Linux Audio

Check our new training course

Loading...
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * Module-based API test facility for ww_mutexes
  4 */
  5
  6#include <linux/kernel.h>
  7
  8#include <linux/completion.h>
  9#include <linux/delay.h>
 10#include <linux/kthread.h>
 11#include <linux/module.h>
 12#include <linux/prandom.h>
 13#include <linux/slab.h>
 14#include <linux/ww_mutex.h>
 15
 16static DEFINE_WD_CLASS(ww_class);
 17struct workqueue_struct *wq;
 18
 19#ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH
 20#define ww_acquire_init_noinject(a, b) do { \
 21		ww_acquire_init((a), (b)); \
 22		(a)->deadlock_inject_countdown = ~0U; \
 23	} while (0)
 24#else
 25#define ww_acquire_init_noinject(a, b) ww_acquire_init((a), (b))
 26#endif
 27
 28struct test_mutex {
 29	struct work_struct work;
 30	struct ww_mutex mutex;
 31	struct completion ready, go, done;
 32	unsigned int flags;
 33};
 34
 35#define TEST_MTX_SPIN BIT(0)
 36#define TEST_MTX_TRY BIT(1)
 37#define TEST_MTX_CTX BIT(2)
 38#define __TEST_MTX_LAST BIT(3)
 39
 40static void test_mutex_work(struct work_struct *work)
 41{
 42	struct test_mutex *mtx = container_of(work, typeof(*mtx), work);
 43
 44	complete(&mtx->ready);
 45	wait_for_completion(&mtx->go);
 46
 47	if (mtx->flags & TEST_MTX_TRY) {
 48		while (!ww_mutex_trylock(&mtx->mutex, NULL))
 49			cond_resched();
 50	} else {
 51		ww_mutex_lock(&mtx->mutex, NULL);
 52	}
 53	complete(&mtx->done);
 54	ww_mutex_unlock(&mtx->mutex);
 55}
 56
 57static int __test_mutex(unsigned int flags)
 58{
 59#define TIMEOUT (HZ / 16)
 60	struct test_mutex mtx;
 61	struct ww_acquire_ctx ctx;
 62	int ret;
 63
 64	ww_mutex_init(&mtx.mutex, &ww_class);
 65	if (flags & TEST_MTX_CTX)
 66		ww_acquire_init(&ctx, &ww_class);
 67
 68	INIT_WORK_ONSTACK(&mtx.work, test_mutex_work);
 69	init_completion(&mtx.ready);
 70	init_completion(&mtx.go);
 71	init_completion(&mtx.done);
 72	mtx.flags = flags;
 73
 74	schedule_work(&mtx.work);
 75
 76	wait_for_completion(&mtx.ready);
 77	ww_mutex_lock(&mtx.mutex, (flags & TEST_MTX_CTX) ? &ctx : NULL);
 78	complete(&mtx.go);
 79	if (flags & TEST_MTX_SPIN) {
 80		unsigned long timeout = jiffies + TIMEOUT;
 81
 82		ret = 0;
 83		do {
 84			if (completion_done(&mtx.done)) {
 85				ret = -EINVAL;
 86				break;
 87			}
 88			cond_resched();
 89		} while (time_before(jiffies, timeout));
 90	} else {
 91		ret = wait_for_completion_timeout(&mtx.done, TIMEOUT);
 92	}
 93	ww_mutex_unlock(&mtx.mutex);
 94	if (flags & TEST_MTX_CTX)
 95		ww_acquire_fini(&ctx);
 96
 97	if (ret) {
 98		pr_err("%s(flags=%x): mutual exclusion failure\n",
 99		       __func__, flags);
100		ret = -EINVAL;
101	}
102
103	flush_work(&mtx.work);
104	destroy_work_on_stack(&mtx.work);
105	return ret;
106#undef TIMEOUT
107}
108
109static int test_mutex(void)
110{
111	int ret;
112	int i;
113
114	for (i = 0; i < __TEST_MTX_LAST; i++) {
115		ret = __test_mutex(i);
116		if (ret)
117			return ret;
118	}
119
120	return 0;
121}
122
123static int test_aa(bool trylock)
124{
125	struct ww_mutex mutex;
126	struct ww_acquire_ctx ctx;
127	int ret;
128	const char *from = trylock ? "trylock" : "lock";
129
130	ww_mutex_init(&mutex, &ww_class);
131	ww_acquire_init(&ctx, &ww_class);
132
133	if (!trylock) {
134		ret = ww_mutex_lock(&mutex, &ctx);
135		if (ret) {
136			pr_err("%s: initial lock failed!\n", __func__);
137			goto out;
138		}
139	} else {
140		ret = !ww_mutex_trylock(&mutex, &ctx);
141		if (ret) {
142			pr_err("%s: initial trylock failed!\n", __func__);
143			goto out;
144		}
145	}
146
147	if (ww_mutex_trylock(&mutex, NULL))  {
148		pr_err("%s: trylocked itself without context from %s!\n", __func__, from);
149		ww_mutex_unlock(&mutex);
150		ret = -EINVAL;
151		goto out;
152	}
153
154	if (ww_mutex_trylock(&mutex, &ctx))  {
155		pr_err("%s: trylocked itself with context from %s!\n", __func__, from);
156		ww_mutex_unlock(&mutex);
157		ret = -EINVAL;
158		goto out;
159	}
160
161	ret = ww_mutex_lock(&mutex, &ctx);
162	if (ret != -EALREADY) {
163		pr_err("%s: missed deadlock for recursing, ret=%d from %s\n",
164		       __func__, ret, from);
165		if (!ret)
166			ww_mutex_unlock(&mutex);
167		ret = -EINVAL;
168		goto out;
169	}
170
171	ww_mutex_unlock(&mutex);
172	ret = 0;
173out:
 
174	ww_acquire_fini(&ctx);
175	return ret;
176}
177
178struct test_abba {
179	struct work_struct work;
180	struct ww_mutex a_mutex;
181	struct ww_mutex b_mutex;
182	struct completion a_ready;
183	struct completion b_ready;
184	bool resolve, trylock;
185	int result;
186};
187
188static void test_abba_work(struct work_struct *work)
189{
190	struct test_abba *abba = container_of(work, typeof(*abba), work);
191	struct ww_acquire_ctx ctx;
192	int err;
193
194	ww_acquire_init_noinject(&ctx, &ww_class);
195	if (!abba->trylock)
196		ww_mutex_lock(&abba->b_mutex, &ctx);
197	else
198		WARN_ON(!ww_mutex_trylock(&abba->b_mutex, &ctx));
199
200	WARN_ON(READ_ONCE(abba->b_mutex.ctx) != &ctx);
201
202	complete(&abba->b_ready);
203	wait_for_completion(&abba->a_ready);
204
205	err = ww_mutex_lock(&abba->a_mutex, &ctx);
206	if (abba->resolve && err == -EDEADLK) {
207		ww_mutex_unlock(&abba->b_mutex);
208		ww_mutex_lock_slow(&abba->a_mutex, &ctx);
209		err = ww_mutex_lock(&abba->b_mutex, &ctx);
210	}
211
212	if (!err)
213		ww_mutex_unlock(&abba->a_mutex);
214	ww_mutex_unlock(&abba->b_mutex);
215	ww_acquire_fini(&ctx);
216
217	abba->result = err;
218}
219
220static int test_abba(bool trylock, bool resolve)
221{
222	struct test_abba abba;
223	struct ww_acquire_ctx ctx;
224	int err, ret;
225
226	ww_mutex_init(&abba.a_mutex, &ww_class);
227	ww_mutex_init(&abba.b_mutex, &ww_class);
228	INIT_WORK_ONSTACK(&abba.work, test_abba_work);
229	init_completion(&abba.a_ready);
230	init_completion(&abba.b_ready);
231	abba.trylock = trylock;
232	abba.resolve = resolve;
233
234	schedule_work(&abba.work);
235
236	ww_acquire_init_noinject(&ctx, &ww_class);
237	if (!trylock)
238		ww_mutex_lock(&abba.a_mutex, &ctx);
239	else
240		WARN_ON(!ww_mutex_trylock(&abba.a_mutex, &ctx));
241
242	WARN_ON(READ_ONCE(abba.a_mutex.ctx) != &ctx);
243
244	complete(&abba.a_ready);
245	wait_for_completion(&abba.b_ready);
246
247	err = ww_mutex_lock(&abba.b_mutex, &ctx);
248	if (resolve && err == -EDEADLK) {
249		ww_mutex_unlock(&abba.a_mutex);
250		ww_mutex_lock_slow(&abba.b_mutex, &ctx);
251		err = ww_mutex_lock(&abba.a_mutex, &ctx);
252	}
253
254	if (!err)
255		ww_mutex_unlock(&abba.b_mutex);
256	ww_mutex_unlock(&abba.a_mutex);
257	ww_acquire_fini(&ctx);
258
259	flush_work(&abba.work);
260	destroy_work_on_stack(&abba.work);
261
262	ret = 0;
263	if (resolve) {
264		if (err || abba.result) {
265			pr_err("%s: failed to resolve ABBA deadlock, A err=%d, B err=%d\n",
266			       __func__, err, abba.result);
267			ret = -EINVAL;
268		}
269	} else {
270		if (err != -EDEADLK && abba.result != -EDEADLK) {
271			pr_err("%s: missed ABBA deadlock, A err=%d, B err=%d\n",
272			       __func__, err, abba.result);
273			ret = -EINVAL;
274		}
275	}
276	return ret;
277}
278
279struct test_cycle {
280	struct work_struct work;
281	struct ww_mutex a_mutex;
282	struct ww_mutex *b_mutex;
283	struct completion *a_signal;
284	struct completion b_signal;
285	int result;
286};
287
288static void test_cycle_work(struct work_struct *work)
289{
290	struct test_cycle *cycle = container_of(work, typeof(*cycle), work);
291	struct ww_acquire_ctx ctx;
292	int err, erra = 0;
293
294	ww_acquire_init_noinject(&ctx, &ww_class);
295	ww_mutex_lock(&cycle->a_mutex, &ctx);
296
297	complete(cycle->a_signal);
298	wait_for_completion(&cycle->b_signal);
299
300	err = ww_mutex_lock(cycle->b_mutex, &ctx);
301	if (err == -EDEADLK) {
302		err = 0;
303		ww_mutex_unlock(&cycle->a_mutex);
304		ww_mutex_lock_slow(cycle->b_mutex, &ctx);
305		erra = ww_mutex_lock(&cycle->a_mutex, &ctx);
306	}
307
308	if (!err)
309		ww_mutex_unlock(cycle->b_mutex);
310	if (!erra)
311		ww_mutex_unlock(&cycle->a_mutex);
312	ww_acquire_fini(&ctx);
313
314	cycle->result = err ?: erra;
315}
316
317static int __test_cycle(unsigned int nthreads)
318{
319	struct test_cycle *cycles;
320	unsigned int n, last = nthreads - 1;
321	int ret;
322
323	cycles = kmalloc_array(nthreads, sizeof(*cycles), GFP_KERNEL);
324	if (!cycles)
325		return -ENOMEM;
326
327	for (n = 0; n < nthreads; n++) {
328		struct test_cycle *cycle = &cycles[n];
329
330		ww_mutex_init(&cycle->a_mutex, &ww_class);
331		if (n == last)
332			cycle->b_mutex = &cycles[0].a_mutex;
333		else
334			cycle->b_mutex = &cycles[n + 1].a_mutex;
335
336		if (n == 0)
337			cycle->a_signal = &cycles[last].b_signal;
338		else
339			cycle->a_signal = &cycles[n - 1].b_signal;
340		init_completion(&cycle->b_signal);
341
342		INIT_WORK(&cycle->work, test_cycle_work);
343		cycle->result = 0;
344	}
345
346	for (n = 0; n < nthreads; n++)
347		queue_work(wq, &cycles[n].work);
348
349	flush_workqueue(wq);
350
351	ret = 0;
352	for (n = 0; n < nthreads; n++) {
353		struct test_cycle *cycle = &cycles[n];
354
355		if (!cycle->result)
356			continue;
357
358		pr_err("cyclic deadlock not resolved, ret[%d/%d] = %d\n",
359		       n, nthreads, cycle->result);
360		ret = -EINVAL;
361		break;
362	}
363
364	for (n = 0; n < nthreads; n++)
365		ww_mutex_destroy(&cycles[n].a_mutex);
366	kfree(cycles);
367	return ret;
368}
369
370static int test_cycle(unsigned int ncpus)
371{
372	unsigned int n;
373	int ret;
374
375	for (n = 2; n <= ncpus + 1; n++) {
376		ret = __test_cycle(n);
377		if (ret)
378			return ret;
379	}
380
381	return 0;
382}
383
384struct stress {
385	struct work_struct work;
386	struct ww_mutex *locks;
387	unsigned long timeout;
388	int nlocks;
389};
390
391struct rnd_state rng;
392DEFINE_SPINLOCK(rng_lock);
393
394static inline u32 prandom_u32_below(u32 ceil)
395{
396	u32 ret;
397
398	spin_lock(&rng_lock);
399	ret = prandom_u32_state(&rng) % ceil;
400	spin_unlock(&rng_lock);
401	return ret;
402}
403
404static int *get_random_order(int count)
405{
406	int *order;
407	int n, r;
408
409	order = kmalloc_array(count, sizeof(*order), GFP_KERNEL);
410	if (!order)
411		return order;
412
413	for (n = 0; n < count; n++)
414		order[n] = n;
415
416	for (n = count - 1; n > 1; n--) {
417		r = prandom_u32_below(n + 1);
418		if (r != n)
419			swap(order[n], order[r]);
 
 
 
420	}
421
422	return order;
423}
424
425static void dummy_load(struct stress *stress)
426{
427	usleep_range(1000, 2000);
428}
429
430static void stress_inorder_work(struct work_struct *work)
431{
432	struct stress *stress = container_of(work, typeof(*stress), work);
433	const int nlocks = stress->nlocks;
434	struct ww_mutex *locks = stress->locks;
435	struct ww_acquire_ctx ctx;
436	int *order;
437
438	order = get_random_order(nlocks);
439	if (!order)
440		return;
441
442	do {
443		int contended = -1;
444		int n, err;
445
446		ww_acquire_init(&ctx, &ww_class);
447retry:
448		err = 0;
449		for (n = 0; n < nlocks; n++) {
450			if (n == contended)
451				continue;
452
453			err = ww_mutex_lock(&locks[order[n]], &ctx);
454			if (err < 0)
455				break;
456		}
457		if (!err)
458			dummy_load(stress);
459
460		if (contended > n)
461			ww_mutex_unlock(&locks[order[contended]]);
462		contended = n;
463		while (n--)
464			ww_mutex_unlock(&locks[order[n]]);
465
466		if (err == -EDEADLK) {
467			if (!time_after(jiffies, stress->timeout)) {
468				ww_mutex_lock_slow(&locks[order[contended]], &ctx);
469				goto retry;
470			}
471		}
472
473		ww_acquire_fini(&ctx);
474		if (err) {
475			pr_err_once("stress (%s) failed with %d\n",
476				    __func__, err);
477			break;
478		}
 
 
479	} while (!time_after(jiffies, stress->timeout));
480
481	kfree(order);
 
482}
483
484struct reorder_lock {
485	struct list_head link;
486	struct ww_mutex *lock;
487};
488
489static void stress_reorder_work(struct work_struct *work)
490{
491	struct stress *stress = container_of(work, typeof(*stress), work);
492	LIST_HEAD(locks);
493	struct ww_acquire_ctx ctx;
494	struct reorder_lock *ll, *ln;
495	int *order;
496	int n, err;
497
498	order = get_random_order(stress->nlocks);
499	if (!order)
500		return;
501
502	for (n = 0; n < stress->nlocks; n++) {
503		ll = kmalloc(sizeof(*ll), GFP_KERNEL);
504		if (!ll)
505			goto out;
506
507		ll->lock = &stress->locks[order[n]];
508		list_add(&ll->link, &locks);
509	}
510	kfree(order);
511	order = NULL;
512
513	do {
514		ww_acquire_init(&ctx, &ww_class);
515
516		list_for_each_entry(ll, &locks, link) {
517			err = ww_mutex_lock(ll->lock, &ctx);
518			if (!err)
519				continue;
520
521			ln = ll;
522			list_for_each_entry_continue_reverse(ln, &locks, link)
523				ww_mutex_unlock(ln->lock);
524
525			if (err != -EDEADLK) {
526				pr_err_once("stress (%s) failed with %d\n",
527					    __func__, err);
528				break;
529			}
530
531			ww_mutex_lock_slow(ll->lock, &ctx);
532			list_move(&ll->link, &locks); /* restarts iteration */
533		}
534
535		dummy_load(stress);
536		list_for_each_entry(ll, &locks, link)
537			ww_mutex_unlock(ll->lock);
538
539		ww_acquire_fini(&ctx);
540	} while (!time_after(jiffies, stress->timeout));
541
542out:
543	list_for_each_entry_safe(ll, ln, &locks, link)
544		kfree(ll);
545	kfree(order);
 
546}
547
548static void stress_one_work(struct work_struct *work)
549{
550	struct stress *stress = container_of(work, typeof(*stress), work);
551	const int nlocks = stress->nlocks;
552	struct ww_mutex *lock = stress->locks + get_random_u32_below(nlocks);
553	int err;
554
555	do {
556		err = ww_mutex_lock(lock, NULL);
557		if (!err) {
558			dummy_load(stress);
559			ww_mutex_unlock(lock);
560		} else {
561			pr_err_once("stress (%s) failed with %d\n",
562				    __func__, err);
563			break;
564		}
565	} while (!time_after(jiffies, stress->timeout));
 
 
566}
567
568#define STRESS_INORDER BIT(0)
569#define STRESS_REORDER BIT(1)
570#define STRESS_ONE BIT(2)
571#define STRESS_ALL (STRESS_INORDER | STRESS_REORDER | STRESS_ONE)
572
573static int stress(int nlocks, int nthreads, unsigned int flags)
574{
575	struct ww_mutex *locks;
576	struct stress *stress_array;
577	int n, count;
578
579	locks = kmalloc_array(nlocks, sizeof(*locks), GFP_KERNEL);
580	if (!locks)
581		return -ENOMEM;
582
583	stress_array = kmalloc_array(nthreads, sizeof(*stress_array),
584				     GFP_KERNEL);
585	if (!stress_array) {
586		kfree(locks);
587		return -ENOMEM;
588	}
589
590	for (n = 0; n < nlocks; n++)
591		ww_mutex_init(&locks[n], &ww_class);
592
593	count = 0;
594	for (n = 0; nthreads; n++) {
595		struct stress *stress;
596		void (*fn)(struct work_struct *work);
597
598		fn = NULL;
599		switch (n & 3) {
600		case 0:
601			if (flags & STRESS_INORDER)
602				fn = stress_inorder_work;
603			break;
604		case 1:
605			if (flags & STRESS_REORDER)
606				fn = stress_reorder_work;
607			break;
608		case 2:
609			if (flags & STRESS_ONE)
610				fn = stress_one_work;
611			break;
612		}
613
614		if (!fn)
615			continue;
616
617		stress = &stress_array[count++];
 
 
618
619		INIT_WORK(&stress->work, fn);
620		stress->locks = locks;
621		stress->nlocks = nlocks;
622		stress->timeout = jiffies + 2*HZ;
623
624		queue_work(wq, &stress->work);
625		nthreads--;
626	}
627
628	flush_workqueue(wq);
629
630	for (n = 0; n < nlocks; n++)
631		ww_mutex_destroy(&locks[n]);
632	kfree(stress_array);
633	kfree(locks);
634
635	return 0;
636}
637
638static int __init test_ww_mutex_init(void)
639{
640	int ncpus = num_online_cpus();
641	int ret, i;
642
643	printk(KERN_INFO "Beginning ww mutex selftests\n");
644
645	prandom_seed_state(&rng, get_random_u64());
646
647	wq = alloc_workqueue("test-ww_mutex", WQ_UNBOUND, 0);
648	if (!wq)
649		return -ENOMEM;
650
651	ret = test_mutex();
652	if (ret)
653		return ret;
654
655	ret = test_aa(false);
656	if (ret)
657		return ret;
658
659	ret = test_aa(true);
660	if (ret)
661		return ret;
662
663	for (i = 0; i < 4; i++) {
664		ret = test_abba(i & 1, i & 2);
665		if (ret)
666			return ret;
667	}
668
669	ret = test_cycle(ncpus);
670	if (ret)
671		return ret;
672
673	ret = stress(16, 2*ncpus, STRESS_INORDER);
674	if (ret)
675		return ret;
676
677	ret = stress(16, 2*ncpus, STRESS_REORDER);
678	if (ret)
679		return ret;
680
681	ret = stress(2046, hweight32(STRESS_ALL)*ncpus, STRESS_ALL);
682	if (ret)
683		return ret;
684
685	printk(KERN_INFO "All ww mutex selftests passed\n");
686	return 0;
687}
688
689static void __exit test_ww_mutex_exit(void)
690{
691	destroy_workqueue(wq);
692}
693
694module_init(test_ww_mutex_init);
695module_exit(test_ww_mutex_exit);
696
697MODULE_LICENSE("GPL");
698MODULE_AUTHOR("Intel Corporation");
699MODULE_DESCRIPTION("API test facility for ww_mutexes");
v5.4
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * Module-based API test facility for ww_mutexes
  4 */
  5
  6#include <linux/kernel.h>
  7
  8#include <linux/completion.h>
  9#include <linux/delay.h>
 10#include <linux/kthread.h>
 11#include <linux/module.h>
 12#include <linux/random.h>
 13#include <linux/slab.h>
 14#include <linux/ww_mutex.h>
 15
 16static DEFINE_WD_CLASS(ww_class);
 17struct workqueue_struct *wq;
 18
 
 
 
 
 
 
 
 
 
 19struct test_mutex {
 20	struct work_struct work;
 21	struct ww_mutex mutex;
 22	struct completion ready, go, done;
 23	unsigned int flags;
 24};
 25
 26#define TEST_MTX_SPIN BIT(0)
 27#define TEST_MTX_TRY BIT(1)
 28#define TEST_MTX_CTX BIT(2)
 29#define __TEST_MTX_LAST BIT(3)
 30
 31static void test_mutex_work(struct work_struct *work)
 32{
 33	struct test_mutex *mtx = container_of(work, typeof(*mtx), work);
 34
 35	complete(&mtx->ready);
 36	wait_for_completion(&mtx->go);
 37
 38	if (mtx->flags & TEST_MTX_TRY) {
 39		while (!ww_mutex_trylock(&mtx->mutex))
 40			cond_resched();
 41	} else {
 42		ww_mutex_lock(&mtx->mutex, NULL);
 43	}
 44	complete(&mtx->done);
 45	ww_mutex_unlock(&mtx->mutex);
 46}
 47
 48static int __test_mutex(unsigned int flags)
 49{
 50#define TIMEOUT (HZ / 16)
 51	struct test_mutex mtx;
 52	struct ww_acquire_ctx ctx;
 53	int ret;
 54
 55	ww_mutex_init(&mtx.mutex, &ww_class);
 56	ww_acquire_init(&ctx, &ww_class);
 
 57
 58	INIT_WORK_ONSTACK(&mtx.work, test_mutex_work);
 59	init_completion(&mtx.ready);
 60	init_completion(&mtx.go);
 61	init_completion(&mtx.done);
 62	mtx.flags = flags;
 63
 64	schedule_work(&mtx.work);
 65
 66	wait_for_completion(&mtx.ready);
 67	ww_mutex_lock(&mtx.mutex, (flags & TEST_MTX_CTX) ? &ctx : NULL);
 68	complete(&mtx.go);
 69	if (flags & TEST_MTX_SPIN) {
 70		unsigned long timeout = jiffies + TIMEOUT;
 71
 72		ret = 0;
 73		do {
 74			if (completion_done(&mtx.done)) {
 75				ret = -EINVAL;
 76				break;
 77			}
 78			cond_resched();
 79		} while (time_before(jiffies, timeout));
 80	} else {
 81		ret = wait_for_completion_timeout(&mtx.done, TIMEOUT);
 82	}
 83	ww_mutex_unlock(&mtx.mutex);
 84	ww_acquire_fini(&ctx);
 
 85
 86	if (ret) {
 87		pr_err("%s(flags=%x): mutual exclusion failure\n",
 88		       __func__, flags);
 89		ret = -EINVAL;
 90	}
 91
 92	flush_work(&mtx.work);
 93	destroy_work_on_stack(&mtx.work);
 94	return ret;
 95#undef TIMEOUT
 96}
 97
 98static int test_mutex(void)
 99{
100	int ret;
101	int i;
102
103	for (i = 0; i < __TEST_MTX_LAST; i++) {
104		ret = __test_mutex(i);
105		if (ret)
106			return ret;
107	}
108
109	return 0;
110}
111
112static int test_aa(void)
113{
114	struct ww_mutex mutex;
115	struct ww_acquire_ctx ctx;
116	int ret;
 
117
118	ww_mutex_init(&mutex, &ww_class);
119	ww_acquire_init(&ctx, &ww_class);
120
121	ww_mutex_lock(&mutex, &ctx);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
122
123	if (ww_mutex_trylock(&mutex))  {
124		pr_err("%s: trylocked itself!\n", __func__);
125		ww_mutex_unlock(&mutex);
126		ret = -EINVAL;
127		goto out;
128	}
129
130	ret = ww_mutex_lock(&mutex, &ctx);
131	if (ret != -EALREADY) {
132		pr_err("%s: missed deadlock for recursing, ret=%d\n",
133		       __func__, ret);
134		if (!ret)
135			ww_mutex_unlock(&mutex);
136		ret = -EINVAL;
137		goto out;
138	}
139
 
140	ret = 0;
141out:
142	ww_mutex_unlock(&mutex);
143	ww_acquire_fini(&ctx);
144	return ret;
145}
146
147struct test_abba {
148	struct work_struct work;
149	struct ww_mutex a_mutex;
150	struct ww_mutex b_mutex;
151	struct completion a_ready;
152	struct completion b_ready;
153	bool resolve;
154	int result;
155};
156
157static void test_abba_work(struct work_struct *work)
158{
159	struct test_abba *abba = container_of(work, typeof(*abba), work);
160	struct ww_acquire_ctx ctx;
161	int err;
162
163	ww_acquire_init(&ctx, &ww_class);
164	ww_mutex_lock(&abba->b_mutex, &ctx);
 
 
 
 
 
165
166	complete(&abba->b_ready);
167	wait_for_completion(&abba->a_ready);
168
169	err = ww_mutex_lock(&abba->a_mutex, &ctx);
170	if (abba->resolve && err == -EDEADLK) {
171		ww_mutex_unlock(&abba->b_mutex);
172		ww_mutex_lock_slow(&abba->a_mutex, &ctx);
173		err = ww_mutex_lock(&abba->b_mutex, &ctx);
174	}
175
176	if (!err)
177		ww_mutex_unlock(&abba->a_mutex);
178	ww_mutex_unlock(&abba->b_mutex);
179	ww_acquire_fini(&ctx);
180
181	abba->result = err;
182}
183
184static int test_abba(bool resolve)
185{
186	struct test_abba abba;
187	struct ww_acquire_ctx ctx;
188	int err, ret;
189
190	ww_mutex_init(&abba.a_mutex, &ww_class);
191	ww_mutex_init(&abba.b_mutex, &ww_class);
192	INIT_WORK_ONSTACK(&abba.work, test_abba_work);
193	init_completion(&abba.a_ready);
194	init_completion(&abba.b_ready);
 
195	abba.resolve = resolve;
196
197	schedule_work(&abba.work);
198
199	ww_acquire_init(&ctx, &ww_class);
200	ww_mutex_lock(&abba.a_mutex, &ctx);
 
 
 
 
 
201
202	complete(&abba.a_ready);
203	wait_for_completion(&abba.b_ready);
204
205	err = ww_mutex_lock(&abba.b_mutex, &ctx);
206	if (resolve && err == -EDEADLK) {
207		ww_mutex_unlock(&abba.a_mutex);
208		ww_mutex_lock_slow(&abba.b_mutex, &ctx);
209		err = ww_mutex_lock(&abba.a_mutex, &ctx);
210	}
211
212	if (!err)
213		ww_mutex_unlock(&abba.b_mutex);
214	ww_mutex_unlock(&abba.a_mutex);
215	ww_acquire_fini(&ctx);
216
217	flush_work(&abba.work);
218	destroy_work_on_stack(&abba.work);
219
220	ret = 0;
221	if (resolve) {
222		if (err || abba.result) {
223			pr_err("%s: failed to resolve ABBA deadlock, A err=%d, B err=%d\n",
224			       __func__, err, abba.result);
225			ret = -EINVAL;
226		}
227	} else {
228		if (err != -EDEADLK && abba.result != -EDEADLK) {
229			pr_err("%s: missed ABBA deadlock, A err=%d, B err=%d\n",
230			       __func__, err, abba.result);
231			ret = -EINVAL;
232		}
233	}
234	return ret;
235}
236
237struct test_cycle {
238	struct work_struct work;
239	struct ww_mutex a_mutex;
240	struct ww_mutex *b_mutex;
241	struct completion *a_signal;
242	struct completion b_signal;
243	int result;
244};
245
246static void test_cycle_work(struct work_struct *work)
247{
248	struct test_cycle *cycle = container_of(work, typeof(*cycle), work);
249	struct ww_acquire_ctx ctx;
250	int err, erra = 0;
251
252	ww_acquire_init(&ctx, &ww_class);
253	ww_mutex_lock(&cycle->a_mutex, &ctx);
254
255	complete(cycle->a_signal);
256	wait_for_completion(&cycle->b_signal);
257
258	err = ww_mutex_lock(cycle->b_mutex, &ctx);
259	if (err == -EDEADLK) {
260		err = 0;
261		ww_mutex_unlock(&cycle->a_mutex);
262		ww_mutex_lock_slow(cycle->b_mutex, &ctx);
263		erra = ww_mutex_lock(&cycle->a_mutex, &ctx);
264	}
265
266	if (!err)
267		ww_mutex_unlock(cycle->b_mutex);
268	if (!erra)
269		ww_mutex_unlock(&cycle->a_mutex);
270	ww_acquire_fini(&ctx);
271
272	cycle->result = err ?: erra;
273}
274
275static int __test_cycle(unsigned int nthreads)
276{
277	struct test_cycle *cycles;
278	unsigned int n, last = nthreads - 1;
279	int ret;
280
281	cycles = kmalloc_array(nthreads, sizeof(*cycles), GFP_KERNEL);
282	if (!cycles)
283		return -ENOMEM;
284
285	for (n = 0; n < nthreads; n++) {
286		struct test_cycle *cycle = &cycles[n];
287
288		ww_mutex_init(&cycle->a_mutex, &ww_class);
289		if (n == last)
290			cycle->b_mutex = &cycles[0].a_mutex;
291		else
292			cycle->b_mutex = &cycles[n + 1].a_mutex;
293
294		if (n == 0)
295			cycle->a_signal = &cycles[last].b_signal;
296		else
297			cycle->a_signal = &cycles[n - 1].b_signal;
298		init_completion(&cycle->b_signal);
299
300		INIT_WORK(&cycle->work, test_cycle_work);
301		cycle->result = 0;
302	}
303
304	for (n = 0; n < nthreads; n++)
305		queue_work(wq, &cycles[n].work);
306
307	flush_workqueue(wq);
308
309	ret = 0;
310	for (n = 0; n < nthreads; n++) {
311		struct test_cycle *cycle = &cycles[n];
312
313		if (!cycle->result)
314			continue;
315
316		pr_err("cyclic deadlock not resolved, ret[%d/%d] = %d\n",
317		       n, nthreads, cycle->result);
318		ret = -EINVAL;
319		break;
320	}
321
322	for (n = 0; n < nthreads; n++)
323		ww_mutex_destroy(&cycles[n].a_mutex);
324	kfree(cycles);
325	return ret;
326}
327
328static int test_cycle(unsigned int ncpus)
329{
330	unsigned int n;
331	int ret;
332
333	for (n = 2; n <= ncpus + 1; n++) {
334		ret = __test_cycle(n);
335		if (ret)
336			return ret;
337	}
338
339	return 0;
340}
341
342struct stress {
343	struct work_struct work;
344	struct ww_mutex *locks;
345	unsigned long timeout;
346	int nlocks;
347};
348
 
 
 
 
 
 
 
 
 
 
 
 
 
349static int *get_random_order(int count)
350{
351	int *order;
352	int n, r, tmp;
353
354	order = kmalloc_array(count, sizeof(*order), GFP_KERNEL);
355	if (!order)
356		return order;
357
358	for (n = 0; n < count; n++)
359		order[n] = n;
360
361	for (n = count - 1; n > 1; n--) {
362		r = get_random_int() % (n + 1);
363		if (r != n) {
364			tmp = order[n];
365			order[n] = order[r];
366			order[r] = tmp;
367		}
368	}
369
370	return order;
371}
372
373static void dummy_load(struct stress *stress)
374{
375	usleep_range(1000, 2000);
376}
377
378static void stress_inorder_work(struct work_struct *work)
379{
380	struct stress *stress = container_of(work, typeof(*stress), work);
381	const int nlocks = stress->nlocks;
382	struct ww_mutex *locks = stress->locks;
383	struct ww_acquire_ctx ctx;
384	int *order;
385
386	order = get_random_order(nlocks);
387	if (!order)
388		return;
389
390	do {
391		int contended = -1;
392		int n, err;
393
394		ww_acquire_init(&ctx, &ww_class);
395retry:
396		err = 0;
397		for (n = 0; n < nlocks; n++) {
398			if (n == contended)
399				continue;
400
401			err = ww_mutex_lock(&locks[order[n]], &ctx);
402			if (err < 0)
403				break;
404		}
405		if (!err)
406			dummy_load(stress);
407
408		if (contended > n)
409			ww_mutex_unlock(&locks[order[contended]]);
410		contended = n;
411		while (n--)
412			ww_mutex_unlock(&locks[order[n]]);
413
414		if (err == -EDEADLK) {
415			ww_mutex_lock_slow(&locks[order[contended]], &ctx);
416			goto retry;
 
 
417		}
418
 
419		if (err) {
420			pr_err_once("stress (%s) failed with %d\n",
421				    __func__, err);
422			break;
423		}
424
425		ww_acquire_fini(&ctx);
426	} while (!time_after(jiffies, stress->timeout));
427
428	kfree(order);
429	kfree(stress);
430}
431
432struct reorder_lock {
433	struct list_head link;
434	struct ww_mutex *lock;
435};
436
437static void stress_reorder_work(struct work_struct *work)
438{
439	struct stress *stress = container_of(work, typeof(*stress), work);
440	LIST_HEAD(locks);
441	struct ww_acquire_ctx ctx;
442	struct reorder_lock *ll, *ln;
443	int *order;
444	int n, err;
445
446	order = get_random_order(stress->nlocks);
447	if (!order)
448		return;
449
450	for (n = 0; n < stress->nlocks; n++) {
451		ll = kmalloc(sizeof(*ll), GFP_KERNEL);
452		if (!ll)
453			goto out;
454
455		ll->lock = &stress->locks[order[n]];
456		list_add(&ll->link, &locks);
457	}
458	kfree(order);
459	order = NULL;
460
461	do {
462		ww_acquire_init(&ctx, &ww_class);
463
464		list_for_each_entry(ll, &locks, link) {
465			err = ww_mutex_lock(ll->lock, &ctx);
466			if (!err)
467				continue;
468
469			ln = ll;
470			list_for_each_entry_continue_reverse(ln, &locks, link)
471				ww_mutex_unlock(ln->lock);
472
473			if (err != -EDEADLK) {
474				pr_err_once("stress (%s) failed with %d\n",
475					    __func__, err);
476				break;
477			}
478
479			ww_mutex_lock_slow(ll->lock, &ctx);
480			list_move(&ll->link, &locks); /* restarts iteration */
481		}
482
483		dummy_load(stress);
484		list_for_each_entry(ll, &locks, link)
485			ww_mutex_unlock(ll->lock);
486
487		ww_acquire_fini(&ctx);
488	} while (!time_after(jiffies, stress->timeout));
489
490out:
491	list_for_each_entry_safe(ll, ln, &locks, link)
492		kfree(ll);
493	kfree(order);
494	kfree(stress);
495}
496
497static void stress_one_work(struct work_struct *work)
498{
499	struct stress *stress = container_of(work, typeof(*stress), work);
500	const int nlocks = stress->nlocks;
501	struct ww_mutex *lock = stress->locks + (get_random_int() % nlocks);
502	int err;
503
504	do {
505		err = ww_mutex_lock(lock, NULL);
506		if (!err) {
507			dummy_load(stress);
508			ww_mutex_unlock(lock);
509		} else {
510			pr_err_once("stress (%s) failed with %d\n",
511				    __func__, err);
512			break;
513		}
514	} while (!time_after(jiffies, stress->timeout));
515
516	kfree(stress);
517}
518
519#define STRESS_INORDER BIT(0)
520#define STRESS_REORDER BIT(1)
521#define STRESS_ONE BIT(2)
522#define STRESS_ALL (STRESS_INORDER | STRESS_REORDER | STRESS_ONE)
523
524static int stress(int nlocks, int nthreads, unsigned int flags)
525{
526	struct ww_mutex *locks;
527	int n;
 
528
529	locks = kmalloc_array(nlocks, sizeof(*locks), GFP_KERNEL);
530	if (!locks)
531		return -ENOMEM;
532
 
 
 
 
 
 
 
533	for (n = 0; n < nlocks; n++)
534		ww_mutex_init(&locks[n], &ww_class);
535
 
536	for (n = 0; nthreads; n++) {
537		struct stress *stress;
538		void (*fn)(struct work_struct *work);
539
540		fn = NULL;
541		switch (n & 3) {
542		case 0:
543			if (flags & STRESS_INORDER)
544				fn = stress_inorder_work;
545			break;
546		case 1:
547			if (flags & STRESS_REORDER)
548				fn = stress_reorder_work;
549			break;
550		case 2:
551			if (flags & STRESS_ONE)
552				fn = stress_one_work;
553			break;
554		}
555
556		if (!fn)
557			continue;
558
559		stress = kmalloc(sizeof(*stress), GFP_KERNEL);
560		if (!stress)
561			break;
562
563		INIT_WORK(&stress->work, fn);
564		stress->locks = locks;
565		stress->nlocks = nlocks;
566		stress->timeout = jiffies + 2*HZ;
567
568		queue_work(wq, &stress->work);
569		nthreads--;
570	}
571
572	flush_workqueue(wq);
573
574	for (n = 0; n < nlocks; n++)
575		ww_mutex_destroy(&locks[n]);
 
576	kfree(locks);
577
578	return 0;
579}
580
581static int __init test_ww_mutex_init(void)
582{
583	int ncpus = num_online_cpus();
584	int ret;
 
 
 
 
585
586	wq = alloc_workqueue("test-ww_mutex", WQ_UNBOUND, 0);
587	if (!wq)
588		return -ENOMEM;
589
590	ret = test_mutex();
591	if (ret)
592		return ret;
593
594	ret = test_aa();
595	if (ret)
596		return ret;
597
598	ret = test_abba(false);
599	if (ret)
600		return ret;
601
602	ret = test_abba(true);
603	if (ret)
604		return ret;
 
 
605
606	ret = test_cycle(ncpus);
607	if (ret)
608		return ret;
609
610	ret = stress(16, 2*ncpus, STRESS_INORDER);
611	if (ret)
612		return ret;
613
614	ret = stress(16, 2*ncpus, STRESS_REORDER);
615	if (ret)
616		return ret;
617
618	ret = stress(4095, hweight32(STRESS_ALL)*ncpus, STRESS_ALL);
619	if (ret)
620		return ret;
621
 
622	return 0;
623}
624
625static void __exit test_ww_mutex_exit(void)
626{
627	destroy_workqueue(wq);
628}
629
630module_init(test_ww_mutex_init);
631module_exit(test_ww_mutex_exit);
632
633MODULE_LICENSE("GPL");
634MODULE_AUTHOR("Intel Corporation");