Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * TI Bandgap temperature sensor driver
4 *
5 * Copyright (C) 2011-2012 Texas Instruments Incorporated - http://www.ti.com/
6 * Author: J Keerthy <j-keerthy@ti.com>
7 * Author: Moiz Sonasath <m-sonasath@ti.com>
8 * Couple of fixes, DT and MFD adaptation:
9 * Eduardo Valentin <eduardo.valentin@ti.com>
10 */
11
12#include <linux/clk.h>
13#include <linux/cpu_pm.h>
14#include <linux/device.h>
15#include <linux/err.h>
16#include <linux/export.h>
17#include <linux/gpio/consumer.h>
18#include <linux/init.h>
19#include <linux/interrupt.h>
20#include <linux/io.h>
21#include <linux/iopoll.h>
22#include <linux/kernel.h>
23#include <linux/module.h>
24#include <linux/of.h>
25#include <linux/of_device.h>
26#include <linux/of_irq.h>
27#include <linux/of_platform.h>
28#include <linux/platform_device.h>
29#include <linux/pm.h>
30#include <linux/pm_runtime.h>
31#include <linux/reboot.h>
32#include <linux/spinlock.h>
33#include <linux/sys_soc.h>
34#include <linux/types.h>
35
36#include "ti-bandgap.h"
37
38static int ti_bandgap_force_single_read(struct ti_bandgap *bgp, int id);
39#ifdef CONFIG_PM_SLEEP
40static int bandgap_omap_cpu_notifier(struct notifier_block *nb,
41 unsigned long cmd, void *v);
42#endif
43
44/*** Helper functions to access registers and their bitfields ***/
45
46/**
47 * ti_bandgap_readl() - simple read helper function
48 * @bgp: pointer to ti_bandgap structure
49 * @reg: desired register (offset) to be read
50 *
51 * Helper function to read bandgap registers. It uses the io remapped area.
52 * Return: the register value.
53 */
54static u32 ti_bandgap_readl(struct ti_bandgap *bgp, u32 reg)
55{
56 return readl(bgp->base + reg);
57}
58
59/**
60 * ti_bandgap_writel() - simple write helper function
61 * @bgp: pointer to ti_bandgap structure
62 * @val: desired register value to be written
63 * @reg: desired register (offset) to be written
64 *
65 * Helper function to write bandgap registers. It uses the io remapped area.
66 */
67static void ti_bandgap_writel(struct ti_bandgap *bgp, u32 val, u32 reg)
68{
69 writel(val, bgp->base + reg);
70}
71
72/**
73 * DOC: macro to update bits.
74 *
75 * RMW_BITS() - used to read, modify and update bandgap bitfields.
76 * The value passed will be shifted.
77 */
78#define RMW_BITS(bgp, id, reg, mask, val) \
79do { \
80 struct temp_sensor_registers *t; \
81 u32 r; \
82 \
83 t = bgp->conf->sensors[(id)].registers; \
84 r = ti_bandgap_readl(bgp, t->reg); \
85 r &= ~t->mask; \
86 r |= (val) << __ffs(t->mask); \
87 ti_bandgap_writel(bgp, r, t->reg); \
88} while (0)
89
90/*** Basic helper functions ***/
91
92/**
93 * ti_bandgap_power() - controls the power state of a bandgap device
94 * @bgp: pointer to ti_bandgap structure
95 * @on: desired power state (1 - on, 0 - off)
96 *
97 * Used to power on/off a bandgap device instance. Only used on those
98 * that features tempsoff bit.
99 *
100 * Return: 0 on success, -ENOTSUPP if tempsoff is not supported.
101 */
102static int ti_bandgap_power(struct ti_bandgap *bgp, bool on)
103{
104 int i;
105
106 if (!TI_BANDGAP_HAS(bgp, POWER_SWITCH))
107 return -ENOTSUPP;
108
109 for (i = 0; i < bgp->conf->sensor_count; i++)
110 /* active on 0 */
111 RMW_BITS(bgp, i, temp_sensor_ctrl, bgap_tempsoff_mask, !on);
112 return 0;
113}
114
115/**
116 * ti_errata814_bandgap_read_temp() - helper function to read dra7 sensor temperature
117 * @bgp: pointer to ti_bandgap structure
118 * @reg: desired register (offset) to be read
119 *
120 * Function to read dra7 bandgap sensor temperature. This is done separately
121 * so as to workaround the errata "Bandgap Temperature read Dtemp can be
122 * corrupted" - Errata ID: i814".
123 * Read accesses to registers listed below can be corrupted due to incorrect
124 * resynchronization between clock domains.
125 * Read access to registers below can be corrupted :
126 * CTRL_CORE_DTEMP_MPU/GPU/CORE/DSPEVE/IVA_n (n = 0 to 4)
127 * CTRL_CORE_TEMP_SENSOR_MPU/GPU/CORE/DSPEVE/IVA_n
128 *
129 * Return: the register value.
130 */
131static u32 ti_errata814_bandgap_read_temp(struct ti_bandgap *bgp, u32 reg)
132{
133 u32 val1, val2;
134
135 val1 = ti_bandgap_readl(bgp, reg);
136 val2 = ti_bandgap_readl(bgp, reg);
137
138 /* If both times we read the same value then that is right */
139 if (val1 == val2)
140 return val1;
141
142 /* if val1 and val2 are different read it third time */
143 return ti_bandgap_readl(bgp, reg);
144}
145
146/**
147 * ti_bandgap_read_temp() - helper function to read sensor temperature
148 * @bgp: pointer to ti_bandgap structure
149 * @id: bandgap sensor id
150 *
151 * Function to concentrate the steps to read sensor temperature register.
152 * This function is desired because, depending on bandgap device version,
153 * it might be needed to freeze the bandgap state machine, before fetching
154 * the register value.
155 *
156 * Return: temperature in ADC values.
157 */
158static u32 ti_bandgap_read_temp(struct ti_bandgap *bgp, int id)
159{
160 struct temp_sensor_registers *tsr;
161 u32 temp, reg;
162
163 tsr = bgp->conf->sensors[id].registers;
164 reg = tsr->temp_sensor_ctrl;
165
166 if (TI_BANDGAP_HAS(bgp, FREEZE_BIT)) {
167 RMW_BITS(bgp, id, bgap_mask_ctrl, mask_freeze_mask, 1);
168 /*
169 * In case we cannot read from cur_dtemp / dtemp_0,
170 * then we read from the last valid temp read
171 */
172 reg = tsr->ctrl_dtemp_1;
173 }
174
175 /* read temperature */
176 if (TI_BANDGAP_HAS(bgp, ERRATA_814))
177 temp = ti_errata814_bandgap_read_temp(bgp, reg);
178 else
179 temp = ti_bandgap_readl(bgp, reg);
180
181 temp &= tsr->bgap_dtemp_mask;
182
183 if (TI_BANDGAP_HAS(bgp, FREEZE_BIT))
184 RMW_BITS(bgp, id, bgap_mask_ctrl, mask_freeze_mask, 0);
185
186 return temp;
187}
188
189/*** IRQ handlers ***/
190
191/**
192 * ti_bandgap_talert_irq_handler() - handles Temperature alert IRQs
193 * @irq: IRQ number
194 * @data: private data (struct ti_bandgap *)
195 *
196 * This is the Talert handler. Use it only if bandgap device features
197 * HAS(TALERT). This handler goes over all sensors and checks their
198 * conditions and acts accordingly. In case there are events pending,
199 * it will reset the event mask to wait for the opposite event (next event).
200 * Every time there is a new event, it will be reported to thermal layer.
201 *
202 * Return: IRQ_HANDLED
203 */
204static irqreturn_t ti_bandgap_talert_irq_handler(int irq, void *data)
205{
206 struct ti_bandgap *bgp = data;
207 struct temp_sensor_registers *tsr;
208 u32 t_hot = 0, t_cold = 0, ctrl;
209 int i;
210
211 spin_lock(&bgp->lock);
212 for (i = 0; i < bgp->conf->sensor_count; i++) {
213 tsr = bgp->conf->sensors[i].registers;
214 ctrl = ti_bandgap_readl(bgp, tsr->bgap_status);
215
216 /* Read the status of t_hot */
217 t_hot = ctrl & tsr->status_hot_mask;
218
219 /* Read the status of t_cold */
220 t_cold = ctrl & tsr->status_cold_mask;
221
222 if (!t_cold && !t_hot)
223 continue;
224
225 ctrl = ti_bandgap_readl(bgp, tsr->bgap_mask_ctrl);
226 /*
227 * One TALERT interrupt: Two sources
228 * If the interrupt is due to t_hot then mask t_hot and
229 * unmask t_cold else mask t_cold and unmask t_hot
230 */
231 if (t_hot) {
232 ctrl &= ~tsr->mask_hot_mask;
233 ctrl |= tsr->mask_cold_mask;
234 } else if (t_cold) {
235 ctrl &= ~tsr->mask_cold_mask;
236 ctrl |= tsr->mask_hot_mask;
237 }
238
239 ti_bandgap_writel(bgp, ctrl, tsr->bgap_mask_ctrl);
240
241 dev_dbg(bgp->dev,
242 "%s: IRQ from %s sensor: hotevent %d coldevent %d\n",
243 __func__, bgp->conf->sensors[i].domain,
244 t_hot, t_cold);
245
246 /* report temperature to whom may concern */
247 if (bgp->conf->report_temperature)
248 bgp->conf->report_temperature(bgp, i);
249 }
250 spin_unlock(&bgp->lock);
251
252 return IRQ_HANDLED;
253}
254
255/**
256 * ti_bandgap_tshut_irq_handler() - handles Temperature shutdown signal
257 * @irq: IRQ number
258 * @data: private data (unused)
259 *
260 * This is the Tshut handler. Use it only if bandgap device features
261 * HAS(TSHUT). If any sensor fires the Tshut signal, we simply shutdown
262 * the system.
263 *
264 * Return: IRQ_HANDLED
265 */
266static irqreturn_t ti_bandgap_tshut_irq_handler(int irq, void *data)
267{
268 pr_emerg("%s: TSHUT temperature reached. Needs shut down...\n",
269 __func__);
270
271 orderly_poweroff(true);
272
273 return IRQ_HANDLED;
274}
275
276/*** Helper functions which manipulate conversion ADC <-> mi Celsius ***/
277
278/**
279 * ti_bandgap_adc_to_mcelsius() - converts an ADC value to mCelsius scale
280 * @bgp: struct ti_bandgap pointer
281 * @adc_val: value in ADC representation
282 * @t: address where to write the resulting temperature in mCelsius
283 *
284 * Simple conversion from ADC representation to mCelsius. In case the ADC value
285 * is out of the ADC conv table range, it returns -ERANGE, 0 on success.
286 * The conversion table is indexed by the ADC values.
287 *
288 * Return: 0 if conversion was successful, else -ERANGE in case the @adc_val
289 * argument is out of the ADC conv table range.
290 */
291static
292int ti_bandgap_adc_to_mcelsius(struct ti_bandgap *bgp, int adc_val, int *t)
293{
294 const struct ti_bandgap_data *conf = bgp->conf;
295
296 /* look up for temperature in the table and return the temperature */
297 if (adc_val < conf->adc_start_val || adc_val > conf->adc_end_val)
298 return -ERANGE;
299
300 *t = bgp->conf->conv_table[adc_val - conf->adc_start_val];
301 return 0;
302}
303
304/**
305 * ti_bandgap_validate() - helper to check the sanity of a struct ti_bandgap
306 * @bgp: struct ti_bandgap pointer
307 * @id: bandgap sensor id
308 *
309 * Checks if the bandgap pointer is valid and if the sensor id is also
310 * applicable.
311 *
312 * Return: 0 if no errors, -EINVAL for invalid @bgp pointer or -ERANGE if
313 * @id cannot index @bgp sensors.
314 */
315static inline int ti_bandgap_validate(struct ti_bandgap *bgp, int id)
316{
317 if (IS_ERR_OR_NULL(bgp)) {
318 pr_err("%s: invalid bandgap pointer\n", __func__);
319 return -EINVAL;
320 }
321
322 if ((id < 0) || (id >= bgp->conf->sensor_count)) {
323 dev_err(bgp->dev, "%s: sensor id out of range (%d)\n",
324 __func__, id);
325 return -ERANGE;
326 }
327
328 return 0;
329}
330
331/**
332 * ti_bandgap_read_counter() - read the sensor counter
333 * @bgp: pointer to bandgap instance
334 * @id: sensor id
335 * @interval: resulting update interval in miliseconds
336 */
337static void ti_bandgap_read_counter(struct ti_bandgap *bgp, int id,
338 int *interval)
339{
340 struct temp_sensor_registers *tsr;
341 int time;
342
343 tsr = bgp->conf->sensors[id].registers;
344 time = ti_bandgap_readl(bgp, tsr->bgap_counter);
345 time = (time & tsr->counter_mask) >>
346 __ffs(tsr->counter_mask);
347 time = time * 1000 / bgp->clk_rate;
348 *interval = time;
349}
350
351/**
352 * ti_bandgap_read_counter_delay() - read the sensor counter delay
353 * @bgp: pointer to bandgap instance
354 * @id: sensor id
355 * @interval: resulting update interval in miliseconds
356 */
357static void ti_bandgap_read_counter_delay(struct ti_bandgap *bgp, int id,
358 int *interval)
359{
360 struct temp_sensor_registers *tsr;
361 int reg_val;
362
363 tsr = bgp->conf->sensors[id].registers;
364
365 reg_val = ti_bandgap_readl(bgp, tsr->bgap_mask_ctrl);
366 reg_val = (reg_val & tsr->mask_counter_delay_mask) >>
367 __ffs(tsr->mask_counter_delay_mask);
368 switch (reg_val) {
369 case 0:
370 *interval = 0;
371 break;
372 case 1:
373 *interval = 1;
374 break;
375 case 2:
376 *interval = 10;
377 break;
378 case 3:
379 *interval = 100;
380 break;
381 case 4:
382 *interval = 250;
383 break;
384 case 5:
385 *interval = 500;
386 break;
387 default:
388 dev_warn(bgp->dev, "Wrong counter delay value read from register %X",
389 reg_val);
390 }
391}
392
393/**
394 * ti_bandgap_read_update_interval() - read the sensor update interval
395 * @bgp: pointer to bandgap instance
396 * @id: sensor id
397 * @interval: resulting update interval in miliseconds
398 *
399 * Return: 0 on success or the proper error code
400 */
401int ti_bandgap_read_update_interval(struct ti_bandgap *bgp, int id,
402 int *interval)
403{
404 int ret = 0;
405
406 ret = ti_bandgap_validate(bgp, id);
407 if (ret)
408 goto exit;
409
410 if (!TI_BANDGAP_HAS(bgp, COUNTER) &&
411 !TI_BANDGAP_HAS(bgp, COUNTER_DELAY)) {
412 ret = -ENOTSUPP;
413 goto exit;
414 }
415
416 if (TI_BANDGAP_HAS(bgp, COUNTER)) {
417 ti_bandgap_read_counter(bgp, id, interval);
418 goto exit;
419 }
420
421 ti_bandgap_read_counter_delay(bgp, id, interval);
422exit:
423 return ret;
424}
425
426/**
427 * ti_bandgap_write_counter_delay() - set the counter_delay
428 * @bgp: pointer to bandgap instance
429 * @id: sensor id
430 * @interval: desired update interval in miliseconds
431 *
432 * Return: 0 on success or the proper error code
433 */
434static int ti_bandgap_write_counter_delay(struct ti_bandgap *bgp, int id,
435 u32 interval)
436{
437 int rval;
438
439 switch (interval) {
440 case 0: /* Immediate conversion */
441 rval = 0x0;
442 break;
443 case 1: /* Conversion after ever 1ms */
444 rval = 0x1;
445 break;
446 case 10: /* Conversion after ever 10ms */
447 rval = 0x2;
448 break;
449 case 100: /* Conversion after ever 100ms */
450 rval = 0x3;
451 break;
452 case 250: /* Conversion after ever 250ms */
453 rval = 0x4;
454 break;
455 case 500: /* Conversion after ever 500ms */
456 rval = 0x5;
457 break;
458 default:
459 dev_warn(bgp->dev, "Delay %d ms is not supported\n", interval);
460 return -EINVAL;
461 }
462
463 spin_lock(&bgp->lock);
464 RMW_BITS(bgp, id, bgap_mask_ctrl, mask_counter_delay_mask, rval);
465 spin_unlock(&bgp->lock);
466
467 return 0;
468}
469
470/**
471 * ti_bandgap_write_counter() - set the bandgap sensor counter
472 * @bgp: pointer to bandgap instance
473 * @id: sensor id
474 * @interval: desired update interval in miliseconds
475 */
476static void ti_bandgap_write_counter(struct ti_bandgap *bgp, int id,
477 u32 interval)
478{
479 interval = interval * bgp->clk_rate / 1000;
480 spin_lock(&bgp->lock);
481 RMW_BITS(bgp, id, bgap_counter, counter_mask, interval);
482 spin_unlock(&bgp->lock);
483}
484
485/**
486 * ti_bandgap_write_update_interval() - set the update interval
487 * @bgp: pointer to bandgap instance
488 * @id: sensor id
489 * @interval: desired update interval in miliseconds
490 *
491 * Return: 0 on success or the proper error code
492 */
493int ti_bandgap_write_update_interval(struct ti_bandgap *bgp,
494 int id, u32 interval)
495{
496 int ret = ti_bandgap_validate(bgp, id);
497 if (ret)
498 goto exit;
499
500 if (!TI_BANDGAP_HAS(bgp, COUNTER) &&
501 !TI_BANDGAP_HAS(bgp, COUNTER_DELAY)) {
502 ret = -ENOTSUPP;
503 goto exit;
504 }
505
506 if (TI_BANDGAP_HAS(bgp, COUNTER)) {
507 ti_bandgap_write_counter(bgp, id, interval);
508 goto exit;
509 }
510
511 ret = ti_bandgap_write_counter_delay(bgp, id, interval);
512exit:
513 return ret;
514}
515
516/**
517 * ti_bandgap_read_temperature() - report current temperature
518 * @bgp: pointer to bandgap instance
519 * @id: sensor id
520 * @temperature: resulting temperature
521 *
522 * Return: 0 on success or the proper error code
523 */
524int ti_bandgap_read_temperature(struct ti_bandgap *bgp, int id,
525 int *temperature)
526{
527 u32 temp;
528 int ret;
529
530 ret = ti_bandgap_validate(bgp, id);
531 if (ret)
532 return ret;
533
534 if (!TI_BANDGAP_HAS(bgp, MODE_CONFIG)) {
535 ret = ti_bandgap_force_single_read(bgp, id);
536 if (ret)
537 return ret;
538 }
539
540 spin_lock(&bgp->lock);
541 temp = ti_bandgap_read_temp(bgp, id);
542 spin_unlock(&bgp->lock);
543
544 ret = ti_bandgap_adc_to_mcelsius(bgp, temp, &temp);
545 if (ret)
546 return -EIO;
547
548 *temperature = temp;
549
550 return 0;
551}
552
553/**
554 * ti_bandgap_set_sensor_data() - helper function to store thermal
555 * framework related data.
556 * @bgp: pointer to bandgap instance
557 * @id: sensor id
558 * @data: thermal framework related data to be stored
559 *
560 * Return: 0 on success or the proper error code
561 */
562int ti_bandgap_set_sensor_data(struct ti_bandgap *bgp, int id, void *data)
563{
564 int ret = ti_bandgap_validate(bgp, id);
565 if (ret)
566 return ret;
567
568 bgp->regval[id].data = data;
569
570 return 0;
571}
572
573/**
574 * ti_bandgap_get_sensor_data() - helper function to get thermal
575 * framework related data.
576 * @bgp: pointer to bandgap instance
577 * @id: sensor id
578 *
579 * Return: data stored by set function with sensor id on success or NULL
580 */
581void *ti_bandgap_get_sensor_data(struct ti_bandgap *bgp, int id)
582{
583 int ret = ti_bandgap_validate(bgp, id);
584 if (ret)
585 return ERR_PTR(ret);
586
587 return bgp->regval[id].data;
588}
589
590/*** Helper functions used during device initialization ***/
591
592/**
593 * ti_bandgap_force_single_read() - executes 1 single ADC conversion
594 * @bgp: pointer to struct ti_bandgap
595 * @id: sensor id which it is desired to read 1 temperature
596 *
597 * Used to initialize the conversion state machine and set it to a valid
598 * state. Called during device initialization and context restore events.
599 *
600 * Return: 0
601 */
602static int
603ti_bandgap_force_single_read(struct ti_bandgap *bgp, int id)
604{
605 struct temp_sensor_registers *tsr = bgp->conf->sensors[id].registers;
606 void __iomem *temp_sensor_ctrl = bgp->base + tsr->temp_sensor_ctrl;
607 int error;
608 u32 val;
609
610 /* Select continuous or single conversion mode */
611 if (TI_BANDGAP_HAS(bgp, MODE_CONFIG)) {
612 if (TI_BANDGAP_HAS(bgp, CONT_MODE_ONLY))
613 RMW_BITS(bgp, id, bgap_mode_ctrl, mode_ctrl_mask, 1);
614 else
615 RMW_BITS(bgp, id, bgap_mode_ctrl, mode_ctrl_mask, 0);
616 }
617
618 /* Set Start of Conversion if available */
619 if (tsr->bgap_soc_mask) {
620 RMW_BITS(bgp, id, temp_sensor_ctrl, bgap_soc_mask, 1);
621
622 /* Wait for EOCZ going up */
623 error = readl_poll_timeout_atomic(temp_sensor_ctrl, val,
624 val & tsr->bgap_eocz_mask,
625 1, 1000);
626 if (error)
627 dev_warn(bgp->dev, "eocz timed out waiting high\n");
628
629 /* Clear Start of Conversion if available */
630 RMW_BITS(bgp, id, temp_sensor_ctrl, bgap_soc_mask, 0);
631 }
632
633 /* Wait for EOCZ going down, always needed even if no bgap_soc_mask */
634 error = readl_poll_timeout_atomic(temp_sensor_ctrl, val,
635 !(val & tsr->bgap_eocz_mask),
636 1, 1500);
637 if (error)
638 dev_warn(bgp->dev, "eocz timed out waiting low\n");
639
640 return 0;
641}
642
643/**
644 * ti_bandgap_set_continuous_mode() - One time enabling of continuous mode
645 * @bgp: pointer to struct ti_bandgap
646 *
647 * Call this function only if HAS(MODE_CONFIG) is set. As this driver may
648 * be used for junction temperature monitoring, it is desirable that the
649 * sensors are operational all the time, so that alerts are generated
650 * properly.
651 *
652 * Return: 0
653 */
654static int ti_bandgap_set_continuous_mode(struct ti_bandgap *bgp)
655{
656 int i;
657
658 for (i = 0; i < bgp->conf->sensor_count; i++) {
659 /* Perform a single read just before enabling continuous */
660 ti_bandgap_force_single_read(bgp, i);
661 RMW_BITS(bgp, i, bgap_mode_ctrl, mode_ctrl_mask, 1);
662 }
663
664 return 0;
665}
666
667/**
668 * ti_bandgap_get_trend() - To fetch the temperature trend of a sensor
669 * @bgp: pointer to struct ti_bandgap
670 * @id: id of the individual sensor
671 * @trend: Pointer to trend.
672 *
673 * This function needs to be called to fetch the temperature trend of a
674 * Particular sensor. The function computes the difference in temperature
675 * w.r.t time. For the bandgaps with built in history buffer the temperatures
676 * are read from the buffer and for those without the Buffer -ENOTSUPP is
677 * returned.
678 *
679 * Return: 0 if no error, else return corresponding error. If no
680 * error then the trend value is passed on to trend parameter
681 */
682int ti_bandgap_get_trend(struct ti_bandgap *bgp, int id, int *trend)
683{
684 struct temp_sensor_registers *tsr;
685 u32 temp1, temp2, reg1, reg2;
686 int t1, t2, interval, ret = 0;
687
688 ret = ti_bandgap_validate(bgp, id);
689 if (ret)
690 goto exit;
691
692 if (!TI_BANDGAP_HAS(bgp, HISTORY_BUFFER) ||
693 !TI_BANDGAP_HAS(bgp, FREEZE_BIT)) {
694 ret = -ENOTSUPP;
695 goto exit;
696 }
697
698 spin_lock(&bgp->lock);
699
700 tsr = bgp->conf->sensors[id].registers;
701
702 /* Freeze and read the last 2 valid readings */
703 RMW_BITS(bgp, id, bgap_mask_ctrl, mask_freeze_mask, 1);
704 reg1 = tsr->ctrl_dtemp_1;
705 reg2 = tsr->ctrl_dtemp_2;
706
707 /* read temperature from history buffer */
708 temp1 = ti_bandgap_readl(bgp, reg1);
709 temp1 &= tsr->bgap_dtemp_mask;
710
711 temp2 = ti_bandgap_readl(bgp, reg2);
712 temp2 &= tsr->bgap_dtemp_mask;
713
714 /* Convert from adc values to mCelsius temperature */
715 ret = ti_bandgap_adc_to_mcelsius(bgp, temp1, &t1);
716 if (ret)
717 goto unfreeze;
718
719 ret = ti_bandgap_adc_to_mcelsius(bgp, temp2, &t2);
720 if (ret)
721 goto unfreeze;
722
723 /* Fetch the update interval */
724 ret = ti_bandgap_read_update_interval(bgp, id, &interval);
725 if (ret)
726 goto unfreeze;
727
728 /* Set the interval to 1 ms if bandgap counter delay is not set */
729 if (interval == 0)
730 interval = 1;
731
732 *trend = (t1 - t2) / interval;
733
734 dev_dbg(bgp->dev, "The temperatures are t1 = %d and t2 = %d and trend =%d\n",
735 t1, t2, *trend);
736
737unfreeze:
738 RMW_BITS(bgp, id, bgap_mask_ctrl, mask_freeze_mask, 0);
739 spin_unlock(&bgp->lock);
740exit:
741 return ret;
742}
743
744/**
745 * ti_bandgap_tshut_init() - setup and initialize tshut handling
746 * @bgp: pointer to struct ti_bandgap
747 * @pdev: pointer to device struct platform_device
748 *
749 * Call this function only in case the bandgap features HAS(TSHUT).
750 * In this case, the driver needs to handle the TSHUT signal as an IRQ.
751 * The IRQ is wired as a GPIO, and for this purpose, it is required
752 * to specify which GPIO line is used. TSHUT IRQ is fired anytime
753 * one of the bandgap sensors violates the TSHUT high/hot threshold.
754 * And in that case, the system must go off.
755 *
756 * Return: 0 if no error, else error status
757 */
758static int ti_bandgap_tshut_init(struct ti_bandgap *bgp,
759 struct platform_device *pdev)
760{
761 int status;
762
763 status = request_irq(gpiod_to_irq(bgp->tshut_gpiod),
764 ti_bandgap_tshut_irq_handler,
765 IRQF_TRIGGER_RISING, "tshut", NULL);
766 if (status)
767 dev_err(bgp->dev, "request irq failed for TSHUT");
768
769 return 0;
770}
771
772/**
773 * ti_bandgap_talert_init() - setup and initialize talert handling
774 * @bgp: pointer to struct ti_bandgap
775 * @pdev: pointer to device struct platform_device
776 *
777 * Call this function only in case the bandgap features HAS(TALERT).
778 * In this case, the driver needs to handle the TALERT signals as an IRQs.
779 * TALERT is a normal IRQ and it is fired any time thresholds (hot or cold)
780 * are violated. In these situation, the driver must reprogram the thresholds,
781 * accordingly to specified policy.
782 *
783 * Return: 0 if no error, else return corresponding error.
784 */
785static int ti_bandgap_talert_init(struct ti_bandgap *bgp,
786 struct platform_device *pdev)
787{
788 int ret;
789
790 bgp->irq = platform_get_irq(pdev, 0);
791 if (bgp->irq < 0)
792 return bgp->irq;
793
794 ret = request_threaded_irq(bgp->irq, NULL,
795 ti_bandgap_talert_irq_handler,
796 IRQF_TRIGGER_HIGH | IRQF_ONESHOT,
797 "talert", bgp);
798 if (ret) {
799 dev_err(&pdev->dev, "Request threaded irq failed.\n");
800 return ret;
801 }
802
803 return 0;
804}
805
806static const struct of_device_id of_ti_bandgap_match[];
807/**
808 * ti_bandgap_build() - parse DT and setup a struct ti_bandgap
809 * @pdev: pointer to device struct platform_device
810 *
811 * Used to read the device tree properties accordingly to the bandgap
812 * matching version. Based on bandgap version and its capabilities it
813 * will build a struct ti_bandgap out of the required DT entries.
814 *
815 * Return: valid bandgap structure if successful, else returns ERR_PTR
816 * return value must be verified with IS_ERR.
817 */
818static struct ti_bandgap *ti_bandgap_build(struct platform_device *pdev)
819{
820 struct device_node *node = pdev->dev.of_node;
821 const struct of_device_id *of_id;
822 struct ti_bandgap *bgp;
823 struct resource *res;
824 int i;
825
826 /* just for the sake */
827 if (!node) {
828 dev_err(&pdev->dev, "no platform information available\n");
829 return ERR_PTR(-EINVAL);
830 }
831
832 bgp = devm_kzalloc(&pdev->dev, sizeof(*bgp), GFP_KERNEL);
833 if (!bgp)
834 return ERR_PTR(-ENOMEM);
835
836 of_id = of_match_device(of_ti_bandgap_match, &pdev->dev);
837 if (of_id)
838 bgp->conf = of_id->data;
839
840 /* register shadow for context save and restore */
841 bgp->regval = devm_kcalloc(&pdev->dev, bgp->conf->sensor_count,
842 sizeof(*bgp->regval), GFP_KERNEL);
843 if (!bgp->regval)
844 return ERR_PTR(-ENOMEM);
845
846 i = 0;
847 do {
848 void __iomem *chunk;
849
850 res = platform_get_resource(pdev, IORESOURCE_MEM, i);
851 if (!res)
852 break;
853 chunk = devm_ioremap_resource(&pdev->dev, res);
854 if (i == 0)
855 bgp->base = chunk;
856 if (IS_ERR(chunk))
857 return ERR_CAST(chunk);
858
859 i++;
860 } while (res);
861
862 if (TI_BANDGAP_HAS(bgp, TSHUT)) {
863 bgp->tshut_gpiod = devm_gpiod_get(&pdev->dev, NULL, GPIOD_IN);
864 if (IS_ERR(bgp->tshut_gpiod)) {
865 dev_err(&pdev->dev, "invalid gpio for tshut\n");
866 return ERR_CAST(bgp->tshut_gpiod);
867 }
868 }
869
870 return bgp;
871}
872
873/*
874 * List of SoCs on which the CPU PM notifier can cause erros on the DTEMP
875 * readout.
876 * Enabled notifier on these machines results in erroneous, random values which
877 * could trigger unexpected thermal shutdown.
878 */
879static const struct soc_device_attribute soc_no_cpu_notifier[] = {
880 { .machine = "OMAP4430" },
881 { /* sentinel */ }
882};
883
884/*** Device driver call backs ***/
885
886static
887int ti_bandgap_probe(struct platform_device *pdev)
888{
889 struct ti_bandgap *bgp;
890 int clk_rate, ret, i;
891
892 bgp = ti_bandgap_build(pdev);
893 if (IS_ERR(bgp)) {
894 dev_err(&pdev->dev, "failed to fetch platform data\n");
895 return PTR_ERR(bgp);
896 }
897 bgp->dev = &pdev->dev;
898
899 if (TI_BANDGAP_HAS(bgp, UNRELIABLE))
900 dev_warn(&pdev->dev,
901 "This OMAP thermal sensor is unreliable. You've been warned\n");
902
903 if (TI_BANDGAP_HAS(bgp, TSHUT)) {
904 ret = ti_bandgap_tshut_init(bgp, pdev);
905 if (ret) {
906 dev_err(&pdev->dev,
907 "failed to initialize system tshut IRQ\n");
908 return ret;
909 }
910 }
911
912 bgp->fclock = clk_get(NULL, bgp->conf->fclock_name);
913 if (IS_ERR(bgp->fclock)) {
914 dev_err(&pdev->dev, "failed to request fclock reference\n");
915 ret = PTR_ERR(bgp->fclock);
916 goto free_irqs;
917 }
918
919 bgp->div_clk = clk_get(NULL, bgp->conf->div_ck_name);
920 if (IS_ERR(bgp->div_clk)) {
921 dev_err(&pdev->dev, "failed to request div_ts_ck clock ref\n");
922 ret = PTR_ERR(bgp->div_clk);
923 goto put_fclock;
924 }
925
926 for (i = 0; i < bgp->conf->sensor_count; i++) {
927 struct temp_sensor_registers *tsr;
928 u32 val;
929
930 tsr = bgp->conf->sensors[i].registers;
931 /*
932 * check if the efuse has a non-zero value if not
933 * it is an untrimmed sample and the temperatures
934 * may not be accurate
935 */
936 val = ti_bandgap_readl(bgp, tsr->bgap_efuse);
937 if (!val)
938 dev_info(&pdev->dev,
939 "Non-trimmed BGAP, Temp not accurate\n");
940 }
941
942 clk_rate = clk_round_rate(bgp->div_clk,
943 bgp->conf->sensors[0].ts_data->max_freq);
944 if (clk_rate < bgp->conf->sensors[0].ts_data->min_freq ||
945 clk_rate <= 0) {
946 ret = -ENODEV;
947 dev_err(&pdev->dev, "wrong clock rate (%d)\n", clk_rate);
948 goto put_clks;
949 }
950
951 ret = clk_set_rate(bgp->div_clk, clk_rate);
952 if (ret)
953 dev_err(&pdev->dev, "Cannot re-set clock rate. Continuing\n");
954
955 bgp->clk_rate = clk_rate;
956 if (TI_BANDGAP_HAS(bgp, CLK_CTRL))
957 clk_prepare_enable(bgp->fclock);
958
959
960 spin_lock_init(&bgp->lock);
961 bgp->dev = &pdev->dev;
962 platform_set_drvdata(pdev, bgp);
963
964 ti_bandgap_power(bgp, true);
965
966 /* Set default counter to 1 for now */
967 if (TI_BANDGAP_HAS(bgp, COUNTER))
968 for (i = 0; i < bgp->conf->sensor_count; i++)
969 RMW_BITS(bgp, i, bgap_counter, counter_mask, 1);
970
971 /* Set default thresholds for alert and shutdown */
972 for (i = 0; i < bgp->conf->sensor_count; i++) {
973 struct temp_sensor_data *ts_data;
974
975 ts_data = bgp->conf->sensors[i].ts_data;
976
977 if (TI_BANDGAP_HAS(bgp, TALERT)) {
978 /* Set initial Talert thresholds */
979 RMW_BITS(bgp, i, bgap_threshold,
980 threshold_tcold_mask, ts_data->t_cold);
981 RMW_BITS(bgp, i, bgap_threshold,
982 threshold_thot_mask, ts_data->t_hot);
983 /* Enable the alert events */
984 RMW_BITS(bgp, i, bgap_mask_ctrl, mask_hot_mask, 1);
985 RMW_BITS(bgp, i, bgap_mask_ctrl, mask_cold_mask, 1);
986 }
987
988 if (TI_BANDGAP_HAS(bgp, TSHUT_CONFIG)) {
989 /* Set initial Tshut thresholds */
990 RMW_BITS(bgp, i, tshut_threshold,
991 tshut_hot_mask, ts_data->tshut_hot);
992 RMW_BITS(bgp, i, tshut_threshold,
993 tshut_cold_mask, ts_data->tshut_cold);
994 }
995 }
996
997 if (TI_BANDGAP_HAS(bgp, MODE_CONFIG))
998 ti_bandgap_set_continuous_mode(bgp);
999
1000 /* Set .250 seconds time as default counter */
1001 if (TI_BANDGAP_HAS(bgp, COUNTER))
1002 for (i = 0; i < bgp->conf->sensor_count; i++)
1003 RMW_BITS(bgp, i, bgap_counter, counter_mask,
1004 bgp->clk_rate / 4);
1005
1006 /* Every thing is good? Then expose the sensors */
1007 for (i = 0; i < bgp->conf->sensor_count; i++) {
1008 char *domain;
1009
1010 if (bgp->conf->sensors[i].register_cooling) {
1011 ret = bgp->conf->sensors[i].register_cooling(bgp, i);
1012 if (ret)
1013 goto remove_sensors;
1014 }
1015
1016 if (bgp->conf->expose_sensor) {
1017 domain = bgp->conf->sensors[i].domain;
1018 ret = bgp->conf->expose_sensor(bgp, i, domain);
1019 if (ret)
1020 goto remove_last_cooling;
1021 }
1022 }
1023
1024 /*
1025 * Enable the Interrupts once everything is set. Otherwise irq handler
1026 * might be called as soon as it is enabled where as rest of framework
1027 * is still getting initialised.
1028 */
1029 if (TI_BANDGAP_HAS(bgp, TALERT)) {
1030 ret = ti_bandgap_talert_init(bgp, pdev);
1031 if (ret) {
1032 dev_err(&pdev->dev, "failed to initialize Talert IRQ\n");
1033 i = bgp->conf->sensor_count;
1034 goto disable_clk;
1035 }
1036 }
1037
1038#ifdef CONFIG_PM_SLEEP
1039 bgp->nb.notifier_call = bandgap_omap_cpu_notifier;
1040 if (!soc_device_match(soc_no_cpu_notifier))
1041 cpu_pm_register_notifier(&bgp->nb);
1042#endif
1043
1044 return 0;
1045
1046remove_last_cooling:
1047 if (bgp->conf->sensors[i].unregister_cooling)
1048 bgp->conf->sensors[i].unregister_cooling(bgp, i);
1049remove_sensors:
1050 for (i--; i >= 0; i--) {
1051 if (bgp->conf->sensors[i].unregister_cooling)
1052 bgp->conf->sensors[i].unregister_cooling(bgp, i);
1053 if (bgp->conf->remove_sensor)
1054 bgp->conf->remove_sensor(bgp, i);
1055 }
1056 ti_bandgap_power(bgp, false);
1057disable_clk:
1058 if (TI_BANDGAP_HAS(bgp, CLK_CTRL))
1059 clk_disable_unprepare(bgp->fclock);
1060put_clks:
1061 clk_put(bgp->div_clk);
1062put_fclock:
1063 clk_put(bgp->fclock);
1064free_irqs:
1065 if (TI_BANDGAP_HAS(bgp, TSHUT))
1066 free_irq(gpiod_to_irq(bgp->tshut_gpiod), NULL);
1067
1068 return ret;
1069}
1070
1071static
1072void ti_bandgap_remove(struct platform_device *pdev)
1073{
1074 struct ti_bandgap *bgp = platform_get_drvdata(pdev);
1075 int i;
1076
1077 if (!soc_device_match(soc_no_cpu_notifier))
1078 cpu_pm_unregister_notifier(&bgp->nb);
1079
1080 /* Remove sensor interfaces */
1081 for (i = 0; i < bgp->conf->sensor_count; i++) {
1082 if (bgp->conf->sensors[i].unregister_cooling)
1083 bgp->conf->sensors[i].unregister_cooling(bgp, i);
1084
1085 if (bgp->conf->remove_sensor)
1086 bgp->conf->remove_sensor(bgp, i);
1087 }
1088
1089 ti_bandgap_power(bgp, false);
1090
1091 if (TI_BANDGAP_HAS(bgp, CLK_CTRL))
1092 clk_disable_unprepare(bgp->fclock);
1093 clk_put(bgp->fclock);
1094 clk_put(bgp->div_clk);
1095
1096 if (TI_BANDGAP_HAS(bgp, TALERT))
1097 free_irq(bgp->irq, bgp);
1098
1099 if (TI_BANDGAP_HAS(bgp, TSHUT))
1100 free_irq(gpiod_to_irq(bgp->tshut_gpiod), NULL);
1101}
1102
1103#ifdef CONFIG_PM_SLEEP
1104static int ti_bandgap_save_ctxt(struct ti_bandgap *bgp)
1105{
1106 int i;
1107
1108 for (i = 0; i < bgp->conf->sensor_count; i++) {
1109 struct temp_sensor_registers *tsr;
1110 struct temp_sensor_regval *rval;
1111
1112 rval = &bgp->regval[i];
1113 tsr = bgp->conf->sensors[i].registers;
1114
1115 if (TI_BANDGAP_HAS(bgp, MODE_CONFIG))
1116 rval->bg_mode_ctrl = ti_bandgap_readl(bgp,
1117 tsr->bgap_mode_ctrl);
1118 if (TI_BANDGAP_HAS(bgp, COUNTER))
1119 rval->bg_counter = ti_bandgap_readl(bgp,
1120 tsr->bgap_counter);
1121 if (TI_BANDGAP_HAS(bgp, TALERT)) {
1122 rval->bg_threshold = ti_bandgap_readl(bgp,
1123 tsr->bgap_threshold);
1124 rval->bg_ctrl = ti_bandgap_readl(bgp,
1125 tsr->bgap_mask_ctrl);
1126 }
1127
1128 if (TI_BANDGAP_HAS(bgp, TSHUT_CONFIG))
1129 rval->tshut_threshold = ti_bandgap_readl(bgp,
1130 tsr->tshut_threshold);
1131 }
1132
1133 return 0;
1134}
1135
1136static int ti_bandgap_restore_ctxt(struct ti_bandgap *bgp)
1137{
1138 int i;
1139
1140 for (i = 0; i < bgp->conf->sensor_count; i++) {
1141 struct temp_sensor_registers *tsr;
1142 struct temp_sensor_regval *rval;
1143
1144 rval = &bgp->regval[i];
1145 tsr = bgp->conf->sensors[i].registers;
1146
1147 if (TI_BANDGAP_HAS(bgp, TSHUT_CONFIG))
1148 ti_bandgap_writel(bgp, rval->tshut_threshold,
1149 tsr->tshut_threshold);
1150 /* Force immediate temperature measurement and update
1151 * of the DTEMP field
1152 */
1153 ti_bandgap_force_single_read(bgp, i);
1154
1155 if (TI_BANDGAP_HAS(bgp, COUNTER))
1156 ti_bandgap_writel(bgp, rval->bg_counter,
1157 tsr->bgap_counter);
1158 if (TI_BANDGAP_HAS(bgp, MODE_CONFIG))
1159 ti_bandgap_writel(bgp, rval->bg_mode_ctrl,
1160 tsr->bgap_mode_ctrl);
1161 if (TI_BANDGAP_HAS(bgp, TALERT)) {
1162 ti_bandgap_writel(bgp, rval->bg_threshold,
1163 tsr->bgap_threshold);
1164 ti_bandgap_writel(bgp, rval->bg_ctrl,
1165 tsr->bgap_mask_ctrl);
1166 }
1167 }
1168
1169 return 0;
1170}
1171
1172static int ti_bandgap_suspend(struct device *dev)
1173{
1174 struct ti_bandgap *bgp = dev_get_drvdata(dev);
1175 int err;
1176
1177 err = ti_bandgap_save_ctxt(bgp);
1178 ti_bandgap_power(bgp, false);
1179
1180 if (TI_BANDGAP_HAS(bgp, CLK_CTRL))
1181 clk_disable_unprepare(bgp->fclock);
1182
1183 bgp->is_suspended = true;
1184
1185 return err;
1186}
1187
1188static int bandgap_omap_cpu_notifier(struct notifier_block *nb,
1189 unsigned long cmd, void *v)
1190{
1191 struct ti_bandgap *bgp;
1192
1193 bgp = container_of(nb, struct ti_bandgap, nb);
1194
1195 spin_lock(&bgp->lock);
1196 switch (cmd) {
1197 case CPU_CLUSTER_PM_ENTER:
1198 if (bgp->is_suspended)
1199 break;
1200 ti_bandgap_save_ctxt(bgp);
1201 ti_bandgap_power(bgp, false);
1202 if (TI_BANDGAP_HAS(bgp, CLK_CTRL))
1203 clk_disable(bgp->fclock);
1204 break;
1205 case CPU_CLUSTER_PM_ENTER_FAILED:
1206 case CPU_CLUSTER_PM_EXIT:
1207 if (bgp->is_suspended)
1208 break;
1209 if (TI_BANDGAP_HAS(bgp, CLK_CTRL))
1210 clk_enable(bgp->fclock);
1211 ti_bandgap_power(bgp, true);
1212 ti_bandgap_restore_ctxt(bgp);
1213 break;
1214 }
1215 spin_unlock(&bgp->lock);
1216
1217 return NOTIFY_OK;
1218}
1219
1220static int ti_bandgap_resume(struct device *dev)
1221{
1222 struct ti_bandgap *bgp = dev_get_drvdata(dev);
1223
1224 if (TI_BANDGAP_HAS(bgp, CLK_CTRL))
1225 clk_prepare_enable(bgp->fclock);
1226
1227 ti_bandgap_power(bgp, true);
1228 bgp->is_suspended = false;
1229
1230 return ti_bandgap_restore_ctxt(bgp);
1231}
1232static SIMPLE_DEV_PM_OPS(ti_bandgap_dev_pm_ops, ti_bandgap_suspend,
1233 ti_bandgap_resume);
1234
1235#define DEV_PM_OPS (&ti_bandgap_dev_pm_ops)
1236#else
1237#define DEV_PM_OPS NULL
1238#endif
1239
1240static const struct of_device_id of_ti_bandgap_match[] = {
1241#ifdef CONFIG_OMAP3_THERMAL
1242 {
1243 .compatible = "ti,omap34xx-bandgap",
1244 .data = (void *)&omap34xx_data,
1245 },
1246 {
1247 .compatible = "ti,omap36xx-bandgap",
1248 .data = (void *)&omap36xx_data,
1249 },
1250#endif
1251#ifdef CONFIG_OMAP4_THERMAL
1252 {
1253 .compatible = "ti,omap4430-bandgap",
1254 .data = (void *)&omap4430_data,
1255 },
1256 {
1257 .compatible = "ti,omap4460-bandgap",
1258 .data = (void *)&omap4460_data,
1259 },
1260 {
1261 .compatible = "ti,omap4470-bandgap",
1262 .data = (void *)&omap4470_data,
1263 },
1264#endif
1265#ifdef CONFIG_OMAP5_THERMAL
1266 {
1267 .compatible = "ti,omap5430-bandgap",
1268 .data = (void *)&omap5430_data,
1269 },
1270#endif
1271#ifdef CONFIG_DRA752_THERMAL
1272 {
1273 .compatible = "ti,dra752-bandgap",
1274 .data = (void *)&dra752_data,
1275 },
1276#endif
1277 /* Sentinel */
1278 { },
1279};
1280MODULE_DEVICE_TABLE(of, of_ti_bandgap_match);
1281
1282static struct platform_driver ti_bandgap_sensor_driver = {
1283 .probe = ti_bandgap_probe,
1284 .remove = ti_bandgap_remove,
1285 .driver = {
1286 .name = "ti-soc-thermal",
1287 .pm = DEV_PM_OPS,
1288 .of_match_table = of_ti_bandgap_match,
1289 },
1290};
1291
1292module_platform_driver(ti_bandgap_sensor_driver);
1293
1294MODULE_DESCRIPTION("OMAP4+ bandgap temperature sensor driver");
1295MODULE_LICENSE("GPL v2");
1296MODULE_ALIAS("platform:ti-soc-thermal");
1297MODULE_AUTHOR("Texas Instrument Inc.");
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * TI Bandgap temperature sensor driver
4 *
5 * Copyright (C) 2011-2012 Texas Instruments Incorporated - http://www.ti.com/
6 * Author: J Keerthy <j-keerthy@ti.com>
7 * Author: Moiz Sonasath <m-sonasath@ti.com>
8 * Couple of fixes, DT and MFD adaptation:
9 * Eduardo Valentin <eduardo.valentin@ti.com>
10 */
11
12#include <linux/module.h>
13#include <linux/export.h>
14#include <linux/init.h>
15#include <linux/kernel.h>
16#include <linux/interrupt.h>
17#include <linux/clk.h>
18#include <linux/gpio.h>
19#include <linux/platform_device.h>
20#include <linux/err.h>
21#include <linux/types.h>
22#include <linux/spinlock.h>
23#include <linux/reboot.h>
24#include <linux/of_device.h>
25#include <linux/of_platform.h>
26#include <linux/of_irq.h>
27#include <linux/of_gpio.h>
28#include <linux/io.h>
29
30#include "ti-bandgap.h"
31
32static int ti_bandgap_force_single_read(struct ti_bandgap *bgp, int id);
33
34/*** Helper functions to access registers and their bitfields ***/
35
36/**
37 * ti_bandgap_readl() - simple read helper function
38 * @bgp: pointer to ti_bandgap structure
39 * @reg: desired register (offset) to be read
40 *
41 * Helper function to read bandgap registers. It uses the io remapped area.
42 * Return: the register value.
43 */
44static u32 ti_bandgap_readl(struct ti_bandgap *bgp, u32 reg)
45{
46 return readl(bgp->base + reg);
47}
48
49/**
50 * ti_bandgap_writel() - simple write helper function
51 * @bgp: pointer to ti_bandgap structure
52 * @val: desired register value to be written
53 * @reg: desired register (offset) to be written
54 *
55 * Helper function to write bandgap registers. It uses the io remapped area.
56 */
57static void ti_bandgap_writel(struct ti_bandgap *bgp, u32 val, u32 reg)
58{
59 writel(val, bgp->base + reg);
60}
61
62/**
63 * DOC: macro to update bits.
64 *
65 * RMW_BITS() - used to read, modify and update bandgap bitfields.
66 * The value passed will be shifted.
67 */
68#define RMW_BITS(bgp, id, reg, mask, val) \
69do { \
70 struct temp_sensor_registers *t; \
71 u32 r; \
72 \
73 t = bgp->conf->sensors[(id)].registers; \
74 r = ti_bandgap_readl(bgp, t->reg); \
75 r &= ~t->mask; \
76 r |= (val) << __ffs(t->mask); \
77 ti_bandgap_writel(bgp, r, t->reg); \
78} while (0)
79
80/*** Basic helper functions ***/
81
82/**
83 * ti_bandgap_power() - controls the power state of a bandgap device
84 * @bgp: pointer to ti_bandgap structure
85 * @on: desired power state (1 - on, 0 - off)
86 *
87 * Used to power on/off a bandgap device instance. Only used on those
88 * that features tempsoff bit.
89 *
90 * Return: 0 on success, -ENOTSUPP if tempsoff is not supported.
91 */
92static int ti_bandgap_power(struct ti_bandgap *bgp, bool on)
93{
94 int i;
95
96 if (!TI_BANDGAP_HAS(bgp, POWER_SWITCH))
97 return -ENOTSUPP;
98
99 for (i = 0; i < bgp->conf->sensor_count; i++)
100 /* active on 0 */
101 RMW_BITS(bgp, i, temp_sensor_ctrl, bgap_tempsoff_mask, !on);
102 return 0;
103}
104
105/**
106 * ti_errata814_bandgap_read_temp() - helper function to read dra7 sensor temperature
107 * @bgp: pointer to ti_bandgap structure
108 * @reg: desired register (offset) to be read
109 *
110 * Function to read dra7 bandgap sensor temperature. This is done separately
111 * so as to workaround the errata "Bandgap Temperature read Dtemp can be
112 * corrupted" - Errata ID: i814".
113 * Read accesses to registers listed below can be corrupted due to incorrect
114 * resynchronization between clock domains.
115 * Read access to registers below can be corrupted :
116 * CTRL_CORE_DTEMP_MPU/GPU/CORE/DSPEVE/IVA_n (n = 0 to 4)
117 * CTRL_CORE_TEMP_SENSOR_MPU/GPU/CORE/DSPEVE/IVA_n
118 *
119 * Return: the register value.
120 */
121static u32 ti_errata814_bandgap_read_temp(struct ti_bandgap *bgp, u32 reg)
122{
123 u32 val1, val2;
124
125 val1 = ti_bandgap_readl(bgp, reg);
126 val2 = ti_bandgap_readl(bgp, reg);
127
128 /* If both times we read the same value then that is right */
129 if (val1 == val2)
130 return val1;
131
132 /* if val1 and val2 are different read it third time */
133 return ti_bandgap_readl(bgp, reg);
134}
135
136/**
137 * ti_bandgap_read_temp() - helper function to read sensor temperature
138 * @bgp: pointer to ti_bandgap structure
139 * @id: bandgap sensor id
140 *
141 * Function to concentrate the steps to read sensor temperature register.
142 * This function is desired because, depending on bandgap device version,
143 * it might be needed to freeze the bandgap state machine, before fetching
144 * the register value.
145 *
146 * Return: temperature in ADC values.
147 */
148static u32 ti_bandgap_read_temp(struct ti_bandgap *bgp, int id)
149{
150 struct temp_sensor_registers *tsr;
151 u32 temp, reg;
152
153 tsr = bgp->conf->sensors[id].registers;
154 reg = tsr->temp_sensor_ctrl;
155
156 if (TI_BANDGAP_HAS(bgp, FREEZE_BIT)) {
157 RMW_BITS(bgp, id, bgap_mask_ctrl, mask_freeze_mask, 1);
158 /*
159 * In case we cannot read from cur_dtemp / dtemp_0,
160 * then we read from the last valid temp read
161 */
162 reg = tsr->ctrl_dtemp_1;
163 }
164
165 /* read temperature */
166 if (TI_BANDGAP_HAS(bgp, ERRATA_814))
167 temp = ti_errata814_bandgap_read_temp(bgp, reg);
168 else
169 temp = ti_bandgap_readl(bgp, reg);
170
171 temp &= tsr->bgap_dtemp_mask;
172
173 if (TI_BANDGAP_HAS(bgp, FREEZE_BIT))
174 RMW_BITS(bgp, id, bgap_mask_ctrl, mask_freeze_mask, 0);
175
176 return temp;
177}
178
179/*** IRQ handlers ***/
180
181/**
182 * ti_bandgap_talert_irq_handler() - handles Temperature alert IRQs
183 * @irq: IRQ number
184 * @data: private data (struct ti_bandgap *)
185 *
186 * This is the Talert handler. Use it only if bandgap device features
187 * HAS(TALERT). This handler goes over all sensors and checks their
188 * conditions and acts accordingly. In case there are events pending,
189 * it will reset the event mask to wait for the opposite event (next event).
190 * Every time there is a new event, it will be reported to thermal layer.
191 *
192 * Return: IRQ_HANDLED
193 */
194static irqreturn_t ti_bandgap_talert_irq_handler(int irq, void *data)
195{
196 struct ti_bandgap *bgp = data;
197 struct temp_sensor_registers *tsr;
198 u32 t_hot = 0, t_cold = 0, ctrl;
199 int i;
200
201 spin_lock(&bgp->lock);
202 for (i = 0; i < bgp->conf->sensor_count; i++) {
203 tsr = bgp->conf->sensors[i].registers;
204 ctrl = ti_bandgap_readl(bgp, tsr->bgap_status);
205
206 /* Read the status of t_hot */
207 t_hot = ctrl & tsr->status_hot_mask;
208
209 /* Read the status of t_cold */
210 t_cold = ctrl & tsr->status_cold_mask;
211
212 if (!t_cold && !t_hot)
213 continue;
214
215 ctrl = ti_bandgap_readl(bgp, tsr->bgap_mask_ctrl);
216 /*
217 * One TALERT interrupt: Two sources
218 * If the interrupt is due to t_hot then mask t_hot and
219 * and unmask t_cold else mask t_cold and unmask t_hot
220 */
221 if (t_hot) {
222 ctrl &= ~tsr->mask_hot_mask;
223 ctrl |= tsr->mask_cold_mask;
224 } else if (t_cold) {
225 ctrl &= ~tsr->mask_cold_mask;
226 ctrl |= tsr->mask_hot_mask;
227 }
228
229 ti_bandgap_writel(bgp, ctrl, tsr->bgap_mask_ctrl);
230
231 dev_dbg(bgp->dev,
232 "%s: IRQ from %s sensor: hotevent %d coldevent %d\n",
233 __func__, bgp->conf->sensors[i].domain,
234 t_hot, t_cold);
235
236 /* report temperature to whom may concern */
237 if (bgp->conf->report_temperature)
238 bgp->conf->report_temperature(bgp, i);
239 }
240 spin_unlock(&bgp->lock);
241
242 return IRQ_HANDLED;
243}
244
245/**
246 * ti_bandgap_tshut_irq_handler() - handles Temperature shutdown signal
247 * @irq: IRQ number
248 * @data: private data (unused)
249 *
250 * This is the Tshut handler. Use it only if bandgap device features
251 * HAS(TSHUT). If any sensor fires the Tshut signal, we simply shutdown
252 * the system.
253 *
254 * Return: IRQ_HANDLED
255 */
256static irqreturn_t ti_bandgap_tshut_irq_handler(int irq, void *data)
257{
258 pr_emerg("%s: TSHUT temperature reached. Needs shut down...\n",
259 __func__);
260
261 orderly_poweroff(true);
262
263 return IRQ_HANDLED;
264}
265
266/*** Helper functions which manipulate conversion ADC <-> mi Celsius ***/
267
268/**
269 * ti_bandgap_adc_to_mcelsius() - converts an ADC value to mCelsius scale
270 * @bgp: struct ti_bandgap pointer
271 * @adc_val: value in ADC representation
272 * @t: address where to write the resulting temperature in mCelsius
273 *
274 * Simple conversion from ADC representation to mCelsius. In case the ADC value
275 * is out of the ADC conv table range, it returns -ERANGE, 0 on success.
276 * The conversion table is indexed by the ADC values.
277 *
278 * Return: 0 if conversion was successful, else -ERANGE in case the @adc_val
279 * argument is out of the ADC conv table range.
280 */
281static
282int ti_bandgap_adc_to_mcelsius(struct ti_bandgap *bgp, int adc_val, int *t)
283{
284 const struct ti_bandgap_data *conf = bgp->conf;
285
286 /* look up for temperature in the table and return the temperature */
287 if (adc_val < conf->adc_start_val || adc_val > conf->adc_end_val)
288 return -ERANGE;
289
290 *t = bgp->conf->conv_table[adc_val - conf->adc_start_val];
291 return 0;
292}
293
294/**
295 * ti_bandgap_validate() - helper to check the sanity of a struct ti_bandgap
296 * @bgp: struct ti_bandgap pointer
297 * @id: bandgap sensor id
298 *
299 * Checks if the bandgap pointer is valid and if the sensor id is also
300 * applicable.
301 *
302 * Return: 0 if no errors, -EINVAL for invalid @bgp pointer or -ERANGE if
303 * @id cannot index @bgp sensors.
304 */
305static inline int ti_bandgap_validate(struct ti_bandgap *bgp, int id)
306{
307 if (!bgp || IS_ERR(bgp)) {
308 pr_err("%s: invalid bandgap pointer\n", __func__);
309 return -EINVAL;
310 }
311
312 if ((id < 0) || (id >= bgp->conf->sensor_count)) {
313 dev_err(bgp->dev, "%s: sensor id out of range (%d)\n",
314 __func__, id);
315 return -ERANGE;
316 }
317
318 return 0;
319}
320
321/**
322 * ti_bandgap_read_counter() - read the sensor counter
323 * @bgp: pointer to bandgap instance
324 * @id: sensor id
325 * @interval: resulting update interval in miliseconds
326 */
327static void ti_bandgap_read_counter(struct ti_bandgap *bgp, int id,
328 int *interval)
329{
330 struct temp_sensor_registers *tsr;
331 int time;
332
333 tsr = bgp->conf->sensors[id].registers;
334 time = ti_bandgap_readl(bgp, tsr->bgap_counter);
335 time = (time & tsr->counter_mask) >>
336 __ffs(tsr->counter_mask);
337 time = time * 1000 / bgp->clk_rate;
338 *interval = time;
339}
340
341/**
342 * ti_bandgap_read_counter_delay() - read the sensor counter delay
343 * @bgp: pointer to bandgap instance
344 * @id: sensor id
345 * @interval: resulting update interval in miliseconds
346 */
347static void ti_bandgap_read_counter_delay(struct ti_bandgap *bgp, int id,
348 int *interval)
349{
350 struct temp_sensor_registers *tsr;
351 int reg_val;
352
353 tsr = bgp->conf->sensors[id].registers;
354
355 reg_val = ti_bandgap_readl(bgp, tsr->bgap_mask_ctrl);
356 reg_val = (reg_val & tsr->mask_counter_delay_mask) >>
357 __ffs(tsr->mask_counter_delay_mask);
358 switch (reg_val) {
359 case 0:
360 *interval = 0;
361 break;
362 case 1:
363 *interval = 1;
364 break;
365 case 2:
366 *interval = 10;
367 break;
368 case 3:
369 *interval = 100;
370 break;
371 case 4:
372 *interval = 250;
373 break;
374 case 5:
375 *interval = 500;
376 break;
377 default:
378 dev_warn(bgp->dev, "Wrong counter delay value read from register %X",
379 reg_val);
380 }
381}
382
383/**
384 * ti_bandgap_read_update_interval() - read the sensor update interval
385 * @bgp: pointer to bandgap instance
386 * @id: sensor id
387 * @interval: resulting update interval in miliseconds
388 *
389 * Return: 0 on success or the proper error code
390 */
391int ti_bandgap_read_update_interval(struct ti_bandgap *bgp, int id,
392 int *interval)
393{
394 int ret = 0;
395
396 ret = ti_bandgap_validate(bgp, id);
397 if (ret)
398 goto exit;
399
400 if (!TI_BANDGAP_HAS(bgp, COUNTER) &&
401 !TI_BANDGAP_HAS(bgp, COUNTER_DELAY)) {
402 ret = -ENOTSUPP;
403 goto exit;
404 }
405
406 if (TI_BANDGAP_HAS(bgp, COUNTER)) {
407 ti_bandgap_read_counter(bgp, id, interval);
408 goto exit;
409 }
410
411 ti_bandgap_read_counter_delay(bgp, id, interval);
412exit:
413 return ret;
414}
415
416/**
417 * ti_bandgap_write_counter_delay() - set the counter_delay
418 * @bgp: pointer to bandgap instance
419 * @id: sensor id
420 * @interval: desired update interval in miliseconds
421 *
422 * Return: 0 on success or the proper error code
423 */
424static int ti_bandgap_write_counter_delay(struct ti_bandgap *bgp, int id,
425 u32 interval)
426{
427 int rval;
428
429 switch (interval) {
430 case 0: /* Immediate conversion */
431 rval = 0x0;
432 break;
433 case 1: /* Conversion after ever 1ms */
434 rval = 0x1;
435 break;
436 case 10: /* Conversion after ever 10ms */
437 rval = 0x2;
438 break;
439 case 100: /* Conversion after ever 100ms */
440 rval = 0x3;
441 break;
442 case 250: /* Conversion after ever 250ms */
443 rval = 0x4;
444 break;
445 case 500: /* Conversion after ever 500ms */
446 rval = 0x5;
447 break;
448 default:
449 dev_warn(bgp->dev, "Delay %d ms is not supported\n", interval);
450 return -EINVAL;
451 }
452
453 spin_lock(&bgp->lock);
454 RMW_BITS(bgp, id, bgap_mask_ctrl, mask_counter_delay_mask, rval);
455 spin_unlock(&bgp->lock);
456
457 return 0;
458}
459
460/**
461 * ti_bandgap_write_counter() - set the bandgap sensor counter
462 * @bgp: pointer to bandgap instance
463 * @id: sensor id
464 * @interval: desired update interval in miliseconds
465 */
466static void ti_bandgap_write_counter(struct ti_bandgap *bgp, int id,
467 u32 interval)
468{
469 interval = interval * bgp->clk_rate / 1000;
470 spin_lock(&bgp->lock);
471 RMW_BITS(bgp, id, bgap_counter, counter_mask, interval);
472 spin_unlock(&bgp->lock);
473}
474
475/**
476 * ti_bandgap_write_update_interval() - set the update interval
477 * @bgp: pointer to bandgap instance
478 * @id: sensor id
479 * @interval: desired update interval in miliseconds
480 *
481 * Return: 0 on success or the proper error code
482 */
483int ti_bandgap_write_update_interval(struct ti_bandgap *bgp,
484 int id, u32 interval)
485{
486 int ret = ti_bandgap_validate(bgp, id);
487 if (ret)
488 goto exit;
489
490 if (!TI_BANDGAP_HAS(bgp, COUNTER) &&
491 !TI_BANDGAP_HAS(bgp, COUNTER_DELAY)) {
492 ret = -ENOTSUPP;
493 goto exit;
494 }
495
496 if (TI_BANDGAP_HAS(bgp, COUNTER)) {
497 ti_bandgap_write_counter(bgp, id, interval);
498 goto exit;
499 }
500
501 ret = ti_bandgap_write_counter_delay(bgp, id, interval);
502exit:
503 return ret;
504}
505
506/**
507 * ti_bandgap_read_temperature() - report current temperature
508 * @bgp: pointer to bandgap instance
509 * @id: sensor id
510 * @temperature: resulting temperature
511 *
512 * Return: 0 on success or the proper error code
513 */
514int ti_bandgap_read_temperature(struct ti_bandgap *bgp, int id,
515 int *temperature)
516{
517 u32 temp;
518 int ret;
519
520 ret = ti_bandgap_validate(bgp, id);
521 if (ret)
522 return ret;
523
524 if (!TI_BANDGAP_HAS(bgp, MODE_CONFIG)) {
525 ret = ti_bandgap_force_single_read(bgp, id);
526 if (ret)
527 return ret;
528 }
529
530 spin_lock(&bgp->lock);
531 temp = ti_bandgap_read_temp(bgp, id);
532 spin_unlock(&bgp->lock);
533
534 ret = ti_bandgap_adc_to_mcelsius(bgp, temp, &temp);
535 if (ret)
536 return -EIO;
537
538 *temperature = temp;
539
540 return 0;
541}
542
543/**
544 * ti_bandgap_set_sensor_data() - helper function to store thermal
545 * framework related data.
546 * @bgp: pointer to bandgap instance
547 * @id: sensor id
548 * @data: thermal framework related data to be stored
549 *
550 * Return: 0 on success or the proper error code
551 */
552int ti_bandgap_set_sensor_data(struct ti_bandgap *bgp, int id, void *data)
553{
554 int ret = ti_bandgap_validate(bgp, id);
555 if (ret)
556 return ret;
557
558 bgp->regval[id].data = data;
559
560 return 0;
561}
562
563/**
564 * ti_bandgap_get_sensor_data() - helper function to get thermal
565 * framework related data.
566 * @bgp: pointer to bandgap instance
567 * @id: sensor id
568 *
569 * Return: data stored by set function with sensor id on success or NULL
570 */
571void *ti_bandgap_get_sensor_data(struct ti_bandgap *bgp, int id)
572{
573 int ret = ti_bandgap_validate(bgp, id);
574 if (ret)
575 return ERR_PTR(ret);
576
577 return bgp->regval[id].data;
578}
579
580/*** Helper functions used during device initialization ***/
581
582/**
583 * ti_bandgap_force_single_read() - executes 1 single ADC conversion
584 * @bgp: pointer to struct ti_bandgap
585 * @id: sensor id which it is desired to read 1 temperature
586 *
587 * Used to initialize the conversion state machine and set it to a valid
588 * state. Called during device initialization and context restore events.
589 *
590 * Return: 0
591 */
592static int
593ti_bandgap_force_single_read(struct ti_bandgap *bgp, int id)
594{
595 u32 counter = 1000;
596 struct temp_sensor_registers *tsr;
597
598 /* Select single conversion mode */
599 if (TI_BANDGAP_HAS(bgp, MODE_CONFIG))
600 RMW_BITS(bgp, id, bgap_mode_ctrl, mode_ctrl_mask, 0);
601
602 /* Start of Conversion = 1 */
603 RMW_BITS(bgp, id, temp_sensor_ctrl, bgap_soc_mask, 1);
604
605 /* Wait for EOCZ going up */
606 tsr = bgp->conf->sensors[id].registers;
607
608 while (--counter) {
609 if (ti_bandgap_readl(bgp, tsr->temp_sensor_ctrl) &
610 tsr->bgap_eocz_mask)
611 break;
612 }
613
614 /* Start of Conversion = 0 */
615 RMW_BITS(bgp, id, temp_sensor_ctrl, bgap_soc_mask, 0);
616
617 /* Wait for EOCZ going down */
618 counter = 1000;
619 while (--counter) {
620 if (!(ti_bandgap_readl(bgp, tsr->temp_sensor_ctrl) &
621 tsr->bgap_eocz_mask))
622 break;
623 }
624
625 return 0;
626}
627
628/**
629 * ti_bandgap_set_continuous_mode() - One time enabling of continuous mode
630 * @bgp: pointer to struct ti_bandgap
631 *
632 * Call this function only if HAS(MODE_CONFIG) is set. As this driver may
633 * be used for junction temperature monitoring, it is desirable that the
634 * sensors are operational all the time, so that alerts are generated
635 * properly.
636 *
637 * Return: 0
638 */
639static int ti_bandgap_set_continuous_mode(struct ti_bandgap *bgp)
640{
641 int i;
642
643 for (i = 0; i < bgp->conf->sensor_count; i++) {
644 /* Perform a single read just before enabling continuous */
645 ti_bandgap_force_single_read(bgp, i);
646 RMW_BITS(bgp, i, bgap_mode_ctrl, mode_ctrl_mask, 1);
647 }
648
649 return 0;
650}
651
652/**
653 * ti_bandgap_get_trend() - To fetch the temperature trend of a sensor
654 * @bgp: pointer to struct ti_bandgap
655 * @id: id of the individual sensor
656 * @trend: Pointer to trend.
657 *
658 * This function needs to be called to fetch the temperature trend of a
659 * Particular sensor. The function computes the difference in temperature
660 * w.r.t time. For the bandgaps with built in history buffer the temperatures
661 * are read from the buffer and for those without the Buffer -ENOTSUPP is
662 * returned.
663 *
664 * Return: 0 if no error, else return corresponding error. If no
665 * error then the trend value is passed on to trend parameter
666 */
667int ti_bandgap_get_trend(struct ti_bandgap *bgp, int id, int *trend)
668{
669 struct temp_sensor_registers *tsr;
670 u32 temp1, temp2, reg1, reg2;
671 int t1, t2, interval, ret = 0;
672
673 ret = ti_bandgap_validate(bgp, id);
674 if (ret)
675 goto exit;
676
677 if (!TI_BANDGAP_HAS(bgp, HISTORY_BUFFER) ||
678 !TI_BANDGAP_HAS(bgp, FREEZE_BIT)) {
679 ret = -ENOTSUPP;
680 goto exit;
681 }
682
683 spin_lock(&bgp->lock);
684
685 tsr = bgp->conf->sensors[id].registers;
686
687 /* Freeze and read the last 2 valid readings */
688 RMW_BITS(bgp, id, bgap_mask_ctrl, mask_freeze_mask, 1);
689 reg1 = tsr->ctrl_dtemp_1;
690 reg2 = tsr->ctrl_dtemp_2;
691
692 /* read temperature from history buffer */
693 temp1 = ti_bandgap_readl(bgp, reg1);
694 temp1 &= tsr->bgap_dtemp_mask;
695
696 temp2 = ti_bandgap_readl(bgp, reg2);
697 temp2 &= tsr->bgap_dtemp_mask;
698
699 /* Convert from adc values to mCelsius temperature */
700 ret = ti_bandgap_adc_to_mcelsius(bgp, temp1, &t1);
701 if (ret)
702 goto unfreeze;
703
704 ret = ti_bandgap_adc_to_mcelsius(bgp, temp2, &t2);
705 if (ret)
706 goto unfreeze;
707
708 /* Fetch the update interval */
709 ret = ti_bandgap_read_update_interval(bgp, id, &interval);
710 if (ret)
711 goto unfreeze;
712
713 /* Set the interval to 1 ms if bandgap counter delay is not set */
714 if (interval == 0)
715 interval = 1;
716
717 *trend = (t1 - t2) / interval;
718
719 dev_dbg(bgp->dev, "The temperatures are t1 = %d and t2 = %d and trend =%d\n",
720 t1, t2, *trend);
721
722unfreeze:
723 RMW_BITS(bgp, id, bgap_mask_ctrl, mask_freeze_mask, 0);
724 spin_unlock(&bgp->lock);
725exit:
726 return ret;
727}
728
729/**
730 * ti_bandgap_tshut_init() - setup and initialize tshut handling
731 * @bgp: pointer to struct ti_bandgap
732 * @pdev: pointer to device struct platform_device
733 *
734 * Call this function only in case the bandgap features HAS(TSHUT).
735 * In this case, the driver needs to handle the TSHUT signal as an IRQ.
736 * The IRQ is wired as a GPIO, and for this purpose, it is required
737 * to specify which GPIO line is used. TSHUT IRQ is fired anytime
738 * one of the bandgap sensors violates the TSHUT high/hot threshold.
739 * And in that case, the system must go off.
740 *
741 * Return: 0 if no error, else error status
742 */
743static int ti_bandgap_tshut_init(struct ti_bandgap *bgp,
744 struct platform_device *pdev)
745{
746 int gpio_nr = bgp->tshut_gpio;
747 int status;
748
749 /* Request for gpio_86 line */
750 status = gpio_request(gpio_nr, "tshut");
751 if (status < 0) {
752 dev_err(bgp->dev, "Could not request for TSHUT GPIO:%i\n", 86);
753 return status;
754 }
755 status = gpio_direction_input(gpio_nr);
756 if (status) {
757 dev_err(bgp->dev, "Cannot set input TSHUT GPIO %d\n", gpio_nr);
758 return status;
759 }
760
761 status = request_irq(gpio_to_irq(gpio_nr), ti_bandgap_tshut_irq_handler,
762 IRQF_TRIGGER_RISING, "tshut", NULL);
763 if (status) {
764 gpio_free(gpio_nr);
765 dev_err(bgp->dev, "request irq failed for TSHUT");
766 }
767
768 return 0;
769}
770
771/**
772 * ti_bandgap_alert_init() - setup and initialize talert handling
773 * @bgp: pointer to struct ti_bandgap
774 * @pdev: pointer to device struct platform_device
775 *
776 * Call this function only in case the bandgap features HAS(TALERT).
777 * In this case, the driver needs to handle the TALERT signals as an IRQs.
778 * TALERT is a normal IRQ and it is fired any time thresholds (hot or cold)
779 * are violated. In these situation, the driver must reprogram the thresholds,
780 * accordingly to specified policy.
781 *
782 * Return: 0 if no error, else return corresponding error.
783 */
784static int ti_bandgap_talert_init(struct ti_bandgap *bgp,
785 struct platform_device *pdev)
786{
787 int ret;
788
789 bgp->irq = platform_get_irq(pdev, 0);
790 if (bgp->irq < 0) {
791 dev_err(&pdev->dev, "get_irq failed\n");
792 return bgp->irq;
793 }
794 ret = request_threaded_irq(bgp->irq, NULL,
795 ti_bandgap_talert_irq_handler,
796 IRQF_TRIGGER_HIGH | IRQF_ONESHOT,
797 "talert", bgp);
798 if (ret) {
799 dev_err(&pdev->dev, "Request threaded irq failed.\n");
800 return ret;
801 }
802
803 return 0;
804}
805
806static const struct of_device_id of_ti_bandgap_match[];
807/**
808 * ti_bandgap_build() - parse DT and setup a struct ti_bandgap
809 * @pdev: pointer to device struct platform_device
810 *
811 * Used to read the device tree properties accordingly to the bandgap
812 * matching version. Based on bandgap version and its capabilities it
813 * will build a struct ti_bandgap out of the required DT entries.
814 *
815 * Return: valid bandgap structure if successful, else returns ERR_PTR
816 * return value must be verified with IS_ERR.
817 */
818static struct ti_bandgap *ti_bandgap_build(struct platform_device *pdev)
819{
820 struct device_node *node = pdev->dev.of_node;
821 const struct of_device_id *of_id;
822 struct ti_bandgap *bgp;
823 struct resource *res;
824 int i;
825
826 /* just for the sake */
827 if (!node) {
828 dev_err(&pdev->dev, "no platform information available\n");
829 return ERR_PTR(-EINVAL);
830 }
831
832 bgp = devm_kzalloc(&pdev->dev, sizeof(*bgp), GFP_KERNEL);
833 if (!bgp)
834 return ERR_PTR(-ENOMEM);
835
836 of_id = of_match_device(of_ti_bandgap_match, &pdev->dev);
837 if (of_id)
838 bgp->conf = of_id->data;
839
840 /* register shadow for context save and restore */
841 bgp->regval = devm_kcalloc(&pdev->dev, bgp->conf->sensor_count,
842 sizeof(*bgp->regval), GFP_KERNEL);
843 if (!bgp->regval)
844 return ERR_PTR(-ENOMEM);
845
846 i = 0;
847 do {
848 void __iomem *chunk;
849
850 res = platform_get_resource(pdev, IORESOURCE_MEM, i);
851 if (!res)
852 break;
853 chunk = devm_ioremap_resource(&pdev->dev, res);
854 if (i == 0)
855 bgp->base = chunk;
856 if (IS_ERR(chunk))
857 return ERR_CAST(chunk);
858
859 i++;
860 } while (res);
861
862 if (TI_BANDGAP_HAS(bgp, TSHUT)) {
863 bgp->tshut_gpio = of_get_gpio(node, 0);
864 if (!gpio_is_valid(bgp->tshut_gpio)) {
865 dev_err(&pdev->dev, "invalid gpio for tshut (%d)\n",
866 bgp->tshut_gpio);
867 return ERR_PTR(-EINVAL);
868 }
869 }
870
871 return bgp;
872}
873
874/*** Device driver call backs ***/
875
876static
877int ti_bandgap_probe(struct platform_device *pdev)
878{
879 struct ti_bandgap *bgp;
880 int clk_rate, ret, i;
881
882 bgp = ti_bandgap_build(pdev);
883 if (IS_ERR(bgp)) {
884 dev_err(&pdev->dev, "failed to fetch platform data\n");
885 return PTR_ERR(bgp);
886 }
887 bgp->dev = &pdev->dev;
888
889 if (TI_BANDGAP_HAS(bgp, UNRELIABLE))
890 dev_warn(&pdev->dev,
891 "This OMAP thermal sensor is unreliable. You've been warned\n");
892
893 if (TI_BANDGAP_HAS(bgp, TSHUT)) {
894 ret = ti_bandgap_tshut_init(bgp, pdev);
895 if (ret) {
896 dev_err(&pdev->dev,
897 "failed to initialize system tshut IRQ\n");
898 return ret;
899 }
900 }
901
902 bgp->fclock = clk_get(NULL, bgp->conf->fclock_name);
903 if (IS_ERR(bgp->fclock)) {
904 dev_err(&pdev->dev, "failed to request fclock reference\n");
905 ret = PTR_ERR(bgp->fclock);
906 goto free_irqs;
907 }
908
909 bgp->div_clk = clk_get(NULL, bgp->conf->div_ck_name);
910 if (IS_ERR(bgp->div_clk)) {
911 dev_err(&pdev->dev, "failed to request div_ts_ck clock ref\n");
912 ret = PTR_ERR(bgp->div_clk);
913 goto put_fclock;
914 }
915
916 for (i = 0; i < bgp->conf->sensor_count; i++) {
917 struct temp_sensor_registers *tsr;
918 u32 val;
919
920 tsr = bgp->conf->sensors[i].registers;
921 /*
922 * check if the efuse has a non-zero value if not
923 * it is an untrimmed sample and the temperatures
924 * may not be accurate
925 */
926 val = ti_bandgap_readl(bgp, tsr->bgap_efuse);
927 if (!val)
928 dev_info(&pdev->dev,
929 "Non-trimmed BGAP, Temp not accurate\n");
930 }
931
932 clk_rate = clk_round_rate(bgp->div_clk,
933 bgp->conf->sensors[0].ts_data->max_freq);
934 if (clk_rate < bgp->conf->sensors[0].ts_data->min_freq ||
935 clk_rate <= 0) {
936 ret = -ENODEV;
937 dev_err(&pdev->dev, "wrong clock rate (%d)\n", clk_rate);
938 goto put_clks;
939 }
940
941 ret = clk_set_rate(bgp->div_clk, clk_rate);
942 if (ret)
943 dev_err(&pdev->dev, "Cannot re-set clock rate. Continuing\n");
944
945 bgp->clk_rate = clk_rate;
946 if (TI_BANDGAP_HAS(bgp, CLK_CTRL))
947 clk_prepare_enable(bgp->fclock);
948
949
950 spin_lock_init(&bgp->lock);
951 bgp->dev = &pdev->dev;
952 platform_set_drvdata(pdev, bgp);
953
954 ti_bandgap_power(bgp, true);
955
956 /* Set default counter to 1 for now */
957 if (TI_BANDGAP_HAS(bgp, COUNTER))
958 for (i = 0; i < bgp->conf->sensor_count; i++)
959 RMW_BITS(bgp, i, bgap_counter, counter_mask, 1);
960
961 /* Set default thresholds for alert and shutdown */
962 for (i = 0; i < bgp->conf->sensor_count; i++) {
963 struct temp_sensor_data *ts_data;
964
965 ts_data = bgp->conf->sensors[i].ts_data;
966
967 if (TI_BANDGAP_HAS(bgp, TALERT)) {
968 /* Set initial Talert thresholds */
969 RMW_BITS(bgp, i, bgap_threshold,
970 threshold_tcold_mask, ts_data->t_cold);
971 RMW_BITS(bgp, i, bgap_threshold,
972 threshold_thot_mask, ts_data->t_hot);
973 /* Enable the alert events */
974 RMW_BITS(bgp, i, bgap_mask_ctrl, mask_hot_mask, 1);
975 RMW_BITS(bgp, i, bgap_mask_ctrl, mask_cold_mask, 1);
976 }
977
978 if (TI_BANDGAP_HAS(bgp, TSHUT_CONFIG)) {
979 /* Set initial Tshut thresholds */
980 RMW_BITS(bgp, i, tshut_threshold,
981 tshut_hot_mask, ts_data->tshut_hot);
982 RMW_BITS(bgp, i, tshut_threshold,
983 tshut_cold_mask, ts_data->tshut_cold);
984 }
985 }
986
987 if (TI_BANDGAP_HAS(bgp, MODE_CONFIG))
988 ti_bandgap_set_continuous_mode(bgp);
989
990 /* Set .250 seconds time as default counter */
991 if (TI_BANDGAP_HAS(bgp, COUNTER))
992 for (i = 0; i < bgp->conf->sensor_count; i++)
993 RMW_BITS(bgp, i, bgap_counter, counter_mask,
994 bgp->clk_rate / 4);
995
996 /* Every thing is good? Then expose the sensors */
997 for (i = 0; i < bgp->conf->sensor_count; i++) {
998 char *domain;
999
1000 if (bgp->conf->sensors[i].register_cooling) {
1001 ret = bgp->conf->sensors[i].register_cooling(bgp, i);
1002 if (ret)
1003 goto remove_sensors;
1004 }
1005
1006 if (bgp->conf->expose_sensor) {
1007 domain = bgp->conf->sensors[i].domain;
1008 ret = bgp->conf->expose_sensor(bgp, i, domain);
1009 if (ret)
1010 goto remove_last_cooling;
1011 }
1012 }
1013
1014 /*
1015 * Enable the Interrupts once everything is set. Otherwise irq handler
1016 * might be called as soon as it is enabled where as rest of framework
1017 * is still getting initialised.
1018 */
1019 if (TI_BANDGAP_HAS(bgp, TALERT)) {
1020 ret = ti_bandgap_talert_init(bgp, pdev);
1021 if (ret) {
1022 dev_err(&pdev->dev, "failed to initialize Talert IRQ\n");
1023 i = bgp->conf->sensor_count;
1024 goto disable_clk;
1025 }
1026 }
1027
1028 return 0;
1029
1030remove_last_cooling:
1031 if (bgp->conf->sensors[i].unregister_cooling)
1032 bgp->conf->sensors[i].unregister_cooling(bgp, i);
1033remove_sensors:
1034 for (i--; i >= 0; i--) {
1035 if (bgp->conf->sensors[i].unregister_cooling)
1036 bgp->conf->sensors[i].unregister_cooling(bgp, i);
1037 if (bgp->conf->remove_sensor)
1038 bgp->conf->remove_sensor(bgp, i);
1039 }
1040 ti_bandgap_power(bgp, false);
1041disable_clk:
1042 if (TI_BANDGAP_HAS(bgp, CLK_CTRL))
1043 clk_disable_unprepare(bgp->fclock);
1044put_clks:
1045 clk_put(bgp->div_clk);
1046put_fclock:
1047 clk_put(bgp->fclock);
1048free_irqs:
1049 if (TI_BANDGAP_HAS(bgp, TSHUT)) {
1050 free_irq(gpio_to_irq(bgp->tshut_gpio), NULL);
1051 gpio_free(bgp->tshut_gpio);
1052 }
1053
1054 return ret;
1055}
1056
1057static
1058int ti_bandgap_remove(struct platform_device *pdev)
1059{
1060 struct ti_bandgap *bgp = platform_get_drvdata(pdev);
1061 int i;
1062
1063 /* First thing is to remove sensor interfaces */
1064 for (i = 0; i < bgp->conf->sensor_count; i++) {
1065 if (bgp->conf->sensors[i].unregister_cooling)
1066 bgp->conf->sensors[i].unregister_cooling(bgp, i);
1067
1068 if (bgp->conf->remove_sensor)
1069 bgp->conf->remove_sensor(bgp, i);
1070 }
1071
1072 ti_bandgap_power(bgp, false);
1073
1074 if (TI_BANDGAP_HAS(bgp, CLK_CTRL))
1075 clk_disable_unprepare(bgp->fclock);
1076 clk_put(bgp->fclock);
1077 clk_put(bgp->div_clk);
1078
1079 if (TI_BANDGAP_HAS(bgp, TALERT))
1080 free_irq(bgp->irq, bgp);
1081
1082 if (TI_BANDGAP_HAS(bgp, TSHUT)) {
1083 free_irq(gpio_to_irq(bgp->tshut_gpio), NULL);
1084 gpio_free(bgp->tshut_gpio);
1085 }
1086
1087 return 0;
1088}
1089
1090#ifdef CONFIG_PM_SLEEP
1091static int ti_bandgap_save_ctxt(struct ti_bandgap *bgp)
1092{
1093 int i;
1094
1095 for (i = 0; i < bgp->conf->sensor_count; i++) {
1096 struct temp_sensor_registers *tsr;
1097 struct temp_sensor_regval *rval;
1098
1099 rval = &bgp->regval[i];
1100 tsr = bgp->conf->sensors[i].registers;
1101
1102 if (TI_BANDGAP_HAS(bgp, MODE_CONFIG))
1103 rval->bg_mode_ctrl = ti_bandgap_readl(bgp,
1104 tsr->bgap_mode_ctrl);
1105 if (TI_BANDGAP_HAS(bgp, COUNTER))
1106 rval->bg_counter = ti_bandgap_readl(bgp,
1107 tsr->bgap_counter);
1108 if (TI_BANDGAP_HAS(bgp, TALERT)) {
1109 rval->bg_threshold = ti_bandgap_readl(bgp,
1110 tsr->bgap_threshold);
1111 rval->bg_ctrl = ti_bandgap_readl(bgp,
1112 tsr->bgap_mask_ctrl);
1113 }
1114
1115 if (TI_BANDGAP_HAS(bgp, TSHUT_CONFIG))
1116 rval->tshut_threshold = ti_bandgap_readl(bgp,
1117 tsr->tshut_threshold);
1118 }
1119
1120 return 0;
1121}
1122
1123static int ti_bandgap_restore_ctxt(struct ti_bandgap *bgp)
1124{
1125 int i;
1126
1127 for (i = 0; i < bgp->conf->sensor_count; i++) {
1128 struct temp_sensor_registers *tsr;
1129 struct temp_sensor_regval *rval;
1130 u32 val = 0;
1131
1132 rval = &bgp->regval[i];
1133 tsr = bgp->conf->sensors[i].registers;
1134
1135 if (TI_BANDGAP_HAS(bgp, COUNTER))
1136 val = ti_bandgap_readl(bgp, tsr->bgap_counter);
1137
1138 if (TI_BANDGAP_HAS(bgp, TSHUT_CONFIG))
1139 ti_bandgap_writel(bgp, rval->tshut_threshold,
1140 tsr->tshut_threshold);
1141 /* Force immediate temperature measurement and update
1142 * of the DTEMP field
1143 */
1144 ti_bandgap_force_single_read(bgp, i);
1145
1146 if (TI_BANDGAP_HAS(bgp, COUNTER))
1147 ti_bandgap_writel(bgp, rval->bg_counter,
1148 tsr->bgap_counter);
1149 if (TI_BANDGAP_HAS(bgp, MODE_CONFIG))
1150 ti_bandgap_writel(bgp, rval->bg_mode_ctrl,
1151 tsr->bgap_mode_ctrl);
1152 if (TI_BANDGAP_HAS(bgp, TALERT)) {
1153 ti_bandgap_writel(bgp, rval->bg_threshold,
1154 tsr->bgap_threshold);
1155 ti_bandgap_writel(bgp, rval->bg_ctrl,
1156 tsr->bgap_mask_ctrl);
1157 }
1158 }
1159
1160 return 0;
1161}
1162
1163static int ti_bandgap_suspend(struct device *dev)
1164{
1165 struct ti_bandgap *bgp = dev_get_drvdata(dev);
1166 int err;
1167
1168 err = ti_bandgap_save_ctxt(bgp);
1169 ti_bandgap_power(bgp, false);
1170
1171 if (TI_BANDGAP_HAS(bgp, CLK_CTRL))
1172 clk_disable_unprepare(bgp->fclock);
1173
1174 return err;
1175}
1176
1177static int ti_bandgap_resume(struct device *dev)
1178{
1179 struct ti_bandgap *bgp = dev_get_drvdata(dev);
1180
1181 if (TI_BANDGAP_HAS(bgp, CLK_CTRL))
1182 clk_prepare_enable(bgp->fclock);
1183
1184 ti_bandgap_power(bgp, true);
1185
1186 return ti_bandgap_restore_ctxt(bgp);
1187}
1188static SIMPLE_DEV_PM_OPS(ti_bandgap_dev_pm_ops, ti_bandgap_suspend,
1189 ti_bandgap_resume);
1190
1191#define DEV_PM_OPS (&ti_bandgap_dev_pm_ops)
1192#else
1193#define DEV_PM_OPS NULL
1194#endif
1195
1196static const struct of_device_id of_ti_bandgap_match[] = {
1197#ifdef CONFIG_OMAP3_THERMAL
1198 {
1199 .compatible = "ti,omap34xx-bandgap",
1200 .data = (void *)&omap34xx_data,
1201 },
1202 {
1203 .compatible = "ti,omap36xx-bandgap",
1204 .data = (void *)&omap36xx_data,
1205 },
1206#endif
1207#ifdef CONFIG_OMAP4_THERMAL
1208 {
1209 .compatible = "ti,omap4430-bandgap",
1210 .data = (void *)&omap4430_data,
1211 },
1212 {
1213 .compatible = "ti,omap4460-bandgap",
1214 .data = (void *)&omap4460_data,
1215 },
1216 {
1217 .compatible = "ti,omap4470-bandgap",
1218 .data = (void *)&omap4470_data,
1219 },
1220#endif
1221#ifdef CONFIG_OMAP5_THERMAL
1222 {
1223 .compatible = "ti,omap5430-bandgap",
1224 .data = (void *)&omap5430_data,
1225 },
1226#endif
1227#ifdef CONFIG_DRA752_THERMAL
1228 {
1229 .compatible = "ti,dra752-bandgap",
1230 .data = (void *)&dra752_data,
1231 },
1232#endif
1233 /* Sentinel */
1234 { },
1235};
1236MODULE_DEVICE_TABLE(of, of_ti_bandgap_match);
1237
1238static struct platform_driver ti_bandgap_sensor_driver = {
1239 .probe = ti_bandgap_probe,
1240 .remove = ti_bandgap_remove,
1241 .driver = {
1242 .name = "ti-soc-thermal",
1243 .pm = DEV_PM_OPS,
1244 .of_match_table = of_ti_bandgap_match,
1245 },
1246};
1247
1248module_platform_driver(ti_bandgap_sensor_driver);
1249
1250MODULE_DESCRIPTION("OMAP4+ bandgap temperature sensor driver");
1251MODULE_LICENSE("GPL v2");
1252MODULE_ALIAS("platform:ti-soc-thermal");
1253MODULE_AUTHOR("Texas Instrument Inc.");