Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Serial Attached SCSI (SAS) Expander discovery and configuration
   4 *
   5 * Copyright (C) 2005 Adaptec, Inc.  All rights reserved.
   6 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
   7 *
   8 * This file is licensed under GPLv2.
   9 */
  10
  11#include <linux/scatterlist.h>
  12#include <linux/blkdev.h>
  13#include <linux/slab.h>
  14#include <linux/unaligned.h>
  15
  16#include "sas_internal.h"
  17
  18#include <scsi/sas_ata.h>
  19#include <scsi/scsi_transport.h>
  20#include <scsi/scsi_transport_sas.h>
  21#include "scsi_sas_internal.h"
  22
  23static int sas_discover_expander(struct domain_device *dev);
  24static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
  25static int sas_configure_phy(struct domain_device *dev, int phy_id,
  26			     u8 *sas_addr, int include);
  27static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr);
  28
  29static void sas_port_add_ex_phy(struct sas_port *port, struct ex_phy *ex_phy)
  30{
  31	sas_port_add_phy(port, ex_phy->phy);
  32	ex_phy->port = port;
  33	ex_phy->phy_state = PHY_DEVICE_DISCOVERED;
  34}
  35
  36static void sas_ex_add_parent_port(struct domain_device *dev, int phy_id)
  37{
  38	struct expander_device *ex = &dev->ex_dev;
  39	struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
 
  40
  41	if (!ex->parent_port) {
  42		ex->parent_port = sas_port_alloc(&dev->rphy->dev, phy_id);
  43		/* FIXME: error handling */
  44		BUG_ON(!ex->parent_port);
  45		BUG_ON(sas_port_add(ex->parent_port));
  46		sas_port_mark_backlink(ex->parent_port);
  47	}
  48	sas_port_add_ex_phy(ex->parent_port, ex_phy);
  49}
  50
  51/* ---------- SMP task management ---------- */
 
 
 
 
  52
  53/* Give it some long enough timeout. In seconds. */
  54#define SMP_TIMEOUT 10
  55
  56static int smp_execute_task_sg(struct domain_device *dev,
  57		struct scatterlist *req, struct scatterlist *resp)
  58{
  59	int res, retry;
  60	struct sas_task *task = NULL;
  61	struct sas_internal *i =
  62		to_sas_internal(dev->port->ha->shost->transportt);
  63	struct sas_ha_struct *ha = dev->port->ha;
  64
  65	pm_runtime_get_sync(ha->dev);
  66	mutex_lock(&dev->ex_dev.cmd_mutex);
  67	for (retry = 0; retry < 3; retry++) {
  68		if (test_bit(SAS_DEV_GONE, &dev->state)) {
  69			res = -ECOMM;
  70			break;
  71		}
  72
  73		task = sas_alloc_slow_task(GFP_KERNEL);
  74		if (!task) {
  75			res = -ENOMEM;
  76			break;
  77		}
  78		task->dev = dev;
  79		task->task_proto = dev->tproto;
  80		task->smp_task.smp_req = *req;
  81		task->smp_task.smp_resp = *resp;
  82
  83		task->task_done = sas_task_internal_done;
  84
  85		task->slow_task->timer.function = sas_task_internal_timedout;
  86		task->slow_task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
  87		add_timer(&task->slow_task->timer);
  88
  89		res = i->dft->lldd_execute_task(task, GFP_KERNEL);
  90
  91		if (res) {
  92			del_timer_sync(&task->slow_task->timer);
  93			pr_notice("executing SMP task failed:%d\n", res);
  94			break;
  95		}
  96
  97		wait_for_completion(&task->slow_task->completion);
  98		res = -ECOMM;
  99		if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
 100			pr_notice("smp task timed out or aborted\n");
 101			i->dft->lldd_abort_task(task);
 102			if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
 103				pr_notice("SMP task aborted and not done\n");
 104				break;
 105			}
 106		}
 107		if (task->task_status.resp == SAS_TASK_COMPLETE &&
 108		    task->task_status.stat == SAS_SAM_STAT_GOOD) {
 109			res = 0;
 110			break;
 111		}
 112		if (task->task_status.resp == SAS_TASK_COMPLETE &&
 113		    task->task_status.stat == SAS_DATA_UNDERRUN) {
 114			/* no error, but return the number of bytes of
 115			 * underrun */
 116			res = task->task_status.residual;
 117			break;
 118		}
 119		if (task->task_status.resp == SAS_TASK_COMPLETE &&
 120		    task->task_status.stat == SAS_DATA_OVERRUN) {
 121			res = -EMSGSIZE;
 122			break;
 123		}
 124		if (task->task_status.resp == SAS_TASK_UNDELIVERED &&
 125		    task->task_status.stat == SAS_DEVICE_UNKNOWN)
 126			break;
 127		else {
 128			pr_notice("%s: task to dev %016llx response: 0x%x status 0x%x\n",
 129				  __func__,
 130				  SAS_ADDR(dev->sas_addr),
 131				  task->task_status.resp,
 132				  task->task_status.stat);
 133			sas_free_task(task);
 134			task = NULL;
 135		}
 136	}
 137	mutex_unlock(&dev->ex_dev.cmd_mutex);
 138	pm_runtime_put_sync(ha->dev);
 139
 140	BUG_ON(retry == 3 && task != NULL);
 141	sas_free_task(task);
 142	return res;
 143}
 144
 145static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
 146			    void *resp, int resp_size)
 147{
 148	struct scatterlist req_sg;
 149	struct scatterlist resp_sg;
 150
 151	sg_init_one(&req_sg, req, req_size);
 152	sg_init_one(&resp_sg, resp, resp_size);
 153	return smp_execute_task_sg(dev, &req_sg, &resp_sg);
 154}
 155
 156/* ---------- Allocations ---------- */
 157
 158static inline void *alloc_smp_req(int size)
 159{
 160	u8 *p = kzalloc(ALIGN(size, ARCH_DMA_MINALIGN), GFP_KERNEL);
 161	if (p)
 162		p[0] = SMP_REQUEST;
 163	return p;
 164}
 165
 166static inline void *alloc_smp_resp(int size)
 167{
 168	return kzalloc(size, GFP_KERNEL);
 169}
 170
 171static char sas_route_char(struct domain_device *dev, struct ex_phy *phy)
 172{
 173	switch (phy->routing_attr) {
 174	case TABLE_ROUTING:
 175		if (dev->ex_dev.t2t_supp)
 176			return 'U';
 177		else
 178			return 'T';
 179	case DIRECT_ROUTING:
 180		return 'D';
 181	case SUBTRACTIVE_ROUTING:
 182		return 'S';
 183	default:
 184		return '?';
 185	}
 186}
 187
 188static enum sas_device_type to_dev_type(struct discover_resp *dr)
 189{
 190	/* This is detecting a failure to transmit initial dev to host
 191	 * FIS as described in section J.5 of sas-2 r16
 192	 */
 193	if (dr->attached_dev_type == SAS_PHY_UNUSED && dr->attached_sata_dev &&
 194	    dr->linkrate >= SAS_LINK_RATE_1_5_GBPS)
 195		return SAS_SATA_PENDING;
 196	else
 197		return dr->attached_dev_type;
 198}
 199
 200static void sas_set_ex_phy(struct domain_device *dev, int phy_id,
 201			   struct smp_disc_resp *disc_resp)
 202{
 203	enum sas_device_type dev_type;
 204	enum sas_linkrate linkrate;
 205	u8 sas_addr[SAS_ADDR_SIZE];
 206	struct discover_resp *dr = &disc_resp->disc;
 
 207	struct sas_ha_struct *ha = dev->port->ha;
 208	struct expander_device *ex = &dev->ex_dev;
 209	struct ex_phy *phy = &ex->ex_phy[phy_id];
 210	struct sas_rphy *rphy = dev->rphy;
 211	bool new_phy = !phy->phy;
 212	char *type;
 213
 214	if (new_phy) {
 215		if (WARN_ON_ONCE(test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)))
 216			return;
 217		phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
 218
 219		/* FIXME: error_handling */
 220		BUG_ON(!phy->phy);
 221	}
 222
 223	switch (disc_resp->result) {
 224	case SMP_RESP_PHY_VACANT:
 225		phy->phy_state = PHY_VACANT;
 226		break;
 227	default:
 228		phy->phy_state = PHY_NOT_PRESENT;
 229		break;
 230	case SMP_RESP_FUNC_ACC:
 231		phy->phy_state = PHY_EMPTY; /* do not know yet */
 232		break;
 233	}
 234
 235	/* check if anything important changed to squelch debug */
 236	dev_type = phy->attached_dev_type;
 237	linkrate  = phy->linkrate;
 238	memcpy(sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
 239
 240	/* Handle vacant phy - rest of dr data is not valid so skip it */
 241	if (phy->phy_state == PHY_VACANT) {
 242		memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
 243		phy->attached_dev_type = SAS_PHY_UNUSED;
 244		if (!test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)) {
 245			phy->phy_id = phy_id;
 246			goto skip;
 247		} else
 248			goto out;
 249	}
 250
 251	phy->attached_dev_type = to_dev_type(dr);
 252	if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
 253		goto out;
 254	phy->phy_id = phy_id;
 255	phy->linkrate = dr->linkrate;
 256	phy->attached_sata_host = dr->attached_sata_host;
 257	phy->attached_sata_dev  = dr->attached_sata_dev;
 258	phy->attached_sata_ps   = dr->attached_sata_ps;
 259	phy->attached_iproto = dr->iproto << 1;
 260	phy->attached_tproto = dr->tproto << 1;
 261	/* help some expanders that fail to zero sas_address in the 'no
 262	 * device' case
 263	 */
 264	if (phy->attached_dev_type == SAS_PHY_UNUSED)
 
 265		memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
 266	else
 267		memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
 268	phy->attached_phy_id = dr->attached_phy_id;
 269	phy->phy_change_count = dr->change_count;
 270	phy->routing_attr = dr->routing_attr;
 271	phy->virtual = dr->virtual;
 272	phy->last_da_index = -1;
 273
 274	phy->phy->identify.sas_address = SAS_ADDR(phy->attached_sas_addr);
 275	phy->phy->identify.device_type = dr->attached_dev_type;
 276	phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
 277	phy->phy->identify.target_port_protocols = phy->attached_tproto;
 278	if (!phy->attached_tproto && dr->attached_sata_dev)
 279		phy->phy->identify.target_port_protocols = SAS_PROTOCOL_SATA;
 280	phy->phy->identify.phy_identifier = phy_id;
 281	phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
 282	phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
 283	phy->phy->minimum_linkrate = dr->pmin_linkrate;
 284	phy->phy->maximum_linkrate = dr->pmax_linkrate;
 285	phy->phy->negotiated_linkrate = phy->linkrate;
 286	phy->phy->enabled = (phy->linkrate != SAS_PHY_DISABLED);
 287
 288 skip:
 289	if (new_phy)
 290		if (sas_phy_add(phy->phy)) {
 291			sas_phy_free(phy->phy);
 292			return;
 293		}
 294
 295 out:
 296	switch (phy->attached_dev_type) {
 297	case SAS_SATA_PENDING:
 298		type = "stp pending";
 299		break;
 300	case SAS_PHY_UNUSED:
 301		type = "no device";
 302		break;
 303	case SAS_END_DEVICE:
 304		if (phy->attached_iproto) {
 305			if (phy->attached_tproto)
 306				type = "host+target";
 307			else
 308				type = "host";
 309		} else {
 310			if (dr->attached_sata_dev)
 311				type = "stp";
 312			else
 313				type = "ssp";
 314		}
 315		break;
 316	case SAS_EDGE_EXPANDER_DEVICE:
 317	case SAS_FANOUT_EXPANDER_DEVICE:
 318		type = "smp";
 319		break;
 320	default:
 321		type = "unknown";
 322	}
 323
 324	/* this routine is polled by libata error recovery so filter
 325	 * unimportant messages
 326	 */
 327	if (new_phy || phy->attached_dev_type != dev_type ||
 328	    phy->linkrate != linkrate ||
 329	    SAS_ADDR(phy->attached_sas_addr) != SAS_ADDR(sas_addr))
 330		/* pass */;
 331	else
 332		return;
 333
 334	/* if the attached device type changed and ata_eh is active,
 335	 * make sure we run revalidation when eh completes (see:
 336	 * sas_enable_revalidation)
 337	 */
 338	if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
 339		set_bit(DISCE_REVALIDATE_DOMAIN, &dev->port->disc.pending);
 340
 341	pr_debug("%sex %016llx phy%02d:%c:%X attached: %016llx (%s)\n",
 342		 test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state) ? "ata: " : "",
 343		 SAS_ADDR(dev->sas_addr), phy->phy_id,
 344		 sas_route_char(dev, phy), phy->linkrate,
 345		 SAS_ADDR(phy->attached_sas_addr), type);
 346}
 347
 348/* check if we have an existing attached ata device on this expander phy */
 349struct domain_device *sas_ex_to_ata(struct domain_device *ex_dev, int phy_id)
 350{
 351	struct ex_phy *ex_phy = &ex_dev->ex_dev.ex_phy[phy_id];
 352	struct domain_device *dev;
 353	struct sas_rphy *rphy;
 354
 355	if (!ex_phy->port)
 356		return NULL;
 357
 358	rphy = ex_phy->port->rphy;
 359	if (!rphy)
 360		return NULL;
 361
 362	dev = sas_find_dev_by_rphy(rphy);
 363
 364	if (dev && dev_is_sata(dev))
 365		return dev;
 366
 367	return NULL;
 368}
 369
 370#define DISCOVER_REQ_SIZE  16
 371#define DISCOVER_RESP_SIZE sizeof(struct smp_disc_resp)
 372
 373static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
 374				      struct smp_disc_resp *disc_resp,
 375				      int single)
 376{
 377	struct discover_resp *dr = &disc_resp->disc;
 378	int res;
 379
 380	disc_req[9] = single;
 381
 382	res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
 383			       disc_resp, DISCOVER_RESP_SIZE);
 384	if (res)
 385		return res;
 
 386	if (memcmp(dev->sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE) == 0) {
 387		pr_notice("Found loopback topology, just ignore it!\n");
 388		return 0;
 389	}
 390	sas_set_ex_phy(dev, single, disc_resp);
 391	return 0;
 392}
 393
 394int sas_ex_phy_discover(struct domain_device *dev, int single)
 395{
 396	struct expander_device *ex = &dev->ex_dev;
 397	int  res = 0;
 398	u8   *disc_req;
 399	struct smp_disc_resp *disc_resp;
 400
 401	disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
 402	if (!disc_req)
 403		return -ENOMEM;
 404
 405	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
 406	if (!disc_resp) {
 407		kfree(disc_req);
 408		return -ENOMEM;
 409	}
 410
 411	disc_req[1] = SMP_DISCOVER;
 412
 413	if (0 <= single && single < ex->num_phys) {
 414		res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
 415	} else {
 416		int i;
 417
 418		for (i = 0; i < ex->num_phys; i++) {
 419			res = sas_ex_phy_discover_helper(dev, disc_req,
 420							 disc_resp, i);
 421			if (res)
 422				goto out_err;
 423		}
 424	}
 425out_err:
 426	kfree(disc_resp);
 427	kfree(disc_req);
 428	return res;
 429}
 430
 431static int sas_expander_discover(struct domain_device *dev)
 432{
 433	struct expander_device *ex = &dev->ex_dev;
 434	int res;
 435
 436	ex->ex_phy = kcalloc(ex->num_phys, sizeof(*ex->ex_phy), GFP_KERNEL);
 437	if (!ex->ex_phy)
 438		return -ENOMEM;
 439
 440	res = sas_ex_phy_discover(dev, -1);
 441	if (res)
 442		goto out_err;
 443
 444	return 0;
 445 out_err:
 446	kfree(ex->ex_phy);
 447	ex->ex_phy = NULL;
 448	return res;
 449}
 450
 451#define MAX_EXPANDER_PHYS 128
 452
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 453#define RG_REQ_SIZE   8
 454#define RG_RESP_SIZE  sizeof(struct smp_rg_resp)
 455
 456static int sas_ex_general(struct domain_device *dev)
 457{
 458	u8 *rg_req;
 459	struct smp_rg_resp *rg_resp;
 460	struct report_general_resp *rg;
 461	int res;
 462	int i;
 463
 464	rg_req = alloc_smp_req(RG_REQ_SIZE);
 465	if (!rg_req)
 466		return -ENOMEM;
 467
 468	rg_resp = alloc_smp_resp(RG_RESP_SIZE);
 469	if (!rg_resp) {
 470		kfree(rg_req);
 471		return -ENOMEM;
 472	}
 473
 474	rg_req[1] = SMP_REPORT_GENERAL;
 475
 476	for (i = 0; i < 5; i++) {
 477		res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
 478				       RG_RESP_SIZE);
 479
 480		if (res) {
 481			pr_notice("RG to ex %016llx failed:0x%x\n",
 482				  SAS_ADDR(dev->sas_addr), res);
 483			goto out;
 484		} else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
 485			pr_debug("RG:ex %016llx returned SMP result:0x%x\n",
 486				 SAS_ADDR(dev->sas_addr), rg_resp->result);
 487			res = rg_resp->result;
 488			goto out;
 489		}
 490
 491		rg = &rg_resp->rg;
 492		dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
 493		dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
 494		dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
 495		dev->ex_dev.t2t_supp = rg->t2t_supp;
 496		dev->ex_dev.conf_route_table = rg->conf_route_table;
 497		dev->ex_dev.configuring = rg->configuring;
 498		memcpy(dev->ex_dev.enclosure_logical_id,
 499		       rg->enclosure_logical_id, 8);
 500
 501		if (dev->ex_dev.configuring) {
 502			pr_debug("RG: ex %016llx self-configuring...\n",
 503				 SAS_ADDR(dev->sas_addr));
 504			schedule_timeout_interruptible(5*HZ);
 505		} else
 506			break;
 507	}
 508out:
 509	kfree(rg_req);
 510	kfree(rg_resp);
 511	return res;
 512}
 513
 514static void ex_assign_manuf_info(struct domain_device *dev, void
 515					*_mi_resp)
 516{
 517	u8 *mi_resp = _mi_resp;
 518	struct sas_rphy *rphy = dev->rphy;
 519	struct sas_expander_device *edev = rphy_to_expander_device(rphy);
 520
 521	memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
 522	memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
 523	memcpy(edev->product_rev, mi_resp + 36,
 524	       SAS_EXPANDER_PRODUCT_REV_LEN);
 525
 526	if (mi_resp[8] & 1) {
 527		memcpy(edev->component_vendor_id, mi_resp + 40,
 528		       SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
 529		edev->component_id = mi_resp[48] << 8 | mi_resp[49];
 530		edev->component_revision_id = mi_resp[50];
 531	}
 532}
 533
 534#define MI_REQ_SIZE   8
 535#define MI_RESP_SIZE 64
 536
 537static int sas_ex_manuf_info(struct domain_device *dev)
 538{
 539	u8 *mi_req;
 540	u8 *mi_resp;
 541	int res;
 542
 543	mi_req = alloc_smp_req(MI_REQ_SIZE);
 544	if (!mi_req)
 545		return -ENOMEM;
 546
 547	mi_resp = alloc_smp_resp(MI_RESP_SIZE);
 548	if (!mi_resp) {
 549		kfree(mi_req);
 550		return -ENOMEM;
 551	}
 552
 553	mi_req[1] = SMP_REPORT_MANUF_INFO;
 554
 555	res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp, MI_RESP_SIZE);
 556	if (res) {
 557		pr_notice("MI: ex %016llx failed:0x%x\n",
 558			  SAS_ADDR(dev->sas_addr), res);
 559		goto out;
 560	} else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
 561		pr_debug("MI ex %016llx returned SMP result:0x%x\n",
 562			 SAS_ADDR(dev->sas_addr), mi_resp[2]);
 563		goto out;
 564	}
 565
 566	ex_assign_manuf_info(dev, mi_resp);
 567out:
 568	kfree(mi_req);
 569	kfree(mi_resp);
 570	return res;
 571}
 572
 573#define PC_REQ_SIZE  44
 574#define PC_RESP_SIZE 8
 575
 576int sas_smp_phy_control(struct domain_device *dev, int phy_id,
 577			enum phy_func phy_func,
 578			struct sas_phy_linkrates *rates)
 579{
 580	u8 *pc_req;
 581	u8 *pc_resp;
 582	int res;
 583
 584	pc_req = alloc_smp_req(PC_REQ_SIZE);
 585	if (!pc_req)
 586		return -ENOMEM;
 587
 588	pc_resp = alloc_smp_resp(PC_RESP_SIZE);
 589	if (!pc_resp) {
 590		kfree(pc_req);
 591		return -ENOMEM;
 592	}
 593
 594	pc_req[1] = SMP_PHY_CONTROL;
 595	pc_req[9] = phy_id;
 596	pc_req[10] = phy_func;
 597	if (rates) {
 598		pc_req[32] = rates->minimum_linkrate << 4;
 599		pc_req[33] = rates->maximum_linkrate << 4;
 600	}
 601
 602	res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp, PC_RESP_SIZE);
 603	if (res) {
 604		pr_err("ex %016llx phy%02d PHY control failed: %d\n",
 605		       SAS_ADDR(dev->sas_addr), phy_id, res);
 606	} else if (pc_resp[2] != SMP_RESP_FUNC_ACC) {
 607		pr_err("ex %016llx phy%02d PHY control failed: function result 0x%x\n",
 608		       SAS_ADDR(dev->sas_addr), phy_id, pc_resp[2]);
 609		res = pc_resp[2];
 610	}
 611	kfree(pc_resp);
 612	kfree(pc_req);
 613	return res;
 614}
 615
 616static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
 617{
 618	struct expander_device *ex = &dev->ex_dev;
 619	struct ex_phy *phy = &ex->ex_phy[phy_id];
 620
 621	sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
 622	phy->linkrate = SAS_PHY_DISABLED;
 623}
 624
 625static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
 626{
 627	struct expander_device *ex = &dev->ex_dev;
 628	int i;
 629
 630	for (i = 0; i < ex->num_phys; i++) {
 631		struct ex_phy *phy = &ex->ex_phy[i];
 632
 633		if (phy->phy_state == PHY_VACANT ||
 634		    phy->phy_state == PHY_NOT_PRESENT)
 635			continue;
 636
 637		if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
 638			sas_ex_disable_phy(dev, i);
 639	}
 640}
 641
 642static int sas_dev_present_in_domain(struct asd_sas_port *port,
 643					    u8 *sas_addr)
 644{
 645	struct domain_device *dev;
 646
 647	if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
 648		return 1;
 649	list_for_each_entry(dev, &port->dev_list, dev_list_node) {
 650		if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
 651			return 1;
 652	}
 653	return 0;
 654}
 655
 656#define RPEL_REQ_SIZE	16
 657#define RPEL_RESP_SIZE	32
 658int sas_smp_get_phy_events(struct sas_phy *phy)
 659{
 660	int res;
 661	u8 *req;
 662	u8 *resp;
 663	struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
 664	struct domain_device *dev = sas_find_dev_by_rphy(rphy);
 665
 666	req = alloc_smp_req(RPEL_REQ_SIZE);
 667	if (!req)
 668		return -ENOMEM;
 669
 670	resp = alloc_smp_resp(RPEL_RESP_SIZE);
 671	if (!resp) {
 672		kfree(req);
 673		return -ENOMEM;
 674	}
 675
 676	req[1] = SMP_REPORT_PHY_ERR_LOG;
 677	req[9] = phy->number;
 678
 679	res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
 680			       resp, RPEL_RESP_SIZE);
 681
 682	if (res)
 683		goto out;
 684
 685	phy->invalid_dword_count = get_unaligned_be32(&resp[12]);
 686	phy->running_disparity_error_count = get_unaligned_be32(&resp[16]);
 687	phy->loss_of_dword_sync_count = get_unaligned_be32(&resp[20]);
 688	phy->phy_reset_problem_count = get_unaligned_be32(&resp[24]);
 689
 690 out:
 691	kfree(req);
 692	kfree(resp);
 693	return res;
 694
 695}
 696
 697#ifdef CONFIG_SCSI_SAS_ATA
 698
 699#define RPS_REQ_SIZE  16
 700#define RPS_RESP_SIZE sizeof(struct smp_rps_resp)
 701
 702int sas_get_report_phy_sata(struct domain_device *dev, int phy_id,
 703			    struct smp_rps_resp *rps_resp)
 704{
 705	int res;
 706	u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
 707	u8 *resp = (u8 *)rps_resp;
 708
 709	if (!rps_req)
 710		return -ENOMEM;
 711
 712	rps_req[1] = SMP_REPORT_PHY_SATA;
 713	rps_req[9] = phy_id;
 714
 715	res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
 716			       rps_resp, RPS_RESP_SIZE);
 717
 718	/* 0x34 is the FIS type for the D2H fis.  There's a potential
 719	 * standards cockup here.  sas-2 explicitly specifies the FIS
 720	 * should be encoded so that FIS type is in resp[24].
 721	 * However, some expanders endian reverse this.  Undo the
 722	 * reversal here */
 723	if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
 724		int i;
 725
 726		for (i = 0; i < 5; i++) {
 727			int j = 24 + (i*4);
 728			u8 a, b;
 729			a = resp[j + 0];
 730			b = resp[j + 1];
 731			resp[j + 0] = resp[j + 3];
 732			resp[j + 1] = resp[j + 2];
 733			resp[j + 2] = b;
 734			resp[j + 3] = a;
 735		}
 736	}
 737
 738	kfree(rps_req);
 739	return res;
 740}
 741#endif
 742
 743static void sas_ex_get_linkrate(struct domain_device *parent,
 744				       struct domain_device *child,
 745				       struct ex_phy *parent_phy)
 746{
 747	struct expander_device *parent_ex = &parent->ex_dev;
 748	struct sas_port *port;
 749	int i;
 750
 751	child->pathways = 0;
 752
 753	port = parent_phy->port;
 754
 755	for (i = 0; i < parent_ex->num_phys; i++) {
 756		struct ex_phy *phy = &parent_ex->ex_phy[i];
 757
 758		if (phy->phy_state == PHY_VACANT ||
 759		    phy->phy_state == PHY_NOT_PRESENT)
 760			continue;
 761
 762		if (sas_phy_match_dev_addr(child, phy)) {
 
 
 763			child->min_linkrate = min(parent->min_linkrate,
 764						  phy->linkrate);
 765			child->max_linkrate = max(parent->max_linkrate,
 766						  phy->linkrate);
 767			child->pathways++;
 768			sas_port_add_phy(port, phy->phy);
 769		}
 770	}
 771	child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
 772	child->pathways = min(child->pathways, parent->pathways);
 773}
 774
 775static int sas_ex_add_dev(struct domain_device *parent, struct ex_phy *phy,
 776			  struct domain_device *child, int phy_id)
 777{
 778	struct sas_rphy *rphy;
 779	int res;
 780
 781	child->dev_type = SAS_END_DEVICE;
 782	rphy = sas_end_device_alloc(phy->port);
 783	if (!rphy)
 784		return -ENOMEM;
 785
 786	child->tproto = phy->attached_tproto;
 787	sas_init_dev(child);
 788
 789	child->rphy = rphy;
 790	get_device(&rphy->dev);
 791	rphy->identify.phy_identifier = phy_id;
 792	sas_fill_in_rphy(child, rphy);
 793
 794	list_add_tail(&child->disco_list_node, &parent->port->disco_list);
 795
 796	res = sas_notify_lldd_dev_found(child);
 797	if (res) {
 798		pr_notice("notify lldd for device %016llx at %016llx:%02d returned 0x%x\n",
 799			  SAS_ADDR(child->sas_addr),
 800			  SAS_ADDR(parent->sas_addr), phy_id, res);
 801		sas_rphy_free(child->rphy);
 802		list_del(&child->disco_list_node);
 803		return res;
 804	}
 805
 806	return 0;
 807}
 808
 809static struct domain_device *sas_ex_discover_end_dev(
 810	struct domain_device *parent, int phy_id)
 811{
 812	struct expander_device *parent_ex = &parent->ex_dev;
 813	struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
 814	struct domain_device *child = NULL;
 
 815	int res;
 816
 817	if (phy->attached_sata_host || phy->attached_sata_ps)
 818		return NULL;
 819
 820	child = sas_alloc_device();
 821	if (!child)
 822		return NULL;
 823
 824	kref_get(&parent->kref);
 825	child->parent = parent;
 826	child->port   = parent->port;
 827	child->iproto = phy->attached_iproto;
 828	memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
 829	sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
 830	if (!phy->port) {
 831		phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
 832		if (unlikely(!phy->port))
 833			goto out_err;
 834		if (unlikely(sas_port_add(phy->port) != 0)) {
 835			sas_port_free(phy->port);
 836			goto out_err;
 837		}
 838	}
 839	sas_ex_get_linkrate(parent, child, phy);
 840	sas_device_set_phy(child, phy->port);
 841
 
 842	if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) {
 843		res = sas_ata_add_dev(parent, phy, child, phy_id);
 844	} else if (phy->attached_tproto & SAS_PROTOCOL_SSP) {
 845		res = sas_ex_add_dev(parent, phy, child, phy_id);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 846	} else {
 847		pr_notice("target proto 0x%x at %016llx:0x%x not handled\n",
 848			  phy->attached_tproto, SAS_ADDR(parent->sas_addr),
 849			  phy_id);
 850		res = -ENODEV;
 851	}
 852
 853	if (res)
 854		goto out_free;
 
 855
 856	list_add_tail(&child->siblings, &parent_ex->children);
 857	return child;
 858
 
 
 
 
 
 
 859 out_free:
 860	sas_port_delete(phy->port);
 861 out_err:
 862	phy->port = NULL;
 863	sas_put_device(child);
 864	return NULL;
 865}
 866
 867/* See if this phy is part of a wide port */
 868static bool sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
 869{
 870	struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
 871	int i;
 872
 873	for (i = 0; i < parent->ex_dev.num_phys; i++) {
 874		struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
 875
 876		if (ephy == phy)
 877			continue;
 878
 879		if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
 880			    SAS_ADDR_SIZE) && ephy->port) {
 881			sas_port_add_ex_phy(ephy->port, phy);
 
 
 882			return true;
 883		}
 884	}
 885
 886	return false;
 887}
 888
 889static struct domain_device *sas_ex_discover_expander(
 890	struct domain_device *parent, int phy_id)
 891{
 892	struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
 893	struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
 894	struct domain_device *child = NULL;
 895	struct sas_rphy *rphy;
 896	struct sas_expander_device *edev;
 897	struct asd_sas_port *port;
 898	int res;
 899
 900	if (phy->routing_attr == DIRECT_ROUTING) {
 901		pr_warn("ex %016llx:%02d:D <--> ex %016llx:0x%x is not allowed\n",
 902			SAS_ADDR(parent->sas_addr), phy_id,
 903			SAS_ADDR(phy->attached_sas_addr),
 904			phy->attached_phy_id);
 905		return NULL;
 906	}
 907	child = sas_alloc_device();
 908	if (!child)
 909		return NULL;
 910
 911	phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
 912	/* FIXME: better error handling */
 913	BUG_ON(sas_port_add(phy->port) != 0);
 914
 915
 916	switch (phy->attached_dev_type) {
 917	case SAS_EDGE_EXPANDER_DEVICE:
 918		rphy = sas_expander_alloc(phy->port,
 919					  SAS_EDGE_EXPANDER_DEVICE);
 920		break;
 921	case SAS_FANOUT_EXPANDER_DEVICE:
 922		rphy = sas_expander_alloc(phy->port,
 923					  SAS_FANOUT_EXPANDER_DEVICE);
 924		break;
 925	default:
 926		rphy = NULL;	/* shut gcc up */
 927		BUG();
 928	}
 929	port = parent->port;
 930	child->rphy = rphy;
 931	get_device(&rphy->dev);
 932	edev = rphy_to_expander_device(rphy);
 933	child->dev_type = phy->attached_dev_type;
 934	kref_get(&parent->kref);
 935	child->parent = parent;
 936	child->port = port;
 937	child->iproto = phy->attached_iproto;
 938	child->tproto = phy->attached_tproto;
 939	memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
 940	sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
 941	sas_ex_get_linkrate(parent, child, phy);
 942	edev->level = parent_ex->level + 1;
 943	parent->port->disc.max_level = max(parent->port->disc.max_level,
 944					   edev->level);
 945	sas_init_dev(child);
 946	sas_fill_in_rphy(child, rphy);
 947	sas_rphy_add(rphy);
 948
 949	spin_lock_irq(&parent->port->dev_list_lock);
 950	list_add_tail(&child->dev_list_node, &parent->port->dev_list);
 951	spin_unlock_irq(&parent->port->dev_list_lock);
 952
 953	res = sas_discover_expander(child);
 954	if (res) {
 955		sas_rphy_delete(rphy);
 956		spin_lock_irq(&parent->port->dev_list_lock);
 957		list_del(&child->dev_list_node);
 958		spin_unlock_irq(&parent->port->dev_list_lock);
 959		sas_put_device(child);
 960		sas_port_delete(phy->port);
 961		phy->port = NULL;
 962		return NULL;
 963	}
 964	list_add_tail(&child->siblings, &parent->ex_dev.children);
 965	return child;
 966}
 967
 968static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
 969{
 970	struct expander_device *ex = &dev->ex_dev;
 971	struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
 972	struct domain_device *child = NULL;
 973	int res = 0;
 974
 975	/* Phy state */
 976	if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
 977		if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
 978			res = sas_ex_phy_discover(dev, phy_id);
 979		if (res)
 980			return res;
 981	}
 982
 983	/* Parent and domain coherency */
 984	if (!dev->parent && sas_phy_match_port_addr(dev->port, ex_phy)) {
 985		sas_ex_add_parent_port(dev, phy_id);
 
 986		return 0;
 987	}
 988	if (dev->parent && sas_phy_match_dev_addr(dev->parent, ex_phy)) {
 989		sas_ex_add_parent_port(dev, phy_id);
 
 990		if (ex_phy->routing_attr == TABLE_ROUTING)
 991			sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
 992		return 0;
 993	}
 994
 995	if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
 996		sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
 997
 998	if (ex_phy->attached_dev_type == SAS_PHY_UNUSED) {
 999		if (ex_phy->routing_attr == DIRECT_ROUTING) {
1000			memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1001			sas_configure_routing(dev, ex_phy->attached_sas_addr);
1002		}
1003		return 0;
1004	} else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
1005		return 0;
1006
1007	if (ex_phy->attached_dev_type != SAS_END_DEVICE &&
1008	    ex_phy->attached_dev_type != SAS_FANOUT_EXPANDER_DEVICE &&
1009	    ex_phy->attached_dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1010	    ex_phy->attached_dev_type != SAS_SATA_PENDING) {
1011		pr_warn("unknown device type(0x%x) attached to ex %016llx phy%02d\n",
1012			ex_phy->attached_dev_type,
1013			SAS_ADDR(dev->sas_addr),
1014			phy_id);
1015		return 0;
1016	}
1017
1018	res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
1019	if (res) {
1020		pr_notice("configure routing for dev %016llx reported 0x%x. Forgotten\n",
1021			  SAS_ADDR(ex_phy->attached_sas_addr), res);
1022		sas_disable_routing(dev, ex_phy->attached_sas_addr);
1023		return res;
1024	}
1025
1026	if (sas_ex_join_wide_port(dev, phy_id)) {
1027		pr_debug("Attaching ex phy%02d to wide port %016llx\n",
1028			 phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
1029		return res;
1030	}
1031
1032	switch (ex_phy->attached_dev_type) {
1033	case SAS_END_DEVICE:
1034	case SAS_SATA_PENDING:
1035		child = sas_ex_discover_end_dev(dev, phy_id);
1036		break;
1037	case SAS_FANOUT_EXPANDER_DEVICE:
1038		if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
1039			pr_debug("second fanout expander %016llx phy%02d attached to ex %016llx phy%02d\n",
1040				 SAS_ADDR(ex_phy->attached_sas_addr),
1041				 ex_phy->attached_phy_id,
1042				 SAS_ADDR(dev->sas_addr),
1043				 phy_id);
1044			sas_ex_disable_phy(dev, phy_id);
1045			return res;
1046		} else
1047			memcpy(dev->port->disc.fanout_sas_addr,
1048			       ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
1049		fallthrough;
1050	case SAS_EDGE_EXPANDER_DEVICE:
1051		child = sas_ex_discover_expander(dev, phy_id);
1052		break;
1053	default:
1054		break;
1055	}
1056
1057	if (!child)
1058		pr_notice("ex %016llx phy%02d failed to discover\n",
1059			  SAS_ADDR(dev->sas_addr), phy_id);
1060	return res;
1061}
1062
1063static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
1064{
1065	struct expander_device *ex = &dev->ex_dev;
1066	int i;
1067
1068	for (i = 0; i < ex->num_phys; i++) {
1069		struct ex_phy *phy = &ex->ex_phy[i];
1070
1071		if (phy->phy_state == PHY_VACANT ||
1072		    phy->phy_state == PHY_NOT_PRESENT)
1073			continue;
1074
1075		if (dev_is_expander(phy->attached_dev_type) &&
1076		    phy->routing_attr == SUBTRACTIVE_ROUTING) {
1077
1078			memcpy(sub_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
1079
1080			return 1;
1081		}
1082	}
1083	return 0;
1084}
1085
1086static int sas_check_level_subtractive_boundary(struct domain_device *dev)
1087{
1088	struct expander_device *ex = &dev->ex_dev;
1089	struct domain_device *child;
1090	u8 sub_addr[SAS_ADDR_SIZE] = {0, };
1091
1092	list_for_each_entry(child, &ex->children, siblings) {
1093		if (!dev_is_expander(child->dev_type))
1094			continue;
1095		if (sub_addr[0] == 0) {
1096			sas_find_sub_addr(child, sub_addr);
1097			continue;
1098		} else {
1099			u8 s2[SAS_ADDR_SIZE];
1100
1101			if (sas_find_sub_addr(child, s2) &&
1102			    (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
1103
1104				pr_notice("ex %016llx->%016llx-?->%016llx diverges from subtractive boundary %016llx\n",
1105					  SAS_ADDR(dev->sas_addr),
1106					  SAS_ADDR(child->sas_addr),
1107					  SAS_ADDR(s2),
1108					  SAS_ADDR(sub_addr));
1109
1110				sas_ex_disable_port(child, s2);
1111			}
1112		}
1113	}
1114	return 0;
1115}
1116/**
1117 * sas_ex_discover_devices - discover devices attached to this expander
1118 * @dev: pointer to the expander domain device
1119 * @single: if you want to do a single phy, else set to -1;
1120 *
1121 * Configure this expander for use with its devices and register the
1122 * devices of this expander.
1123 */
1124static int sas_ex_discover_devices(struct domain_device *dev, int single)
1125{
1126	struct expander_device *ex = &dev->ex_dev;
1127	int i = 0, end = ex->num_phys;
1128	int res = 0;
1129
1130	if (0 <= single && single < end) {
1131		i = single;
1132		end = i+1;
1133	}
1134
1135	for ( ; i < end; i++) {
1136		struct ex_phy *ex_phy = &ex->ex_phy[i];
1137
1138		if (ex_phy->phy_state == PHY_VACANT ||
1139		    ex_phy->phy_state == PHY_NOT_PRESENT ||
1140		    ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
1141			continue;
1142
1143		switch (ex_phy->linkrate) {
1144		case SAS_PHY_DISABLED:
1145		case SAS_PHY_RESET_PROBLEM:
1146		case SAS_SATA_PORT_SELECTOR:
1147			continue;
1148		default:
1149			res = sas_ex_discover_dev(dev, i);
1150			if (res)
1151				break;
1152			continue;
1153		}
1154	}
1155
1156	if (!res)
1157		sas_check_level_subtractive_boundary(dev);
1158
1159	return res;
1160}
1161
1162static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
1163{
1164	struct expander_device *ex = &dev->ex_dev;
1165	int i;
1166	u8  *sub_sas_addr = NULL;
1167
1168	if (dev->dev_type != SAS_EDGE_EXPANDER_DEVICE)
1169		return 0;
1170
1171	for (i = 0; i < ex->num_phys; i++) {
1172		struct ex_phy *phy = &ex->ex_phy[i];
1173
1174		if (phy->phy_state == PHY_VACANT ||
1175		    phy->phy_state == PHY_NOT_PRESENT)
1176			continue;
1177
1178		if (dev_is_expander(phy->attached_dev_type) &&
1179		    phy->routing_attr == SUBTRACTIVE_ROUTING) {
1180
1181			if (!sub_sas_addr)
1182				sub_sas_addr = &phy->attached_sas_addr[0];
1183			else if (SAS_ADDR(sub_sas_addr) !=
1184				 SAS_ADDR(phy->attached_sas_addr)) {
1185
1186				pr_notice("ex %016llx phy%02d diverges(%016llx) on subtractive boundary(%016llx). Disabled\n",
1187					  SAS_ADDR(dev->sas_addr), i,
1188					  SAS_ADDR(phy->attached_sas_addr),
1189					  SAS_ADDR(sub_sas_addr));
1190				sas_ex_disable_phy(dev, i);
1191			}
1192		}
1193	}
1194	return 0;
1195}
1196
1197static void sas_print_parent_topology_bug(struct domain_device *child,
1198						 struct ex_phy *parent_phy,
1199						 struct ex_phy *child_phy)
1200{
1201	static const char *ex_type[] = {
1202		[SAS_EDGE_EXPANDER_DEVICE] = "edge",
1203		[SAS_FANOUT_EXPANDER_DEVICE] = "fanout",
1204	};
1205	struct domain_device *parent = child->parent;
1206
1207	pr_notice("%s ex %016llx phy%02d <--> %s ex %016llx phy%02d has %c:%c routing link!\n",
1208		  ex_type[parent->dev_type],
1209		  SAS_ADDR(parent->sas_addr),
1210		  parent_phy->phy_id,
1211
1212		  ex_type[child->dev_type],
1213		  SAS_ADDR(child->sas_addr),
1214		  child_phy->phy_id,
1215
1216		  sas_route_char(parent, parent_phy),
1217		  sas_route_char(child, child_phy));
1218}
1219
1220static bool sas_eeds_valid(struct domain_device *parent,
1221			   struct domain_device *child)
1222{
1223	struct sas_discovery *disc = &parent->port->disc;
1224
1225	return (SAS_ADDR(disc->eeds_a) == SAS_ADDR(parent->sas_addr) ||
1226		SAS_ADDR(disc->eeds_a) == SAS_ADDR(child->sas_addr)) &&
1227	       (SAS_ADDR(disc->eeds_b) == SAS_ADDR(parent->sas_addr) ||
1228		SAS_ADDR(disc->eeds_b) == SAS_ADDR(child->sas_addr));
1229}
1230
1231static int sas_check_eeds(struct domain_device *child,
1232			  struct ex_phy *parent_phy,
1233			  struct ex_phy *child_phy)
1234{
1235	int res = 0;
1236	struct domain_device *parent = child->parent;
1237	struct sas_discovery *disc = &parent->port->disc;
1238
1239	if (SAS_ADDR(disc->fanout_sas_addr) != 0) {
1240		res = -ENODEV;
1241		pr_warn("edge ex %016llx phy S:%02d <--> edge ex %016llx phy S:%02d, while there is a fanout ex %016llx\n",
1242			SAS_ADDR(parent->sas_addr),
1243			parent_phy->phy_id,
1244			SAS_ADDR(child->sas_addr),
1245			child_phy->phy_id,
1246			SAS_ADDR(disc->fanout_sas_addr));
1247	} else if (SAS_ADDR(disc->eeds_a) == 0) {
1248		memcpy(disc->eeds_a, parent->sas_addr, SAS_ADDR_SIZE);
1249		memcpy(disc->eeds_b, child->sas_addr, SAS_ADDR_SIZE);
1250	} else if (!sas_eeds_valid(parent, child)) {
 
 
 
 
 
 
 
 
 
 
 
 
1251		res = -ENODEV;
1252		pr_warn("edge ex %016llx phy%02d <--> edge ex %016llx phy%02d link forms a third EEDS!\n",
1253			SAS_ADDR(parent->sas_addr),
1254			parent_phy->phy_id,
1255			SAS_ADDR(child->sas_addr),
1256			child_phy->phy_id);
1257	}
1258
1259	return res;
1260}
1261
1262static int sas_check_edge_expander_topo(struct domain_device *child,
1263					struct ex_phy *parent_phy)
1264{
1265	struct expander_device *child_ex = &child->ex_dev;
1266	struct expander_device *parent_ex = &child->parent->ex_dev;
1267	struct ex_phy *child_phy;
1268
1269	child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1270
1271	if (child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1272		if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1273		    child_phy->routing_attr != TABLE_ROUTING)
1274			goto error;
1275	} else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1276		if (child_phy->routing_attr == SUBTRACTIVE_ROUTING)
1277			return sas_check_eeds(child, parent_phy, child_phy);
1278		else if (child_phy->routing_attr != TABLE_ROUTING)
1279			goto error;
1280	} else if (parent_phy->routing_attr == TABLE_ROUTING) {
1281		if (child_phy->routing_attr != SUBTRACTIVE_ROUTING &&
1282		    (child_phy->routing_attr != TABLE_ROUTING ||
1283		     !child_ex->t2t_supp || !parent_ex->t2t_supp))
1284			goto error;
1285	}
1286
1287	return 0;
1288error:
1289	sas_print_parent_topology_bug(child, parent_phy, child_phy);
1290	return -ENODEV;
1291}
1292
1293static int sas_check_fanout_expander_topo(struct domain_device *child,
1294					  struct ex_phy *parent_phy)
1295{
1296	struct expander_device *child_ex = &child->ex_dev;
1297	struct ex_phy *child_phy;
1298
1299	child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1300
1301	if (parent_phy->routing_attr == TABLE_ROUTING &&
1302	    child_phy->routing_attr == SUBTRACTIVE_ROUTING)
1303		return 0;
1304
1305	sas_print_parent_topology_bug(child, parent_phy, child_phy);
1306
1307	return -ENODEV;
1308}
1309
1310static int sas_check_parent_topology(struct domain_device *child)
1311{
 
1312	struct expander_device *parent_ex;
1313	int i;
1314	int res = 0;
1315
1316	if (!child->parent)
1317		return 0;
1318
1319	if (!dev_is_expander(child->parent->dev_type))
1320		return 0;
1321
1322	parent_ex = &child->parent->ex_dev;
1323
1324	for (i = 0; i < parent_ex->num_phys; i++) {
1325		struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
 
1326
1327		if (parent_phy->phy_state == PHY_VACANT ||
1328		    parent_phy->phy_state == PHY_NOT_PRESENT)
1329			continue;
1330
1331		if (!sas_phy_match_dev_addr(child, parent_phy))
1332			continue;
1333
 
 
1334		switch (child->parent->dev_type) {
1335		case SAS_EDGE_EXPANDER_DEVICE:
1336			if (sas_check_edge_expander_topo(child, parent_phy))
1337				res = -ENODEV;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1338			break;
1339		case SAS_FANOUT_EXPANDER_DEVICE:
1340			if (sas_check_fanout_expander_topo(child, parent_phy))
 
 
1341				res = -ENODEV;
 
1342			break;
1343		default:
1344			break;
1345		}
1346	}
1347
1348	return res;
1349}
1350
1351#define RRI_REQ_SIZE  16
1352#define RRI_RESP_SIZE 44
1353
1354static int sas_configure_present(struct domain_device *dev, int phy_id,
1355				 u8 *sas_addr, int *index, int *present)
1356{
1357	int i, res = 0;
1358	struct expander_device *ex = &dev->ex_dev;
1359	struct ex_phy *phy = &ex->ex_phy[phy_id];
1360	u8 *rri_req;
1361	u8 *rri_resp;
1362
1363	*present = 0;
1364	*index = 0;
1365
1366	rri_req = alloc_smp_req(RRI_REQ_SIZE);
1367	if (!rri_req)
1368		return -ENOMEM;
1369
1370	rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1371	if (!rri_resp) {
1372		kfree(rri_req);
1373		return -ENOMEM;
1374	}
1375
1376	rri_req[1] = SMP_REPORT_ROUTE_INFO;
1377	rri_req[9] = phy_id;
1378
1379	for (i = 0; i < ex->max_route_indexes ; i++) {
1380		*(__be16 *)(rri_req+6) = cpu_to_be16(i);
1381		res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1382				       RRI_RESP_SIZE);
1383		if (res)
1384			goto out;
1385		res = rri_resp[2];
1386		if (res == SMP_RESP_NO_INDEX) {
1387			pr_warn("overflow of indexes: dev %016llx phy%02d index 0x%x\n",
1388				SAS_ADDR(dev->sas_addr), phy_id, i);
1389			goto out;
1390		} else if (res != SMP_RESP_FUNC_ACC) {
1391			pr_notice("%s: dev %016llx phy%02d index 0x%x result 0x%x\n",
1392				  __func__, SAS_ADDR(dev->sas_addr), phy_id,
1393				  i, res);
1394			goto out;
1395		}
1396		if (SAS_ADDR(sas_addr) != 0) {
1397			if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1398				*index = i;
1399				if ((rri_resp[12] & 0x80) == 0x80)
1400					*present = 0;
1401				else
1402					*present = 1;
1403				goto out;
1404			} else if (SAS_ADDR(rri_resp+16) == 0) {
1405				*index = i;
1406				*present = 0;
1407				goto out;
1408			}
1409		} else if (SAS_ADDR(rri_resp+16) == 0 &&
1410			   phy->last_da_index < i) {
1411			phy->last_da_index = i;
1412			*index = i;
1413			*present = 0;
1414			goto out;
1415		}
1416	}
1417	res = -1;
1418out:
1419	kfree(rri_req);
1420	kfree(rri_resp);
1421	return res;
1422}
1423
1424#define CRI_REQ_SIZE  44
1425#define CRI_RESP_SIZE  8
1426
1427static int sas_configure_set(struct domain_device *dev, int phy_id,
1428			     u8 *sas_addr, int index, int include)
1429{
1430	int res;
1431	u8 *cri_req;
1432	u8 *cri_resp;
1433
1434	cri_req = alloc_smp_req(CRI_REQ_SIZE);
1435	if (!cri_req)
1436		return -ENOMEM;
1437
1438	cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1439	if (!cri_resp) {
1440		kfree(cri_req);
1441		return -ENOMEM;
1442	}
1443
1444	cri_req[1] = SMP_CONF_ROUTE_INFO;
1445	*(__be16 *)(cri_req+6) = cpu_to_be16(index);
1446	cri_req[9] = phy_id;
1447	if (SAS_ADDR(sas_addr) == 0 || !include)
1448		cri_req[12] |= 0x80;
1449	memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1450
1451	res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1452			       CRI_RESP_SIZE);
1453	if (res)
1454		goto out;
1455	res = cri_resp[2];
1456	if (res == SMP_RESP_NO_INDEX) {
1457		pr_warn("overflow of indexes: dev %016llx phy%02d index 0x%x\n",
1458			SAS_ADDR(dev->sas_addr), phy_id, index);
1459	}
1460out:
1461	kfree(cri_req);
1462	kfree(cri_resp);
1463	return res;
1464}
1465
1466static int sas_configure_phy(struct domain_device *dev, int phy_id,
1467				    u8 *sas_addr, int include)
1468{
1469	int index;
1470	int present;
1471	int res;
1472
1473	res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1474	if (res)
1475		return res;
1476	if (include ^ present)
1477		return sas_configure_set(dev, phy_id, sas_addr, index,
1478					 include);
1479
1480	return res;
1481}
1482
1483/**
1484 * sas_configure_parent - configure routing table of parent
1485 * @parent: parent expander
1486 * @child: child expander
1487 * @sas_addr: SAS port identifier of device directly attached to child
1488 * @include: whether or not to include @child in the expander routing table
1489 */
1490static int sas_configure_parent(struct domain_device *parent,
1491				struct domain_device *child,
1492				u8 *sas_addr, int include)
1493{
1494	struct expander_device *ex_parent = &parent->ex_dev;
1495	int res = 0;
1496	int i;
1497
1498	if (parent->parent) {
1499		res = sas_configure_parent(parent->parent, parent, sas_addr,
1500					   include);
1501		if (res)
1502			return res;
1503	}
1504
1505	if (ex_parent->conf_route_table == 0) {
1506		pr_debug("ex %016llx has self-configuring routing table\n",
1507			 SAS_ADDR(parent->sas_addr));
1508		return 0;
1509	}
1510
1511	for (i = 0; i < ex_parent->num_phys; i++) {
1512		struct ex_phy *phy = &ex_parent->ex_phy[i];
1513
1514		if ((phy->routing_attr == TABLE_ROUTING) &&
1515		    sas_phy_match_dev_addr(child, phy)) {
 
1516			res = sas_configure_phy(parent, i, sas_addr, include);
1517			if (res)
1518				return res;
1519		}
1520	}
1521
1522	return res;
1523}
1524
1525/**
1526 * sas_configure_routing - configure routing
1527 * @dev: expander device
1528 * @sas_addr: port identifier of device directly attached to the expander device
1529 */
1530static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1531{
1532	if (dev->parent)
1533		return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1534	return 0;
1535}
1536
1537static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr)
1538{
1539	if (dev->parent)
1540		return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1541	return 0;
1542}
1543
1544/**
1545 * sas_discover_expander - expander discovery
1546 * @dev: pointer to expander domain device
1547 *
1548 * See comment in sas_discover_sata().
1549 */
1550static int sas_discover_expander(struct domain_device *dev)
1551{
1552	int res;
1553
1554	res = sas_notify_lldd_dev_found(dev);
1555	if (res)
1556		return res;
1557
1558	res = sas_ex_general(dev);
1559	if (res)
1560		goto out_err;
1561	res = sas_ex_manuf_info(dev);
1562	if (res)
1563		goto out_err;
1564
1565	res = sas_expander_discover(dev);
1566	if (res) {
1567		pr_warn("expander %016llx discovery failed(0x%x)\n",
1568			SAS_ADDR(dev->sas_addr), res);
1569		goto out_err;
1570	}
1571
1572	sas_check_ex_subtractive_boundary(dev);
1573	res = sas_check_parent_topology(dev);
1574	if (res)
1575		goto out_err;
1576	return 0;
1577out_err:
1578	sas_notify_lldd_dev_gone(dev);
1579	return res;
1580}
1581
1582static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1583{
1584	int res = 0;
1585	struct domain_device *dev;
1586
1587	list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1588		if (dev_is_expander(dev->dev_type)) {
1589			struct sas_expander_device *ex =
1590				rphy_to_expander_device(dev->rphy);
1591
1592			if (level == ex->level)
1593				res = sas_ex_discover_devices(dev, -1);
1594			else if (level > 0)
1595				res = sas_ex_discover_devices(port->port_dev, -1);
1596
1597		}
1598	}
1599
1600	return res;
1601}
1602
1603static int sas_ex_bfs_disc(struct asd_sas_port *port)
1604{
1605	int res;
1606	int level;
1607
1608	do {
1609		level = port->disc.max_level;
1610		res = sas_ex_level_discovery(port, level);
1611		mb();
1612	} while (level < port->disc.max_level);
1613
1614	return res;
1615}
1616
1617int sas_discover_root_expander(struct domain_device *dev)
1618{
1619	int res;
1620	struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1621
1622	res = sas_rphy_add(dev->rphy);
1623	if (res)
1624		goto out_err;
1625
1626	ex->level = dev->port->disc.max_level; /* 0 */
1627	res = sas_discover_expander(dev);
1628	if (res)
1629		goto out_err2;
1630
1631	sas_ex_bfs_disc(dev->port);
1632
1633	return res;
1634
1635out_err2:
1636	sas_rphy_remove(dev->rphy);
1637out_err:
1638	return res;
1639}
1640
1641/* ---------- Domain revalidation ---------- */
1642
1643static void sas_get_sas_addr_and_dev_type(struct smp_disc_resp *disc_resp,
1644					  u8 *sas_addr,
1645					  enum sas_device_type *type)
1646{
1647	memcpy(sas_addr, disc_resp->disc.attached_sas_addr, SAS_ADDR_SIZE);
1648	*type = to_dev_type(&disc_resp->disc);
1649	if (*type == SAS_PHY_UNUSED)
1650		memset(sas_addr, 0, SAS_ADDR_SIZE);
1651}
1652
1653static int sas_get_phy_discover(struct domain_device *dev,
1654				int phy_id, struct smp_disc_resp *disc_resp)
1655{
1656	int res;
1657	u8 *disc_req;
1658
1659	disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1660	if (!disc_req)
1661		return -ENOMEM;
1662
1663	disc_req[1] = SMP_DISCOVER;
1664	disc_req[9] = phy_id;
1665
1666	res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1667			       disc_resp, DISCOVER_RESP_SIZE);
1668	if (res)
1669		goto out;
1670	if (disc_resp->result != SMP_RESP_FUNC_ACC)
1671		res = disc_resp->result;
 
 
1672out:
1673	kfree(disc_req);
1674	return res;
1675}
1676
1677static int sas_get_phy_change_count(struct domain_device *dev,
1678				    int phy_id, int *pcc)
1679{
1680	int res;
1681	struct smp_disc_resp *disc_resp;
1682
1683	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1684	if (!disc_resp)
1685		return -ENOMEM;
1686
1687	res = sas_get_phy_discover(dev, phy_id, disc_resp);
1688	if (!res)
1689		*pcc = disc_resp->disc.change_count;
1690
1691	kfree(disc_resp);
1692	return res;
1693}
1694
1695int sas_get_phy_attached_dev(struct domain_device *dev, int phy_id,
1696			     u8 *sas_addr, enum sas_device_type *type)
1697{
1698	int res;
1699	struct smp_disc_resp *disc_resp;
 
1700
1701	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1702	if (!disc_resp)
1703		return -ENOMEM;
 
1704
1705	res = sas_get_phy_discover(dev, phy_id, disc_resp);
1706	if (res == 0)
1707		sas_get_sas_addr_and_dev_type(disc_resp, sas_addr, type);
 
 
 
 
 
1708	kfree(disc_resp);
1709	return res;
1710}
1711
1712static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1713			      int from_phy, bool update)
1714{
1715	struct expander_device *ex = &dev->ex_dev;
1716	int res = 0;
1717	int i;
1718
1719	for (i = from_phy; i < ex->num_phys; i++) {
1720		int phy_change_count = 0;
1721
1722		res = sas_get_phy_change_count(dev, i, &phy_change_count);
1723		switch (res) {
1724		case SMP_RESP_PHY_VACANT:
1725		case SMP_RESP_NO_PHY:
1726			continue;
1727		case SMP_RESP_FUNC_ACC:
1728			break;
1729		default:
1730			return res;
1731		}
1732
1733		if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1734			if (update)
1735				ex->ex_phy[i].phy_change_count =
1736					phy_change_count;
1737			*phy_id = i;
1738			return 0;
1739		}
1740	}
1741	return 0;
1742}
1743
1744static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1745{
1746	int res;
1747	u8  *rg_req;
1748	struct smp_rg_resp  *rg_resp;
1749
1750	rg_req = alloc_smp_req(RG_REQ_SIZE);
1751	if (!rg_req)
1752		return -ENOMEM;
1753
1754	rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1755	if (!rg_resp) {
1756		kfree(rg_req);
1757		return -ENOMEM;
1758	}
1759
1760	rg_req[1] = SMP_REPORT_GENERAL;
1761
1762	res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1763			       RG_RESP_SIZE);
1764	if (res)
1765		goto out;
1766	if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1767		res = rg_resp->result;
1768		goto out;
1769	}
1770
1771	*ecc = be16_to_cpu(rg_resp->rg.change_count);
1772out:
1773	kfree(rg_resp);
1774	kfree(rg_req);
1775	return res;
1776}
1777/**
1778 * sas_find_bcast_dev -  find the device issue BROADCAST(CHANGE).
1779 * @dev:domain device to be detect.
1780 * @src_dev: the device which originated BROADCAST(CHANGE).
1781 *
1782 * Add self-configuration expander support. Suppose two expander cascading,
1783 * when the first level expander is self-configuring, hotplug the disks in
1784 * second level expander, BROADCAST(CHANGE) will not only be originated
1785 * in the second level expander, but also be originated in the first level
1786 * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1787 * expander changed count in two level expanders will all increment at least
1788 * once, but the phy which chang count has changed is the source device which
1789 * we concerned.
1790 */
1791
1792static int sas_find_bcast_dev(struct domain_device *dev,
1793			      struct domain_device **src_dev)
1794{
1795	struct expander_device *ex = &dev->ex_dev;
1796	int ex_change_count = -1;
1797	int phy_id = -1;
1798	int res;
1799	struct domain_device *ch;
1800
1801	res = sas_get_ex_change_count(dev, &ex_change_count);
1802	if (res)
1803		goto out;
1804	if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) {
1805		/* Just detect if this expander phys phy change count changed,
1806		* in order to determine if this expander originate BROADCAST,
1807		* and do not update phy change count field in our structure.
1808		*/
1809		res = sas_find_bcast_phy(dev, &phy_id, 0, false);
1810		if (phy_id != -1) {
1811			*src_dev = dev;
1812			ex->ex_change_count = ex_change_count;
1813			pr_info("ex %016llx phy%02d change count has changed\n",
1814				SAS_ADDR(dev->sas_addr), phy_id);
1815			return res;
1816		} else
1817			pr_info("ex %016llx phys DID NOT change\n",
1818				SAS_ADDR(dev->sas_addr));
1819	}
1820	list_for_each_entry(ch, &ex->children, siblings) {
1821		if (dev_is_expander(ch->dev_type)) {
1822			res = sas_find_bcast_dev(ch, src_dev);
1823			if (*src_dev)
1824				return res;
1825		}
1826	}
1827out:
1828	return res;
1829}
1830
1831static void sas_unregister_ex_tree(struct asd_sas_port *port, struct domain_device *dev)
1832{
1833	struct expander_device *ex = &dev->ex_dev;
1834	struct domain_device *child, *n;
1835
1836	list_for_each_entry_safe(child, n, &ex->children, siblings) {
1837		set_bit(SAS_DEV_GONE, &child->state);
1838		if (dev_is_expander(child->dev_type))
1839			sas_unregister_ex_tree(port, child);
1840		else
1841			sas_unregister_dev(port, child);
1842	}
1843	sas_unregister_dev(port, dev);
1844}
1845
1846static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1847					 int phy_id, bool last)
1848{
1849	struct expander_device *ex_dev = &parent->ex_dev;
1850	struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1851	struct domain_device *child, *n, *found = NULL;
1852	if (last) {
1853		list_for_each_entry_safe(child, n,
1854			&ex_dev->children, siblings) {
1855			if (sas_phy_match_dev_addr(child, phy)) {
 
1856				set_bit(SAS_DEV_GONE, &child->state);
1857				if (dev_is_expander(child->dev_type))
1858					sas_unregister_ex_tree(parent->port, child);
1859				else
1860					sas_unregister_dev(parent->port, child);
1861				found = child;
1862				break;
1863			}
1864		}
1865		sas_disable_routing(parent, phy->attached_sas_addr);
1866	}
1867	memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1868	if (phy->port) {
1869		sas_port_delete_phy(phy->port, phy->phy);
1870		sas_device_set_phy(found, phy->port);
1871		if (phy->port->num_phys == 0) {
1872			list_add_tail(&phy->port->del_list,
1873				&parent->port->sas_port_del_list);
1874			if (ex_dev->parent_port == phy->port)
1875				ex_dev->parent_port = NULL;
1876		}
1877		phy->port = NULL;
1878	}
1879}
1880
1881static int sas_discover_bfs_by_root_level(struct domain_device *root,
1882					  const int level)
1883{
1884	struct expander_device *ex_root = &root->ex_dev;
1885	struct domain_device *child;
1886	int res = 0;
1887
1888	list_for_each_entry(child, &ex_root->children, siblings) {
1889		if (dev_is_expander(child->dev_type)) {
1890			struct sas_expander_device *ex =
1891				rphy_to_expander_device(child->rphy);
1892
1893			if (level > ex->level)
1894				res = sas_discover_bfs_by_root_level(child,
1895								     level);
1896			else if (level == ex->level)
1897				res = sas_ex_discover_devices(child, -1);
1898		}
1899	}
1900	return res;
1901}
1902
1903static int sas_discover_bfs_by_root(struct domain_device *dev)
1904{
1905	int res;
1906	struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1907	int level = ex->level+1;
1908
1909	res = sas_ex_discover_devices(dev, -1);
1910	if (res)
1911		goto out;
1912	do {
1913		res = sas_discover_bfs_by_root_level(dev, level);
1914		mb();
1915		level += 1;
1916	} while (level <= dev->port->disc.max_level);
1917out:
1918	return res;
1919}
1920
1921static int sas_discover_new(struct domain_device *dev, int phy_id)
1922{
1923	struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1924	struct domain_device *child;
1925	int res;
1926
1927	pr_debug("ex %016llx phy%02d new device attached\n",
1928		 SAS_ADDR(dev->sas_addr), phy_id);
1929	res = sas_ex_phy_discover(dev, phy_id);
1930	if (res)
1931		return res;
1932
1933	if (sas_ex_join_wide_port(dev, phy_id))
1934		return 0;
1935
1936	res = sas_ex_discover_devices(dev, phy_id);
1937	if (res)
1938		return res;
1939	list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1940		if (sas_phy_match_dev_addr(child, ex_phy)) {
 
1941			if (dev_is_expander(child->dev_type))
1942				res = sas_discover_bfs_by_root(child);
1943			break;
1944		}
1945	}
1946	return res;
1947}
1948
1949static bool dev_type_flutter(enum sas_device_type new, enum sas_device_type old)
1950{
1951	if (old == new)
1952		return true;
1953
1954	/* treat device directed resets as flutter, if we went
1955	 * SAS_END_DEVICE to SAS_SATA_PENDING the link needs recovery
1956	 */
1957	if ((old == SAS_SATA_PENDING && new == SAS_END_DEVICE) ||
1958	    (old == SAS_END_DEVICE && new == SAS_SATA_PENDING))
1959		return true;
1960
1961	return false;
1962}
1963
1964static int sas_rediscover_dev(struct domain_device *dev, int phy_id,
1965			      bool last, int sibling)
1966{
1967	struct expander_device *ex = &dev->ex_dev;
1968	struct ex_phy *phy = &ex->ex_phy[phy_id];
1969	enum sas_device_type type = SAS_PHY_UNUSED;
1970	struct smp_disc_resp *disc_resp;
1971	u8 sas_addr[SAS_ADDR_SIZE];
1972	char msg[80] = "";
1973	int res;
1974
1975	if (!last)
1976		sprintf(msg, ", part of a wide port with phy%02d", sibling);
1977
1978	pr_debug("ex %016llx rediscovering phy%02d%s\n",
1979		 SAS_ADDR(dev->sas_addr), phy_id, msg);
1980
1981	memset(sas_addr, 0, SAS_ADDR_SIZE);
1982	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1983	if (!disc_resp)
1984		return -ENOMEM;
1985
1986	res = sas_get_phy_discover(dev, phy_id, disc_resp);
1987	switch (res) {
1988	case SMP_RESP_NO_PHY:
1989		phy->phy_state = PHY_NOT_PRESENT;
1990		sas_unregister_devs_sas_addr(dev, phy_id, last);
1991		goto out_free_resp;
1992	case SMP_RESP_PHY_VACANT:
1993		phy->phy_state = PHY_VACANT;
1994		sas_unregister_devs_sas_addr(dev, phy_id, last);
1995		goto out_free_resp;
1996	case SMP_RESP_FUNC_ACC:
1997		break;
1998	case -ECOMM:
1999		break;
2000	default:
2001		goto out_free_resp;
2002	}
2003
2004	if (res == 0)
2005		sas_get_sas_addr_and_dev_type(disc_resp, sas_addr, &type);
2006
2007	if ((SAS_ADDR(sas_addr) == 0) || (res == -ECOMM)) {
2008		phy->phy_state = PHY_EMPTY;
2009		sas_unregister_devs_sas_addr(dev, phy_id, last);
2010		/*
2011		 * Even though the PHY is empty, for convenience we update
2012		 * the PHY info, like negotiated linkrate.
2013		 */
2014		if (res == 0)
2015			sas_set_ex_phy(dev, phy_id, disc_resp);
2016		goto out_free_resp;
2017	} else if (SAS_ADDR(sas_addr) == SAS_ADDR(phy->attached_sas_addr) &&
2018		   dev_type_flutter(type, phy->attached_dev_type)) {
2019		struct domain_device *ata_dev = sas_ex_to_ata(dev, phy_id);
2020		char *action = "";
2021
2022		sas_ex_phy_discover(dev, phy_id);
2023
2024		if (ata_dev && phy->attached_dev_type == SAS_SATA_PENDING)
2025			action = ", needs recovery";
2026		pr_debug("ex %016llx phy%02d broadcast flutter%s\n",
2027			 SAS_ADDR(dev->sas_addr), phy_id, action);
2028		goto out_free_resp;
2029	}
2030
2031	/* we always have to delete the old device when we went here */
2032	pr_info("ex %016llx phy%02d replace %016llx\n",
2033		SAS_ADDR(dev->sas_addr), phy_id,
2034		SAS_ADDR(phy->attached_sas_addr));
2035	sas_unregister_devs_sas_addr(dev, phy_id, last);
2036
2037	res = sas_discover_new(dev, phy_id);
2038out_free_resp:
2039	kfree(disc_resp);
2040	return res;
2041}
2042
2043/**
2044 * sas_rediscover - revalidate the domain.
2045 * @dev:domain device to be detect.
2046 * @phy_id: the phy id will be detected.
2047 *
2048 * NOTE: this process _must_ quit (return) as soon as any connection
2049 * errors are encountered.  Connection recovery is done elsewhere.
2050 * Discover process only interrogates devices in order to discover the
2051 * domain.For plugging out, we un-register the device only when it is
2052 * the last phy in the port, for other phys in this port, we just delete it
2053 * from the port.For inserting, we do discovery when it is the
2054 * first phy,for other phys in this port, we add it to the port to
2055 * forming the wide-port.
2056 */
2057static int sas_rediscover(struct domain_device *dev, const int phy_id)
2058{
2059	struct expander_device *ex = &dev->ex_dev;
2060	struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
2061	int res = 0;
2062	int i;
2063	bool last = true;	/* is this the last phy of the port */
2064
2065	pr_debug("ex %016llx phy%02d originated BROADCAST(CHANGE)\n",
2066		 SAS_ADDR(dev->sas_addr), phy_id);
2067
2068	if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
2069		for (i = 0; i < ex->num_phys; i++) {
2070			struct ex_phy *phy = &ex->ex_phy[i];
2071
2072			if (i == phy_id)
2073				continue;
2074			if (sas_phy_addr_match(phy, changed_phy)) {
 
2075				last = false;
2076				break;
2077			}
2078		}
2079		res = sas_rediscover_dev(dev, phy_id, last, i);
2080	} else
2081		res = sas_discover_new(dev, phy_id);
2082	return res;
2083}
2084
2085/**
2086 * sas_ex_revalidate_domain - revalidate the domain
2087 * @port_dev: port domain device.
2088 *
2089 * NOTE: this process _must_ quit (return) as soon as any connection
2090 * errors are encountered.  Connection recovery is done elsewhere.
2091 * Discover process only interrogates devices in order to discover the
2092 * domain.
2093 */
2094int sas_ex_revalidate_domain(struct domain_device *port_dev)
2095{
2096	int res;
2097	struct domain_device *dev = NULL;
2098
2099	res = sas_find_bcast_dev(port_dev, &dev);
2100	if (res == 0 && dev) {
2101		struct expander_device *ex = &dev->ex_dev;
2102		int i = 0, phy_id;
2103
2104		do {
2105			phy_id = -1;
2106			res = sas_find_bcast_phy(dev, &phy_id, i, true);
2107			if (phy_id == -1)
2108				break;
2109			res = sas_rediscover(dev, phy_id);
2110			i = phy_id + 1;
2111		} while (i < ex->num_phys);
2112	}
2113	return res;
2114}
2115
2116int sas_find_attached_phy_id(struct expander_device *ex_dev,
2117			     struct domain_device *dev)
2118{
2119	struct ex_phy *phy;
2120	int phy_id;
2121
2122	for (phy_id = 0; phy_id < ex_dev->num_phys; phy_id++) {
2123		phy = &ex_dev->ex_phy[phy_id];
2124		if (sas_phy_match_dev_addr(dev, phy))
2125			return phy_id;
2126	}
2127
2128	return -ENODEV;
2129}
2130EXPORT_SYMBOL_GPL(sas_find_attached_phy_id);
2131
2132void sas_smp_handler(struct bsg_job *job, struct Scsi_Host *shost,
2133		struct sas_rphy *rphy)
2134{
2135	struct domain_device *dev;
2136	unsigned int rcvlen = 0;
2137	int ret = -EINVAL;
2138
2139	/* no rphy means no smp target support (ie aic94xx host) */
2140	if (!rphy)
2141		return sas_smp_host_handler(job, shost);
2142
2143	switch (rphy->identify.device_type) {
2144	case SAS_EDGE_EXPANDER_DEVICE:
2145	case SAS_FANOUT_EXPANDER_DEVICE:
2146		break;
2147	default:
2148		pr_err("%s: can we send a smp request to a device?\n",
2149		       __func__);
2150		goto out;
2151	}
2152
2153	dev = sas_find_dev_by_rphy(rphy);
2154	if (!dev) {
2155		pr_err("%s: fail to find a domain_device?\n", __func__);
2156		goto out;
2157	}
2158
2159	/* do we need to support multiple segments? */
2160	if (job->request_payload.sg_cnt > 1 ||
2161	    job->reply_payload.sg_cnt > 1) {
2162		pr_info("%s: multiple segments req %u, rsp %u\n",
2163			__func__, job->request_payload.payload_len,
2164			job->reply_payload.payload_len);
2165		goto out;
2166	}
2167
2168	ret = smp_execute_task_sg(dev, job->request_payload.sg_list,
2169			job->reply_payload.sg_list);
2170	if (ret >= 0) {
2171		/* bsg_job_done() requires the length received  */
2172		rcvlen = job->reply_payload.payload_len - ret;
2173		ret = 0;
2174	}
2175
2176out:
2177	bsg_job_done(job, ret, rcvlen);
2178}
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Serial Attached SCSI (SAS) Expander discovery and configuration
   4 *
   5 * Copyright (C) 2005 Adaptec, Inc.  All rights reserved.
   6 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
   7 *
   8 * This file is licensed under GPLv2.
   9 */
  10
  11#include <linux/scatterlist.h>
  12#include <linux/blkdev.h>
  13#include <linux/slab.h>
  14#include <asm/unaligned.h>
  15
  16#include "sas_internal.h"
  17
  18#include <scsi/sas_ata.h>
  19#include <scsi/scsi_transport.h>
  20#include <scsi/scsi_transport_sas.h>
  21#include "../scsi_sas_internal.h"
  22
  23static int sas_discover_expander(struct domain_device *dev);
  24static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
  25static int sas_configure_phy(struct domain_device *dev, int phy_id,
  26			     u8 *sas_addr, int include);
  27static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr);
  28
  29/* ---------- SMP task management ---------- */
 
 
 
 
 
  30
  31static void smp_task_timedout(struct timer_list *t)
  32{
  33	struct sas_task_slow *slow = from_timer(slow, t, timer);
  34	struct sas_task *task = slow->task;
  35	unsigned long flags;
  36
  37	spin_lock_irqsave(&task->task_state_lock, flags);
  38	if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
  39		task->task_state_flags |= SAS_TASK_STATE_ABORTED;
  40		complete(&task->slow_task->completion);
 
 
  41	}
  42	spin_unlock_irqrestore(&task->task_state_lock, flags);
  43}
  44
  45static void smp_task_done(struct sas_task *task)
  46{
  47	del_timer(&task->slow_task->timer);
  48	complete(&task->slow_task->completion);
  49}
  50
  51/* Give it some long enough timeout. In seconds. */
  52#define SMP_TIMEOUT 10
  53
  54static int smp_execute_task_sg(struct domain_device *dev,
  55		struct scatterlist *req, struct scatterlist *resp)
  56{
  57	int res, retry;
  58	struct sas_task *task = NULL;
  59	struct sas_internal *i =
  60		to_sas_internal(dev->port->ha->core.shost->transportt);
 
  61
 
  62	mutex_lock(&dev->ex_dev.cmd_mutex);
  63	for (retry = 0; retry < 3; retry++) {
  64		if (test_bit(SAS_DEV_GONE, &dev->state)) {
  65			res = -ECOMM;
  66			break;
  67		}
  68
  69		task = sas_alloc_slow_task(GFP_KERNEL);
  70		if (!task) {
  71			res = -ENOMEM;
  72			break;
  73		}
  74		task->dev = dev;
  75		task->task_proto = dev->tproto;
  76		task->smp_task.smp_req = *req;
  77		task->smp_task.smp_resp = *resp;
  78
  79		task->task_done = smp_task_done;
  80
  81		task->slow_task->timer.function = smp_task_timedout;
  82		task->slow_task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
  83		add_timer(&task->slow_task->timer);
  84
  85		res = i->dft->lldd_execute_task(task, GFP_KERNEL);
  86
  87		if (res) {
  88			del_timer(&task->slow_task->timer);
  89			pr_notice("executing SMP task failed:%d\n", res);
  90			break;
  91		}
  92
  93		wait_for_completion(&task->slow_task->completion);
  94		res = -ECOMM;
  95		if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
  96			pr_notice("smp task timed out or aborted\n");
  97			i->dft->lldd_abort_task(task);
  98			if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
  99				pr_notice("SMP task aborted and not done\n");
 100				break;
 101			}
 102		}
 103		if (task->task_status.resp == SAS_TASK_COMPLETE &&
 104		    task->task_status.stat == SAM_STAT_GOOD) {
 105			res = 0;
 106			break;
 107		}
 108		if (task->task_status.resp == SAS_TASK_COMPLETE &&
 109		    task->task_status.stat == SAS_DATA_UNDERRUN) {
 110			/* no error, but return the number of bytes of
 111			 * underrun */
 112			res = task->task_status.residual;
 113			break;
 114		}
 115		if (task->task_status.resp == SAS_TASK_COMPLETE &&
 116		    task->task_status.stat == SAS_DATA_OVERRUN) {
 117			res = -EMSGSIZE;
 118			break;
 119		}
 120		if (task->task_status.resp == SAS_TASK_UNDELIVERED &&
 121		    task->task_status.stat == SAS_DEVICE_UNKNOWN)
 122			break;
 123		else {
 124			pr_notice("%s: task to dev %016llx response: 0x%x status 0x%x\n",
 125				  __func__,
 126				  SAS_ADDR(dev->sas_addr),
 127				  task->task_status.resp,
 128				  task->task_status.stat);
 129			sas_free_task(task);
 130			task = NULL;
 131		}
 132	}
 133	mutex_unlock(&dev->ex_dev.cmd_mutex);
 
 134
 135	BUG_ON(retry == 3 && task != NULL);
 136	sas_free_task(task);
 137	return res;
 138}
 139
 140static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
 141			    void *resp, int resp_size)
 142{
 143	struct scatterlist req_sg;
 144	struct scatterlist resp_sg;
 145
 146	sg_init_one(&req_sg, req, req_size);
 147	sg_init_one(&resp_sg, resp, resp_size);
 148	return smp_execute_task_sg(dev, &req_sg, &resp_sg);
 149}
 150
 151/* ---------- Allocations ---------- */
 152
 153static inline void *alloc_smp_req(int size)
 154{
 155	u8 *p = kzalloc(size, GFP_KERNEL);
 156	if (p)
 157		p[0] = SMP_REQUEST;
 158	return p;
 159}
 160
 161static inline void *alloc_smp_resp(int size)
 162{
 163	return kzalloc(size, GFP_KERNEL);
 164}
 165
 166static char sas_route_char(struct domain_device *dev, struct ex_phy *phy)
 167{
 168	switch (phy->routing_attr) {
 169	case TABLE_ROUTING:
 170		if (dev->ex_dev.t2t_supp)
 171			return 'U';
 172		else
 173			return 'T';
 174	case DIRECT_ROUTING:
 175		return 'D';
 176	case SUBTRACTIVE_ROUTING:
 177		return 'S';
 178	default:
 179		return '?';
 180	}
 181}
 182
 183static enum sas_device_type to_dev_type(struct discover_resp *dr)
 184{
 185	/* This is detecting a failure to transmit initial dev to host
 186	 * FIS as described in section J.5 of sas-2 r16
 187	 */
 188	if (dr->attached_dev_type == SAS_PHY_UNUSED && dr->attached_sata_dev &&
 189	    dr->linkrate >= SAS_LINK_RATE_1_5_GBPS)
 190		return SAS_SATA_PENDING;
 191	else
 192		return dr->attached_dev_type;
 193}
 194
 195static void sas_set_ex_phy(struct domain_device *dev, int phy_id, void *rsp)
 
 196{
 197	enum sas_device_type dev_type;
 198	enum sas_linkrate linkrate;
 199	u8 sas_addr[SAS_ADDR_SIZE];
 200	struct smp_resp *resp = rsp;
 201	struct discover_resp *dr = &resp->disc;
 202	struct sas_ha_struct *ha = dev->port->ha;
 203	struct expander_device *ex = &dev->ex_dev;
 204	struct ex_phy *phy = &ex->ex_phy[phy_id];
 205	struct sas_rphy *rphy = dev->rphy;
 206	bool new_phy = !phy->phy;
 207	char *type;
 208
 209	if (new_phy) {
 210		if (WARN_ON_ONCE(test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)))
 211			return;
 212		phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
 213
 214		/* FIXME: error_handling */
 215		BUG_ON(!phy->phy);
 216	}
 217
 218	switch (resp->result) {
 219	case SMP_RESP_PHY_VACANT:
 220		phy->phy_state = PHY_VACANT;
 221		break;
 222	default:
 223		phy->phy_state = PHY_NOT_PRESENT;
 224		break;
 225	case SMP_RESP_FUNC_ACC:
 226		phy->phy_state = PHY_EMPTY; /* do not know yet */
 227		break;
 228	}
 229
 230	/* check if anything important changed to squelch debug */
 231	dev_type = phy->attached_dev_type;
 232	linkrate  = phy->linkrate;
 233	memcpy(sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
 234
 235	/* Handle vacant phy - rest of dr data is not valid so skip it */
 236	if (phy->phy_state == PHY_VACANT) {
 237		memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
 238		phy->attached_dev_type = SAS_PHY_UNUSED;
 239		if (!test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)) {
 240			phy->phy_id = phy_id;
 241			goto skip;
 242		} else
 243			goto out;
 244	}
 245
 246	phy->attached_dev_type = to_dev_type(dr);
 247	if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
 248		goto out;
 249	phy->phy_id = phy_id;
 250	phy->linkrate = dr->linkrate;
 251	phy->attached_sata_host = dr->attached_sata_host;
 252	phy->attached_sata_dev  = dr->attached_sata_dev;
 253	phy->attached_sata_ps   = dr->attached_sata_ps;
 254	phy->attached_iproto = dr->iproto << 1;
 255	phy->attached_tproto = dr->tproto << 1;
 256	/* help some expanders that fail to zero sas_address in the 'no
 257	 * device' case
 258	 */
 259	if (phy->attached_dev_type == SAS_PHY_UNUSED ||
 260	    phy->linkrate < SAS_LINK_RATE_1_5_GBPS)
 261		memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
 262	else
 263		memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
 264	phy->attached_phy_id = dr->attached_phy_id;
 265	phy->phy_change_count = dr->change_count;
 266	phy->routing_attr = dr->routing_attr;
 267	phy->virtual = dr->virtual;
 268	phy->last_da_index = -1;
 269
 270	phy->phy->identify.sas_address = SAS_ADDR(phy->attached_sas_addr);
 271	phy->phy->identify.device_type = dr->attached_dev_type;
 272	phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
 273	phy->phy->identify.target_port_protocols = phy->attached_tproto;
 274	if (!phy->attached_tproto && dr->attached_sata_dev)
 275		phy->phy->identify.target_port_protocols = SAS_PROTOCOL_SATA;
 276	phy->phy->identify.phy_identifier = phy_id;
 277	phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
 278	phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
 279	phy->phy->minimum_linkrate = dr->pmin_linkrate;
 280	phy->phy->maximum_linkrate = dr->pmax_linkrate;
 281	phy->phy->negotiated_linkrate = phy->linkrate;
 282	phy->phy->enabled = (phy->linkrate != SAS_PHY_DISABLED);
 283
 284 skip:
 285	if (new_phy)
 286		if (sas_phy_add(phy->phy)) {
 287			sas_phy_free(phy->phy);
 288			return;
 289		}
 290
 291 out:
 292	switch (phy->attached_dev_type) {
 293	case SAS_SATA_PENDING:
 294		type = "stp pending";
 295		break;
 296	case SAS_PHY_UNUSED:
 297		type = "no device";
 298		break;
 299	case SAS_END_DEVICE:
 300		if (phy->attached_iproto) {
 301			if (phy->attached_tproto)
 302				type = "host+target";
 303			else
 304				type = "host";
 305		} else {
 306			if (dr->attached_sata_dev)
 307				type = "stp";
 308			else
 309				type = "ssp";
 310		}
 311		break;
 312	case SAS_EDGE_EXPANDER_DEVICE:
 313	case SAS_FANOUT_EXPANDER_DEVICE:
 314		type = "smp";
 315		break;
 316	default:
 317		type = "unknown";
 318	}
 319
 320	/* this routine is polled by libata error recovery so filter
 321	 * unimportant messages
 322	 */
 323	if (new_phy || phy->attached_dev_type != dev_type ||
 324	    phy->linkrate != linkrate ||
 325	    SAS_ADDR(phy->attached_sas_addr) != SAS_ADDR(sas_addr))
 326		/* pass */;
 327	else
 328		return;
 329
 330	/* if the attached device type changed and ata_eh is active,
 331	 * make sure we run revalidation when eh completes (see:
 332	 * sas_enable_revalidation)
 333	 */
 334	if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
 335		set_bit(DISCE_REVALIDATE_DOMAIN, &dev->port->disc.pending);
 336
 337	pr_debug("%sex %016llx phy%02d:%c:%X attached: %016llx (%s)\n",
 338		 test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state) ? "ata: " : "",
 339		 SAS_ADDR(dev->sas_addr), phy->phy_id,
 340		 sas_route_char(dev, phy), phy->linkrate,
 341		 SAS_ADDR(phy->attached_sas_addr), type);
 342}
 343
 344/* check if we have an existing attached ata device on this expander phy */
 345struct domain_device *sas_ex_to_ata(struct domain_device *ex_dev, int phy_id)
 346{
 347	struct ex_phy *ex_phy = &ex_dev->ex_dev.ex_phy[phy_id];
 348	struct domain_device *dev;
 349	struct sas_rphy *rphy;
 350
 351	if (!ex_phy->port)
 352		return NULL;
 353
 354	rphy = ex_phy->port->rphy;
 355	if (!rphy)
 356		return NULL;
 357
 358	dev = sas_find_dev_by_rphy(rphy);
 359
 360	if (dev && dev_is_sata(dev))
 361		return dev;
 362
 363	return NULL;
 364}
 365
 366#define DISCOVER_REQ_SIZE  16
 367#define DISCOVER_RESP_SIZE 56
 368
 369static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
 370				      u8 *disc_resp, int single)
 
 371{
 372	struct discover_resp *dr;
 373	int res;
 374
 375	disc_req[9] = single;
 376
 377	res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
 378			       disc_resp, DISCOVER_RESP_SIZE);
 379	if (res)
 380		return res;
 381	dr = &((struct smp_resp *)disc_resp)->disc;
 382	if (memcmp(dev->sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE) == 0) {
 383		pr_notice("Found loopback topology, just ignore it!\n");
 384		return 0;
 385	}
 386	sas_set_ex_phy(dev, single, disc_resp);
 387	return 0;
 388}
 389
 390int sas_ex_phy_discover(struct domain_device *dev, int single)
 391{
 392	struct expander_device *ex = &dev->ex_dev;
 393	int  res = 0;
 394	u8   *disc_req;
 395	u8   *disc_resp;
 396
 397	disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
 398	if (!disc_req)
 399		return -ENOMEM;
 400
 401	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
 402	if (!disc_resp) {
 403		kfree(disc_req);
 404		return -ENOMEM;
 405	}
 406
 407	disc_req[1] = SMP_DISCOVER;
 408
 409	if (0 <= single && single < ex->num_phys) {
 410		res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
 411	} else {
 412		int i;
 413
 414		for (i = 0; i < ex->num_phys; i++) {
 415			res = sas_ex_phy_discover_helper(dev, disc_req,
 416							 disc_resp, i);
 417			if (res)
 418				goto out_err;
 419		}
 420	}
 421out_err:
 422	kfree(disc_resp);
 423	kfree(disc_req);
 424	return res;
 425}
 426
 427static int sas_expander_discover(struct domain_device *dev)
 428{
 429	struct expander_device *ex = &dev->ex_dev;
 430	int res = -ENOMEM;
 431
 432	ex->ex_phy = kcalloc(ex->num_phys, sizeof(*ex->ex_phy), GFP_KERNEL);
 433	if (!ex->ex_phy)
 434		return -ENOMEM;
 435
 436	res = sas_ex_phy_discover(dev, -1);
 437	if (res)
 438		goto out_err;
 439
 440	return 0;
 441 out_err:
 442	kfree(ex->ex_phy);
 443	ex->ex_phy = NULL;
 444	return res;
 445}
 446
 447#define MAX_EXPANDER_PHYS 128
 448
 449static void ex_assign_report_general(struct domain_device *dev,
 450					    struct smp_resp *resp)
 451{
 452	struct report_general_resp *rg = &resp->rg;
 453
 454	dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
 455	dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
 456	dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
 457	dev->ex_dev.t2t_supp = rg->t2t_supp;
 458	dev->ex_dev.conf_route_table = rg->conf_route_table;
 459	dev->ex_dev.configuring = rg->configuring;
 460	memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8);
 461}
 462
 463#define RG_REQ_SIZE   8
 464#define RG_RESP_SIZE 32
 465
 466static int sas_ex_general(struct domain_device *dev)
 467{
 468	u8 *rg_req;
 469	struct smp_resp *rg_resp;
 
 470	int res;
 471	int i;
 472
 473	rg_req = alloc_smp_req(RG_REQ_SIZE);
 474	if (!rg_req)
 475		return -ENOMEM;
 476
 477	rg_resp = alloc_smp_resp(RG_RESP_SIZE);
 478	if (!rg_resp) {
 479		kfree(rg_req);
 480		return -ENOMEM;
 481	}
 482
 483	rg_req[1] = SMP_REPORT_GENERAL;
 484
 485	for (i = 0; i < 5; i++) {
 486		res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
 487				       RG_RESP_SIZE);
 488
 489		if (res) {
 490			pr_notice("RG to ex %016llx failed:0x%x\n",
 491				  SAS_ADDR(dev->sas_addr), res);
 492			goto out;
 493		} else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
 494			pr_debug("RG:ex %016llx returned SMP result:0x%x\n",
 495				 SAS_ADDR(dev->sas_addr), rg_resp->result);
 496			res = rg_resp->result;
 497			goto out;
 498		}
 499
 500		ex_assign_report_general(dev, rg_resp);
 
 
 
 
 
 
 
 
 501
 502		if (dev->ex_dev.configuring) {
 503			pr_debug("RG: ex %llx self-configuring...\n",
 504				 SAS_ADDR(dev->sas_addr));
 505			schedule_timeout_interruptible(5*HZ);
 506		} else
 507			break;
 508	}
 509out:
 510	kfree(rg_req);
 511	kfree(rg_resp);
 512	return res;
 513}
 514
 515static void ex_assign_manuf_info(struct domain_device *dev, void
 516					*_mi_resp)
 517{
 518	u8 *mi_resp = _mi_resp;
 519	struct sas_rphy *rphy = dev->rphy;
 520	struct sas_expander_device *edev = rphy_to_expander_device(rphy);
 521
 522	memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
 523	memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
 524	memcpy(edev->product_rev, mi_resp + 36,
 525	       SAS_EXPANDER_PRODUCT_REV_LEN);
 526
 527	if (mi_resp[8] & 1) {
 528		memcpy(edev->component_vendor_id, mi_resp + 40,
 529		       SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
 530		edev->component_id = mi_resp[48] << 8 | mi_resp[49];
 531		edev->component_revision_id = mi_resp[50];
 532	}
 533}
 534
 535#define MI_REQ_SIZE   8
 536#define MI_RESP_SIZE 64
 537
 538static int sas_ex_manuf_info(struct domain_device *dev)
 539{
 540	u8 *mi_req;
 541	u8 *mi_resp;
 542	int res;
 543
 544	mi_req = alloc_smp_req(MI_REQ_SIZE);
 545	if (!mi_req)
 546		return -ENOMEM;
 547
 548	mi_resp = alloc_smp_resp(MI_RESP_SIZE);
 549	if (!mi_resp) {
 550		kfree(mi_req);
 551		return -ENOMEM;
 552	}
 553
 554	mi_req[1] = SMP_REPORT_MANUF_INFO;
 555
 556	res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE);
 557	if (res) {
 558		pr_notice("MI: ex %016llx failed:0x%x\n",
 559			  SAS_ADDR(dev->sas_addr), res);
 560		goto out;
 561	} else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
 562		pr_debug("MI ex %016llx returned SMP result:0x%x\n",
 563			 SAS_ADDR(dev->sas_addr), mi_resp[2]);
 564		goto out;
 565	}
 566
 567	ex_assign_manuf_info(dev, mi_resp);
 568out:
 569	kfree(mi_req);
 570	kfree(mi_resp);
 571	return res;
 572}
 573
 574#define PC_REQ_SIZE  44
 575#define PC_RESP_SIZE 8
 576
 577int sas_smp_phy_control(struct domain_device *dev, int phy_id,
 578			enum phy_func phy_func,
 579			struct sas_phy_linkrates *rates)
 580{
 581	u8 *pc_req;
 582	u8 *pc_resp;
 583	int res;
 584
 585	pc_req = alloc_smp_req(PC_REQ_SIZE);
 586	if (!pc_req)
 587		return -ENOMEM;
 588
 589	pc_resp = alloc_smp_resp(PC_RESP_SIZE);
 590	if (!pc_resp) {
 591		kfree(pc_req);
 592		return -ENOMEM;
 593	}
 594
 595	pc_req[1] = SMP_PHY_CONTROL;
 596	pc_req[9] = phy_id;
 597	pc_req[10]= phy_func;
 598	if (rates) {
 599		pc_req[32] = rates->minimum_linkrate << 4;
 600		pc_req[33] = rates->maximum_linkrate << 4;
 601	}
 602
 603	res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE);
 604	if (res) {
 605		pr_err("ex %016llx phy%02d PHY control failed: %d\n",
 606		       SAS_ADDR(dev->sas_addr), phy_id, res);
 607	} else if (pc_resp[2] != SMP_RESP_FUNC_ACC) {
 608		pr_err("ex %016llx phy%02d PHY control failed: function result 0x%x\n",
 609		       SAS_ADDR(dev->sas_addr), phy_id, pc_resp[2]);
 610		res = pc_resp[2];
 611	}
 612	kfree(pc_resp);
 613	kfree(pc_req);
 614	return res;
 615}
 616
 617static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
 618{
 619	struct expander_device *ex = &dev->ex_dev;
 620	struct ex_phy *phy = &ex->ex_phy[phy_id];
 621
 622	sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
 623	phy->linkrate = SAS_PHY_DISABLED;
 624}
 625
 626static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
 627{
 628	struct expander_device *ex = &dev->ex_dev;
 629	int i;
 630
 631	for (i = 0; i < ex->num_phys; i++) {
 632		struct ex_phy *phy = &ex->ex_phy[i];
 633
 634		if (phy->phy_state == PHY_VACANT ||
 635		    phy->phy_state == PHY_NOT_PRESENT)
 636			continue;
 637
 638		if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
 639			sas_ex_disable_phy(dev, i);
 640	}
 641}
 642
 643static int sas_dev_present_in_domain(struct asd_sas_port *port,
 644					    u8 *sas_addr)
 645{
 646	struct domain_device *dev;
 647
 648	if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
 649		return 1;
 650	list_for_each_entry(dev, &port->dev_list, dev_list_node) {
 651		if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
 652			return 1;
 653	}
 654	return 0;
 655}
 656
 657#define RPEL_REQ_SIZE	16
 658#define RPEL_RESP_SIZE	32
 659int sas_smp_get_phy_events(struct sas_phy *phy)
 660{
 661	int res;
 662	u8 *req;
 663	u8 *resp;
 664	struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
 665	struct domain_device *dev = sas_find_dev_by_rphy(rphy);
 666
 667	req = alloc_smp_req(RPEL_REQ_SIZE);
 668	if (!req)
 669		return -ENOMEM;
 670
 671	resp = alloc_smp_resp(RPEL_RESP_SIZE);
 672	if (!resp) {
 673		kfree(req);
 674		return -ENOMEM;
 675	}
 676
 677	req[1] = SMP_REPORT_PHY_ERR_LOG;
 678	req[9] = phy->number;
 679
 680	res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
 681			            resp, RPEL_RESP_SIZE);
 682
 683	if (res)
 684		goto out;
 685
 686	phy->invalid_dword_count = get_unaligned_be32(&resp[12]);
 687	phy->running_disparity_error_count = get_unaligned_be32(&resp[16]);
 688	phy->loss_of_dword_sync_count = get_unaligned_be32(&resp[20]);
 689	phy->phy_reset_problem_count = get_unaligned_be32(&resp[24]);
 690
 691 out:
 692	kfree(req);
 693	kfree(resp);
 694	return res;
 695
 696}
 697
 698#ifdef CONFIG_SCSI_SAS_ATA
 699
 700#define RPS_REQ_SIZE  16
 701#define RPS_RESP_SIZE 60
 702
 703int sas_get_report_phy_sata(struct domain_device *dev, int phy_id,
 704			    struct smp_resp *rps_resp)
 705{
 706	int res;
 707	u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
 708	u8 *resp = (u8 *)rps_resp;
 709
 710	if (!rps_req)
 711		return -ENOMEM;
 712
 713	rps_req[1] = SMP_REPORT_PHY_SATA;
 714	rps_req[9] = phy_id;
 715
 716	res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
 717			            rps_resp, RPS_RESP_SIZE);
 718
 719	/* 0x34 is the FIS type for the D2H fis.  There's a potential
 720	 * standards cockup here.  sas-2 explicitly specifies the FIS
 721	 * should be encoded so that FIS type is in resp[24].
 722	 * However, some expanders endian reverse this.  Undo the
 723	 * reversal here */
 724	if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
 725		int i;
 726
 727		for (i = 0; i < 5; i++) {
 728			int j = 24 + (i*4);
 729			u8 a, b;
 730			a = resp[j + 0];
 731			b = resp[j + 1];
 732			resp[j + 0] = resp[j + 3];
 733			resp[j + 1] = resp[j + 2];
 734			resp[j + 2] = b;
 735			resp[j + 3] = a;
 736		}
 737	}
 738
 739	kfree(rps_req);
 740	return res;
 741}
 742#endif
 743
 744static void sas_ex_get_linkrate(struct domain_device *parent,
 745				       struct domain_device *child,
 746				       struct ex_phy *parent_phy)
 747{
 748	struct expander_device *parent_ex = &parent->ex_dev;
 749	struct sas_port *port;
 750	int i;
 751
 752	child->pathways = 0;
 753
 754	port = parent_phy->port;
 755
 756	for (i = 0; i < parent_ex->num_phys; i++) {
 757		struct ex_phy *phy = &parent_ex->ex_phy[i];
 758
 759		if (phy->phy_state == PHY_VACANT ||
 760		    phy->phy_state == PHY_NOT_PRESENT)
 761			continue;
 762
 763		if (SAS_ADDR(phy->attached_sas_addr) ==
 764		    SAS_ADDR(child->sas_addr)) {
 765
 766			child->min_linkrate = min(parent->min_linkrate,
 767						  phy->linkrate);
 768			child->max_linkrate = max(parent->max_linkrate,
 769						  phy->linkrate);
 770			child->pathways++;
 771			sas_port_add_phy(port, phy->phy);
 772		}
 773	}
 774	child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
 775	child->pathways = min(child->pathways, parent->pathways);
 776}
 777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 778static struct domain_device *sas_ex_discover_end_dev(
 779	struct domain_device *parent, int phy_id)
 780{
 781	struct expander_device *parent_ex = &parent->ex_dev;
 782	struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
 783	struct domain_device *child = NULL;
 784	struct sas_rphy *rphy;
 785	int res;
 786
 787	if (phy->attached_sata_host || phy->attached_sata_ps)
 788		return NULL;
 789
 790	child = sas_alloc_device();
 791	if (!child)
 792		return NULL;
 793
 794	kref_get(&parent->kref);
 795	child->parent = parent;
 796	child->port   = parent->port;
 797	child->iproto = phy->attached_iproto;
 798	memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
 799	sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
 800	if (!phy->port) {
 801		phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
 802		if (unlikely(!phy->port))
 803			goto out_err;
 804		if (unlikely(sas_port_add(phy->port) != 0)) {
 805			sas_port_free(phy->port);
 806			goto out_err;
 807		}
 808	}
 809	sas_ex_get_linkrate(parent, child, phy);
 810	sas_device_set_phy(child, phy->port);
 811
 812#ifdef CONFIG_SCSI_SAS_ATA
 813	if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) {
 814		if (child->linkrate > parent->min_linkrate) {
 815			struct sas_phy *cphy = child->phy;
 816			enum sas_linkrate min_prate = cphy->minimum_linkrate,
 817				parent_min_lrate = parent->min_linkrate,
 818				min_linkrate = (min_prate > parent_min_lrate) ?
 819					       parent_min_lrate : 0;
 820			struct sas_phy_linkrates rates = {
 821				.maximum_linkrate = parent->min_linkrate,
 822				.minimum_linkrate = min_linkrate,
 823			};
 824			int ret;
 825
 826			pr_notice("ex %016llx phy%02d SATA device linkrate > min pathway connection rate, attempting to lower device linkrate\n",
 827				   SAS_ADDR(child->sas_addr), phy_id);
 828			ret = sas_smp_phy_control(parent, phy_id,
 829						  PHY_FUNC_LINK_RESET, &rates);
 830			if (ret) {
 831				pr_err("ex %016llx phy%02d SATA device could not set linkrate (%d)\n",
 832				       SAS_ADDR(child->sas_addr), phy_id, ret);
 833				goto out_free;
 834			}
 835			pr_notice("ex %016llx phy%02d SATA device set linkrate successfully\n",
 836				  SAS_ADDR(child->sas_addr), phy_id);
 837			child->linkrate = child->min_linkrate;
 838		}
 839		res = sas_get_ata_info(child, phy);
 840		if (res)
 841			goto out_free;
 842
 843		sas_init_dev(child);
 844		res = sas_ata_init(child);
 845		if (res)
 846			goto out_free;
 847		rphy = sas_end_device_alloc(phy->port);
 848		if (!rphy)
 849			goto out_free;
 850		rphy->identify.phy_identifier = phy_id;
 851
 852		child->rphy = rphy;
 853		get_device(&rphy->dev);
 854
 855		list_add_tail(&child->disco_list_node, &parent->port->disco_list);
 856
 857		res = sas_discover_sata(child);
 858		if (res) {
 859			pr_notice("sas_discover_sata() for device %16llx at %016llx:%02d returned 0x%x\n",
 860				  SAS_ADDR(child->sas_addr),
 861				  SAS_ADDR(parent->sas_addr), phy_id, res);
 862			goto out_list_del;
 863		}
 864	} else
 865#endif
 866	  if (phy->attached_tproto & SAS_PROTOCOL_SSP) {
 867		child->dev_type = SAS_END_DEVICE;
 868		rphy = sas_end_device_alloc(phy->port);
 869		/* FIXME: error handling */
 870		if (unlikely(!rphy))
 871			goto out_free;
 872		child->tproto = phy->attached_tproto;
 873		sas_init_dev(child);
 874
 875		child->rphy = rphy;
 876		get_device(&rphy->dev);
 877		rphy->identify.phy_identifier = phy_id;
 878		sas_fill_in_rphy(child, rphy);
 879
 880		list_add_tail(&child->disco_list_node, &parent->port->disco_list);
 881
 882		res = sas_discover_end_dev(child);
 883		if (res) {
 884			pr_notice("sas_discover_end_dev() for device %16llx at %016llx:%02d returned 0x%x\n",
 885				  SAS_ADDR(child->sas_addr),
 886				  SAS_ADDR(parent->sas_addr), phy_id, res);
 887			goto out_list_del;
 888		}
 889	} else {
 890		pr_notice("target proto 0x%x at %016llx:0x%x not handled\n",
 891			  phy->attached_tproto, SAS_ADDR(parent->sas_addr),
 892			  phy_id);
 
 
 
 
 893		goto out_free;
 894	}
 895
 896	list_add_tail(&child->siblings, &parent_ex->children);
 897	return child;
 898
 899 out_list_del:
 900	sas_rphy_free(child->rphy);
 901	list_del(&child->disco_list_node);
 902	spin_lock_irq(&parent->port->dev_list_lock);
 903	list_del(&child->dev_list_node);
 904	spin_unlock_irq(&parent->port->dev_list_lock);
 905 out_free:
 906	sas_port_delete(phy->port);
 907 out_err:
 908	phy->port = NULL;
 909	sas_put_device(child);
 910	return NULL;
 911}
 912
 913/* See if this phy is part of a wide port */
 914static bool sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
 915{
 916	struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
 917	int i;
 918
 919	for (i = 0; i < parent->ex_dev.num_phys; i++) {
 920		struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
 921
 922		if (ephy == phy)
 923			continue;
 924
 925		if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
 926			    SAS_ADDR_SIZE) && ephy->port) {
 927			sas_port_add_phy(ephy->port, phy->phy);
 928			phy->port = ephy->port;
 929			phy->phy_state = PHY_DEVICE_DISCOVERED;
 930			return true;
 931		}
 932	}
 933
 934	return false;
 935}
 936
 937static struct domain_device *sas_ex_discover_expander(
 938	struct domain_device *parent, int phy_id)
 939{
 940	struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
 941	struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
 942	struct domain_device *child = NULL;
 943	struct sas_rphy *rphy;
 944	struct sas_expander_device *edev;
 945	struct asd_sas_port *port;
 946	int res;
 947
 948	if (phy->routing_attr == DIRECT_ROUTING) {
 949		pr_warn("ex %016llx:%02d:D <--> ex %016llx:0x%x is not allowed\n",
 950			SAS_ADDR(parent->sas_addr), phy_id,
 951			SAS_ADDR(phy->attached_sas_addr),
 952			phy->attached_phy_id);
 953		return NULL;
 954	}
 955	child = sas_alloc_device();
 956	if (!child)
 957		return NULL;
 958
 959	phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
 960	/* FIXME: better error handling */
 961	BUG_ON(sas_port_add(phy->port) != 0);
 962
 963
 964	switch (phy->attached_dev_type) {
 965	case SAS_EDGE_EXPANDER_DEVICE:
 966		rphy = sas_expander_alloc(phy->port,
 967					  SAS_EDGE_EXPANDER_DEVICE);
 968		break;
 969	case SAS_FANOUT_EXPANDER_DEVICE:
 970		rphy = sas_expander_alloc(phy->port,
 971					  SAS_FANOUT_EXPANDER_DEVICE);
 972		break;
 973	default:
 974		rphy = NULL;	/* shut gcc up */
 975		BUG();
 976	}
 977	port = parent->port;
 978	child->rphy = rphy;
 979	get_device(&rphy->dev);
 980	edev = rphy_to_expander_device(rphy);
 981	child->dev_type = phy->attached_dev_type;
 982	kref_get(&parent->kref);
 983	child->parent = parent;
 984	child->port = port;
 985	child->iproto = phy->attached_iproto;
 986	child->tproto = phy->attached_tproto;
 987	memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
 988	sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
 989	sas_ex_get_linkrate(parent, child, phy);
 990	edev->level = parent_ex->level + 1;
 991	parent->port->disc.max_level = max(parent->port->disc.max_level,
 992					   edev->level);
 993	sas_init_dev(child);
 994	sas_fill_in_rphy(child, rphy);
 995	sas_rphy_add(rphy);
 996
 997	spin_lock_irq(&parent->port->dev_list_lock);
 998	list_add_tail(&child->dev_list_node, &parent->port->dev_list);
 999	spin_unlock_irq(&parent->port->dev_list_lock);
1000
1001	res = sas_discover_expander(child);
1002	if (res) {
1003		sas_rphy_delete(rphy);
1004		spin_lock_irq(&parent->port->dev_list_lock);
1005		list_del(&child->dev_list_node);
1006		spin_unlock_irq(&parent->port->dev_list_lock);
1007		sas_put_device(child);
1008		sas_port_delete(phy->port);
1009		phy->port = NULL;
1010		return NULL;
1011	}
1012	list_add_tail(&child->siblings, &parent->ex_dev.children);
1013	return child;
1014}
1015
1016static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
1017{
1018	struct expander_device *ex = &dev->ex_dev;
1019	struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
1020	struct domain_device *child = NULL;
1021	int res = 0;
1022
1023	/* Phy state */
1024	if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
1025		if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
1026			res = sas_ex_phy_discover(dev, phy_id);
1027		if (res)
1028			return res;
1029	}
1030
1031	/* Parent and domain coherency */
1032	if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
1033			     SAS_ADDR(dev->port->sas_addr))) {
1034		sas_add_parent_port(dev, phy_id);
1035		return 0;
1036	}
1037	if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
1038			    SAS_ADDR(dev->parent->sas_addr))) {
1039		sas_add_parent_port(dev, phy_id);
1040		if (ex_phy->routing_attr == TABLE_ROUTING)
1041			sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
1042		return 0;
1043	}
1044
1045	if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
1046		sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
1047
1048	if (ex_phy->attached_dev_type == SAS_PHY_UNUSED) {
1049		if (ex_phy->routing_attr == DIRECT_ROUTING) {
1050			memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1051			sas_configure_routing(dev, ex_phy->attached_sas_addr);
1052		}
1053		return 0;
1054	} else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
1055		return 0;
1056
1057	if (ex_phy->attached_dev_type != SAS_END_DEVICE &&
1058	    ex_phy->attached_dev_type != SAS_FANOUT_EXPANDER_DEVICE &&
1059	    ex_phy->attached_dev_type != SAS_EDGE_EXPANDER_DEVICE &&
1060	    ex_phy->attached_dev_type != SAS_SATA_PENDING) {
1061		pr_warn("unknown device type(0x%x) attached to ex %016llx phy%02d\n",
1062			ex_phy->attached_dev_type,
1063			SAS_ADDR(dev->sas_addr),
1064			phy_id);
1065		return 0;
1066	}
1067
1068	res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
1069	if (res) {
1070		pr_notice("configure routing for dev %016llx reported 0x%x. Forgotten\n",
1071			  SAS_ADDR(ex_phy->attached_sas_addr), res);
1072		sas_disable_routing(dev, ex_phy->attached_sas_addr);
1073		return res;
1074	}
1075
1076	if (sas_ex_join_wide_port(dev, phy_id)) {
1077		pr_debug("Attaching ex phy%02d to wide port %016llx\n",
1078			 phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
1079		return res;
1080	}
1081
1082	switch (ex_phy->attached_dev_type) {
1083	case SAS_END_DEVICE:
1084	case SAS_SATA_PENDING:
1085		child = sas_ex_discover_end_dev(dev, phy_id);
1086		break;
1087	case SAS_FANOUT_EXPANDER_DEVICE:
1088		if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
1089			pr_debug("second fanout expander %016llx phy%02d attached to ex %016llx phy%02d\n",
1090				 SAS_ADDR(ex_phy->attached_sas_addr),
1091				 ex_phy->attached_phy_id,
1092				 SAS_ADDR(dev->sas_addr),
1093				 phy_id);
1094			sas_ex_disable_phy(dev, phy_id);
1095			return res;
1096		} else
1097			memcpy(dev->port->disc.fanout_sas_addr,
1098			       ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
1099		/* fallthrough */
1100	case SAS_EDGE_EXPANDER_DEVICE:
1101		child = sas_ex_discover_expander(dev, phy_id);
1102		break;
1103	default:
1104		break;
1105	}
1106
1107	if (!child)
1108		pr_notice("ex %016llx phy%02d failed to discover\n",
1109			  SAS_ADDR(dev->sas_addr), phy_id);
1110	return res;
1111}
1112
1113static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
1114{
1115	struct expander_device *ex = &dev->ex_dev;
1116	int i;
1117
1118	for (i = 0; i < ex->num_phys; i++) {
1119		struct ex_phy *phy = &ex->ex_phy[i];
1120
1121		if (phy->phy_state == PHY_VACANT ||
1122		    phy->phy_state == PHY_NOT_PRESENT)
1123			continue;
1124
1125		if (dev_is_expander(phy->attached_dev_type) &&
1126		    phy->routing_attr == SUBTRACTIVE_ROUTING) {
1127
1128			memcpy(sub_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
1129
1130			return 1;
1131		}
1132	}
1133	return 0;
1134}
1135
1136static int sas_check_level_subtractive_boundary(struct domain_device *dev)
1137{
1138	struct expander_device *ex = &dev->ex_dev;
1139	struct domain_device *child;
1140	u8 sub_addr[SAS_ADDR_SIZE] = {0, };
1141
1142	list_for_each_entry(child, &ex->children, siblings) {
1143		if (!dev_is_expander(child->dev_type))
1144			continue;
1145		if (sub_addr[0] == 0) {
1146			sas_find_sub_addr(child, sub_addr);
1147			continue;
1148		} else {
1149			u8 s2[SAS_ADDR_SIZE];
1150
1151			if (sas_find_sub_addr(child, s2) &&
1152			    (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
1153
1154				pr_notice("ex %016llx->%016llx-?->%016llx diverges from subtractive boundary %016llx\n",
1155					  SAS_ADDR(dev->sas_addr),
1156					  SAS_ADDR(child->sas_addr),
1157					  SAS_ADDR(s2),
1158					  SAS_ADDR(sub_addr));
1159
1160				sas_ex_disable_port(child, s2);
1161			}
1162		}
1163	}
1164	return 0;
1165}
1166/**
1167 * sas_ex_discover_devices - discover devices attached to this expander
1168 * @dev: pointer to the expander domain device
1169 * @single: if you want to do a single phy, else set to -1;
1170 *
1171 * Configure this expander for use with its devices and register the
1172 * devices of this expander.
1173 */
1174static int sas_ex_discover_devices(struct domain_device *dev, int single)
1175{
1176	struct expander_device *ex = &dev->ex_dev;
1177	int i = 0, end = ex->num_phys;
1178	int res = 0;
1179
1180	if (0 <= single && single < end) {
1181		i = single;
1182		end = i+1;
1183	}
1184
1185	for ( ; i < end; i++) {
1186		struct ex_phy *ex_phy = &ex->ex_phy[i];
1187
1188		if (ex_phy->phy_state == PHY_VACANT ||
1189		    ex_phy->phy_state == PHY_NOT_PRESENT ||
1190		    ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
1191			continue;
1192
1193		switch (ex_phy->linkrate) {
1194		case SAS_PHY_DISABLED:
1195		case SAS_PHY_RESET_PROBLEM:
1196		case SAS_SATA_PORT_SELECTOR:
1197			continue;
1198		default:
1199			res = sas_ex_discover_dev(dev, i);
1200			if (res)
1201				break;
1202			continue;
1203		}
1204	}
1205
1206	if (!res)
1207		sas_check_level_subtractive_boundary(dev);
1208
1209	return res;
1210}
1211
1212static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
1213{
1214	struct expander_device *ex = &dev->ex_dev;
1215	int i;
1216	u8  *sub_sas_addr = NULL;
1217
1218	if (dev->dev_type != SAS_EDGE_EXPANDER_DEVICE)
1219		return 0;
1220
1221	for (i = 0; i < ex->num_phys; i++) {
1222		struct ex_phy *phy = &ex->ex_phy[i];
1223
1224		if (phy->phy_state == PHY_VACANT ||
1225		    phy->phy_state == PHY_NOT_PRESENT)
1226			continue;
1227
1228		if (dev_is_expander(phy->attached_dev_type) &&
1229		    phy->routing_attr == SUBTRACTIVE_ROUTING) {
1230
1231			if (!sub_sas_addr)
1232				sub_sas_addr = &phy->attached_sas_addr[0];
1233			else if (SAS_ADDR(sub_sas_addr) !=
1234				 SAS_ADDR(phy->attached_sas_addr)) {
1235
1236				pr_notice("ex %016llx phy%02d diverges(%016llx) on subtractive boundary(%016llx). Disabled\n",
1237					  SAS_ADDR(dev->sas_addr), i,
1238					  SAS_ADDR(phy->attached_sas_addr),
1239					  SAS_ADDR(sub_sas_addr));
1240				sas_ex_disable_phy(dev, i);
1241			}
1242		}
1243	}
1244	return 0;
1245}
1246
1247static void sas_print_parent_topology_bug(struct domain_device *child,
1248						 struct ex_phy *parent_phy,
1249						 struct ex_phy *child_phy)
1250{
1251	static const char *ex_type[] = {
1252		[SAS_EDGE_EXPANDER_DEVICE] = "edge",
1253		[SAS_FANOUT_EXPANDER_DEVICE] = "fanout",
1254	};
1255	struct domain_device *parent = child->parent;
1256
1257	pr_notice("%s ex %016llx phy%02d <--> %s ex %016llx phy%02d has %c:%c routing link!\n",
1258		  ex_type[parent->dev_type],
1259		  SAS_ADDR(parent->sas_addr),
1260		  parent_phy->phy_id,
1261
1262		  ex_type[child->dev_type],
1263		  SAS_ADDR(child->sas_addr),
1264		  child_phy->phy_id,
1265
1266		  sas_route_char(parent, parent_phy),
1267		  sas_route_char(child, child_phy));
1268}
1269
 
 
 
 
 
 
 
 
 
 
 
1270static int sas_check_eeds(struct domain_device *child,
1271				 struct ex_phy *parent_phy,
1272				 struct ex_phy *child_phy)
1273{
1274	int res = 0;
1275	struct domain_device *parent = child->parent;
 
1276
1277	if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
1278		res = -ENODEV;
1279		pr_warn("edge ex %016llx phy S:%02d <--> edge ex %016llx phy S:%02d, while there is a fanout ex %016llx\n",
1280			SAS_ADDR(parent->sas_addr),
1281			parent_phy->phy_id,
1282			SAS_ADDR(child->sas_addr),
1283			child_phy->phy_id,
1284			SAS_ADDR(parent->port->disc.fanout_sas_addr));
1285	} else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
1286		memcpy(parent->port->disc.eeds_a, parent->sas_addr,
1287		       SAS_ADDR_SIZE);
1288		memcpy(parent->port->disc.eeds_b, child->sas_addr,
1289		       SAS_ADDR_SIZE);
1290	} else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
1291		    SAS_ADDR(parent->sas_addr)) ||
1292		   (SAS_ADDR(parent->port->disc.eeds_a) ==
1293		    SAS_ADDR(child->sas_addr)))
1294		   &&
1295		   ((SAS_ADDR(parent->port->disc.eeds_b) ==
1296		     SAS_ADDR(parent->sas_addr)) ||
1297		    (SAS_ADDR(parent->port->disc.eeds_b) ==
1298		     SAS_ADDR(child->sas_addr))))
1299		;
1300	else {
1301		res = -ENODEV;
1302		pr_warn("edge ex %016llx phy%02d <--> edge ex %016llx phy%02d link forms a third EEDS!\n",
1303			SAS_ADDR(parent->sas_addr),
1304			parent_phy->phy_id,
1305			SAS_ADDR(child->sas_addr),
1306			child_phy->phy_id);
1307	}
1308
1309	return res;
1310}
1311
1312/* Here we spill over 80 columns.  It is intentional.
1313 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1314static int sas_check_parent_topology(struct domain_device *child)
1315{
1316	struct expander_device *child_ex = &child->ex_dev;
1317	struct expander_device *parent_ex;
1318	int i;
1319	int res = 0;
1320
1321	if (!child->parent)
1322		return 0;
1323
1324	if (!dev_is_expander(child->parent->dev_type))
1325		return 0;
1326
1327	parent_ex = &child->parent->ex_dev;
1328
1329	for (i = 0; i < parent_ex->num_phys; i++) {
1330		struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1331		struct ex_phy *child_phy;
1332
1333		if (parent_phy->phy_state == PHY_VACANT ||
1334		    parent_phy->phy_state == PHY_NOT_PRESENT)
1335			continue;
1336
1337		if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr))
1338			continue;
1339
1340		child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1341
1342		switch (child->parent->dev_type) {
1343		case SAS_EDGE_EXPANDER_DEVICE:
1344			if (child->dev_type == SAS_FANOUT_EXPANDER_DEVICE) {
1345				if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1346				    child_phy->routing_attr != TABLE_ROUTING) {
1347					sas_print_parent_topology_bug(child, parent_phy, child_phy);
1348					res = -ENODEV;
1349				}
1350			} else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1351				if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1352					res = sas_check_eeds(child, parent_phy, child_phy);
1353				} else if (child_phy->routing_attr != TABLE_ROUTING) {
1354					sas_print_parent_topology_bug(child, parent_phy, child_phy);
1355					res = -ENODEV;
1356				}
1357			} else if (parent_phy->routing_attr == TABLE_ROUTING) {
1358				if (child_phy->routing_attr == SUBTRACTIVE_ROUTING ||
1359				    (child_phy->routing_attr == TABLE_ROUTING &&
1360				     child_ex->t2t_supp && parent_ex->t2t_supp)) {
1361					/* All good */;
1362				} else {
1363					sas_print_parent_topology_bug(child, parent_phy, child_phy);
1364					res = -ENODEV;
1365				}
1366			}
1367			break;
1368		case SAS_FANOUT_EXPANDER_DEVICE:
1369			if (parent_phy->routing_attr != TABLE_ROUTING ||
1370			    child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1371				sas_print_parent_topology_bug(child, parent_phy, child_phy);
1372				res = -ENODEV;
1373			}
1374			break;
1375		default:
1376			break;
1377		}
1378	}
1379
1380	return res;
1381}
1382
1383#define RRI_REQ_SIZE  16
1384#define RRI_RESP_SIZE 44
1385
1386static int sas_configure_present(struct domain_device *dev, int phy_id,
1387				 u8 *sas_addr, int *index, int *present)
1388{
1389	int i, res = 0;
1390	struct expander_device *ex = &dev->ex_dev;
1391	struct ex_phy *phy = &ex->ex_phy[phy_id];
1392	u8 *rri_req;
1393	u8 *rri_resp;
1394
1395	*present = 0;
1396	*index = 0;
1397
1398	rri_req = alloc_smp_req(RRI_REQ_SIZE);
1399	if (!rri_req)
1400		return -ENOMEM;
1401
1402	rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1403	if (!rri_resp) {
1404		kfree(rri_req);
1405		return -ENOMEM;
1406	}
1407
1408	rri_req[1] = SMP_REPORT_ROUTE_INFO;
1409	rri_req[9] = phy_id;
1410
1411	for (i = 0; i < ex->max_route_indexes ; i++) {
1412		*(__be16 *)(rri_req+6) = cpu_to_be16(i);
1413		res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1414				       RRI_RESP_SIZE);
1415		if (res)
1416			goto out;
1417		res = rri_resp[2];
1418		if (res == SMP_RESP_NO_INDEX) {
1419			pr_warn("overflow of indexes: dev %016llx phy%02d index 0x%x\n",
1420				SAS_ADDR(dev->sas_addr), phy_id, i);
1421			goto out;
1422		} else if (res != SMP_RESP_FUNC_ACC) {
1423			pr_notice("%s: dev %016llx phy%02d index 0x%x result 0x%x\n",
1424				  __func__, SAS_ADDR(dev->sas_addr), phy_id,
1425				  i, res);
1426			goto out;
1427		}
1428		if (SAS_ADDR(sas_addr) != 0) {
1429			if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1430				*index = i;
1431				if ((rri_resp[12] & 0x80) == 0x80)
1432					*present = 0;
1433				else
1434					*present = 1;
1435				goto out;
1436			} else if (SAS_ADDR(rri_resp+16) == 0) {
1437				*index = i;
1438				*present = 0;
1439				goto out;
1440			}
1441		} else if (SAS_ADDR(rri_resp+16) == 0 &&
1442			   phy->last_da_index < i) {
1443			phy->last_da_index = i;
1444			*index = i;
1445			*present = 0;
1446			goto out;
1447		}
1448	}
1449	res = -1;
1450out:
1451	kfree(rri_req);
1452	kfree(rri_resp);
1453	return res;
1454}
1455
1456#define CRI_REQ_SIZE  44
1457#define CRI_RESP_SIZE  8
1458
1459static int sas_configure_set(struct domain_device *dev, int phy_id,
1460			     u8 *sas_addr, int index, int include)
1461{
1462	int res;
1463	u8 *cri_req;
1464	u8 *cri_resp;
1465
1466	cri_req = alloc_smp_req(CRI_REQ_SIZE);
1467	if (!cri_req)
1468		return -ENOMEM;
1469
1470	cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1471	if (!cri_resp) {
1472		kfree(cri_req);
1473		return -ENOMEM;
1474	}
1475
1476	cri_req[1] = SMP_CONF_ROUTE_INFO;
1477	*(__be16 *)(cri_req+6) = cpu_to_be16(index);
1478	cri_req[9] = phy_id;
1479	if (SAS_ADDR(sas_addr) == 0 || !include)
1480		cri_req[12] |= 0x80;
1481	memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1482
1483	res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1484			       CRI_RESP_SIZE);
1485	if (res)
1486		goto out;
1487	res = cri_resp[2];
1488	if (res == SMP_RESP_NO_INDEX) {
1489		pr_warn("overflow of indexes: dev %016llx phy%02d index 0x%x\n",
1490			SAS_ADDR(dev->sas_addr), phy_id, index);
1491	}
1492out:
1493	kfree(cri_req);
1494	kfree(cri_resp);
1495	return res;
1496}
1497
1498static int sas_configure_phy(struct domain_device *dev, int phy_id,
1499				    u8 *sas_addr, int include)
1500{
1501	int index;
1502	int present;
1503	int res;
1504
1505	res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1506	if (res)
1507		return res;
1508	if (include ^ present)
1509		return sas_configure_set(dev, phy_id, sas_addr, index,include);
 
1510
1511	return res;
1512}
1513
1514/**
1515 * sas_configure_parent - configure routing table of parent
1516 * @parent: parent expander
1517 * @child: child expander
1518 * @sas_addr: SAS port identifier of device directly attached to child
1519 * @include: whether or not to include @child in the expander routing table
1520 */
1521static int sas_configure_parent(struct domain_device *parent,
1522				struct domain_device *child,
1523				u8 *sas_addr, int include)
1524{
1525	struct expander_device *ex_parent = &parent->ex_dev;
1526	int res = 0;
1527	int i;
1528
1529	if (parent->parent) {
1530		res = sas_configure_parent(parent->parent, parent, sas_addr,
1531					   include);
1532		if (res)
1533			return res;
1534	}
1535
1536	if (ex_parent->conf_route_table == 0) {
1537		pr_debug("ex %016llx has self-configuring routing table\n",
1538			 SAS_ADDR(parent->sas_addr));
1539		return 0;
1540	}
1541
1542	for (i = 0; i < ex_parent->num_phys; i++) {
1543		struct ex_phy *phy = &ex_parent->ex_phy[i];
1544
1545		if ((phy->routing_attr == TABLE_ROUTING) &&
1546		    (SAS_ADDR(phy->attached_sas_addr) ==
1547		     SAS_ADDR(child->sas_addr))) {
1548			res = sas_configure_phy(parent, i, sas_addr, include);
1549			if (res)
1550				return res;
1551		}
1552	}
1553
1554	return res;
1555}
1556
1557/**
1558 * sas_configure_routing - configure routing
1559 * @dev: expander device
1560 * @sas_addr: port identifier of device directly attached to the expander device
1561 */
1562static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1563{
1564	if (dev->parent)
1565		return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1566	return 0;
1567}
1568
1569static int sas_disable_routing(struct domain_device *dev,  u8 *sas_addr)
1570{
1571	if (dev->parent)
1572		return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1573	return 0;
1574}
1575
1576/**
1577 * sas_discover_expander - expander discovery
1578 * @dev: pointer to expander domain device
1579 *
1580 * See comment in sas_discover_sata().
1581 */
1582static int sas_discover_expander(struct domain_device *dev)
1583{
1584	int res;
1585
1586	res = sas_notify_lldd_dev_found(dev);
1587	if (res)
1588		return res;
1589
1590	res = sas_ex_general(dev);
1591	if (res)
1592		goto out_err;
1593	res = sas_ex_manuf_info(dev);
1594	if (res)
1595		goto out_err;
1596
1597	res = sas_expander_discover(dev);
1598	if (res) {
1599		pr_warn("expander %016llx discovery failed(0x%x)\n",
1600			SAS_ADDR(dev->sas_addr), res);
1601		goto out_err;
1602	}
1603
1604	sas_check_ex_subtractive_boundary(dev);
1605	res = sas_check_parent_topology(dev);
1606	if (res)
1607		goto out_err;
1608	return 0;
1609out_err:
1610	sas_notify_lldd_dev_gone(dev);
1611	return res;
1612}
1613
1614static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1615{
1616	int res = 0;
1617	struct domain_device *dev;
1618
1619	list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1620		if (dev_is_expander(dev->dev_type)) {
1621			struct sas_expander_device *ex =
1622				rphy_to_expander_device(dev->rphy);
1623
1624			if (level == ex->level)
1625				res = sas_ex_discover_devices(dev, -1);
1626			else if (level > 0)
1627				res = sas_ex_discover_devices(port->port_dev, -1);
1628
1629		}
1630	}
1631
1632	return res;
1633}
1634
1635static int sas_ex_bfs_disc(struct asd_sas_port *port)
1636{
1637	int res;
1638	int level;
1639
1640	do {
1641		level = port->disc.max_level;
1642		res = sas_ex_level_discovery(port, level);
1643		mb();
1644	} while (level < port->disc.max_level);
1645
1646	return res;
1647}
1648
1649int sas_discover_root_expander(struct domain_device *dev)
1650{
1651	int res;
1652	struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1653
1654	res = sas_rphy_add(dev->rphy);
1655	if (res)
1656		goto out_err;
1657
1658	ex->level = dev->port->disc.max_level; /* 0 */
1659	res = sas_discover_expander(dev);
1660	if (res)
1661		goto out_err2;
1662
1663	sas_ex_bfs_disc(dev->port);
1664
1665	return res;
1666
1667out_err2:
1668	sas_rphy_remove(dev->rphy);
1669out_err:
1670	return res;
1671}
1672
1673/* ---------- Domain revalidation ---------- */
1674
 
 
 
 
 
 
 
 
 
 
1675static int sas_get_phy_discover(struct domain_device *dev,
1676				int phy_id, struct smp_resp *disc_resp)
1677{
1678	int res;
1679	u8 *disc_req;
1680
1681	disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1682	if (!disc_req)
1683		return -ENOMEM;
1684
1685	disc_req[1] = SMP_DISCOVER;
1686	disc_req[9] = phy_id;
1687
1688	res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1689			       disc_resp, DISCOVER_RESP_SIZE);
1690	if (res)
1691		goto out;
1692	else if (disc_resp->result != SMP_RESP_FUNC_ACC) {
1693		res = disc_resp->result;
1694		goto out;
1695	}
1696out:
1697	kfree(disc_req);
1698	return res;
1699}
1700
1701static int sas_get_phy_change_count(struct domain_device *dev,
1702				    int phy_id, int *pcc)
1703{
1704	int res;
1705	struct smp_resp *disc_resp;
1706
1707	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1708	if (!disc_resp)
1709		return -ENOMEM;
1710
1711	res = sas_get_phy_discover(dev, phy_id, disc_resp);
1712	if (!res)
1713		*pcc = disc_resp->disc.change_count;
1714
1715	kfree(disc_resp);
1716	return res;
1717}
1718
1719static int sas_get_phy_attached_dev(struct domain_device *dev, int phy_id,
1720				    u8 *sas_addr, enum sas_device_type *type)
1721{
1722	int res;
1723	struct smp_resp *disc_resp;
1724	struct discover_resp *dr;
1725
1726	disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1727	if (!disc_resp)
1728		return -ENOMEM;
1729	dr = &disc_resp->disc;
1730
1731	res = sas_get_phy_discover(dev, phy_id, disc_resp);
1732	if (res == 0) {
1733		memcpy(sas_addr, disc_resp->disc.attached_sas_addr,
1734		       SAS_ADDR_SIZE);
1735		*type = to_dev_type(dr);
1736		if (*type == 0)
1737			memset(sas_addr, 0, SAS_ADDR_SIZE);
1738	}
1739	kfree(disc_resp);
1740	return res;
1741}
1742
1743static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1744			      int from_phy, bool update)
1745{
1746	struct expander_device *ex = &dev->ex_dev;
1747	int res = 0;
1748	int i;
1749
1750	for (i = from_phy; i < ex->num_phys; i++) {
1751		int phy_change_count = 0;
1752
1753		res = sas_get_phy_change_count(dev, i, &phy_change_count);
1754		switch (res) {
1755		case SMP_RESP_PHY_VACANT:
1756		case SMP_RESP_NO_PHY:
1757			continue;
1758		case SMP_RESP_FUNC_ACC:
1759			break;
1760		default:
1761			return res;
1762		}
1763
1764		if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1765			if (update)
1766				ex->ex_phy[i].phy_change_count =
1767					phy_change_count;
1768			*phy_id = i;
1769			return 0;
1770		}
1771	}
1772	return 0;
1773}
1774
1775static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1776{
1777	int res;
1778	u8  *rg_req;
1779	struct smp_resp  *rg_resp;
1780
1781	rg_req = alloc_smp_req(RG_REQ_SIZE);
1782	if (!rg_req)
1783		return -ENOMEM;
1784
1785	rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1786	if (!rg_resp) {
1787		kfree(rg_req);
1788		return -ENOMEM;
1789	}
1790
1791	rg_req[1] = SMP_REPORT_GENERAL;
1792
1793	res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1794			       RG_RESP_SIZE);
1795	if (res)
1796		goto out;
1797	if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1798		res = rg_resp->result;
1799		goto out;
1800	}
1801
1802	*ecc = be16_to_cpu(rg_resp->rg.change_count);
1803out:
1804	kfree(rg_resp);
1805	kfree(rg_req);
1806	return res;
1807}
1808/**
1809 * sas_find_bcast_dev -  find the device issue BROADCAST(CHANGE).
1810 * @dev:domain device to be detect.
1811 * @src_dev: the device which originated BROADCAST(CHANGE).
1812 *
1813 * Add self-configuration expander support. Suppose two expander cascading,
1814 * when the first level expander is self-configuring, hotplug the disks in
1815 * second level expander, BROADCAST(CHANGE) will not only be originated
1816 * in the second level expander, but also be originated in the first level
1817 * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1818 * expander changed count in two level expanders will all increment at least
1819 * once, but the phy which chang count has changed is the source device which
1820 * we concerned.
1821 */
1822
1823static int sas_find_bcast_dev(struct domain_device *dev,
1824			      struct domain_device **src_dev)
1825{
1826	struct expander_device *ex = &dev->ex_dev;
1827	int ex_change_count = -1;
1828	int phy_id = -1;
1829	int res;
1830	struct domain_device *ch;
1831
1832	res = sas_get_ex_change_count(dev, &ex_change_count);
1833	if (res)
1834		goto out;
1835	if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) {
1836		/* Just detect if this expander phys phy change count changed,
1837		* in order to determine if this expander originate BROADCAST,
1838		* and do not update phy change count field in our structure.
1839		*/
1840		res = sas_find_bcast_phy(dev, &phy_id, 0, false);
1841		if (phy_id != -1) {
1842			*src_dev = dev;
1843			ex->ex_change_count = ex_change_count;
1844			pr_info("ex %016llx phy%02d change count has changed\n",
1845				SAS_ADDR(dev->sas_addr), phy_id);
1846			return res;
1847		} else
1848			pr_info("ex %016llx phys DID NOT change\n",
1849				SAS_ADDR(dev->sas_addr));
1850	}
1851	list_for_each_entry(ch, &ex->children, siblings) {
1852		if (dev_is_expander(ch->dev_type)) {
1853			res = sas_find_bcast_dev(ch, src_dev);
1854			if (*src_dev)
1855				return res;
1856		}
1857	}
1858out:
1859	return res;
1860}
1861
1862static void sas_unregister_ex_tree(struct asd_sas_port *port, struct domain_device *dev)
1863{
1864	struct expander_device *ex = &dev->ex_dev;
1865	struct domain_device *child, *n;
1866
1867	list_for_each_entry_safe(child, n, &ex->children, siblings) {
1868		set_bit(SAS_DEV_GONE, &child->state);
1869		if (dev_is_expander(child->dev_type))
1870			sas_unregister_ex_tree(port, child);
1871		else
1872			sas_unregister_dev(port, child);
1873	}
1874	sas_unregister_dev(port, dev);
1875}
1876
1877static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1878					 int phy_id, bool last)
1879{
1880	struct expander_device *ex_dev = &parent->ex_dev;
1881	struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1882	struct domain_device *child, *n, *found = NULL;
1883	if (last) {
1884		list_for_each_entry_safe(child, n,
1885			&ex_dev->children, siblings) {
1886			if (SAS_ADDR(child->sas_addr) ==
1887			    SAS_ADDR(phy->attached_sas_addr)) {
1888				set_bit(SAS_DEV_GONE, &child->state);
1889				if (dev_is_expander(child->dev_type))
1890					sas_unregister_ex_tree(parent->port, child);
1891				else
1892					sas_unregister_dev(parent->port, child);
1893				found = child;
1894				break;
1895			}
1896		}
1897		sas_disable_routing(parent, phy->attached_sas_addr);
1898	}
1899	memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1900	if (phy->port) {
1901		sas_port_delete_phy(phy->port, phy->phy);
1902		sas_device_set_phy(found, phy->port);
1903		if (phy->port->num_phys == 0)
1904			list_add_tail(&phy->port->del_list,
1905				&parent->port->sas_port_del_list);
 
 
 
1906		phy->port = NULL;
1907	}
1908}
1909
1910static int sas_discover_bfs_by_root_level(struct domain_device *root,
1911					  const int level)
1912{
1913	struct expander_device *ex_root = &root->ex_dev;
1914	struct domain_device *child;
1915	int res = 0;
1916
1917	list_for_each_entry(child, &ex_root->children, siblings) {
1918		if (dev_is_expander(child->dev_type)) {
1919			struct sas_expander_device *ex =
1920				rphy_to_expander_device(child->rphy);
1921
1922			if (level > ex->level)
1923				res = sas_discover_bfs_by_root_level(child,
1924								     level);
1925			else if (level == ex->level)
1926				res = sas_ex_discover_devices(child, -1);
1927		}
1928	}
1929	return res;
1930}
1931
1932static int sas_discover_bfs_by_root(struct domain_device *dev)
1933{
1934	int res;
1935	struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1936	int level = ex->level+1;
1937
1938	res = sas_ex_discover_devices(dev, -1);
1939	if (res)
1940		goto out;
1941	do {
1942		res = sas_discover_bfs_by_root_level(dev, level);
1943		mb();
1944		level += 1;
1945	} while (level <= dev->port->disc.max_level);
1946out:
1947	return res;
1948}
1949
1950static int sas_discover_new(struct domain_device *dev, int phy_id)
1951{
1952	struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1953	struct domain_device *child;
1954	int res;
1955
1956	pr_debug("ex %016llx phy%02d new device attached\n",
1957		 SAS_ADDR(dev->sas_addr), phy_id);
1958	res = sas_ex_phy_discover(dev, phy_id);
1959	if (res)
1960		return res;
1961
1962	if (sas_ex_join_wide_port(dev, phy_id))
1963		return 0;
1964
1965	res = sas_ex_discover_devices(dev, phy_id);
1966	if (res)
1967		return res;
1968	list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1969		if (SAS_ADDR(child->sas_addr) ==
1970		    SAS_ADDR(ex_phy->attached_sas_addr)) {
1971			if (dev_is_expander(child->dev_type))
1972				res = sas_discover_bfs_by_root(child);
1973			break;
1974		}
1975	}
1976	return res;
1977}
1978
1979static bool dev_type_flutter(enum sas_device_type new, enum sas_device_type old)
1980{
1981	if (old == new)
1982		return true;
1983
1984	/* treat device directed resets as flutter, if we went
1985	 * SAS_END_DEVICE to SAS_SATA_PENDING the link needs recovery
1986	 */
1987	if ((old == SAS_SATA_PENDING && new == SAS_END_DEVICE) ||
1988	    (old == SAS_END_DEVICE && new == SAS_SATA_PENDING))
1989		return true;
1990
1991	return false;
1992}
1993
1994static int sas_rediscover_dev(struct domain_device *dev, int phy_id,
1995			      bool last, int sibling)
1996{
1997	struct expander_device *ex = &dev->ex_dev;
1998	struct ex_phy *phy = &ex->ex_phy[phy_id];
1999	enum sas_device_type type = SAS_PHY_UNUSED;
 
2000	u8 sas_addr[SAS_ADDR_SIZE];
2001	char msg[80] = "";
2002	int res;
2003
2004	if (!last)
2005		sprintf(msg, ", part of a wide port with phy%02d", sibling);
2006
2007	pr_debug("ex %016llx rediscovering phy%02d%s\n",
2008		 SAS_ADDR(dev->sas_addr), phy_id, msg);
2009
2010	memset(sas_addr, 0, SAS_ADDR_SIZE);
2011	res = sas_get_phy_attached_dev(dev, phy_id, sas_addr, &type);
 
 
 
 
2012	switch (res) {
2013	case SMP_RESP_NO_PHY:
2014		phy->phy_state = PHY_NOT_PRESENT;
2015		sas_unregister_devs_sas_addr(dev, phy_id, last);
2016		return res;
2017	case SMP_RESP_PHY_VACANT:
2018		phy->phy_state = PHY_VACANT;
2019		sas_unregister_devs_sas_addr(dev, phy_id, last);
2020		return res;
2021	case SMP_RESP_FUNC_ACC:
2022		break;
2023	case -ECOMM:
2024		break;
2025	default:
2026		return res;
2027	}
2028
 
 
 
2029	if ((SAS_ADDR(sas_addr) == 0) || (res == -ECOMM)) {
2030		phy->phy_state = PHY_EMPTY;
2031		sas_unregister_devs_sas_addr(dev, phy_id, last);
2032		/*
2033		 * Even though the PHY is empty, for convenience we discover
2034		 * the PHY to update the PHY info, like negotiated linkrate.
2035		 */
2036		sas_ex_phy_discover(dev, phy_id);
2037		return res;
 
2038	} else if (SAS_ADDR(sas_addr) == SAS_ADDR(phy->attached_sas_addr) &&
2039		   dev_type_flutter(type, phy->attached_dev_type)) {
2040		struct domain_device *ata_dev = sas_ex_to_ata(dev, phy_id);
2041		char *action = "";
2042
2043		sas_ex_phy_discover(dev, phy_id);
2044
2045		if (ata_dev && phy->attached_dev_type == SAS_SATA_PENDING)
2046			action = ", needs recovery";
2047		pr_debug("ex %016llx phy%02d broadcast flutter%s\n",
2048			 SAS_ADDR(dev->sas_addr), phy_id, action);
2049		return res;
2050	}
2051
2052	/* we always have to delete the old device when we went here */
2053	pr_info("ex %016llx phy%02d replace %016llx\n",
2054		SAS_ADDR(dev->sas_addr), phy_id,
2055		SAS_ADDR(phy->attached_sas_addr));
2056	sas_unregister_devs_sas_addr(dev, phy_id, last);
2057
2058	return sas_discover_new(dev, phy_id);
 
 
 
2059}
2060
2061/**
2062 * sas_rediscover - revalidate the domain.
2063 * @dev:domain device to be detect.
2064 * @phy_id: the phy id will be detected.
2065 *
2066 * NOTE: this process _must_ quit (return) as soon as any connection
2067 * errors are encountered.  Connection recovery is done elsewhere.
2068 * Discover process only interrogates devices in order to discover the
2069 * domain.For plugging out, we un-register the device only when it is
2070 * the last phy in the port, for other phys in this port, we just delete it
2071 * from the port.For inserting, we do discovery when it is the
2072 * first phy,for other phys in this port, we add it to the port to
2073 * forming the wide-port.
2074 */
2075static int sas_rediscover(struct domain_device *dev, const int phy_id)
2076{
2077	struct expander_device *ex = &dev->ex_dev;
2078	struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
2079	int res = 0;
2080	int i;
2081	bool last = true;	/* is this the last phy of the port */
2082
2083	pr_debug("ex %016llx phy%02d originated BROADCAST(CHANGE)\n",
2084		 SAS_ADDR(dev->sas_addr), phy_id);
2085
2086	if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
2087		for (i = 0; i < ex->num_phys; i++) {
2088			struct ex_phy *phy = &ex->ex_phy[i];
2089
2090			if (i == phy_id)
2091				continue;
2092			if (SAS_ADDR(phy->attached_sas_addr) ==
2093			    SAS_ADDR(changed_phy->attached_sas_addr)) {
2094				last = false;
2095				break;
2096			}
2097		}
2098		res = sas_rediscover_dev(dev, phy_id, last, i);
2099	} else
2100		res = sas_discover_new(dev, phy_id);
2101	return res;
2102}
2103
2104/**
2105 * sas_ex_revalidate_domain - revalidate the domain
2106 * @port_dev: port domain device.
2107 *
2108 * NOTE: this process _must_ quit (return) as soon as any connection
2109 * errors are encountered.  Connection recovery is done elsewhere.
2110 * Discover process only interrogates devices in order to discover the
2111 * domain.
2112 */
2113int sas_ex_revalidate_domain(struct domain_device *port_dev)
2114{
2115	int res;
2116	struct domain_device *dev = NULL;
2117
2118	res = sas_find_bcast_dev(port_dev, &dev);
2119	if (res == 0 && dev) {
2120		struct expander_device *ex = &dev->ex_dev;
2121		int i = 0, phy_id;
2122
2123		do {
2124			phy_id = -1;
2125			res = sas_find_bcast_phy(dev, &phy_id, i, true);
2126			if (phy_id == -1)
2127				break;
2128			res = sas_rediscover(dev, phy_id);
2129			i = phy_id + 1;
2130		} while (i < ex->num_phys);
2131	}
2132	return res;
2133}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2134
2135void sas_smp_handler(struct bsg_job *job, struct Scsi_Host *shost,
2136		struct sas_rphy *rphy)
2137{
2138	struct domain_device *dev;
2139	unsigned int rcvlen = 0;
2140	int ret = -EINVAL;
2141
2142	/* no rphy means no smp target support (ie aic94xx host) */
2143	if (!rphy)
2144		return sas_smp_host_handler(job, shost);
2145
2146	switch (rphy->identify.device_type) {
2147	case SAS_EDGE_EXPANDER_DEVICE:
2148	case SAS_FANOUT_EXPANDER_DEVICE:
2149		break;
2150	default:
2151		pr_err("%s: can we send a smp request to a device?\n",
2152		       __func__);
2153		goto out;
2154	}
2155
2156	dev = sas_find_dev_by_rphy(rphy);
2157	if (!dev) {
2158		pr_err("%s: fail to find a domain_device?\n", __func__);
2159		goto out;
2160	}
2161
2162	/* do we need to support multiple segments? */
2163	if (job->request_payload.sg_cnt > 1 ||
2164	    job->reply_payload.sg_cnt > 1) {
2165		pr_info("%s: multiple segments req %u, rsp %u\n",
2166			__func__, job->request_payload.payload_len,
2167			job->reply_payload.payload_len);
2168		goto out;
2169	}
2170
2171	ret = smp_execute_task_sg(dev, job->request_payload.sg_list,
2172			job->reply_payload.sg_list);
2173	if (ret >= 0) {
2174		/* bsg_job_done() requires the length received  */
2175		rcvlen = job->reply_payload.payload_len - ret;
2176		ret = 0;
2177	}
2178
2179out:
2180	bsg_job_done(job, ret, rcvlen);
2181}