Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * PTP 1588 clock support
4 *
5 * Copyright (C) 2010 OMICRON electronics GmbH
6 */
7#include <linux/device.h>
8#include <linux/err.h>
9#include <linux/init.h>
10#include <linux/kernel.h>
11#include <linux/module.h>
12#include <linux/posix-clock.h>
13#include <linux/pps_kernel.h>
14#include <linux/slab.h>
15#include <linux/syscalls.h>
16#include <linux/uaccess.h>
17#include <linux/debugfs.h>
18#include <linux/xarray.h>
19#include <uapi/linux/sched/types.h>
20
21#include "ptp_private.h"
22
23#define PTP_MAX_ALARMS 4
24#define PTP_PPS_DEFAULTS (PPS_CAPTUREASSERT | PPS_OFFSETASSERT)
25#define PTP_PPS_EVENT PPS_CAPTUREASSERT
26#define PTP_PPS_MODE (PTP_PPS_DEFAULTS | PPS_CANWAIT | PPS_TSFMT_TSPEC)
27
28const struct class ptp_class = {
29 .name = "ptp",
30 .dev_groups = ptp_groups
31};
32
33/* private globals */
34
35static dev_t ptp_devt;
36
37static DEFINE_XARRAY_ALLOC(ptp_clocks_map);
38
39/* time stamp event queue operations */
40
41static inline int queue_free(struct timestamp_event_queue *q)
42{
43 return PTP_MAX_TIMESTAMPS - queue_cnt(q) - 1;
44}
45
46static void enqueue_external_timestamp(struct timestamp_event_queue *queue,
47 struct ptp_clock_event *src)
48{
49 struct ptp_extts_event *dst;
50 struct timespec64 offset_ts;
51 unsigned long flags;
52 s64 seconds;
53 u32 remainder;
54
55 if (src->type == PTP_CLOCK_EXTTS) {
56 seconds = div_u64_rem(src->timestamp, 1000000000, &remainder);
57 } else if (src->type == PTP_CLOCK_EXTOFF) {
58 offset_ts = ns_to_timespec64(src->offset);
59 seconds = offset_ts.tv_sec;
60 remainder = offset_ts.tv_nsec;
61 } else {
62 WARN(1, "%s: unknown type %d\n", __func__, src->type);
63 return;
64 }
65
66 spin_lock_irqsave(&queue->lock, flags);
67
68 dst = &queue->buf[queue->tail];
69 dst->index = src->index;
70 dst->flags = PTP_EXTTS_EVENT_VALID;
71 dst->t.sec = seconds;
72 dst->t.nsec = remainder;
73 if (src->type == PTP_CLOCK_EXTOFF)
74 dst->flags |= PTP_EXT_OFFSET;
75
76 /* Both WRITE_ONCE() are paired with READ_ONCE() in queue_cnt() */
77 if (!queue_free(queue))
78 WRITE_ONCE(queue->head, (queue->head + 1) % PTP_MAX_TIMESTAMPS);
79
80 WRITE_ONCE(queue->tail, (queue->tail + 1) % PTP_MAX_TIMESTAMPS);
81
82 spin_unlock_irqrestore(&queue->lock, flags);
83}
84
85/* posix clock implementation */
86
87static int ptp_clock_getres(struct posix_clock *pc, struct timespec64 *tp)
88{
89 tp->tv_sec = 0;
90 tp->tv_nsec = 1;
91 return 0;
92}
93
94static int ptp_clock_settime(struct posix_clock *pc, const struct timespec64 *tp)
95{
96 struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
97
98 if (ptp_clock_freerun(ptp)) {
99 pr_err("ptp: physical clock is free running\n");
100 return -EBUSY;
101 }
102
103 return ptp->info->settime64(ptp->info, tp);
104}
105
106static int ptp_clock_gettime(struct posix_clock *pc, struct timespec64 *tp)
107{
108 struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
109 int err;
110
111 if (ptp->info->gettimex64)
112 err = ptp->info->gettimex64(ptp->info, tp, NULL);
113 else
114 err = ptp->info->gettime64(ptp->info, tp);
115 return err;
116}
117
118static int ptp_clock_adjtime(struct posix_clock *pc, struct __kernel_timex *tx)
119{
120 struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
121 struct ptp_clock_info *ops;
122 int err = -EOPNOTSUPP;
123
124 if (ptp_clock_freerun(ptp)) {
125 pr_err("ptp: physical clock is free running\n");
126 return -EBUSY;
127 }
128
129 ops = ptp->info;
130
131 if (tx->modes & ADJ_SETOFFSET) {
132 struct timespec64 ts;
133 ktime_t kt;
134 s64 delta;
135
136 ts.tv_sec = tx->time.tv_sec;
137 ts.tv_nsec = tx->time.tv_usec;
138
139 if (!(tx->modes & ADJ_NANO))
140 ts.tv_nsec *= 1000;
141
142 if ((unsigned long) ts.tv_nsec >= NSEC_PER_SEC)
143 return -EINVAL;
144
145 kt = timespec64_to_ktime(ts);
146 delta = ktime_to_ns(kt);
147 err = ops->adjtime(ops, delta);
148 } else if (tx->modes & ADJ_FREQUENCY) {
149 long ppb = scaled_ppm_to_ppb(tx->freq);
150 if (ppb > ops->max_adj || ppb < -ops->max_adj)
151 return -ERANGE;
152 err = ops->adjfine(ops, tx->freq);
153 if (!err)
154 ptp->dialed_frequency = tx->freq;
155 } else if (tx->modes & ADJ_OFFSET) {
156 if (ops->adjphase) {
157 s32 max_phase_adj = ops->getmaxphase(ops);
158 s32 offset = tx->offset;
159
160 if (!(tx->modes & ADJ_NANO))
161 offset *= NSEC_PER_USEC;
162
163 if (offset > max_phase_adj || offset < -max_phase_adj)
164 return -ERANGE;
165
166 err = ops->adjphase(ops, offset);
167 }
168 } else if (tx->modes == 0) {
169 tx->freq = ptp->dialed_frequency;
170 err = 0;
171 }
172
173 return err;
174}
175
176static struct posix_clock_operations ptp_clock_ops = {
177 .owner = THIS_MODULE,
178 .clock_adjtime = ptp_clock_adjtime,
179 .clock_gettime = ptp_clock_gettime,
180 .clock_getres = ptp_clock_getres,
181 .clock_settime = ptp_clock_settime,
182 .ioctl = ptp_ioctl,
183 .open = ptp_open,
184 .release = ptp_release,
185 .poll = ptp_poll,
186 .read = ptp_read,
187};
188
189static void ptp_clock_release(struct device *dev)
190{
191 struct ptp_clock *ptp = container_of(dev, struct ptp_clock, dev);
192 struct timestamp_event_queue *tsevq;
193 unsigned long flags;
194
195 ptp_cleanup_pin_groups(ptp);
196 kfree(ptp->vclock_index);
197 mutex_destroy(&ptp->pincfg_mux);
198 mutex_destroy(&ptp->n_vclocks_mux);
199 /* Delete first entry */
200 spin_lock_irqsave(&ptp->tsevqs_lock, flags);
201 tsevq = list_first_entry(&ptp->tsevqs, struct timestamp_event_queue,
202 qlist);
203 list_del(&tsevq->qlist);
204 spin_unlock_irqrestore(&ptp->tsevqs_lock, flags);
205 bitmap_free(tsevq->mask);
206 kfree(tsevq);
207 debugfs_remove(ptp->debugfs_root);
208 xa_erase(&ptp_clocks_map, ptp->index);
209 kfree(ptp);
210}
211
212static int ptp_getcycles64(struct ptp_clock_info *info, struct timespec64 *ts)
213{
214 if (info->getcyclesx64)
215 return info->getcyclesx64(info, ts, NULL);
216 else
217 return info->gettime64(info, ts);
218}
219
220static int ptp_enable(struct ptp_clock_info *ptp, struct ptp_clock_request *request, int on)
221{
222 return -EOPNOTSUPP;
223}
224
225static void ptp_aux_kworker(struct kthread_work *work)
226{
227 struct ptp_clock *ptp = container_of(work, struct ptp_clock,
228 aux_work.work);
229 struct ptp_clock_info *info = ptp->info;
230 long delay;
231
232 delay = info->do_aux_work(info);
233
234 if (delay >= 0)
235 kthread_queue_delayed_work(ptp->kworker, &ptp->aux_work, delay);
236}
237
238/* public interface */
239
240struct ptp_clock *ptp_clock_register(struct ptp_clock_info *info,
241 struct device *parent)
242{
243 struct ptp_clock *ptp;
244 struct timestamp_event_queue *queue = NULL;
245 int err, index, major = MAJOR(ptp_devt);
246 char debugfsname[16];
247 size_t size;
248
249 if (info->n_alarm > PTP_MAX_ALARMS)
250 return ERR_PTR(-EINVAL);
251
252 /* Initialize a clock structure. */
253 ptp = kzalloc(sizeof(struct ptp_clock), GFP_KERNEL);
254 if (!ptp) {
255 err = -ENOMEM;
256 goto no_memory;
257 }
258
259 err = xa_alloc(&ptp_clocks_map, &index, ptp, xa_limit_31b,
260 GFP_KERNEL);
261 if (err)
262 goto no_slot;
263
264 ptp->clock.ops = ptp_clock_ops;
265 ptp->info = info;
266 ptp->devid = MKDEV(major, index);
267 ptp->index = index;
268 INIT_LIST_HEAD(&ptp->tsevqs);
269 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
270 if (!queue) {
271 err = -ENOMEM;
272 goto no_memory_queue;
273 }
274 list_add_tail(&queue->qlist, &ptp->tsevqs);
275 spin_lock_init(&ptp->tsevqs_lock);
276 queue->mask = bitmap_alloc(PTP_MAX_CHANNELS, GFP_KERNEL);
277 if (!queue->mask) {
278 err = -ENOMEM;
279 goto no_memory_bitmap;
280 }
281 bitmap_set(queue->mask, 0, PTP_MAX_CHANNELS);
282 spin_lock_init(&queue->lock);
283 mutex_init(&ptp->pincfg_mux);
284 mutex_init(&ptp->n_vclocks_mux);
285 init_waitqueue_head(&ptp->tsev_wq);
286
287 if (ptp->info->getcycles64 || ptp->info->getcyclesx64) {
288 ptp->has_cycles = true;
289 if (!ptp->info->getcycles64 && ptp->info->getcyclesx64)
290 ptp->info->getcycles64 = ptp_getcycles64;
291 } else {
292 /* Free running cycle counter not supported, use time. */
293 ptp->info->getcycles64 = ptp_getcycles64;
294
295 if (ptp->info->gettimex64)
296 ptp->info->getcyclesx64 = ptp->info->gettimex64;
297
298 if (ptp->info->getcrosststamp)
299 ptp->info->getcrosscycles = ptp->info->getcrosststamp;
300 }
301
302 if (!ptp->info->enable)
303 ptp->info->enable = ptp_enable;
304
305 if (ptp->info->do_aux_work) {
306 kthread_init_delayed_work(&ptp->aux_work, ptp_aux_kworker);
307 ptp->kworker = kthread_create_worker(0, "ptp%d", ptp->index);
308 if (IS_ERR(ptp->kworker)) {
309 err = PTR_ERR(ptp->kworker);
310 pr_err("failed to create ptp aux_worker %d\n", err);
311 goto kworker_err;
312 }
313 }
314
315 /* PTP virtual clock is being registered under physical clock */
316 if (parent && parent->class && parent->class->name &&
317 strcmp(parent->class->name, "ptp") == 0)
318 ptp->is_virtual_clock = true;
319
320 if (!ptp->is_virtual_clock) {
321 ptp->max_vclocks = PTP_DEFAULT_MAX_VCLOCKS;
322
323 size = sizeof(int) * ptp->max_vclocks;
324 ptp->vclock_index = kzalloc(size, GFP_KERNEL);
325 if (!ptp->vclock_index) {
326 err = -ENOMEM;
327 goto no_mem_for_vclocks;
328 }
329 }
330
331 err = ptp_populate_pin_groups(ptp);
332 if (err)
333 goto no_pin_groups;
334
335 /* Register a new PPS source. */
336 if (info->pps) {
337 struct pps_source_info pps;
338 memset(&pps, 0, sizeof(pps));
339 snprintf(pps.name, PPS_MAX_NAME_LEN, "ptp%d", index);
340 pps.mode = PTP_PPS_MODE;
341 pps.owner = info->owner;
342 ptp->pps_source = pps_register_source(&pps, PTP_PPS_DEFAULTS);
343 if (IS_ERR(ptp->pps_source)) {
344 err = PTR_ERR(ptp->pps_source);
345 pr_err("failed to register pps source\n");
346 goto no_pps;
347 }
348 ptp->pps_source->lookup_cookie = ptp;
349 }
350
351 /* Initialize a new device of our class in our clock structure. */
352 device_initialize(&ptp->dev);
353 ptp->dev.devt = ptp->devid;
354 ptp->dev.class = &ptp_class;
355 ptp->dev.parent = parent;
356 ptp->dev.groups = ptp->pin_attr_groups;
357 ptp->dev.release = ptp_clock_release;
358 dev_set_drvdata(&ptp->dev, ptp);
359 dev_set_name(&ptp->dev, "ptp%d", ptp->index);
360
361 /* Create a posix clock and link it to the device. */
362 err = posix_clock_register(&ptp->clock, &ptp->dev);
363 if (err) {
364 if (ptp->pps_source)
365 pps_unregister_source(ptp->pps_source);
366
367 if (ptp->kworker)
368 kthread_destroy_worker(ptp->kworker);
369
370 put_device(&ptp->dev);
371
372 pr_err("failed to create posix clock\n");
373 return ERR_PTR(err);
374 }
375
376 /* Debugfs initialization */
377 snprintf(debugfsname, sizeof(debugfsname), "ptp%d", ptp->index);
378 ptp->debugfs_root = debugfs_create_dir(debugfsname, NULL);
379
380 return ptp;
381
382no_pps:
383 ptp_cleanup_pin_groups(ptp);
384no_pin_groups:
385 kfree(ptp->vclock_index);
386no_mem_for_vclocks:
387 if (ptp->kworker)
388 kthread_destroy_worker(ptp->kworker);
389kworker_err:
390 mutex_destroy(&ptp->pincfg_mux);
391 mutex_destroy(&ptp->n_vclocks_mux);
392 bitmap_free(queue->mask);
393no_memory_bitmap:
394 list_del(&queue->qlist);
395 kfree(queue);
396no_memory_queue:
397 xa_erase(&ptp_clocks_map, index);
398no_slot:
399 kfree(ptp);
400no_memory:
401 return ERR_PTR(err);
402}
403EXPORT_SYMBOL(ptp_clock_register);
404
405static int unregister_vclock(struct device *dev, void *data)
406{
407 struct ptp_clock *ptp = dev_get_drvdata(dev);
408
409 ptp_vclock_unregister(info_to_vclock(ptp->info));
410 return 0;
411}
412
413int ptp_clock_unregister(struct ptp_clock *ptp)
414{
415 if (ptp_vclock_in_use(ptp)) {
416 device_for_each_child(&ptp->dev, NULL, unregister_vclock);
417 }
418
419 ptp->defunct = 1;
420 wake_up_interruptible(&ptp->tsev_wq);
421
422 if (ptp->kworker) {
423 kthread_cancel_delayed_work_sync(&ptp->aux_work);
424 kthread_destroy_worker(ptp->kworker);
425 }
426
427 /* Release the clock's resources. */
428 if (ptp->pps_source)
429 pps_unregister_source(ptp->pps_source);
430
431 posix_clock_unregister(&ptp->clock);
432
433 return 0;
434}
435EXPORT_SYMBOL(ptp_clock_unregister);
436
437void ptp_clock_event(struct ptp_clock *ptp, struct ptp_clock_event *event)
438{
439 struct timestamp_event_queue *tsevq;
440 struct pps_event_time evt;
441 unsigned long flags;
442
443 switch (event->type) {
444
445 case PTP_CLOCK_ALARM:
446 break;
447
448 case PTP_CLOCK_EXTTS:
449 case PTP_CLOCK_EXTOFF:
450 /* Enqueue timestamp on selected queues */
451 spin_lock_irqsave(&ptp->tsevqs_lock, flags);
452 list_for_each_entry(tsevq, &ptp->tsevqs, qlist) {
453 if (test_bit((unsigned int)event->index, tsevq->mask))
454 enqueue_external_timestamp(tsevq, event);
455 }
456 spin_unlock_irqrestore(&ptp->tsevqs_lock, flags);
457 wake_up_interruptible(&ptp->tsev_wq);
458 break;
459
460 case PTP_CLOCK_PPS:
461 pps_get_ts(&evt);
462 pps_event(ptp->pps_source, &evt, PTP_PPS_EVENT, NULL);
463 break;
464
465 case PTP_CLOCK_PPSUSR:
466 pps_event(ptp->pps_source, &event->pps_times,
467 PTP_PPS_EVENT, NULL);
468 break;
469 }
470}
471EXPORT_SYMBOL(ptp_clock_event);
472
473int ptp_clock_index(struct ptp_clock *ptp)
474{
475 return ptp->index;
476}
477EXPORT_SYMBOL(ptp_clock_index);
478
479int ptp_find_pin(struct ptp_clock *ptp,
480 enum ptp_pin_function func, unsigned int chan)
481{
482 struct ptp_pin_desc *pin = NULL;
483 int i;
484
485 for (i = 0; i < ptp->info->n_pins; i++) {
486 if (ptp->info->pin_config[i].func == func &&
487 ptp->info->pin_config[i].chan == chan) {
488 pin = &ptp->info->pin_config[i];
489 break;
490 }
491 }
492
493 return pin ? i : -1;
494}
495EXPORT_SYMBOL(ptp_find_pin);
496
497int ptp_find_pin_unlocked(struct ptp_clock *ptp,
498 enum ptp_pin_function func, unsigned int chan)
499{
500 int result;
501
502 mutex_lock(&ptp->pincfg_mux);
503
504 result = ptp_find_pin(ptp, func, chan);
505
506 mutex_unlock(&ptp->pincfg_mux);
507
508 return result;
509}
510EXPORT_SYMBOL(ptp_find_pin_unlocked);
511
512int ptp_schedule_worker(struct ptp_clock *ptp, unsigned long delay)
513{
514 return kthread_mod_delayed_work(ptp->kworker, &ptp->aux_work, delay);
515}
516EXPORT_SYMBOL(ptp_schedule_worker);
517
518void ptp_cancel_worker_sync(struct ptp_clock *ptp)
519{
520 kthread_cancel_delayed_work_sync(&ptp->aux_work);
521}
522EXPORT_SYMBOL(ptp_cancel_worker_sync);
523
524/* module operations */
525
526static void __exit ptp_exit(void)
527{
528 class_unregister(&ptp_class);
529 unregister_chrdev_region(ptp_devt, MINORMASK + 1);
530 xa_destroy(&ptp_clocks_map);
531}
532
533static int __init ptp_init(void)
534{
535 int err;
536
537 err = class_register(&ptp_class);
538 if (err) {
539 pr_err("ptp: failed to allocate class\n");
540 return err;
541 }
542
543 err = alloc_chrdev_region(&ptp_devt, 0, MINORMASK + 1, "ptp");
544 if (err < 0) {
545 pr_err("ptp: failed to allocate device region\n");
546 goto no_region;
547 }
548
549 pr_info("PTP clock support registered\n");
550 return 0;
551
552no_region:
553 class_unregister(&ptp_class);
554 return err;
555}
556
557subsys_initcall(ptp_init);
558module_exit(ptp_exit);
559
560MODULE_AUTHOR("Richard Cochran <richardcochran@gmail.com>");
561MODULE_DESCRIPTION("PTP clocks support");
562MODULE_LICENSE("GPL");
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * PTP 1588 clock support
4 *
5 * Copyright (C) 2010 OMICRON electronics GmbH
6 */
7#include <linux/idr.h>
8#include <linux/device.h>
9#include <linux/err.h>
10#include <linux/init.h>
11#include <linux/kernel.h>
12#include <linux/module.h>
13#include <linux/posix-clock.h>
14#include <linux/pps_kernel.h>
15#include <linux/slab.h>
16#include <linux/syscalls.h>
17#include <linux/uaccess.h>
18#include <uapi/linux/sched/types.h>
19
20#include "ptp_private.h"
21
22#define PTP_MAX_ALARMS 4
23#define PTP_PPS_DEFAULTS (PPS_CAPTUREASSERT | PPS_OFFSETASSERT)
24#define PTP_PPS_EVENT PPS_CAPTUREASSERT
25#define PTP_PPS_MODE (PTP_PPS_DEFAULTS | PPS_CANWAIT | PPS_TSFMT_TSPEC)
26
27/* private globals */
28
29static dev_t ptp_devt;
30static struct class *ptp_class;
31
32static DEFINE_IDA(ptp_clocks_map);
33
34/* time stamp event queue operations */
35
36static inline int queue_free(struct timestamp_event_queue *q)
37{
38 return PTP_MAX_TIMESTAMPS - queue_cnt(q) - 1;
39}
40
41static void enqueue_external_timestamp(struct timestamp_event_queue *queue,
42 struct ptp_clock_event *src)
43{
44 struct ptp_extts_event *dst;
45 unsigned long flags;
46 s64 seconds;
47 u32 remainder;
48
49 seconds = div_u64_rem(src->timestamp, 1000000000, &remainder);
50
51 spin_lock_irqsave(&queue->lock, flags);
52
53 dst = &queue->buf[queue->tail];
54 dst->index = src->index;
55 dst->t.sec = seconds;
56 dst->t.nsec = remainder;
57
58 if (!queue_free(queue))
59 queue->head = (queue->head + 1) % PTP_MAX_TIMESTAMPS;
60
61 queue->tail = (queue->tail + 1) % PTP_MAX_TIMESTAMPS;
62
63 spin_unlock_irqrestore(&queue->lock, flags);
64}
65
66s32 scaled_ppm_to_ppb(long ppm)
67{
68 /*
69 * The 'freq' field in the 'struct timex' is in parts per
70 * million, but with a 16 bit binary fractional field.
71 *
72 * We want to calculate
73 *
74 * ppb = scaled_ppm * 1000 / 2^16
75 *
76 * which simplifies to
77 *
78 * ppb = scaled_ppm * 125 / 2^13
79 */
80 s64 ppb = 1 + ppm;
81 ppb *= 125;
82 ppb >>= 13;
83 return (s32) ppb;
84}
85EXPORT_SYMBOL(scaled_ppm_to_ppb);
86
87/* posix clock implementation */
88
89static int ptp_clock_getres(struct posix_clock *pc, struct timespec64 *tp)
90{
91 tp->tv_sec = 0;
92 tp->tv_nsec = 1;
93 return 0;
94}
95
96static int ptp_clock_settime(struct posix_clock *pc, const struct timespec64 *tp)
97{
98 struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
99
100 return ptp->info->settime64(ptp->info, tp);
101}
102
103static int ptp_clock_gettime(struct posix_clock *pc, struct timespec64 *tp)
104{
105 struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
106 int err;
107
108 if (ptp->info->gettimex64)
109 err = ptp->info->gettimex64(ptp->info, tp, NULL);
110 else
111 err = ptp->info->gettime64(ptp->info, tp);
112 return err;
113}
114
115static int ptp_clock_adjtime(struct posix_clock *pc, struct __kernel_timex *tx)
116{
117 struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
118 struct ptp_clock_info *ops;
119 int err = -EOPNOTSUPP;
120
121 ops = ptp->info;
122
123 if (tx->modes & ADJ_SETOFFSET) {
124 struct timespec64 ts;
125 ktime_t kt;
126 s64 delta;
127
128 ts.tv_sec = tx->time.tv_sec;
129 ts.tv_nsec = tx->time.tv_usec;
130
131 if (!(tx->modes & ADJ_NANO))
132 ts.tv_nsec *= 1000;
133
134 if ((unsigned long) ts.tv_nsec >= NSEC_PER_SEC)
135 return -EINVAL;
136
137 kt = timespec64_to_ktime(ts);
138 delta = ktime_to_ns(kt);
139 err = ops->adjtime(ops, delta);
140 } else if (tx->modes & ADJ_FREQUENCY) {
141 s32 ppb = scaled_ppm_to_ppb(tx->freq);
142 if (ppb > ops->max_adj || ppb < -ops->max_adj)
143 return -ERANGE;
144 if (ops->adjfine)
145 err = ops->adjfine(ops, tx->freq);
146 else
147 err = ops->adjfreq(ops, ppb);
148 ptp->dialed_frequency = tx->freq;
149 } else if (tx->modes == 0) {
150 tx->freq = ptp->dialed_frequency;
151 err = 0;
152 }
153
154 return err;
155}
156
157static struct posix_clock_operations ptp_clock_ops = {
158 .owner = THIS_MODULE,
159 .clock_adjtime = ptp_clock_adjtime,
160 .clock_gettime = ptp_clock_gettime,
161 .clock_getres = ptp_clock_getres,
162 .clock_settime = ptp_clock_settime,
163 .ioctl = ptp_ioctl,
164 .open = ptp_open,
165 .poll = ptp_poll,
166 .read = ptp_read,
167};
168
169static void delete_ptp_clock(struct posix_clock *pc)
170{
171 struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
172
173 mutex_destroy(&ptp->tsevq_mux);
174 mutex_destroy(&ptp->pincfg_mux);
175 ida_simple_remove(&ptp_clocks_map, ptp->index);
176 kfree(ptp);
177}
178
179static void ptp_aux_kworker(struct kthread_work *work)
180{
181 struct ptp_clock *ptp = container_of(work, struct ptp_clock,
182 aux_work.work);
183 struct ptp_clock_info *info = ptp->info;
184 long delay;
185
186 delay = info->do_aux_work(info);
187
188 if (delay >= 0)
189 kthread_queue_delayed_work(ptp->kworker, &ptp->aux_work, delay);
190}
191
192/* public interface */
193
194struct ptp_clock *ptp_clock_register(struct ptp_clock_info *info,
195 struct device *parent)
196{
197 struct ptp_clock *ptp;
198 int err = 0, index, major = MAJOR(ptp_devt);
199
200 if (info->n_alarm > PTP_MAX_ALARMS)
201 return ERR_PTR(-EINVAL);
202
203 /* Initialize a clock structure. */
204 err = -ENOMEM;
205 ptp = kzalloc(sizeof(struct ptp_clock), GFP_KERNEL);
206 if (ptp == NULL)
207 goto no_memory;
208
209 index = ida_simple_get(&ptp_clocks_map, 0, MINORMASK + 1, GFP_KERNEL);
210 if (index < 0) {
211 err = index;
212 goto no_slot;
213 }
214
215 ptp->clock.ops = ptp_clock_ops;
216 ptp->clock.release = delete_ptp_clock;
217 ptp->info = info;
218 ptp->devid = MKDEV(major, index);
219 ptp->index = index;
220 spin_lock_init(&ptp->tsevq.lock);
221 mutex_init(&ptp->tsevq_mux);
222 mutex_init(&ptp->pincfg_mux);
223 init_waitqueue_head(&ptp->tsev_wq);
224
225 if (ptp->info->do_aux_work) {
226 kthread_init_delayed_work(&ptp->aux_work, ptp_aux_kworker);
227 ptp->kworker = kthread_create_worker(0, "ptp%d", ptp->index);
228 if (IS_ERR(ptp->kworker)) {
229 err = PTR_ERR(ptp->kworker);
230 pr_err("failed to create ptp aux_worker %d\n", err);
231 goto kworker_err;
232 }
233 }
234
235 err = ptp_populate_pin_groups(ptp);
236 if (err)
237 goto no_pin_groups;
238
239 /* Create a new device in our class. */
240 ptp->dev = device_create_with_groups(ptp_class, parent, ptp->devid,
241 ptp, ptp->pin_attr_groups,
242 "ptp%d", ptp->index);
243 if (IS_ERR(ptp->dev)) {
244 err = PTR_ERR(ptp->dev);
245 goto no_device;
246 }
247
248 /* Register a new PPS source. */
249 if (info->pps) {
250 struct pps_source_info pps;
251 memset(&pps, 0, sizeof(pps));
252 snprintf(pps.name, PPS_MAX_NAME_LEN, "ptp%d", index);
253 pps.mode = PTP_PPS_MODE;
254 pps.owner = info->owner;
255 ptp->pps_source = pps_register_source(&pps, PTP_PPS_DEFAULTS);
256 if (IS_ERR(ptp->pps_source)) {
257 err = PTR_ERR(ptp->pps_source);
258 pr_err("failed to register pps source\n");
259 goto no_pps;
260 }
261 }
262
263 /* Create a posix clock. */
264 err = posix_clock_register(&ptp->clock, ptp->devid);
265 if (err) {
266 pr_err("failed to create posix clock\n");
267 goto no_clock;
268 }
269
270 return ptp;
271
272no_clock:
273 if (ptp->pps_source)
274 pps_unregister_source(ptp->pps_source);
275no_pps:
276 device_destroy(ptp_class, ptp->devid);
277no_device:
278 ptp_cleanup_pin_groups(ptp);
279no_pin_groups:
280 if (ptp->kworker)
281 kthread_destroy_worker(ptp->kworker);
282kworker_err:
283 mutex_destroy(&ptp->tsevq_mux);
284 mutex_destroy(&ptp->pincfg_mux);
285 ida_simple_remove(&ptp_clocks_map, index);
286no_slot:
287 kfree(ptp);
288no_memory:
289 return ERR_PTR(err);
290}
291EXPORT_SYMBOL(ptp_clock_register);
292
293int ptp_clock_unregister(struct ptp_clock *ptp)
294{
295 ptp->defunct = 1;
296 wake_up_interruptible(&ptp->tsev_wq);
297
298 if (ptp->kworker) {
299 kthread_cancel_delayed_work_sync(&ptp->aux_work);
300 kthread_destroy_worker(ptp->kworker);
301 }
302
303 /* Release the clock's resources. */
304 if (ptp->pps_source)
305 pps_unregister_source(ptp->pps_source);
306
307 device_destroy(ptp_class, ptp->devid);
308 ptp_cleanup_pin_groups(ptp);
309
310 posix_clock_unregister(&ptp->clock);
311 return 0;
312}
313EXPORT_SYMBOL(ptp_clock_unregister);
314
315void ptp_clock_event(struct ptp_clock *ptp, struct ptp_clock_event *event)
316{
317 struct pps_event_time evt;
318
319 switch (event->type) {
320
321 case PTP_CLOCK_ALARM:
322 break;
323
324 case PTP_CLOCK_EXTTS:
325 enqueue_external_timestamp(&ptp->tsevq, event);
326 wake_up_interruptible(&ptp->tsev_wq);
327 break;
328
329 case PTP_CLOCK_PPS:
330 pps_get_ts(&evt);
331 pps_event(ptp->pps_source, &evt, PTP_PPS_EVENT, NULL);
332 break;
333
334 case PTP_CLOCK_PPSUSR:
335 pps_event(ptp->pps_source, &event->pps_times,
336 PTP_PPS_EVENT, NULL);
337 break;
338 }
339}
340EXPORT_SYMBOL(ptp_clock_event);
341
342int ptp_clock_index(struct ptp_clock *ptp)
343{
344 return ptp->index;
345}
346EXPORT_SYMBOL(ptp_clock_index);
347
348int ptp_find_pin(struct ptp_clock *ptp,
349 enum ptp_pin_function func, unsigned int chan)
350{
351 struct ptp_pin_desc *pin = NULL;
352 int i;
353
354 mutex_lock(&ptp->pincfg_mux);
355 for (i = 0; i < ptp->info->n_pins; i++) {
356 if (ptp->info->pin_config[i].func == func &&
357 ptp->info->pin_config[i].chan == chan) {
358 pin = &ptp->info->pin_config[i];
359 break;
360 }
361 }
362 mutex_unlock(&ptp->pincfg_mux);
363
364 return pin ? i : -1;
365}
366EXPORT_SYMBOL(ptp_find_pin);
367
368int ptp_schedule_worker(struct ptp_clock *ptp, unsigned long delay)
369{
370 return kthread_mod_delayed_work(ptp->kworker, &ptp->aux_work, delay);
371}
372EXPORT_SYMBOL(ptp_schedule_worker);
373
374/* module operations */
375
376static void __exit ptp_exit(void)
377{
378 class_destroy(ptp_class);
379 unregister_chrdev_region(ptp_devt, MINORMASK + 1);
380 ida_destroy(&ptp_clocks_map);
381}
382
383static int __init ptp_init(void)
384{
385 int err;
386
387 ptp_class = class_create(THIS_MODULE, "ptp");
388 if (IS_ERR(ptp_class)) {
389 pr_err("ptp: failed to allocate class\n");
390 return PTR_ERR(ptp_class);
391 }
392
393 err = alloc_chrdev_region(&ptp_devt, 0, MINORMASK + 1, "ptp");
394 if (err < 0) {
395 pr_err("ptp: failed to allocate device region\n");
396 goto no_region;
397 }
398
399 ptp_class->dev_groups = ptp_groups;
400 pr_info("PTP clock support registered\n");
401 return 0;
402
403no_region:
404 class_destroy(ptp_class);
405 return err;
406}
407
408subsys_initcall(ptp_init);
409module_exit(ptp_exit);
410
411MODULE_AUTHOR("Richard Cochran <richardcochran@gmail.com>");
412MODULE_DESCRIPTION("PTP clocks support");
413MODULE_LICENSE("GPL");