Linux Audio

Check our new training course

Loading...
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * devfreq_cooling: Thermal cooling device implementation for devices using
  4 *                  devfreq
  5 *
  6 * Copyright (C) 2014-2015 ARM Limited
  7 *
 
 
 
 
 
 
 
 
 
  8 * TODO:
  9 *    - If OPPs are added or removed after devfreq cooling has
 10 *      registered, the devfreq cooling won't react to it.
 11 */
 12
 13#include <linux/devfreq.h>
 14#include <linux/devfreq_cooling.h>
 15#include <linux/energy_model.h>
 16#include <linux/export.h>
 
 17#include <linux/slab.h>
 18#include <linux/pm_opp.h>
 19#include <linux/pm_qos.h>
 20#include <linux/thermal.h>
 21#include <linux/units.h>
 22
 23#include "thermal_trace.h"
 
 
 24
 25#define SCALE_ERROR_MITIGATION	100
 26
 27/**
 28 * struct devfreq_cooling_device - Devfreq cooling device
 
 29 *		devfreq_cooling_device registered.
 30 * @cdev:	Pointer to associated thermal cooling device.
 31 * @cooling_ops: devfreq callbacks to thermal cooling device ops
 32 * @devfreq:	Pointer to associated devfreq device.
 33 * @cooling_state:	Current cooling state.
 
 
 
 34 * @freq_table:	Pointer to a table with the frequencies sorted in descending
 35 *		order.  You can index the table by cooling device state
 36 * @max_state:	It is the last index, that is, one less than the number of the
 37 *		OPPs
 38 * @power_ops:	Pointer to devfreq_cooling_power, a more precised model.
 39 * @res_util:	Resource utilization scaling factor for the power.
 40 *		It is multiplied by 100 to minimize the error. It is used
 41 *		for estimation of the power budget instead of using
 42 *		'utilization' (which is	'busy_time' / 'total_time').
 43 *		The 'res_util' range is from 100 to power * 100	for the
 44 *		corresponding 'state'.
 45 * @capped_state:	index to cooling state with in dynamic power budget
 46 * @req_max_freq:	PM QoS request for limiting the maximum frequency
 47 *			of the devfreq device.
 48 * @em_pd:		Energy Model for the associated Devfreq device
 49 */
 50struct devfreq_cooling_device {
 
 51	struct thermal_cooling_device *cdev;
 52	struct thermal_cooling_device_ops cooling_ops;
 53	struct devfreq *devfreq;
 54	unsigned long cooling_state;
 
 55	u32 *freq_table;
 56	size_t max_state;
 57	struct devfreq_cooling_power *power_ops;
 58	u32 res_util;
 59	int capped_state;
 60	struct dev_pm_qos_request req_max_freq;
 61	struct em_perf_domain *em_pd;
 62};
 63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 64static int devfreq_cooling_get_max_state(struct thermal_cooling_device *cdev,
 65					 unsigned long *state)
 66{
 67	struct devfreq_cooling_device *dfc = cdev->devdata;
 68
 69	*state = dfc->max_state;
 70
 71	return 0;
 72}
 73
 74static int devfreq_cooling_get_cur_state(struct thermal_cooling_device *cdev,
 75					 unsigned long *state)
 76{
 77	struct devfreq_cooling_device *dfc = cdev->devdata;
 78
 79	*state = dfc->cooling_state;
 80
 81	return 0;
 82}
 83
 84static int devfreq_cooling_set_cur_state(struct thermal_cooling_device *cdev,
 85					 unsigned long state)
 86{
 87	struct devfreq_cooling_device *dfc = cdev->devdata;
 88	struct devfreq *df = dfc->devfreq;
 89	struct device *dev = df->dev.parent;
 90	struct em_perf_state *table;
 91	unsigned long freq;
 92	int perf_idx;
 93
 94	if (state == dfc->cooling_state)
 95		return 0;
 96
 97	dev_dbg(dev, "Setting cooling state %lu\n", state);
 98
 99	if (state > dfc->max_state)
100		return -EINVAL;
101
102	if (dfc->em_pd) {
103		perf_idx = dfc->max_state - state;
104
105		rcu_read_lock();
106		table = em_perf_state_from_pd(dfc->em_pd);
107		freq = table[perf_idx].frequency * 1000;
108		rcu_read_unlock();
109	} else {
110		freq = dfc->freq_table[state];
111	}
112
113	dev_pm_qos_update_request(&dfc->req_max_freq,
114				  DIV_ROUND_UP(freq, HZ_PER_KHZ));
115
116	dfc->cooling_state = state;
117
118	return 0;
119}
120
121/**
122 * get_perf_idx() - get the performance index corresponding to a frequency
123 * @em_pd:	Pointer to device's Energy Model
124 * @freq:	frequency in kHz
125 *
126 * Return: the performance index associated with the @freq, or
127 * -EINVAL if it wasn't found.
128 */
129static int get_perf_idx(struct em_perf_domain *em_pd, unsigned long freq)
130{
131	struct em_perf_state *table;
132	int i, idx = -EINVAL;
133
134	rcu_read_lock();
135	table = em_perf_state_from_pd(em_pd);
136	for (i = 0; i < em_pd->nr_perf_states; i++) {
137		if (table[i].frequency != freq)
138			continue;
139
140		idx = i;
141		break;
 
142	}
143	rcu_read_unlock();
144
145	return idx;
146}
147
148static unsigned long get_voltage(struct devfreq *df, unsigned long freq)
149{
150	struct device *dev = df->dev.parent;
151	unsigned long voltage;
152	struct dev_pm_opp *opp;
153
154	opp = dev_pm_opp_find_freq_exact(dev, freq, true);
155	if (PTR_ERR(opp) == -ERANGE)
156		opp = dev_pm_opp_find_freq_exact(dev, freq, false);
157
158	if (IS_ERR(opp)) {
159		dev_err_ratelimited(dev, "Failed to find OPP for frequency %lu: %ld\n",
160				    freq, PTR_ERR(opp));
161		return 0;
162	}
163
164	voltage = dev_pm_opp_get_voltage(opp) / 1000; /* mV */
165	dev_pm_opp_put(opp);
166
167	if (voltage == 0) {
168		dev_err_ratelimited(dev,
169				    "Failed to get voltage for frequency %lu\n",
170				    freq);
171	}
172
173	return voltage;
174}
175
176static void _normalize_load(struct devfreq_dev_status *status)
 
 
 
 
 
 
 
 
 
 
 
177{
178	if (status->total_time > 0xfffff) {
179		status->total_time >>= 10;
180		status->busy_time >>= 10;
181	}
 
182
183	status->busy_time <<= 10;
184	status->busy_time /= status->total_time ? : 1;
185
186	status->busy_time = status->busy_time ? : 1;
187	status->total_time = 1024;
 
 
188}
189
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
190static int devfreq_cooling_get_requested_power(struct thermal_cooling_device *cdev,
 
191					       u32 *power)
192{
193	struct devfreq_cooling_device *dfc = cdev->devdata;
194	struct devfreq *df = dfc->devfreq;
195	struct devfreq_dev_status status;
196	struct em_perf_state *table;
197	unsigned long state;
198	unsigned long freq;
199	unsigned long voltage;
200	int res, perf_idx;
201
202	mutex_lock(&df->lock);
203	status = df->last_status;
204	mutex_unlock(&df->lock);
205
206	freq = status.current_frequency;
 
 
 
 
207
208	if (dfc->power_ops && dfc->power_ops->get_real_power) {
209		voltage = get_voltage(df, freq);
210		if (voltage == 0) {
211			res = -EINVAL;
212			goto fail;
213		}
214
215		res = dfc->power_ops->get_real_power(df, power, freq, voltage);
216		if (!res) {
217			state = dfc->max_state - dfc->capped_state;
218
219			/* Convert EM power into milli-Watts first */
220			rcu_read_lock();
221			table = em_perf_state_from_pd(dfc->em_pd);
222			dfc->res_util = table[state].power;
223			rcu_read_unlock();
224
225			dfc->res_util /= MICROWATT_PER_MILLIWATT;
226
227			dfc->res_util *= SCALE_ERROR_MITIGATION;
228
229			if (*power > 1)
230				dfc->res_util /= *power;
231		} else {
232			goto fail;
233		}
234	} else {
235		/* Energy Model frequencies are in kHz */
236		perf_idx = get_perf_idx(dfc->em_pd, freq / 1000);
237		if (perf_idx < 0) {
238			res = -EAGAIN;
239			goto fail;
240		}
241
242		_normalize_load(&status);
243
244		/* Convert EM power into milli-Watts first */
245		rcu_read_lock();
246		table = em_perf_state_from_pd(dfc->em_pd);
247		*power = table[perf_idx].power;
248		rcu_read_unlock();
249
250		*power /= MICROWATT_PER_MILLIWATT;
251		/* Scale power for utilization */
252		*power *= status.busy_time;
253		*power >>= 10;
254	}
255
256	trace_thermal_power_devfreq_get_power(cdev, &status, freq, *power);
 
257
258	return 0;
259fail:
260	/* It is safe to set max in this case */
261	dfc->res_util = SCALE_ERROR_MITIGATION;
262	return res;
263}
264
265static int devfreq_cooling_state2power(struct thermal_cooling_device *cdev,
266				       unsigned long state, u32 *power)
 
 
267{
268	struct devfreq_cooling_device *dfc = cdev->devdata;
269	struct em_perf_state *table;
270	int perf_idx;
271
272	if (state > dfc->max_state)
273		return -EINVAL;
274
275	perf_idx = dfc->max_state - state;
276
277	rcu_read_lock();
278	table = em_perf_state_from_pd(dfc->em_pd);
279	*power = table[perf_idx].power;
280	rcu_read_unlock();
281
282	*power /= MICROWATT_PER_MILLIWATT;
283
 
284	return 0;
285}
286
287static int devfreq_cooling_power2state(struct thermal_cooling_device *cdev,
 
288				       u32 power, unsigned long *state)
289{
290	struct devfreq_cooling_device *dfc = cdev->devdata;
291	struct devfreq *df = dfc->devfreq;
292	struct devfreq_dev_status status;
293	unsigned long freq, em_power_mw;
294	struct em_perf_state *table;
 
 
295	s32 est_power;
296	int i;
297
298	mutex_lock(&df->lock);
299	status = df->last_status;
300	mutex_unlock(&df->lock);
301
302	freq = status.current_frequency;
303
304	if (dfc->power_ops && dfc->power_ops->get_real_power) {
305		/* Scale for resource utilization */
306		est_power = power * dfc->res_util;
307		est_power /= SCALE_ERROR_MITIGATION;
308	} else {
 
 
 
 
 
309		/* Scale dynamic power for utilization */
310		_normalize_load(&status);
311		est_power = power << 10;
312		est_power /= status.busy_time;
313	}
314
315	/*
316	 * Find the first cooling state that is within the power
317	 * budget. The EM power table is sorted ascending.
318	 */
319	rcu_read_lock();
320	table = em_perf_state_from_pd(dfc->em_pd);
321	for (i = dfc->max_state; i > 0; i--) {
322		/* Convert EM power to milli-Watts to make safe comparison */
323		em_power_mw = table[i].power;
324		em_power_mw /= MICROWATT_PER_MILLIWATT;
325		if (est_power >= em_power_mw)
326			break;
327	}
328	rcu_read_unlock();
329
330	*state = dfc->max_state - i;
331	dfc->capped_state = *state;
332
 
 
333	trace_thermal_power_devfreq_limit(cdev, freq, *state, power);
334	return 0;
335}
336
 
 
 
 
 
 
337/**
338 * devfreq_cooling_gen_tables() - Generate frequency table.
339 * @dfc:	Pointer to devfreq cooling device.
340 * @num_opps:	Number of OPPs
341 *
342 * Generate frequency table which holds the frequencies in descending
343 * order. That way its indexed by cooling device state. This is for
344 * compatibility with drivers which do not register Energy Model.
 
 
 
 
 
 
 
345 *
346 * Return: 0 on success, negative error code on failure.
347 */
348static int devfreq_cooling_gen_tables(struct devfreq_cooling_device *dfc,
349				      int num_opps)
350{
351	struct devfreq *df = dfc->devfreq;
352	struct device *dev = df->dev.parent;
 
353	unsigned long freq;
 
 
354	int i;
355
356	dfc->freq_table = kcalloc(num_opps, sizeof(*dfc->freq_table),
 
 
 
 
 
 
 
 
 
357			     GFP_KERNEL);
358	if (!dfc->freq_table)
359		return -ENOMEM;
 
 
360
361	for (i = 0, freq = ULONG_MAX; i < num_opps; i++, freq--) {
 
362		struct dev_pm_opp *opp;
363
364		opp = dev_pm_opp_find_freq_floor(dev, &freq);
365		if (IS_ERR(opp)) {
366			kfree(dfc->freq_table);
367			return PTR_ERR(opp);
368		}
369
 
370		dev_pm_opp_put(opp);
371		dfc->freq_table[i] = freq;
 
 
 
 
 
 
 
 
 
 
 
 
 
372	}
373
 
 
 
 
 
 
374	return 0;
 
 
 
 
 
 
 
375}
376
377/**
378 * of_devfreq_cooling_register_power() - Register devfreq cooling device,
379 *                                      with OF and power information.
380 * @np:	Pointer to OF device_node.
381 * @df:	Pointer to devfreq device.
382 * @dfc_power:	Pointer to devfreq_cooling_power.
383 *
384 * Register a devfreq cooling device.  The available OPPs must be
385 * registered on the device.
386 *
387 * If @dfc_power is provided, the cooling device is registered with the
388 * power extensions.  For the power extensions to work correctly,
389 * devfreq should use the simple_ondemand governor, other governors
390 * are not currently supported.
391 */
392struct thermal_cooling_device *
393of_devfreq_cooling_register_power(struct device_node *np, struct devfreq *df,
394				  struct devfreq_cooling_power *dfc_power)
395{
396	struct thermal_cooling_device *cdev;
397	struct device *dev = df->dev.parent;
398	struct devfreq_cooling_device *dfc;
399	struct em_perf_domain *em;
400	struct thermal_cooling_device_ops *ops;
401	char *name;
402	int err, num_opps;
403
404
405	dfc = kzalloc(sizeof(*dfc), GFP_KERNEL);
406	if (!dfc)
407		return ERR_PTR(-ENOMEM);
408
409	dfc->devfreq = df;
410
411	ops = &dfc->cooling_ops;
412	ops->get_max_state = devfreq_cooling_get_max_state;
413	ops->get_cur_state = devfreq_cooling_get_cur_state;
414	ops->set_cur_state = devfreq_cooling_set_cur_state;
415
416	em = em_pd_get(dev);
417	if (em && !em_is_artificial(em)) {
418		dfc->em_pd = em;
419		ops->get_requested_power =
420			devfreq_cooling_get_requested_power;
421		ops->state2power = devfreq_cooling_state2power;
422		ops->power2state = devfreq_cooling_power2state;
423
424		dfc->power_ops = dfc_power;
425
426		num_opps = em_pd_nr_perf_states(dfc->em_pd);
427	} else {
428		/* Backward compatibility for drivers which do not use IPA */
429		dev_dbg(dev, "missing proper EM for cooling device\n");
430
431		num_opps = dev_pm_opp_get_opp_count(dev);
432
433		err = devfreq_cooling_gen_tables(dfc, num_opps);
434		if (err)
435			goto free_dfc;
436	}
437
438	if (num_opps <= 0) {
439		err = -EINVAL;
440		goto free_dfc;
441	}
442
443	/* max_state is an index, not a counter */
444	dfc->max_state = num_opps - 1;
445
446	err = dev_pm_qos_add_request(dev, &dfc->req_max_freq,
447				     DEV_PM_QOS_MAX_FREQUENCY,
448				     PM_QOS_MAX_FREQUENCY_DEFAULT_VALUE);
449	if (err < 0)
450		goto free_table;
451
452	err = -ENOMEM;
453	name = kasprintf(GFP_KERNEL, "devfreq-%s", dev_name(dev));
454	if (!name)
455		goto remove_qos_req;
456
457	cdev = thermal_of_cooling_device_register(np, name, dfc, ops);
458	kfree(name);
459
 
 
460	if (IS_ERR(cdev)) {
461		err = PTR_ERR(cdev);
462		dev_err(dev,
463			"Failed to register devfreq cooling device (%d)\n",
464			err);
465		goto remove_qos_req;
466	}
467
468	dfc->cdev = cdev;
469
470	return cdev;
471
472remove_qos_req:
473	dev_pm_qos_remove_request(&dfc->req_max_freq);
474free_table:
 
475	kfree(dfc->freq_table);
476free_dfc:
477	kfree(dfc);
478
479	return ERR_PTR(err);
480}
481EXPORT_SYMBOL_GPL(of_devfreq_cooling_register_power);
482
483/**
484 * of_devfreq_cooling_register() - Register devfreq cooling device,
485 *                                with OF information.
486 * @np: Pointer to OF device_node.
487 * @df: Pointer to devfreq device.
488 */
489struct thermal_cooling_device *
490of_devfreq_cooling_register(struct device_node *np, struct devfreq *df)
491{
492	return of_devfreq_cooling_register_power(np, df, NULL);
493}
494EXPORT_SYMBOL_GPL(of_devfreq_cooling_register);
495
496/**
497 * devfreq_cooling_register() - Register devfreq cooling device.
498 * @df: Pointer to devfreq device.
499 */
500struct thermal_cooling_device *devfreq_cooling_register(struct devfreq *df)
501{
502	return of_devfreq_cooling_register(NULL, df);
503}
504EXPORT_SYMBOL_GPL(devfreq_cooling_register);
505
506/**
507 * devfreq_cooling_em_register() - Register devfreq cooling device with
508 *		power information and automatically register Energy Model (EM)
509 * @df:		Pointer to devfreq device.
510 * @dfc_power:	Pointer to devfreq_cooling_power.
511 *
512 * Register a devfreq cooling device and automatically register EM. The
513 * available OPPs must be registered for the device.
514 *
515 * If @dfc_power is provided, the cooling device is registered with the
516 * power extensions. It is using the simple Energy Model which requires
517 * "dynamic-power-coefficient" a devicetree property. To not break drivers
518 * which miss that DT property, the function won't bail out when the EM
519 * registration failed. The cooling device will be registered if everything
520 * else is OK.
521 */
522struct thermal_cooling_device *
523devfreq_cooling_em_register(struct devfreq *df,
524			    struct devfreq_cooling_power *dfc_power)
525{
526	struct thermal_cooling_device *cdev;
527	struct device *dev;
528	int ret;
529
530	if (IS_ERR_OR_NULL(df))
531		return ERR_PTR(-EINVAL);
532
533	dev = df->dev.parent;
534
535	ret = dev_pm_opp_of_register_em(dev, NULL);
536	if (ret)
537		dev_dbg(dev, "Unable to register EM for devfreq cooling device (%d)\n",
538			ret);
539
540	cdev = of_devfreq_cooling_register_power(dev->of_node, df, dfc_power);
541
542	if (IS_ERR_OR_NULL(cdev))
543		em_dev_unregister_perf_domain(dev);
544
545	return cdev;
546}
547EXPORT_SYMBOL_GPL(devfreq_cooling_em_register);
548
549/**
550 * devfreq_cooling_unregister() - Unregister devfreq cooling device.
551 * @cdev: Pointer to devfreq cooling device to unregister.
552 *
553 * Unregisters devfreq cooling device and related Energy Model if it was
554 * present.
555 */
556void devfreq_cooling_unregister(struct thermal_cooling_device *cdev)
557{
558	struct devfreq_cooling_device *dfc;
559	struct device *dev;
560
561	if (IS_ERR_OR_NULL(cdev))
562		return;
563
564	dfc = cdev->devdata;
565	dev = dfc->devfreq->dev.parent;
566
567	thermal_cooling_device_unregister(dfc->cdev);
568	dev_pm_qos_remove_request(&dfc->req_max_freq);
569
570	em_dev_unregister_perf_domain(dev);
571
572	kfree(dfc->freq_table);
 
573	kfree(dfc);
574}
575EXPORT_SYMBOL_GPL(devfreq_cooling_unregister);
v5.4
 
  1/*
  2 * devfreq_cooling: Thermal cooling device implementation for devices using
  3 *                  devfreq
  4 *
  5 * Copyright (C) 2014-2015 ARM Limited
  6 *
  7 * This program is free software; you can redistribute it and/or modify
  8 * it under the terms of the GNU General Public License version 2 as
  9 * published by the Free Software Foundation.
 10 *
 11 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
 12 * kind, whether express or implied; without even the implied warranty
 13 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 14 * GNU General Public License for more details.
 15 *
 16 * TODO:
 17 *    - If OPPs are added or removed after devfreq cooling has
 18 *      registered, the devfreq cooling won't react to it.
 19 */
 20
 21#include <linux/devfreq.h>
 22#include <linux/devfreq_cooling.h>
 
 23#include <linux/export.h>
 24#include <linux/idr.h>
 25#include <linux/slab.h>
 26#include <linux/pm_opp.h>
 
 27#include <linux/thermal.h>
 
 28
 29#include <trace/events/thermal.h>
 30
 31#define SCALE_ERROR_MITIGATION 100
 32
 33static DEFINE_IDA(devfreq_ida);
 34
 35/**
 36 * struct devfreq_cooling_device - Devfreq cooling device
 37 * @id:		unique integer value corresponding to each
 38 *		devfreq_cooling_device registered.
 39 * @cdev:	Pointer to associated thermal cooling device.
 
 40 * @devfreq:	Pointer to associated devfreq device.
 41 * @cooling_state:	Current cooling state.
 42 * @power_table:	Pointer to table with maximum power draw for each
 43 *			cooling state. State is the index into the table, and
 44 *			the power is in mW.
 45 * @freq_table:	Pointer to a table with the frequencies sorted in descending
 46 *		order.  You can index the table by cooling device state
 47 * @freq_table_size:	Size of the @freq_table and @power_table
 48 * @power_ops:	Pointer to devfreq_cooling_power, used to generate the
 49 *		@power_table.
 50 * @res_util:	Resource utilization scaling factor for the power.
 51 *		It is multiplied by 100 to minimize the error. It is used
 52 *		for estimation of the power budget instead of using
 53 *		'utilization' (which is	'busy_time / 'total_time').
 54 *		The 'res_util' range is from 100 to (power_table[state] * 100)
 55 *		for the corresponding 'state'.
 
 
 
 
 56 */
 57struct devfreq_cooling_device {
 58	int id;
 59	struct thermal_cooling_device *cdev;
 
 60	struct devfreq *devfreq;
 61	unsigned long cooling_state;
 62	u32 *power_table;
 63	u32 *freq_table;
 64	size_t freq_table_size;
 65	struct devfreq_cooling_power *power_ops;
 66	u32 res_util;
 67	int capped_state;
 
 
 68};
 69
 70/**
 71 * partition_enable_opps() - disable all opps above a given state
 72 * @dfc:	Pointer to devfreq we are operating on
 73 * @cdev_state:	cooling device state we're setting
 74 *
 75 * Go through the OPPs of the device, enabling all OPPs until
 76 * @cdev_state and disabling those frequencies above it.
 77 */
 78static int partition_enable_opps(struct devfreq_cooling_device *dfc,
 79				 unsigned long cdev_state)
 80{
 81	int i;
 82	struct device *dev = dfc->devfreq->dev.parent;
 83
 84	for (i = 0; i < dfc->freq_table_size; i++) {
 85		struct dev_pm_opp *opp;
 86		int ret = 0;
 87		unsigned int freq = dfc->freq_table[i];
 88		bool want_enable = i >= cdev_state ? true : false;
 89
 90		opp = dev_pm_opp_find_freq_exact(dev, freq, !want_enable);
 91
 92		if (PTR_ERR(opp) == -ERANGE)
 93			continue;
 94		else if (IS_ERR(opp))
 95			return PTR_ERR(opp);
 96
 97		dev_pm_opp_put(opp);
 98
 99		if (want_enable)
100			ret = dev_pm_opp_enable(dev, freq);
101		else
102			ret = dev_pm_opp_disable(dev, freq);
103
104		if (ret)
105			return ret;
106	}
107
108	return 0;
109}
110
111static int devfreq_cooling_get_max_state(struct thermal_cooling_device *cdev,
112					 unsigned long *state)
113{
114	struct devfreq_cooling_device *dfc = cdev->devdata;
115
116	*state = dfc->freq_table_size - 1;
117
118	return 0;
119}
120
121static int devfreq_cooling_get_cur_state(struct thermal_cooling_device *cdev,
122					 unsigned long *state)
123{
124	struct devfreq_cooling_device *dfc = cdev->devdata;
125
126	*state = dfc->cooling_state;
127
128	return 0;
129}
130
131static int devfreq_cooling_set_cur_state(struct thermal_cooling_device *cdev,
132					 unsigned long state)
133{
134	struct devfreq_cooling_device *dfc = cdev->devdata;
135	struct devfreq *df = dfc->devfreq;
136	struct device *dev = df->dev.parent;
137	int ret;
 
 
138
139	if (state == dfc->cooling_state)
140		return 0;
141
142	dev_dbg(dev, "Setting cooling state %lu\n", state);
143
144	if (state >= dfc->freq_table_size)
145		return -EINVAL;
146
147	ret = partition_enable_opps(dfc, state);
148	if (ret)
149		return ret;
 
 
 
 
 
 
 
 
 
 
150
151	dfc->cooling_state = state;
152
153	return 0;
154}
155
156/**
157 * freq_get_state() - get the cooling state corresponding to a frequency
158 * @dfc:	Pointer to devfreq cooling device
159 * @freq:	frequency in Hz
160 *
161 * Return: the cooling state associated with the @freq, or
162 * THERMAL_CSTATE_INVALID if it wasn't found.
163 */
164static unsigned long
165freq_get_state(struct devfreq_cooling_device *dfc, unsigned long freq)
166{
167	int i;
 
 
 
 
 
 
168
169	for (i = 0; i < dfc->freq_table_size; i++) {
170		if (dfc->freq_table[i] == freq)
171			return i;
172	}
 
173
174	return THERMAL_CSTATE_INVALID;
175}
176
177static unsigned long get_voltage(struct devfreq *df, unsigned long freq)
178{
179	struct device *dev = df->dev.parent;
180	unsigned long voltage;
181	struct dev_pm_opp *opp;
182
183	opp = dev_pm_opp_find_freq_exact(dev, freq, true);
184	if (PTR_ERR(opp) == -ERANGE)
185		opp = dev_pm_opp_find_freq_exact(dev, freq, false);
186
187	if (IS_ERR(opp)) {
188		dev_err_ratelimited(dev, "Failed to find OPP for frequency %lu: %ld\n",
189				    freq, PTR_ERR(opp));
190		return 0;
191	}
192
193	voltage = dev_pm_opp_get_voltage(opp) / 1000; /* mV */
194	dev_pm_opp_put(opp);
195
196	if (voltage == 0) {
197		dev_err_ratelimited(dev,
198				    "Failed to get voltage for frequency %lu\n",
199				    freq);
200	}
201
202	return voltage;
203}
204
205/**
206 * get_static_power() - calculate the static power
207 * @dfc:	Pointer to devfreq cooling device
208 * @freq:	Frequency in Hz
209 *
210 * Calculate the static power in milliwatts using the supplied
211 * get_static_power().  The current voltage is calculated using the
212 * OPP library.  If no get_static_power() was supplied, assume the
213 * static power is negligible.
214 */
215static unsigned long
216get_static_power(struct devfreq_cooling_device *dfc, unsigned long freq)
217{
218	struct devfreq *df = dfc->devfreq;
219	unsigned long voltage;
220
221	if (!dfc->power_ops->get_static_power)
222		return 0;
223
224	voltage = get_voltage(df, freq);
 
225
226	if (voltage == 0)
227		return 0;
228
229	return dfc->power_ops->get_static_power(df, voltage);
230}
231
232/**
233 * get_dynamic_power - calculate the dynamic power
234 * @dfc:	Pointer to devfreq cooling device
235 * @freq:	Frequency in Hz
236 * @voltage:	Voltage in millivolts
237 *
238 * Calculate the dynamic power in milliwatts consumed by the device at
239 * frequency @freq and voltage @voltage.  If the get_dynamic_power()
240 * was supplied as part of the devfreq_cooling_power struct, then that
241 * function is used.  Otherwise, a simple power model (Pdyn = Coeff *
242 * Voltage^2 * Frequency) is used.
243 */
244static unsigned long
245get_dynamic_power(struct devfreq_cooling_device *dfc, unsigned long freq,
246		  unsigned long voltage)
247{
248	u64 power;
249	u32 freq_mhz;
250	struct devfreq_cooling_power *dfc_power = dfc->power_ops;
251
252	if (dfc_power->get_dynamic_power)
253		return dfc_power->get_dynamic_power(dfc->devfreq, freq,
254						    voltage);
255
256	freq_mhz = freq / 1000000;
257	power = (u64)dfc_power->dyn_power_coeff * freq_mhz * voltage * voltage;
258	do_div(power, 1000000000);
259
260	return power;
261}
262
263
264static inline unsigned long get_total_power(struct devfreq_cooling_device *dfc,
265					    unsigned long freq,
266					    unsigned long voltage)
267{
268	return get_static_power(dfc, freq) + get_dynamic_power(dfc, freq,
269							       voltage);
270}
271
272
273static int devfreq_cooling_get_requested_power(struct thermal_cooling_device *cdev,
274					       struct thermal_zone_device *tz,
275					       u32 *power)
276{
277	struct devfreq_cooling_device *dfc = cdev->devdata;
278	struct devfreq *df = dfc->devfreq;
279	struct devfreq_dev_status *status = &df->last_status;
 
280	unsigned long state;
281	unsigned long freq = status->current_frequency;
282	unsigned long voltage;
283	u32 dyn_power = 0;
284	u32 static_power = 0;
285	int res;
 
 
286
287	state = freq_get_state(dfc, freq);
288	if (state == THERMAL_CSTATE_INVALID) {
289		res = -EAGAIN;
290		goto fail;
291	}
292
293	if (dfc->power_ops->get_real_power) {
294		voltage = get_voltage(df, freq);
295		if (voltage == 0) {
296			res = -EINVAL;
297			goto fail;
298		}
299
300		res = dfc->power_ops->get_real_power(df, power, freq, voltage);
301		if (!res) {
302			state = dfc->capped_state;
303			dfc->res_util = dfc->power_table[state];
 
 
 
 
 
 
 
 
304			dfc->res_util *= SCALE_ERROR_MITIGATION;
305
306			if (*power > 1)
307				dfc->res_util /= *power;
308		} else {
309			goto fail;
310		}
311	} else {
312		dyn_power = dfc->power_table[state];
 
 
 
 
 
313
314		/* Scale dynamic power for utilization */
315		dyn_power *= status->busy_time;
316		dyn_power /= status->total_time;
317		/* Get static power */
318		static_power = get_static_power(dfc, freq);
 
 
319
320		*power = dyn_power + static_power;
 
 
 
321	}
322
323	trace_thermal_power_devfreq_get_power(cdev, status, freq, dyn_power,
324					      static_power, *power);
325
326	return 0;
327fail:
328	/* It is safe to set max in this case */
329	dfc->res_util = SCALE_ERROR_MITIGATION;
330	return res;
331}
332
333static int devfreq_cooling_state2power(struct thermal_cooling_device *cdev,
334				       struct thermal_zone_device *tz,
335				       unsigned long state,
336				       u32 *power)
337{
338	struct devfreq_cooling_device *dfc = cdev->devdata;
339	unsigned long freq;
340	u32 static_power;
341
342	if (state >= dfc->freq_table_size)
343		return -EINVAL;
344
345	freq = dfc->freq_table[state];
346	static_power = get_static_power(dfc, freq);
 
 
 
 
 
 
347
348	*power = dfc->power_table[state] + static_power;
349	return 0;
350}
351
352static int devfreq_cooling_power2state(struct thermal_cooling_device *cdev,
353				       struct thermal_zone_device *tz,
354				       u32 power, unsigned long *state)
355{
356	struct devfreq_cooling_device *dfc = cdev->devdata;
357	struct devfreq *df = dfc->devfreq;
358	struct devfreq_dev_status *status = &df->last_status;
359	unsigned long freq = status->current_frequency;
360	unsigned long busy_time;
361	s32 dyn_power;
362	u32 static_power;
363	s32 est_power;
364	int i;
365
366	if (dfc->power_ops->get_real_power) {
 
 
 
 
 
 
367		/* Scale for resource utilization */
368		est_power = power * dfc->res_util;
369		est_power /= SCALE_ERROR_MITIGATION;
370	} else {
371		static_power = get_static_power(dfc, freq);
372
373		dyn_power = power - static_power;
374		dyn_power = dyn_power > 0 ? dyn_power : 0;
375
376		/* Scale dynamic power for utilization */
377		busy_time = status->busy_time ?: 1;
378		est_power = (dyn_power * status->total_time) / busy_time;
 
379	}
380
381	/*
382	 * Find the first cooling state that is within the power
383	 * budget for dynamic power.
384	 */
385	for (i = 0; i < dfc->freq_table_size - 1; i++)
386		if (est_power >= dfc->power_table[i])
 
 
 
 
 
387			break;
 
 
 
 
 
388
389	*state = i;
390	dfc->capped_state = i;
391	trace_thermal_power_devfreq_limit(cdev, freq, *state, power);
392	return 0;
393}
394
395static struct thermal_cooling_device_ops devfreq_cooling_ops = {
396	.get_max_state = devfreq_cooling_get_max_state,
397	.get_cur_state = devfreq_cooling_get_cur_state,
398	.set_cur_state = devfreq_cooling_set_cur_state,
399};
400
401/**
402 * devfreq_cooling_gen_tables() - Generate power and freq tables.
403 * @dfc: Pointer to devfreq cooling device.
404 *
405 * Generate power and frequency tables: the power table hold the
406 * device's maximum power usage at each cooling state (OPP).  The
407 * static and dynamic power using the appropriate voltage and
408 * frequency for the state, is acquired from the struct
409 * devfreq_cooling_power, and summed to make the maximum power draw.
410 *
411 * The frequency table holds the frequencies in descending order.
412 * That way its indexed by cooling device state.
413 *
414 * The tables are malloced, and pointers put in dfc.  They must be
415 * freed when unregistering the devfreq cooling device.
416 *
417 * Return: 0 on success, negative error code on failure.
418 */
419static int devfreq_cooling_gen_tables(struct devfreq_cooling_device *dfc)
 
420{
421	struct devfreq *df = dfc->devfreq;
422	struct device *dev = df->dev.parent;
423	int ret, num_opps;
424	unsigned long freq;
425	u32 *power_table = NULL;
426	u32 *freq_table;
427	int i;
428
429	num_opps = dev_pm_opp_get_opp_count(dev);
430
431	if (dfc->power_ops) {
432		power_table = kcalloc(num_opps, sizeof(*power_table),
433				      GFP_KERNEL);
434		if (!power_table)
435			return -ENOMEM;
436	}
437
438	freq_table = kcalloc(num_opps, sizeof(*freq_table),
439			     GFP_KERNEL);
440	if (!freq_table) {
441		ret = -ENOMEM;
442		goto free_power_table;
443	}
444
445	for (i = 0, freq = ULONG_MAX; i < num_opps; i++, freq--) {
446		unsigned long power, voltage;
447		struct dev_pm_opp *opp;
448
449		opp = dev_pm_opp_find_freq_floor(dev, &freq);
450		if (IS_ERR(opp)) {
451			ret = PTR_ERR(opp);
452			goto free_tables;
453		}
454
455		voltage = dev_pm_opp_get_voltage(opp) / 1000; /* mV */
456		dev_pm_opp_put(opp);
457
458		if (dfc->power_ops) {
459			if (dfc->power_ops->get_real_power)
460				power = get_total_power(dfc, freq, voltage);
461			else
462				power = get_dynamic_power(dfc, freq, voltage);
463
464			dev_dbg(dev, "Power table: %lu MHz @ %lu mV: %lu = %lu mW\n",
465				freq / 1000000, voltage, power, power);
466
467			power_table[i] = power;
468		}
469
470		freq_table[i] = freq;
471	}
472
473	if (dfc->power_ops)
474		dfc->power_table = power_table;
475
476	dfc->freq_table = freq_table;
477	dfc->freq_table_size = num_opps;
478
479	return 0;
480
481free_tables:
482	kfree(freq_table);
483free_power_table:
484	kfree(power_table);
485
486	return ret;
487}
488
489/**
490 * of_devfreq_cooling_register_power() - Register devfreq cooling device,
491 *                                      with OF and power information.
492 * @np:	Pointer to OF device_node.
493 * @df:	Pointer to devfreq device.
494 * @dfc_power:	Pointer to devfreq_cooling_power.
495 *
496 * Register a devfreq cooling device.  The available OPPs must be
497 * registered on the device.
498 *
499 * If @dfc_power is provided, the cooling device is registered with the
500 * power extensions.  For the power extensions to work correctly,
501 * devfreq should use the simple_ondemand governor, other governors
502 * are not currently supported.
503 */
504struct thermal_cooling_device *
505of_devfreq_cooling_register_power(struct device_node *np, struct devfreq *df,
506				  struct devfreq_cooling_power *dfc_power)
507{
508	struct thermal_cooling_device *cdev;
 
509	struct devfreq_cooling_device *dfc;
510	char dev_name[THERMAL_NAME_LENGTH];
511	int err;
 
 
 
512
513	dfc = kzalloc(sizeof(*dfc), GFP_KERNEL);
514	if (!dfc)
515		return ERR_PTR(-ENOMEM);
516
517	dfc->devfreq = df;
518
519	if (dfc_power) {
 
 
 
 
 
 
 
 
 
 
 
 
520		dfc->power_ops = dfc_power;
521
522		devfreq_cooling_ops.get_requested_power =
523			devfreq_cooling_get_requested_power;
524		devfreq_cooling_ops.state2power = devfreq_cooling_state2power;
525		devfreq_cooling_ops.power2state = devfreq_cooling_power2state;
 
 
 
 
 
 
526	}
527
528	err = devfreq_cooling_gen_tables(dfc);
529	if (err)
530		goto free_dfc;
 
531
532	err = ida_simple_get(&devfreq_ida, 0, 0, GFP_KERNEL);
 
 
 
 
 
533	if (err < 0)
534		goto free_tables;
535	dfc->id = err;
 
 
 
 
536
537	snprintf(dev_name, sizeof(dev_name), "thermal-devfreq-%d", dfc->id);
 
538
539	cdev = thermal_of_cooling_device_register(np, dev_name, dfc,
540						  &devfreq_cooling_ops);
541	if (IS_ERR(cdev)) {
542		err = PTR_ERR(cdev);
543		dev_err(df->dev.parent,
544			"Failed to register devfreq cooling device (%d)\n",
545			err);
546		goto release_ida;
547	}
548
549	dfc->cdev = cdev;
550
551	return cdev;
552
553release_ida:
554	ida_simple_remove(&devfreq_ida, dfc->id);
555free_tables:
556	kfree(dfc->power_table);
557	kfree(dfc->freq_table);
558free_dfc:
559	kfree(dfc);
560
561	return ERR_PTR(err);
562}
563EXPORT_SYMBOL_GPL(of_devfreq_cooling_register_power);
564
565/**
566 * of_devfreq_cooling_register() - Register devfreq cooling device,
567 *                                with OF information.
568 * @np: Pointer to OF device_node.
569 * @df: Pointer to devfreq device.
570 */
571struct thermal_cooling_device *
572of_devfreq_cooling_register(struct device_node *np, struct devfreq *df)
573{
574	return of_devfreq_cooling_register_power(np, df, NULL);
575}
576EXPORT_SYMBOL_GPL(of_devfreq_cooling_register);
577
578/**
579 * devfreq_cooling_register() - Register devfreq cooling device.
580 * @df: Pointer to devfreq device.
581 */
582struct thermal_cooling_device *devfreq_cooling_register(struct devfreq *df)
583{
584	return of_devfreq_cooling_register(NULL, df);
585}
586EXPORT_SYMBOL_GPL(devfreq_cooling_register);
587
588/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
589 * devfreq_cooling_unregister() - Unregister devfreq cooling device.
590 * @dfc: Pointer to devfreq cooling device to unregister.
 
 
 
591 */
592void devfreq_cooling_unregister(struct thermal_cooling_device *cdev)
593{
594	struct devfreq_cooling_device *dfc;
 
595
596	if (!cdev)
597		return;
598
599	dfc = cdev->devdata;
 
600
601	thermal_cooling_device_unregister(dfc->cdev);
602	ida_simple_remove(&devfreq_ida, dfc->id);
603	kfree(dfc->power_table);
 
 
604	kfree(dfc->freq_table);
605
606	kfree(dfc);
607}
608EXPORT_SYMBOL_GPL(devfreq_cooling_unregister);