Linux Audio

Check our new training course

Loading...
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Driver for Cirrus Logic EP93xx SPI controller.
  4 *
  5 * Copyright (C) 2010-2011 Mika Westerberg
  6 *
  7 * Explicit FIFO handling code was inspired by amba-pl022 driver.
  8 *
  9 * Chip select support using other than built-in GPIOs by H. Hartley Sweeten.
 10 *
 11 * For more information about the SPI controller see documentation on Cirrus
 12 * Logic web site:
 13 *     https://www.cirrus.com/en/pubs/manual/EP93xx_Users_Guide_UM1.pdf
 14 */
 15
 16#include <linux/io.h>
 17#include <linux/clk.h>
 18#include <linux/err.h>
 19#include <linux/delay.h>
 20#include <linux/device.h>
 21#include <linux/dma-direction.h>
 22#include <linux/dma-mapping.h>
 23#include <linux/dmaengine.h>
 24#include <linux/bitops.h>
 25#include <linux/interrupt.h>
 26#include <linux/module.h>
 27#include <linux/property.h>
 28#include <linux/platform_device.h>
 29#include <linux/sched.h>
 30#include <linux/scatterlist.h>
 31#include <linux/spi/spi.h>
 32
 
 
 
 33#define SSPCR0			0x0000
 34#define SSPCR0_SPO		BIT(6)
 35#define SSPCR0_SPH		BIT(7)
 36#define SSPCR0_SCR_SHIFT	8
 37
 38#define SSPCR1			0x0004
 39#define SSPCR1_RIE		BIT(0)
 40#define SSPCR1_TIE		BIT(1)
 41#define SSPCR1_RORIE		BIT(2)
 42#define SSPCR1_LBM		BIT(3)
 43#define SSPCR1_SSE		BIT(4)
 44#define SSPCR1_MS		BIT(5)
 45#define SSPCR1_SOD		BIT(6)
 46
 47#define SSPDR			0x0008
 48
 49#define SSPSR			0x000c
 50#define SSPSR_TFE		BIT(0)
 51#define SSPSR_TNF		BIT(1)
 52#define SSPSR_RNE		BIT(2)
 53#define SSPSR_RFF		BIT(3)
 54#define SSPSR_BSY		BIT(4)
 55#define SSPCPSR			0x0010
 56
 57#define SSPIIR			0x0014
 58#define SSPIIR_RIS		BIT(0)
 59#define SSPIIR_TIS		BIT(1)
 60#define SSPIIR_RORIS		BIT(2)
 61#define SSPICR			SSPIIR
 62
 63/* timeout in milliseconds */
 64#define SPI_TIMEOUT		5
 65/* maximum depth of RX/TX FIFO */
 66#define SPI_FIFO_SIZE		8
 67
 68/**
 69 * struct ep93xx_spi - EP93xx SPI controller structure
 70 * @clk: clock for the controller
 71 * @mmio: pointer to ioremap()'d registers
 72 * @sspdr_phys: physical address of the SSPDR register
 73 * @tx: current byte in transfer to transmit
 74 * @rx: current byte in transfer to receive
 75 * @fifo_level: how full is FIFO (%0..%SPI_FIFO_SIZE - %1). Receiving one
 76 *              frame decreases this level and sending one frame increases it.
 77 * @dma_rx: RX DMA channel
 78 * @dma_tx: TX DMA channel
 
 
 79 * @rx_sgt: sg table for RX transfers
 80 * @tx_sgt: sg table for TX transfers
 81 * @zeropage: dummy page used as RX buffer when only TX buffer is passed in by
 82 *            the client
 83 */
 84struct ep93xx_spi {
 85	struct clk			*clk;
 86	void __iomem			*mmio;
 87	unsigned long			sspdr_phys;
 88	size_t				tx;
 89	size_t				rx;
 90	size_t				fifo_level;
 91	struct dma_chan			*dma_rx;
 92	struct dma_chan			*dma_tx;
 
 
 93	struct sg_table			rx_sgt;
 94	struct sg_table			tx_sgt;
 95	void				*zeropage;
 96};
 97
 98/* converts bits per word to CR0.DSS value */
 99#define bits_per_word_to_dss(bpw)	((bpw) - 1)
100
101/**
102 * ep93xx_spi_calc_divisors() - calculates SPI clock divisors
103 * @host: SPI host
104 * @rate: desired SPI output clock rate
105 * @div_cpsr: pointer to return the cpsr (pre-scaler) divider
106 * @div_scr: pointer to return the scr divider
107 */
108static int ep93xx_spi_calc_divisors(struct spi_controller *host,
109				    u32 rate, u8 *div_cpsr, u8 *div_scr)
110{
111	struct ep93xx_spi *espi = spi_controller_get_devdata(host);
112	unsigned long spi_clk_rate = clk_get_rate(espi->clk);
113	int cpsr, scr;
114
115	/*
116	 * Make sure that max value is between values supported by the
117	 * controller.
118	 */
119	rate = clamp(rate, host->min_speed_hz, host->max_speed_hz);
120
121	/*
122	 * Calculate divisors so that we can get speed according the
123	 * following formula:
124	 *	rate = spi_clock_rate / (cpsr * (1 + scr))
125	 *
126	 * cpsr must be even number and starts from 2, scr can be any number
127	 * between 0 and 255.
128	 */
129	for (cpsr = 2; cpsr <= 254; cpsr += 2) {
130		for (scr = 0; scr <= 255; scr++) {
131			if ((spi_clk_rate / (cpsr * (scr + 1))) <= rate) {
132				*div_scr = (u8)scr;
133				*div_cpsr = (u8)cpsr;
134				return 0;
135			}
136		}
137	}
138
139	return -EINVAL;
140}
141
142static int ep93xx_spi_chip_setup(struct spi_controller *host,
143				 struct spi_device *spi,
144				 struct spi_transfer *xfer)
145{
146	struct ep93xx_spi *espi = spi_controller_get_devdata(host);
147	u8 dss = bits_per_word_to_dss(xfer->bits_per_word);
148	u8 div_cpsr = 0;
149	u8 div_scr = 0;
150	u16 cr0;
151	int err;
152
153	err = ep93xx_spi_calc_divisors(host, xfer->speed_hz,
154				       &div_cpsr, &div_scr);
155	if (err)
156		return err;
157
158	cr0 = div_scr << SSPCR0_SCR_SHIFT;
159	if (spi->mode & SPI_CPOL)
160		cr0 |= SSPCR0_SPO;
161	if (spi->mode & SPI_CPHA)
162		cr0 |= SSPCR0_SPH;
163	cr0 |= dss;
164
165	dev_dbg(&host->dev, "setup: mode %d, cpsr %d, scr %d, dss %d\n",
166		spi->mode, div_cpsr, div_scr, dss);
167	dev_dbg(&host->dev, "setup: cr0 %#x\n", cr0);
168
169	writel(div_cpsr, espi->mmio + SSPCPSR);
170	writel(cr0, espi->mmio + SSPCR0);
171
172	return 0;
173}
174
175static void ep93xx_do_write(struct spi_controller *host)
176{
177	struct ep93xx_spi *espi = spi_controller_get_devdata(host);
178	struct spi_transfer *xfer = host->cur_msg->state;
179	u32 val = 0;
180
181	if (xfer->bits_per_word > 8) {
182		if (xfer->tx_buf)
183			val = ((u16 *)xfer->tx_buf)[espi->tx];
184		espi->tx += 2;
185	} else {
186		if (xfer->tx_buf)
187			val = ((u8 *)xfer->tx_buf)[espi->tx];
188		espi->tx += 1;
189	}
190	writel(val, espi->mmio + SSPDR);
191}
192
193static void ep93xx_do_read(struct spi_controller *host)
194{
195	struct ep93xx_spi *espi = spi_controller_get_devdata(host);
196	struct spi_transfer *xfer = host->cur_msg->state;
197	u32 val;
198
199	val = readl(espi->mmio + SSPDR);
200	if (xfer->bits_per_word > 8) {
201		if (xfer->rx_buf)
202			((u16 *)xfer->rx_buf)[espi->rx] = val;
203		espi->rx += 2;
204	} else {
205		if (xfer->rx_buf)
206			((u8 *)xfer->rx_buf)[espi->rx] = val;
207		espi->rx += 1;
208	}
209}
210
211/**
212 * ep93xx_spi_read_write() - perform next RX/TX transfer
213 * @host: SPI host
214 *
215 * This function transfers next bytes (or half-words) to/from RX/TX FIFOs. If
216 * called several times, the whole transfer will be completed. Returns
217 * %-EINPROGRESS when current transfer was not yet completed otherwise %0.
218 *
219 * When this function is finished, RX FIFO should be empty and TX FIFO should be
220 * full.
221 */
222static int ep93xx_spi_read_write(struct spi_controller *host)
223{
224	struct ep93xx_spi *espi = spi_controller_get_devdata(host);
225	struct spi_transfer *xfer = host->cur_msg->state;
226
227	/* read as long as RX FIFO has frames in it */
228	while ((readl(espi->mmio + SSPSR) & SSPSR_RNE)) {
229		ep93xx_do_read(host);
230		espi->fifo_level--;
231	}
232
233	/* write as long as TX FIFO has room */
234	while (espi->fifo_level < SPI_FIFO_SIZE && espi->tx < xfer->len) {
235		ep93xx_do_write(host);
236		espi->fifo_level++;
237	}
238
239	if (espi->rx == xfer->len)
240		return 0;
241
242	return -EINPROGRESS;
243}
244
245static enum dma_transfer_direction
246ep93xx_dma_data_to_trans_dir(enum dma_data_direction dir)
247{
248	switch (dir) {
249	case DMA_TO_DEVICE:
250		return DMA_MEM_TO_DEV;
251	case DMA_FROM_DEVICE:
252		return DMA_DEV_TO_MEM;
253	default:
254		return DMA_TRANS_NONE;
255	}
256}
257
258/**
259 * ep93xx_spi_dma_prepare() - prepares a DMA transfer
260 * @host: SPI host
261 * @dir: DMA transfer direction
262 *
263 * Function configures the DMA, maps the buffer and prepares the DMA
264 * descriptor. Returns a valid DMA descriptor in case of success and ERR_PTR
265 * in case of failure.
266 */
267static struct dma_async_tx_descriptor *
268ep93xx_spi_dma_prepare(struct spi_controller *host,
269		       enum dma_data_direction dir)
270{
271	struct ep93xx_spi *espi = spi_controller_get_devdata(host);
272	struct spi_transfer *xfer = host->cur_msg->state;
273	struct dma_async_tx_descriptor *txd;
274	enum dma_slave_buswidth buswidth;
275	struct dma_slave_config conf;
276	struct scatterlist *sg;
277	struct sg_table *sgt;
278	struct dma_chan *chan;
279	const void *buf, *pbuf;
280	size_t len = xfer->len;
281	int i, ret, nents;
282
283	if (xfer->bits_per_word > 8)
284		buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
285	else
286		buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
287
288	memset(&conf, 0, sizeof(conf));
289	conf.direction = ep93xx_dma_data_to_trans_dir(dir);
290
291	if (dir == DMA_FROM_DEVICE) {
292		chan = espi->dma_rx;
293		buf = xfer->rx_buf;
294		sgt = &espi->rx_sgt;
295
296		conf.src_addr = espi->sspdr_phys;
297		conf.src_addr_width = buswidth;
298	} else {
299		chan = espi->dma_tx;
300		buf = xfer->tx_buf;
301		sgt = &espi->tx_sgt;
302
303		conf.dst_addr = espi->sspdr_phys;
304		conf.dst_addr_width = buswidth;
305	}
306
307	ret = dmaengine_slave_config(chan, &conf);
308	if (ret)
309		return ERR_PTR(ret);
310
311	/*
312	 * We need to split the transfer into PAGE_SIZE'd chunks. This is
313	 * because we are using @espi->zeropage to provide a zero RX buffer
314	 * for the TX transfers and we have only allocated one page for that.
315	 *
316	 * For performance reasons we allocate a new sg_table only when
317	 * needed. Otherwise we will re-use the current one. Eventually the
318	 * last sg_table is released in ep93xx_spi_release_dma().
319	 */
320
321	nents = DIV_ROUND_UP(len, PAGE_SIZE);
322	if (nents != sgt->nents) {
323		sg_free_table(sgt);
324
325		ret = sg_alloc_table(sgt, nents, GFP_KERNEL);
326		if (ret)
327			return ERR_PTR(ret);
328	}
329
330	pbuf = buf;
331	for_each_sg(sgt->sgl, sg, sgt->nents, i) {
332		size_t bytes = min_t(size_t, len, PAGE_SIZE);
333
334		if (buf) {
335			sg_set_page(sg, virt_to_page(pbuf), bytes,
336				    offset_in_page(pbuf));
337		} else {
338			sg_set_page(sg, virt_to_page(espi->zeropage),
339				    bytes, 0);
340		}
341
342		pbuf += bytes;
343		len -= bytes;
344	}
345
346	if (WARN_ON(len)) {
347		dev_warn(&host->dev, "len = %zu expected 0!\n", len);
348		return ERR_PTR(-EINVAL);
349	}
350
351	nents = dma_map_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
352	if (!nents)
353		return ERR_PTR(-ENOMEM);
354
355	txd = dmaengine_prep_slave_sg(chan, sgt->sgl, nents, conf.direction,
356				      DMA_CTRL_ACK);
357	if (!txd) {
358		dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
359		return ERR_PTR(-ENOMEM);
360	}
361	return txd;
362}
363
364/**
365 * ep93xx_spi_dma_finish() - finishes with a DMA transfer
366 * @host: SPI host
367 * @dir: DMA transfer direction
368 *
369 * Function finishes with the DMA transfer. After this, the DMA buffer is
370 * unmapped.
371 */
372static void ep93xx_spi_dma_finish(struct spi_controller *host,
373				  enum dma_data_direction dir)
374{
375	struct ep93xx_spi *espi = spi_controller_get_devdata(host);
376	struct dma_chan *chan;
377	struct sg_table *sgt;
378
379	if (dir == DMA_FROM_DEVICE) {
380		chan = espi->dma_rx;
381		sgt = &espi->rx_sgt;
382	} else {
383		chan = espi->dma_tx;
384		sgt = &espi->tx_sgt;
385	}
386
387	dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
388}
389
390static void ep93xx_spi_dma_callback(void *callback_param)
391{
392	struct spi_controller *host = callback_param;
393
394	ep93xx_spi_dma_finish(host, DMA_TO_DEVICE);
395	ep93xx_spi_dma_finish(host, DMA_FROM_DEVICE);
396
397	spi_finalize_current_transfer(host);
398}
399
400static int ep93xx_spi_dma_transfer(struct spi_controller *host)
401{
402	struct ep93xx_spi *espi = spi_controller_get_devdata(host);
403	struct dma_async_tx_descriptor *rxd, *txd;
404
405	rxd = ep93xx_spi_dma_prepare(host, DMA_FROM_DEVICE);
406	if (IS_ERR(rxd)) {
407		dev_err(&host->dev, "DMA RX failed: %ld\n", PTR_ERR(rxd));
408		return PTR_ERR(rxd);
409	}
410
411	txd = ep93xx_spi_dma_prepare(host, DMA_TO_DEVICE);
412	if (IS_ERR(txd)) {
413		ep93xx_spi_dma_finish(host, DMA_FROM_DEVICE);
414		dev_err(&host->dev, "DMA TX failed: %ld\n", PTR_ERR(txd));
415		return PTR_ERR(txd);
416	}
417
418	/* We are ready when RX is done */
419	rxd->callback = ep93xx_spi_dma_callback;
420	rxd->callback_param = host;
421
422	/* Now submit both descriptors and start DMA */
423	dmaengine_submit(rxd);
424	dmaengine_submit(txd);
425
426	dma_async_issue_pending(espi->dma_rx);
427	dma_async_issue_pending(espi->dma_tx);
428
429	/* signal that we need to wait for completion */
430	return 1;
431}
432
433static irqreturn_t ep93xx_spi_interrupt(int irq, void *dev_id)
434{
435	struct spi_controller *host = dev_id;
436	struct ep93xx_spi *espi = spi_controller_get_devdata(host);
437	u32 val;
438
439	/*
440	 * If we got ROR (receive overrun) interrupt we know that something is
441	 * wrong. Just abort the message.
442	 */
443	if (readl(espi->mmio + SSPIIR) & SSPIIR_RORIS) {
444		/* clear the overrun interrupt */
445		writel(0, espi->mmio + SSPICR);
446		dev_warn(&host->dev,
447			 "receive overrun, aborting the message\n");
448		host->cur_msg->status = -EIO;
449	} else {
450		/*
451		 * Interrupt is either RX (RIS) or TX (TIS). For both cases we
452		 * simply execute next data transfer.
453		 */
454		if (ep93xx_spi_read_write(host)) {
455			/*
456			 * In normal case, there still is some processing left
457			 * for current transfer. Let's wait for the next
458			 * interrupt then.
459			 */
460			return IRQ_HANDLED;
461		}
462	}
463
464	/*
465	 * Current transfer is finished, either with error or with success. In
466	 * any case we disable interrupts and notify the worker to handle
467	 * any post-processing of the message.
468	 */
469	val = readl(espi->mmio + SSPCR1);
470	val &= ~(SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
471	writel(val, espi->mmio + SSPCR1);
472
473	spi_finalize_current_transfer(host);
474
475	return IRQ_HANDLED;
476}
477
478static int ep93xx_spi_transfer_one(struct spi_controller *host,
479				   struct spi_device *spi,
480				   struct spi_transfer *xfer)
481{
482	struct ep93xx_spi *espi = spi_controller_get_devdata(host);
483	u32 val;
484	int ret;
485
486	ret = ep93xx_spi_chip_setup(host, spi, xfer);
487	if (ret) {
488		dev_err(&host->dev, "failed to setup chip for transfer\n");
489		return ret;
490	}
491
492	host->cur_msg->state = xfer;
493	espi->rx = 0;
494	espi->tx = 0;
495
496	/*
497	 * There is no point of setting up DMA for the transfers which will
498	 * fit into the FIFO and can be transferred with a single interrupt.
499	 * So in these cases we will be using PIO and don't bother for DMA.
500	 */
501	if (espi->dma_rx && xfer->len > SPI_FIFO_SIZE)
502		return ep93xx_spi_dma_transfer(host);
503
504	/* Using PIO so prime the TX FIFO and enable interrupts */
505	ep93xx_spi_read_write(host);
506
507	val = readl(espi->mmio + SSPCR1);
508	val |= (SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
509	writel(val, espi->mmio + SSPCR1);
510
511	/* signal that we need to wait for completion */
512	return 1;
513}
514
515static int ep93xx_spi_prepare_message(struct spi_controller *host,
516				      struct spi_message *msg)
517{
518	struct ep93xx_spi *espi = spi_controller_get_devdata(host);
519	unsigned long timeout;
520
521	/*
522	 * Just to be sure: flush any data from RX FIFO.
523	 */
524	timeout = jiffies + msecs_to_jiffies(SPI_TIMEOUT);
525	while (readl(espi->mmio + SSPSR) & SSPSR_RNE) {
526		if (time_after(jiffies, timeout)) {
527			dev_warn(&host->dev,
528				 "timeout while flushing RX FIFO\n");
529			return -ETIMEDOUT;
530		}
531		readl(espi->mmio + SSPDR);
532	}
533
534	/*
535	 * We explicitly handle FIFO level. This way we don't have to check TX
536	 * FIFO status using %SSPSR_TNF bit which may cause RX FIFO overruns.
537	 */
538	espi->fifo_level = 0;
539
540	return 0;
541}
542
543static int ep93xx_spi_prepare_hardware(struct spi_controller *host)
544{
545	struct ep93xx_spi *espi = spi_controller_get_devdata(host);
546	u32 val;
547	int ret;
548
549	ret = clk_prepare_enable(espi->clk);
550	if (ret)
551		return ret;
552
553	val = readl(espi->mmio + SSPCR1);
554	val |= SSPCR1_SSE;
555	writel(val, espi->mmio + SSPCR1);
556
557	return 0;
558}
559
560static int ep93xx_spi_unprepare_hardware(struct spi_controller *host)
561{
562	struct ep93xx_spi *espi = spi_controller_get_devdata(host);
563	u32 val;
564
565	val = readl(espi->mmio + SSPCR1);
566	val &= ~SSPCR1_SSE;
567	writel(val, espi->mmio + SSPCR1);
568
569	clk_disable_unprepare(espi->clk);
570
571	return 0;
572}
573
574static int ep93xx_spi_setup_dma(struct device *dev, struct ep93xx_spi *espi)
 
 
 
 
 
 
 
 
 
575{
 
576	int ret;
577
578	espi->zeropage = (void *)get_zeroed_page(GFP_KERNEL);
579	if (!espi->zeropage)
580		return -ENOMEM;
581
582	espi->dma_rx = dma_request_chan(dev, "rx");
583	if (IS_ERR(espi->dma_rx)) {
584		ret = dev_err_probe(dev, PTR_ERR(espi->dma_rx), "rx DMA setup failed");
 
 
 
 
 
 
 
 
585		goto fail_free_page;
586	}
587
588	espi->dma_tx = dma_request_chan(dev, "tx");
589	if (IS_ERR(espi->dma_tx)) {
590		ret = dev_err_probe(dev, PTR_ERR(espi->dma_tx), "tx DMA setup failed");
 
 
 
 
 
591		goto fail_release_rx;
592	}
593
594	return 0;
595
596fail_release_rx:
597	dma_release_channel(espi->dma_rx);
598	espi->dma_rx = NULL;
599fail_free_page:
600	free_page((unsigned long)espi->zeropage);
601
602	return ret;
603}
604
605static void ep93xx_spi_release_dma(struct ep93xx_spi *espi)
606{
607	if (espi->dma_rx) {
608		dma_release_channel(espi->dma_rx);
609		sg_free_table(&espi->rx_sgt);
610	}
611	if (espi->dma_tx) {
612		dma_release_channel(espi->dma_tx);
613		sg_free_table(&espi->tx_sgt);
614	}
615
616	if (espi->zeropage)
617		free_page((unsigned long)espi->zeropage);
618}
619
620static int ep93xx_spi_probe(struct platform_device *pdev)
621{
622	struct spi_controller *host;
 
623	struct ep93xx_spi *espi;
624	struct resource *res;
625	int irq;
626	int error;
627
 
 
 
 
 
 
628	irq = platform_get_irq(pdev, 0);
629	if (irq < 0)
630		return irq;
 
 
 
 
 
 
631
632	host = spi_alloc_host(&pdev->dev, sizeof(*espi));
633	if (!host)
634		return -ENOMEM;
635
636	host->use_gpio_descriptors = true;
637	host->prepare_transfer_hardware = ep93xx_spi_prepare_hardware;
638	host->unprepare_transfer_hardware = ep93xx_spi_unprepare_hardware;
639	host->prepare_message = ep93xx_spi_prepare_message;
640	host->transfer_one = ep93xx_spi_transfer_one;
641	host->bus_num = pdev->id;
642	host->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
643	host->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
644	/*
645	 * The SPI core will count the number of GPIO descriptors to figure
646	 * out the number of chip selects available on the platform.
647	 */
648	host->num_chipselect = 0;
649
650	platform_set_drvdata(pdev, host);
651
652	espi = spi_controller_get_devdata(host);
653
654	espi->clk = devm_clk_get(&pdev->dev, NULL);
655	if (IS_ERR(espi->clk)) {
656		dev_err(&pdev->dev, "unable to get spi clock\n");
657		error = PTR_ERR(espi->clk);
658		goto fail_release_host;
659	}
660
661	/*
662	 * Calculate maximum and minimum supported clock rates
663	 * for the controller.
664	 */
665	host->max_speed_hz = clk_get_rate(espi->clk) / 2;
666	host->min_speed_hz = clk_get_rate(espi->clk) / (254 * 256);
 
 
667
668	espi->mmio = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
669	if (IS_ERR(espi->mmio)) {
670		error = PTR_ERR(espi->mmio);
671		goto fail_release_host;
672	}
673	espi->sspdr_phys = res->start + SSPDR;
674
675	error = devm_request_irq(&pdev->dev, irq, ep93xx_spi_interrupt,
676				0, "ep93xx-spi", host);
677	if (error) {
678		dev_err(&pdev->dev, "failed to request irq\n");
679		goto fail_release_host;
680	}
681
682	error = ep93xx_spi_setup_dma(&pdev->dev, espi);
683	if (error == -EPROBE_DEFER)
684		goto fail_release_host;
685
686	if (error)
687		dev_warn(&pdev->dev, "DMA setup failed. Falling back to PIO\n");
688
689	/* make sure that the hardware is disabled */
690	writel(0, espi->mmio + SSPCR1);
691
692	device_set_node(&host->dev, dev_fwnode(&pdev->dev));
693	error = devm_spi_register_controller(&pdev->dev, host);
694	if (error) {
695		dev_err(&pdev->dev, "failed to register SPI host\n");
696		goto fail_free_dma;
697	}
698
699	dev_info(&pdev->dev, "EP93xx SPI Controller at 0x%08lx irq %d\n",
700		 (unsigned long)res->start, irq);
701
702	return 0;
703
704fail_free_dma:
705	ep93xx_spi_release_dma(espi);
706fail_release_host:
707	spi_controller_put(host);
708
709	return error;
710}
711
712static void ep93xx_spi_remove(struct platform_device *pdev)
713{
714	struct spi_controller *host = platform_get_drvdata(pdev);
715	struct ep93xx_spi *espi = spi_controller_get_devdata(host);
716
717	ep93xx_spi_release_dma(espi);
718}
719
720static const struct of_device_id ep93xx_spi_of_ids[] = {
721	{ .compatible = "cirrus,ep9301-spi" },
722	{ /* sentinel */ }
723};
724MODULE_DEVICE_TABLE(of, ep93xx_spi_of_ids);
725
726static struct platform_driver ep93xx_spi_driver = {
727	.driver		= {
728		.name	= "ep93xx-spi",
729		.of_match_table = ep93xx_spi_of_ids,
730	},
731	.probe		= ep93xx_spi_probe,
732	.remove		= ep93xx_spi_remove,
733};
734module_platform_driver(ep93xx_spi_driver);
735
736MODULE_DESCRIPTION("EP93xx SPI Controller driver");
737MODULE_AUTHOR("Mika Westerberg <mika.westerberg@iki.fi>");
738MODULE_LICENSE("GPL");
739MODULE_ALIAS("platform:ep93xx-spi");
v5.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Driver for Cirrus Logic EP93xx SPI controller.
  4 *
  5 * Copyright (C) 2010-2011 Mika Westerberg
  6 *
  7 * Explicit FIFO handling code was inspired by amba-pl022 driver.
  8 *
  9 * Chip select support using other than built-in GPIOs by H. Hartley Sweeten.
 10 *
 11 * For more information about the SPI controller see documentation on Cirrus
 12 * Logic web site:
 13 *     http://www.cirrus.com/en/pubs/manual/EP93xx_Users_Guide_UM1.pdf
 14 */
 15
 16#include <linux/io.h>
 17#include <linux/clk.h>
 18#include <linux/err.h>
 19#include <linux/delay.h>
 20#include <linux/device.h>
 
 
 21#include <linux/dmaengine.h>
 22#include <linux/bitops.h>
 23#include <linux/interrupt.h>
 24#include <linux/module.h>
 
 25#include <linux/platform_device.h>
 26#include <linux/sched.h>
 27#include <linux/scatterlist.h>
 28#include <linux/spi/spi.h>
 29
 30#include <linux/platform_data/dma-ep93xx.h>
 31#include <linux/platform_data/spi-ep93xx.h>
 32
 33#define SSPCR0			0x0000
 34#define SSPCR0_MODE_SHIFT	6
 
 35#define SSPCR0_SCR_SHIFT	8
 36
 37#define SSPCR1			0x0004
 38#define SSPCR1_RIE		BIT(0)
 39#define SSPCR1_TIE		BIT(1)
 40#define SSPCR1_RORIE		BIT(2)
 41#define SSPCR1_LBM		BIT(3)
 42#define SSPCR1_SSE		BIT(4)
 43#define SSPCR1_MS		BIT(5)
 44#define SSPCR1_SOD		BIT(6)
 45
 46#define SSPDR			0x0008
 47
 48#define SSPSR			0x000c
 49#define SSPSR_TFE		BIT(0)
 50#define SSPSR_TNF		BIT(1)
 51#define SSPSR_RNE		BIT(2)
 52#define SSPSR_RFF		BIT(3)
 53#define SSPSR_BSY		BIT(4)
 54#define SSPCPSR			0x0010
 55
 56#define SSPIIR			0x0014
 57#define SSPIIR_RIS		BIT(0)
 58#define SSPIIR_TIS		BIT(1)
 59#define SSPIIR_RORIS		BIT(2)
 60#define SSPICR			SSPIIR
 61
 62/* timeout in milliseconds */
 63#define SPI_TIMEOUT		5
 64/* maximum depth of RX/TX FIFO */
 65#define SPI_FIFO_SIZE		8
 66
 67/**
 68 * struct ep93xx_spi - EP93xx SPI controller structure
 69 * @clk: clock for the controller
 70 * @mmio: pointer to ioremap()'d registers
 71 * @sspdr_phys: physical address of the SSPDR register
 72 * @tx: current byte in transfer to transmit
 73 * @rx: current byte in transfer to receive
 74 * @fifo_level: how full is FIFO (%0..%SPI_FIFO_SIZE - %1). Receiving one
 75 *              frame decreases this level and sending one frame increases it.
 76 * @dma_rx: RX DMA channel
 77 * @dma_tx: TX DMA channel
 78 * @dma_rx_data: RX parameters passed to the DMA engine
 79 * @dma_tx_data: TX parameters passed to the DMA engine
 80 * @rx_sgt: sg table for RX transfers
 81 * @tx_sgt: sg table for TX transfers
 82 * @zeropage: dummy page used as RX buffer when only TX buffer is passed in by
 83 *            the client
 84 */
 85struct ep93xx_spi {
 86	struct clk			*clk;
 87	void __iomem			*mmio;
 88	unsigned long			sspdr_phys;
 89	size_t				tx;
 90	size_t				rx;
 91	size_t				fifo_level;
 92	struct dma_chan			*dma_rx;
 93	struct dma_chan			*dma_tx;
 94	struct ep93xx_dma_data		dma_rx_data;
 95	struct ep93xx_dma_data		dma_tx_data;
 96	struct sg_table			rx_sgt;
 97	struct sg_table			tx_sgt;
 98	void				*zeropage;
 99};
100
101/* converts bits per word to CR0.DSS value */
102#define bits_per_word_to_dss(bpw)	((bpw) - 1)
103
104/**
105 * ep93xx_spi_calc_divisors() - calculates SPI clock divisors
106 * @master: SPI master
107 * @rate: desired SPI output clock rate
108 * @div_cpsr: pointer to return the cpsr (pre-scaler) divider
109 * @div_scr: pointer to return the scr divider
110 */
111static int ep93xx_spi_calc_divisors(struct spi_master *master,
112				    u32 rate, u8 *div_cpsr, u8 *div_scr)
113{
114	struct ep93xx_spi *espi = spi_master_get_devdata(master);
115	unsigned long spi_clk_rate = clk_get_rate(espi->clk);
116	int cpsr, scr;
117
118	/*
119	 * Make sure that max value is between values supported by the
120	 * controller.
121	 */
122	rate = clamp(rate, master->min_speed_hz, master->max_speed_hz);
123
124	/*
125	 * Calculate divisors so that we can get speed according the
126	 * following formula:
127	 *	rate = spi_clock_rate / (cpsr * (1 + scr))
128	 *
129	 * cpsr must be even number and starts from 2, scr can be any number
130	 * between 0 and 255.
131	 */
132	for (cpsr = 2; cpsr <= 254; cpsr += 2) {
133		for (scr = 0; scr <= 255; scr++) {
134			if ((spi_clk_rate / (cpsr * (scr + 1))) <= rate) {
135				*div_scr = (u8)scr;
136				*div_cpsr = (u8)cpsr;
137				return 0;
138			}
139		}
140	}
141
142	return -EINVAL;
143}
144
145static int ep93xx_spi_chip_setup(struct spi_master *master,
146				 struct spi_device *spi,
147				 struct spi_transfer *xfer)
148{
149	struct ep93xx_spi *espi = spi_master_get_devdata(master);
150	u8 dss = bits_per_word_to_dss(xfer->bits_per_word);
151	u8 div_cpsr = 0;
152	u8 div_scr = 0;
153	u16 cr0;
154	int err;
155
156	err = ep93xx_spi_calc_divisors(master, xfer->speed_hz,
157				       &div_cpsr, &div_scr);
158	if (err)
159		return err;
160
161	cr0 = div_scr << SSPCR0_SCR_SHIFT;
162	cr0 |= (spi->mode & (SPI_CPHA | SPI_CPOL)) << SSPCR0_MODE_SHIFT;
 
 
 
163	cr0 |= dss;
164
165	dev_dbg(&master->dev, "setup: mode %d, cpsr %d, scr %d, dss %d\n",
166		spi->mode, div_cpsr, div_scr, dss);
167	dev_dbg(&master->dev, "setup: cr0 %#x\n", cr0);
168
169	writel(div_cpsr, espi->mmio + SSPCPSR);
170	writel(cr0, espi->mmio + SSPCR0);
171
172	return 0;
173}
174
175static void ep93xx_do_write(struct spi_master *master)
176{
177	struct ep93xx_spi *espi = spi_master_get_devdata(master);
178	struct spi_transfer *xfer = master->cur_msg->state;
179	u32 val = 0;
180
181	if (xfer->bits_per_word > 8) {
182		if (xfer->tx_buf)
183			val = ((u16 *)xfer->tx_buf)[espi->tx];
184		espi->tx += 2;
185	} else {
186		if (xfer->tx_buf)
187			val = ((u8 *)xfer->tx_buf)[espi->tx];
188		espi->tx += 1;
189	}
190	writel(val, espi->mmio + SSPDR);
191}
192
193static void ep93xx_do_read(struct spi_master *master)
194{
195	struct ep93xx_spi *espi = spi_master_get_devdata(master);
196	struct spi_transfer *xfer = master->cur_msg->state;
197	u32 val;
198
199	val = readl(espi->mmio + SSPDR);
200	if (xfer->bits_per_word > 8) {
201		if (xfer->rx_buf)
202			((u16 *)xfer->rx_buf)[espi->rx] = val;
203		espi->rx += 2;
204	} else {
205		if (xfer->rx_buf)
206			((u8 *)xfer->rx_buf)[espi->rx] = val;
207		espi->rx += 1;
208	}
209}
210
211/**
212 * ep93xx_spi_read_write() - perform next RX/TX transfer
213 * @espi: ep93xx SPI controller struct
214 *
215 * This function transfers next bytes (or half-words) to/from RX/TX FIFOs. If
216 * called several times, the whole transfer will be completed. Returns
217 * %-EINPROGRESS when current transfer was not yet completed otherwise %0.
218 *
219 * When this function is finished, RX FIFO should be empty and TX FIFO should be
220 * full.
221 */
222static int ep93xx_spi_read_write(struct spi_master *master)
223{
224	struct ep93xx_spi *espi = spi_master_get_devdata(master);
225	struct spi_transfer *xfer = master->cur_msg->state;
226
227	/* read as long as RX FIFO has frames in it */
228	while ((readl(espi->mmio + SSPSR) & SSPSR_RNE)) {
229		ep93xx_do_read(master);
230		espi->fifo_level--;
231	}
232
233	/* write as long as TX FIFO has room */
234	while (espi->fifo_level < SPI_FIFO_SIZE && espi->tx < xfer->len) {
235		ep93xx_do_write(master);
236		espi->fifo_level++;
237	}
238
239	if (espi->rx == xfer->len)
240		return 0;
241
242	return -EINPROGRESS;
243}
244
245static enum dma_transfer_direction
246ep93xx_dma_data_to_trans_dir(enum dma_data_direction dir)
247{
248	switch (dir) {
249	case DMA_TO_DEVICE:
250		return DMA_MEM_TO_DEV;
251	case DMA_FROM_DEVICE:
252		return DMA_DEV_TO_MEM;
253	default:
254		return DMA_TRANS_NONE;
255	}
256}
257
258/**
259 * ep93xx_spi_dma_prepare() - prepares a DMA transfer
260 * @master: SPI master
261 * @dir: DMA transfer direction
262 *
263 * Function configures the DMA, maps the buffer and prepares the DMA
264 * descriptor. Returns a valid DMA descriptor in case of success and ERR_PTR
265 * in case of failure.
266 */
267static struct dma_async_tx_descriptor *
268ep93xx_spi_dma_prepare(struct spi_master *master,
269		       enum dma_data_direction dir)
270{
271	struct ep93xx_spi *espi = spi_master_get_devdata(master);
272	struct spi_transfer *xfer = master->cur_msg->state;
273	struct dma_async_tx_descriptor *txd;
274	enum dma_slave_buswidth buswidth;
275	struct dma_slave_config conf;
276	struct scatterlist *sg;
277	struct sg_table *sgt;
278	struct dma_chan *chan;
279	const void *buf, *pbuf;
280	size_t len = xfer->len;
281	int i, ret, nents;
282
283	if (xfer->bits_per_word > 8)
284		buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
285	else
286		buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
287
288	memset(&conf, 0, sizeof(conf));
289	conf.direction = ep93xx_dma_data_to_trans_dir(dir);
290
291	if (dir == DMA_FROM_DEVICE) {
292		chan = espi->dma_rx;
293		buf = xfer->rx_buf;
294		sgt = &espi->rx_sgt;
295
296		conf.src_addr = espi->sspdr_phys;
297		conf.src_addr_width = buswidth;
298	} else {
299		chan = espi->dma_tx;
300		buf = xfer->tx_buf;
301		sgt = &espi->tx_sgt;
302
303		conf.dst_addr = espi->sspdr_phys;
304		conf.dst_addr_width = buswidth;
305	}
306
307	ret = dmaengine_slave_config(chan, &conf);
308	if (ret)
309		return ERR_PTR(ret);
310
311	/*
312	 * We need to split the transfer into PAGE_SIZE'd chunks. This is
313	 * because we are using @espi->zeropage to provide a zero RX buffer
314	 * for the TX transfers and we have only allocated one page for that.
315	 *
316	 * For performance reasons we allocate a new sg_table only when
317	 * needed. Otherwise we will re-use the current one. Eventually the
318	 * last sg_table is released in ep93xx_spi_release_dma().
319	 */
320
321	nents = DIV_ROUND_UP(len, PAGE_SIZE);
322	if (nents != sgt->nents) {
323		sg_free_table(sgt);
324
325		ret = sg_alloc_table(sgt, nents, GFP_KERNEL);
326		if (ret)
327			return ERR_PTR(ret);
328	}
329
330	pbuf = buf;
331	for_each_sg(sgt->sgl, sg, sgt->nents, i) {
332		size_t bytes = min_t(size_t, len, PAGE_SIZE);
333
334		if (buf) {
335			sg_set_page(sg, virt_to_page(pbuf), bytes,
336				    offset_in_page(pbuf));
337		} else {
338			sg_set_page(sg, virt_to_page(espi->zeropage),
339				    bytes, 0);
340		}
341
342		pbuf += bytes;
343		len -= bytes;
344	}
345
346	if (WARN_ON(len)) {
347		dev_warn(&master->dev, "len = %zu expected 0!\n", len);
348		return ERR_PTR(-EINVAL);
349	}
350
351	nents = dma_map_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
352	if (!nents)
353		return ERR_PTR(-ENOMEM);
354
355	txd = dmaengine_prep_slave_sg(chan, sgt->sgl, nents, conf.direction,
356				      DMA_CTRL_ACK);
357	if (!txd) {
358		dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
359		return ERR_PTR(-ENOMEM);
360	}
361	return txd;
362}
363
364/**
365 * ep93xx_spi_dma_finish() - finishes with a DMA transfer
366 * @master: SPI master
367 * @dir: DMA transfer direction
368 *
369 * Function finishes with the DMA transfer. After this, the DMA buffer is
370 * unmapped.
371 */
372static void ep93xx_spi_dma_finish(struct spi_master *master,
373				  enum dma_data_direction dir)
374{
375	struct ep93xx_spi *espi = spi_master_get_devdata(master);
376	struct dma_chan *chan;
377	struct sg_table *sgt;
378
379	if (dir == DMA_FROM_DEVICE) {
380		chan = espi->dma_rx;
381		sgt = &espi->rx_sgt;
382	} else {
383		chan = espi->dma_tx;
384		sgt = &espi->tx_sgt;
385	}
386
387	dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
388}
389
390static void ep93xx_spi_dma_callback(void *callback_param)
391{
392	struct spi_master *master = callback_param;
393
394	ep93xx_spi_dma_finish(master, DMA_TO_DEVICE);
395	ep93xx_spi_dma_finish(master, DMA_FROM_DEVICE);
396
397	spi_finalize_current_transfer(master);
398}
399
400static int ep93xx_spi_dma_transfer(struct spi_master *master)
401{
402	struct ep93xx_spi *espi = spi_master_get_devdata(master);
403	struct dma_async_tx_descriptor *rxd, *txd;
404
405	rxd = ep93xx_spi_dma_prepare(master, DMA_FROM_DEVICE);
406	if (IS_ERR(rxd)) {
407		dev_err(&master->dev, "DMA RX failed: %ld\n", PTR_ERR(rxd));
408		return PTR_ERR(rxd);
409	}
410
411	txd = ep93xx_spi_dma_prepare(master, DMA_TO_DEVICE);
412	if (IS_ERR(txd)) {
413		ep93xx_spi_dma_finish(master, DMA_FROM_DEVICE);
414		dev_err(&master->dev, "DMA TX failed: %ld\n", PTR_ERR(txd));
415		return PTR_ERR(txd);
416	}
417
418	/* We are ready when RX is done */
419	rxd->callback = ep93xx_spi_dma_callback;
420	rxd->callback_param = master;
421
422	/* Now submit both descriptors and start DMA */
423	dmaengine_submit(rxd);
424	dmaengine_submit(txd);
425
426	dma_async_issue_pending(espi->dma_rx);
427	dma_async_issue_pending(espi->dma_tx);
428
429	/* signal that we need to wait for completion */
430	return 1;
431}
432
433static irqreturn_t ep93xx_spi_interrupt(int irq, void *dev_id)
434{
435	struct spi_master *master = dev_id;
436	struct ep93xx_spi *espi = spi_master_get_devdata(master);
437	u32 val;
438
439	/*
440	 * If we got ROR (receive overrun) interrupt we know that something is
441	 * wrong. Just abort the message.
442	 */
443	if (readl(espi->mmio + SSPIIR) & SSPIIR_RORIS) {
444		/* clear the overrun interrupt */
445		writel(0, espi->mmio + SSPICR);
446		dev_warn(&master->dev,
447			 "receive overrun, aborting the message\n");
448		master->cur_msg->status = -EIO;
449	} else {
450		/*
451		 * Interrupt is either RX (RIS) or TX (TIS). For both cases we
452		 * simply execute next data transfer.
453		 */
454		if (ep93xx_spi_read_write(master)) {
455			/*
456			 * In normal case, there still is some processing left
457			 * for current transfer. Let's wait for the next
458			 * interrupt then.
459			 */
460			return IRQ_HANDLED;
461		}
462	}
463
464	/*
465	 * Current transfer is finished, either with error or with success. In
466	 * any case we disable interrupts and notify the worker to handle
467	 * any post-processing of the message.
468	 */
469	val = readl(espi->mmio + SSPCR1);
470	val &= ~(SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
471	writel(val, espi->mmio + SSPCR1);
472
473	spi_finalize_current_transfer(master);
474
475	return IRQ_HANDLED;
476}
477
478static int ep93xx_spi_transfer_one(struct spi_master *master,
479				   struct spi_device *spi,
480				   struct spi_transfer *xfer)
481{
482	struct ep93xx_spi *espi = spi_master_get_devdata(master);
483	u32 val;
484	int ret;
485
486	ret = ep93xx_spi_chip_setup(master, spi, xfer);
487	if (ret) {
488		dev_err(&master->dev, "failed to setup chip for transfer\n");
489		return ret;
490	}
491
492	master->cur_msg->state = xfer;
493	espi->rx = 0;
494	espi->tx = 0;
495
496	/*
497	 * There is no point of setting up DMA for the transfers which will
498	 * fit into the FIFO and can be transferred with a single interrupt.
499	 * So in these cases we will be using PIO and don't bother for DMA.
500	 */
501	if (espi->dma_rx && xfer->len > SPI_FIFO_SIZE)
502		return ep93xx_spi_dma_transfer(master);
503
504	/* Using PIO so prime the TX FIFO and enable interrupts */
505	ep93xx_spi_read_write(master);
506
507	val = readl(espi->mmio + SSPCR1);
508	val |= (SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
509	writel(val, espi->mmio + SSPCR1);
510
511	/* signal that we need to wait for completion */
512	return 1;
513}
514
515static int ep93xx_spi_prepare_message(struct spi_master *master,
516				      struct spi_message *msg)
517{
518	struct ep93xx_spi *espi = spi_master_get_devdata(master);
519	unsigned long timeout;
520
521	/*
522	 * Just to be sure: flush any data from RX FIFO.
523	 */
524	timeout = jiffies + msecs_to_jiffies(SPI_TIMEOUT);
525	while (readl(espi->mmio + SSPSR) & SSPSR_RNE) {
526		if (time_after(jiffies, timeout)) {
527			dev_warn(&master->dev,
528				 "timeout while flushing RX FIFO\n");
529			return -ETIMEDOUT;
530		}
531		readl(espi->mmio + SSPDR);
532	}
533
534	/*
535	 * We explicitly handle FIFO level. This way we don't have to check TX
536	 * FIFO status using %SSPSR_TNF bit which may cause RX FIFO overruns.
537	 */
538	espi->fifo_level = 0;
539
540	return 0;
541}
542
543static int ep93xx_spi_prepare_hardware(struct spi_master *master)
544{
545	struct ep93xx_spi *espi = spi_master_get_devdata(master);
546	u32 val;
547	int ret;
548
549	ret = clk_enable(espi->clk);
550	if (ret)
551		return ret;
552
553	val = readl(espi->mmio + SSPCR1);
554	val |= SSPCR1_SSE;
555	writel(val, espi->mmio + SSPCR1);
556
557	return 0;
558}
559
560static int ep93xx_spi_unprepare_hardware(struct spi_master *master)
561{
562	struct ep93xx_spi *espi = spi_master_get_devdata(master);
563	u32 val;
564
565	val = readl(espi->mmio + SSPCR1);
566	val &= ~SSPCR1_SSE;
567	writel(val, espi->mmio + SSPCR1);
568
569	clk_disable(espi->clk);
570
571	return 0;
572}
573
574static bool ep93xx_spi_dma_filter(struct dma_chan *chan, void *filter_param)
575{
576	if (ep93xx_dma_chan_is_m2p(chan))
577		return false;
578
579	chan->private = filter_param;
580	return true;
581}
582
583static int ep93xx_spi_setup_dma(struct ep93xx_spi *espi)
584{
585	dma_cap_mask_t mask;
586	int ret;
587
588	espi->zeropage = (void *)get_zeroed_page(GFP_KERNEL);
589	if (!espi->zeropage)
590		return -ENOMEM;
591
592	dma_cap_zero(mask);
593	dma_cap_set(DMA_SLAVE, mask);
594
595	espi->dma_rx_data.port = EP93XX_DMA_SSP;
596	espi->dma_rx_data.direction = DMA_DEV_TO_MEM;
597	espi->dma_rx_data.name = "ep93xx-spi-rx";
598
599	espi->dma_rx = dma_request_channel(mask, ep93xx_spi_dma_filter,
600					   &espi->dma_rx_data);
601	if (!espi->dma_rx) {
602		ret = -ENODEV;
603		goto fail_free_page;
604	}
605
606	espi->dma_tx_data.port = EP93XX_DMA_SSP;
607	espi->dma_tx_data.direction = DMA_MEM_TO_DEV;
608	espi->dma_tx_data.name = "ep93xx-spi-tx";
609
610	espi->dma_tx = dma_request_channel(mask, ep93xx_spi_dma_filter,
611					   &espi->dma_tx_data);
612	if (!espi->dma_tx) {
613		ret = -ENODEV;
614		goto fail_release_rx;
615	}
616
617	return 0;
618
619fail_release_rx:
620	dma_release_channel(espi->dma_rx);
621	espi->dma_rx = NULL;
622fail_free_page:
623	free_page((unsigned long)espi->zeropage);
624
625	return ret;
626}
627
628static void ep93xx_spi_release_dma(struct ep93xx_spi *espi)
629{
630	if (espi->dma_rx) {
631		dma_release_channel(espi->dma_rx);
632		sg_free_table(&espi->rx_sgt);
633	}
634	if (espi->dma_tx) {
635		dma_release_channel(espi->dma_tx);
636		sg_free_table(&espi->tx_sgt);
637	}
638
639	if (espi->zeropage)
640		free_page((unsigned long)espi->zeropage);
641}
642
643static int ep93xx_spi_probe(struct platform_device *pdev)
644{
645	struct spi_master *master;
646	struct ep93xx_spi_info *info;
647	struct ep93xx_spi *espi;
648	struct resource *res;
649	int irq;
650	int error;
651
652	info = dev_get_platdata(&pdev->dev);
653	if (!info) {
654		dev_err(&pdev->dev, "missing platform data\n");
655		return -EINVAL;
656	}
657
658	irq = platform_get_irq(pdev, 0);
659	if (irq < 0)
660		return -EBUSY;
661
662	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
663	if (!res) {
664		dev_err(&pdev->dev, "unable to get iomem resource\n");
665		return -ENODEV;
666	}
667
668	master = spi_alloc_master(&pdev->dev, sizeof(*espi));
669	if (!master)
670		return -ENOMEM;
671
672	master->use_gpio_descriptors = true;
673	master->prepare_transfer_hardware = ep93xx_spi_prepare_hardware;
674	master->unprepare_transfer_hardware = ep93xx_spi_unprepare_hardware;
675	master->prepare_message = ep93xx_spi_prepare_message;
676	master->transfer_one = ep93xx_spi_transfer_one;
677	master->bus_num = pdev->id;
678	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
679	master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
680	/*
681	 * The SPI core will count the number of GPIO descriptors to figure
682	 * out the number of chip selects available on the platform.
683	 */
684	master->num_chipselect = 0;
685
686	platform_set_drvdata(pdev, master);
687
688	espi = spi_master_get_devdata(master);
689
690	espi->clk = devm_clk_get(&pdev->dev, NULL);
691	if (IS_ERR(espi->clk)) {
692		dev_err(&pdev->dev, "unable to get spi clock\n");
693		error = PTR_ERR(espi->clk);
694		goto fail_release_master;
695	}
696
697	/*
698	 * Calculate maximum and minimum supported clock rates
699	 * for the controller.
700	 */
701	master->max_speed_hz = clk_get_rate(espi->clk) / 2;
702	master->min_speed_hz = clk_get_rate(espi->clk) / (254 * 256);
703
704	espi->sspdr_phys = res->start + SSPDR;
705
706	espi->mmio = devm_ioremap_resource(&pdev->dev, res);
707	if (IS_ERR(espi->mmio)) {
708		error = PTR_ERR(espi->mmio);
709		goto fail_release_master;
710	}
 
711
712	error = devm_request_irq(&pdev->dev, irq, ep93xx_spi_interrupt,
713				0, "ep93xx-spi", master);
714	if (error) {
715		dev_err(&pdev->dev, "failed to request irq\n");
716		goto fail_release_master;
717	}
718
719	if (info->use_dma && ep93xx_spi_setup_dma(espi))
 
 
 
 
720		dev_warn(&pdev->dev, "DMA setup failed. Falling back to PIO\n");
721
722	/* make sure that the hardware is disabled */
723	writel(0, espi->mmio + SSPCR1);
724
725	error = devm_spi_register_master(&pdev->dev, master);
 
726	if (error) {
727		dev_err(&pdev->dev, "failed to register SPI master\n");
728		goto fail_free_dma;
729	}
730
731	dev_info(&pdev->dev, "EP93xx SPI Controller at 0x%08lx irq %d\n",
732		 (unsigned long)res->start, irq);
733
734	return 0;
735
736fail_free_dma:
737	ep93xx_spi_release_dma(espi);
738fail_release_master:
739	spi_master_put(master);
740
741	return error;
742}
743
744static int ep93xx_spi_remove(struct platform_device *pdev)
745{
746	struct spi_master *master = platform_get_drvdata(pdev);
747	struct ep93xx_spi *espi = spi_master_get_devdata(master);
748
749	ep93xx_spi_release_dma(espi);
 
750
751	return 0;
752}
 
 
 
753
754static struct platform_driver ep93xx_spi_driver = {
755	.driver		= {
756		.name	= "ep93xx-spi",
 
757	},
758	.probe		= ep93xx_spi_probe,
759	.remove		= ep93xx_spi_remove,
760};
761module_platform_driver(ep93xx_spi_driver);
762
763MODULE_DESCRIPTION("EP93xx SPI Controller driver");
764MODULE_AUTHOR("Mika Westerberg <mika.westerberg@iki.fi>");
765MODULE_LICENSE("GPL");
766MODULE_ALIAS("platform:ep93xx-spi");