Linux Audio

Check our new training course

Yocto / OpenEmbedded training

Feb 10-13, 2025
Register
Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *   intel_hdmi_audio.c - Intel HDMI audio driver
   4 *
   5 *  Copyright (C) 2016 Intel Corp
   6 *  Authors:	Sailaja Bandarupalli <sailaja.bandarupalli@intel.com>
   7 *		Ramesh Babu K V	<ramesh.babu@intel.com>
   8 *		Vaibhav Agarwal <vaibhav.agarwal@intel.com>
   9 *		Jerome Anand <jerome.anand@intel.com>
  10 *  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  11 *
  12 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  13 * ALSA driver for Intel HDMI audio
  14 */
  15
  16#include <linux/types.h>
  17#include <linux/platform_device.h>
  18#include <linux/io.h>
  19#include <linux/slab.h>
  20#include <linux/module.h>
  21#include <linux/interrupt.h>
  22#include <linux/pm_runtime.h>
  23#include <linux/dma-mapping.h>
  24#include <linux/delay.h>
  25#include <sound/core.h>
  26#include <sound/asoundef.h>
  27#include <sound/pcm.h>
  28#include <sound/pcm_params.h>
  29#include <sound/initval.h>
  30#include <sound/control.h>
  31#include <sound/jack.h>
  32#include <drm/drm_edid.h>
  33#include <drm/drm_eld.h>
  34#include <drm/intel/intel_lpe_audio.h>
  35#include "intel_hdmi_audio.h"
  36
  37#define INTEL_HDMI_AUDIO_SUSPEND_DELAY_MS  5000
  38
  39#define for_each_pipe(card_ctx, pipe) \
  40	for ((pipe) = 0; (pipe) < (card_ctx)->num_pipes; (pipe)++)
  41#define for_each_port(card_ctx, port) \
  42	for ((port) = 0; (port) < (card_ctx)->num_ports; (port)++)
  43
  44/*standard module options for ALSA. This module supports only one card*/
  45static int hdmi_card_index = SNDRV_DEFAULT_IDX1;
  46static char *hdmi_card_id = SNDRV_DEFAULT_STR1;
  47static bool single_port;
  48
  49module_param_named(index, hdmi_card_index, int, 0444);
  50MODULE_PARM_DESC(index,
  51		"Index value for INTEL Intel HDMI Audio controller.");
  52module_param_named(id, hdmi_card_id, charp, 0444);
  53MODULE_PARM_DESC(id,
  54		"ID string for INTEL Intel HDMI Audio controller.");
  55module_param(single_port, bool, 0444);
  56MODULE_PARM_DESC(single_port,
  57		"Single-port mode (for compatibility)");
  58
  59/*
  60 * ELD SA bits in the CEA Speaker Allocation data block
  61 */
  62static const int eld_speaker_allocation_bits[] = {
  63	[0] = FL | FR,
  64	[1] = LFE,
  65	[2] = FC,
  66	[3] = RL | RR,
  67	[4] = RC,
  68	[5] = FLC | FRC,
  69	[6] = RLC | RRC,
  70	/* the following are not defined in ELD yet */
  71	[7] = 0,
  72};
  73
  74/*
  75 * This is an ordered list!
  76 *
  77 * The preceding ones have better chances to be selected by
  78 * hdmi_channel_allocation().
  79 */
  80static struct cea_channel_speaker_allocation channel_allocations[] = {
  81/*                        channel:   7     6    5    4    3     2    1    0  */
  82{ .ca_index = 0x00,  .speakers = {   0,    0,   0,   0,   0,    0,  FR,  FL } },
  83				/* 2.1 */
  84{ .ca_index = 0x01,  .speakers = {   0,    0,   0,   0,   0,  LFE,  FR,  FL } },
  85				/* Dolby Surround */
  86{ .ca_index = 0x02,  .speakers = {   0,    0,   0,   0,  FC,    0,  FR,  FL } },
  87				/* surround40 */
  88{ .ca_index = 0x08,  .speakers = {   0,    0,  RR,  RL,   0,    0,  FR,  FL } },
  89				/* surround41 */
  90{ .ca_index = 0x09,  .speakers = {   0,    0,  RR,  RL,   0,  LFE,  FR,  FL } },
  91				/* surround50 */
  92{ .ca_index = 0x0a,  .speakers = {   0,    0,  RR,  RL,  FC,    0,  FR,  FL } },
  93				/* surround51 */
  94{ .ca_index = 0x0b,  .speakers = {   0,    0,  RR,  RL,  FC,  LFE,  FR,  FL } },
  95				/* 6.1 */
  96{ .ca_index = 0x0f,  .speakers = {   0,   RC,  RR,  RL,  FC,  LFE,  FR,  FL } },
  97				/* surround71 */
  98{ .ca_index = 0x13,  .speakers = { RRC,  RLC,  RR,  RL,  FC,  LFE,  FR,  FL } },
  99
 100{ .ca_index = 0x03,  .speakers = {   0,    0,   0,   0,  FC,  LFE,  FR,  FL } },
 101{ .ca_index = 0x04,  .speakers = {   0,    0,   0,  RC,   0,    0,  FR,  FL } },
 102{ .ca_index = 0x05,  .speakers = {   0,    0,   0,  RC,   0,  LFE,  FR,  FL } },
 103{ .ca_index = 0x06,  .speakers = {   0,    0,   0,  RC,  FC,    0,  FR,  FL } },
 104{ .ca_index = 0x07,  .speakers = {   0,    0,   0,  RC,  FC,  LFE,  FR,  FL } },
 105{ .ca_index = 0x0c,  .speakers = {   0,   RC,  RR,  RL,   0,    0,  FR,  FL } },
 106{ .ca_index = 0x0d,  .speakers = {   0,   RC,  RR,  RL,   0,  LFE,  FR,  FL } },
 107{ .ca_index = 0x0e,  .speakers = {   0,   RC,  RR,  RL,  FC,    0,  FR,  FL } },
 108{ .ca_index = 0x10,  .speakers = { RRC,  RLC,  RR,  RL,   0,    0,  FR,  FL } },
 109{ .ca_index = 0x11,  .speakers = { RRC,  RLC,  RR,  RL,   0,  LFE,  FR,  FL } },
 110{ .ca_index = 0x12,  .speakers = { RRC,  RLC,  RR,  RL,  FC,    0,  FR,  FL } },
 111{ .ca_index = 0x14,  .speakers = { FRC,  FLC,   0,   0,   0,    0,  FR,  FL } },
 112{ .ca_index = 0x15,  .speakers = { FRC,  FLC,   0,   0,   0,  LFE,  FR,  FL } },
 113{ .ca_index = 0x16,  .speakers = { FRC,  FLC,   0,   0,  FC,    0,  FR,  FL } },
 114{ .ca_index = 0x17,  .speakers = { FRC,  FLC,   0,   0,  FC,  LFE,  FR,  FL } },
 115{ .ca_index = 0x18,  .speakers = { FRC,  FLC,   0,  RC,   0,    0,  FR,  FL } },
 116{ .ca_index = 0x19,  .speakers = { FRC,  FLC,   0,  RC,   0,  LFE,  FR,  FL } },
 117{ .ca_index = 0x1a,  .speakers = { FRC,  FLC,   0,  RC,  FC,    0,  FR,  FL } },
 118{ .ca_index = 0x1b,  .speakers = { FRC,  FLC,   0,  RC,  FC,  LFE,  FR,  FL } },
 119{ .ca_index = 0x1c,  .speakers = { FRC,  FLC,  RR,  RL,   0,    0,  FR,  FL } },
 120{ .ca_index = 0x1d,  .speakers = { FRC,  FLC,  RR,  RL,   0,  LFE,  FR,  FL } },
 121{ .ca_index = 0x1e,  .speakers = { FRC,  FLC,  RR,  RL,  FC,    0,  FR,  FL } },
 122{ .ca_index = 0x1f,  .speakers = { FRC,  FLC,  RR,  RL,  FC,  LFE,  FR,  FL } },
 123};
 124
 125static const struct channel_map_table map_tables[] = {
 126	{ SNDRV_CHMAP_FL,       0x00,   FL },
 127	{ SNDRV_CHMAP_FR,       0x01,   FR },
 128	{ SNDRV_CHMAP_RL,       0x04,   RL },
 129	{ SNDRV_CHMAP_RR,       0x05,   RR },
 130	{ SNDRV_CHMAP_LFE,      0x02,   LFE },
 131	{ SNDRV_CHMAP_FC,       0x03,   FC },
 132	{ SNDRV_CHMAP_RLC,      0x06,   RLC },
 133	{ SNDRV_CHMAP_RRC,      0x07,   RRC },
 134	{} /* terminator */
 135};
 136
 137/* hardware capability structure */
 138static const struct snd_pcm_hardware had_pcm_hardware = {
 139	.info =	(SNDRV_PCM_INFO_INTERLEAVED |
 140		SNDRV_PCM_INFO_MMAP |
 141		SNDRV_PCM_INFO_MMAP_VALID |
 142		SNDRV_PCM_INFO_NO_PERIOD_WAKEUP),
 143	.formats = (SNDRV_PCM_FMTBIT_S16_LE |
 144		    SNDRV_PCM_FMTBIT_S24_LE |
 145		    SNDRV_PCM_FMTBIT_S32_LE),
 146	.rates = SNDRV_PCM_RATE_32000 |
 147		SNDRV_PCM_RATE_44100 |
 148		SNDRV_PCM_RATE_48000 |
 149		SNDRV_PCM_RATE_88200 |
 150		SNDRV_PCM_RATE_96000 |
 151		SNDRV_PCM_RATE_176400 |
 152		SNDRV_PCM_RATE_192000,
 153	.rate_min = HAD_MIN_RATE,
 154	.rate_max = HAD_MAX_RATE,
 155	.channels_min = HAD_MIN_CHANNEL,
 156	.channels_max = HAD_MAX_CHANNEL,
 157	.buffer_bytes_max = HAD_MAX_BUFFER,
 158	.period_bytes_min = HAD_MIN_PERIOD_BYTES,
 159	.period_bytes_max = HAD_MAX_PERIOD_BYTES,
 160	.periods_min = HAD_MIN_PERIODS,
 161	.periods_max = HAD_MAX_PERIODS,
 162	.fifo_size = HAD_FIFO_SIZE,
 163};
 164
 165/* Get the active PCM substream;
 166 * Call had_substream_put() for unreferecing.
 167 * Don't call this inside had_spinlock, as it takes by itself
 168 */
 169static struct snd_pcm_substream *
 170had_substream_get(struct snd_intelhad *intelhaddata)
 171{
 172	struct snd_pcm_substream *substream;
 173	unsigned long flags;
 174
 175	spin_lock_irqsave(&intelhaddata->had_spinlock, flags);
 176	substream = intelhaddata->stream_info.substream;
 177	if (substream)
 178		intelhaddata->stream_info.substream_refcount++;
 179	spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags);
 180	return substream;
 181}
 182
 183/* Unref the active PCM substream;
 184 * Don't call this inside had_spinlock, as it takes by itself
 185 */
 186static void had_substream_put(struct snd_intelhad *intelhaddata)
 187{
 188	unsigned long flags;
 189
 190	spin_lock_irqsave(&intelhaddata->had_spinlock, flags);
 191	intelhaddata->stream_info.substream_refcount--;
 192	spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags);
 193}
 194
 195static u32 had_config_offset(int pipe)
 196{
 197	switch (pipe) {
 198	default:
 199	case 0:
 200		return AUDIO_HDMI_CONFIG_A;
 201	case 1:
 202		return AUDIO_HDMI_CONFIG_B;
 203	case 2:
 204		return AUDIO_HDMI_CONFIG_C;
 205	}
 206}
 207
 208/* Register access functions */
 209static u32 had_read_register_raw(struct snd_intelhad_card *card_ctx,
 210				 int pipe, u32 reg)
 211{
 212	return ioread32(card_ctx->mmio_start + had_config_offset(pipe) + reg);
 213}
 214
 215static void had_write_register_raw(struct snd_intelhad_card *card_ctx,
 216				   int pipe, u32 reg, u32 val)
 217{
 218	iowrite32(val, card_ctx->mmio_start + had_config_offset(pipe) + reg);
 219}
 220
 221static void had_read_register(struct snd_intelhad *ctx, u32 reg, u32 *val)
 222{
 223	if (!ctx->connected)
 224		*val = 0;
 225	else
 226		*val = had_read_register_raw(ctx->card_ctx, ctx->pipe, reg);
 227}
 228
 229static void had_write_register(struct snd_intelhad *ctx, u32 reg, u32 val)
 230{
 231	if (ctx->connected)
 232		had_write_register_raw(ctx->card_ctx, ctx->pipe, reg, val);
 233}
 234
 235/*
 236 * enable / disable audio configuration
 237 *
 238 * The normal read/modify should not directly be used on VLV2 for
 239 * updating AUD_CONFIG register.
 240 * This is because:
 241 * Bit6 of AUD_CONFIG register is writeonly due to a silicon bug on VLV2
 242 * HDMI IP. As a result a read-modify of AUD_CONFIG register will always
 243 * clear bit6. AUD_CONFIG[6:4] represents the "channels" field of the
 244 * register. This field should be 1xy binary for configuration with 6 or
 245 * more channels. Read-modify of AUD_CONFIG (Eg. for enabling audio)
 246 * causes the "channels" field to be updated as 0xy binary resulting in
 247 * bad audio. The fix is to always write the AUD_CONFIG[6:4] with
 248 * appropriate value when doing read-modify of AUD_CONFIG register.
 249 */
 250static void had_enable_audio(struct snd_intelhad *intelhaddata,
 251			     bool enable)
 252{
 253	/* update the cached value */
 254	intelhaddata->aud_config.regx.aud_en = enable;
 255	had_write_register(intelhaddata, AUD_CONFIG,
 256			   intelhaddata->aud_config.regval);
 257}
 258
 259/* forcibly ACKs to both BUFFER_DONE and BUFFER_UNDERRUN interrupts */
 260static void had_ack_irqs(struct snd_intelhad *ctx)
 261{
 262	u32 status_reg;
 263
 264	if (!ctx->connected)
 265		return;
 266	had_read_register(ctx, AUD_HDMI_STATUS, &status_reg);
 267	status_reg |= HDMI_AUDIO_BUFFER_DONE | HDMI_AUDIO_UNDERRUN;
 268	had_write_register(ctx, AUD_HDMI_STATUS, status_reg);
 269	had_read_register(ctx, AUD_HDMI_STATUS, &status_reg);
 270}
 271
 272/* Reset buffer pointers */
 273static void had_reset_audio(struct snd_intelhad *intelhaddata)
 274{
 275	had_write_register(intelhaddata, AUD_HDMI_STATUS,
 276			   AUD_HDMI_STATUSG_MASK_FUNCRST);
 277	had_write_register(intelhaddata, AUD_HDMI_STATUS, 0);
 278}
 279
 280/*
 281 * initialize audio channel status registers
 282 * This function is called in the prepare callback
 283 */
 284static int had_prog_status_reg(struct snd_pcm_substream *substream,
 285			struct snd_intelhad *intelhaddata)
 286{
 287	union aud_ch_status_0 ch_stat0 = {.regval = 0};
 288	union aud_ch_status_1 ch_stat1 = {.regval = 0};
 289
 290	ch_stat0.regx.lpcm_id = (intelhaddata->aes_bits &
 291					  IEC958_AES0_NONAUDIO) >> 1;
 292	ch_stat0.regx.clk_acc = (intelhaddata->aes_bits &
 293					  IEC958_AES3_CON_CLOCK) >> 4;
 294
 295	switch (substream->runtime->rate) {
 296	case AUD_SAMPLE_RATE_32:
 297		ch_stat0.regx.samp_freq = CH_STATUS_MAP_32KHZ;
 298		break;
 299
 300	case AUD_SAMPLE_RATE_44_1:
 301		ch_stat0.regx.samp_freq = CH_STATUS_MAP_44KHZ;
 302		break;
 303	case AUD_SAMPLE_RATE_48:
 304		ch_stat0.regx.samp_freq = CH_STATUS_MAP_48KHZ;
 305		break;
 306	case AUD_SAMPLE_RATE_88_2:
 307		ch_stat0.regx.samp_freq = CH_STATUS_MAP_88KHZ;
 308		break;
 309	case AUD_SAMPLE_RATE_96:
 310		ch_stat0.regx.samp_freq = CH_STATUS_MAP_96KHZ;
 311		break;
 312	case AUD_SAMPLE_RATE_176_4:
 313		ch_stat0.regx.samp_freq = CH_STATUS_MAP_176KHZ;
 314		break;
 315	case AUD_SAMPLE_RATE_192:
 316		ch_stat0.regx.samp_freq = CH_STATUS_MAP_192KHZ;
 317		break;
 318
 319	default:
 320		/* control should never come here */
 321		return -EINVAL;
 322	}
 323
 324	had_write_register(intelhaddata,
 325			   AUD_CH_STATUS_0, ch_stat0.regval);
 326
 327	switch (substream->runtime->format) {
 328	case SNDRV_PCM_FORMAT_S16_LE:
 329		ch_stat1.regx.max_wrd_len = MAX_SMPL_WIDTH_20;
 330		ch_stat1.regx.wrd_len = SMPL_WIDTH_16BITS;
 331		break;
 332	case SNDRV_PCM_FORMAT_S24_LE:
 333	case SNDRV_PCM_FORMAT_S32_LE:
 334		ch_stat1.regx.max_wrd_len = MAX_SMPL_WIDTH_24;
 335		ch_stat1.regx.wrd_len = SMPL_WIDTH_24BITS;
 336		break;
 337	default:
 338		return -EINVAL;
 339	}
 340
 341	had_write_register(intelhaddata,
 342			   AUD_CH_STATUS_1, ch_stat1.regval);
 343	return 0;
 344}
 345
 346/*
 347 * function to initialize audio
 348 * registers and buffer configuration registers
 349 * This function is called in the prepare callback
 350 */
 351static int had_init_audio_ctrl(struct snd_pcm_substream *substream,
 352			       struct snd_intelhad *intelhaddata)
 353{
 354	union aud_cfg cfg_val = {.regval = 0};
 355	union aud_buf_config buf_cfg = {.regval = 0};
 356	u8 channels;
 357
 358	had_prog_status_reg(substream, intelhaddata);
 359
 360	buf_cfg.regx.audio_fifo_watermark = FIFO_THRESHOLD;
 361	buf_cfg.regx.dma_fifo_watermark = DMA_FIFO_THRESHOLD;
 362	buf_cfg.regx.aud_delay = 0;
 363	had_write_register(intelhaddata, AUD_BUF_CONFIG, buf_cfg.regval);
 364
 365	channels = substream->runtime->channels;
 366	cfg_val.regx.num_ch = channels - 2;
 367	if (channels <= 2)
 368		cfg_val.regx.layout = LAYOUT0;
 369	else
 370		cfg_val.regx.layout = LAYOUT1;
 371
 372	if (substream->runtime->format == SNDRV_PCM_FORMAT_S16_LE)
 373		cfg_val.regx.packet_mode = 1;
 374
 375	if (substream->runtime->format == SNDRV_PCM_FORMAT_S32_LE)
 376		cfg_val.regx.left_align = 1;
 377
 378	cfg_val.regx.val_bit = 1;
 379
 380	/* fix up the DP bits */
 381	if (intelhaddata->dp_output) {
 382		cfg_val.regx.dp_modei = 1;
 383		cfg_val.regx.set = 1;
 384	}
 385
 386	had_write_register(intelhaddata, AUD_CONFIG, cfg_val.regval);
 387	intelhaddata->aud_config = cfg_val;
 388	return 0;
 389}
 390
 391/*
 392 * Compute derived values in channel_allocations[].
 393 */
 394static void init_channel_allocations(void)
 395{
 396	int i, j;
 397	struct cea_channel_speaker_allocation *p;
 398
 399	for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
 400		p = channel_allocations + i;
 401		p->channels = 0;
 402		p->spk_mask = 0;
 403		for (j = 0; j < ARRAY_SIZE(p->speakers); j++)
 404			if (p->speakers[j]) {
 405				p->channels++;
 406				p->spk_mask |= p->speakers[j];
 407			}
 408	}
 409}
 410
 411/*
 412 * The transformation takes two steps:
 413 *
 414 *      eld->spk_alloc => (eld_speaker_allocation_bits[]) => spk_mask
 415 *            spk_mask => (channel_allocations[])         => ai->CA
 416 *
 417 * TODO: it could select the wrong CA from multiple candidates.
 418 */
 419static int had_channel_allocation(struct snd_intelhad *intelhaddata,
 420				  int channels)
 421{
 422	int i;
 423	int ca = 0;
 424	int spk_mask = 0;
 425
 426	/*
 427	 * CA defaults to 0 for basic stereo audio
 428	 */
 429	if (channels <= 2)
 430		return 0;
 431
 432	/*
 433	 * expand ELD's speaker allocation mask
 434	 *
 435	 * ELD tells the speaker mask in a compact(paired) form,
 436	 * expand ELD's notions to match the ones used by Audio InfoFrame.
 437	 */
 438
 439	for (i = 0; i < ARRAY_SIZE(eld_speaker_allocation_bits); i++) {
 440		if (intelhaddata->eld[DRM_ELD_SPEAKER] & (1 << i))
 441			spk_mask |= eld_speaker_allocation_bits[i];
 442	}
 443
 444	/* search for the first working match in the CA table */
 445	for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
 446		if (channels == channel_allocations[i].channels &&
 447		(spk_mask & channel_allocations[i].spk_mask) ==
 448				channel_allocations[i].spk_mask) {
 449			ca = channel_allocations[i].ca_index;
 450			break;
 451		}
 452	}
 453
 454	dev_dbg(intelhaddata->dev, "select CA 0x%x for %d\n", ca, channels);
 455
 456	return ca;
 457}
 458
 459/* from speaker bit mask to ALSA API channel position */
 460static int spk_to_chmap(int spk)
 461{
 462	const struct channel_map_table *t = map_tables;
 463
 464	for (; t->map; t++) {
 465		if (t->spk_mask == spk)
 466			return t->map;
 467	}
 468	return 0;
 469}
 470
 471static void had_build_channel_allocation_map(struct snd_intelhad *intelhaddata)
 472{
 473	int i, c;
 474	int spk_mask = 0;
 475	struct snd_pcm_chmap_elem *chmap;
 476	u8 eld_high, eld_high_mask = 0xF0;
 477	u8 high_msb;
 478
 479	kfree(intelhaddata->chmap->chmap);
 480	intelhaddata->chmap->chmap = NULL;
 481
 482	chmap = kzalloc(sizeof(*chmap), GFP_KERNEL);
 483	if (!chmap)
 484		return;
 485
 486	dev_dbg(intelhaddata->dev, "eld speaker = %x\n",
 487		intelhaddata->eld[DRM_ELD_SPEAKER]);
 488
 489	/* WA: Fix the max channel supported to 8 */
 490
 491	/*
 492	 * Sink may support more than 8 channels, if eld_high has more than
 493	 * one bit set. SOC supports max 8 channels.
 494	 * Refer eld_speaker_allocation_bits, for sink speaker allocation
 495	 */
 496
 497	/* if 0x2F < eld < 0x4F fall back to 0x2f, else fall back to 0x4F */
 498	eld_high = intelhaddata->eld[DRM_ELD_SPEAKER] & eld_high_mask;
 499	if ((eld_high & (eld_high-1)) && (eld_high > 0x1F)) {
 500		/* eld_high & (eld_high-1): if more than 1 bit set */
 501		/* 0x1F: 7 channels */
 502		for (i = 1; i < 4; i++) {
 503			high_msb = eld_high & (0x80 >> i);
 504			if (high_msb) {
 505				intelhaddata->eld[DRM_ELD_SPEAKER] &=
 506					high_msb | 0xF;
 507				break;
 508			}
 509		}
 510	}
 511
 512	for (i = 0; i < ARRAY_SIZE(eld_speaker_allocation_bits); i++) {
 513		if (intelhaddata->eld[DRM_ELD_SPEAKER] & (1 << i))
 514			spk_mask |= eld_speaker_allocation_bits[i];
 515	}
 516
 517	for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
 518		if (spk_mask == channel_allocations[i].spk_mask) {
 519			for (c = 0; c < channel_allocations[i].channels; c++) {
 520				chmap->map[c] = spk_to_chmap(
 521					channel_allocations[i].speakers[
 522						(MAX_SPEAKERS - 1) - c]);
 523			}
 524			chmap->channels = channel_allocations[i].channels;
 525			intelhaddata->chmap->chmap = chmap;
 526			break;
 527		}
 528	}
 529	if (i >= ARRAY_SIZE(channel_allocations))
 530		kfree(chmap);
 531}
 532
 533/*
 534 * ALSA API channel-map control callbacks
 535 */
 536static int had_chmap_ctl_info(struct snd_kcontrol *kcontrol,
 537				struct snd_ctl_elem_info *uinfo)
 538{
 539	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
 540	uinfo->count = HAD_MAX_CHANNEL;
 541	uinfo->value.integer.min = 0;
 542	uinfo->value.integer.max = SNDRV_CHMAP_LAST;
 543	return 0;
 544}
 545
 546static int had_chmap_ctl_get(struct snd_kcontrol *kcontrol,
 547				struct snd_ctl_elem_value *ucontrol)
 548{
 549	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
 550	struct snd_intelhad *intelhaddata = info->private_data;
 551	int i;
 552	const struct snd_pcm_chmap_elem *chmap;
 553
 554	memset(ucontrol->value.integer.value, 0,
 555	       sizeof(long) * HAD_MAX_CHANNEL);
 556	mutex_lock(&intelhaddata->mutex);
 557	if (!intelhaddata->chmap->chmap) {
 558		mutex_unlock(&intelhaddata->mutex);
 559		return 0;
 560	}
 561
 562	chmap = intelhaddata->chmap->chmap;
 563	for (i = 0; i < chmap->channels; i++)
 564		ucontrol->value.integer.value[i] = chmap->map[i];
 565	mutex_unlock(&intelhaddata->mutex);
 566
 567	return 0;
 568}
 569
 570static int had_register_chmap_ctls(struct snd_intelhad *intelhaddata,
 571						struct snd_pcm *pcm)
 572{
 573	int err;
 574
 575	err = snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK,
 576			NULL, 0, (unsigned long)intelhaddata,
 577			&intelhaddata->chmap);
 578	if (err < 0)
 579		return err;
 580
 581	intelhaddata->chmap->private_data = intelhaddata;
 582	intelhaddata->chmap->kctl->info = had_chmap_ctl_info;
 583	intelhaddata->chmap->kctl->get = had_chmap_ctl_get;
 584	intelhaddata->chmap->chmap = NULL;
 585	return 0;
 586}
 587
 588/*
 589 * Initialize Data Island Packets registers
 590 * This function is called in the prepare callback
 591 */
 592static void had_prog_dip(struct snd_pcm_substream *substream,
 593			 struct snd_intelhad *intelhaddata)
 594{
 595	int i;
 596	union aud_ctrl_st ctrl_state = {.regval = 0};
 597	union aud_info_frame2 frame2 = {.regval = 0};
 598	union aud_info_frame3 frame3 = {.regval = 0};
 599	u8 checksum = 0;
 600	u32 info_frame;
 601	int channels;
 602	int ca;
 603
 604	channels = substream->runtime->channels;
 605
 606	had_write_register(intelhaddata, AUD_CNTL_ST, ctrl_state.regval);
 607
 608	ca = had_channel_allocation(intelhaddata, channels);
 609	if (intelhaddata->dp_output) {
 610		info_frame = DP_INFO_FRAME_WORD1;
 611		frame2.regval = (substream->runtime->channels - 1) | (ca << 24);
 612	} else {
 613		info_frame = HDMI_INFO_FRAME_WORD1;
 614		frame2.regx.chnl_cnt = substream->runtime->channels - 1;
 615		frame3.regx.chnl_alloc = ca;
 616
 617		/* Calculte the byte wide checksum for all valid DIP words */
 618		for (i = 0; i < BYTES_PER_WORD; i++)
 619			checksum += (info_frame >> (i * 8)) & 0xff;
 620		for (i = 0; i < BYTES_PER_WORD; i++)
 621			checksum += (frame2.regval >> (i * 8)) & 0xff;
 622		for (i = 0; i < BYTES_PER_WORD; i++)
 623			checksum += (frame3.regval >> (i * 8)) & 0xff;
 624
 625		frame2.regx.chksum = -(checksum);
 626	}
 627
 628	had_write_register(intelhaddata, AUD_HDMIW_INFOFR, info_frame);
 629	had_write_register(intelhaddata, AUD_HDMIW_INFOFR, frame2.regval);
 630	had_write_register(intelhaddata, AUD_HDMIW_INFOFR, frame3.regval);
 631
 632	/* program remaining DIP words with zero */
 633	for (i = 0; i < HAD_MAX_DIP_WORDS-VALID_DIP_WORDS; i++)
 634		had_write_register(intelhaddata, AUD_HDMIW_INFOFR, 0x0);
 635
 636	ctrl_state.regx.dip_freq = 1;
 637	ctrl_state.regx.dip_en_sta = 1;
 638	had_write_register(intelhaddata, AUD_CNTL_ST, ctrl_state.regval);
 639}
 640
 641static int had_calculate_maud_value(u32 aud_samp_freq, u32 link_rate)
 642{
 643	u32 maud_val;
 644
 645	/* Select maud according to DP 1.2 spec */
 646	if (link_rate == DP_2_7_GHZ) {
 647		switch (aud_samp_freq) {
 648		case AUD_SAMPLE_RATE_32:
 649			maud_val = AUD_SAMPLE_RATE_32_DP_2_7_MAUD_VAL;
 650			break;
 651
 652		case AUD_SAMPLE_RATE_44_1:
 653			maud_val = AUD_SAMPLE_RATE_44_1_DP_2_7_MAUD_VAL;
 654			break;
 655
 656		case AUD_SAMPLE_RATE_48:
 657			maud_val = AUD_SAMPLE_RATE_48_DP_2_7_MAUD_VAL;
 658			break;
 659
 660		case AUD_SAMPLE_RATE_88_2:
 661			maud_val = AUD_SAMPLE_RATE_88_2_DP_2_7_MAUD_VAL;
 662			break;
 663
 664		case AUD_SAMPLE_RATE_96:
 665			maud_val = AUD_SAMPLE_RATE_96_DP_2_7_MAUD_VAL;
 666			break;
 667
 668		case AUD_SAMPLE_RATE_176_4:
 669			maud_val = AUD_SAMPLE_RATE_176_4_DP_2_7_MAUD_VAL;
 670			break;
 671
 672		case HAD_MAX_RATE:
 673			maud_val = HAD_MAX_RATE_DP_2_7_MAUD_VAL;
 674			break;
 675
 676		default:
 677			maud_val = -EINVAL;
 678			break;
 679		}
 680	} else if (link_rate == DP_1_62_GHZ) {
 681		switch (aud_samp_freq) {
 682		case AUD_SAMPLE_RATE_32:
 683			maud_val = AUD_SAMPLE_RATE_32_DP_1_62_MAUD_VAL;
 684			break;
 685
 686		case AUD_SAMPLE_RATE_44_1:
 687			maud_val = AUD_SAMPLE_RATE_44_1_DP_1_62_MAUD_VAL;
 688			break;
 689
 690		case AUD_SAMPLE_RATE_48:
 691			maud_val = AUD_SAMPLE_RATE_48_DP_1_62_MAUD_VAL;
 692			break;
 693
 694		case AUD_SAMPLE_RATE_88_2:
 695			maud_val = AUD_SAMPLE_RATE_88_2_DP_1_62_MAUD_VAL;
 696			break;
 697
 698		case AUD_SAMPLE_RATE_96:
 699			maud_val = AUD_SAMPLE_RATE_96_DP_1_62_MAUD_VAL;
 700			break;
 701
 702		case AUD_SAMPLE_RATE_176_4:
 703			maud_val = AUD_SAMPLE_RATE_176_4_DP_1_62_MAUD_VAL;
 704			break;
 705
 706		case HAD_MAX_RATE:
 707			maud_val = HAD_MAX_RATE_DP_1_62_MAUD_VAL;
 708			break;
 709
 710		default:
 711			maud_val = -EINVAL;
 712			break;
 713		}
 714	} else
 715		maud_val = -EINVAL;
 716
 717	return maud_val;
 718}
 719
 720/*
 721 * Program HDMI audio CTS value
 722 *
 723 * @aud_samp_freq: sampling frequency of audio data
 724 * @tmds: sampling frequency of the display data
 725 * @link_rate: DP link rate
 726 * @n_param: N value, depends on aud_samp_freq
 727 * @intelhaddata: substream private data
 728 *
 729 * Program CTS register based on the audio and display sampling frequency
 730 */
 731static void had_prog_cts(u32 aud_samp_freq, u32 tmds, u32 link_rate,
 732			 u32 n_param, struct snd_intelhad *intelhaddata)
 733{
 734	u32 cts_val;
 735	u64 dividend, divisor;
 736
 737	if (intelhaddata->dp_output) {
 738		/* Substitute cts_val with Maud according to DP 1.2 spec*/
 739		cts_val = had_calculate_maud_value(aud_samp_freq, link_rate);
 740	} else {
 741		/* Calculate CTS according to HDMI 1.3a spec*/
 742		dividend = (u64)tmds * n_param*1000;
 743		divisor = 128 * aud_samp_freq;
 744		cts_val = div64_u64(dividend, divisor);
 745	}
 746	dev_dbg(intelhaddata->dev, "TMDS value=%d, N value=%d, CTS Value=%d\n",
 747		 tmds, n_param, cts_val);
 748	had_write_register(intelhaddata, AUD_HDMI_CTS, (BIT(24) | cts_val));
 749}
 750
 751static int had_calculate_n_value(u32 aud_samp_freq)
 752{
 753	int n_val;
 754
 755	/* Select N according to HDMI 1.3a spec*/
 756	switch (aud_samp_freq) {
 757	case AUD_SAMPLE_RATE_32:
 758		n_val = 4096;
 759		break;
 760
 761	case AUD_SAMPLE_RATE_44_1:
 762		n_val = 6272;
 763		break;
 764
 765	case AUD_SAMPLE_RATE_48:
 766		n_val = 6144;
 767		break;
 768
 769	case AUD_SAMPLE_RATE_88_2:
 770		n_val = 12544;
 771		break;
 772
 773	case AUD_SAMPLE_RATE_96:
 774		n_val = 12288;
 775		break;
 776
 777	case AUD_SAMPLE_RATE_176_4:
 778		n_val = 25088;
 779		break;
 780
 781	case HAD_MAX_RATE:
 782		n_val = 24576;
 783		break;
 784
 785	default:
 786		n_val = -EINVAL;
 787		break;
 788	}
 789	return n_val;
 790}
 791
 792/*
 793 * Program HDMI audio N value
 794 *
 795 * @aud_samp_freq: sampling frequency of audio data
 796 * @n_param: N value, depends on aud_samp_freq
 797 * @intelhaddata: substream private data
 798 *
 799 * This function is called in the prepare callback.
 800 * It programs based on the audio and display sampling frequency
 801 */
 802static int had_prog_n(u32 aud_samp_freq, u32 *n_param,
 803		      struct snd_intelhad *intelhaddata)
 804{
 805	int n_val;
 806
 807	if (intelhaddata->dp_output) {
 808		/*
 809		 * According to DP specs, Maud and Naud values hold
 810		 * a relationship, which is stated as:
 811		 * Maud/Naud = 512 * fs / f_LS_Clk
 812		 * where, fs is the sampling frequency of the audio stream
 813		 * and Naud is 32768 for Async clock.
 814		 */
 815
 816		n_val = DP_NAUD_VAL;
 817	} else
 818		n_val =	had_calculate_n_value(aud_samp_freq);
 819
 820	if (n_val < 0)
 821		return n_val;
 822
 823	had_write_register(intelhaddata, AUD_N_ENABLE, (BIT(24) | n_val));
 824	*n_param = n_val;
 825	return 0;
 826}
 827
 828/*
 829 * PCM ring buffer handling
 830 *
 831 * The hardware provides a ring buffer with the fixed 4 buffer descriptors
 832 * (BDs).  The driver maps these 4 BDs onto the PCM ring buffer.  The mapping
 833 * moves at each period elapsed.  The below illustrates how it works:
 834 *
 835 * At time=0
 836 *  PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
 837 *  BD  | 0 | 1 | 2 | 3 |
 838 *
 839 * At time=1 (period elapsed)
 840 *  PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
 841 *  BD      | 1 | 2 | 3 | 0 |
 842 *
 843 * At time=2 (second period elapsed)
 844 *  PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
 845 *  BD          | 2 | 3 | 0 | 1 |
 846 *
 847 * The bd_head field points to the index of the BD to be read.  It's also the
 848 * position to be filled at next.  The pcm_head and the pcm_filled fields
 849 * point to the indices of the current position and of the next position to
 850 * be filled, respectively.  For PCM buffer there are both _head and _filled
 851 * because they may be difference when nperiods > 4.  For example, in the
 852 * example above at t=1, bd_head=1 and pcm_head=1 while pcm_filled=5:
 853 *
 854 * pcm_head (=1) --v               v-- pcm_filled (=5)
 855 *       PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
 856 *       BD      | 1 | 2 | 3 | 0 |
 857 *  bd_head (=1) --^               ^-- next to fill (= bd_head)
 858 *
 859 * For nperiods < 4, the remaining BDs out of 4 are marked as invalid, so that
 860 * the hardware skips those BDs in the loop.
 861 *
 862 * An exceptional setup is the case with nperiods=1.  Since we have to update
 863 * BDs after finishing one BD processing, we'd need at least two BDs, where
 864 * both BDs point to the same content, the same address, the same size of the
 865 * whole PCM buffer.
 866 */
 867
 868#define AUD_BUF_ADDR(x)		(AUD_BUF_A_ADDR + (x) * HAD_REG_WIDTH)
 869#define AUD_BUF_LEN(x)		(AUD_BUF_A_LENGTH + (x) * HAD_REG_WIDTH)
 870
 871/* Set up a buffer descriptor at the "filled" position */
 872static void had_prog_bd(struct snd_pcm_substream *substream,
 873			struct snd_intelhad *intelhaddata)
 874{
 875	int idx = intelhaddata->bd_head;
 876	int ofs = intelhaddata->pcmbuf_filled * intelhaddata->period_bytes;
 877	u32 addr = substream->runtime->dma_addr + ofs;
 878
 879	addr |= AUD_BUF_VALID;
 880	if (!substream->runtime->no_period_wakeup)
 881		addr |= AUD_BUF_INTR_EN;
 882	had_write_register(intelhaddata, AUD_BUF_ADDR(idx), addr);
 883	had_write_register(intelhaddata, AUD_BUF_LEN(idx),
 884			   intelhaddata->period_bytes);
 885
 886	/* advance the indices to the next */
 887	intelhaddata->bd_head++;
 888	intelhaddata->bd_head %= intelhaddata->num_bds;
 889	intelhaddata->pcmbuf_filled++;
 890	intelhaddata->pcmbuf_filled %= substream->runtime->periods;
 891}
 892
 893/* invalidate a buffer descriptor with the given index */
 894static void had_invalidate_bd(struct snd_intelhad *intelhaddata,
 895			      int idx)
 896{
 897	had_write_register(intelhaddata, AUD_BUF_ADDR(idx), 0);
 898	had_write_register(intelhaddata, AUD_BUF_LEN(idx), 0);
 899}
 900
 901/* Initial programming of ring buffer */
 902static void had_init_ringbuf(struct snd_pcm_substream *substream,
 903			     struct snd_intelhad *intelhaddata)
 904{
 905	struct snd_pcm_runtime *runtime = substream->runtime;
 906	int i, num_periods;
 907
 908	num_periods = runtime->periods;
 909	intelhaddata->num_bds = min(num_periods, HAD_NUM_OF_RING_BUFS);
 910	/* set the minimum 2 BDs for num_periods=1 */
 911	intelhaddata->num_bds = max(intelhaddata->num_bds, 2U);
 912	intelhaddata->period_bytes =
 913		frames_to_bytes(runtime, runtime->period_size);
 914	WARN_ON(intelhaddata->period_bytes & 0x3f);
 915
 916	intelhaddata->bd_head = 0;
 917	intelhaddata->pcmbuf_head = 0;
 918	intelhaddata->pcmbuf_filled = 0;
 919
 920	for (i = 0; i < HAD_NUM_OF_RING_BUFS; i++) {
 921		if (i < intelhaddata->num_bds)
 922			had_prog_bd(substream, intelhaddata);
 923		else /* invalidate the rest */
 924			had_invalidate_bd(intelhaddata, i);
 925	}
 926
 927	intelhaddata->bd_head = 0; /* reset at head again before starting */
 928}
 929
 930/* process a bd, advance to the next */
 931static void had_advance_ringbuf(struct snd_pcm_substream *substream,
 932				struct snd_intelhad *intelhaddata)
 933{
 934	int num_periods = substream->runtime->periods;
 935
 936	/* reprogram the next buffer */
 937	had_prog_bd(substream, intelhaddata);
 938
 939	/* proceed to next */
 940	intelhaddata->pcmbuf_head++;
 941	intelhaddata->pcmbuf_head %= num_periods;
 942}
 943
 944/* process the current BD(s);
 945 * returns the current PCM buffer byte position, or -EPIPE for underrun.
 946 */
 947static int had_process_ringbuf(struct snd_pcm_substream *substream,
 948			       struct snd_intelhad *intelhaddata)
 949{
 950	int len, processed;
 951	unsigned long flags;
 952
 953	processed = 0;
 954	spin_lock_irqsave(&intelhaddata->had_spinlock, flags);
 955	for (;;) {
 956		/* get the remaining bytes on the buffer */
 957		had_read_register(intelhaddata,
 958				  AUD_BUF_LEN(intelhaddata->bd_head),
 959				  &len);
 960		if (len < 0 || len > intelhaddata->period_bytes) {
 961			dev_dbg(intelhaddata->dev, "Invalid buf length %d\n",
 962				len);
 963			len = -EPIPE;
 964			goto out;
 965		}
 966
 967		if (len > 0) /* OK, this is the current buffer */
 968			break;
 969
 970		/* len=0 => already empty, check the next buffer */
 971		if (++processed >= intelhaddata->num_bds) {
 972			len = -EPIPE; /* all empty? - report underrun */
 973			goto out;
 974		}
 975		had_advance_ringbuf(substream, intelhaddata);
 976	}
 977
 978	len = intelhaddata->period_bytes - len;
 979	len += intelhaddata->period_bytes * intelhaddata->pcmbuf_head;
 980 out:
 981	spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags);
 982	return len;
 983}
 984
 985/* called from irq handler */
 986static void had_process_buffer_done(struct snd_intelhad *intelhaddata)
 987{
 988	struct snd_pcm_substream *substream;
 989
 990	substream = had_substream_get(intelhaddata);
 991	if (!substream)
 992		return; /* no stream? - bail out */
 993
 994	if (!intelhaddata->connected) {
 995		snd_pcm_stop_xrun(substream);
 996		goto out; /* disconnected? - bail out */
 997	}
 998
 999	/* process or stop the stream */
1000	if (had_process_ringbuf(substream, intelhaddata) < 0)
1001		snd_pcm_stop_xrun(substream);
1002	else
1003		snd_pcm_period_elapsed(substream);
1004
1005 out:
1006	had_substream_put(intelhaddata);
1007}
1008
1009/*
1010 * The interrupt status 'sticky' bits might not be cleared by
1011 * setting '1' to that bit once...
1012 */
1013static void wait_clear_underrun_bit(struct snd_intelhad *intelhaddata)
1014{
1015	int i;
1016	u32 val;
1017
1018	for (i = 0; i < 100; i++) {
1019		/* clear bit30, 31 AUD_HDMI_STATUS */
1020		had_read_register(intelhaddata, AUD_HDMI_STATUS, &val);
1021		if (!(val & AUD_HDMI_STATUS_MASK_UNDERRUN))
1022			return;
1023		udelay(100);
1024		cond_resched();
1025		had_write_register(intelhaddata, AUD_HDMI_STATUS, val);
1026	}
1027	dev_err(intelhaddata->dev, "Unable to clear UNDERRUN bits\n");
1028}
1029
1030/* Perform some reset procedure after stopping the stream;
1031 * this is called from prepare or hw_free callbacks once after trigger STOP
1032 * or underrun has been processed in order to settle down the h/w state.
1033 */
1034static int had_pcm_sync_stop(struct snd_pcm_substream *substream)
1035{
1036	struct snd_intelhad *intelhaddata = snd_pcm_substream_chip(substream);
1037
1038	if (!intelhaddata->connected)
1039		return 0;
1040
1041	/* Reset buffer pointers */
1042	had_reset_audio(intelhaddata);
1043	wait_clear_underrun_bit(intelhaddata);
1044	return 0;
1045}
1046
1047/* called from irq handler */
1048static void had_process_buffer_underrun(struct snd_intelhad *intelhaddata)
1049{
1050	struct snd_pcm_substream *substream;
1051
1052	/* Report UNDERRUN error to above layers */
1053	substream = had_substream_get(intelhaddata);
1054	if (substream) {
1055		snd_pcm_stop_xrun(substream);
1056		had_substream_put(intelhaddata);
1057	}
 
1058}
1059
1060/*
1061 * ALSA PCM open callback
1062 */
1063static int had_pcm_open(struct snd_pcm_substream *substream)
1064{
1065	struct snd_intelhad *intelhaddata;
1066	struct snd_pcm_runtime *runtime;
1067	int retval;
1068
1069	intelhaddata = snd_pcm_substream_chip(substream);
1070	runtime = substream->runtime;
1071
1072	retval = pm_runtime_resume_and_get(intelhaddata->dev);
1073	if (retval < 0)
1074		return retval;
1075
1076	/* set the runtime hw parameter with local snd_pcm_hardware struct */
1077	runtime->hw = had_pcm_hardware;
1078
1079	retval = snd_pcm_hw_constraint_integer(runtime,
1080			 SNDRV_PCM_HW_PARAM_PERIODS);
1081	if (retval < 0)
1082		goto error;
1083
1084	/* Make sure, that the period size is always aligned
1085	 * 64byte boundary
1086	 */
1087	retval = snd_pcm_hw_constraint_step(substream->runtime, 0,
1088			SNDRV_PCM_HW_PARAM_PERIOD_BYTES, 64);
1089	if (retval < 0)
1090		goto error;
1091
1092	retval = snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
1093	if (retval < 0)
1094		goto error;
1095
1096	/* expose PCM substream */
1097	spin_lock_irq(&intelhaddata->had_spinlock);
1098	intelhaddata->stream_info.substream = substream;
1099	intelhaddata->stream_info.substream_refcount++;
1100	spin_unlock_irq(&intelhaddata->had_spinlock);
1101
1102	return retval;
1103 error:
1104	pm_runtime_mark_last_busy(intelhaddata->dev);
1105	pm_runtime_put_autosuspend(intelhaddata->dev);
1106	return retval;
1107}
1108
1109/*
1110 * ALSA PCM close callback
1111 */
1112static int had_pcm_close(struct snd_pcm_substream *substream)
1113{
1114	struct snd_intelhad *intelhaddata;
1115
1116	intelhaddata = snd_pcm_substream_chip(substream);
1117
1118	/* unreference and sync with the pending PCM accesses */
1119	spin_lock_irq(&intelhaddata->had_spinlock);
1120	intelhaddata->stream_info.substream = NULL;
1121	intelhaddata->stream_info.substream_refcount--;
1122	while (intelhaddata->stream_info.substream_refcount > 0) {
1123		spin_unlock_irq(&intelhaddata->had_spinlock);
1124		cpu_relax();
1125		spin_lock_irq(&intelhaddata->had_spinlock);
1126	}
1127	spin_unlock_irq(&intelhaddata->had_spinlock);
1128
1129	pm_runtime_mark_last_busy(intelhaddata->dev);
1130	pm_runtime_put_autosuspend(intelhaddata->dev);
1131	return 0;
1132}
1133
1134/*
1135 * ALSA PCM hw_params callback
1136 */
1137static int had_pcm_hw_params(struct snd_pcm_substream *substream,
1138			     struct snd_pcm_hw_params *hw_params)
1139{
1140	struct snd_intelhad *intelhaddata;
1141	int buf_size;
1142
1143	intelhaddata = snd_pcm_substream_chip(substream);
1144	buf_size = params_buffer_bytes(hw_params);
 
 
 
1145	dev_dbg(intelhaddata->dev, "%s:allocated memory = %d\n",
1146		__func__, buf_size);
1147	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
1148}
1149
1150/*
1151 * ALSA PCM trigger callback
1152 */
1153static int had_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
1154{
1155	int retval = 0;
1156	struct snd_intelhad *intelhaddata;
1157
1158	intelhaddata = snd_pcm_substream_chip(substream);
1159
1160	spin_lock(&intelhaddata->had_spinlock);
1161	switch (cmd) {
1162	case SNDRV_PCM_TRIGGER_START:
1163	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
1164	case SNDRV_PCM_TRIGGER_RESUME:
1165		/* Enable Audio */
1166		had_ack_irqs(intelhaddata); /* FIXME: do we need this? */
1167		had_enable_audio(intelhaddata, true);
1168		break;
1169
1170	case SNDRV_PCM_TRIGGER_STOP:
1171	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
1172		/* Disable Audio */
1173		had_enable_audio(intelhaddata, false);
 
1174		break;
1175
1176	default:
1177		retval = -EINVAL;
1178	}
1179	spin_unlock(&intelhaddata->had_spinlock);
1180	return retval;
1181}
1182
1183/*
1184 * ALSA PCM prepare callback
1185 */
1186static int had_pcm_prepare(struct snd_pcm_substream *substream)
1187{
1188	int retval;
1189	u32 disp_samp_freq, n_param;
1190	u32 link_rate = 0;
1191	struct snd_intelhad *intelhaddata;
1192	struct snd_pcm_runtime *runtime;
1193
1194	intelhaddata = snd_pcm_substream_chip(substream);
1195	runtime = substream->runtime;
1196
1197	dev_dbg(intelhaddata->dev, "period_size=%d\n",
1198		(int)frames_to_bytes(runtime, runtime->period_size));
1199	dev_dbg(intelhaddata->dev, "periods=%d\n", runtime->periods);
1200	dev_dbg(intelhaddata->dev, "buffer_size=%d\n",
1201		(int)snd_pcm_lib_buffer_bytes(substream));
1202	dev_dbg(intelhaddata->dev, "rate=%d\n", runtime->rate);
1203	dev_dbg(intelhaddata->dev, "channels=%d\n", runtime->channels);
1204
 
 
1205	/* Get N value in KHz */
1206	disp_samp_freq = intelhaddata->tmds_clock_speed;
1207
1208	retval = had_prog_n(substream->runtime->rate, &n_param, intelhaddata);
1209	if (retval) {
1210		dev_err(intelhaddata->dev,
1211			"programming N value failed %#x\n", retval);
1212		goto prep_end;
1213	}
1214
1215	if (intelhaddata->dp_output)
1216		link_rate = intelhaddata->link_rate;
1217
1218	had_prog_cts(substream->runtime->rate, disp_samp_freq, link_rate,
1219		     n_param, intelhaddata);
1220
1221	had_prog_dip(substream, intelhaddata);
1222
1223	retval = had_init_audio_ctrl(substream, intelhaddata);
1224
1225	/* Prog buffer address */
1226	had_init_ringbuf(substream, intelhaddata);
1227
1228	/*
1229	 * Program channel mapping in following order:
1230	 * FL, FR, C, LFE, RL, RR
1231	 */
1232
1233	had_write_register(intelhaddata, AUD_BUF_CH_SWAP, SWAP_LFE_CENTER);
1234
1235prep_end:
1236	return retval;
1237}
1238
1239/*
1240 * ALSA PCM pointer callback
1241 */
1242static snd_pcm_uframes_t had_pcm_pointer(struct snd_pcm_substream *substream)
1243{
1244	struct snd_intelhad *intelhaddata;
1245	int len;
1246
1247	intelhaddata = snd_pcm_substream_chip(substream);
1248
1249	if (!intelhaddata->connected)
1250		return SNDRV_PCM_POS_XRUN;
1251
1252	len = had_process_ringbuf(substream, intelhaddata);
1253	if (len < 0)
1254		return SNDRV_PCM_POS_XRUN;
1255	len = bytes_to_frames(substream->runtime, len);
1256	/* wrapping may happen when periods=1 */
1257	len %= substream->runtime->buffer_size;
1258	return len;
1259}
1260
1261/*
 
 
 
 
 
 
 
 
 
 
 
 
1262 * ALSA PCM ops
1263 */
1264static const struct snd_pcm_ops had_pcm_ops = {
1265	.open =		had_pcm_open,
1266	.close =	had_pcm_close,
 
1267	.hw_params =	had_pcm_hw_params,
 
1268	.prepare =	had_pcm_prepare,
1269	.trigger =	had_pcm_trigger,
1270	.sync_stop =	had_pcm_sync_stop,
1271	.pointer =	had_pcm_pointer,
 
1272};
1273
1274/* process mode change of the running stream; called in mutex */
1275static int had_process_mode_change(struct snd_intelhad *intelhaddata)
1276{
1277	struct snd_pcm_substream *substream;
1278	int retval = 0;
1279	u32 disp_samp_freq, n_param;
1280	u32 link_rate = 0;
1281
1282	substream = had_substream_get(intelhaddata);
1283	if (!substream)
1284		return 0;
1285
1286	/* Disable Audio */
1287	had_enable_audio(intelhaddata, false);
1288
1289	/* Update CTS value */
1290	disp_samp_freq = intelhaddata->tmds_clock_speed;
1291
1292	retval = had_prog_n(substream->runtime->rate, &n_param, intelhaddata);
1293	if (retval) {
1294		dev_err(intelhaddata->dev,
1295			"programming N value failed %#x\n", retval);
1296		goto out;
1297	}
1298
1299	if (intelhaddata->dp_output)
1300		link_rate = intelhaddata->link_rate;
1301
1302	had_prog_cts(substream->runtime->rate, disp_samp_freq, link_rate,
1303		     n_param, intelhaddata);
1304
1305	/* Enable Audio */
1306	had_enable_audio(intelhaddata, true);
1307
1308out:
1309	had_substream_put(intelhaddata);
1310	return retval;
1311}
1312
1313/* process hot plug, called from wq with mutex locked */
1314static void had_process_hot_plug(struct snd_intelhad *intelhaddata)
1315{
1316	struct snd_pcm_substream *substream;
1317
1318	spin_lock_irq(&intelhaddata->had_spinlock);
1319	if (intelhaddata->connected) {
1320		dev_dbg(intelhaddata->dev, "Device already connected\n");
1321		spin_unlock_irq(&intelhaddata->had_spinlock);
1322		return;
1323	}
1324
1325	/* Disable Audio */
1326	had_enable_audio(intelhaddata, false);
1327
1328	intelhaddata->connected = true;
1329	dev_dbg(intelhaddata->dev,
1330		"%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_CONNECTED\n",
1331			__func__, __LINE__);
1332	spin_unlock_irq(&intelhaddata->had_spinlock);
1333
1334	had_build_channel_allocation_map(intelhaddata);
1335
1336	/* Report to above ALSA layer */
1337	substream = had_substream_get(intelhaddata);
1338	if (substream) {
1339		snd_pcm_stop_xrun(substream);
1340		had_substream_put(intelhaddata);
1341	}
1342
1343	snd_jack_report(intelhaddata->jack, SND_JACK_AVOUT);
1344}
1345
1346/* process hot unplug, called from wq with mutex locked */
1347static void had_process_hot_unplug(struct snd_intelhad *intelhaddata)
1348{
1349	struct snd_pcm_substream *substream;
1350
1351	spin_lock_irq(&intelhaddata->had_spinlock);
1352	if (!intelhaddata->connected) {
1353		dev_dbg(intelhaddata->dev, "Device already disconnected\n");
1354		spin_unlock_irq(&intelhaddata->had_spinlock);
1355		return;
1356
1357	}
1358
1359	/* Disable Audio */
1360	had_enable_audio(intelhaddata, false);
1361
1362	intelhaddata->connected = false;
1363	dev_dbg(intelhaddata->dev,
1364		"%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_DISCONNECTED\n",
1365			__func__, __LINE__);
1366	spin_unlock_irq(&intelhaddata->had_spinlock);
1367
1368	kfree(intelhaddata->chmap->chmap);
1369	intelhaddata->chmap->chmap = NULL;
1370
1371	/* Report to above ALSA layer */
1372	substream = had_substream_get(intelhaddata);
1373	if (substream) {
1374		snd_pcm_stop_xrun(substream);
1375		had_substream_put(intelhaddata);
1376	}
1377
1378	snd_jack_report(intelhaddata->jack, 0);
1379}
1380
1381/*
1382 * ALSA iec958 and ELD controls
1383 */
1384
1385static int had_iec958_info(struct snd_kcontrol *kcontrol,
1386				struct snd_ctl_elem_info *uinfo)
1387{
1388	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1389	uinfo->count = 1;
1390	return 0;
1391}
1392
1393static int had_iec958_get(struct snd_kcontrol *kcontrol,
1394				struct snd_ctl_elem_value *ucontrol)
1395{
1396	struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol);
1397
1398	mutex_lock(&intelhaddata->mutex);
1399	ucontrol->value.iec958.status[0] = (intelhaddata->aes_bits >> 0) & 0xff;
1400	ucontrol->value.iec958.status[1] = (intelhaddata->aes_bits >> 8) & 0xff;
1401	ucontrol->value.iec958.status[2] =
1402					(intelhaddata->aes_bits >> 16) & 0xff;
1403	ucontrol->value.iec958.status[3] =
1404					(intelhaddata->aes_bits >> 24) & 0xff;
1405	mutex_unlock(&intelhaddata->mutex);
1406	return 0;
1407}
1408
1409static int had_iec958_mask_get(struct snd_kcontrol *kcontrol,
1410				struct snd_ctl_elem_value *ucontrol)
1411{
1412	ucontrol->value.iec958.status[0] = 0xff;
1413	ucontrol->value.iec958.status[1] = 0xff;
1414	ucontrol->value.iec958.status[2] = 0xff;
1415	ucontrol->value.iec958.status[3] = 0xff;
1416	return 0;
1417}
1418
1419static int had_iec958_put(struct snd_kcontrol *kcontrol,
1420				struct snd_ctl_elem_value *ucontrol)
1421{
1422	unsigned int val;
1423	struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol);
1424	int changed = 0;
1425
1426	val = (ucontrol->value.iec958.status[0] << 0) |
1427		(ucontrol->value.iec958.status[1] << 8) |
1428		(ucontrol->value.iec958.status[2] << 16) |
1429		(ucontrol->value.iec958.status[3] << 24);
1430	mutex_lock(&intelhaddata->mutex);
1431	if (intelhaddata->aes_bits != val) {
1432		intelhaddata->aes_bits = val;
1433		changed = 1;
1434	}
1435	mutex_unlock(&intelhaddata->mutex);
1436	return changed;
1437}
1438
1439static int had_ctl_eld_info(struct snd_kcontrol *kcontrol,
1440			    struct snd_ctl_elem_info *uinfo)
1441{
1442	uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
1443	uinfo->count = HDMI_MAX_ELD_BYTES;
1444	return 0;
1445}
1446
1447static int had_ctl_eld_get(struct snd_kcontrol *kcontrol,
1448			   struct snd_ctl_elem_value *ucontrol)
1449{
1450	struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol);
1451
1452	mutex_lock(&intelhaddata->mutex);
1453	memcpy(ucontrol->value.bytes.data, intelhaddata->eld,
1454	       HDMI_MAX_ELD_BYTES);
1455	mutex_unlock(&intelhaddata->mutex);
1456	return 0;
1457}
1458
1459static const struct snd_kcontrol_new had_controls[] = {
1460	{
1461		.access = SNDRV_CTL_ELEM_ACCESS_READ,
1462		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1463		.name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, MASK),
1464		.info = had_iec958_info, /* shared */
1465		.get = had_iec958_mask_get,
1466	},
1467	{
1468		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1469		.name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT),
1470		.info = had_iec958_info,
1471		.get = had_iec958_get,
1472		.put = had_iec958_put,
1473	},
1474	{
1475		.access = (SNDRV_CTL_ELEM_ACCESS_READ |
1476			   SNDRV_CTL_ELEM_ACCESS_VOLATILE),
1477		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1478		.name = "ELD",
1479		.info = had_ctl_eld_info,
1480		.get = had_ctl_eld_get,
1481	},
1482};
1483
1484/*
1485 * audio interrupt handler
1486 */
1487static irqreturn_t display_pipe_interrupt_handler(int irq, void *dev_id)
1488{
1489	struct snd_intelhad_card *card_ctx = dev_id;
1490	u32 audio_stat[3] = {};
1491	int pipe, port;
1492
1493	for_each_pipe(card_ctx, pipe) {
1494		/* use raw register access to ack IRQs even while disconnected */
1495		audio_stat[pipe] = had_read_register_raw(card_ctx, pipe,
1496							 AUD_HDMI_STATUS) &
1497			(HDMI_AUDIO_UNDERRUN | HDMI_AUDIO_BUFFER_DONE);
1498
1499		if (audio_stat[pipe])
1500			had_write_register_raw(card_ctx, pipe,
1501					       AUD_HDMI_STATUS, audio_stat[pipe]);
1502	}
1503
1504	for_each_port(card_ctx, port) {
1505		struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port];
1506		int pipe = ctx->pipe;
1507
1508		if (pipe < 0)
1509			continue;
1510
1511		if (audio_stat[pipe] & HDMI_AUDIO_BUFFER_DONE)
1512			had_process_buffer_done(ctx);
1513		if (audio_stat[pipe] & HDMI_AUDIO_UNDERRUN)
1514			had_process_buffer_underrun(ctx);
1515	}
1516
1517	return IRQ_HANDLED;
1518}
1519
1520/*
1521 * monitor plug/unplug notification from i915; just kick off the work
1522 */
1523static void notify_audio_lpe(struct platform_device *pdev, int port)
1524{
1525	struct snd_intelhad_card *card_ctx = platform_get_drvdata(pdev);
1526	struct snd_intelhad *ctx;
1527
1528	ctx = &card_ctx->pcm_ctx[single_port ? 0 : port];
1529	if (single_port)
1530		ctx->port = port;
1531
1532	schedule_work(&ctx->hdmi_audio_wq);
1533}
1534
1535/* the work to handle monitor hot plug/unplug */
1536static void had_audio_wq(struct work_struct *work)
1537{
1538	struct snd_intelhad *ctx =
1539		container_of(work, struct snd_intelhad, hdmi_audio_wq);
1540	struct intel_hdmi_lpe_audio_pdata *pdata = ctx->dev->platform_data;
1541	struct intel_hdmi_lpe_audio_port_pdata *ppdata = &pdata->port[ctx->port];
1542	int ret;
1543
1544	ret = pm_runtime_resume_and_get(ctx->dev);
1545	if (ret < 0)
1546		return;
1547
 
1548	mutex_lock(&ctx->mutex);
1549	if (ppdata->pipe < 0) {
1550		dev_dbg(ctx->dev, "%s: Event: HAD_NOTIFY_HOT_UNPLUG : port = %d\n",
1551			__func__, ctx->port);
1552
1553		memset(ctx->eld, 0, sizeof(ctx->eld)); /* clear the old ELD */
1554
1555		ctx->dp_output = false;
1556		ctx->tmds_clock_speed = 0;
1557		ctx->link_rate = 0;
1558
1559		/* Shut down the stream */
1560		had_process_hot_unplug(ctx);
1561
1562		ctx->pipe = -1;
1563	} else {
1564		dev_dbg(ctx->dev, "%s: HAD_NOTIFY_ELD : port = %d, tmds = %d\n",
1565			__func__, ctx->port, ppdata->ls_clock);
1566
1567		memcpy(ctx->eld, ppdata->eld, sizeof(ctx->eld));
1568
1569		ctx->dp_output = ppdata->dp_output;
1570		if (ctx->dp_output) {
1571			ctx->tmds_clock_speed = 0;
1572			ctx->link_rate = ppdata->ls_clock;
1573		} else {
1574			ctx->tmds_clock_speed = ppdata->ls_clock;
1575			ctx->link_rate = 0;
1576		}
1577
1578		/*
1579		 * Shut down the stream before we change
1580		 * the pipe assignment for this pcm device
1581		 */
1582		had_process_hot_plug(ctx);
1583
1584		ctx->pipe = ppdata->pipe;
1585
1586		/* Restart the stream if necessary */
1587		had_process_mode_change(ctx);
1588	}
1589
1590	mutex_unlock(&ctx->mutex);
1591	pm_runtime_mark_last_busy(ctx->dev);
1592	pm_runtime_put_autosuspend(ctx->dev);
1593}
1594
1595/*
1596 * Jack interface
1597 */
1598static int had_create_jack(struct snd_intelhad *ctx,
1599			   struct snd_pcm *pcm)
1600{
1601	char hdmi_str[32];
1602	int err;
1603
1604	snprintf(hdmi_str, sizeof(hdmi_str),
1605		 "HDMI/DP,pcm=%d", pcm->device);
1606
1607	err = snd_jack_new(ctx->card_ctx->card, hdmi_str,
1608			   SND_JACK_AVOUT, &ctx->jack,
1609			   true, false);
1610	if (err < 0)
1611		return err;
1612	ctx->jack->private_data = ctx;
1613	return 0;
1614}
1615
1616/*
1617 * PM callbacks
1618 */
1619
1620static int __maybe_unused hdmi_lpe_audio_suspend(struct device *dev)
1621{
1622	struct snd_intelhad_card *card_ctx = dev_get_drvdata(dev);
1623
1624	snd_power_change_state(card_ctx->card, SNDRV_CTL_POWER_D3hot);
1625
1626	return 0;
1627}
1628
1629static int __maybe_unused hdmi_lpe_audio_resume(struct device *dev)
1630{
1631	struct snd_intelhad_card *card_ctx = dev_get_drvdata(dev);
1632
1633	pm_runtime_mark_last_busy(dev);
1634
1635	snd_power_change_state(card_ctx->card, SNDRV_CTL_POWER_D0);
1636
1637	return 0;
1638}
1639
1640/* release resources */
1641static void hdmi_lpe_audio_free(struct snd_card *card)
1642{
1643	struct snd_intelhad_card *card_ctx = card->private_data;
1644	struct intel_hdmi_lpe_audio_pdata *pdata = card_ctx->dev->platform_data;
1645	int port;
1646
1647	spin_lock_irq(&pdata->lpe_audio_slock);
1648	pdata->notify_audio_lpe = NULL;
1649	spin_unlock_irq(&pdata->lpe_audio_slock);
1650
1651	for_each_port(card_ctx, port) {
1652		struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port];
1653
1654		cancel_work_sync(&ctx->hdmi_audio_wq);
1655	}
 
 
 
 
 
1656}
1657
1658/*
1659 * hdmi_lpe_audio_probe - start bridge with i915
1660 *
1661 * This function is called when the i915 driver creates the
1662 * hdmi-lpe-audio platform device.
1663 */
1664static int __hdmi_lpe_audio_probe(struct platform_device *pdev)
1665{
1666	struct snd_card *card;
1667	struct snd_intelhad_card *card_ctx;
1668	struct snd_intelhad *ctx;
1669	struct snd_pcm *pcm;
1670	struct intel_hdmi_lpe_audio_pdata *pdata;
1671	int irq;
1672	struct resource *res_mmio;
1673	int port, ret;
1674
1675	pdata = pdev->dev.platform_data;
1676	if (!pdata) {
1677		dev_err(&pdev->dev, "%s: quit: pdata not allocated by i915!!\n", __func__);
1678		return -EINVAL;
1679	}
1680
1681	/* get resources */
1682	irq = platform_get_irq(pdev, 0);
1683	if (irq < 0)
 
1684		return irq;
 
1685
1686	res_mmio = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1687	if (!res_mmio) {
1688		dev_err(&pdev->dev, "Could not get IO_MEM resources\n");
1689		return -ENXIO;
1690	}
1691
1692	/* create a card instance with ALSA framework */
1693	ret = snd_devm_card_new(&pdev->dev, hdmi_card_index, hdmi_card_id,
1694				THIS_MODULE, sizeof(*card_ctx), &card);
1695	if (ret)
1696		return ret;
1697
1698	card_ctx = card->private_data;
1699	card_ctx->dev = &pdev->dev;
1700	card_ctx->card = card;
1701	strcpy(card->driver, INTEL_HAD);
1702	strcpy(card->shortname, "Intel HDMI/DP LPE Audio");
1703	strcpy(card->longname, "Intel HDMI/DP LPE Audio");
1704
1705	card_ctx->irq = -1;
1706
1707	card->private_free = hdmi_lpe_audio_free;
1708
1709	platform_set_drvdata(pdev, card_ctx);
1710
1711	card_ctx->num_pipes = pdata->num_pipes;
1712	card_ctx->num_ports = single_port ? 1 : pdata->num_ports;
1713
1714	for_each_port(card_ctx, port) {
1715		ctx = &card_ctx->pcm_ctx[port];
1716		ctx->card_ctx = card_ctx;
1717		ctx->dev = card_ctx->dev;
1718		ctx->port = single_port ? -1 : port;
1719		ctx->pipe = -1;
1720
1721		spin_lock_init(&ctx->had_spinlock);
1722		mutex_init(&ctx->mutex);
1723		INIT_WORK(&ctx->hdmi_audio_wq, had_audio_wq);
1724	}
1725
1726	dev_dbg(&pdev->dev, "%s: mmio_start = 0x%x, mmio_end = 0x%x\n",
1727		__func__, (unsigned int)res_mmio->start,
1728		(unsigned int)res_mmio->end);
1729
1730	card_ctx->mmio_start =
1731		devm_ioremap(&pdev->dev, res_mmio->start,
1732			     (size_t)(resource_size(res_mmio)));
1733	if (!card_ctx->mmio_start) {
1734		dev_err(&pdev->dev, "Could not get ioremap\n");
1735		return -EACCES;
 
1736	}
1737
1738	/* setup interrupt handler */
1739	ret = devm_request_irq(&pdev->dev, irq, display_pipe_interrupt_handler,
1740			       0, pdev->name, card_ctx);
1741	if (ret < 0) {
1742		dev_err(&pdev->dev, "request_irq failed\n");
1743		return ret;
1744	}
1745
1746	card_ctx->irq = irq;
1747
1748	/* only 32bit addressable */
1749	ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1750	if (ret)
1751		return ret;
1752
1753	init_channel_allocations();
1754
1755	card_ctx->num_pipes = pdata->num_pipes;
1756	card_ctx->num_ports = single_port ? 1 : pdata->num_ports;
1757
1758	for_each_port(card_ctx, port) {
1759		int i;
1760
1761		ctx = &card_ctx->pcm_ctx[port];
1762		ret = snd_pcm_new(card, INTEL_HAD, port, MAX_PB_STREAMS,
1763				  MAX_CAP_STREAMS, &pcm);
1764		if (ret)
1765			return ret;
1766
1767		/* setup private data which can be retrieved when required */
1768		pcm->private_data = ctx;
1769		pcm->info_flags = 0;
1770		strscpy(pcm->name, card->shortname, strlen(card->shortname));
1771		/* setup the ops for playback */
1772		snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &had_pcm_ops);
1773
1774		/* allocate dma pages;
1775		 * try to allocate 600k buffer as default which is large enough
1776		 */
1777		snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV_WC,
1778					       card->dev, HAD_DEFAULT_BUFFER,
1779					       HAD_MAX_BUFFER);
 
1780
1781		/* create controls */
1782		for (i = 0; i < ARRAY_SIZE(had_controls); i++) {
1783			struct snd_kcontrol *kctl;
1784
1785			kctl = snd_ctl_new1(&had_controls[i], ctx);
1786			if (!kctl)
1787				return -ENOMEM;
 
 
1788
1789			kctl->id.device = pcm->device;
1790
1791			ret = snd_ctl_add(card, kctl);
1792			if (ret < 0)
1793				return ret;
1794		}
1795
1796		/* Register channel map controls */
1797		ret = had_register_chmap_ctls(ctx, pcm);
1798		if (ret < 0)
1799			return ret;
1800
1801		ret = had_create_jack(ctx, pcm);
1802		if (ret < 0)
1803			return ret;
1804	}
1805
1806	ret = snd_card_register(card);
1807	if (ret)
1808		return ret;
1809
1810	spin_lock_irq(&pdata->lpe_audio_slock);
1811	pdata->notify_audio_lpe = notify_audio_lpe;
1812	spin_unlock_irq(&pdata->lpe_audio_slock);
1813
1814	pm_runtime_set_autosuspend_delay(&pdev->dev, INTEL_HDMI_AUDIO_SUSPEND_DELAY_MS);
1815	pm_runtime_use_autosuspend(&pdev->dev);
1816	pm_runtime_enable(&pdev->dev);
1817	pm_runtime_mark_last_busy(&pdev->dev);
1818	pm_runtime_idle(&pdev->dev);
1819
1820	dev_dbg(&pdev->dev, "%s: handle pending notification\n", __func__);
1821	for_each_port(card_ctx, port) {
1822		struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port];
1823
1824		schedule_work(&ctx->hdmi_audio_wq);
1825	}
1826
1827	return 0;
 
 
 
 
1828}
1829
1830static int hdmi_lpe_audio_probe(struct platform_device *pdev)
 
 
 
 
 
1831{
1832	return snd_card_free_on_error(&pdev->dev, __hdmi_lpe_audio_probe(pdev));
 
 
 
1833}
1834
1835static const struct dev_pm_ops hdmi_lpe_audio_pm = {
1836	SET_SYSTEM_SLEEP_PM_OPS(hdmi_lpe_audio_suspend, hdmi_lpe_audio_resume)
1837};
1838
1839static struct platform_driver hdmi_lpe_audio_driver = {
1840	.driver		= {
1841		.name  = "hdmi-lpe-audio",
1842		.pm = &hdmi_lpe_audio_pm,
1843	},
1844	.probe          = hdmi_lpe_audio_probe,
 
1845};
1846
1847module_platform_driver(hdmi_lpe_audio_driver);
1848MODULE_ALIAS("platform:hdmi_lpe_audio");
1849
1850MODULE_AUTHOR("Sailaja Bandarupalli <sailaja.bandarupalli@intel.com>");
1851MODULE_AUTHOR("Ramesh Babu K V <ramesh.babu@intel.com>");
1852MODULE_AUTHOR("Vaibhav Agarwal <vaibhav.agarwal@intel.com>");
1853MODULE_AUTHOR("Jerome Anand <jerome.anand@intel.com>");
1854MODULE_DESCRIPTION("Intel HDMI Audio driver");
1855MODULE_LICENSE("GPL v2");
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *   intel_hdmi_audio.c - Intel HDMI audio driver
   4 *
   5 *  Copyright (C) 2016 Intel Corp
   6 *  Authors:	Sailaja Bandarupalli <sailaja.bandarupalli@intel.com>
   7 *		Ramesh Babu K V	<ramesh.babu@intel.com>
   8 *		Vaibhav Agarwal <vaibhav.agarwal@intel.com>
   9 *		Jerome Anand <jerome.anand@intel.com>
  10 *  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  11 *
  12 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  13 * ALSA driver for Intel HDMI audio
  14 */
  15
  16#include <linux/types.h>
  17#include <linux/platform_device.h>
  18#include <linux/io.h>
  19#include <linux/slab.h>
  20#include <linux/module.h>
  21#include <linux/interrupt.h>
  22#include <linux/pm_runtime.h>
  23#include <linux/dma-mapping.h>
  24#include <linux/delay.h>
  25#include <sound/core.h>
  26#include <sound/asoundef.h>
  27#include <sound/pcm.h>
  28#include <sound/pcm_params.h>
  29#include <sound/initval.h>
  30#include <sound/control.h>
  31#include <sound/jack.h>
  32#include <drm/drm_edid.h>
  33#include <drm/intel_lpe_audio.h>
 
  34#include "intel_hdmi_audio.h"
  35
 
 
  36#define for_each_pipe(card_ctx, pipe) \
  37	for ((pipe) = 0; (pipe) < (card_ctx)->num_pipes; (pipe)++)
  38#define for_each_port(card_ctx, port) \
  39	for ((port) = 0; (port) < (card_ctx)->num_ports; (port)++)
  40
  41/*standard module options for ALSA. This module supports only one card*/
  42static int hdmi_card_index = SNDRV_DEFAULT_IDX1;
  43static char *hdmi_card_id = SNDRV_DEFAULT_STR1;
  44static bool single_port;
  45
  46module_param_named(index, hdmi_card_index, int, 0444);
  47MODULE_PARM_DESC(index,
  48		"Index value for INTEL Intel HDMI Audio controller.");
  49module_param_named(id, hdmi_card_id, charp, 0444);
  50MODULE_PARM_DESC(id,
  51		"ID string for INTEL Intel HDMI Audio controller.");
  52module_param(single_port, bool, 0444);
  53MODULE_PARM_DESC(single_port,
  54		"Single-port mode (for compatibility)");
  55
  56/*
  57 * ELD SA bits in the CEA Speaker Allocation data block
  58 */
  59static const int eld_speaker_allocation_bits[] = {
  60	[0] = FL | FR,
  61	[1] = LFE,
  62	[2] = FC,
  63	[3] = RL | RR,
  64	[4] = RC,
  65	[5] = FLC | FRC,
  66	[6] = RLC | RRC,
  67	/* the following are not defined in ELD yet */
  68	[7] = 0,
  69};
  70
  71/*
  72 * This is an ordered list!
  73 *
  74 * The preceding ones have better chances to be selected by
  75 * hdmi_channel_allocation().
  76 */
  77static struct cea_channel_speaker_allocation channel_allocations[] = {
  78/*                        channel:   7     6    5    4    3     2    1    0  */
  79{ .ca_index = 0x00,  .speakers = {   0,    0,   0,   0,   0,    0,  FR,  FL } },
  80				/* 2.1 */
  81{ .ca_index = 0x01,  .speakers = {   0,    0,   0,   0,   0,  LFE,  FR,  FL } },
  82				/* Dolby Surround */
  83{ .ca_index = 0x02,  .speakers = {   0,    0,   0,   0,  FC,    0,  FR,  FL } },
  84				/* surround40 */
  85{ .ca_index = 0x08,  .speakers = {   0,    0,  RR,  RL,   0,    0,  FR,  FL } },
  86				/* surround41 */
  87{ .ca_index = 0x09,  .speakers = {   0,    0,  RR,  RL,   0,  LFE,  FR,  FL } },
  88				/* surround50 */
  89{ .ca_index = 0x0a,  .speakers = {   0,    0,  RR,  RL,  FC,    0,  FR,  FL } },
  90				/* surround51 */
  91{ .ca_index = 0x0b,  .speakers = {   0,    0,  RR,  RL,  FC,  LFE,  FR,  FL } },
  92				/* 6.1 */
  93{ .ca_index = 0x0f,  .speakers = {   0,   RC,  RR,  RL,  FC,  LFE,  FR,  FL } },
  94				/* surround71 */
  95{ .ca_index = 0x13,  .speakers = { RRC,  RLC,  RR,  RL,  FC,  LFE,  FR,  FL } },
  96
  97{ .ca_index = 0x03,  .speakers = {   0,    0,   0,   0,  FC,  LFE,  FR,  FL } },
  98{ .ca_index = 0x04,  .speakers = {   0,    0,   0,  RC,   0,    0,  FR,  FL } },
  99{ .ca_index = 0x05,  .speakers = {   0,    0,   0,  RC,   0,  LFE,  FR,  FL } },
 100{ .ca_index = 0x06,  .speakers = {   0,    0,   0,  RC,  FC,    0,  FR,  FL } },
 101{ .ca_index = 0x07,  .speakers = {   0,    0,   0,  RC,  FC,  LFE,  FR,  FL } },
 102{ .ca_index = 0x0c,  .speakers = {   0,   RC,  RR,  RL,   0,    0,  FR,  FL } },
 103{ .ca_index = 0x0d,  .speakers = {   0,   RC,  RR,  RL,   0,  LFE,  FR,  FL } },
 104{ .ca_index = 0x0e,  .speakers = {   0,   RC,  RR,  RL,  FC,    0,  FR,  FL } },
 105{ .ca_index = 0x10,  .speakers = { RRC,  RLC,  RR,  RL,   0,    0,  FR,  FL } },
 106{ .ca_index = 0x11,  .speakers = { RRC,  RLC,  RR,  RL,   0,  LFE,  FR,  FL } },
 107{ .ca_index = 0x12,  .speakers = { RRC,  RLC,  RR,  RL,  FC,    0,  FR,  FL } },
 108{ .ca_index = 0x14,  .speakers = { FRC,  FLC,   0,   0,   0,    0,  FR,  FL } },
 109{ .ca_index = 0x15,  .speakers = { FRC,  FLC,   0,   0,   0,  LFE,  FR,  FL } },
 110{ .ca_index = 0x16,  .speakers = { FRC,  FLC,   0,   0,  FC,    0,  FR,  FL } },
 111{ .ca_index = 0x17,  .speakers = { FRC,  FLC,   0,   0,  FC,  LFE,  FR,  FL } },
 112{ .ca_index = 0x18,  .speakers = { FRC,  FLC,   0,  RC,   0,    0,  FR,  FL } },
 113{ .ca_index = 0x19,  .speakers = { FRC,  FLC,   0,  RC,   0,  LFE,  FR,  FL } },
 114{ .ca_index = 0x1a,  .speakers = { FRC,  FLC,   0,  RC,  FC,    0,  FR,  FL } },
 115{ .ca_index = 0x1b,  .speakers = { FRC,  FLC,   0,  RC,  FC,  LFE,  FR,  FL } },
 116{ .ca_index = 0x1c,  .speakers = { FRC,  FLC,  RR,  RL,   0,    0,  FR,  FL } },
 117{ .ca_index = 0x1d,  .speakers = { FRC,  FLC,  RR,  RL,   0,  LFE,  FR,  FL } },
 118{ .ca_index = 0x1e,  .speakers = { FRC,  FLC,  RR,  RL,  FC,    0,  FR,  FL } },
 119{ .ca_index = 0x1f,  .speakers = { FRC,  FLC,  RR,  RL,  FC,  LFE,  FR,  FL } },
 120};
 121
 122static const struct channel_map_table map_tables[] = {
 123	{ SNDRV_CHMAP_FL,       0x00,   FL },
 124	{ SNDRV_CHMAP_FR,       0x01,   FR },
 125	{ SNDRV_CHMAP_RL,       0x04,   RL },
 126	{ SNDRV_CHMAP_RR,       0x05,   RR },
 127	{ SNDRV_CHMAP_LFE,      0x02,   LFE },
 128	{ SNDRV_CHMAP_FC,       0x03,   FC },
 129	{ SNDRV_CHMAP_RLC,      0x06,   RLC },
 130	{ SNDRV_CHMAP_RRC,      0x07,   RRC },
 131	{} /* terminator */
 132};
 133
 134/* hardware capability structure */
 135static const struct snd_pcm_hardware had_pcm_hardware = {
 136	.info =	(SNDRV_PCM_INFO_INTERLEAVED |
 137		SNDRV_PCM_INFO_MMAP |
 138		SNDRV_PCM_INFO_MMAP_VALID |
 139		SNDRV_PCM_INFO_NO_PERIOD_WAKEUP),
 140	.formats = (SNDRV_PCM_FMTBIT_S16_LE |
 141		    SNDRV_PCM_FMTBIT_S24_LE |
 142		    SNDRV_PCM_FMTBIT_S32_LE),
 143	.rates = SNDRV_PCM_RATE_32000 |
 144		SNDRV_PCM_RATE_44100 |
 145		SNDRV_PCM_RATE_48000 |
 146		SNDRV_PCM_RATE_88200 |
 147		SNDRV_PCM_RATE_96000 |
 148		SNDRV_PCM_RATE_176400 |
 149		SNDRV_PCM_RATE_192000,
 150	.rate_min = HAD_MIN_RATE,
 151	.rate_max = HAD_MAX_RATE,
 152	.channels_min = HAD_MIN_CHANNEL,
 153	.channels_max = HAD_MAX_CHANNEL,
 154	.buffer_bytes_max = HAD_MAX_BUFFER,
 155	.period_bytes_min = HAD_MIN_PERIOD_BYTES,
 156	.period_bytes_max = HAD_MAX_PERIOD_BYTES,
 157	.periods_min = HAD_MIN_PERIODS,
 158	.periods_max = HAD_MAX_PERIODS,
 159	.fifo_size = HAD_FIFO_SIZE,
 160};
 161
 162/* Get the active PCM substream;
 163 * Call had_substream_put() for unreferecing.
 164 * Don't call this inside had_spinlock, as it takes by itself
 165 */
 166static struct snd_pcm_substream *
 167had_substream_get(struct snd_intelhad *intelhaddata)
 168{
 169	struct snd_pcm_substream *substream;
 170	unsigned long flags;
 171
 172	spin_lock_irqsave(&intelhaddata->had_spinlock, flags);
 173	substream = intelhaddata->stream_info.substream;
 174	if (substream)
 175		intelhaddata->stream_info.substream_refcount++;
 176	spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags);
 177	return substream;
 178}
 179
 180/* Unref the active PCM substream;
 181 * Don't call this inside had_spinlock, as it takes by itself
 182 */
 183static void had_substream_put(struct snd_intelhad *intelhaddata)
 184{
 185	unsigned long flags;
 186
 187	spin_lock_irqsave(&intelhaddata->had_spinlock, flags);
 188	intelhaddata->stream_info.substream_refcount--;
 189	spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags);
 190}
 191
 192static u32 had_config_offset(int pipe)
 193{
 194	switch (pipe) {
 195	default:
 196	case 0:
 197		return AUDIO_HDMI_CONFIG_A;
 198	case 1:
 199		return AUDIO_HDMI_CONFIG_B;
 200	case 2:
 201		return AUDIO_HDMI_CONFIG_C;
 202	}
 203}
 204
 205/* Register access functions */
 206static u32 had_read_register_raw(struct snd_intelhad_card *card_ctx,
 207				 int pipe, u32 reg)
 208{
 209	return ioread32(card_ctx->mmio_start + had_config_offset(pipe) + reg);
 210}
 211
 212static void had_write_register_raw(struct snd_intelhad_card *card_ctx,
 213				   int pipe, u32 reg, u32 val)
 214{
 215	iowrite32(val, card_ctx->mmio_start + had_config_offset(pipe) + reg);
 216}
 217
 218static void had_read_register(struct snd_intelhad *ctx, u32 reg, u32 *val)
 219{
 220	if (!ctx->connected)
 221		*val = 0;
 222	else
 223		*val = had_read_register_raw(ctx->card_ctx, ctx->pipe, reg);
 224}
 225
 226static void had_write_register(struct snd_intelhad *ctx, u32 reg, u32 val)
 227{
 228	if (ctx->connected)
 229		had_write_register_raw(ctx->card_ctx, ctx->pipe, reg, val);
 230}
 231
 232/*
 233 * enable / disable audio configuration
 234 *
 235 * The normal read/modify should not directly be used on VLV2 for
 236 * updating AUD_CONFIG register.
 237 * This is because:
 238 * Bit6 of AUD_CONFIG register is writeonly due to a silicon bug on VLV2
 239 * HDMI IP. As a result a read-modify of AUD_CONFIG regiter will always
 240 * clear bit6. AUD_CONFIG[6:4] represents the "channels" field of the
 241 * register. This field should be 1xy binary for configuration with 6 or
 242 * more channels. Read-modify of AUD_CONFIG (Eg. for enabling audio)
 243 * causes the "channels" field to be updated as 0xy binary resulting in
 244 * bad audio. The fix is to always write the AUD_CONFIG[6:4] with
 245 * appropriate value when doing read-modify of AUD_CONFIG register.
 246 */
 247static void had_enable_audio(struct snd_intelhad *intelhaddata,
 248			     bool enable)
 249{
 250	/* update the cached value */
 251	intelhaddata->aud_config.regx.aud_en = enable;
 252	had_write_register(intelhaddata, AUD_CONFIG,
 253			   intelhaddata->aud_config.regval);
 254}
 255
 256/* forcibly ACKs to both BUFFER_DONE and BUFFER_UNDERRUN interrupts */
 257static void had_ack_irqs(struct snd_intelhad *ctx)
 258{
 259	u32 status_reg;
 260
 261	if (!ctx->connected)
 262		return;
 263	had_read_register(ctx, AUD_HDMI_STATUS, &status_reg);
 264	status_reg |= HDMI_AUDIO_BUFFER_DONE | HDMI_AUDIO_UNDERRUN;
 265	had_write_register(ctx, AUD_HDMI_STATUS, status_reg);
 266	had_read_register(ctx, AUD_HDMI_STATUS, &status_reg);
 267}
 268
 269/* Reset buffer pointers */
 270static void had_reset_audio(struct snd_intelhad *intelhaddata)
 271{
 272	had_write_register(intelhaddata, AUD_HDMI_STATUS,
 273			   AUD_HDMI_STATUSG_MASK_FUNCRST);
 274	had_write_register(intelhaddata, AUD_HDMI_STATUS, 0);
 275}
 276
 277/*
 278 * initialize audio channel status registers
 279 * This function is called in the prepare callback
 280 */
 281static int had_prog_status_reg(struct snd_pcm_substream *substream,
 282			struct snd_intelhad *intelhaddata)
 283{
 284	union aud_ch_status_0 ch_stat0 = {.regval = 0};
 285	union aud_ch_status_1 ch_stat1 = {.regval = 0};
 286
 287	ch_stat0.regx.lpcm_id = (intelhaddata->aes_bits &
 288					  IEC958_AES0_NONAUDIO) >> 1;
 289	ch_stat0.regx.clk_acc = (intelhaddata->aes_bits &
 290					  IEC958_AES3_CON_CLOCK) >> 4;
 291
 292	switch (substream->runtime->rate) {
 293	case AUD_SAMPLE_RATE_32:
 294		ch_stat0.regx.samp_freq = CH_STATUS_MAP_32KHZ;
 295		break;
 296
 297	case AUD_SAMPLE_RATE_44_1:
 298		ch_stat0.regx.samp_freq = CH_STATUS_MAP_44KHZ;
 299		break;
 300	case AUD_SAMPLE_RATE_48:
 301		ch_stat0.regx.samp_freq = CH_STATUS_MAP_48KHZ;
 302		break;
 303	case AUD_SAMPLE_RATE_88_2:
 304		ch_stat0.regx.samp_freq = CH_STATUS_MAP_88KHZ;
 305		break;
 306	case AUD_SAMPLE_RATE_96:
 307		ch_stat0.regx.samp_freq = CH_STATUS_MAP_96KHZ;
 308		break;
 309	case AUD_SAMPLE_RATE_176_4:
 310		ch_stat0.regx.samp_freq = CH_STATUS_MAP_176KHZ;
 311		break;
 312	case AUD_SAMPLE_RATE_192:
 313		ch_stat0.regx.samp_freq = CH_STATUS_MAP_192KHZ;
 314		break;
 315
 316	default:
 317		/* control should never come here */
 318		return -EINVAL;
 319	}
 320
 321	had_write_register(intelhaddata,
 322			   AUD_CH_STATUS_0, ch_stat0.regval);
 323
 324	switch (substream->runtime->format) {
 325	case SNDRV_PCM_FORMAT_S16_LE:
 326		ch_stat1.regx.max_wrd_len = MAX_SMPL_WIDTH_20;
 327		ch_stat1.regx.wrd_len = SMPL_WIDTH_16BITS;
 328		break;
 329	case SNDRV_PCM_FORMAT_S24_LE:
 330	case SNDRV_PCM_FORMAT_S32_LE:
 331		ch_stat1.regx.max_wrd_len = MAX_SMPL_WIDTH_24;
 332		ch_stat1.regx.wrd_len = SMPL_WIDTH_24BITS;
 333		break;
 334	default:
 335		return -EINVAL;
 336	}
 337
 338	had_write_register(intelhaddata,
 339			   AUD_CH_STATUS_1, ch_stat1.regval);
 340	return 0;
 341}
 342
 343/*
 344 * function to initialize audio
 345 * registers and buffer confgiuration registers
 346 * This function is called in the prepare callback
 347 */
 348static int had_init_audio_ctrl(struct snd_pcm_substream *substream,
 349			       struct snd_intelhad *intelhaddata)
 350{
 351	union aud_cfg cfg_val = {.regval = 0};
 352	union aud_buf_config buf_cfg = {.regval = 0};
 353	u8 channels;
 354
 355	had_prog_status_reg(substream, intelhaddata);
 356
 357	buf_cfg.regx.audio_fifo_watermark = FIFO_THRESHOLD;
 358	buf_cfg.regx.dma_fifo_watermark = DMA_FIFO_THRESHOLD;
 359	buf_cfg.regx.aud_delay = 0;
 360	had_write_register(intelhaddata, AUD_BUF_CONFIG, buf_cfg.regval);
 361
 362	channels = substream->runtime->channels;
 363	cfg_val.regx.num_ch = channels - 2;
 364	if (channels <= 2)
 365		cfg_val.regx.layout = LAYOUT0;
 366	else
 367		cfg_val.regx.layout = LAYOUT1;
 368
 369	if (substream->runtime->format == SNDRV_PCM_FORMAT_S16_LE)
 370		cfg_val.regx.packet_mode = 1;
 371
 372	if (substream->runtime->format == SNDRV_PCM_FORMAT_S32_LE)
 373		cfg_val.regx.left_align = 1;
 374
 375	cfg_val.regx.val_bit = 1;
 376
 377	/* fix up the DP bits */
 378	if (intelhaddata->dp_output) {
 379		cfg_val.regx.dp_modei = 1;
 380		cfg_val.regx.set = 1;
 381	}
 382
 383	had_write_register(intelhaddata, AUD_CONFIG, cfg_val.regval);
 384	intelhaddata->aud_config = cfg_val;
 385	return 0;
 386}
 387
 388/*
 389 * Compute derived values in channel_allocations[].
 390 */
 391static void init_channel_allocations(void)
 392{
 393	int i, j;
 394	struct cea_channel_speaker_allocation *p;
 395
 396	for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
 397		p = channel_allocations + i;
 398		p->channels = 0;
 399		p->spk_mask = 0;
 400		for (j = 0; j < ARRAY_SIZE(p->speakers); j++)
 401			if (p->speakers[j]) {
 402				p->channels++;
 403				p->spk_mask |= p->speakers[j];
 404			}
 405	}
 406}
 407
 408/*
 409 * The transformation takes two steps:
 410 *
 411 *      eld->spk_alloc => (eld_speaker_allocation_bits[]) => spk_mask
 412 *            spk_mask => (channel_allocations[])         => ai->CA
 413 *
 414 * TODO: it could select the wrong CA from multiple candidates.
 415 */
 416static int had_channel_allocation(struct snd_intelhad *intelhaddata,
 417				  int channels)
 418{
 419	int i;
 420	int ca = 0;
 421	int spk_mask = 0;
 422
 423	/*
 424	 * CA defaults to 0 for basic stereo audio
 425	 */
 426	if (channels <= 2)
 427		return 0;
 428
 429	/*
 430	 * expand ELD's speaker allocation mask
 431	 *
 432	 * ELD tells the speaker mask in a compact(paired) form,
 433	 * expand ELD's notions to match the ones used by Audio InfoFrame.
 434	 */
 435
 436	for (i = 0; i < ARRAY_SIZE(eld_speaker_allocation_bits); i++) {
 437		if (intelhaddata->eld[DRM_ELD_SPEAKER] & (1 << i))
 438			spk_mask |= eld_speaker_allocation_bits[i];
 439	}
 440
 441	/* search for the first working match in the CA table */
 442	for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
 443		if (channels == channel_allocations[i].channels &&
 444		(spk_mask & channel_allocations[i].spk_mask) ==
 445				channel_allocations[i].spk_mask) {
 446			ca = channel_allocations[i].ca_index;
 447			break;
 448		}
 449	}
 450
 451	dev_dbg(intelhaddata->dev, "select CA 0x%x for %d\n", ca, channels);
 452
 453	return ca;
 454}
 455
 456/* from speaker bit mask to ALSA API channel position */
 457static int spk_to_chmap(int spk)
 458{
 459	const struct channel_map_table *t = map_tables;
 460
 461	for (; t->map; t++) {
 462		if (t->spk_mask == spk)
 463			return t->map;
 464	}
 465	return 0;
 466}
 467
 468static void had_build_channel_allocation_map(struct snd_intelhad *intelhaddata)
 469{
 470	int i, c;
 471	int spk_mask = 0;
 472	struct snd_pcm_chmap_elem *chmap;
 473	u8 eld_high, eld_high_mask = 0xF0;
 474	u8 high_msb;
 475
 476	kfree(intelhaddata->chmap->chmap);
 477	intelhaddata->chmap->chmap = NULL;
 478
 479	chmap = kzalloc(sizeof(*chmap), GFP_KERNEL);
 480	if (!chmap)
 481		return;
 482
 483	dev_dbg(intelhaddata->dev, "eld speaker = %x\n",
 484		intelhaddata->eld[DRM_ELD_SPEAKER]);
 485
 486	/* WA: Fix the max channel supported to 8 */
 487
 488	/*
 489	 * Sink may support more than 8 channels, if eld_high has more than
 490	 * one bit set. SOC supports max 8 channels.
 491	 * Refer eld_speaker_allocation_bits, for sink speaker allocation
 492	 */
 493
 494	/* if 0x2F < eld < 0x4F fall back to 0x2f, else fall back to 0x4F */
 495	eld_high = intelhaddata->eld[DRM_ELD_SPEAKER] & eld_high_mask;
 496	if ((eld_high & (eld_high-1)) && (eld_high > 0x1F)) {
 497		/* eld_high & (eld_high-1): if more than 1 bit set */
 498		/* 0x1F: 7 channels */
 499		for (i = 1; i < 4; i++) {
 500			high_msb = eld_high & (0x80 >> i);
 501			if (high_msb) {
 502				intelhaddata->eld[DRM_ELD_SPEAKER] &=
 503					high_msb | 0xF;
 504				break;
 505			}
 506		}
 507	}
 508
 509	for (i = 0; i < ARRAY_SIZE(eld_speaker_allocation_bits); i++) {
 510		if (intelhaddata->eld[DRM_ELD_SPEAKER] & (1 << i))
 511			spk_mask |= eld_speaker_allocation_bits[i];
 512	}
 513
 514	for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
 515		if (spk_mask == channel_allocations[i].spk_mask) {
 516			for (c = 0; c < channel_allocations[i].channels; c++) {
 517				chmap->map[c] = spk_to_chmap(
 518					channel_allocations[i].speakers[
 519						(MAX_SPEAKERS - 1) - c]);
 520			}
 521			chmap->channels = channel_allocations[i].channels;
 522			intelhaddata->chmap->chmap = chmap;
 523			break;
 524		}
 525	}
 526	if (i >= ARRAY_SIZE(channel_allocations))
 527		kfree(chmap);
 528}
 529
 530/*
 531 * ALSA API channel-map control callbacks
 532 */
 533static int had_chmap_ctl_info(struct snd_kcontrol *kcontrol,
 534				struct snd_ctl_elem_info *uinfo)
 535{
 536	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
 537	uinfo->count = HAD_MAX_CHANNEL;
 538	uinfo->value.integer.min = 0;
 539	uinfo->value.integer.max = SNDRV_CHMAP_LAST;
 540	return 0;
 541}
 542
 543static int had_chmap_ctl_get(struct snd_kcontrol *kcontrol,
 544				struct snd_ctl_elem_value *ucontrol)
 545{
 546	struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
 547	struct snd_intelhad *intelhaddata = info->private_data;
 548	int i;
 549	const struct snd_pcm_chmap_elem *chmap;
 550
 551	memset(ucontrol->value.integer.value, 0,
 552	       sizeof(long) * HAD_MAX_CHANNEL);
 553	mutex_lock(&intelhaddata->mutex);
 554	if (!intelhaddata->chmap->chmap) {
 555		mutex_unlock(&intelhaddata->mutex);
 556		return 0;
 557	}
 558
 559	chmap = intelhaddata->chmap->chmap;
 560	for (i = 0; i < chmap->channels; i++)
 561		ucontrol->value.integer.value[i] = chmap->map[i];
 562	mutex_unlock(&intelhaddata->mutex);
 563
 564	return 0;
 565}
 566
 567static int had_register_chmap_ctls(struct snd_intelhad *intelhaddata,
 568						struct snd_pcm *pcm)
 569{
 570	int err;
 571
 572	err = snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK,
 573			NULL, 0, (unsigned long)intelhaddata,
 574			&intelhaddata->chmap);
 575	if (err < 0)
 576		return err;
 577
 578	intelhaddata->chmap->private_data = intelhaddata;
 579	intelhaddata->chmap->kctl->info = had_chmap_ctl_info;
 580	intelhaddata->chmap->kctl->get = had_chmap_ctl_get;
 581	intelhaddata->chmap->chmap = NULL;
 582	return 0;
 583}
 584
 585/*
 586 * Initialize Data Island Packets registers
 587 * This function is called in the prepare callback
 588 */
 589static void had_prog_dip(struct snd_pcm_substream *substream,
 590			 struct snd_intelhad *intelhaddata)
 591{
 592	int i;
 593	union aud_ctrl_st ctrl_state = {.regval = 0};
 594	union aud_info_frame2 frame2 = {.regval = 0};
 595	union aud_info_frame3 frame3 = {.regval = 0};
 596	u8 checksum = 0;
 597	u32 info_frame;
 598	int channels;
 599	int ca;
 600
 601	channels = substream->runtime->channels;
 602
 603	had_write_register(intelhaddata, AUD_CNTL_ST, ctrl_state.regval);
 604
 605	ca = had_channel_allocation(intelhaddata, channels);
 606	if (intelhaddata->dp_output) {
 607		info_frame = DP_INFO_FRAME_WORD1;
 608		frame2.regval = (substream->runtime->channels - 1) | (ca << 24);
 609	} else {
 610		info_frame = HDMI_INFO_FRAME_WORD1;
 611		frame2.regx.chnl_cnt = substream->runtime->channels - 1;
 612		frame3.regx.chnl_alloc = ca;
 613
 614		/* Calculte the byte wide checksum for all valid DIP words */
 615		for (i = 0; i < BYTES_PER_WORD; i++)
 616			checksum += (info_frame >> (i * 8)) & 0xff;
 617		for (i = 0; i < BYTES_PER_WORD; i++)
 618			checksum += (frame2.regval >> (i * 8)) & 0xff;
 619		for (i = 0; i < BYTES_PER_WORD; i++)
 620			checksum += (frame3.regval >> (i * 8)) & 0xff;
 621
 622		frame2.regx.chksum = -(checksum);
 623	}
 624
 625	had_write_register(intelhaddata, AUD_HDMIW_INFOFR, info_frame);
 626	had_write_register(intelhaddata, AUD_HDMIW_INFOFR, frame2.regval);
 627	had_write_register(intelhaddata, AUD_HDMIW_INFOFR, frame3.regval);
 628
 629	/* program remaining DIP words with zero */
 630	for (i = 0; i < HAD_MAX_DIP_WORDS-VALID_DIP_WORDS; i++)
 631		had_write_register(intelhaddata, AUD_HDMIW_INFOFR, 0x0);
 632
 633	ctrl_state.regx.dip_freq = 1;
 634	ctrl_state.regx.dip_en_sta = 1;
 635	had_write_register(intelhaddata, AUD_CNTL_ST, ctrl_state.regval);
 636}
 637
 638static int had_calculate_maud_value(u32 aud_samp_freq, u32 link_rate)
 639{
 640	u32 maud_val;
 641
 642	/* Select maud according to DP 1.2 spec */
 643	if (link_rate == DP_2_7_GHZ) {
 644		switch (aud_samp_freq) {
 645		case AUD_SAMPLE_RATE_32:
 646			maud_val = AUD_SAMPLE_RATE_32_DP_2_7_MAUD_VAL;
 647			break;
 648
 649		case AUD_SAMPLE_RATE_44_1:
 650			maud_val = AUD_SAMPLE_RATE_44_1_DP_2_7_MAUD_VAL;
 651			break;
 652
 653		case AUD_SAMPLE_RATE_48:
 654			maud_val = AUD_SAMPLE_RATE_48_DP_2_7_MAUD_VAL;
 655			break;
 656
 657		case AUD_SAMPLE_RATE_88_2:
 658			maud_val = AUD_SAMPLE_RATE_88_2_DP_2_7_MAUD_VAL;
 659			break;
 660
 661		case AUD_SAMPLE_RATE_96:
 662			maud_val = AUD_SAMPLE_RATE_96_DP_2_7_MAUD_VAL;
 663			break;
 664
 665		case AUD_SAMPLE_RATE_176_4:
 666			maud_val = AUD_SAMPLE_RATE_176_4_DP_2_7_MAUD_VAL;
 667			break;
 668
 669		case HAD_MAX_RATE:
 670			maud_val = HAD_MAX_RATE_DP_2_7_MAUD_VAL;
 671			break;
 672
 673		default:
 674			maud_val = -EINVAL;
 675			break;
 676		}
 677	} else if (link_rate == DP_1_62_GHZ) {
 678		switch (aud_samp_freq) {
 679		case AUD_SAMPLE_RATE_32:
 680			maud_val = AUD_SAMPLE_RATE_32_DP_1_62_MAUD_VAL;
 681			break;
 682
 683		case AUD_SAMPLE_RATE_44_1:
 684			maud_val = AUD_SAMPLE_RATE_44_1_DP_1_62_MAUD_VAL;
 685			break;
 686
 687		case AUD_SAMPLE_RATE_48:
 688			maud_val = AUD_SAMPLE_RATE_48_DP_1_62_MAUD_VAL;
 689			break;
 690
 691		case AUD_SAMPLE_RATE_88_2:
 692			maud_val = AUD_SAMPLE_RATE_88_2_DP_1_62_MAUD_VAL;
 693			break;
 694
 695		case AUD_SAMPLE_RATE_96:
 696			maud_val = AUD_SAMPLE_RATE_96_DP_1_62_MAUD_VAL;
 697			break;
 698
 699		case AUD_SAMPLE_RATE_176_4:
 700			maud_val = AUD_SAMPLE_RATE_176_4_DP_1_62_MAUD_VAL;
 701			break;
 702
 703		case HAD_MAX_RATE:
 704			maud_val = HAD_MAX_RATE_DP_1_62_MAUD_VAL;
 705			break;
 706
 707		default:
 708			maud_val = -EINVAL;
 709			break;
 710		}
 711	} else
 712		maud_val = -EINVAL;
 713
 714	return maud_val;
 715}
 716
 717/*
 718 * Program HDMI audio CTS value
 719 *
 720 * @aud_samp_freq: sampling frequency of audio data
 721 * @tmds: sampling frequency of the display data
 722 * @link_rate: DP link rate
 723 * @n_param: N value, depends on aud_samp_freq
 724 * @intelhaddata: substream private data
 725 *
 726 * Program CTS register based on the audio and display sampling frequency
 727 */
 728static void had_prog_cts(u32 aud_samp_freq, u32 tmds, u32 link_rate,
 729			 u32 n_param, struct snd_intelhad *intelhaddata)
 730{
 731	u32 cts_val;
 732	u64 dividend, divisor;
 733
 734	if (intelhaddata->dp_output) {
 735		/* Substitute cts_val with Maud according to DP 1.2 spec*/
 736		cts_val = had_calculate_maud_value(aud_samp_freq, link_rate);
 737	} else {
 738		/* Calculate CTS according to HDMI 1.3a spec*/
 739		dividend = (u64)tmds * n_param*1000;
 740		divisor = 128 * aud_samp_freq;
 741		cts_val = div64_u64(dividend, divisor);
 742	}
 743	dev_dbg(intelhaddata->dev, "TMDS value=%d, N value=%d, CTS Value=%d\n",
 744		 tmds, n_param, cts_val);
 745	had_write_register(intelhaddata, AUD_HDMI_CTS, (BIT(24) | cts_val));
 746}
 747
 748static int had_calculate_n_value(u32 aud_samp_freq)
 749{
 750	int n_val;
 751
 752	/* Select N according to HDMI 1.3a spec*/
 753	switch (aud_samp_freq) {
 754	case AUD_SAMPLE_RATE_32:
 755		n_val = 4096;
 756		break;
 757
 758	case AUD_SAMPLE_RATE_44_1:
 759		n_val = 6272;
 760		break;
 761
 762	case AUD_SAMPLE_RATE_48:
 763		n_val = 6144;
 764		break;
 765
 766	case AUD_SAMPLE_RATE_88_2:
 767		n_val = 12544;
 768		break;
 769
 770	case AUD_SAMPLE_RATE_96:
 771		n_val = 12288;
 772		break;
 773
 774	case AUD_SAMPLE_RATE_176_4:
 775		n_val = 25088;
 776		break;
 777
 778	case HAD_MAX_RATE:
 779		n_val = 24576;
 780		break;
 781
 782	default:
 783		n_val = -EINVAL;
 784		break;
 785	}
 786	return n_val;
 787}
 788
 789/*
 790 * Program HDMI audio N value
 791 *
 792 * @aud_samp_freq: sampling frequency of audio data
 793 * @n_param: N value, depends on aud_samp_freq
 794 * @intelhaddata: substream private data
 795 *
 796 * This function is called in the prepare callback.
 797 * It programs based on the audio and display sampling frequency
 798 */
 799static int had_prog_n(u32 aud_samp_freq, u32 *n_param,
 800		      struct snd_intelhad *intelhaddata)
 801{
 802	int n_val;
 803
 804	if (intelhaddata->dp_output) {
 805		/*
 806		 * According to DP specs, Maud and Naud values hold
 807		 * a relationship, which is stated as:
 808		 * Maud/Naud = 512 * fs / f_LS_Clk
 809		 * where, fs is the sampling frequency of the audio stream
 810		 * and Naud is 32768 for Async clock.
 811		 */
 812
 813		n_val = DP_NAUD_VAL;
 814	} else
 815		n_val =	had_calculate_n_value(aud_samp_freq);
 816
 817	if (n_val < 0)
 818		return n_val;
 819
 820	had_write_register(intelhaddata, AUD_N_ENABLE, (BIT(24) | n_val));
 821	*n_param = n_val;
 822	return 0;
 823}
 824
 825/*
 826 * PCM ring buffer handling
 827 *
 828 * The hardware provides a ring buffer with the fixed 4 buffer descriptors
 829 * (BDs).  The driver maps these 4 BDs onto the PCM ring buffer.  The mapping
 830 * moves at each period elapsed.  The below illustrates how it works:
 831 *
 832 * At time=0
 833 *  PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
 834 *  BD  | 0 | 1 | 2 | 3 |
 835 *
 836 * At time=1 (period elapsed)
 837 *  PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
 838 *  BD      | 1 | 2 | 3 | 0 |
 839 *
 840 * At time=2 (second period elapsed)
 841 *  PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
 842 *  BD          | 2 | 3 | 0 | 1 |
 843 *
 844 * The bd_head field points to the index of the BD to be read.  It's also the
 845 * position to be filled at next.  The pcm_head and the pcm_filled fields
 846 * point to the indices of the current position and of the next position to
 847 * be filled, respectively.  For PCM buffer there are both _head and _filled
 848 * because they may be difference when nperiods > 4.  For example, in the
 849 * example above at t=1, bd_head=1 and pcm_head=1 while pcm_filled=5:
 850 *
 851 * pcm_head (=1) --v               v-- pcm_filled (=5)
 852 *       PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
 853 *       BD      | 1 | 2 | 3 | 0 |
 854 *  bd_head (=1) --^               ^-- next to fill (= bd_head)
 855 *
 856 * For nperiods < 4, the remaining BDs out of 4 are marked as invalid, so that
 857 * the hardware skips those BDs in the loop.
 858 *
 859 * An exceptional setup is the case with nperiods=1.  Since we have to update
 860 * BDs after finishing one BD processing, we'd need at least two BDs, where
 861 * both BDs point to the same content, the same address, the same size of the
 862 * whole PCM buffer.
 863 */
 864
 865#define AUD_BUF_ADDR(x)		(AUD_BUF_A_ADDR + (x) * HAD_REG_WIDTH)
 866#define AUD_BUF_LEN(x)		(AUD_BUF_A_LENGTH + (x) * HAD_REG_WIDTH)
 867
 868/* Set up a buffer descriptor at the "filled" position */
 869static void had_prog_bd(struct snd_pcm_substream *substream,
 870			struct snd_intelhad *intelhaddata)
 871{
 872	int idx = intelhaddata->bd_head;
 873	int ofs = intelhaddata->pcmbuf_filled * intelhaddata->period_bytes;
 874	u32 addr = substream->runtime->dma_addr + ofs;
 875
 876	addr |= AUD_BUF_VALID;
 877	if (!substream->runtime->no_period_wakeup)
 878		addr |= AUD_BUF_INTR_EN;
 879	had_write_register(intelhaddata, AUD_BUF_ADDR(idx), addr);
 880	had_write_register(intelhaddata, AUD_BUF_LEN(idx),
 881			   intelhaddata->period_bytes);
 882
 883	/* advance the indices to the next */
 884	intelhaddata->bd_head++;
 885	intelhaddata->bd_head %= intelhaddata->num_bds;
 886	intelhaddata->pcmbuf_filled++;
 887	intelhaddata->pcmbuf_filled %= substream->runtime->periods;
 888}
 889
 890/* invalidate a buffer descriptor with the given index */
 891static void had_invalidate_bd(struct snd_intelhad *intelhaddata,
 892			      int idx)
 893{
 894	had_write_register(intelhaddata, AUD_BUF_ADDR(idx), 0);
 895	had_write_register(intelhaddata, AUD_BUF_LEN(idx), 0);
 896}
 897
 898/* Initial programming of ring buffer */
 899static void had_init_ringbuf(struct snd_pcm_substream *substream,
 900			     struct snd_intelhad *intelhaddata)
 901{
 902	struct snd_pcm_runtime *runtime = substream->runtime;
 903	int i, num_periods;
 904
 905	num_periods = runtime->periods;
 906	intelhaddata->num_bds = min(num_periods, HAD_NUM_OF_RING_BUFS);
 907	/* set the minimum 2 BDs for num_periods=1 */
 908	intelhaddata->num_bds = max(intelhaddata->num_bds, 2U);
 909	intelhaddata->period_bytes =
 910		frames_to_bytes(runtime, runtime->period_size);
 911	WARN_ON(intelhaddata->period_bytes & 0x3f);
 912
 913	intelhaddata->bd_head = 0;
 914	intelhaddata->pcmbuf_head = 0;
 915	intelhaddata->pcmbuf_filled = 0;
 916
 917	for (i = 0; i < HAD_NUM_OF_RING_BUFS; i++) {
 918		if (i < intelhaddata->num_bds)
 919			had_prog_bd(substream, intelhaddata);
 920		else /* invalidate the rest */
 921			had_invalidate_bd(intelhaddata, i);
 922	}
 923
 924	intelhaddata->bd_head = 0; /* reset at head again before starting */
 925}
 926
 927/* process a bd, advance to the next */
 928static void had_advance_ringbuf(struct snd_pcm_substream *substream,
 929				struct snd_intelhad *intelhaddata)
 930{
 931	int num_periods = substream->runtime->periods;
 932
 933	/* reprogram the next buffer */
 934	had_prog_bd(substream, intelhaddata);
 935
 936	/* proceed to next */
 937	intelhaddata->pcmbuf_head++;
 938	intelhaddata->pcmbuf_head %= num_periods;
 939}
 940
 941/* process the current BD(s);
 942 * returns the current PCM buffer byte position, or -EPIPE for underrun.
 943 */
 944static int had_process_ringbuf(struct snd_pcm_substream *substream,
 945			       struct snd_intelhad *intelhaddata)
 946{
 947	int len, processed;
 948	unsigned long flags;
 949
 950	processed = 0;
 951	spin_lock_irqsave(&intelhaddata->had_spinlock, flags);
 952	for (;;) {
 953		/* get the remaining bytes on the buffer */
 954		had_read_register(intelhaddata,
 955				  AUD_BUF_LEN(intelhaddata->bd_head),
 956				  &len);
 957		if (len < 0 || len > intelhaddata->period_bytes) {
 958			dev_dbg(intelhaddata->dev, "Invalid buf length %d\n",
 959				len);
 960			len = -EPIPE;
 961			goto out;
 962		}
 963
 964		if (len > 0) /* OK, this is the current buffer */
 965			break;
 966
 967		/* len=0 => already empty, check the next buffer */
 968		if (++processed >= intelhaddata->num_bds) {
 969			len = -EPIPE; /* all empty? - report underrun */
 970			goto out;
 971		}
 972		had_advance_ringbuf(substream, intelhaddata);
 973	}
 974
 975	len = intelhaddata->period_bytes - len;
 976	len += intelhaddata->period_bytes * intelhaddata->pcmbuf_head;
 977 out:
 978	spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags);
 979	return len;
 980}
 981
 982/* called from irq handler */
 983static void had_process_buffer_done(struct snd_intelhad *intelhaddata)
 984{
 985	struct snd_pcm_substream *substream;
 986
 987	substream = had_substream_get(intelhaddata);
 988	if (!substream)
 989		return; /* no stream? - bail out */
 990
 991	if (!intelhaddata->connected) {
 992		snd_pcm_stop_xrun(substream);
 993		goto out; /* disconnected? - bail out */
 994	}
 995
 996	/* process or stop the stream */
 997	if (had_process_ringbuf(substream, intelhaddata) < 0)
 998		snd_pcm_stop_xrun(substream);
 999	else
1000		snd_pcm_period_elapsed(substream);
1001
1002 out:
1003	had_substream_put(intelhaddata);
1004}
1005
1006/*
1007 * The interrupt status 'sticky' bits might not be cleared by
1008 * setting '1' to that bit once...
1009 */
1010static void wait_clear_underrun_bit(struct snd_intelhad *intelhaddata)
1011{
1012	int i;
1013	u32 val;
1014
1015	for (i = 0; i < 100; i++) {
1016		/* clear bit30, 31 AUD_HDMI_STATUS */
1017		had_read_register(intelhaddata, AUD_HDMI_STATUS, &val);
1018		if (!(val & AUD_HDMI_STATUS_MASK_UNDERRUN))
1019			return;
1020		udelay(100);
1021		cond_resched();
1022		had_write_register(intelhaddata, AUD_HDMI_STATUS, val);
1023	}
1024	dev_err(intelhaddata->dev, "Unable to clear UNDERRUN bits\n");
1025}
1026
1027/* Perform some reset procedure but only when need_reset is set;
1028 * this is called from prepare or hw_free callbacks once after trigger STOP
1029 * or underrun has been processed in order to settle down the h/w state.
1030 */
1031static void had_do_reset(struct snd_intelhad *intelhaddata)
1032{
1033	if (!intelhaddata->need_reset || !intelhaddata->connected)
1034		return;
 
 
1035
1036	/* Reset buffer pointers */
1037	had_reset_audio(intelhaddata);
1038	wait_clear_underrun_bit(intelhaddata);
1039	intelhaddata->need_reset = false;
1040}
1041
1042/* called from irq handler */
1043static void had_process_buffer_underrun(struct snd_intelhad *intelhaddata)
1044{
1045	struct snd_pcm_substream *substream;
1046
1047	/* Report UNDERRUN error to above layers */
1048	substream = had_substream_get(intelhaddata);
1049	if (substream) {
1050		snd_pcm_stop_xrun(substream);
1051		had_substream_put(intelhaddata);
1052	}
1053	intelhaddata->need_reset = true;
1054}
1055
1056/*
1057 * ALSA PCM open callback
1058 */
1059static int had_pcm_open(struct snd_pcm_substream *substream)
1060{
1061	struct snd_intelhad *intelhaddata;
1062	struct snd_pcm_runtime *runtime;
1063	int retval;
1064
1065	intelhaddata = snd_pcm_substream_chip(substream);
1066	runtime = substream->runtime;
1067
1068	pm_runtime_get_sync(intelhaddata->dev);
 
 
1069
1070	/* set the runtime hw parameter with local snd_pcm_hardware struct */
1071	runtime->hw = had_pcm_hardware;
1072
1073	retval = snd_pcm_hw_constraint_integer(runtime,
1074			 SNDRV_PCM_HW_PARAM_PERIODS);
1075	if (retval < 0)
1076		goto error;
1077
1078	/* Make sure, that the period size is always aligned
1079	 * 64byte boundary
1080	 */
1081	retval = snd_pcm_hw_constraint_step(substream->runtime, 0,
1082			SNDRV_PCM_HW_PARAM_PERIOD_BYTES, 64);
1083	if (retval < 0)
1084		goto error;
1085
1086	retval = snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
1087	if (retval < 0)
1088		goto error;
1089
1090	/* expose PCM substream */
1091	spin_lock_irq(&intelhaddata->had_spinlock);
1092	intelhaddata->stream_info.substream = substream;
1093	intelhaddata->stream_info.substream_refcount++;
1094	spin_unlock_irq(&intelhaddata->had_spinlock);
1095
1096	return retval;
1097 error:
1098	pm_runtime_mark_last_busy(intelhaddata->dev);
1099	pm_runtime_put_autosuspend(intelhaddata->dev);
1100	return retval;
1101}
1102
1103/*
1104 * ALSA PCM close callback
1105 */
1106static int had_pcm_close(struct snd_pcm_substream *substream)
1107{
1108	struct snd_intelhad *intelhaddata;
1109
1110	intelhaddata = snd_pcm_substream_chip(substream);
1111
1112	/* unreference and sync with the pending PCM accesses */
1113	spin_lock_irq(&intelhaddata->had_spinlock);
1114	intelhaddata->stream_info.substream = NULL;
1115	intelhaddata->stream_info.substream_refcount--;
1116	while (intelhaddata->stream_info.substream_refcount > 0) {
1117		spin_unlock_irq(&intelhaddata->had_spinlock);
1118		cpu_relax();
1119		spin_lock_irq(&intelhaddata->had_spinlock);
1120	}
1121	spin_unlock_irq(&intelhaddata->had_spinlock);
1122
1123	pm_runtime_mark_last_busy(intelhaddata->dev);
1124	pm_runtime_put_autosuspend(intelhaddata->dev);
1125	return 0;
1126}
1127
1128/*
1129 * ALSA PCM hw_params callback
1130 */
1131static int had_pcm_hw_params(struct snd_pcm_substream *substream,
1132			     struct snd_pcm_hw_params *hw_params)
1133{
1134	struct snd_intelhad *intelhaddata;
1135	int buf_size, retval;
1136
1137	intelhaddata = snd_pcm_substream_chip(substream);
1138	buf_size = params_buffer_bytes(hw_params);
1139	retval = snd_pcm_lib_malloc_pages(substream, buf_size);
1140	if (retval < 0)
1141		return retval;
1142	dev_dbg(intelhaddata->dev, "%s:allocated memory = %d\n",
1143		__func__, buf_size);
1144	return retval;
1145}
1146
1147/*
1148 * ALSA PCM hw_free callback
1149 */
1150static int had_pcm_hw_free(struct snd_pcm_substream *substream)
1151{
1152	struct snd_intelhad *intelhaddata;
1153
1154	intelhaddata = snd_pcm_substream_chip(substream);
1155	had_do_reset(intelhaddata);
1156
1157	return snd_pcm_lib_free_pages(substream);
1158}
1159
1160/*
1161 * ALSA PCM trigger callback
1162 */
1163static int had_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
1164{
1165	int retval = 0;
1166	struct snd_intelhad *intelhaddata;
1167
1168	intelhaddata = snd_pcm_substream_chip(substream);
1169
1170	spin_lock(&intelhaddata->had_spinlock);
1171	switch (cmd) {
1172	case SNDRV_PCM_TRIGGER_START:
1173	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
1174	case SNDRV_PCM_TRIGGER_RESUME:
1175		/* Enable Audio */
1176		had_ack_irqs(intelhaddata); /* FIXME: do we need this? */
1177		had_enable_audio(intelhaddata, true);
1178		break;
1179
1180	case SNDRV_PCM_TRIGGER_STOP:
1181	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
1182		/* Disable Audio */
1183		had_enable_audio(intelhaddata, false);
1184		intelhaddata->need_reset = true;
1185		break;
1186
1187	default:
1188		retval = -EINVAL;
1189	}
1190	spin_unlock(&intelhaddata->had_spinlock);
1191	return retval;
1192}
1193
1194/*
1195 * ALSA PCM prepare callback
1196 */
1197static int had_pcm_prepare(struct snd_pcm_substream *substream)
1198{
1199	int retval;
1200	u32 disp_samp_freq, n_param;
1201	u32 link_rate = 0;
1202	struct snd_intelhad *intelhaddata;
1203	struct snd_pcm_runtime *runtime;
1204
1205	intelhaddata = snd_pcm_substream_chip(substream);
1206	runtime = substream->runtime;
1207
1208	dev_dbg(intelhaddata->dev, "period_size=%d\n",
1209		(int)frames_to_bytes(runtime, runtime->period_size));
1210	dev_dbg(intelhaddata->dev, "periods=%d\n", runtime->periods);
1211	dev_dbg(intelhaddata->dev, "buffer_size=%d\n",
1212		(int)snd_pcm_lib_buffer_bytes(substream));
1213	dev_dbg(intelhaddata->dev, "rate=%d\n", runtime->rate);
1214	dev_dbg(intelhaddata->dev, "channels=%d\n", runtime->channels);
1215
1216	had_do_reset(intelhaddata);
1217
1218	/* Get N value in KHz */
1219	disp_samp_freq = intelhaddata->tmds_clock_speed;
1220
1221	retval = had_prog_n(substream->runtime->rate, &n_param, intelhaddata);
1222	if (retval) {
1223		dev_err(intelhaddata->dev,
1224			"programming N value failed %#x\n", retval);
1225		goto prep_end;
1226	}
1227
1228	if (intelhaddata->dp_output)
1229		link_rate = intelhaddata->link_rate;
1230
1231	had_prog_cts(substream->runtime->rate, disp_samp_freq, link_rate,
1232		     n_param, intelhaddata);
1233
1234	had_prog_dip(substream, intelhaddata);
1235
1236	retval = had_init_audio_ctrl(substream, intelhaddata);
1237
1238	/* Prog buffer address */
1239	had_init_ringbuf(substream, intelhaddata);
1240
1241	/*
1242	 * Program channel mapping in following order:
1243	 * FL, FR, C, LFE, RL, RR
1244	 */
1245
1246	had_write_register(intelhaddata, AUD_BUF_CH_SWAP, SWAP_LFE_CENTER);
1247
1248prep_end:
1249	return retval;
1250}
1251
1252/*
1253 * ALSA PCM pointer callback
1254 */
1255static snd_pcm_uframes_t had_pcm_pointer(struct snd_pcm_substream *substream)
1256{
1257	struct snd_intelhad *intelhaddata;
1258	int len;
1259
1260	intelhaddata = snd_pcm_substream_chip(substream);
1261
1262	if (!intelhaddata->connected)
1263		return SNDRV_PCM_POS_XRUN;
1264
1265	len = had_process_ringbuf(substream, intelhaddata);
1266	if (len < 0)
1267		return SNDRV_PCM_POS_XRUN;
1268	len = bytes_to_frames(substream->runtime, len);
1269	/* wrapping may happen when periods=1 */
1270	len %= substream->runtime->buffer_size;
1271	return len;
1272}
1273
1274/*
1275 * ALSA PCM mmap callback
1276 */
1277static int had_pcm_mmap(struct snd_pcm_substream *substream,
1278			struct vm_area_struct *vma)
1279{
1280	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1281	return remap_pfn_range(vma, vma->vm_start,
1282			substream->dma_buffer.addr >> PAGE_SHIFT,
1283			vma->vm_end - vma->vm_start, vma->vm_page_prot);
1284}
1285
1286/*
1287 * ALSA PCM ops
1288 */
1289static const struct snd_pcm_ops had_pcm_ops = {
1290	.open =		had_pcm_open,
1291	.close =	had_pcm_close,
1292	.ioctl =	snd_pcm_lib_ioctl,
1293	.hw_params =	had_pcm_hw_params,
1294	.hw_free =	had_pcm_hw_free,
1295	.prepare =	had_pcm_prepare,
1296	.trigger =	had_pcm_trigger,
 
1297	.pointer =	had_pcm_pointer,
1298	.mmap =		had_pcm_mmap,
1299};
1300
1301/* process mode change of the running stream; called in mutex */
1302static int had_process_mode_change(struct snd_intelhad *intelhaddata)
1303{
1304	struct snd_pcm_substream *substream;
1305	int retval = 0;
1306	u32 disp_samp_freq, n_param;
1307	u32 link_rate = 0;
1308
1309	substream = had_substream_get(intelhaddata);
1310	if (!substream)
1311		return 0;
1312
1313	/* Disable Audio */
1314	had_enable_audio(intelhaddata, false);
1315
1316	/* Update CTS value */
1317	disp_samp_freq = intelhaddata->tmds_clock_speed;
1318
1319	retval = had_prog_n(substream->runtime->rate, &n_param, intelhaddata);
1320	if (retval) {
1321		dev_err(intelhaddata->dev,
1322			"programming N value failed %#x\n", retval);
1323		goto out;
1324	}
1325
1326	if (intelhaddata->dp_output)
1327		link_rate = intelhaddata->link_rate;
1328
1329	had_prog_cts(substream->runtime->rate, disp_samp_freq, link_rate,
1330		     n_param, intelhaddata);
1331
1332	/* Enable Audio */
1333	had_enable_audio(intelhaddata, true);
1334
1335out:
1336	had_substream_put(intelhaddata);
1337	return retval;
1338}
1339
1340/* process hot plug, called from wq with mutex locked */
1341static void had_process_hot_plug(struct snd_intelhad *intelhaddata)
1342{
1343	struct snd_pcm_substream *substream;
1344
1345	spin_lock_irq(&intelhaddata->had_spinlock);
1346	if (intelhaddata->connected) {
1347		dev_dbg(intelhaddata->dev, "Device already connected\n");
1348		spin_unlock_irq(&intelhaddata->had_spinlock);
1349		return;
1350	}
1351
1352	/* Disable Audio */
1353	had_enable_audio(intelhaddata, false);
1354
1355	intelhaddata->connected = true;
1356	dev_dbg(intelhaddata->dev,
1357		"%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_CONNECTED\n",
1358			__func__, __LINE__);
1359	spin_unlock_irq(&intelhaddata->had_spinlock);
1360
1361	had_build_channel_allocation_map(intelhaddata);
1362
1363	/* Report to above ALSA layer */
1364	substream = had_substream_get(intelhaddata);
1365	if (substream) {
1366		snd_pcm_stop_xrun(substream);
1367		had_substream_put(intelhaddata);
1368	}
1369
1370	snd_jack_report(intelhaddata->jack, SND_JACK_AVOUT);
1371}
1372
1373/* process hot unplug, called from wq with mutex locked */
1374static void had_process_hot_unplug(struct snd_intelhad *intelhaddata)
1375{
1376	struct snd_pcm_substream *substream;
1377
1378	spin_lock_irq(&intelhaddata->had_spinlock);
1379	if (!intelhaddata->connected) {
1380		dev_dbg(intelhaddata->dev, "Device already disconnected\n");
1381		spin_unlock_irq(&intelhaddata->had_spinlock);
1382		return;
1383
1384	}
1385
1386	/* Disable Audio */
1387	had_enable_audio(intelhaddata, false);
1388
1389	intelhaddata->connected = false;
1390	dev_dbg(intelhaddata->dev,
1391		"%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_DISCONNECTED\n",
1392			__func__, __LINE__);
1393	spin_unlock_irq(&intelhaddata->had_spinlock);
1394
1395	kfree(intelhaddata->chmap->chmap);
1396	intelhaddata->chmap->chmap = NULL;
1397
1398	/* Report to above ALSA layer */
1399	substream = had_substream_get(intelhaddata);
1400	if (substream) {
1401		snd_pcm_stop_xrun(substream);
1402		had_substream_put(intelhaddata);
1403	}
1404
1405	snd_jack_report(intelhaddata->jack, 0);
1406}
1407
1408/*
1409 * ALSA iec958 and ELD controls
1410 */
1411
1412static int had_iec958_info(struct snd_kcontrol *kcontrol,
1413				struct snd_ctl_elem_info *uinfo)
1414{
1415	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1416	uinfo->count = 1;
1417	return 0;
1418}
1419
1420static int had_iec958_get(struct snd_kcontrol *kcontrol,
1421				struct snd_ctl_elem_value *ucontrol)
1422{
1423	struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol);
1424
1425	mutex_lock(&intelhaddata->mutex);
1426	ucontrol->value.iec958.status[0] = (intelhaddata->aes_bits >> 0) & 0xff;
1427	ucontrol->value.iec958.status[1] = (intelhaddata->aes_bits >> 8) & 0xff;
1428	ucontrol->value.iec958.status[2] =
1429					(intelhaddata->aes_bits >> 16) & 0xff;
1430	ucontrol->value.iec958.status[3] =
1431					(intelhaddata->aes_bits >> 24) & 0xff;
1432	mutex_unlock(&intelhaddata->mutex);
1433	return 0;
1434}
1435
1436static int had_iec958_mask_get(struct snd_kcontrol *kcontrol,
1437				struct snd_ctl_elem_value *ucontrol)
1438{
1439	ucontrol->value.iec958.status[0] = 0xff;
1440	ucontrol->value.iec958.status[1] = 0xff;
1441	ucontrol->value.iec958.status[2] = 0xff;
1442	ucontrol->value.iec958.status[3] = 0xff;
1443	return 0;
1444}
1445
1446static int had_iec958_put(struct snd_kcontrol *kcontrol,
1447				struct snd_ctl_elem_value *ucontrol)
1448{
1449	unsigned int val;
1450	struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol);
1451	int changed = 0;
1452
1453	val = (ucontrol->value.iec958.status[0] << 0) |
1454		(ucontrol->value.iec958.status[1] << 8) |
1455		(ucontrol->value.iec958.status[2] << 16) |
1456		(ucontrol->value.iec958.status[3] << 24);
1457	mutex_lock(&intelhaddata->mutex);
1458	if (intelhaddata->aes_bits != val) {
1459		intelhaddata->aes_bits = val;
1460		changed = 1;
1461	}
1462	mutex_unlock(&intelhaddata->mutex);
1463	return changed;
1464}
1465
1466static int had_ctl_eld_info(struct snd_kcontrol *kcontrol,
1467			    struct snd_ctl_elem_info *uinfo)
1468{
1469	uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
1470	uinfo->count = HDMI_MAX_ELD_BYTES;
1471	return 0;
1472}
1473
1474static int had_ctl_eld_get(struct snd_kcontrol *kcontrol,
1475			   struct snd_ctl_elem_value *ucontrol)
1476{
1477	struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol);
1478
1479	mutex_lock(&intelhaddata->mutex);
1480	memcpy(ucontrol->value.bytes.data, intelhaddata->eld,
1481	       HDMI_MAX_ELD_BYTES);
1482	mutex_unlock(&intelhaddata->mutex);
1483	return 0;
1484}
1485
1486static const struct snd_kcontrol_new had_controls[] = {
1487	{
1488		.access = SNDRV_CTL_ELEM_ACCESS_READ,
1489		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1490		.name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, MASK),
1491		.info = had_iec958_info, /* shared */
1492		.get = had_iec958_mask_get,
1493	},
1494	{
1495		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1496		.name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT),
1497		.info = had_iec958_info,
1498		.get = had_iec958_get,
1499		.put = had_iec958_put,
1500	},
1501	{
1502		.access = (SNDRV_CTL_ELEM_ACCESS_READ |
1503			   SNDRV_CTL_ELEM_ACCESS_VOLATILE),
1504		.iface = SNDRV_CTL_ELEM_IFACE_PCM,
1505		.name = "ELD",
1506		.info = had_ctl_eld_info,
1507		.get = had_ctl_eld_get,
1508	},
1509};
1510
1511/*
1512 * audio interrupt handler
1513 */
1514static irqreturn_t display_pipe_interrupt_handler(int irq, void *dev_id)
1515{
1516	struct snd_intelhad_card *card_ctx = dev_id;
1517	u32 audio_stat[3] = {};
1518	int pipe, port;
1519
1520	for_each_pipe(card_ctx, pipe) {
1521		/* use raw register access to ack IRQs even while disconnected */
1522		audio_stat[pipe] = had_read_register_raw(card_ctx, pipe,
1523							 AUD_HDMI_STATUS) &
1524			(HDMI_AUDIO_UNDERRUN | HDMI_AUDIO_BUFFER_DONE);
1525
1526		if (audio_stat[pipe])
1527			had_write_register_raw(card_ctx, pipe,
1528					       AUD_HDMI_STATUS, audio_stat[pipe]);
1529	}
1530
1531	for_each_port(card_ctx, port) {
1532		struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port];
1533		int pipe = ctx->pipe;
1534
1535		if (pipe < 0)
1536			continue;
1537
1538		if (audio_stat[pipe] & HDMI_AUDIO_BUFFER_DONE)
1539			had_process_buffer_done(ctx);
1540		if (audio_stat[pipe] & HDMI_AUDIO_UNDERRUN)
1541			had_process_buffer_underrun(ctx);
1542	}
1543
1544	return IRQ_HANDLED;
1545}
1546
1547/*
1548 * monitor plug/unplug notification from i915; just kick off the work
1549 */
1550static void notify_audio_lpe(struct platform_device *pdev, int port)
1551{
1552	struct snd_intelhad_card *card_ctx = platform_get_drvdata(pdev);
1553	struct snd_intelhad *ctx;
1554
1555	ctx = &card_ctx->pcm_ctx[single_port ? 0 : port];
1556	if (single_port)
1557		ctx->port = port;
1558
1559	schedule_work(&ctx->hdmi_audio_wq);
1560}
1561
1562/* the work to handle monitor hot plug/unplug */
1563static void had_audio_wq(struct work_struct *work)
1564{
1565	struct snd_intelhad *ctx =
1566		container_of(work, struct snd_intelhad, hdmi_audio_wq);
1567	struct intel_hdmi_lpe_audio_pdata *pdata = ctx->dev->platform_data;
1568	struct intel_hdmi_lpe_audio_port_pdata *ppdata = &pdata->port[ctx->port];
 
 
 
 
 
1569
1570	pm_runtime_get_sync(ctx->dev);
1571	mutex_lock(&ctx->mutex);
1572	if (ppdata->pipe < 0) {
1573		dev_dbg(ctx->dev, "%s: Event: HAD_NOTIFY_HOT_UNPLUG : port = %d\n",
1574			__func__, ctx->port);
1575
1576		memset(ctx->eld, 0, sizeof(ctx->eld)); /* clear the old ELD */
1577
1578		ctx->dp_output = false;
1579		ctx->tmds_clock_speed = 0;
1580		ctx->link_rate = 0;
1581
1582		/* Shut down the stream */
1583		had_process_hot_unplug(ctx);
1584
1585		ctx->pipe = -1;
1586	} else {
1587		dev_dbg(ctx->dev, "%s: HAD_NOTIFY_ELD : port = %d, tmds = %d\n",
1588			__func__, ctx->port, ppdata->ls_clock);
1589
1590		memcpy(ctx->eld, ppdata->eld, sizeof(ctx->eld));
1591
1592		ctx->dp_output = ppdata->dp_output;
1593		if (ctx->dp_output) {
1594			ctx->tmds_clock_speed = 0;
1595			ctx->link_rate = ppdata->ls_clock;
1596		} else {
1597			ctx->tmds_clock_speed = ppdata->ls_clock;
1598			ctx->link_rate = 0;
1599		}
1600
1601		/*
1602		 * Shut down the stream before we change
1603		 * the pipe assignment for this pcm device
1604		 */
1605		had_process_hot_plug(ctx);
1606
1607		ctx->pipe = ppdata->pipe;
1608
1609		/* Restart the stream if necessary */
1610		had_process_mode_change(ctx);
1611	}
1612
1613	mutex_unlock(&ctx->mutex);
1614	pm_runtime_mark_last_busy(ctx->dev);
1615	pm_runtime_put_autosuspend(ctx->dev);
1616}
1617
1618/*
1619 * Jack interface
1620 */
1621static int had_create_jack(struct snd_intelhad *ctx,
1622			   struct snd_pcm *pcm)
1623{
1624	char hdmi_str[32];
1625	int err;
1626
1627	snprintf(hdmi_str, sizeof(hdmi_str),
1628		 "HDMI/DP,pcm=%d", pcm->device);
1629
1630	err = snd_jack_new(ctx->card_ctx->card, hdmi_str,
1631			   SND_JACK_AVOUT, &ctx->jack,
1632			   true, false);
1633	if (err < 0)
1634		return err;
1635	ctx->jack->private_data = ctx;
1636	return 0;
1637}
1638
1639/*
1640 * PM callbacks
1641 */
1642
1643static int __maybe_unused hdmi_lpe_audio_suspend(struct device *dev)
1644{
1645	struct snd_intelhad_card *card_ctx = dev_get_drvdata(dev);
1646
1647	snd_power_change_state(card_ctx->card, SNDRV_CTL_POWER_D3hot);
1648
1649	return 0;
1650}
1651
1652static int __maybe_unused hdmi_lpe_audio_resume(struct device *dev)
1653{
1654	struct snd_intelhad_card *card_ctx = dev_get_drvdata(dev);
1655
1656	pm_runtime_mark_last_busy(dev);
1657
1658	snd_power_change_state(card_ctx->card, SNDRV_CTL_POWER_D0);
1659
1660	return 0;
1661}
1662
1663/* release resources */
1664static void hdmi_lpe_audio_free(struct snd_card *card)
1665{
1666	struct snd_intelhad_card *card_ctx = card->private_data;
1667	struct intel_hdmi_lpe_audio_pdata *pdata = card_ctx->dev->platform_data;
1668	int port;
1669
1670	spin_lock_irq(&pdata->lpe_audio_slock);
1671	pdata->notify_audio_lpe = NULL;
1672	spin_unlock_irq(&pdata->lpe_audio_slock);
1673
1674	for_each_port(card_ctx, port) {
1675		struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port];
1676
1677		cancel_work_sync(&ctx->hdmi_audio_wq);
1678	}
1679
1680	if (card_ctx->mmio_start)
1681		iounmap(card_ctx->mmio_start);
1682	if (card_ctx->irq >= 0)
1683		free_irq(card_ctx->irq, card_ctx);
1684}
1685
1686/*
1687 * hdmi_lpe_audio_probe - start bridge with i915
1688 *
1689 * This function is called when the i915 driver creates the
1690 * hdmi-lpe-audio platform device.
1691 */
1692static int hdmi_lpe_audio_probe(struct platform_device *pdev)
1693{
1694	struct snd_card *card;
1695	struct snd_intelhad_card *card_ctx;
1696	struct snd_intelhad *ctx;
1697	struct snd_pcm *pcm;
1698	struct intel_hdmi_lpe_audio_pdata *pdata;
1699	int irq;
1700	struct resource *res_mmio;
1701	int port, ret;
1702
1703	pdata = pdev->dev.platform_data;
1704	if (!pdata) {
1705		dev_err(&pdev->dev, "%s: quit: pdata not allocated by i915!!\n", __func__);
1706		return -EINVAL;
1707	}
1708
1709	/* get resources */
1710	irq = platform_get_irq(pdev, 0);
1711	if (irq < 0) {
1712		dev_err(&pdev->dev, "Could not get irq resource: %d\n", irq);
1713		return irq;
1714	}
1715
1716	res_mmio = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1717	if (!res_mmio) {
1718		dev_err(&pdev->dev, "Could not get IO_MEM resources\n");
1719		return -ENXIO;
1720	}
1721
1722	/* create a card instance with ALSA framework */
1723	ret = snd_card_new(&pdev->dev, hdmi_card_index, hdmi_card_id,
1724			   THIS_MODULE, sizeof(*card_ctx), &card);
1725	if (ret)
1726		return ret;
1727
1728	card_ctx = card->private_data;
1729	card_ctx->dev = &pdev->dev;
1730	card_ctx->card = card;
1731	strcpy(card->driver, INTEL_HAD);
1732	strcpy(card->shortname, "Intel HDMI/DP LPE Audio");
1733	strcpy(card->longname, "Intel HDMI/DP LPE Audio");
1734
1735	card_ctx->irq = -1;
1736
1737	card->private_free = hdmi_lpe_audio_free;
1738
1739	platform_set_drvdata(pdev, card_ctx);
1740
1741	card_ctx->num_pipes = pdata->num_pipes;
1742	card_ctx->num_ports = single_port ? 1 : pdata->num_ports;
1743
1744	for_each_port(card_ctx, port) {
1745		ctx = &card_ctx->pcm_ctx[port];
1746		ctx->card_ctx = card_ctx;
1747		ctx->dev = card_ctx->dev;
1748		ctx->port = single_port ? -1 : port;
1749		ctx->pipe = -1;
1750
1751		spin_lock_init(&ctx->had_spinlock);
1752		mutex_init(&ctx->mutex);
1753		INIT_WORK(&ctx->hdmi_audio_wq, had_audio_wq);
1754	}
1755
1756	dev_dbg(&pdev->dev, "%s: mmio_start = 0x%x, mmio_end = 0x%x\n",
1757		__func__, (unsigned int)res_mmio->start,
1758		(unsigned int)res_mmio->end);
1759
1760	card_ctx->mmio_start = ioremap_nocache(res_mmio->start,
1761					       (size_t)(resource_size(res_mmio)));
 
1762	if (!card_ctx->mmio_start) {
1763		dev_err(&pdev->dev, "Could not get ioremap\n");
1764		ret = -EACCES;
1765		goto err;
1766	}
1767
1768	/* setup interrupt handler */
1769	ret = request_irq(irq, display_pipe_interrupt_handler, 0,
1770			  pdev->name, card_ctx);
1771	if (ret < 0) {
1772		dev_err(&pdev->dev, "request_irq failed\n");
1773		goto err;
1774	}
1775
1776	card_ctx->irq = irq;
1777
1778	/* only 32bit addressable */
1779	dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
1780	dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
 
1781
1782	init_channel_allocations();
1783
1784	card_ctx->num_pipes = pdata->num_pipes;
1785	card_ctx->num_ports = single_port ? 1 : pdata->num_ports;
1786
1787	for_each_port(card_ctx, port) {
1788		int i;
1789
1790		ctx = &card_ctx->pcm_ctx[port];
1791		ret = snd_pcm_new(card, INTEL_HAD, port, MAX_PB_STREAMS,
1792				  MAX_CAP_STREAMS, &pcm);
1793		if (ret)
1794			goto err;
1795
1796		/* setup private data which can be retrieved when required */
1797		pcm->private_data = ctx;
1798		pcm->info_flags = 0;
1799		strlcpy(pcm->name, card->shortname, strlen(card->shortname));
1800		/* setup the ops for playabck */
1801		snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &had_pcm_ops);
1802
1803		/* allocate dma pages;
1804		 * try to allocate 600k buffer as default which is large enough
1805		 */
1806		snd_pcm_lib_preallocate_pages_for_all(pcm,
1807						      SNDRV_DMA_TYPE_DEV_UC,
1808						      card->dev,
1809						      HAD_DEFAULT_BUFFER, HAD_MAX_BUFFER);
1810
1811		/* create controls */
1812		for (i = 0; i < ARRAY_SIZE(had_controls); i++) {
1813			struct snd_kcontrol *kctl;
1814
1815			kctl = snd_ctl_new1(&had_controls[i], ctx);
1816			if (!kctl) {
1817				ret = -ENOMEM;
1818				goto err;
1819			}
1820
1821			kctl->id.device = pcm->device;
1822
1823			ret = snd_ctl_add(card, kctl);
1824			if (ret < 0)
1825				goto err;
1826		}
1827
1828		/* Register channel map controls */
1829		ret = had_register_chmap_ctls(ctx, pcm);
1830		if (ret < 0)
1831			goto err;
1832
1833		ret = had_create_jack(ctx, pcm);
1834		if (ret < 0)
1835			goto err;
1836	}
1837
1838	ret = snd_card_register(card);
1839	if (ret)
1840		goto err;
1841
1842	spin_lock_irq(&pdata->lpe_audio_slock);
1843	pdata->notify_audio_lpe = notify_audio_lpe;
1844	spin_unlock_irq(&pdata->lpe_audio_slock);
1845
 
1846	pm_runtime_use_autosuspend(&pdev->dev);
 
1847	pm_runtime_mark_last_busy(&pdev->dev);
 
1848
1849	dev_dbg(&pdev->dev, "%s: handle pending notification\n", __func__);
1850	for_each_port(card_ctx, port) {
1851		struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port];
1852
1853		schedule_work(&ctx->hdmi_audio_wq);
1854	}
1855
1856	return 0;
1857
1858err:
1859	snd_card_free(card);
1860	return ret;
1861}
1862
1863/*
1864 * hdmi_lpe_audio_remove - stop bridge with i915
1865 *
1866 * This function is called when the platform device is destroyed.
1867 */
1868static int hdmi_lpe_audio_remove(struct platform_device *pdev)
1869{
1870	struct snd_intelhad_card *card_ctx = platform_get_drvdata(pdev);
1871
1872	snd_card_free(card_ctx->card);
1873	return 0;
1874}
1875
1876static const struct dev_pm_ops hdmi_lpe_audio_pm = {
1877	SET_SYSTEM_SLEEP_PM_OPS(hdmi_lpe_audio_suspend, hdmi_lpe_audio_resume)
1878};
1879
1880static struct platform_driver hdmi_lpe_audio_driver = {
1881	.driver		= {
1882		.name  = "hdmi-lpe-audio",
1883		.pm = &hdmi_lpe_audio_pm,
1884	},
1885	.probe          = hdmi_lpe_audio_probe,
1886	.remove		= hdmi_lpe_audio_remove,
1887};
1888
1889module_platform_driver(hdmi_lpe_audio_driver);
1890MODULE_ALIAS("platform:hdmi_lpe_audio");
1891
1892MODULE_AUTHOR("Sailaja Bandarupalli <sailaja.bandarupalli@intel.com>");
1893MODULE_AUTHOR("Ramesh Babu K V <ramesh.babu@intel.com>");
1894MODULE_AUTHOR("Vaibhav Agarwal <vaibhav.agarwal@intel.com>");
1895MODULE_AUTHOR("Jerome Anand <jerome.anand@intel.com>");
1896MODULE_DESCRIPTION("Intel HDMI Audio driver");
1897MODULE_LICENSE("GPL v2");
1898MODULE_SUPPORTED_DEVICE("{Intel,Intel_HAD}");