ret = do_write(ff, &perf_env.cpu[j].die_id,
 630			       sizeof(perf_env.cpu[j].die_id));
 631		if (ret < 0)
 632			return ret;
 633	}
 634
 635done:
 636	cpu_topology__delete(tp);
 637	return ret;
 638}
 639
 640
 641
 642static int write_total_mem(struct feat_fd *ff,
 643			   struct evlist *evlist __maybe_unused)
 644{
 645	char *buf = NULL;
 646	FILE *fp;
 647	size_t len = 0;
 648	int ret = -1, n;
 649	uint64_t mem;
 650
 651	fp = fopen("/proc/meminfo", "r");
 652	if (!fp)
 653		return -1;
 654
 655	while (getline(&buf, &len, fp) > 0) {
 656		ret = strncmp(buf, "MemTotal:", 9);
 657		if (!ret)
 658			break;
 659	}
 660	if (!ret) {
 661		n = sscanf(buf, "%*s %"PRIu64, &mem);
 662		if (n == 1)
 663			ret = do_write(ff, &mem, sizeof(mem));
 664	} else
 665		ret = -1;
 666	free(buf);
 667	fclose(fp);
 668	return ret;
 669}
 670
 671static int write_numa_topology(struct feat_fd *ff,
 672			       struct evlist *evlist __maybe_unused)
 673{
 674	struct numa_topology *tp;
 675	int ret = -1;
 676	u32 i;
 677
 678	tp = numa_topology__new();
 679	if (!tp)
 680		return -ENOMEM;
 681
 682	ret = do_write(ff, &tp->nr, sizeof(u32));
 683	if (ret < 0)
 684		goto err;
 685
 686	for (i = 0; i < tp->nr; i++) {
 687		struct numa_topology_node *n = &tp->nodes[i];
 688
 689		ret = do_write(ff, &n->node, sizeof(u32));
 690		if (ret < 0)
 691			goto err;
 692
 693		ret = do_write(ff, &n->mem_total, sizeof(u64));
 694		if (ret)
 695			goto err;
 696
 697		ret = do_write(ff, &n->mem_free, sizeof(u64));
 698		if (ret)
 699			goto err;
 700
 701		ret = do_write_string(ff, n->cpus);
 702		if (ret < 0)
 703			goto err;
 704	}
 705
 706	ret = 0;
 707
 708err:
 709	numa_topology__delete(tp);
 710	return ret;
 711}
 712
 713/*
 714 * File format:
 715 *
 716 * struct pmu_mappings {
 717 *	u32	pmu_num;
 718 *	struct pmu_map {
 719 *		u32	type;
 720 *		char	name[];
 721 *	}[pmu_num];
 722 * };
 723 */
 724
 725static int write_pmu_mappings(struct feat_fd *ff,
 726			      struct evlist *evlist __maybe_unused)
 727{
 728	struct perf_pmu *pmu = NULL;
 729	u32 pmu_num = 0;
 730	int ret;
 731
 732	/*
 733	 * Do a first pass to count number of pmu to avoid lseek so this
 734	 * works in pipe mode as well.
 735	 */
 736	while ((pmu = perf_pmu__scan(pmu))) {
 737		if (!pmu->name)
 738			continue;
 739		pmu_num++;
 740	}
 741
 742	ret = do_write(ff, &pmu_num, sizeof(pmu_num));
 743	if (ret < 0)
 744		return ret;
 745
 746	while ((pmu = perf_pmu__scan(pmu))) {
 747		if (!pmu->name)
 748			continue;
 749
 750		ret = do_write(ff, &pmu->type, sizeof(pmu->type));
 751		if (ret < 0)
 752			return ret;
 753
 754		ret = do_write_string(ff, pmu->name);
 755		if (ret < 0)
 756			return ret;
 757	}
 758
 759	return 0;
 760}
 761
 762/*
 763 * File format:
 764 *
 765 * struct group_descs {
 766 *	u32	nr_groups;
 767 *	struct group_desc {
 768 *		char	name[];
 769 *		u32	leader_idx;
 770 *		u32	nr_members;
 771 *	}[nr_groups];
 772 * };
 773 */
 774static int write_group_desc(struct feat_fd *ff,
 775			    struct evlist *evlist)
 776{
 777	u32 nr_groups = evlist->nr_groups;
 778	struct evsel *evsel;
 779	int ret;
 780
 781	ret = do_write(ff, &nr_groups, sizeof(nr_groups));
 782	if (ret < 0)
 783		return ret;
 784
 785	evlist__for_each_entry(evlist, evsel) {
 786		if (perf_evsel__is_group_leader(evsel) &&
 787		    evsel->core.nr_members > 1) {
 788			const char *name = evsel->group_name ?: "{anon_group}";
 789			u32 leader_idx = evsel->idx;
 790			u32 nr_members = evsel->core.nr_members;
 791
 792			ret = do_write_string(ff, name);
 793			if (ret < 0)
 794				return ret;
 795
 796			ret = do_write(ff, &leader_idx, sizeof(leader_idx));
 797			if (ret < 0)
 798				return ret;
 799
 800			ret = do_write(ff, &nr_members, sizeof(nr_members));
 801			if (ret < 0)
 802				return ret;
 803		}
 804	}
 805	return 0;
 806}
 807
 808/*
 809 * Return the CPU id as a raw string.
 810 *
 811 * Each architecture should provide a more precise id string that
 812 * can be use to match the architecture's "mapfile".
 813 */
 814char * __weak get_cpuid_str(struct perf_pmu *pmu __maybe_unused)
 815{
 816	return NULL;
 817}
 818
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 819/* Return zero when the cpuid from the mapfile.csv matches the
 820 * cpuid string generated on this platform.
 821 * Otherwise return non-zero.
 822 */
 823int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid)
 824{
 825	regex_t re;
 826	regmatch_t pmatch[1];
 827	int match;
 828
 829	if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) {
 830		/* Warn unable to generate match particular string. */
 831		pr_info("Invalid regular expression %s\n", mapcpuid);
 832		return 1;
 833	}
 834
 835	match = !regexec(&re, cpuid, 1, pmatch, 0);
 836	regfree(&re);
 837	if (match) {
 838		size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so);
 839
 840		/* Verify the entire string matched. */
 841		if (match_len == strlen(cpuid))
 842			return 0;
 843	}
 844	return 1;
 845}
 846
 847/*
 848 * default get_cpuid(): nothing gets recorded
 849 * actual implementation must be in arch/$(SRCARCH)/util/header.c
 850 */
 851int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused)
 
 852{
 853	return -1;
 854}
 855
 856static int write_cpuid(struct feat_fd *ff,
 857		       struct evlist *evlist __maybe_unused)
 858{
 
 859	char buffer[64];
 860	int ret;
 861
 862	ret = get_cpuid(buffer, sizeof(buffer));
 863	if (ret)
 864		return -1;
 865
 866	return do_write_string(ff, buffer);
 867}
 868
 869static int write_branch_stack(struct feat_fd *ff __maybe_unused,
 870			      struct evlist *evlist __maybe_unused)
 871{
 872	return 0;
 873}
 874
 875static int write_auxtrace(struct feat_fd *ff,
 876			  struct evlist *evlist __maybe_unused)
 877{
 878	struct perf_session *session;
 879	int err;
 880
 881	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
 882		return -1;
 883
 884	session = container_of(ff->ph, struct perf_session, header);
 885
 886	err = auxtrace_index__write(ff->fd, &session->auxtrace_index);
 887	if (err < 0)
 888		pr_err("Failed to write auxtrace index\n");
 889	return err;
 890}
 891
 892static int write_clockid(struct feat_fd *ff,
 893			 struct evlist *evlist __maybe_unused)
 894{
 895	return do_write(ff, &ff->ph->env.clockid_res_ns,
 896			sizeof(ff->ph->env.clockid_res_ns));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 897}
 898
 899static int write_dir_format(struct feat_fd *ff,
 900			    struct evlist *evlist __maybe_unused)
 901{
 902	struct perf_session *session;
 903	struct perf_data *data;
 904
 905	session = container_of(ff->ph, struct perf_session, header);
 906	data = session->data;
 907
 908	if (WARN_ON(!perf_data__is_dir(data)))
 909		return -1;
 910
 911	return do_write(ff, &data->dir.version, sizeof(data->dir.version));
 912}
 913
 914#ifdef HAVE_LIBBPF_SUPPORT
 915static int write_bpf_prog_info(struct feat_fd *ff,
 916			       struct evlist *evlist __maybe_unused)
 917{
 918	struct perf_env *env = &ff->ph->env;
 919	struct rb_root *root;
 920	struct rb_node *next;
 921	int ret;
 922
 923	down_read(&env->bpf_progs.lock);
 924
 925	ret = do_write(ff, &env->bpf_progs.infos_cnt,
 926		       sizeof(env->bpf_progs.infos_cnt));
 927	if (ret < 0)
 928		goto out;
 929
 930	root = &env->bpf_progs.infos;
 931	next = rb_first(root);
 932	while (next) {
 933		struct bpf_prog_info_node *node;
 934		size_t len;
 935
 936		node = rb_entry(next, struct bpf_prog_info_node, rb_node);
 937		next = rb_next(&node->rb_node);
 938		len = sizeof(struct bpf_prog_info_linear) +
 939			node->info_linear->data_len;
 940
 941		/* before writing to file, translate address to offset */
 942		bpf_program__bpil_addr_to_offs(node->info_linear);
 943		ret = do_write(ff, node->info_linear, len);
 944		/*
 945		 * translate back to address even when do_write() fails,
 946		 * so that this function never changes the data.
 947		 */
 948		bpf_program__bpil_offs_to_addr(node->info_linear);
 949		if (ret < 0)
 950			goto out;
 951	}
 952out:
 953	up_read(&env->bpf_progs.lock);
 954	return ret;
 955}
 956#else // HAVE_LIBBPF_SUPPORT
 957static int write_bpf_prog_info(struct feat_fd *ff __maybe_unused,
 958			       struct evlist *evlist __maybe_unused)
 959{
 960	return 0;
 961}
 962#endif // HAVE_LIBBPF_SUPPORT
 963
 964static int write_bpf_btf(struct feat_fd *ff,
 965			 struct evlist *evlist __maybe_unused)
 966{
 967	struct perf_env *env = &ff->ph->env;
 968	struct rb_root *root;
 969	struct rb_node *next;
 970	int ret;
 971
 972	down_read(&env->bpf_progs.lock);
 973
 974	ret = do_write(ff, &env->bpf_progs.btfs_cnt,
 975		       sizeof(env->bpf_progs.btfs_cnt));
 976
 977	if (ret < 0)
 978		goto out;
 979
 980	root = &env->bpf_progs.btfs;
 981	next = rb_first(root);
 982	while (next) {
 983		struct btf_node *node;
 984
 985		node = rb_entry(next, struct btf_node, rb_node);
 986		next = rb_next(&node->rb_node);
 987		ret = do_write(ff, &node->id,
 988			       sizeof(u32) * 2 + node->data_size);
 989		if (ret < 0)
 990			goto out;
 991	}
 992out:
 993	up_read(&env->bpf_progs.lock);
 994	return ret;
 995}
 
 996
 997static int cpu_cache_level__sort(const void *a, const void *b)
 998{
 999	struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a;
1000	struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b;
1001
1002	return cache_a->level - cache_b->level;
1003}
1004
1005static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b)
1006{
1007	if (a->level != b->level)
1008		return false;
1009
1010	if (a->line_size != b->line_size)
1011		return false;
1012
1013	if (a->sets != b->sets)
1014		return false;
1015
1016	if (a->ways != b->ways)
1017		return false;
1018
1019	if (strcmp(a->type, b->type))
1020		return false;
1021
1022	if (strcmp(a->size, b->size))
1023		return false;
1024
1025	if (strcmp(a->map, b->map))
1026		return false;
1027
1028	return true;
1029}
1030
1031static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level)
1032{
1033	char path[PATH_MAX], file[PATH_MAX];
1034	struct stat st;
1035	size_t len;
1036
1037	scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level);
1038	scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path);
1039
1040	if (stat(file, &st))
1041		return 1;
1042
1043	scnprintf(file, PATH_MAX, "%s/level", path);
1044	if (sysfs__read_int(file, (int *) &cache->level))
1045		return -1;
1046
1047	scnprintf(file, PATH_MAX, "%s/coherency_line_size", path);
1048	if (sysfs__read_int(file, (int *) &cache->line_size))
1049		return -1;
1050
1051	scnprintf(file, PATH_MAX, "%s/number_of_sets", path);
1052	if (sysfs__read_int(file, (int *) &cache->sets))
1053		return -1;
1054
1055	scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path);
1056	if (sysfs__read_int(file, (int *) &cache->ways))
1057		return -1;
1058
1059	scnprintf(file, PATH_MAX, "%s/type", path);
1060	if (sysfs__read_str(file, &cache->type, &len))
1061		return -1;
1062
1063	cache->type[len] = 0;
1064	cache->type = strim(cache->type);
1065
1066	scnprintf(file, PATH_MAX, "%s/size", path);
1067	if (sysfs__read_str(file, &cache->size, &len)) {
1068		zfree(&cache->type);
1069		return -1;
1070	}
1071
1072	cache->size[len] = 0;
1073	cache->size = strim(cache->size);
1074
1075	scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path);
1076	if (sysfs__read_str(file, &cache->map, &len)) {
1077		zfree(&cache->size);
1078		zfree(&cache->type);
1079		return -1;
1080	}
1081
1082	cache->map[len] = 0;
1083	cache->map = strim(cache->map);
1084	return 0;
1085}
1086
1087static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c)
1088{
1089	fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map);
1090}
1091
1092static int build_caches(struct cpu_cache_level caches[], u32 size, u32 *cntp)
 
 
 
 
 
 
1093{
1094	u32 i, cnt = 0;
1095	long ncpus;
1096	u32 nr, cpu;
1097	u16 level;
1098
1099	ncpus = sysconf(_SC_NPROCESSORS_CONF);
1100	if (ncpus < 0)
1101		return -1;
 
1102
1103	nr = (u32)(ncpus & UINT_MAX);
 
 
1104
1105	for (cpu = 0; cpu < nr; cpu++) {
1106		for (level = 0; level < 10; level++) {
1107			struct cpu_cache_level c;
1108			int err;
1109
1110			err = cpu_cache_level__read(&c, cpu, level);
1111			if (err < 0)
1112				return err;
1113
1114			if (err == 1)
 
1115				break;
 
1116
1117			for (i = 0; i < cnt; i++) {
1118				if (cpu_cache_level__cmp(&c, &caches[i]))
1119					break;
1120			}
 
 
 
 
 
 
 
 
 
 
 
1121
1122			if (i == cnt)
1123				caches[cnt++] = c;
1124			else
1125				cpu_cache_level__free(&c);
1126
1127			if (WARN_ONCE(cnt == size, "way too many cpu caches.."))
1128				goto out;
1129		}
1130	}
1131 out:
1132	*cntp = cnt;
1133	return 0;
1134}
1135
1136#define MAX_CACHE_LVL 4
1137
1138static int write_cache(struct feat_fd *ff,
1139		       struct evlist *evlist __maybe_unused)
1140{
1141	u32 max_caches = cpu__max_cpu() * MAX_CACHE_LVL;
1142	struct cpu_cache_level caches[max_caches];
1143	u32 cnt = 0, i, version = 1;
1144	int ret;
1145
1146	ret = build_caches(caches, max_caches, &cnt);
1147	if (ret)
1148		goto out;
1149
1150	qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort);
1151
1152	ret = do_write(ff, &version, sizeof(u32));
1153	if (ret < 0)
1154		goto out;
1155
1156	ret = do_write(ff, &cnt, sizeof(u32));
1157	if (ret < 0)
1158		goto out;
1159
1160	for (i = 0; i < cnt; i++) {
1161		struct cpu_cache_level *c = &caches[i];
1162
1163		#define _W(v)					\
1164			ret = do_write(ff, &c->v, sizeof(u32));	\
1165			if (ret < 0)				\
1166				goto out;
1167
1168		_W(level)
1169		_W(line_size)
1170		_W(sets)
1171		_W(ways)
1172		#undef _W
1173
1174		#define _W(v)						\
1175			ret = do_write_string(ff, (const char *) c->v);	\
1176			if (ret < 0)					\
1177				goto out;
1178
1179		_W(type)
1180		_W(size)
1181		_W(map)
1182		#undef _W
1183	}
1184
1185out:
1186	for (i = 0; i < cnt; i++)
1187		cpu_cache_level__free(&caches[i]);
1188	return ret;
1189}
1190
1191static int write_stat(struct feat_fd *ff __maybe_unused,
1192		      struct evlist *evlist __maybe_unused)
1193{
1194	return 0;
1195}
1196
1197static int write_sample_time(struct feat_fd *ff,
1198			     struct evlist *evlist)
1199{
1200	int ret;
1201
1202	ret = do_write(ff, &evlist->first_sample_time,
1203		       sizeof(evlist->first_sample_time));
1204	if (ret < 0)
1205		return ret;
1206
1207	return do_write(ff, &evlist->last_sample_time,
1208			sizeof(evlist->last_sample_time));
1209}
1210
1211
1212static int memory_node__read(struct memory_node *n, unsigned long idx)
1213{
1214	unsigned int phys, size = 0;
1215	char path[PATH_MAX];
1216	struct dirent *ent;
1217	DIR *dir;
1218
1219#define for_each_memory(mem, dir)					\
1220	while ((ent = readdir(dir)))					\
1221		if (strcmp(ent->d_name, ".") &&				\
1222		    strcmp(ent->d_name, "..") &&			\
1223		    sscanf(ent->d_name, "memory%u", &mem) == 1)
1224
1225	scnprintf(path, PATH_MAX,
1226		  "%s/devices/system/node/node%lu",
1227		  sysfs__mountpoint(), idx);
1228
1229	dir = opendir(path);
1230	if (!dir) {
1231		pr_warning("failed: cant' open memory sysfs data\n");
1232		return -1;
1233	}
1234
1235	for_each_memory(phys, dir) {
1236		size = max(phys, size);
1237	}
1238
1239	size++;
1240
1241	n->set = bitmap_alloc(size);
1242	if (!n->set) {
1243		closedir(dir);
1244		return -ENOMEM;
1245	}
1246
1247	n->node = idx;
1248	n->size = size;
1249
1250	rewinddir(dir);
1251
1252	for_each_memory(phys, dir) {
1253		set_bit(phys, n->set);
1254	}
1255
1256	closedir(dir);
1257	return 0;
1258}
1259
 
 
 
 
 
 
 
 
1260static int memory_node__sort(const void *a, const void *b)
1261{
1262	const struct memory_node *na = a;
1263	const struct memory_node *nb = b;
1264
1265	return na->node - nb->node;
1266}
1267
1268static int build_mem_topology(struct memory_node *nodes, u64 size, u64 *cntp)
1269{
1270	char path[PATH_MAX];
1271	struct dirent *ent;
1272	DIR *dir;
1273	u64 cnt = 0;
1274	int ret = 0;
 
 
1275
1276	scnprintf(path, PATH_MAX, "%s/devices/system/node/",
1277		  sysfs__mountpoint());
1278
1279	dir = opendir(path);
1280	if (!dir) {
1281		pr_debug2("%s: could't read %s, does this arch have topology information?\n",
1282			  __func__, path);
1283		return -1;
1284	}
1285
1286	while (!ret && (ent = readdir(dir))) {
1287		unsigned int idx;
1288		int r;
1289
1290		if (!strcmp(ent->d_name, ".") ||
1291		    !strcmp(ent->d_name, ".."))
1292			continue;
1293
1294		r = sscanf(ent->d_name, "node%u", &idx);
1295		if (r != 1)
1296			continue;
1297
1298		if (WARN_ONCE(cnt >= size,
1299			"failed to write MEM_TOPOLOGY, way too many nodes\n")) {
1300			closedir(dir);
1301			return -1;
 
 
 
 
 
 
 
1302		}
1303
1304		ret = memory_node__read(&nodes[cnt++], idx);
 
1305	}
1306
1307	*cntp = cnt;
1308	closedir(dir);
1309
1310	if (!ret)
 
1311		qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort);
 
 
1312
1313	return ret;
1314}
1315
1316#define MAX_MEMORY_NODES 2000
1317
1318/*
1319 * The MEM_TOPOLOGY holds physical memory map for every
1320 * node in system. The format of data is as follows:
1321 *
1322 *  0 - version          | for future changes
1323 *  8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes
1324 * 16 - count            | number of nodes
1325 *
1326 * For each node we store map of physical indexes for
1327 * each node:
1328 *
1329 * 32 - node id          | node index
1330 * 40 - size             | size of bitmap
1331 * 48 - bitmap           | bitmap of memory indexes that belongs to node
1332 */
1333static int write_mem_topology(struct feat_fd *ff __maybe_unused,
1334			      struct evlist *evlist __maybe_unused)
1335{
1336	static struct memory_node nodes[MAX_MEMORY_NODES];
1337	u64 bsize, version = 1, i, nr;
1338	int ret;
1339
1340	ret = sysfs__read_xll("devices/system/memory/block_size_bytes",
1341			      (unsigned long long *) &bsize);
1342	if (ret)
1343		return ret;
1344
1345	ret = build_mem_topology(&nodes[0], MAX_MEMORY_NODES, &nr);
1346	if (ret)
1347		return ret;
1348
1349	ret = do_write(ff, &version, sizeof(version));
1350	if (ret < 0)
1351		goto out;
1352
1353	ret = do_write(ff, &bsize, sizeof(bsize));
1354	if (ret < 0)
1355		goto out;
1356
1357	ret = do_write(ff, &nr, sizeof(nr));
1358	if (ret < 0)
1359		goto out;
1360
1361	for (i = 0; i < nr; i++) {
1362		struct memory_node *n = &nodes[i];
1363
1364		#define _W(v)						\
1365			ret = do_write(ff, &n->v, sizeof(n->v));	\
1366			if (ret < 0)					\
1367				goto out;
1368
1369		_W(node)
1370		_W(size)
1371
1372		#undef _W
1373
1374		ret = do_write_bitmap(ff, n->set, n->size);
1375		if (ret < 0)
1376			goto out;
1377	}
1378
1379out:
 
1380	return ret;
1381}
1382
1383static int write_compressed(struct feat_fd *ff __maybe_unused,
1384			    struct evlist *evlist __maybe_unused)
1385{
1386	int ret;
1387
1388	ret = do_write(ff, &(ff->ph->env.comp_ver), sizeof(ff->ph->env.comp_ver));
1389	if (ret)
1390		return ret;
1391
1392	ret = do_write(ff, &(ff->ph->env.comp_type), sizeof(ff->ph->env.comp_type));
1393	if (ret)
1394		return ret;
1395
1396	ret = do_write(ff, &(ff->ph->env.comp_level), sizeof(ff->ph->env.comp_level));
1397	if (ret)
1398		return ret;
1399
1400	ret = do_write(ff, &(ff->ph->env.comp_ratio), sizeof(ff->ph->env.comp_ratio));
1401	if (ret)
1402		return ret;
1403
1404	return do_write(ff, &(ff->ph->env.comp_mmap_len), sizeof(ff->ph->env.comp_mmap_len));
1405}
1406
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1407static void print_hostname(struct feat_fd *ff, FILE *fp)
1408{
1409	fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname);
1410}
1411
1412static void print_osrelease(struct feat_fd *ff, FILE *fp)
1413{
1414	fprintf(fp, "# os release : %s\n", ff->ph->env.os_release);
1415}
1416
1417static void print_arch(struct feat_fd *ff, FILE *fp)
1418{
1419	fprintf(fp, "# arch : %s\n", ff->ph->env.arch);
1420}
1421
1422static void print_cpudesc(struct feat_fd *ff, FILE *fp)
1423{
1424	fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc);
1425}
1426
1427static void print_nrcpus(struct feat_fd *ff, FILE *fp)
1428{
1429	fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online);
1430	fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail);
1431}
1432
1433static void print_version(struct feat_fd *ff, FILE *fp)
1434{
1435	fprintf(fp, "# perf version : %s\n", ff->ph->env.version);
1436}
1437
1438static void print_cmdline(struct feat_fd *ff, FILE *fp)
1439{
1440	int nr, i;
1441
1442	nr = ff->ph->env.nr_cmdline;
1443
1444	fprintf(fp, "# cmdline : ");
1445
1446	for (i = 0; i < nr; i++) {
1447		char *argv_i = strdup(ff->ph->env.cmdline_argv[i]);
1448		if (!argv_i) {
1449			fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]);
1450		} else {
1451			char *mem = argv_i;
1452			do {
1453				char *quote = strchr(argv_i, '\'');
1454				if (!quote)
1455					break;
1456				*quote++ = '\0';
1457				fprintf(fp, "%s\\\'", argv_i);
1458				argv_i = quote;
1459			} while (1);
1460			fprintf(fp, "%s ", argv_i);
1461			free(mem);
1462		}
1463	}
1464	fputc('\n', fp);
1465}
1466
1467static void print_cpu_topology(struct feat_fd *ff, FILE *fp)
1468{
1469	struct perf_header *ph = ff->ph;
1470	int cpu_nr = ph->env.nr_cpus_avail;
1471	int nr, i;
1472	char *str;
1473
1474	nr = ph->env.nr_sibling_cores;
1475	str = ph->env.sibling_cores;
1476
1477	for (i = 0; i < nr; i++) {
1478		fprintf(fp, "# sibling sockets : %s\n", str);
1479		str += strlen(str) + 1;
1480	}
1481
1482	if (ph->env.nr_sibling_dies) {
1483		nr = ph->env.nr_sibling_dies;
1484		str = ph->env.sibling_dies;
1485
1486		for (i = 0; i < nr; i++) {
1487			fprintf(fp, "# sibling dies    : %s\n", str);
1488			str += strlen(str) + 1;
1489		}
1490	}
1491
1492	nr = ph->env.nr_sibling_threads;
1493	str = ph->env.sibling_threads;
1494
1495	for (i = 0; i < nr; i++) {
1496		fprintf(fp, "# sibling threads : %s\n", str);
1497		str += strlen(str) + 1;
1498	}
1499
1500	if (ph->env.nr_sibling_dies) {
1501		if (ph->env.cpu != NULL) {
1502			for (i = 0; i < cpu_nr; i++)
1503				fprintf(fp, "# CPU %d: Core ID %d, "
1504					    "Die ID %d, Socket ID %d\n",
1505					    i, ph->env.cpu[i].core_id,
1506					    ph->env.cpu[i].die_id,
1507					    ph->env.cpu[i].socket_id);
1508		} else
1509			fprintf(fp, "# Core ID, Die ID and Socket ID "
1510				    "information is not available\n");
1511	} else {
1512		if (ph->env.cpu != NULL) {
1513			for (i = 0; i < cpu_nr; i++)
1514				fprintf(fp, "# CPU %d: Core ID %d, "
1515					    "Socket ID %d\n",
1516					    i, ph->env.cpu[i].core_id,
1517					    ph->env.cpu[i].socket_id);
1518		} else
1519			fprintf(fp, "# Core ID and Socket ID "
1520				    "information is not available\n");
1521	}
1522}
1523
1524static void print_clockid(struct feat_fd *ff, FILE *fp)
1525{
1526	fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n",
1527		ff->ph->env.clockid_res_ns * 1000);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1528}
1529
1530static void print_dir_format(struct feat_fd *ff, FILE *fp)
1531{
1532	struct perf_session *session;
1533	struct perf_data *data;
1534
1535	session = container_of(ff->ph, struct perf_session, header);
1536	data = session->data;
1537
1538	fprintf(fp, "# directory data version : %"PRIu64"\n", data->dir.version);
1539}
1540
 
1541static void print_bpf_prog_info(struct feat_fd *ff, FILE *fp)
1542{
1543	struct perf_env *env = &ff->ph->env;
1544	struct rb_root *root;
1545	struct rb_node *next;
1546
1547	down_read(&env->bpf_progs.lock);
1548
1549	root = &env->bpf_progs.infos;
1550	next = rb_first(root);
1551
1552	while (next) {
1553		struct bpf_prog_info_node *node;
1554
1555		node = rb_entry(next, struct bpf_prog_info_node, rb_node);
1556		next = rb_next(&node->rb_node);
1557
1558		bpf_event__print_bpf_prog_info(&node->info_linear->info,
1559					       env, fp);
1560	}
1561
1562	up_read(&env->bpf_progs.lock);
1563}
1564
1565static void print_bpf_btf(struct feat_fd *ff, FILE *fp)
1566{
1567	struct perf_env *env = &ff->ph->env;
1568	struct rb_root *root;
1569	struct rb_node *next;
1570
1571	down_read(&env->bpf_progs.lock);
1572
1573	root = &env->bpf_progs.btfs;
1574	next = rb_first(root);
1575
1576	while (next) {
1577		struct btf_node *node;
1578
1579		node = rb_entry(next, struct btf_node, rb_node);
1580		next = rb_next(&node->rb_node);
1581		fprintf(fp, "# btf info of id %u\n", node->id);
1582	}
1583
1584	up_read(&env->bpf_progs.lock);
1585}
 
1586
1587static void free_event_desc(struct evsel *events)
1588{
1589	struct evsel *evsel;
1590
1591	if (!events)
1592		return;
1593
1594	for (evsel = events; evsel->core.attr.size; evsel++) {
1595		zfree(&evsel->name);
1596		zfree(&evsel->core.id);
1597	}
1598
1599	free(events);
1600}
1601
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1602static struct evsel *read_event_desc(struct feat_fd *ff)
1603{
1604	struct evsel *evsel, *events = NULL;
1605	u64 *id;
1606	void *buf = NULL;
1607	u32 nre, sz, nr, i, j;
1608	size_t msz;
1609
1610	/* number of events */
1611	if (do_read_u32(ff, &nre))
1612		goto error;
1613
1614	if (do_read_u32(ff, &sz))
1615		goto error;
1616
1617	/* buffer to hold on file attr struct */
1618	buf = malloc(sz);
1619	if (!buf)
1620		goto error;
1621
1622	/* the last event terminates with evsel->core.attr.size == 0: */
1623	events = calloc(nre + 1, sizeof(*events));
1624	if (!events)
1625		goto error;
1626
1627	msz = sizeof(evsel->core.attr);
1628	if (sz < msz)
1629		msz = sz;
1630
1631	for (i = 0, evsel = events; i < nre; evsel++, i++) {
1632		evsel->idx = i;
1633
1634		/*
1635		 * must read entire on-file attr struct to
1636		 * sync up with layout.
1637		 */
1638		if (__do_read(ff, buf, sz))
1639			goto error;
1640
1641		if (ff->ph->needs_swap)
1642			perf_event__attr_swap(buf);
1643
1644		memcpy(&evsel->core.attr, buf, msz);
1645
 
 
 
1646		if (do_read_u32(ff, &nr))
1647			goto error;
1648
1649		if (ff->ph->needs_swap)
1650			evsel->needs_swap = true;
1651
1652		evsel->name = do_read_string(ff);
1653		if (!evsel->name)
1654			goto error;
1655
1656		if (!nr)
1657			continue;
1658
1659		id = calloc(nr, sizeof(*id));
1660		if (!id)
1661			goto error;
1662		evsel->core.ids = nr;
1663		evsel->core.id = id;
1664
1665		for (j = 0 ; j < nr; j++) {
1666			if (do_read_u64(ff, id))
1667				goto error;
1668			id++;
1669		}
1670	}
1671out:
1672	free(buf);
1673	return events;
1674error:
1675	free_event_desc(events);
1676	events = NULL;
1677	goto out;
1678}
1679
1680static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val,
1681				void *priv __maybe_unused)
1682{
1683	return fprintf(fp, ", %s = %s", name, val);
1684}
1685
1686static void print_event_desc(struct feat_fd *ff, FILE *fp)
1687{
1688	struct evsel *evsel, *events;
1689	u32 j;
1690	u64 *id;
1691
1692	if (ff->events)
1693		events = ff->events;
1694	else
1695		events = read_event_desc(ff);
1696
1697	if (!events) {
1698		fprintf(fp, "# event desc: not available or unable to read\n");
1699		return;
1700	}
1701
1702	for (evsel = events; evsel->core.attr.size; evsel++) {
1703		fprintf(fp, "# event : name = %s, ", evsel->name);
1704
1705		if (evsel->core.ids) {
1706			fprintf(fp, ", id = {");
1707			for (j = 0, id = evsel->core.id; j < evsel->core.ids; j++, id++) {
1708				if (j)
1709					fputc(',', fp);
1710				fprintf(fp, " %"PRIu64, *id);
1711			}
1712			fprintf(fp, " }");
1713		}
1714
1715		perf_event_attr__fprintf(fp, &evsel->core.attr, __desc_attr__fprintf, NULL);
1716
1717		fputc('\n', fp);
1718	}
1719
1720	free_event_desc(events);
1721	ff->events = NULL;
1722}
1723
1724static void print_total_mem(struct feat_fd *ff, FILE *fp)
1725{
1726	fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem);
1727}
1728
1729static void print_numa_topology(struct feat_fd *ff, FILE *fp)
1730{
1731	int i;
1732	struct numa_node *n;
1733
1734	for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) {
1735		n = &ff->ph->env.numa_nodes[i];
1736
1737		fprintf(fp, "# node%u meminfo  : total = %"PRIu64" kB,"
1738			    " free = %"PRIu64" kB\n",
1739			n->node, n->mem_total, n->mem_free);
1740
1741		fprintf(fp, "# node%u cpu list : ", n->node);
1742		cpu_map__fprintf(n->map, fp);
1743	}
1744}
1745
1746static void print_cpuid(struct feat_fd *ff, FILE *fp)
1747{
1748	fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid);
1749}
1750
1751static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp)
1752{
1753	fprintf(fp, "# contains samples with branch stack\n");
1754}
1755
1756static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp)
1757{
1758	fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n");
1759}
1760
1761static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp)
1762{
1763	fprintf(fp, "# contains stat data\n");
1764}
1765
1766static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused)
1767{
1768	int i;
1769
1770	fprintf(fp, "# CPU cache info:\n");
1771	for (i = 0; i < ff->ph->env.caches_cnt; i++) {
1772		fprintf(fp, "#  ");
1773		cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]);
1774	}
1775}
1776
1777static void print_compressed(struct feat_fd *ff, FILE *fp)
1778{
1779	fprintf(fp, "# compressed : %s, level = %d, ratio = %d\n",
1780		ff->ph->env.comp_type == PERF_COMP_ZSTD ? "Zstd" : "Unknown",
1781		ff->ph->env.comp_level, ff->ph->env.comp_ratio);
1782}
1783
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1784static void print_pmu_mappings(struct feat_fd *ff, FILE *fp)
1785{
1786	const char *delimiter = "# pmu mappings: ";
1787	char *str, *tmp;
1788	u32 pmu_num;
1789	u32 type;
1790
1791	pmu_num = ff->ph->env.nr_pmu_mappings;
1792	if (!pmu_num) {
1793		fprintf(fp, "# pmu mappings: not available\n");
1794		return;
1795	}
1796
1797	str = ff->ph->env.pmu_mappings;
1798
1799	while (pmu_num) {
1800		type = strtoul(str, &tmp, 0);
1801		if (*tmp != ':')
1802			goto error;
1803
1804		str = tmp + 1;
1805		fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type);
1806
1807		delimiter = ", ";
1808		str += strlen(str) + 1;
1809		pmu_num--;
1810	}
1811
1812	fprintf(fp, "\n");
1813
1814	if (!pmu_num)
1815		return;
1816error:
1817	fprintf(fp, "# pmu mappings: unable to read\n");
1818}
1819
1820static void print_group_desc(struct feat_fd *ff, FILE *fp)
1821{
1822	struct perf_session *session;
1823	struct evsel *evsel;
1824	u32 nr = 0;
1825
1826	session = container_of(ff->ph, struct perf_session, header);
1827
1828	evlist__for_each_entry(session->evlist, evsel) {
1829		if (perf_evsel__is_group_leader(evsel) &&
1830		    evsel->core.nr_members > 1) {
1831			fprintf(fp, "# group: %s{%s", evsel->group_name ?: "",
1832				perf_evsel__name(evsel));
1833
1834			nr = evsel->core.nr_members - 1;
1835		} else if (nr) {
1836			fprintf(fp, ",%s", perf_evsel__name(evsel));
1837
1838			if (--nr == 0)
1839				fprintf(fp, "}\n");
1840		}
1841	}
1842}
1843
1844static void print_sample_time(struct feat_fd *ff, FILE *fp)
1845{
1846	struct perf_session *session;
1847	char time_buf[32];
1848	double d;
1849
1850	session = container_of(ff->ph, struct perf_session, header);
1851
1852	timestamp__scnprintf_usec(session->evlist->first_sample_time,
1853				  time_buf, sizeof(time_buf));
1854	fprintf(fp, "# time of first sample : %s\n", time_buf);
1855
1856	timestamp__scnprintf_usec(session->evlist->last_sample_time,
1857				  time_buf, sizeof(time_buf));
1858	fprintf(fp, "# time of last sample : %s\n", time_buf);
1859
1860	d = (double)(session->evlist->last_sample_time -
1861		session->evlist->first_sample_time) / NSEC_PER_MSEC;
1862
1863	fprintf(fp, "# sample duration : %10.3f ms\n", d);
1864}
1865
1866static void memory_node__fprintf(struct memory_node *n,
1867				 unsigned long long bsize, FILE *fp)
1868{
1869	char buf_map[100], buf_size[50];
1870	unsigned long long size;
1871
1872	size = bsize * bitmap_weight(n->set, n->size);
1873	unit_number__scnprintf(buf_size, 50, size);
1874
1875	bitmap_scnprintf(n->set, n->size, buf_map, 100);
1876	fprintf(fp, "#  %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map);
1877}
1878
1879static void print_mem_topology(struct feat_fd *ff, FILE *fp)
1880{
1881	struct memory_node *nodes;
1882	int i, nr;
1883
1884	nodes = ff->ph->env.memory_nodes;
1885	nr    = ff->ph->env.nr_memory_nodes;
1886
1887	fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n",
1888		nr, ff->ph->env.memory_bsize);
1889
1890	for (i = 0; i < nr; i++) {
1891		memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp);
1892	}
1893}
1894
1895static int __event_process_build_id(struct perf_record_header_build_id *bev,
1896				    char *filename,
1897				    struct perf_session *session)
1898{
1899	int err = -1;
1900	struct machine *machine;
1901	u16 cpumode;
1902	struct dso *dso;
1903	enum dso_kernel_type dso_type;
1904
1905	machine = perf_session__findnew_machine(session, bev->pid);
1906	if (!machine)
1907		goto out;
1908
1909	cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
1910
1911	switch (cpumode) {
1912	case PERF_RECORD_MISC_KERNEL:
1913		dso_type = DSO_TYPE_KERNEL;
1914		break;
1915	case PERF_RECORD_MISC_GUEST_KERNEL:
1916		dso_type = DSO_TYPE_GUEST_KERNEL;
1917		break;
1918	case PERF_RECORD_MISC_USER:
1919	case PERF_RECORD_MISC_GUEST_USER:
1920		dso_type = DSO_TYPE_USER;
1921		break;
1922	default:
1923		goto out;
1924	}
1925
1926	dso = machine__findnew_dso(machine, filename);
1927	if (dso != NULL) {
1928		char sbuild_id[SBUILD_ID_SIZE];
 
 
1929
1930		dso__set_build_id(dso, &bev->build_id);
 
1931
1932		if (dso_type != DSO_TYPE_USER) {
 
 
 
 
1933			struct kmod_path m = { .name = NULL, };
1934
1935			if (!kmod_path__parse_name(&m, filename) && m.kmod)
1936				dso__set_module_info(dso, &m, machine);
1937			else
1938				dso->kernel = dso_type;
1939
 
1940			free(m.name);
1941		}
1942
1943		build_id__sprintf(dso->build_id, sizeof(dso->build_id),
1944				  sbuild_id);
1945		pr_debug("build id event received for %s: %s\n",
1946			 dso->long_name, sbuild_id);
1947		dso__put(dso);
1948	}
1949
1950	err = 0;
1951out:
1952	return err;
1953}
1954
1955static int perf_header__read_build_ids_abi_quirk(struct perf_header *header,
1956						 int input, u64 offset, u64 size)
1957{
1958	struct perf_session *session = container_of(header, struct perf_session, header);
1959	struct {
1960		struct perf_event_header   header;
1961		u8			   build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))];
1962		char			   filename[0];
1963	} old_bev;
1964	struct perf_record_header_build_id bev;
1965	char filename[PATH_MAX];
1966	u64 limit = offset + size;
1967
1968	while (offset < limit) {
1969		ssize_t len;
1970
1971		if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev))
1972			return -1;
1973
1974		if (header->needs_swap)
1975			perf_event_header__bswap(&old_bev.header);
1976
1977		len = old_bev.header.size - sizeof(old_bev);
1978		if (readn(input, filename, len) != len)
1979			return -1;
1980
1981		bev.header = old_bev.header;
1982
1983		/*
1984		 * As the pid is the missing value, we need to fill
1985		 * it properly. The header.misc value give us nice hint.
1986		 */
1987		bev.pid	= HOST_KERNEL_ID;
1988		if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER ||
1989		    bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL)
1990			bev.pid	= DEFAULT_GUEST_KERNEL_ID;
1991
1992		memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id));
1993		__event_process_build_id(&bev, filename, session);
1994
1995		offset += bev.header.size;
1996	}
1997
1998	return 0;
1999}
2000
2001static int perf_header__read_build_ids(struct perf_header *header,
2002				       int input, u64 offset, u64 size)
2003{
2004	struct perf_session *session = container_of(header, struct perf_session, header);
2005	struct perf_record_header_build_id bev;
2006	char filename[PATH_MAX];
2007	u64 limit = offset + size, orig_offset = offset;
2008	int err = -1;
2009
2010	while (offset < limit) {
2011		ssize_t len;
2012
2013		if (readn(input, &bev, sizeof(bev)) != sizeof(bev))
2014			goto out;
2015
2016		if (header->needs_swap)
2017			perf_event_header__bswap(&bev.header);
2018
2019		len = bev.header.size - sizeof(bev);
2020		if (readn(input, filename, len) != len)
2021			goto out;
2022		/*
2023		 * The a1645ce1 changeset:
2024		 *
2025		 * "perf: 'perf kvm' tool for monitoring guest performance from host"
2026		 *
2027		 * Added a field to struct perf_record_header_build_id that broke the file
2028		 * format.
2029		 *
2030		 * Since the kernel build-id is the first entry, process the
2031		 * table using the old format if the well known
2032		 * '[kernel.kallsyms]' string for the kernel build-id has the
2033		 * first 4 characters chopped off (where the pid_t sits).
2034		 */
2035		if (memcmp(filename, "nel.kallsyms]", 13) == 0) {
2036			if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1)
2037				return -1;
2038			return perf_header__read_build_ids_abi_quirk(header, input, offset, size);
2039		}
2040
2041		__event_process_build_id(&bev, filename, session);
2042
2043		offset += bev.header.size;
2044	}
2045	err = 0;
2046out:
2047	return err;
2048}
2049
2050/* Macro for features that simply need to read and store a string. */
2051#define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \
2052static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \
2053{\
 
2054	ff->ph->env.__feat_env = do_read_string(ff); \
2055	return ff->ph->env.__feat_env ? 0 : -ENOMEM; \
2056}
2057
2058FEAT_PROCESS_STR_FUN(hostname, hostname);
2059FEAT_PROCESS_STR_FUN(osrelease, os_release);
2060FEAT_PROCESS_STR_FUN(version, version);
2061FEAT_PROCESS_STR_FUN(arch, arch);
2062FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc);
2063FEAT_PROCESS_STR_FUN(cpuid, cpuid);
2064
 
2065static int process_tracing_data(struct feat_fd *ff, void *data)
2066{
2067	ssize_t ret = trace_report(ff->fd, data, false);
2068
2069	return ret < 0 ? -1 : 0;
2070}
 
2071
2072static int process_build_id(struct feat_fd *ff, void *data __maybe_unused)
2073{
2074	if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size))
2075		pr_debug("Failed to read buildids, continuing...\n");
2076	return 0;
2077}
2078
2079static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused)
2080{
2081	int ret;
2082	u32 nr_cpus_avail, nr_cpus_online;
2083
2084	ret = do_read_u32(ff, &nr_cpus_avail);
2085	if (ret)
2086		return ret;
2087
2088	ret = do_read_u32(ff, &nr_cpus_online);
2089	if (ret)
2090		return ret;
2091	ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail;
2092	ff->ph->env.nr_cpus_online = (int)nr_cpus_online;
2093	return 0;
2094}
2095
2096static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused)
2097{
2098	u64 total_mem;
2099	int ret;
2100
2101	ret = do_read_u64(ff, &total_mem);
2102	if (ret)
2103		return -1;
2104	ff->ph->env.total_mem = (unsigned long long)total_mem;
2105	return 0;
2106}
2107
2108static struct evsel *
2109perf_evlist__find_by_index(struct evlist *evlist, int idx)
2110{
2111	struct evsel *evsel;
2112
2113	evlist__for_each_entry(evlist, evsel) {
2114		if (evsel->idx == idx)
2115			return evsel;
2116	}
2117
2118	return NULL;
2119}
2120
2121static void
2122perf_evlist__set_event_name(struct evlist *evlist,
2123			    struct evsel *event)
2124{
2125	struct evsel *evsel;
2126
2127	if (!event->name)
2128		return;
2129
2130	evsel = perf_evlist__find_by_index(evlist, event->idx);
2131	if (!evsel)
2132		return;
2133
2134	if (evsel->name)
2135		return;
2136
2137	evsel->name = strdup(event->name);
2138}
2139
2140static int
2141process_event_desc(struct feat_fd *ff, void *data __maybe_unused)
2142{
2143	struct perf_session *session;
2144	struct evsel *evsel, *events = read_event_desc(ff);
2145
2146	if (!events)
2147		return 0;
2148
2149	session = container_of(ff->ph, struct perf_session, header);
2150
2151	if (session->data->is_pipe) {
2152		/* Save events for reading later by print_event_desc,
2153		 * since they can't be read again in pipe mode. */
2154		ff->events = events;
2155	}
2156
2157	for (evsel = events; evsel->core.attr.size; evsel++)
2158		perf_evlist__set_event_name(session->evlist, evsel);
2159
2160	if (!session->data->is_pipe)
2161		free_event_desc(events);
2162
2163	return 0;
2164}
2165
2166static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused)
2167{
2168	char *str, *cmdline = NULL, **argv = NULL;
2169	u32 nr, i, len = 0;
2170
2171	if (do_read_u32(ff, &nr))
2172		return -1;
2173
2174	ff->ph->env.nr_cmdline = nr;
2175
2176	cmdline = zalloc(ff->size + nr + 1);
2177	if (!cmdline)
2178		return -1;
2179
2180	argv = zalloc(sizeof(char *) * (nr + 1));
2181	if (!argv)
2182		goto error;
2183
2184	for (i = 0; i < nr; i++) {
2185		str = do_read_string(ff);
2186		if (!str)
2187			goto error;
2188
2189		argv[i] = cmdline + len;
2190		memcpy(argv[i], str, strlen(str) + 1);
2191		len += strlen(str) + 1;
2192		free(str);
2193	}
2194	ff->ph->env.cmdline = cmdline;
2195	ff->ph->env.cmdline_argv = (const char **) argv;
2196	return 0;
2197
2198error:
2199	free(argv);
2200	free(cmdline);
2201	return -1;
2202}
2203
2204static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused)
2205{
2206	u32 nr, i;
2207	char *str;
2208	struct strbuf sb;
2209	int cpu_nr = ff->ph->env.nr_cpus_avail;
2210	u64 size = 0;
2211	struct perf_header *ph = ff->ph;
2212	bool do_core_id_test = true;
2213
2214	ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu));
2215	if (!ph->env.cpu)
2216		return -1;
2217
2218	if (do_read_u32(ff, &nr))
2219		goto free_cpu;
2220
2221	ph->env.nr_sibling_cores = nr;
2222	size += sizeof(u32);
2223	if (strbuf_init(&sb, 128) < 0)
2224		goto free_cpu;
2225
2226	for (i = 0; i < nr; i++) {
2227		str = do_read_string(ff);
2228		if (!str)
2229			goto error;
2230
2231		/* include a NULL character at the end */
2232		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2233			goto error;
2234		size += string_size(str);
2235		free(str);
2236	}
2237	ph->env.sibling_cores = strbuf_detach(&sb, NULL);
2238
2239	if (do_read_u32(ff, &nr))
2240		return -1;
2241
2242	ph->env.nr_sibling_threads = nr;
2243	size += sizeof(u32);
2244
2245	for (i = 0; i < nr; i++) {
2246		str = do_read_string(ff);
2247		if (!str)
2248			goto error;
2249
2250		/* include a NULL character at the end */
2251		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2252			goto error;
2253		size += string_size(str);
2254		free(str);
2255	}
2256	ph->env.sibling_threads = strbuf_detach(&sb, NULL);
2257
2258	/*
2259	 * The header may be from old perf,
2260	 * which doesn't include core id and socket id information.
2261	 */
2262	if (ff->size <= size) {
2263		zfree(&ph->env.cpu);
2264		return 0;
2265	}
2266
2267	/* On s390 the socket_id number is not related to the numbers of cpus.
2268	 * The socket_id number might be higher than the numbers of cpus.
2269	 * This depends on the configuration.
2270	 * AArch64 is the same.
2271	 */
2272	if (ph->env.arch && (!strncmp(ph->env.arch, "s390", 4)
2273			  || !strncmp(ph->env.arch, "aarch64", 7)))
2274		do_core_id_test = false;
2275
2276	for (i = 0; i < (u32)cpu_nr; i++) {
2277		if (do_read_u32(ff, &nr))
2278			goto free_cpu;
2279
2280		ph->env.cpu[i].core_id = nr;
2281		size += sizeof(u32);
2282
2283		if (do_read_u32(ff, &nr))
2284			goto free_cpu;
2285
2286		if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) {
2287			pr_debug("socket_id number is too big."
2288				 "You may need to upgrade the perf tool.\n");
2289			goto free_cpu;
2290		}
2291
2292		ph->env.cpu[i].socket_id = nr;
2293		size += sizeof(u32);
2294	}
2295
2296	/*
2297	 * The header may be from old perf,
2298	 * which doesn't include die information.
2299	 */
2300	if (ff->size <= size)
2301		return 0;
2302
2303	if (do_read_u32(ff, &nr))
2304		return -1;
2305
2306	ph->env.nr_sibling_dies = nr;
2307	size += sizeof(u32);
2308
2309	for (i = 0; i < nr; i++) {
2310		str = do_read_string(ff);
2311		if (!str)
2312			goto error;
2313
2314		/* include a NULL character at the end */
2315		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2316			goto error;
2317		size += string_size(str);
2318		free(str);
2319	}
2320	ph->env.sibling_dies = strbuf_detach(&sb, NULL);
2321
2322	for (i = 0; i < (u32)cpu_nr; i++) {
2323		if (do_read_u32(ff, &nr))
2324			goto free_cpu;
2325
2326		ph->env.cpu[i].die_id = nr;
2327	}
2328
2329	return 0;
2330
2331error:
2332	strbuf_release(&sb);
 
2333free_cpu:
2334	zfree(&ph->env.cpu);
2335	return -1;
2336}
2337
2338static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused)
2339{
2340	struct numa_node *nodes, *n;
2341	u32 nr, i;
2342	char *str;
2343
2344	/* nr nodes */
2345	if (do_read_u32(ff, &nr))
2346		return -1;
2347
2348	nodes = zalloc(sizeof(*nodes) * nr);
2349	if (!nodes)
2350		return -ENOMEM;
2351
2352	for (i = 0; i < nr; i++) {
2353		n = &nodes[i];
2354
2355		/* node number */
2356		if (do_read_u32(ff, &n->node))
2357			goto error;
2358
2359		if (do_read_u64(ff, &n->mem_total))
2360			goto error;
2361
2362		if (do_read_u64(ff, &n->mem_free))
2363			goto error;
2364
2365		str = do_read_string(ff);
2366		if (!str)
2367			goto error;
2368
2369		n->map = perf_cpu_map__new(str);
 
2370		if (!n->map)
2371			goto error;
2372
2373		free(str);
2374	}
2375	ff->ph->env.nr_numa_nodes = nr;
2376	ff->ph->env.numa_nodes = nodes;
2377	return 0;
2378
2379error:
2380	free(nodes);
2381	return -1;
2382}
2383
2384static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused)
2385{
2386	char *name;
2387	u32 pmu_num;
2388	u32 type;
2389	struct strbuf sb;
2390
2391	if (do_read_u32(ff, &pmu_num))
2392		return -1;
2393
2394	if (!pmu_num) {
2395		pr_debug("pmu mappings not available\n");
2396		return 0;
2397	}
2398
2399	ff->ph->env.nr_pmu_mappings = pmu_num;
2400	if (strbuf_init(&sb, 128) < 0)
2401		return -1;
2402
2403	while (pmu_num) {
2404		if (do_read_u32(ff, &type))
2405			goto error;
2406
2407		name = do_read_string(ff);
2408		if (!name)
2409			goto error;
2410
2411		if (strbuf_addf(&sb, "%u:%s", type, name) < 0)
2412			goto error;
2413		/* include a NULL character at the end */
2414		if (strbuf_add(&sb, "", 1) < 0)
2415			goto error;
2416
2417		if (!strcmp(name, "msr"))
2418			ff->ph->env.msr_pmu_type = type;
2419
2420		free(name);
2421		pmu_num--;
2422	}
2423	ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL);
2424	return 0;
2425
2426error:
2427	strbuf_release(&sb);
2428	return -1;
2429}
2430
2431static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused)
2432{
2433	size_t ret = -1;
2434	u32 i, nr, nr_groups;
2435	struct perf_session *session;
2436	struct evsel *evsel, *leader = NULL;
2437	struct group_desc {
2438		char *name;
2439		u32 leader_idx;
2440		u32 nr_members;
2441	} *desc;
2442
2443	if (do_read_u32(ff, &nr_groups))
2444		return -1;
2445
2446	ff->ph->env.nr_groups = nr_groups;
2447	if (!nr_groups) {
2448		pr_debug("group desc not available\n");
2449		return 0;
2450	}
2451
2452	desc = calloc(nr_groups, sizeof(*desc));
2453	if (!desc)
2454		return -1;
2455
2456	for (i = 0; i < nr_groups; i++) {
2457		desc[i].name = do_read_string(ff);
2458		if (!desc[i].name)
2459			goto out_free;
2460
2461		if (do_read_u32(ff, &desc[i].leader_idx))
2462			goto out_free;
2463
2464		if (do_read_u32(ff, &desc[i].nr_members))
2465			goto out_free;
2466	}
2467
2468	/*
2469	 * Rebuild group relationship based on the group_desc
2470	 */
2471	session = container_of(ff->ph, struct perf_session, header);
2472	session->evlist->nr_groups = nr_groups;
2473
2474	i = nr = 0;
2475	evlist__for_each_entry(session->evlist, evsel) {
2476		if (evsel->idx == (int) desc[i].leader_idx) {
2477			evsel->leader = evsel;
2478			/* {anon_group} is a dummy name */
2479			if (strcmp(desc[i].name, "{anon_group}")) {
2480				evsel->group_name = desc[i].name;
2481				desc[i].name = NULL;
2482			}
2483			evsel->core.nr_members = desc[i].nr_members;
2484
2485			if (i >= nr_groups || nr > 0) {
2486				pr_debug("invalid group desc\n");
2487				goto out_free;
2488			}
2489
2490			leader = evsel;
2491			nr = evsel->core.nr_members - 1;
2492			i++;
2493		} else if (nr) {
2494			/* This is a group member */
2495			evsel->leader = leader;
2496
2497			nr--;
2498		}
2499	}
2500
2501	if (i != nr_groups || nr != 0) {
2502		pr_debug("invalid group desc\n");
2503		goto out_free;
2504	}
2505
2506	ret = 0;
2507out_free:
2508	for (i = 0; i < nr_groups; i++)
2509		zfree(&desc[i].name);
2510	free(desc);
2511
2512	return ret;
2513}
2514
2515static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused)
2516{
2517	struct perf_session *session;
2518	int err;
2519
2520	session = container_of(ff->ph, struct perf_session, header);
2521
2522	err = auxtrace_index__process(ff->fd, ff->size, session,
2523				      ff->ph->needs_swap);
2524	if (err < 0)
2525		pr_err("Failed to process auxtrace index\n");
2526	return err;
2527}
2528
2529static int process_cache(struct feat_fd *ff, void *data __maybe_unused)
2530{
2531	struct cpu_cache_level *caches;
2532	u32 cnt, i, version;
2533
2534	if (do_read_u32(ff, &version))
2535		return -1;
2536
2537	if (version != 1)
2538		return -1;
2539
2540	if (do_read_u32(ff, &cnt))
2541		return -1;
2542
2543	caches = zalloc(sizeof(*caches) * cnt);
2544	if (!caches)
2545		return -1;
2546
2547	for (i = 0; i < cnt; i++) {
2548		struct cpu_cache_level c;
2549
2550		#define _R(v)						\
2551			if (do_read_u32(ff, &c.v))\
2552				goto out_free_caches;			\
2553
2554		_R(level)
2555		_R(line_size)
2556		_R(sets)
2557		_R(ways)
2558		#undef _R
2559
2560		#define _R(v)					\
2561			c.v = do_read_string(ff);		\
2562			if (!c.v)				\
2563				goto out_free_caches;
2564
2565		_R(type)
2566		_R(size)
2567		_R(map)
2568		#undef _R
2569
2570		caches[i] = c;
2571	}
2572
2573	ff->ph->env.caches = caches;
2574	ff->ph->env.caches_cnt = cnt;
2575	return 0;
2576out_free_caches:
 
 
 
 
 
2577	free(caches);
2578	return -1;
2579}
2580
2581static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused)
2582{
2583	struct perf_session *session;
2584	u64 first_sample_time, last_sample_time;
2585	int ret;
2586
2587	session = container_of(ff->ph, struct perf_session, header);
2588
2589	ret = do_read_u64(ff, &first_sample_time);
2590	if (ret)
2591		return -1;
2592
2593	ret = do_read_u64(ff, &last_sample_time);
2594	if (ret)
2595		return -1;
2596
2597	session->evlist->first_sample_time = first_sample_time;
2598	session->evlist->last_sample_time = last_sample_time;
2599	return 0;
2600}
2601
2602static int process_mem_topology(struct feat_fd *ff,
2603				void *data __maybe_unused)
2604{
2605	struct memory_node *nodes;
2606	u64 version, i, nr, bsize;
2607	int ret = -1;
2608
2609	if (do_read_u64(ff, &version))
2610		return -1;
2611
2612	if (version != 1)
2613		return -1;
2614
2615	if (do_read_u64(ff, &bsize))
2616		return -1;
2617
2618	if (do_read_u64(ff, &nr))
2619		return -1;
2620
2621	nodes = zalloc(sizeof(*nodes) * nr);
2622	if (!nodes)
2623		return -1;
2624
2625	for (i = 0; i < nr; i++) {
2626		struct memory_node n;
2627
2628		#define _R(v)				\
2629			if (do_read_u64(ff, &n.v))	\
2630				goto out;		\
2631
2632		_R(node)
2633		_R(size)
2634
2635		#undef _R
2636
2637		if (do_read_bitmap(ff, &n.set, &n.size))
2638			goto out;
2639
2640		nodes[i] = n;
2641	}
2642
2643	ff->ph->env.memory_bsize    = bsize;
2644	ff->ph->env.memory_nodes    = nodes;
2645	ff->ph->env.nr_memory_nodes = nr;
2646	ret = 0;
2647
2648out:
2649	if (ret)
2650		free(nodes);
2651	return ret;
2652}
2653
2654static int process_clockid(struct feat_fd *ff,
2655			   void *data __maybe_unused)
2656{
2657	if (do_read_u64(ff, &ff->ph->env.clockid_res_ns))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2658		return -1;
2659
 
 
2660	return 0;
2661}
2662
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2663static int process_dir_format(struct feat_fd *ff,
2664			      void *_data __maybe_unused)
2665{
2666	struct perf_session *session;
2667	struct perf_data *data;
2668
2669	session = container_of(ff->ph, struct perf_session, header);
2670	data = session->data;
2671
2672	if (WARN_ON(!perf_data__is_dir(data)))
2673		return -1;
2674
2675	return do_read_u64(ff, &data->dir.version);
2676}
2677
2678#ifdef HAVE_LIBBPF_SUPPORT
2679static int process_bpf_prog_info(struct feat_fd *ff, void *data __maybe_unused)
2680{
2681	struct bpf_prog_info_linear *info_linear;
2682	struct bpf_prog_info_node *info_node;
2683	struct perf_env *env = &ff->ph->env;
 
2684	u32 count, i;
2685	int err = -1;
2686
2687	if (ff->ph->needs_swap) {
2688		pr_warning("interpreting bpf_prog_info from systems with endianity is not yet supported\n");
2689		return 0;
2690	}
2691
2692	if (do_read_u32(ff, &count))
2693		return -1;
2694
2695	down_write(&env->bpf_progs.lock);
2696
2697	for (i = 0; i < count; ++i) {
2698		u32 info_len, data_len;
2699
2700		info_linear = NULL;
2701		info_node = NULL;
2702		if (do_read_u32(ff, &info_len))
2703			goto out;
2704		if (do_read_u32(ff, &data_len))
2705			goto out;
2706
2707		if (info_len > sizeof(struct bpf_prog_info)) {
2708			pr_warning("detected invalid bpf_prog_info\n");
2709			goto out;
2710		}
2711
2712		info_linear = malloc(sizeof(struct bpf_prog_info_linear) +
2713				     data_len);
2714		if (!info_linear)
2715			goto out;
2716		info_linear->info_len = sizeof(struct bpf_prog_info);
2717		info_linear->data_len = data_len;
2718		if (do_read_u64(ff, (u64 *)(&info_linear->arrays)))
2719			goto out;
2720		if (__do_read(ff, &info_linear->info, info_len))
2721			goto out;
2722		if (info_len < sizeof(struct bpf_prog_info))
2723			memset(((void *)(&info_linear->info)) + info_len, 0,
2724			       sizeof(struct bpf_prog_info) - info_len);
2725
2726		if (__do_read(ff, info_linear->data, data_len))
2727			goto out;
2728
2729		info_node = malloc(sizeof(struct bpf_prog_info_node));
2730		if (!info_node)
2731			goto out;
2732
2733		/* after reading from file, translate offset to address */
2734		bpf_program__bpil_offs_to_addr(info_linear);
2735		info_node->info_linear = info_linear;
2736		perf_env__insert_bpf_prog_info(env, info_node);
 
 
 
2737	}
2738
2739	up_write(&env->bpf_progs.lock);
2740	return 0;
2741out:
2742	free(info_linear);
2743	free(info_node);
2744	up_write(&env->bpf_progs.lock);
2745	return err;
2746}
2747#else // HAVE_LIBBPF_SUPPORT
2748static int process_bpf_prog_info(struct feat_fd *ff __maybe_unused, void *data __maybe_unused)
2749{
2750	return 0;
2751}
2752#endif // HAVE_LIBBPF_SUPPORT
2753
2754static int process_bpf_btf(struct feat_fd *ff, void *data __maybe_unused)
2755{
2756	struct perf_env *env = &ff->ph->env;
2757	struct btf_node *node = NULL;
2758	u32 count, i;
2759	int err = -1;
2760
2761	if (ff->ph->needs_swap) {
2762		pr_warning("interpreting btf from systems with endianity is not yet supported\n");
2763		return 0;
2764	}
2765
2766	if (do_read_u32(ff, &count))
2767		return -1;
2768
2769	down_write(&env->bpf_progs.lock);
2770
2771	for (i = 0; i < count; ++i) {
2772		u32 id, data_size;
2773
2774		if (do_read_u32(ff, &id))
2775			goto out;
2776		if (do_read_u32(ff, &data_size))
2777			goto out;
2778
2779		node = malloc(sizeof(struct btf_node) + data_size);
2780		if (!node)
2781			goto out;
2782
2783		node->id = id;
2784		node->data_size = data_size;
2785
2786		if (__do_read(ff, node->data, data_size))
2787			goto out;
2788
2789		perf_env__insert_btf(env, node);
 
2790		node = NULL;
2791	}
2792
2793	err = 0;
2794out:
2795	up_write(&env->bpf_progs.lock);
2796	free(node);
2797	return err;
2798}
 
2799
2800static int process_compressed(struct feat_fd *ff,
2801			      void *data __maybe_unused)
2802{
2803	if (do_read_u32(ff, &(ff->ph->env.comp_ver)))
2804		return -1;
2805
2806	if (do_read_u32(ff, &(ff->ph->env.comp_type)))
2807		return -1;
2808
2809	if (do_read_u32(ff, &(ff->ph->env.comp_level)))
2810		return -1;
2811
2812	if (do_read_u32(ff, &(ff->ph->env.comp_ratio)))
2813		return -1;
2814
2815	if (do_read_u32(ff, &(ff->ph->env.comp_mmap_len)))
2816		return -1;
2817
2818	return 0;
2819}
2820
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2821#define FEAT_OPR(n, func, __full_only) \
2822	[HEADER_##n] = {					\
2823		.name	    = __stringify(n),			\
2824		.write	    = write_##func,			\
2825		.print	    = print_##func,			\
2826		.full_only  = __full_only,			\
2827		.process    = process_##func,			\
2828		.synthesize = true				\
2829	}
2830
2831#define FEAT_OPN(n, func, __full_only) \
2832	[HEADER_##n] = {					\
2833		.name	    = __stringify(n),			\
2834		.write	    = write_##func,			\
2835		.print	    = print_##func,			\
2836		.full_only  = __full_only,			\
2837		.process    = process_##func			\
2838	}
2839
2840/* feature_ops not implemented: */
2841#define print_tracing_data	NULL
2842#define print_build_id		NULL
2843
2844#define process_branch_stack	NULL
2845#define process_stat		NULL
2846
2847// Only used in util/synthetic-events.c
2848const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE];
2849
2850const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE] = {
 
2851	FEAT_OPN(TRACING_DATA,	tracing_data,	false),
 
2852	FEAT_OPN(BUILD_ID,	build_id,	false),
2853	FEAT_OPR(HOSTNAME,	hostname,	false),
2854	FEAT_OPR(OSRELEASE,	osrelease,	false),
2855	FEAT_OPR(VERSION,	version,	false),
2856	FEAT_OPR(ARCH,		arch,		false),
2857	FEAT_OPR(NRCPUS,	nrcpus,		false),
2858	FEAT_OPR(CPUDESC,	cpudesc,	false),
2859	FEAT_OPR(CPUID,		cpuid,		false),
2860	FEAT_OPR(TOTAL_MEM,	total_mem,	false),
2861	FEAT_OPR(EVENT_DESC,	event_desc,	false),
2862	FEAT_OPR(CMDLINE,	cmdline,	false),
2863	FEAT_OPR(CPU_TOPOLOGY,	cpu_topology,	true),
2864	FEAT_OPR(NUMA_TOPOLOGY,	numa_topology,	true),
2865	FEAT_OPN(BRANCH_STACK,	branch_stack,	false),
2866	FEAT_OPR(PMU_MAPPINGS,	pmu_mappings,	false),
2867	FEAT_OPR(GROUP_DESC,	group_desc,	false),
2868	FEAT_OPN(AUXTRACE,	auxtrace,	false),
2869	FEAT_OPN(STAT,		stat,		false),
2870	FEAT_OPN(CACHE,		cache,		true),
2871	FEAT_OPR(SAMPLE_TIME,	sample_time,	false),
2872	FEAT_OPR(MEM_TOPOLOGY,	mem_topology,	true),
2873	FEAT_OPR(CLOCKID,	clockid,	false),
2874	FEAT_OPN(DIR_FORMAT,	dir_format,	false),
 
2875	FEAT_OPR(BPF_PROG_INFO, bpf_prog_info,  false),
2876	FEAT_OPR(BPF_BTF,       bpf_btf,        false),
 
2877	FEAT_OPR(COMPRESSED,	compressed,	false),
 
 
 
 
2878};
2879
2880struct header_print_data {
2881	FILE *fp;
2882	bool full; /* extended list of headers */
2883};
2884
2885static int perf_file_section__fprintf_info(struct perf_file_section *section,
2886					   struct perf_header *ph,
2887					   int feat, int fd, void *data)
2888{
2889	struct header_print_data *hd = data;
2890	struct feat_fd ff;
2891
2892	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
2893		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
2894				"%d, continuing...\n", section->offset, feat);
2895		return 0;
2896	}
2897	if (feat >= HEADER_LAST_FEATURE) {
2898		pr_warning("unknown feature %d\n", feat);
2899		return 0;
2900	}
2901	if (!feat_ops[feat].print)
2902		return 0;
2903
2904	ff = (struct  feat_fd) {
2905		.fd = fd,
2906		.ph = ph,
2907	};
2908
2909	if (!feat_ops[feat].full_only || hd->full)
2910		feat_ops[feat].print(&ff, hd->fp);
2911	else
2912		fprintf(hd->fp, "# %s info available, use -I to display\n",
2913			feat_ops[feat].name);
2914
2915	return 0;
2916}
2917
2918int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full)
2919{
2920	struct header_print_data hd;
2921	struct perf_header *header = &session->header;
2922	int fd = perf_data__fd(session->data);
2923	struct stat st;
2924	time_t stctime;
2925	int ret, bit;
2926
2927	hd.fp = fp;
2928	hd.full = full;
2929
2930	ret = fstat(fd, &st);
2931	if (ret == -1)
2932		return -1;
2933
2934	stctime = st.st_ctime;
2935	fprintf(fp, "# captured on    : %s", ctime(&stctime));
2936
2937	fprintf(fp, "# header version : %u\n", header->version);
2938	fprintf(fp, "# data offset    : %" PRIu64 "\n", header->data_offset);
2939	fprintf(fp, "# data size      : %" PRIu64 "\n", header->data_size);
2940	fprintf(fp, "# feat offset    : %" PRIu64 "\n", header->feat_offset);
2941
2942	perf_header__process_sections(header, fd, &hd,
2943				      perf_file_section__fprintf_info);
2944
2945	if (session->data->is_pipe)
2946		return 0;
2947
2948	fprintf(fp, "# missing features: ");
2949	for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) {
2950		if (bit)
2951			fprintf(fp, "%s ", feat_ops[bit].name);
2952	}
2953
2954	fprintf(fp, "\n");
2955	return 0;
2956}
2957
 
 
 
 
 
 
 
 
 
 
 
 
2958static int do_write_feat(struct feat_fd *ff, int type,
2959			 struct perf_file_section **p,
2960			 struct evlist *evlist)
 
2961{
2962	int err;
2963	int ret = 0;
2964
2965	if (perf_header__has_feat(ff->ph, type)) {
2966		if (!feat_ops[type].write)
2967			return -1;
2968
2969		if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
2970			return -1;
2971
2972		(*p)->offset = lseek(ff->fd, 0, SEEK_CUR);
2973
2974		err = feat_ops[type].write(ff, evlist);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2975		if (err < 0) {
2976			pr_debug("failed to write feature %s\n", feat_ops[type].name);
2977
2978			/* undo anything written */
2979			lseek(ff->fd, (*p)->offset, SEEK_SET);
2980
2981			return -1;
2982		}
2983		(*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset;
2984		(*p)++;
2985	}
2986	return ret;
2987}
2988
2989static int perf_header__adds_write(struct perf_header *header,
2990				   struct evlist *evlist, int fd)
 
2991{
2992	int nr_sections;
2993	struct feat_fd ff;
 
 
 
2994	struct perf_file_section *feat_sec, *p;
2995	int sec_size;
2996	u64 sec_start;
2997	int feat;
2998	int err;
2999
3000	ff = (struct feat_fd){
3001		.fd  = fd,
3002		.ph = header,
3003	};
3004
3005	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3006	if (!nr_sections)
3007		return 0;
3008
3009	feat_sec = p = calloc(nr_sections, sizeof(*feat_sec));
3010	if (feat_sec == NULL)
3011		return -ENOMEM;
3012
3013	sec_size = sizeof(*feat_sec) * nr_sections;
3014
3015	sec_start = header->feat_offset;
3016	lseek(fd, sec_start + sec_size, SEEK_SET);
3017
3018	for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
3019		if (do_write_feat(&ff, feat, &p, evlist))
3020			perf_header__clear_feat(header, feat);
3021	}
3022
3023	lseek(fd, sec_start, SEEK_SET);
3024	/*
3025	 * may write more than needed due to dropped feature, but
3026	 * this is okay, reader will skip the missing entries
3027	 */
3028	err = do_write(&ff, feat_sec, sec_size);
3029	if (err < 0)
3030		pr_debug("failed to write feature section\n");
 
3031	free(feat_sec);
3032	return err;
3033}
3034
3035int perf_header__write_pipe(int fd)
3036{
3037	struct perf_pipe_file_header f_header;
3038	struct feat_fd ff;
 
 
3039	int err;
3040
3041	ff = (struct feat_fd){ .fd = fd };
3042
3043	f_header = (struct perf_pipe_file_header){
3044		.magic	   = PERF_MAGIC,
3045		.size	   = sizeof(f_header),
3046	};
3047
3048	err = do_write(&ff, &f_header, sizeof(f_header));
3049	if (err < 0) {
3050		pr_debug("failed to write perf pipe header\n");
3051		return err;
3052	}
3053
3054	return 0;
3055}
3056
3057int perf_session__write_header(struct perf_session *session,
3058			       struct evlist *evlist,
3059			       int fd, bool at_exit)
 
 
3060{
3061	struct perf_file_header f_header;
3062	struct perf_file_attr   f_attr;
3063	struct perf_header *header = &session->header;
3064	struct evsel *evsel;
3065	struct feat_fd ff;
3066	u64 attr_offset;
 
 
3067	int err;
3068
3069	ff = (struct feat_fd){ .fd = fd};
3070	lseek(fd, sizeof(f_header), SEEK_SET);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3071
3072	evlist__for_each_entry(session->evlist, evsel) {
3073		evsel->id_offset = lseek(fd, 0, SEEK_CUR);
3074		err = do_write(&ff, evsel->core.id, evsel->core.ids * sizeof(u64));
3075		if (err < 0) {
3076			pr_debug("failed to write perf header\n");
3077			return err;
 
 
 
3078		}
 
3079	}
3080
3081	attr_offset = lseek(ff.fd, 0, SEEK_CUR);
3082
3083	evlist__for_each_entry(evlist, evsel) {
3084		f_attr = (struct perf_file_attr){
3085			.attr = evsel->core.attr,
3086			.ids  = {
3087				.offset = evsel->id_offset,
3088				.size   = evsel->core.ids * sizeof(u64),
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3089			}
3090		};
3091		err = do_write(&ff, &f_attr, sizeof(f_attr));
3092		if (err < 0) {
3093			pr_debug("failed to write perf header attribute\n");
3094			return err;
3095		}
 
3096	}
3097
3098	if (!header->data_offset)
3099		header->data_offset = lseek(fd, 0, SEEK_CUR);
 
 
 
 
3100	header->feat_offset = header->data_offset + header->data_size;
3101
3102	if (at_exit) {
3103		err = perf_header__adds_write(header, evlist, fd);
 
3104		if (err < 0)
3105			return err;
3106	}
3107
3108	f_header = (struct perf_file_header){
3109		.magic	   = PERF_MAGIC,
3110		.size	   = sizeof(f_header),
3111		.attr_size = sizeof(f_attr),
3112		.attrs = {
3113			.offset = attr_offset,
3114			.size   = evlist->core.nr_entries * sizeof(f_attr),
3115		},
3116		.data = {
3117			.offset = header->data_offset,
3118			.size	= header->data_size,
3119		},
3120		/* event_types is ignored, store zeros */
3121	};
3122
3123	memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features));
3124
3125	lseek(fd, 0, SEEK_SET);
3126	err = do_write(&ff, &f_header, sizeof(f_header));
3127	if (err < 0) {
3128		pr_debug("failed to write perf header\n");
3129		return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3130	}
3131	lseek(fd, header->data_offset + header->data_size, SEEK_SET);
 
 
 
3132
3133	return 0;
 
 
 
 
 
 
 
3134}
3135
3136static int perf_header__getbuffer64(struct perf_header *header,
3137				    int fd, void *buf, size_t size)
3138{
3139	if (readn(fd, buf, size) <= 0)
3140		return -1;
3141
3142	if (header->needs_swap)
3143		mem_bswap_64(buf, size);
3144
3145	return 0;
3146}
3147
3148int perf_header__process_sections(struct perf_header *header, int fd,
3149				  void *data,
3150				  int (*process)(struct perf_file_section *section,
3151						 struct perf_header *ph,
3152						 int feat, int fd, void *data))
3153{
3154	struct perf_file_section *feat_sec, *sec;
3155	int nr_sections;
3156	int sec_size;
3157	int feat;
3158	int err;
3159
3160	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3161	if (!nr_sections)
3162		return 0;
3163
3164	feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec));
3165	if (!feat_sec)
3166		return -1;
3167
3168	sec_size = sizeof(*feat_sec) * nr_sections;
3169
3170	lseek(fd, header->feat_offset, SEEK_SET);
3171
3172	err = perf_header__getbuffer64(header, fd, feat_sec, sec_size);
3173	if (err < 0)
3174		goto out_free;
3175
3176	for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) {
3177		err = process(sec++, header, feat, fd, data);
3178		if (err < 0)
3179			goto out_free;
3180	}
3181	err = 0;
3182out_free:
3183	free(feat_sec);
3184	return err;
3185}
3186
3187static const int attr_file_abi_sizes[] = {
3188	[0] = PERF_ATTR_SIZE_VER0,
3189	[1] = PERF_ATTR_SIZE_VER1,
3190	[2] = PERF_ATTR_SIZE_VER2,
3191	[3] = PERF_ATTR_SIZE_VER3,
3192	[4] = PERF_ATTR_SIZE_VER4,
3193	0,
3194};
3195
3196/*
3197 * In the legacy file format, the magic number is not used to encode endianness.
3198 * hdr_sz was used to encode endianness. But given that hdr_sz can vary based
3199 * on ABI revisions, we need to try all combinations for all endianness to
3200 * detect the endianness.
3201 */
3202static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph)
3203{
3204	uint64_t ref_size, attr_size;
3205	int i;
3206
3207	for (i = 0 ; attr_file_abi_sizes[i]; i++) {
3208		ref_size = attr_file_abi_sizes[i]
3209			 + sizeof(struct perf_file_section);
3210		if (hdr_sz != ref_size) {
3211			attr_size = bswap_64(hdr_sz);
3212			if (attr_size != ref_size)
3213				continue;
3214
3215			ph->needs_swap = true;
3216		}
3217		pr_debug("ABI%d perf.data file detected, need_swap=%d\n",
3218			 i,
3219			 ph->needs_swap);
3220		return 0;
3221	}
3222	/* could not determine endianness */
3223	return -1;
3224}
3225
3226#define PERF_PIPE_HDR_VER0	16
3227
3228static const size_t attr_pipe_abi_sizes[] = {
3229	[0] = PERF_PIPE_HDR_VER0,
3230	0,
3231};
3232
3233/*
3234 * In the legacy pipe format, there is an implicit assumption that endiannesss
3235 * between host recording the samples, and host parsing the samples is the
3236 * same. This is not always the case given that the pipe output may always be
3237 * redirected into a file and analyzed on a different machine with possibly a
3238 * different endianness and perf_event ABI revsions in the perf tool itself.
3239 */
3240static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph)
3241{
3242	u64 attr_size;
3243	int i;
3244
3245	for (i = 0 ; attr_pipe_abi_sizes[i]; i++) {
3246		if (hdr_sz != attr_pipe_abi_sizes[i]) {
3247			attr_size = bswap_64(hdr_sz);
3248			if (attr_size != hdr_sz)
3249				continue;
3250
3251			ph->needs_swap = true;
3252		}
3253		pr_debug("Pipe ABI%d perf.data file detected\n", i);
3254		return 0;
3255	}
3256	return -1;
3257}
3258
3259bool is_perf_magic(u64 magic)
3260{
3261	if (!memcmp(&magic, __perf_magic1, sizeof(magic))
3262		|| magic == __perf_magic2
3263		|| magic == __perf_magic2_sw)
3264		return true;
3265
3266	return false;
3267}
3268
3269static int check_magic_endian(u64 magic, uint64_t hdr_sz,
3270			      bool is_pipe, struct perf_header *ph)
3271{
3272	int ret;
3273
3274	/* check for legacy format */
3275	ret = memcmp(&magic, __perf_magic1, sizeof(magic));
3276	if (ret == 0) {
3277		ph->version = PERF_HEADER_VERSION_1;
3278		pr_debug("legacy perf.data format\n");
3279		if (is_pipe)
3280			return try_all_pipe_abis(hdr_sz, ph);
3281
3282		return try_all_file_abis(hdr_sz, ph);
3283	}
3284	/*
3285	 * the new magic number serves two purposes:
3286	 * - unique number to identify actual perf.data files
3287	 * - encode endianness of file
3288	 */
3289	ph->version = PERF_HEADER_VERSION_2;
3290
3291	/* check magic number with one endianness */
3292	if (magic == __perf_magic2)
3293		return 0;
3294
3295	/* check magic number with opposite endianness */
3296	if (magic != __perf_magic2_sw)
3297		return -1;
3298
3299	ph->needs_swap = true;
3300
3301	return 0;
3302}
3303
3304int perf_file_header__read(struct perf_file_header *header,
3305			   struct perf_header *ph, int fd)
3306{
3307	ssize_t ret;
3308
3309	lseek(fd, 0, SEEK_SET);
3310
3311	ret = readn(fd, header, sizeof(*header));
3312	if (ret <= 0)
3313		return -1;
3314
3315	if (check_magic_endian(header->magic,
3316			       header->attr_size, false, ph) < 0) {
3317		pr_debug("magic/endian check failed\n");
3318		return -1;
3319	}
3320
3321	if (ph->needs_swap) {
3322		mem_bswap_64(header, offsetof(struct perf_file_header,
3323			     adds_features));
3324	}
3325
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3326	if (header->size != sizeof(*header)) {
3327		/* Support the previous format */
3328		if (header->size == offsetof(typeof(*header), adds_features))
3329			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3330		else
3331			return -1;
3332	} else if (ph->needs_swap) {
3333		/*
3334		 * feature bitmap is declared as an array of unsigned longs --
3335		 * not good since its size can differ between the host that
3336		 * generated the data file and the host analyzing the file.
3337		 *
3338		 * We need to handle endianness, but we don't know the size of
3339		 * the unsigned long where the file was generated. Take a best
3340		 * guess at determining it: try 64-bit swap first (ie., file
3341		 * created on a 64-bit host), and check if the hostname feature
3342		 * bit is set (this feature bit is forced on as of fbe96f2).
3343		 * If the bit is not, undo the 64-bit swap and try a 32-bit
3344		 * swap. If the hostname bit is still not set (e.g., older data
3345		 * file), punt and fallback to the original behavior --
3346		 * clearing all feature bits and setting buildid.
3347		 */
3348		mem_bswap_64(&header->adds_features,
3349			    BITS_TO_U64(HEADER_FEAT_BITS));
3350
3351		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3352			/* unswap as u64 */
3353			mem_bswap_64(&header->adds_features,
3354				    BITS_TO_U64(HEADER_FEAT_BITS));
3355
3356			/* unswap as u32 */
3357			mem_bswap_32(&header->adds_features,
3358				    BITS_TO_U32(HEADER_FEAT_BITS));
3359		}
3360
3361		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3362			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3363			set_bit(HEADER_BUILD_ID, header->adds_features);
3364		}
3365	}
3366
3367	memcpy(&ph->adds_features, &header->adds_features,
3368	       sizeof(ph->adds_features));
3369
3370	ph->data_offset  = header->data.offset;
3371	ph->data_size	 = header->data.size;
3372	ph->feat_offset  = header->data.offset + header->data.size;
3373	return 0;
3374}
3375
3376static int perf_file_section__process(struct perf_file_section *section,
3377				      struct perf_header *ph,
3378				      int feat, int fd, void *data)
3379{
3380	struct feat_fd fdd = {
3381		.fd	= fd,
3382		.ph	= ph,
3383		.size	= section->size,
3384		.offset	= section->offset,
3385	};
3386
3387	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3388		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3389			  "%d, continuing...\n", section->offset, feat);
3390		return 0;
3391	}
3392
3393	if (feat >= HEADER_LAST_FEATURE) {
3394		pr_debug("unknown feature %d, continuing...\n", feat);
3395		return 0;
3396	}
3397
3398	if (!feat_ops[feat].process)
3399		return 0;
3400
3401	return feat_ops[feat].process(&fdd, data);
3402}
3403
3404static int perf_file_header__read_pipe(struct perf_pipe_file_header *header,
3405				       struct perf_header *ph, int fd,
3406				       bool repipe)
3407{
3408	struct feat_fd ff = {
3409		.fd = STDOUT_FILENO,
3410		.ph = ph,
3411	};
3412	ssize_t ret;
3413
3414	ret = readn(fd, header, sizeof(*header));
3415	if (ret <= 0)
3416		return -1;
3417
3418	if (check_magic_endian(header->magic, header->size, true, ph) < 0) {
3419		pr_debug("endian/magic failed\n");
3420		return -1;
3421	}
3422
3423	if (ph->needs_swap)
3424		header->size = bswap_64(header->size);
3425
3426	if (repipe && do_write(&ff, header, sizeof(*header)) < 0)
3427		return -1;
3428
3429	return 0;
3430}
3431
3432static int perf_header__read_pipe(struct perf_session *session)
3433{
3434	struct perf_header *header = &session->header;
3435	struct perf_pipe_file_header f_header;
3436
3437	if (perf_file_header__read_pipe(&f_header, header,
3438					perf_data__fd(session->data),
3439					session->repipe) < 0) {
3440		pr_debug("incompatible file format\n");
3441		return -EINVAL;
3442	}
3443
3444	return 0;
3445}
3446
3447static int read_attr(int fd, struct perf_header *ph,
3448		     struct perf_file_attr *f_attr)
3449{
3450	struct perf_event_attr *attr = &f_attr->attr;
3451	size_t sz, left;
3452	size_t our_sz = sizeof(f_attr->attr);
3453	ssize_t ret;
3454
3455	memset(f_attr, 0, sizeof(*f_attr));
3456
3457	/* read minimal guaranteed structure */
3458	ret = readn(fd, attr, PERF_ATTR_SIZE_VER0);
3459	if (ret <= 0) {
3460		pr_debug("cannot read %d bytes of header attr\n",
3461			 PERF_ATTR_SIZE_VER0);
3462		return -1;
3463	}
3464
3465	/* on file perf_event_attr size */
3466	sz = attr->size;
3467
3468	if (ph->needs_swap)
3469		sz = bswap_32(sz);
3470
3471	if (sz == 0) {
3472		/* assume ABI0 */
3473		sz =  PERF_ATTR_SIZE_VER0;
3474	} else if (sz > our_sz) {
3475		pr_debug("file uses a more recent and unsupported ABI"
3476			 " (%zu bytes extra)\n", sz - our_sz);
3477		return -1;
3478	}
3479	/* what we have not yet read and that we know about */
3480	left = sz - PERF_ATTR_SIZE_VER0;
3481	if (left) {
3482		void *ptr = attr;
3483		ptr += PERF_ATTR_SIZE_VER0;
3484
3485		ret = readn(fd, ptr, left);
3486	}
3487	/* read perf_file_section, ids are read in caller */
3488	ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids));
3489
3490	return ret <= 0 ? -1 : 0;
3491}
3492
3493static int perf_evsel__prepare_tracepoint_event(struct evsel *evsel,
3494						struct tep_handle *pevent)
3495{
3496	struct tep_event *event;
3497	char bf[128];
3498
3499	/* already prepared */
3500	if (evsel->tp_format)
3501		return 0;
3502
3503	if (pevent == NULL) {
3504		pr_debug("broken or missing trace data\n");
3505		return -1;
3506	}
3507
3508	event = tep_find_event(pevent, evsel->core.attr.config);
3509	if (event == NULL) {
3510		pr_debug("cannot find event format for %d\n", (int)evsel->core.attr.config);
3511		return -1;
3512	}
3513
3514	if (!evsel->name) {
3515		snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name);
3516		evsel->name = strdup(bf);
3517		if (evsel->name == NULL)
3518			return -1;
3519	}
3520
3521	evsel->tp_format = event;
3522	return 0;
3523}
3524
3525static int perf_evlist__prepare_tracepoint_events(struct evlist *evlist,
3526						  struct tep_handle *pevent)
3527{
3528	struct evsel *pos;
3529
3530	evlist__for_each_entry(evlist, pos) {
3531		if (pos->core.attr.type == PERF_TYPE_TRACEPOINT &&
3532		    perf_evsel__prepare_tracepoint_event(pos, pevent))
3533			return -1;
3534	}
3535
3536	return 0;
3537}
 
3538
3539int perf_session__read_header(struct perf_session *session)
3540{
3541	struct perf_data *data = session->data;
3542	struct perf_header *header = &session->header;
3543	struct perf_file_header	f_header;
3544	struct perf_file_attr	f_attr;
3545	u64			f_id;
3546	int nr_attrs, nr_ids, i, j;
3547	int fd = perf_data__fd(data);
3548
3549	session->evlist = evlist__new();
3550	if (session->evlist == NULL)
3551		return -ENOMEM;
3552
3553	session->evlist->env = &header->env;
3554	session->machines.host.env = &header->env;
3555	if (perf_data__is_pipe(data))
3556		return perf_header__read_pipe(session);
 
 
 
 
 
 
 
 
3557
3558	if (perf_file_header__read(&f_header, header, fd) < 0)
3559		return -EINVAL;
3560
 
 
 
 
 
3561	/*
3562	 * Sanity check that perf.data was written cleanly; data size is
3563	 * initialized to 0 and updated only if the on_exit function is run.
3564	 * If data size is still 0 then the file contains only partial
3565	 * information.  Just warn user and process it as much as it can.
3566	 */
3567	if (f_header.data.size == 0) {
3568		pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n"
3569			   "Was the 'perf record' command properly terminated?\n",
3570			   data->file.path);
3571	}
3572
3573	if (f_header.attr_size == 0) {
3574		pr_err("ERROR: The %s file's attr size field is 0 which is unexpected.\n"
3575		       "Was the 'perf record' command properly terminated?\n",
3576		       data->file.path);
3577		return -EINVAL;
3578	}
3579
3580	nr_attrs = f_header.attrs.size / f_header.attr_size;
3581	lseek(fd, f_header.attrs.offset, SEEK_SET);
3582
3583	for (i = 0; i < nr_attrs; i++) {
3584		struct evsel *evsel;
3585		off_t tmp;
3586
3587		if (read_attr(fd, header, &f_attr) < 0)
3588			goto out_errno;
3589
3590		if (header->needs_swap) {
3591			f_attr.ids.size   = bswap_64(f_attr.ids.size);
3592			f_attr.ids.offset = bswap_64(f_attr.ids.offset);
3593			perf_event__attr_swap(&f_attr.attr);
3594		}
3595
3596		tmp = lseek(fd, 0, SEEK_CUR);
3597		evsel = evsel__new(&f_attr.attr);
3598
3599		if (evsel == NULL)
3600			goto out_delete_evlist;
3601
3602		evsel->needs_swap = header->needs_swap;
3603		/*
3604		 * Do it before so that if perf_evsel__alloc_id fails, this
3605		 * entry gets purged too at evlist__delete().
3606		 */
3607		evlist__add(session->evlist, evsel);
3608
3609		nr_ids = f_attr.ids.size / sizeof(u64);
3610		/*
3611		 * We don't have the cpu and thread maps on the header, so
3612		 * for allocating the perf_sample_id table we fake 1 cpu and
3613		 * hattr->ids threads.
3614		 */
3615		if (perf_evsel__alloc_id(&evsel->core, 1, nr_ids))
3616			goto out_delete_evlist;
3617
3618		lseek(fd, f_attr.ids.offset, SEEK_SET);
3619
3620		for (j = 0; j < nr_ids; j++) {
3621			if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id)))
3622				goto out_errno;
3623
3624			perf_evlist__id_add(&session->evlist->core, &evsel->core, 0, j, f_id);
3625		}
3626
3627		lseek(fd, tmp, SEEK_SET);
3628	}
3629
 
3630	perf_header__process_sections(header, fd, &session->tevent,
3631				      perf_file_section__process);
3632
3633	if (perf_evlist__prepare_tracepoint_events(session->evlist,
3634						   session->tevent.pevent))
3635		goto out_delete_evlist;
 
 
 
3636
3637	return 0;
3638out_errno:
3639	return -errno;
3640
3641out_delete_evlist:
3642	evlist__delete(session->evlist);
3643	session->evlist = NULL;
3644	return -ENOMEM;
3645}
3646
3647int perf_event__process_feature(struct perf_session *session,
3648				union perf_event *event)
3649{
3650	struct perf_tool *tool = session->tool;
3651	struct feat_fd ff = { .fd = 0 };
3652	struct perf_record_header_feature *fe = (struct perf_record_header_feature *)event;
3653	int type = fe->header.type;
3654	u64 feat = fe->feat_id;
 
3655
3656	if (type < 0 || type >= PERF_RECORD_HEADER_MAX) {
3657		pr_warning("invalid record type %d in pipe-mode\n", type);
3658		return 0;
3659	}
3660	if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) {
3661		pr_warning("invalid record type %d in pipe-mode\n", type);
3662		return -1;
3663	}
3664
3665	if (!feat_ops[feat].process)
3666		return 0;
3667
3668	ff.buf  = (void *)fe->data;
3669	ff.size = event->header.size - sizeof(*fe);
3670	ff.ph = &session->header;
3671
3672	if (feat_ops[feat].process(&ff, NULL))
3673		return -1;
 
 
3674
3675	if (!feat_ops[feat].print || !tool->show_feat_hdr)
3676		return 0;
3677
3678	if (!feat_ops[feat].full_only ||
3679	    tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) {
3680		feat_ops[feat].print(&ff, stdout);
3681	} else {
3682		fprintf(stdout, "# %s info available, use -I to display\n",
3683			feat_ops[feat].name);
3684	}
3685
3686	return 0;
 
3687}
3688
3689size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp)
3690{
3691	struct perf_record_event_update *ev = &event->event_update;
3692	struct perf_record_event_update_scale *ev_scale;
3693	struct perf_record_event_update_cpus *ev_cpus;
3694	struct perf_cpu_map *map;
3695	size_t ret;
3696
3697	ret = fprintf(fp, "\n... id:    %" PRI_lu64 "\n", ev->id);
3698
3699	switch (ev->type) {
3700	case PERF_EVENT_UPDATE__SCALE:
3701		ev_scale = (struct perf_record_event_update_scale *)ev->data;
3702		ret += fprintf(fp, "... scale: %f\n", ev_scale->scale);
3703		break;
3704	case PERF_EVENT_UPDATE__UNIT:
3705		ret += fprintf(fp, "... unit:  %s\n", ev->data);
3706		break;
3707	case PERF_EVENT_UPDATE__NAME:
3708		ret += fprintf(fp, "... name:  %s\n", ev->data);
3709		break;
3710	case PERF_EVENT_UPDATE__CPUS:
3711		ev_cpus = (struct perf_record_event_update_cpus *)ev->data;
3712		ret += fprintf(fp, "... ");
3713
3714		map = cpu_map__new_data(&ev_cpus->cpus);
3715		if (map)
3716			ret += cpu_map__fprintf(map, fp);
3717		else
 
3718			ret += fprintf(fp, "failed to get cpus\n");
3719		break;
3720	default:
3721		ret += fprintf(fp, "... unknown type\n");
3722		break;
3723	}
3724
3725	return ret;
3726}
3727
3728int perf_event__process_attr(struct perf_tool *tool __maybe_unused,
3729			     union perf_event *event,
3730			     struct evlist **pevlist)
3731{
3732	u32 i, ids, n_ids;
 
3733	struct evsel *evsel;
3734	struct evlist *evlist = *pevlist;
3735
3736	if (evlist == NULL) {
3737		*pevlist = evlist = evlist__new();
3738		if (evlist == NULL)
3739			return -ENOMEM;
3740	}
3741
3742	evsel = evsel__new(&event->attr.attr);
3743	if (evsel == NULL)
3744		return -ENOMEM;
3745
3746	evlist__add(evlist, evsel);
3747
3748	ids = event->header.size;
3749	ids -= (void *)&event->attr.id - (void *)event;
3750	n_ids = ids / sizeof(u64);
3751	/*
3752	 * We don't have the cpu and thread maps on the header, so
3753	 * for allocating the perf_sample_id table we fake 1 cpu and
3754	 * hattr->ids threads.
3755	 */
3756	if (perf_evsel__alloc_id(&evsel->core, 1, n_ids))
3757		return -ENOMEM;
3758
 
3759	for (i = 0; i < n_ids; i++) {
3760		perf_evlist__id_add(&evlist->core, &evsel->core, 0, i, event->attr.id[i]);
3761	}
3762
3763	return 0;
3764}
3765
3766int perf_event__process_event_update(struct perf_tool *tool __maybe_unused,
3767				     union perf_event *event,
3768				     struct evlist **pevlist)
3769{
3770	struct perf_record_event_update *ev = &event->event_update;
3771	struct perf_record_event_update_scale *ev_scale;
3772	struct perf_record_event_update_cpus *ev_cpus;
3773	struct evlist *evlist;
3774	struct evsel *evsel;
3775	struct perf_cpu_map *map;
3776
 
 
 
3777	if (!pevlist || *pevlist == NULL)
3778		return -EINVAL;
3779
3780	evlist = *pevlist;
3781
3782	evsel = perf_evlist__id2evsel(evlist, ev->id);
3783	if (evsel == NULL)
3784		return -EINVAL;
3785
3786	switch (ev->type) {
3787	case PERF_EVENT_UPDATE__UNIT:
3788		evsel->unit = strdup(ev->data);
 
3789		break;
3790	case PERF_EVENT_UPDATE__NAME:
3791		evsel->name = strdup(ev->data);
 
3792		break;
3793	case PERF_EVENT_UPDATE__SCALE:
3794		ev_scale = (struct perf_record_event_update_scale *)ev->data;
3795		evsel->scale = ev_scale->scale;
3796		break;
3797	case PERF_EVENT_UPDATE__CPUS:
3798		ev_cpus = (struct perf_record_event_update_cpus *)ev->data;
3799
3800		map = cpu_map__new_data(&ev_cpus->cpus);
3801		if (map)
3802			evsel->core.own_cpus = map;
3803		else
3804			pr_err("failed to get event_update cpus\n");
3805	default:
3806		break;
3807	}
3808
3809	return 0;
3810}
3811
 
3812int perf_event__process_tracing_data(struct perf_session *session,
3813				     union perf_event *event)
3814{
3815	ssize_t size_read, padding, size = event->tracing_data.size;
3816	int fd = perf_data__fd(session->data);
3817	off_t offset = lseek(fd, 0, SEEK_CUR);
3818	char buf[BUFSIZ];
3819
3820	/* setup for reading amidst mmap */
3821	lseek(fd, offset + sizeof(struct perf_record_header_tracing_data),
3822	      SEEK_SET);
 
 
 
 
 
 
3823
3824	size_read = trace_report(fd, &session->tevent,
3825				 session->repipe);
 
 
 
 
3826	padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read;
3827
3828	if (readn(fd, buf, padding) < 0) {
3829		pr_err("%s: reading input file", __func__);
3830		return -1;
3831	}
3832	if (session->repipe) {
3833		int retw = write(STDOUT_FILENO, buf, padding);
3834		if (retw <= 0 || retw != padding) {
3835			pr_err("%s: repiping tracing data padding", __func__);
3836			return -1;
3837		}
3838	}
3839
3840	if (size_read + padding != size) {
3841		pr_err("%s: tracing data size mismatch", __func__);
3842		return -1;
3843	}
3844
3845	perf_evlist__prepare_tracepoint_events(session->evlist,
3846					       session->tevent.pevent);
3847
3848	return size_read + padding;
3849}
 
3850
3851int perf_event__process_build_id(struct perf_session *session,
3852				 union perf_event *event)
3853{
3854	__event_process_build_id(&event->build_id,
3855				 event->build_id.filename,
3856				 session);
3857	return 0;
3858}