Linux Audio

Check our new training course

Loading...
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * PTP 1588 clock support
  4 *
  5 * Copyright (C) 2010 OMICRON electronics GmbH
  6 */
 
  7#include <linux/device.h>
  8#include <linux/err.h>
  9#include <linux/init.h>
 10#include <linux/kernel.h>
 11#include <linux/module.h>
 12#include <linux/posix-clock.h>
 13#include <linux/pps_kernel.h>
 14#include <linux/slab.h>
 15#include <linux/syscalls.h>
 16#include <linux/uaccess.h>
 17#include <linux/debugfs.h>
 18#include <linux/xarray.h>
 19#include <uapi/linux/sched/types.h>
 20
 21#include "ptp_private.h"
 22
 23#define PTP_MAX_ALARMS 4
 24#define PTP_PPS_DEFAULTS (PPS_CAPTUREASSERT | PPS_OFFSETASSERT)
 25#define PTP_PPS_EVENT PPS_CAPTUREASSERT
 26#define PTP_PPS_MODE (PTP_PPS_DEFAULTS | PPS_CANWAIT | PPS_TSFMT_TSPEC)
 27
 28const struct class ptp_class = {
 29	.name = "ptp",
 30	.dev_groups = ptp_groups
 31};
 32
 33/* private globals */
 34
 35static dev_t ptp_devt;
 
 36
 37static DEFINE_XARRAY_ALLOC(ptp_clocks_map);
 38
 39/* time stamp event queue operations */
 40
 41static inline int queue_free(struct timestamp_event_queue *q)
 42{
 43	return PTP_MAX_TIMESTAMPS - queue_cnt(q) - 1;
 44}
 45
 46static void enqueue_external_timestamp(struct timestamp_event_queue *queue,
 47				       struct ptp_clock_event *src)
 48{
 49	struct ptp_extts_event *dst;
 50	struct timespec64 offset_ts;
 51	unsigned long flags;
 52	s64 seconds;
 53	u32 remainder;
 54
 55	if (src->type == PTP_CLOCK_EXTTS) {
 56		seconds = div_u64_rem(src->timestamp, 1000000000, &remainder);
 57	} else if (src->type == PTP_CLOCK_EXTOFF) {
 58		offset_ts = ns_to_timespec64(src->offset);
 59		seconds = offset_ts.tv_sec;
 60		remainder = offset_ts.tv_nsec;
 61	} else {
 62		WARN(1, "%s: unknown type %d\n", __func__, src->type);
 63		return;
 64	}
 65
 66	spin_lock_irqsave(&queue->lock, flags);
 67
 68	dst = &queue->buf[queue->tail];
 69	dst->index = src->index;
 70	dst->flags = PTP_EXTTS_EVENT_VALID;
 71	dst->t.sec = seconds;
 72	dst->t.nsec = remainder;
 73	if (src->type == PTP_CLOCK_EXTOFF)
 74		dst->flags |= PTP_EXT_OFFSET;
 75
 76	/* Both WRITE_ONCE() are paired with READ_ONCE() in queue_cnt() */
 77	if (!queue_free(queue))
 78		WRITE_ONCE(queue->head, (queue->head + 1) % PTP_MAX_TIMESTAMPS);
 79
 80	WRITE_ONCE(queue->tail, (queue->tail + 1) % PTP_MAX_TIMESTAMPS);
 81
 82	spin_unlock_irqrestore(&queue->lock, flags);
 83}
 84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 85/* posix clock implementation */
 86
 87static int ptp_clock_getres(struct posix_clock *pc, struct timespec64 *tp)
 88{
 89	tp->tv_sec = 0;
 90	tp->tv_nsec = 1;
 91	return 0;
 92}
 93
 94static int ptp_clock_settime(struct posix_clock *pc, const struct timespec64 *tp)
 95{
 96	struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
 97
 98	if (ptp_clock_freerun(ptp)) {
 99		pr_err("ptp: physical clock is free running\n");
100		return -EBUSY;
101	}
102
103	return  ptp->info->settime64(ptp->info, tp);
104}
105
106static int ptp_clock_gettime(struct posix_clock *pc, struct timespec64 *tp)
107{
108	struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
109	int err;
110
111	if (ptp->info->gettimex64)
112		err = ptp->info->gettimex64(ptp->info, tp, NULL);
113	else
114		err = ptp->info->gettime64(ptp->info, tp);
115	return err;
116}
117
118static int ptp_clock_adjtime(struct posix_clock *pc, struct __kernel_timex *tx)
119{
120	struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
121	struct ptp_clock_info *ops;
122	int err = -EOPNOTSUPP;
123
124	if (ptp_clock_freerun(ptp)) {
125		pr_err("ptp: physical clock is free running\n");
126		return -EBUSY;
127	}
128
129	ops = ptp->info;
130
131	if (tx->modes & ADJ_SETOFFSET) {
132		struct timespec64 ts;
133		ktime_t kt;
134		s64 delta;
135
136		ts.tv_sec  = tx->time.tv_sec;
137		ts.tv_nsec = tx->time.tv_usec;
138
139		if (!(tx->modes & ADJ_NANO))
140			ts.tv_nsec *= 1000;
141
142		if ((unsigned long) ts.tv_nsec >= NSEC_PER_SEC)
143			return -EINVAL;
144
145		kt = timespec64_to_ktime(ts);
146		delta = ktime_to_ns(kt);
147		err = ops->adjtime(ops, delta);
148	} else if (tx->modes & ADJ_FREQUENCY) {
149		long ppb = scaled_ppm_to_ppb(tx->freq);
150		if (ppb > ops->max_adj || ppb < -ops->max_adj)
151			return -ERANGE;
152		err = ops->adjfine(ops, tx->freq);
153		if (!err)
154			ptp->dialed_frequency = tx->freq;
155	} else if (tx->modes & ADJ_OFFSET) {
156		if (ops->adjphase) {
157			s32 max_phase_adj = ops->getmaxphase(ops);
158			s32 offset = tx->offset;
159
160			if (!(tx->modes & ADJ_NANO))
161				offset *= NSEC_PER_USEC;
162
163			if (offset > max_phase_adj || offset < -max_phase_adj)
164				return -ERANGE;
165
166			err = ops->adjphase(ops, offset);
167		}
168	} else if (tx->modes == 0) {
169		tx->freq = ptp->dialed_frequency;
170		err = 0;
171	}
172
173	return err;
174}
175
176static struct posix_clock_operations ptp_clock_ops = {
177	.owner		= THIS_MODULE,
178	.clock_adjtime	= ptp_clock_adjtime,
179	.clock_gettime	= ptp_clock_gettime,
180	.clock_getres	= ptp_clock_getres,
181	.clock_settime	= ptp_clock_settime,
182	.ioctl		= ptp_ioctl,
183	.open		= ptp_open,
184	.release	= ptp_release,
185	.poll		= ptp_poll,
186	.read		= ptp_read,
187};
188
189static void ptp_clock_release(struct device *dev)
190{
191	struct ptp_clock *ptp = container_of(dev, struct ptp_clock, dev);
192	struct timestamp_event_queue *tsevq;
193	unsigned long flags;
194
195	ptp_cleanup_pin_groups(ptp);
196	kfree(ptp->vclock_index);
197	mutex_destroy(&ptp->pincfg_mux);
198	mutex_destroy(&ptp->n_vclocks_mux);
199	/* Delete first entry */
200	spin_lock_irqsave(&ptp->tsevqs_lock, flags);
201	tsevq = list_first_entry(&ptp->tsevqs, struct timestamp_event_queue,
202				 qlist);
203	list_del(&tsevq->qlist);
204	spin_unlock_irqrestore(&ptp->tsevqs_lock, flags);
205	bitmap_free(tsevq->mask);
206	kfree(tsevq);
207	debugfs_remove(ptp->debugfs_root);
208	xa_erase(&ptp_clocks_map, ptp->index);
209	kfree(ptp);
210}
211
212static int ptp_getcycles64(struct ptp_clock_info *info, struct timespec64 *ts)
213{
214	if (info->getcyclesx64)
215		return info->getcyclesx64(info, ts, NULL);
216	else
217		return info->gettime64(info, ts);
218}
219
220static int ptp_enable(struct ptp_clock_info *ptp, struct ptp_clock_request *request, int on)
221{
222	return -EOPNOTSUPP;
223}
224
225static void ptp_aux_kworker(struct kthread_work *work)
226{
227	struct ptp_clock *ptp = container_of(work, struct ptp_clock,
228					     aux_work.work);
229	struct ptp_clock_info *info = ptp->info;
230	long delay;
231
232	delay = info->do_aux_work(info);
233
234	if (delay >= 0)
235		kthread_queue_delayed_work(ptp->kworker, &ptp->aux_work, delay);
236}
237
238/* public interface */
239
240struct ptp_clock *ptp_clock_register(struct ptp_clock_info *info,
241				     struct device *parent)
242{
243	struct ptp_clock *ptp;
244	struct timestamp_event_queue *queue = NULL;
245	int err, index, major = MAJOR(ptp_devt);
246	char debugfsname[16];
247	size_t size;
248
249	if (info->n_alarm > PTP_MAX_ALARMS)
250		return ERR_PTR(-EINVAL);
251
252	/* Initialize a clock structure. */
 
253	ptp = kzalloc(sizeof(struct ptp_clock), GFP_KERNEL);
254	if (!ptp) {
255		err = -ENOMEM;
256		goto no_memory;
257	}
258
259	err = xa_alloc(&ptp_clocks_map, &index, ptp, xa_limit_31b,
260		       GFP_KERNEL);
261	if (err)
262		goto no_slot;
 
263
264	ptp->clock.ops = ptp_clock_ops;
 
265	ptp->info = info;
266	ptp->devid = MKDEV(major, index);
267	ptp->index = index;
268	INIT_LIST_HEAD(&ptp->tsevqs);
269	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
270	if (!queue) {
271		err = -ENOMEM;
272		goto no_memory_queue;
273	}
274	list_add_tail(&queue->qlist, &ptp->tsevqs);
275	spin_lock_init(&ptp->tsevqs_lock);
276	queue->mask = bitmap_alloc(PTP_MAX_CHANNELS, GFP_KERNEL);
277	if (!queue->mask) {
278		err = -ENOMEM;
279		goto no_memory_bitmap;
280	}
281	bitmap_set(queue->mask, 0, PTP_MAX_CHANNELS);
282	spin_lock_init(&queue->lock);
283	mutex_init(&ptp->pincfg_mux);
284	mutex_init(&ptp->n_vclocks_mux);
285	init_waitqueue_head(&ptp->tsev_wq);
286
287	if (ptp->info->getcycles64 || ptp->info->getcyclesx64) {
288		ptp->has_cycles = true;
289		if (!ptp->info->getcycles64 && ptp->info->getcyclesx64)
290			ptp->info->getcycles64 = ptp_getcycles64;
291	} else {
292		/* Free running cycle counter not supported, use time. */
293		ptp->info->getcycles64 = ptp_getcycles64;
294
295		if (ptp->info->gettimex64)
296			ptp->info->getcyclesx64 = ptp->info->gettimex64;
297
298		if (ptp->info->getcrosststamp)
299			ptp->info->getcrosscycles = ptp->info->getcrosststamp;
300	}
301
302	if (!ptp->info->enable)
303		ptp->info->enable = ptp_enable;
304
305	if (ptp->info->do_aux_work) {
306		kthread_init_delayed_work(&ptp->aux_work, ptp_aux_kworker);
307		ptp->kworker = kthread_create_worker(0, "ptp%d", ptp->index);
308		if (IS_ERR(ptp->kworker)) {
309			err = PTR_ERR(ptp->kworker);
310			pr_err("failed to create ptp aux_worker %d\n", err);
311			goto kworker_err;
312		}
313	}
314
315	/* PTP virtual clock is being registered under physical clock */
316	if (parent && parent->class && parent->class->name &&
317	    strcmp(parent->class->name, "ptp") == 0)
318		ptp->is_virtual_clock = true;
319
320	if (!ptp->is_virtual_clock) {
321		ptp->max_vclocks = PTP_DEFAULT_MAX_VCLOCKS;
322
323		size = sizeof(int) * ptp->max_vclocks;
324		ptp->vclock_index = kzalloc(size, GFP_KERNEL);
325		if (!ptp->vclock_index) {
326			err = -ENOMEM;
327			goto no_mem_for_vclocks;
328		}
329	}
330
331	err = ptp_populate_pin_groups(ptp);
332	if (err)
333		goto no_pin_groups;
334
 
 
 
 
 
 
 
 
 
335	/* Register a new PPS source. */
336	if (info->pps) {
337		struct pps_source_info pps;
338		memset(&pps, 0, sizeof(pps));
339		snprintf(pps.name, PPS_MAX_NAME_LEN, "ptp%d", index);
340		pps.mode = PTP_PPS_MODE;
341		pps.owner = info->owner;
342		ptp->pps_source = pps_register_source(&pps, PTP_PPS_DEFAULTS);
343		if (IS_ERR(ptp->pps_source)) {
344			err = PTR_ERR(ptp->pps_source);
345			pr_err("failed to register pps source\n");
346			goto no_pps;
347		}
348		ptp->pps_source->lookup_cookie = ptp;
349	}
350
351	/* Initialize a new device of our class in our clock structure. */
352	device_initialize(&ptp->dev);
353	ptp->dev.devt = ptp->devid;
354	ptp->dev.class = &ptp_class;
355	ptp->dev.parent = parent;
356	ptp->dev.groups = ptp->pin_attr_groups;
357	ptp->dev.release = ptp_clock_release;
358	dev_set_drvdata(&ptp->dev, ptp);
359	dev_set_name(&ptp->dev, "ptp%d", ptp->index);
360
361	/* Create a posix clock and link it to the device. */
362	err = posix_clock_register(&ptp->clock, &ptp->dev);
363	if (err) {
364		if (ptp->pps_source)
365			pps_unregister_source(ptp->pps_source);
366
367		if (ptp->kworker)
368			kthread_destroy_worker(ptp->kworker);
369
370		put_device(&ptp->dev);
371
372		pr_err("failed to create posix clock\n");
373		return ERR_PTR(err);
374	}
375
376	/* Debugfs initialization */
377	snprintf(debugfsname, sizeof(debugfsname), "ptp%d", ptp->index);
378	ptp->debugfs_root = debugfs_create_dir(debugfsname, NULL);
379
380	return ptp;
381
 
 
 
382no_pps:
 
 
383	ptp_cleanup_pin_groups(ptp);
384no_pin_groups:
385	kfree(ptp->vclock_index);
386no_mem_for_vclocks:
387	if (ptp->kworker)
388		kthread_destroy_worker(ptp->kworker);
389kworker_err:
 
390	mutex_destroy(&ptp->pincfg_mux);
391	mutex_destroy(&ptp->n_vclocks_mux);
392	bitmap_free(queue->mask);
393no_memory_bitmap:
394	list_del(&queue->qlist);
395	kfree(queue);
396no_memory_queue:
397	xa_erase(&ptp_clocks_map, index);
398no_slot:
399	kfree(ptp);
400no_memory:
401	return ERR_PTR(err);
402}
403EXPORT_SYMBOL(ptp_clock_register);
404
405static int unregister_vclock(struct device *dev, void *data)
406{
407	struct ptp_clock *ptp = dev_get_drvdata(dev);
408
409	ptp_vclock_unregister(info_to_vclock(ptp->info));
410	return 0;
411}
412
413int ptp_clock_unregister(struct ptp_clock *ptp)
414{
415	if (ptp_vclock_in_use(ptp)) {
416		device_for_each_child(&ptp->dev, NULL, unregister_vclock);
417	}
418
419	ptp->defunct = 1;
420	wake_up_interruptible(&ptp->tsev_wq);
421
422	if (ptp->kworker) {
423		kthread_cancel_delayed_work_sync(&ptp->aux_work);
424		kthread_destroy_worker(ptp->kworker);
425	}
426
427	/* Release the clock's resources. */
428	if (ptp->pps_source)
429		pps_unregister_source(ptp->pps_source);
430
431	posix_clock_unregister(&ptp->clock);
 
432
 
433	return 0;
434}
435EXPORT_SYMBOL(ptp_clock_unregister);
436
437void ptp_clock_event(struct ptp_clock *ptp, struct ptp_clock_event *event)
438{
439	struct timestamp_event_queue *tsevq;
440	struct pps_event_time evt;
441	unsigned long flags;
442
443	switch (event->type) {
444
445	case PTP_CLOCK_ALARM:
446		break;
447
448	case PTP_CLOCK_EXTTS:
449	case PTP_CLOCK_EXTOFF:
450		/* Enqueue timestamp on selected queues */
451		spin_lock_irqsave(&ptp->tsevqs_lock, flags);
452		list_for_each_entry(tsevq, &ptp->tsevqs, qlist) {
453			if (test_bit((unsigned int)event->index, tsevq->mask))
454				enqueue_external_timestamp(tsevq, event);
455		}
456		spin_unlock_irqrestore(&ptp->tsevqs_lock, flags);
457		wake_up_interruptible(&ptp->tsev_wq);
458		break;
459
460	case PTP_CLOCK_PPS:
461		pps_get_ts(&evt);
462		pps_event(ptp->pps_source, &evt, PTP_PPS_EVENT, NULL);
463		break;
464
465	case PTP_CLOCK_PPSUSR:
466		pps_event(ptp->pps_source, &event->pps_times,
467			  PTP_PPS_EVENT, NULL);
468		break;
469	}
470}
471EXPORT_SYMBOL(ptp_clock_event);
472
473int ptp_clock_index(struct ptp_clock *ptp)
474{
475	return ptp->index;
476}
477EXPORT_SYMBOL(ptp_clock_index);
478
479int ptp_find_pin(struct ptp_clock *ptp,
480		 enum ptp_pin_function func, unsigned int chan)
481{
482	struct ptp_pin_desc *pin = NULL;
483	int i;
484
 
485	for (i = 0; i < ptp->info->n_pins; i++) {
486		if (ptp->info->pin_config[i].func == func &&
487		    ptp->info->pin_config[i].chan == chan) {
488			pin = &ptp->info->pin_config[i];
489			break;
490		}
491	}
 
492
493	return pin ? i : -1;
494}
495EXPORT_SYMBOL(ptp_find_pin);
496
497int ptp_find_pin_unlocked(struct ptp_clock *ptp,
498			  enum ptp_pin_function func, unsigned int chan)
499{
500	int result;
501
502	mutex_lock(&ptp->pincfg_mux);
503
504	result = ptp_find_pin(ptp, func, chan);
505
506	mutex_unlock(&ptp->pincfg_mux);
507
508	return result;
509}
510EXPORT_SYMBOL(ptp_find_pin_unlocked);
511
512int ptp_schedule_worker(struct ptp_clock *ptp, unsigned long delay)
513{
514	return kthread_mod_delayed_work(ptp->kworker, &ptp->aux_work, delay);
515}
516EXPORT_SYMBOL(ptp_schedule_worker);
517
518void ptp_cancel_worker_sync(struct ptp_clock *ptp)
519{
520	kthread_cancel_delayed_work_sync(&ptp->aux_work);
521}
522EXPORT_SYMBOL(ptp_cancel_worker_sync);
523
524/* module operations */
525
526static void __exit ptp_exit(void)
527{
528	class_unregister(&ptp_class);
529	unregister_chrdev_region(ptp_devt, MINORMASK + 1);
530	xa_destroy(&ptp_clocks_map);
531}
532
533static int __init ptp_init(void)
534{
535	int err;
536
537	err = class_register(&ptp_class);
538	if (err) {
539		pr_err("ptp: failed to allocate class\n");
540		return err;
541	}
542
543	err = alloc_chrdev_region(&ptp_devt, 0, MINORMASK + 1, "ptp");
544	if (err < 0) {
545		pr_err("ptp: failed to allocate device region\n");
546		goto no_region;
547	}
548
 
549	pr_info("PTP clock support registered\n");
550	return 0;
551
552no_region:
553	class_unregister(&ptp_class);
554	return err;
555}
556
557subsys_initcall(ptp_init);
558module_exit(ptp_exit);
559
560MODULE_AUTHOR("Richard Cochran <richardcochran@gmail.com>");
561MODULE_DESCRIPTION("PTP clocks support");
562MODULE_LICENSE("GPL");
v5.4
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * PTP 1588 clock support
  4 *
  5 * Copyright (C) 2010 OMICRON electronics GmbH
  6 */
  7#include <linux/idr.h>
  8#include <linux/device.h>
  9#include <linux/err.h>
 10#include <linux/init.h>
 11#include <linux/kernel.h>
 12#include <linux/module.h>
 13#include <linux/posix-clock.h>
 14#include <linux/pps_kernel.h>
 15#include <linux/slab.h>
 16#include <linux/syscalls.h>
 17#include <linux/uaccess.h>
 
 
 18#include <uapi/linux/sched/types.h>
 19
 20#include "ptp_private.h"
 21
 22#define PTP_MAX_ALARMS 4
 23#define PTP_PPS_DEFAULTS (PPS_CAPTUREASSERT | PPS_OFFSETASSERT)
 24#define PTP_PPS_EVENT PPS_CAPTUREASSERT
 25#define PTP_PPS_MODE (PTP_PPS_DEFAULTS | PPS_CANWAIT | PPS_TSFMT_TSPEC)
 26
 
 
 
 
 
 27/* private globals */
 28
 29static dev_t ptp_devt;
 30static struct class *ptp_class;
 31
 32static DEFINE_IDA(ptp_clocks_map);
 33
 34/* time stamp event queue operations */
 35
 36static inline int queue_free(struct timestamp_event_queue *q)
 37{
 38	return PTP_MAX_TIMESTAMPS - queue_cnt(q) - 1;
 39}
 40
 41static void enqueue_external_timestamp(struct timestamp_event_queue *queue,
 42				       struct ptp_clock_event *src)
 43{
 44	struct ptp_extts_event *dst;
 
 45	unsigned long flags;
 46	s64 seconds;
 47	u32 remainder;
 48
 49	seconds = div_u64_rem(src->timestamp, 1000000000, &remainder);
 
 
 
 
 
 
 
 
 
 50
 51	spin_lock_irqsave(&queue->lock, flags);
 52
 53	dst = &queue->buf[queue->tail];
 54	dst->index = src->index;
 
 55	dst->t.sec = seconds;
 56	dst->t.nsec = remainder;
 
 
 57
 
 58	if (!queue_free(queue))
 59		queue->head = (queue->head + 1) % PTP_MAX_TIMESTAMPS;
 60
 61	queue->tail = (queue->tail + 1) % PTP_MAX_TIMESTAMPS;
 62
 63	spin_unlock_irqrestore(&queue->lock, flags);
 64}
 65
 66s32 scaled_ppm_to_ppb(long ppm)
 67{
 68	/*
 69	 * The 'freq' field in the 'struct timex' is in parts per
 70	 * million, but with a 16 bit binary fractional field.
 71	 *
 72	 * We want to calculate
 73	 *
 74	 *    ppb = scaled_ppm * 1000 / 2^16
 75	 *
 76	 * which simplifies to
 77	 *
 78	 *    ppb = scaled_ppm * 125 / 2^13
 79	 */
 80	s64 ppb = 1 + ppm;
 81	ppb *= 125;
 82	ppb >>= 13;
 83	return (s32) ppb;
 84}
 85EXPORT_SYMBOL(scaled_ppm_to_ppb);
 86
 87/* posix clock implementation */
 88
 89static int ptp_clock_getres(struct posix_clock *pc, struct timespec64 *tp)
 90{
 91	tp->tv_sec = 0;
 92	tp->tv_nsec = 1;
 93	return 0;
 94}
 95
 96static int ptp_clock_settime(struct posix_clock *pc, const struct timespec64 *tp)
 97{
 98	struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
 99
 
 
 
 
 
100	return  ptp->info->settime64(ptp->info, tp);
101}
102
103static int ptp_clock_gettime(struct posix_clock *pc, struct timespec64 *tp)
104{
105	struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
106	int err;
107
108	if (ptp->info->gettimex64)
109		err = ptp->info->gettimex64(ptp->info, tp, NULL);
110	else
111		err = ptp->info->gettime64(ptp->info, tp);
112	return err;
113}
114
115static int ptp_clock_adjtime(struct posix_clock *pc, struct __kernel_timex *tx)
116{
117	struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
118	struct ptp_clock_info *ops;
119	int err = -EOPNOTSUPP;
120
 
 
 
 
 
121	ops = ptp->info;
122
123	if (tx->modes & ADJ_SETOFFSET) {
124		struct timespec64 ts;
125		ktime_t kt;
126		s64 delta;
127
128		ts.tv_sec  = tx->time.tv_sec;
129		ts.tv_nsec = tx->time.tv_usec;
130
131		if (!(tx->modes & ADJ_NANO))
132			ts.tv_nsec *= 1000;
133
134		if ((unsigned long) ts.tv_nsec >= NSEC_PER_SEC)
135			return -EINVAL;
136
137		kt = timespec64_to_ktime(ts);
138		delta = ktime_to_ns(kt);
139		err = ops->adjtime(ops, delta);
140	} else if (tx->modes & ADJ_FREQUENCY) {
141		s32 ppb = scaled_ppm_to_ppb(tx->freq);
142		if (ppb > ops->max_adj || ppb < -ops->max_adj)
143			return -ERANGE;
144		if (ops->adjfine)
145			err = ops->adjfine(ops, tx->freq);
146		else
147			err = ops->adjfreq(ops, ppb);
148		ptp->dialed_frequency = tx->freq;
 
 
 
 
 
 
 
 
 
 
 
149	} else if (tx->modes == 0) {
150		tx->freq = ptp->dialed_frequency;
151		err = 0;
152	}
153
154	return err;
155}
156
157static struct posix_clock_operations ptp_clock_ops = {
158	.owner		= THIS_MODULE,
159	.clock_adjtime	= ptp_clock_adjtime,
160	.clock_gettime	= ptp_clock_gettime,
161	.clock_getres	= ptp_clock_getres,
162	.clock_settime	= ptp_clock_settime,
163	.ioctl		= ptp_ioctl,
164	.open		= ptp_open,
 
165	.poll		= ptp_poll,
166	.read		= ptp_read,
167};
168
169static void delete_ptp_clock(struct posix_clock *pc)
170{
171	struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
 
 
172
173	mutex_destroy(&ptp->tsevq_mux);
 
174	mutex_destroy(&ptp->pincfg_mux);
175	ida_simple_remove(&ptp_clocks_map, ptp->index);
 
 
 
 
 
 
 
 
 
 
176	kfree(ptp);
177}
178
 
 
 
 
 
 
 
 
 
 
 
 
 
179static void ptp_aux_kworker(struct kthread_work *work)
180{
181	struct ptp_clock *ptp = container_of(work, struct ptp_clock,
182					     aux_work.work);
183	struct ptp_clock_info *info = ptp->info;
184	long delay;
185
186	delay = info->do_aux_work(info);
187
188	if (delay >= 0)
189		kthread_queue_delayed_work(ptp->kworker, &ptp->aux_work, delay);
190}
191
192/* public interface */
193
194struct ptp_clock *ptp_clock_register(struct ptp_clock_info *info,
195				     struct device *parent)
196{
197	struct ptp_clock *ptp;
198	int err = 0, index, major = MAJOR(ptp_devt);
 
 
 
199
200	if (info->n_alarm > PTP_MAX_ALARMS)
201		return ERR_PTR(-EINVAL);
202
203	/* Initialize a clock structure. */
204	err = -ENOMEM;
205	ptp = kzalloc(sizeof(struct ptp_clock), GFP_KERNEL);
206	if (ptp == NULL)
 
207		goto no_memory;
 
208
209	index = ida_simple_get(&ptp_clocks_map, 0, MINORMASK + 1, GFP_KERNEL);
210	if (index < 0) {
211		err = index;
212		goto no_slot;
213	}
214
215	ptp->clock.ops = ptp_clock_ops;
216	ptp->clock.release = delete_ptp_clock;
217	ptp->info = info;
218	ptp->devid = MKDEV(major, index);
219	ptp->index = index;
220	spin_lock_init(&ptp->tsevq.lock);
221	mutex_init(&ptp->tsevq_mux);
 
 
 
 
 
 
 
 
 
 
 
 
 
222	mutex_init(&ptp->pincfg_mux);
 
223	init_waitqueue_head(&ptp->tsev_wq);
224
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
225	if (ptp->info->do_aux_work) {
226		kthread_init_delayed_work(&ptp->aux_work, ptp_aux_kworker);
227		ptp->kworker = kthread_create_worker(0, "ptp%d", ptp->index);
228		if (IS_ERR(ptp->kworker)) {
229			err = PTR_ERR(ptp->kworker);
230			pr_err("failed to create ptp aux_worker %d\n", err);
231			goto kworker_err;
232		}
233	}
234
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
235	err = ptp_populate_pin_groups(ptp);
236	if (err)
237		goto no_pin_groups;
238
239	/* Create a new device in our class. */
240	ptp->dev = device_create_with_groups(ptp_class, parent, ptp->devid,
241					     ptp, ptp->pin_attr_groups,
242					     "ptp%d", ptp->index);
243	if (IS_ERR(ptp->dev)) {
244		err = PTR_ERR(ptp->dev);
245		goto no_device;
246	}
247
248	/* Register a new PPS source. */
249	if (info->pps) {
250		struct pps_source_info pps;
251		memset(&pps, 0, sizeof(pps));
252		snprintf(pps.name, PPS_MAX_NAME_LEN, "ptp%d", index);
253		pps.mode = PTP_PPS_MODE;
254		pps.owner = info->owner;
255		ptp->pps_source = pps_register_source(&pps, PTP_PPS_DEFAULTS);
256		if (IS_ERR(ptp->pps_source)) {
257			err = PTR_ERR(ptp->pps_source);
258			pr_err("failed to register pps source\n");
259			goto no_pps;
260		}
 
261	}
262
263	/* Create a posix clock. */
264	err = posix_clock_register(&ptp->clock, ptp->devid);
 
 
 
 
 
 
 
 
 
 
265	if (err) {
 
 
 
 
 
 
 
 
266		pr_err("failed to create posix clock\n");
267		goto no_clock;
268	}
269
 
 
 
 
270	return ptp;
271
272no_clock:
273	if (ptp->pps_source)
274		pps_unregister_source(ptp->pps_source);
275no_pps:
276	device_destroy(ptp_class, ptp->devid);
277no_device:
278	ptp_cleanup_pin_groups(ptp);
279no_pin_groups:
 
 
280	if (ptp->kworker)
281		kthread_destroy_worker(ptp->kworker);
282kworker_err:
283	mutex_destroy(&ptp->tsevq_mux);
284	mutex_destroy(&ptp->pincfg_mux);
285	ida_simple_remove(&ptp_clocks_map, index);
 
 
 
 
 
 
286no_slot:
287	kfree(ptp);
288no_memory:
289	return ERR_PTR(err);
290}
291EXPORT_SYMBOL(ptp_clock_register);
292
 
 
 
 
 
 
 
 
293int ptp_clock_unregister(struct ptp_clock *ptp)
294{
 
 
 
 
295	ptp->defunct = 1;
296	wake_up_interruptible(&ptp->tsev_wq);
297
298	if (ptp->kworker) {
299		kthread_cancel_delayed_work_sync(&ptp->aux_work);
300		kthread_destroy_worker(ptp->kworker);
301	}
302
303	/* Release the clock's resources. */
304	if (ptp->pps_source)
305		pps_unregister_source(ptp->pps_source);
306
307	device_destroy(ptp_class, ptp->devid);
308	ptp_cleanup_pin_groups(ptp);
309
310	posix_clock_unregister(&ptp->clock);
311	return 0;
312}
313EXPORT_SYMBOL(ptp_clock_unregister);
314
315void ptp_clock_event(struct ptp_clock *ptp, struct ptp_clock_event *event)
316{
 
317	struct pps_event_time evt;
 
318
319	switch (event->type) {
320
321	case PTP_CLOCK_ALARM:
322		break;
323
324	case PTP_CLOCK_EXTTS:
325		enqueue_external_timestamp(&ptp->tsevq, event);
 
 
 
 
 
 
 
326		wake_up_interruptible(&ptp->tsev_wq);
327		break;
328
329	case PTP_CLOCK_PPS:
330		pps_get_ts(&evt);
331		pps_event(ptp->pps_source, &evt, PTP_PPS_EVENT, NULL);
332		break;
333
334	case PTP_CLOCK_PPSUSR:
335		pps_event(ptp->pps_source, &event->pps_times,
336			  PTP_PPS_EVENT, NULL);
337		break;
338	}
339}
340EXPORT_SYMBOL(ptp_clock_event);
341
342int ptp_clock_index(struct ptp_clock *ptp)
343{
344	return ptp->index;
345}
346EXPORT_SYMBOL(ptp_clock_index);
347
348int ptp_find_pin(struct ptp_clock *ptp,
349		 enum ptp_pin_function func, unsigned int chan)
350{
351	struct ptp_pin_desc *pin = NULL;
352	int i;
353
354	mutex_lock(&ptp->pincfg_mux);
355	for (i = 0; i < ptp->info->n_pins; i++) {
356		if (ptp->info->pin_config[i].func == func &&
357		    ptp->info->pin_config[i].chan == chan) {
358			pin = &ptp->info->pin_config[i];
359			break;
360		}
361	}
362	mutex_unlock(&ptp->pincfg_mux);
363
364	return pin ? i : -1;
365}
366EXPORT_SYMBOL(ptp_find_pin);
367
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
368int ptp_schedule_worker(struct ptp_clock *ptp, unsigned long delay)
369{
370	return kthread_mod_delayed_work(ptp->kworker, &ptp->aux_work, delay);
371}
372EXPORT_SYMBOL(ptp_schedule_worker);
373
 
 
 
 
 
 
374/* module operations */
375
376static void __exit ptp_exit(void)
377{
378	class_destroy(ptp_class);
379	unregister_chrdev_region(ptp_devt, MINORMASK + 1);
380	ida_destroy(&ptp_clocks_map);
381}
382
383static int __init ptp_init(void)
384{
385	int err;
386
387	ptp_class = class_create(THIS_MODULE, "ptp");
388	if (IS_ERR(ptp_class)) {
389		pr_err("ptp: failed to allocate class\n");
390		return PTR_ERR(ptp_class);
391	}
392
393	err = alloc_chrdev_region(&ptp_devt, 0, MINORMASK + 1, "ptp");
394	if (err < 0) {
395		pr_err("ptp: failed to allocate device region\n");
396		goto no_region;
397	}
398
399	ptp_class->dev_groups = ptp_groups;
400	pr_info("PTP clock support registered\n");
401	return 0;
402
403no_region:
404	class_destroy(ptp_class);
405	return err;
406}
407
408subsys_initcall(ptp_init);
409module_exit(ptp_exit);
410
411MODULE_AUTHOR("Richard Cochran <richardcochran@gmail.com>");
412MODULE_DESCRIPTION("PTP clocks support");
413MODULE_LICENSE("GPL");