Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Common code for Intel Running Average Power Limit (RAPL) support.
   4 * Copyright (c) 2019, Intel Corporation.
   5 */
   6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   7
   8#include <linux/bitmap.h>
   9#include <linux/cleanup.h>
  10#include <linux/cpu.h>
  11#include <linux/delay.h>
  12#include <linux/device.h>
  13#include <linux/intel_rapl.h>
  14#include <linux/kernel.h>
 
  15#include <linux/list.h>
 
 
 
  16#include <linux/log2.h>
  17#include <linux/module.h>
  18#include <linux/nospec.h>
  19#include <linux/perf_event.h>
  20#include <linux/platform_device.h>
  21#include <linux/powercap.h>
  22#include <linux/processor.h>
  23#include <linux/slab.h>
  24#include <linux/suspend.h>
  25#include <linux/sysfs.h>
  26#include <linux/types.h>
 
  27
 
  28#include <asm/cpu_device_id.h>
  29#include <asm/intel-family.h>
  30#include <asm/iosf_mbi.h>
 
 
  31
  32/* bitmasks for RAPL MSRs, used by primitive access functions */
  33#define ENERGY_STATUS_MASK      0xffffffff
  34
  35#define POWER_LIMIT1_MASK       0x7FFF
  36#define POWER_LIMIT1_ENABLE     BIT(15)
  37#define POWER_LIMIT1_CLAMP      BIT(16)
  38
  39#define POWER_LIMIT2_MASK       (0x7FFFULL<<32)
  40#define POWER_LIMIT2_ENABLE     BIT_ULL(47)
  41#define POWER_LIMIT2_CLAMP      BIT_ULL(48)
  42#define POWER_HIGH_LOCK         BIT_ULL(63)
  43#define POWER_LOW_LOCK          BIT(31)
  44
  45#define POWER_LIMIT4_MASK		0x1FFF
  46
  47#define TIME_WINDOW1_MASK       (0x7FULL<<17)
  48#define TIME_WINDOW2_MASK       (0x7FULL<<49)
  49
  50#define POWER_UNIT_OFFSET	0
  51#define POWER_UNIT_MASK		0x0F
  52
  53#define ENERGY_UNIT_OFFSET	0x08
  54#define ENERGY_UNIT_MASK	0x1F00
  55
  56#define TIME_UNIT_OFFSET	0x10
  57#define TIME_UNIT_MASK		0xF0000
  58
  59#define POWER_INFO_MAX_MASK     (0x7fffULL<<32)
  60#define POWER_INFO_MIN_MASK     (0x7fffULL<<16)
  61#define POWER_INFO_MAX_TIME_WIN_MASK     (0x3fULL<<48)
  62#define POWER_INFO_THERMAL_SPEC_MASK     0x7fff
  63
  64#define PERF_STATUS_THROTTLE_TIME_MASK 0xffffffff
  65#define PP_POLICY_MASK         0x1F
  66
  67/*
  68 * SPR has different layout for Psys Domain PowerLimit registers.
  69 * There are 17 bits of PL1 and PL2 instead of 15 bits.
  70 * The Enable bits and TimeWindow bits are also shifted as a result.
  71 */
  72#define PSYS_POWER_LIMIT1_MASK       0x1FFFF
  73#define PSYS_POWER_LIMIT1_ENABLE     BIT(17)
  74
  75#define PSYS_POWER_LIMIT2_MASK       (0x1FFFFULL<<32)
  76#define PSYS_POWER_LIMIT2_ENABLE     BIT_ULL(49)
  77
  78#define PSYS_TIME_WINDOW1_MASK       (0x7FULL<<19)
  79#define PSYS_TIME_WINDOW2_MASK       (0x7FULL<<51)
  80
  81/* bitmasks for RAPL TPMI, used by primitive access functions */
  82#define TPMI_POWER_LIMIT_MASK	0x3FFFF
  83#define TPMI_POWER_LIMIT_ENABLE	BIT_ULL(62)
  84#define TPMI_TIME_WINDOW_MASK	(0x7FULL<<18)
  85#define TPMI_INFO_SPEC_MASK	0x3FFFF
  86#define TPMI_INFO_MIN_MASK	(0x3FFFFULL << 18)
  87#define TPMI_INFO_MAX_MASK	(0x3FFFFULL << 36)
  88#define TPMI_INFO_MAX_TIME_WIN_MASK	(0x7FULL << 54)
  89
  90/* Non HW constants */
  91#define RAPL_PRIMITIVE_DERIVED       BIT(1)	/* not from raw data */
  92#define RAPL_PRIMITIVE_DUMMY         BIT(2)
  93
  94#define TIME_WINDOW_MAX_MSEC 40000
  95#define TIME_WINDOW_MIN_MSEC 250
  96#define ENERGY_UNIT_SCALE    1000	/* scale from driver unit to powercap unit */
  97enum unit_type {
  98	ARBITRARY_UNIT,		/* no translation */
  99	POWER_UNIT,
 100	ENERGY_UNIT,
 101	TIME_UNIT,
 102};
 103
 104/* per domain data, some are optional */
 105#define NR_RAW_PRIMITIVES (NR_RAPL_PRIMITIVES - 2)
 106
 107#define	DOMAIN_STATE_INACTIVE           BIT(0)
 108#define	DOMAIN_STATE_POWER_LIMIT_SET    BIT(1)
 
 109
 110static const char *pl_names[NR_POWER_LIMITS] = {
 111	[POWER_LIMIT1] = "long_term",
 112	[POWER_LIMIT2] = "short_term",
 113	[POWER_LIMIT4] = "peak_power",
 114};
 115
 116enum pl_prims {
 117	PL_ENABLE,
 118	PL_CLAMP,
 119	PL_LIMIT,
 120	PL_TIME_WINDOW,
 121	PL_MAX_POWER,
 122	PL_LOCK,
 123};
 124
 125static bool is_pl_valid(struct rapl_domain *rd, int pl)
 126{
 127	if (pl < POWER_LIMIT1 || pl > POWER_LIMIT4)
 128		return false;
 129	return rd->rpl[pl].name ? true : false;
 130}
 131
 132static int get_pl_lock_prim(struct rapl_domain *rd, int pl)
 133{
 134	if (rd->rp->priv->type == RAPL_IF_TPMI) {
 135		if (pl == POWER_LIMIT1)
 136			return PL1_LOCK;
 137		if (pl == POWER_LIMIT2)
 138			return PL2_LOCK;
 139		if (pl == POWER_LIMIT4)
 140			return PL4_LOCK;
 141	}
 142
 143	/* MSR/MMIO Interface doesn't have Lock bit for PL4 */
 144	if (pl == POWER_LIMIT4)
 145		return -EINVAL;
 146
 147	/*
 148	 * Power Limit register that supports two power limits has a different
 149	 * bit position for the Lock bit.
 150	 */
 151	if (rd->rp->priv->limits[rd->id] & BIT(POWER_LIMIT2))
 152		return FW_HIGH_LOCK;
 153	return FW_LOCK;
 154}
 155
 156static int get_pl_prim(struct rapl_domain *rd, int pl, enum pl_prims prim)
 157{
 158	switch (pl) {
 159	case POWER_LIMIT1:
 160		if (prim == PL_ENABLE)
 161			return PL1_ENABLE;
 162		if (prim == PL_CLAMP && rd->rp->priv->type != RAPL_IF_TPMI)
 163			return PL1_CLAMP;
 164		if (prim == PL_LIMIT)
 165			return POWER_LIMIT1;
 166		if (prim == PL_TIME_WINDOW)
 167			return TIME_WINDOW1;
 168		if (prim == PL_MAX_POWER)
 169			return THERMAL_SPEC_POWER;
 170		if (prim == PL_LOCK)
 171			return get_pl_lock_prim(rd, pl);
 172		return -EINVAL;
 173	case POWER_LIMIT2:
 174		if (prim == PL_ENABLE)
 175			return PL2_ENABLE;
 176		if (prim == PL_CLAMP && rd->rp->priv->type != RAPL_IF_TPMI)
 177			return PL2_CLAMP;
 178		if (prim == PL_LIMIT)
 179			return POWER_LIMIT2;
 180		if (prim == PL_TIME_WINDOW)
 181			return TIME_WINDOW2;
 182		if (prim == PL_MAX_POWER)
 183			return MAX_POWER;
 184		if (prim == PL_LOCK)
 185			return get_pl_lock_prim(rd, pl);
 186		return -EINVAL;
 187	case POWER_LIMIT4:
 188		if (prim == PL_LIMIT)
 189			return POWER_LIMIT4;
 190		if (prim == PL_ENABLE)
 191			return PL4_ENABLE;
 192		/* PL4 would be around two times PL2, use same prim as PL2. */
 193		if (prim == PL_MAX_POWER)
 194			return MAX_POWER;
 195		if (prim == PL_LOCK)
 196			return get_pl_lock_prim(rd, pl);
 197		return -EINVAL;
 198	default:
 199		return -EINVAL;
 200	}
 201}
 202
 203#define power_zone_to_rapl_domain(_zone) \
 204	container_of(_zone, struct rapl_domain, power_zone)
 205
 206struct rapl_defaults {
 207	u8 floor_freq_reg_addr;
 208	int (*check_unit)(struct rapl_domain *rd);
 209	void (*set_floor_freq)(struct rapl_domain *rd, bool mode);
 210	u64 (*compute_time_window)(struct rapl_domain *rd, u64 val,
 211				    bool to_raw);
 212	unsigned int dram_domain_energy_unit;
 213	unsigned int psys_domain_energy_unit;
 214	bool spr_psys_bits;
 215};
 216static struct rapl_defaults *defaults_msr;
 217static const struct rapl_defaults defaults_tpmi;
 218
 219static struct rapl_defaults *get_defaults(struct rapl_package *rp)
 220{
 221	return rp->priv->defaults;
 222}
 223
 224/* Sideband MBI registers */
 225#define IOSF_CPU_POWER_BUDGET_CTL_BYT (0x2)
 226#define IOSF_CPU_POWER_BUDGET_CTL_TNG (0xdf)
 227
 228#define PACKAGE_PLN_INT_SAVED   BIT(0)
 229#define MAX_PRIM_NAME (32)
 230
 231/* per domain data. used to describe individual knobs such that access function
 232 * can be consolidated into one instead of many inline functions.
 233 */
 234struct rapl_primitive_info {
 235	const char *name;
 236	u64 mask;
 237	int shift;
 238	enum rapl_domain_reg_id id;
 239	enum unit_type unit;
 240	u32 flag;
 241};
 242
 243#define PRIMITIVE_INFO_INIT(p, m, s, i, u, f) {	\
 244		.name = #p,			\
 245		.mask = m,			\
 246		.shift = s,			\
 247		.id = i,			\
 248		.unit = u,			\
 249		.flag = f			\
 250	}
 251
 252static void rapl_init_domains(struct rapl_package *rp);
 253static int rapl_read_data_raw(struct rapl_domain *rd,
 254			      enum rapl_primitives prim,
 255			      bool xlate, u64 *data);
 256static int rapl_write_data_raw(struct rapl_domain *rd,
 257			       enum rapl_primitives prim,
 258			       unsigned long long value);
 259static int rapl_read_pl_data(struct rapl_domain *rd, int pl,
 260			      enum pl_prims pl_prim,
 261			      bool xlate, u64 *data);
 262static int rapl_write_pl_data(struct rapl_domain *rd, int pl,
 263			       enum pl_prims pl_prim,
 264			       unsigned long long value);
 265static u64 rapl_unit_xlate(struct rapl_domain *rd,
 266			   enum unit_type type, u64 value, int to_raw);
 267static void package_power_limit_irq_save(struct rapl_package *rp);
 268
 269static LIST_HEAD(rapl_packages);	/* guarded by CPU hotplug lock */
 270
 271static const char *const rapl_domain_names[] = {
 272	"package",
 273	"core",
 274	"uncore",
 275	"dram",
 276	"psys",
 277};
 278
 279static int get_energy_counter(struct powercap_zone *power_zone,
 280			      u64 *energy_raw)
 281{
 282	struct rapl_domain *rd;
 283	u64 energy_now;
 284
 285	/* prevent CPU hotplug, make sure the RAPL domain does not go
 286	 * away while reading the counter.
 287	 */
 288	cpus_read_lock();
 289	rd = power_zone_to_rapl_domain(power_zone);
 290
 291	if (!rapl_read_data_raw(rd, ENERGY_COUNTER, true, &energy_now)) {
 292		*energy_raw = energy_now;
 293		cpus_read_unlock();
 294
 295		return 0;
 296	}
 297	cpus_read_unlock();
 298
 299	return -EIO;
 300}
 301
 302static int get_max_energy_counter(struct powercap_zone *pcd_dev, u64 *energy)
 303{
 304	struct rapl_domain *rd = power_zone_to_rapl_domain(pcd_dev);
 305
 306	*energy = rapl_unit_xlate(rd, ENERGY_UNIT, ENERGY_STATUS_MASK, 0);
 307	return 0;
 308}
 309
 310static int release_zone(struct powercap_zone *power_zone)
 311{
 312	struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
 313	struct rapl_package *rp = rd->rp;
 314
 315	/* package zone is the last zone of a package, we can free
 316	 * memory here since all children has been unregistered.
 317	 */
 318	if (rd->id == RAPL_DOMAIN_PACKAGE) {
 319		kfree(rd);
 320		rp->domains = NULL;
 321	}
 322
 323	return 0;
 324
 325}
 326
 327static int find_nr_power_limit(struct rapl_domain *rd)
 328{
 329	int i, nr_pl = 0;
 330
 331	for (i = 0; i < NR_POWER_LIMITS; i++) {
 332		if (is_pl_valid(rd, i))
 333			nr_pl++;
 334	}
 335
 336	return nr_pl;
 337}
 338
 339static int set_domain_enable(struct powercap_zone *power_zone, bool mode)
 340{
 341	struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
 342	struct rapl_defaults *defaults = get_defaults(rd->rp);
 343	int ret;
 344
 345	cpus_read_lock();
 346	ret = rapl_write_pl_data(rd, POWER_LIMIT1, PL_ENABLE, mode);
 347	if (!ret && defaults->set_floor_freq)
 348		defaults->set_floor_freq(rd, mode);
 349	cpus_read_unlock();
 350
 351	return ret;
 
 
 
 
 
 
 352}
 353
 354static int get_domain_enable(struct powercap_zone *power_zone, bool *mode)
 355{
 356	struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
 357	u64 val;
 358	int ret;
 359
 360	if (rd->rpl[POWER_LIMIT1].locked) {
 361		*mode = false;
 362		return 0;
 363	}
 364	cpus_read_lock();
 365	ret = rapl_read_pl_data(rd, POWER_LIMIT1, PL_ENABLE, true, &val);
 366	if (!ret)
 367		*mode = val;
 368	cpus_read_unlock();
 
 
 369
 370	return ret;
 371}
 372
 373/* per RAPL domain ops, in the order of rapl_domain_type */
 374static const struct powercap_zone_ops zone_ops[] = {
 375	/* RAPL_DOMAIN_PACKAGE */
 376	{
 377	 .get_energy_uj = get_energy_counter,
 378	 .get_max_energy_range_uj = get_max_energy_counter,
 379	 .release = release_zone,
 380	 .set_enable = set_domain_enable,
 381	 .get_enable = get_domain_enable,
 382	 },
 383	/* RAPL_DOMAIN_PP0 */
 384	{
 385	 .get_energy_uj = get_energy_counter,
 386	 .get_max_energy_range_uj = get_max_energy_counter,
 387	 .release = release_zone,
 388	 .set_enable = set_domain_enable,
 389	 .get_enable = get_domain_enable,
 390	 },
 391	/* RAPL_DOMAIN_PP1 */
 392	{
 393	 .get_energy_uj = get_energy_counter,
 394	 .get_max_energy_range_uj = get_max_energy_counter,
 395	 .release = release_zone,
 396	 .set_enable = set_domain_enable,
 397	 .get_enable = get_domain_enable,
 398	 },
 399	/* RAPL_DOMAIN_DRAM */
 400	{
 401	 .get_energy_uj = get_energy_counter,
 402	 .get_max_energy_range_uj = get_max_energy_counter,
 403	 .release = release_zone,
 404	 .set_enable = set_domain_enable,
 405	 .get_enable = get_domain_enable,
 406	 },
 407	/* RAPL_DOMAIN_PLATFORM */
 408	{
 409	 .get_energy_uj = get_energy_counter,
 410	 .get_max_energy_range_uj = get_max_energy_counter,
 411	 .release = release_zone,
 412	 .set_enable = set_domain_enable,
 413	 .get_enable = get_domain_enable,
 414	 },
 415};
 416
 417/*
 418 * Constraint index used by powercap can be different than power limit (PL)
 419 * index in that some  PLs maybe missing due to non-existent MSRs. So we
 420 * need to convert here by finding the valid PLs only (name populated).
 421 */
 422static int contraint_to_pl(struct rapl_domain *rd, int cid)
 423{
 424	int i, j;
 425
 426	for (i = POWER_LIMIT1, j = 0; i < NR_POWER_LIMITS; i++) {
 427		if (is_pl_valid(rd, i) && j++ == cid) {
 428			pr_debug("%s: index %d\n", __func__, i);
 429			return i;
 430		}
 431	}
 432	pr_err("Cannot find matching power limit for constraint %d\n", cid);
 433
 434	return -EINVAL;
 435}
 436
 437static int set_power_limit(struct powercap_zone *power_zone, int cid,
 438			   u64 power_limit)
 439{
 440	struct rapl_domain *rd;
 441	struct rapl_package *rp;
 442	int ret = 0;
 443	int id;
 444
 445	cpus_read_lock();
 446	rd = power_zone_to_rapl_domain(power_zone);
 447	id = contraint_to_pl(rd, cid);
 
 
 
 
 
 448	rp = rd->rp;
 449
 450	ret = rapl_write_pl_data(rd, id, PL_LIMIT, power_limit);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 451	if (!ret)
 452		package_power_limit_irq_save(rp);
 453	cpus_read_unlock();
 
 454	return ret;
 455}
 456
 457static int get_current_power_limit(struct powercap_zone *power_zone, int cid,
 458				   u64 *data)
 459{
 460	struct rapl_domain *rd;
 461	u64 val;
 
 462	int ret = 0;
 463	int id;
 464
 465	cpus_read_lock();
 466	rd = power_zone_to_rapl_domain(power_zone);
 467	id = contraint_to_pl(rd, cid);
 
 
 
 
 468
 469	ret = rapl_read_pl_data(rd, id, PL_LIMIT, true, &val);
 470	if (!ret)
 
 
 
 
 
 
 
 
 
 
 
 
 471		*data = val;
 472
 473	cpus_read_unlock();
 
 474
 475	return ret;
 476}
 477
 478static int set_time_window(struct powercap_zone *power_zone, int cid,
 479			   u64 window)
 480{
 481	struct rapl_domain *rd;
 482	int ret = 0;
 483	int id;
 484
 485	cpus_read_lock();
 486	rd = power_zone_to_rapl_domain(power_zone);
 487	id = contraint_to_pl(rd, cid);
 
 
 
 
 488
 489	ret = rapl_write_pl_data(rd, id, PL_TIME_WINDOW, window);
 
 
 
 
 
 
 
 
 
 490
 491	cpus_read_unlock();
 
 492	return ret;
 493}
 494
 495static int get_time_window(struct powercap_zone *power_zone, int cid,
 496			   u64 *data)
 497{
 498	struct rapl_domain *rd;
 499	u64 val;
 500	int ret = 0;
 501	int id;
 502
 503	cpus_read_lock();
 504	rd = power_zone_to_rapl_domain(power_zone);
 505	id = contraint_to_pl(rd, cid);
 
 
 
 
 506
 507	ret = rapl_read_pl_data(rd, id, PL_TIME_WINDOW, true, &val);
 
 
 
 
 
 
 
 
 
 
 508	if (!ret)
 509		*data = val;
 510
 511	cpus_read_unlock();
 
 512
 513	return ret;
 514}
 515
 516static const char *get_constraint_name(struct powercap_zone *power_zone,
 517				       int cid)
 518{
 519	struct rapl_domain *rd;
 520	int id;
 521
 522	rd = power_zone_to_rapl_domain(power_zone);
 523	id = contraint_to_pl(rd, cid);
 524	if (id >= 0)
 525		return rd->rpl[id].name;
 526
 527	return NULL;
 528}
 529
 530static int get_max_power(struct powercap_zone *power_zone, int cid, u64 *data)
 531{
 532	struct rapl_domain *rd;
 533	u64 val;
 
 534	int ret = 0;
 535	int id;
 536
 537	cpus_read_lock();
 538	rd = power_zone_to_rapl_domain(power_zone);
 539	id = contraint_to_pl(rd, cid);
 540
 541	ret = rapl_read_pl_data(rd, id, PL_MAX_POWER, true, &val);
 542	if (!ret)
 
 
 
 
 
 
 
 
 
 
 543		*data = val;
 544
 545	/* As a generalization rule, PL4 would be around two times PL2. */
 546	if (id == POWER_LIMIT4)
 547		*data = *data * 2;
 548
 549	cpus_read_unlock();
 550
 551	return ret;
 552}
 553
 554static const struct powercap_zone_constraint_ops constraint_ops = {
 555	.set_power_limit_uw = set_power_limit,
 556	.get_power_limit_uw = get_current_power_limit,
 557	.set_time_window_us = set_time_window,
 558	.get_time_window_us = get_time_window,
 559	.get_max_power_uw = get_max_power,
 560	.get_name = get_constraint_name,
 561};
 562
 563/* Return the id used for read_raw/write_raw callback */
 564static int get_rid(struct rapl_package *rp)
 565{
 566	return rp->lead_cpu >= 0 ? rp->lead_cpu : rp->id;
 567}
 568
 569/* called after domain detection and package level data are set */
 570static void rapl_init_domains(struct rapl_package *rp)
 571{
 572	enum rapl_domain_type i;
 573	enum rapl_domain_reg_id j;
 574	struct rapl_domain *rd = rp->domains;
 575
 576	for (i = 0; i < RAPL_DOMAIN_MAX; i++) {
 577		unsigned int mask = rp->domain_map & (1 << i);
 578		int t;
 579
 580		if (!mask)
 581			continue;
 582
 583		rd->rp = rp;
 584
 585		if (i == RAPL_DOMAIN_PLATFORM && rp->id > 0) {
 586			snprintf(rd->name, RAPL_DOMAIN_NAME_LENGTH, "psys-%d",
 587				rp->lead_cpu >= 0 ? topology_physical_package_id(rp->lead_cpu) :
 588				rp->id);
 589		} else {
 590			snprintf(rd->name, RAPL_DOMAIN_NAME_LENGTH, "%s",
 591				rapl_domain_names[i]);
 592		}
 593
 594		rd->id = i;
 595
 596		/* PL1 is supported by default */
 597		rp->priv->limits[i] |= BIT(POWER_LIMIT1);
 598
 599		for (t = POWER_LIMIT1; t < NR_POWER_LIMITS; t++) {
 600			if (rp->priv->limits[i] & BIT(t))
 601				rd->rpl[t].name = pl_names[t];
 602		}
 603
 604		for (j = 0; j < RAPL_DOMAIN_REG_MAX; j++)
 605			rd->regs[j] = rp->priv->regs[i][j];
 606
 
 
 
 
 
 
 
 607		rd++;
 608	}
 609}
 610
 611static u64 rapl_unit_xlate(struct rapl_domain *rd, enum unit_type type,
 612			   u64 value, int to_raw)
 613{
 614	u64 units = 1;
 615	struct rapl_defaults *defaults = get_defaults(rd->rp);
 616	u64 scale = 1;
 617
 618	switch (type) {
 619	case POWER_UNIT:
 620		units = rd->power_unit;
 621		break;
 622	case ENERGY_UNIT:
 623		scale = ENERGY_UNIT_SCALE;
 624		units = rd->energy_unit;
 
 
 
 
 625		break;
 626	case TIME_UNIT:
 627		return defaults->compute_time_window(rd, value, to_raw);
 628	case ARBITRARY_UNIT:
 629	default:
 630		return value;
 631	}
 632
 633	if (to_raw)
 634		return div64_u64(value, units) * scale;
 635
 636	value *= units;
 637
 638	return div64_u64(value, scale);
 639}
 640
 641/* RAPL primitives for MSR and MMIO I/F */
 642static struct rapl_primitive_info rpi_msr[NR_RAPL_PRIMITIVES] = {
 643	/* name, mask, shift, msr index, unit divisor */
 644	[POWER_LIMIT1] = PRIMITIVE_INFO_INIT(POWER_LIMIT1, POWER_LIMIT1_MASK, 0,
 
 
 645			    RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
 646	[POWER_LIMIT2] = PRIMITIVE_INFO_INIT(POWER_LIMIT2, POWER_LIMIT2_MASK, 32,
 647			    RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
 648	[POWER_LIMIT4] = PRIMITIVE_INFO_INIT(POWER_LIMIT4, POWER_LIMIT4_MASK, 0,
 649				RAPL_DOMAIN_REG_PL4, POWER_UNIT, 0),
 650	[ENERGY_COUNTER] = PRIMITIVE_INFO_INIT(ENERGY_COUNTER, ENERGY_STATUS_MASK, 0,
 651			    RAPL_DOMAIN_REG_STATUS, ENERGY_UNIT, 0),
 652	[FW_LOCK] = PRIMITIVE_INFO_INIT(FW_LOCK, POWER_LOW_LOCK, 31,
 653			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
 654	[FW_HIGH_LOCK] = PRIMITIVE_INFO_INIT(FW_LOCK, POWER_HIGH_LOCK, 63,
 655			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
 656	[PL1_ENABLE] = PRIMITIVE_INFO_INIT(PL1_ENABLE, POWER_LIMIT1_ENABLE, 15,
 657			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
 658	[PL1_CLAMP] = PRIMITIVE_INFO_INIT(PL1_CLAMP, POWER_LIMIT1_CLAMP, 16,
 659			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
 660	[PL2_ENABLE] = PRIMITIVE_INFO_INIT(PL2_ENABLE, POWER_LIMIT2_ENABLE, 47,
 661			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
 662	[PL2_CLAMP] = PRIMITIVE_INFO_INIT(PL2_CLAMP, POWER_LIMIT2_CLAMP, 48,
 663			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
 664	[TIME_WINDOW1] = PRIMITIVE_INFO_INIT(TIME_WINDOW1, TIME_WINDOW1_MASK, 17,
 665			    RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
 666	[TIME_WINDOW2] = PRIMITIVE_INFO_INIT(TIME_WINDOW2, TIME_WINDOW2_MASK, 49,
 667			    RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
 668	[THERMAL_SPEC_POWER] = PRIMITIVE_INFO_INIT(THERMAL_SPEC_POWER, POWER_INFO_THERMAL_SPEC_MASK,
 669			    0, RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
 670	[MAX_POWER] = PRIMITIVE_INFO_INIT(MAX_POWER, POWER_INFO_MAX_MASK, 32,
 671			    RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
 672	[MIN_POWER] = PRIMITIVE_INFO_INIT(MIN_POWER, POWER_INFO_MIN_MASK, 16,
 673			    RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
 674	[MAX_TIME_WINDOW] = PRIMITIVE_INFO_INIT(MAX_TIME_WINDOW, POWER_INFO_MAX_TIME_WIN_MASK, 48,
 675			    RAPL_DOMAIN_REG_INFO, TIME_UNIT, 0),
 676	[THROTTLED_TIME] = PRIMITIVE_INFO_INIT(THROTTLED_TIME, PERF_STATUS_THROTTLE_TIME_MASK, 0,
 677			    RAPL_DOMAIN_REG_PERF, TIME_UNIT, 0),
 678	[PRIORITY_LEVEL] = PRIMITIVE_INFO_INIT(PRIORITY_LEVEL, PP_POLICY_MASK, 0,
 679			    RAPL_DOMAIN_REG_POLICY, ARBITRARY_UNIT, 0),
 680	[PSYS_POWER_LIMIT1] = PRIMITIVE_INFO_INIT(PSYS_POWER_LIMIT1, PSYS_POWER_LIMIT1_MASK, 0,
 681			    RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
 682	[PSYS_POWER_LIMIT2] = PRIMITIVE_INFO_INIT(PSYS_POWER_LIMIT2, PSYS_POWER_LIMIT2_MASK, 32,
 683			    RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
 684	[PSYS_PL1_ENABLE] = PRIMITIVE_INFO_INIT(PSYS_PL1_ENABLE, PSYS_POWER_LIMIT1_ENABLE, 17,
 685			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
 686	[PSYS_PL2_ENABLE] = PRIMITIVE_INFO_INIT(PSYS_PL2_ENABLE, PSYS_POWER_LIMIT2_ENABLE, 49,
 687			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
 688	[PSYS_TIME_WINDOW1] = PRIMITIVE_INFO_INIT(PSYS_TIME_WINDOW1, PSYS_TIME_WINDOW1_MASK, 19,
 689			    RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
 690	[PSYS_TIME_WINDOW2] = PRIMITIVE_INFO_INIT(PSYS_TIME_WINDOW2, PSYS_TIME_WINDOW2_MASK, 51,
 691			    RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
 692	/* non-hardware */
 693	[AVERAGE_POWER] = PRIMITIVE_INFO_INIT(AVERAGE_POWER, 0, 0, 0, POWER_UNIT,
 694			    RAPL_PRIMITIVE_DERIVED),
 
 695};
 696
 697/* RAPL primitives for TPMI I/F */
 698static struct rapl_primitive_info rpi_tpmi[NR_RAPL_PRIMITIVES] = {
 699	/* name, mask, shift, msr index, unit divisor */
 700	[POWER_LIMIT1] = PRIMITIVE_INFO_INIT(POWER_LIMIT1, TPMI_POWER_LIMIT_MASK, 0,
 701		RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
 702	[POWER_LIMIT2] = PRIMITIVE_INFO_INIT(POWER_LIMIT2, TPMI_POWER_LIMIT_MASK, 0,
 703		RAPL_DOMAIN_REG_PL2, POWER_UNIT, 0),
 704	[POWER_LIMIT4] = PRIMITIVE_INFO_INIT(POWER_LIMIT4, TPMI_POWER_LIMIT_MASK, 0,
 705		RAPL_DOMAIN_REG_PL4, POWER_UNIT, 0),
 706	[ENERGY_COUNTER] = PRIMITIVE_INFO_INIT(ENERGY_COUNTER, ENERGY_STATUS_MASK, 0,
 707		RAPL_DOMAIN_REG_STATUS, ENERGY_UNIT, 0),
 708	[PL1_LOCK] = PRIMITIVE_INFO_INIT(PL1_LOCK, POWER_HIGH_LOCK, 63,
 709		RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
 710	[PL2_LOCK] = PRIMITIVE_INFO_INIT(PL2_LOCK, POWER_HIGH_LOCK, 63,
 711		RAPL_DOMAIN_REG_PL2, ARBITRARY_UNIT, 0),
 712	[PL4_LOCK] = PRIMITIVE_INFO_INIT(PL4_LOCK, POWER_HIGH_LOCK, 63,
 713		RAPL_DOMAIN_REG_PL4, ARBITRARY_UNIT, 0),
 714	[PL1_ENABLE] = PRIMITIVE_INFO_INIT(PL1_ENABLE, TPMI_POWER_LIMIT_ENABLE, 62,
 715		RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
 716	[PL2_ENABLE] = PRIMITIVE_INFO_INIT(PL2_ENABLE, TPMI_POWER_LIMIT_ENABLE, 62,
 717		RAPL_DOMAIN_REG_PL2, ARBITRARY_UNIT, 0),
 718	[PL4_ENABLE] = PRIMITIVE_INFO_INIT(PL4_ENABLE, TPMI_POWER_LIMIT_ENABLE, 62,
 719		RAPL_DOMAIN_REG_PL4, ARBITRARY_UNIT, 0),
 720	[TIME_WINDOW1] = PRIMITIVE_INFO_INIT(TIME_WINDOW1, TPMI_TIME_WINDOW_MASK, 18,
 721		RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
 722	[TIME_WINDOW2] = PRIMITIVE_INFO_INIT(TIME_WINDOW2, TPMI_TIME_WINDOW_MASK, 18,
 723		RAPL_DOMAIN_REG_PL2, TIME_UNIT, 0),
 724	[THERMAL_SPEC_POWER] = PRIMITIVE_INFO_INIT(THERMAL_SPEC_POWER, TPMI_INFO_SPEC_MASK, 0,
 725		RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
 726	[MAX_POWER] = PRIMITIVE_INFO_INIT(MAX_POWER, TPMI_INFO_MAX_MASK, 36,
 727		RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
 728	[MIN_POWER] = PRIMITIVE_INFO_INIT(MIN_POWER, TPMI_INFO_MIN_MASK, 18,
 729		RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
 730	[MAX_TIME_WINDOW] = PRIMITIVE_INFO_INIT(MAX_TIME_WINDOW, TPMI_INFO_MAX_TIME_WIN_MASK, 54,
 731		RAPL_DOMAIN_REG_INFO, TIME_UNIT, 0),
 732	[THROTTLED_TIME] = PRIMITIVE_INFO_INIT(THROTTLED_TIME, PERF_STATUS_THROTTLE_TIME_MASK, 0,
 733		RAPL_DOMAIN_REG_PERF, TIME_UNIT, 0),
 734	/* non-hardware */
 735	[AVERAGE_POWER] = PRIMITIVE_INFO_INIT(AVERAGE_POWER, 0, 0, 0,
 736		POWER_UNIT, RAPL_PRIMITIVE_DERIVED),
 737};
 738
 739static struct rapl_primitive_info *get_rpi(struct rapl_package *rp, int prim)
 740{
 741	struct rapl_primitive_info *rpi = rp->priv->rpi;
 742
 743	if (prim < 0 || prim >= NR_RAPL_PRIMITIVES || !rpi)
 744		return NULL;
 745
 746	return &rpi[prim];
 747}
 748
 749static int rapl_config(struct rapl_package *rp)
 750{
 751	switch (rp->priv->type) {
 752	/* MMIO I/F shares the same register layout as MSR registers */
 753	case RAPL_IF_MMIO:
 754	case RAPL_IF_MSR:
 755		rp->priv->defaults = (void *)defaults_msr;
 756		rp->priv->rpi = (void *)rpi_msr;
 757		break;
 758	case RAPL_IF_TPMI:
 759		rp->priv->defaults = (void *)&defaults_tpmi;
 760		rp->priv->rpi = (void *)rpi_tpmi;
 761		break;
 762	default:
 763		return -EINVAL;
 764	}
 765
 766	/* defaults_msr can be NULL on unsupported platforms */
 767	if (!rp->priv->defaults || !rp->priv->rpi)
 768		return -ENODEV;
 769
 770	return 0;
 771}
 772
 773static enum rapl_primitives
 774prim_fixups(struct rapl_domain *rd, enum rapl_primitives prim)
 775{
 776	struct rapl_defaults *defaults = get_defaults(rd->rp);
 777
 778	if (!defaults->spr_psys_bits)
 779		return prim;
 780
 781	if (rd->id != RAPL_DOMAIN_PLATFORM)
 782		return prim;
 783
 784	switch (prim) {
 785	case POWER_LIMIT1:
 786		return PSYS_POWER_LIMIT1;
 787	case POWER_LIMIT2:
 788		return PSYS_POWER_LIMIT2;
 789	case PL1_ENABLE:
 790		return PSYS_PL1_ENABLE;
 791	case PL2_ENABLE:
 792		return PSYS_PL2_ENABLE;
 793	case TIME_WINDOW1:
 794		return PSYS_TIME_WINDOW1;
 795	case TIME_WINDOW2:
 796		return PSYS_TIME_WINDOW2;
 797	default:
 798		return prim;
 799	}
 800}
 801
 802/* Read primitive data based on its related struct rapl_primitive_info.
 803 * if xlate flag is set, return translated data based on data units, i.e.
 804 * time, energy, and power.
 805 * RAPL MSRs are non-architectual and are laid out not consistently across
 806 * domains. Here we use primitive info to allow writing consolidated access
 807 * functions.
 808 * For a given primitive, it is processed by MSR mask and shift. Unit conversion
 809 * is pre-assigned based on RAPL unit MSRs read at init time.
 810 * 63-------------------------- 31--------------------------- 0
 811 * |                           xxxxx (mask)                   |
 812 * |                                |<- shift ----------------|
 813 * 63-------------------------- 31--------------------------- 0
 814 */
 815static int rapl_read_data_raw(struct rapl_domain *rd,
 816			      enum rapl_primitives prim, bool xlate, u64 *data)
 817{
 818	u64 value;
 819	enum rapl_primitives prim_fixed = prim_fixups(rd, prim);
 820	struct rapl_primitive_info *rpi = get_rpi(rd->rp, prim_fixed);
 821	struct reg_action ra;
 
 822
 823	if (!rpi || !rpi->name || rpi->flag & RAPL_PRIMITIVE_DUMMY)
 824		return -EINVAL;
 825
 826	ra.reg = rd->regs[rpi->id];
 827	if (!ra.reg.val)
 828		return -EINVAL;
 829
 
 
 
 
 
 
 
 830	/* non-hardware data are collected by the polling thread */
 831	if (rpi->flag & RAPL_PRIMITIVE_DERIVED) {
 832		*data = rd->rdd.primitives[prim];
 833		return 0;
 834	}
 835
 836	ra.mask = rpi->mask;
 837
 838	if (rd->rp->priv->read_raw(get_rid(rd->rp), &ra)) {
 839		pr_debug("failed to read reg 0x%llx for %s:%s\n", ra.reg.val, rd->rp->name, rd->name);
 840		return -EIO;
 841	}
 842
 843	value = ra.value >> rpi->shift;
 844
 845	if (xlate)
 846		*data = rapl_unit_xlate(rd, rpi->unit, value, 0);
 847	else
 848		*data = value;
 849
 850	return 0;
 851}
 852
 853/* Similar use of primitive info in the read counterpart */
 854static int rapl_write_data_raw(struct rapl_domain *rd,
 855			       enum rapl_primitives prim,
 856			       unsigned long long value)
 857{
 858	enum rapl_primitives prim_fixed = prim_fixups(rd, prim);
 859	struct rapl_primitive_info *rpi = get_rpi(rd->rp, prim_fixed);
 860	u64 bits;
 861	struct reg_action ra;
 862	int ret;
 863
 864	if (!rpi || !rpi->name || rpi->flag & RAPL_PRIMITIVE_DUMMY)
 865		return -EINVAL;
 866
 867	bits = rapl_unit_xlate(rd, rpi->unit, value, 1);
 868	bits <<= rpi->shift;
 869	bits &= rpi->mask;
 870
 871	memset(&ra, 0, sizeof(ra));
 872
 873	ra.reg = rd->regs[rpi->id];
 874	ra.mask = rpi->mask;
 875	ra.value = bits;
 876
 877	ret = rd->rp->priv->write_raw(get_rid(rd->rp), &ra);
 878
 879	return ret;
 880}
 881
 882static int rapl_read_pl_data(struct rapl_domain *rd, int pl,
 883			      enum pl_prims pl_prim, bool xlate, u64 *data)
 884{
 885	enum rapl_primitives prim = get_pl_prim(rd, pl, pl_prim);
 886
 887	if (!is_pl_valid(rd, pl))
 888		return -EINVAL;
 889
 890	return rapl_read_data_raw(rd, prim, xlate, data);
 891}
 892
 893static int rapl_write_pl_data(struct rapl_domain *rd, int pl,
 894			       enum pl_prims pl_prim,
 895			       unsigned long long value)
 896{
 897	enum rapl_primitives prim = get_pl_prim(rd, pl, pl_prim);
 898
 899	if (!is_pl_valid(rd, pl))
 900		return -EINVAL;
 901
 902	if (rd->rpl[pl].locked) {
 903		pr_debug("%s:%s:%s locked by BIOS\n", rd->rp->name, rd->name, pl_names[pl]);
 904		return -EACCES;
 905	}
 906
 907	return rapl_write_data_raw(rd, prim, value);
 908}
 909/*
 910 * Raw RAPL data stored in MSRs are in certain scales. We need to
 911 * convert them into standard units based on the units reported in
 912 * the RAPL unit MSRs. This is specific to CPUs as the method to
 913 * calculate units differ on different CPUs.
 914 * We convert the units to below format based on CPUs.
 915 * i.e.
 916 * energy unit: picoJoules  : Represented in picoJoules by default
 917 * power unit : microWatts  : Represented in milliWatts by default
 918 * time unit  : microseconds: Represented in seconds by default
 919 */
 920static int rapl_check_unit_core(struct rapl_domain *rd)
 921{
 922	struct reg_action ra;
 923	u32 value;
 924
 925	ra.reg = rd->regs[RAPL_DOMAIN_REG_UNIT];
 926	ra.mask = ~0;
 927	if (rd->rp->priv->read_raw(get_rid(rd->rp), &ra)) {
 928		pr_err("Failed to read power unit REG 0x%llx on %s:%s, exit.\n",
 929			ra.reg.val, rd->rp->name, rd->name);
 930		return -ENODEV;
 931	}
 932
 933	value = (ra.value & ENERGY_UNIT_MASK) >> ENERGY_UNIT_OFFSET;
 934	rd->energy_unit = ENERGY_UNIT_SCALE * 1000000 / (1 << value);
 935
 936	value = (ra.value & POWER_UNIT_MASK) >> POWER_UNIT_OFFSET;
 937	rd->power_unit = 1000000 / (1 << value);
 938
 939	value = (ra.value & TIME_UNIT_MASK) >> TIME_UNIT_OFFSET;
 940	rd->time_unit = 1000000 / (1 << value);
 941
 942	pr_debug("Core CPU %s:%s energy=%dpJ, time=%dus, power=%duW\n",
 943		 rd->rp->name, rd->name, rd->energy_unit, rd->time_unit, rd->power_unit);
 944
 945	return 0;
 946}
 947
 948static int rapl_check_unit_atom(struct rapl_domain *rd)
 949{
 950	struct reg_action ra;
 951	u32 value;
 952
 953	ra.reg = rd->regs[RAPL_DOMAIN_REG_UNIT];
 954	ra.mask = ~0;
 955	if (rd->rp->priv->read_raw(get_rid(rd->rp), &ra)) {
 956		pr_err("Failed to read power unit REG 0x%llx on %s:%s, exit.\n",
 957			ra.reg.val, rd->rp->name, rd->name);
 958		return -ENODEV;
 959	}
 960
 961	value = (ra.value & ENERGY_UNIT_MASK) >> ENERGY_UNIT_OFFSET;
 962	rd->energy_unit = ENERGY_UNIT_SCALE * 1 << value;
 963
 964	value = (ra.value & POWER_UNIT_MASK) >> POWER_UNIT_OFFSET;
 965	rd->power_unit = (1 << value) * 1000;
 966
 967	value = (ra.value & TIME_UNIT_MASK) >> TIME_UNIT_OFFSET;
 968	rd->time_unit = 1000000 / (1 << value);
 969
 970	pr_debug("Atom %s:%s energy=%dpJ, time=%dus, power=%duW\n",
 971		 rd->rp->name, rd->name, rd->energy_unit, rd->time_unit, rd->power_unit);
 972
 973	return 0;
 974}
 975
 976static void power_limit_irq_save_cpu(void *info)
 977{
 978	u32 l, h = 0;
 979	struct rapl_package *rp = (struct rapl_package *)info;
 980
 981	/* save the state of PLN irq mask bit before disabling it */
 982	rdmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, &l, &h);
 983	if (!(rp->power_limit_irq & PACKAGE_PLN_INT_SAVED)) {
 984		rp->power_limit_irq = l & PACKAGE_THERM_INT_PLN_ENABLE;
 985		rp->power_limit_irq |= PACKAGE_PLN_INT_SAVED;
 986	}
 987	l &= ~PACKAGE_THERM_INT_PLN_ENABLE;
 988	wrmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, l, h);
 989}
 990
 991/* REVISIT:
 992 * When package power limit is set artificially low by RAPL, LVT
 993 * thermal interrupt for package power limit should be ignored
 994 * since we are not really exceeding the real limit. The intention
 995 * is to avoid excessive interrupts while we are trying to save power.
 996 * A useful feature might be routing the package_power_limit interrupt
 997 * to userspace via eventfd. once we have a usecase, this is simple
 998 * to do by adding an atomic notifier.
 999 */
1000
1001static void package_power_limit_irq_save(struct rapl_package *rp)
1002{
1003	if (rp->lead_cpu < 0)
1004		return;
1005
1006	if (!boot_cpu_has(X86_FEATURE_PTS) || !boot_cpu_has(X86_FEATURE_PLN))
1007		return;
1008
1009	smp_call_function_single(rp->lead_cpu, power_limit_irq_save_cpu, rp, 1);
1010}
1011
1012/*
1013 * Restore per package power limit interrupt enable state. Called from cpu
1014 * hotplug code on package removal.
1015 */
1016static void package_power_limit_irq_restore(struct rapl_package *rp)
1017{
1018	u32 l, h;
1019
1020	if (rp->lead_cpu < 0)
1021		return;
1022
1023	if (!boot_cpu_has(X86_FEATURE_PTS) || !boot_cpu_has(X86_FEATURE_PLN))
1024		return;
1025
1026	/* irq enable state not saved, nothing to restore */
1027	if (!(rp->power_limit_irq & PACKAGE_PLN_INT_SAVED))
1028		return;
1029
1030	rdmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, &l, &h);
1031
1032	if (rp->power_limit_irq & PACKAGE_THERM_INT_PLN_ENABLE)
1033		l |= PACKAGE_THERM_INT_PLN_ENABLE;
1034	else
1035		l &= ~PACKAGE_THERM_INT_PLN_ENABLE;
1036
1037	wrmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, l, h);
1038}
1039
1040static void set_floor_freq_default(struct rapl_domain *rd, bool mode)
1041{
1042	int i;
1043
1044	/* always enable clamp such that p-state can go below OS requested
1045	 * range. power capping priority over guranteed frequency.
1046	 */
1047	rapl_write_pl_data(rd, POWER_LIMIT1, PL_CLAMP, mode);
1048
1049	for (i = POWER_LIMIT2; i < NR_POWER_LIMITS; i++) {
1050		rapl_write_pl_data(rd, i, PL_ENABLE, mode);
1051		rapl_write_pl_data(rd, i, PL_CLAMP, mode);
 
1052	}
1053}
1054
1055static void set_floor_freq_atom(struct rapl_domain *rd, bool enable)
1056{
1057	static u32 power_ctrl_orig_val;
1058	struct rapl_defaults *defaults = get_defaults(rd->rp);
1059	u32 mdata;
1060
1061	if (!defaults->floor_freq_reg_addr) {
1062		pr_err("Invalid floor frequency config register\n");
1063		return;
1064	}
1065
1066	if (!power_ctrl_orig_val)
1067		iosf_mbi_read(BT_MBI_UNIT_PMC, MBI_CR_READ,
1068			      defaults->floor_freq_reg_addr,
1069			      &power_ctrl_orig_val);
1070	mdata = power_ctrl_orig_val;
1071	if (enable) {
1072		mdata &= ~(0x7f << 8);
1073		mdata |= 1 << 8;
1074	}
1075	iosf_mbi_write(BT_MBI_UNIT_PMC, MBI_CR_WRITE,
1076		       defaults->floor_freq_reg_addr, mdata);
1077}
1078
1079static u64 rapl_compute_time_window_core(struct rapl_domain *rd, u64 value,
1080					 bool to_raw)
1081{
1082	u64 f, y;		/* fraction and exp. used for time unit */
1083
1084	/*
1085	 * Special processing based on 2^Y*(1+F/4), refer
1086	 * to Intel Software Developer's manual Vol.3B: CH 14.9.3.
1087	 */
1088	if (!to_raw) {
1089		f = (value & 0x60) >> 5;
1090		y = value & 0x1f;
1091		value = (1 << y) * (4 + f) * rd->time_unit / 4;
1092	} else {
1093		if (value < rd->time_unit)
1094			return 0;
1095
1096		do_div(value, rd->time_unit);
1097		y = ilog2(value);
1098
1099		/*
1100		 * The target hardware field is 7 bits wide, so return all ones
1101		 * if the exponent is too large.
1102		 */
1103		if (y > 0x1f)
1104			return 0x7f;
1105
1106		f = div64_u64(4 * (value - (1ULL << y)), 1ULL << y);
1107		value = (y & 0x1f) | ((f & 0x3) << 5);
1108	}
1109	return value;
1110}
1111
1112static u64 rapl_compute_time_window_atom(struct rapl_domain *rd, u64 value,
1113					 bool to_raw)
1114{
1115	/*
1116	 * Atom time unit encoding is straight forward val * time_unit,
1117	 * where time_unit is default to 1 sec. Never 0.
1118	 */
1119	if (!to_raw)
1120		return (value) ? value * rd->time_unit : rd->time_unit;
1121
1122	value = div64_u64(value, rd->time_unit);
1123
1124	return value;
1125}
1126
1127/* TPMI Unit register has different layout */
1128#define TPMI_POWER_UNIT_OFFSET	POWER_UNIT_OFFSET
1129#define TPMI_POWER_UNIT_MASK	POWER_UNIT_MASK
1130#define TPMI_ENERGY_UNIT_OFFSET	0x06
1131#define TPMI_ENERGY_UNIT_MASK	0x7C0
1132#define TPMI_TIME_UNIT_OFFSET	0x0C
1133#define TPMI_TIME_UNIT_MASK	0xF000
1134
1135static int rapl_check_unit_tpmi(struct rapl_domain *rd)
1136{
1137	struct reg_action ra;
1138	u32 value;
1139
1140	ra.reg = rd->regs[RAPL_DOMAIN_REG_UNIT];
1141	ra.mask = ~0;
1142	if (rd->rp->priv->read_raw(get_rid(rd->rp), &ra)) {
1143		pr_err("Failed to read power unit REG 0x%llx on %s:%s, exit.\n",
1144			ra.reg.val, rd->rp->name, rd->name);
1145		return -ENODEV;
1146	}
1147
1148	value = (ra.value & TPMI_ENERGY_UNIT_MASK) >> TPMI_ENERGY_UNIT_OFFSET;
1149	rd->energy_unit = ENERGY_UNIT_SCALE * 1000000 / (1 << value);
1150
1151	value = (ra.value & TPMI_POWER_UNIT_MASK) >> TPMI_POWER_UNIT_OFFSET;
1152	rd->power_unit = 1000000 / (1 << value);
1153
1154	value = (ra.value & TPMI_TIME_UNIT_MASK) >> TPMI_TIME_UNIT_OFFSET;
1155	rd->time_unit = 1000000 / (1 << value);
1156
1157	pr_debug("Core CPU %s:%s energy=%dpJ, time=%dus, power=%duW\n",
1158		 rd->rp->name, rd->name, rd->energy_unit, rd->time_unit, rd->power_unit);
1159
1160	return 0;
1161}
1162
1163static const struct rapl_defaults defaults_tpmi = {
1164	.check_unit = rapl_check_unit_tpmi,
1165	/* Reuse existing logic, ignore the PL_CLAMP failures and enable all Power Limits */
1166	.set_floor_freq = set_floor_freq_default,
1167	.compute_time_window = rapl_compute_time_window_core,
1168};
1169
1170static const struct rapl_defaults rapl_defaults_core = {
1171	.floor_freq_reg_addr = 0,
1172	.check_unit = rapl_check_unit_core,
1173	.set_floor_freq = set_floor_freq_default,
1174	.compute_time_window = rapl_compute_time_window_core,
1175};
1176
1177static const struct rapl_defaults rapl_defaults_hsw_server = {
1178	.check_unit = rapl_check_unit_core,
1179	.set_floor_freq = set_floor_freq_default,
1180	.compute_time_window = rapl_compute_time_window_core,
1181	.dram_domain_energy_unit = 15300,
1182};
1183
1184static const struct rapl_defaults rapl_defaults_spr_server = {
1185	.check_unit = rapl_check_unit_core,
1186	.set_floor_freq = set_floor_freq_default,
1187	.compute_time_window = rapl_compute_time_window_core,
1188	.psys_domain_energy_unit = 1000000000,
1189	.spr_psys_bits = true,
1190};
1191
1192static const struct rapl_defaults rapl_defaults_byt = {
1193	.floor_freq_reg_addr = IOSF_CPU_POWER_BUDGET_CTL_BYT,
1194	.check_unit = rapl_check_unit_atom,
1195	.set_floor_freq = set_floor_freq_atom,
1196	.compute_time_window = rapl_compute_time_window_atom,
1197};
1198
1199static const struct rapl_defaults rapl_defaults_tng = {
1200	.floor_freq_reg_addr = IOSF_CPU_POWER_BUDGET_CTL_TNG,
1201	.check_unit = rapl_check_unit_atom,
1202	.set_floor_freq = set_floor_freq_atom,
1203	.compute_time_window = rapl_compute_time_window_atom,
1204};
1205
1206static const struct rapl_defaults rapl_defaults_ann = {
1207	.floor_freq_reg_addr = 0,
1208	.check_unit = rapl_check_unit_atom,
1209	.set_floor_freq = NULL,
1210	.compute_time_window = rapl_compute_time_window_atom,
1211};
1212
1213static const struct rapl_defaults rapl_defaults_cht = {
1214	.floor_freq_reg_addr = 0,
1215	.check_unit = rapl_check_unit_atom,
1216	.set_floor_freq = NULL,
1217	.compute_time_window = rapl_compute_time_window_atom,
1218};
1219
1220static const struct rapl_defaults rapl_defaults_amd = {
1221	.check_unit = rapl_check_unit_core,
1222};
1223
1224static const struct x86_cpu_id rapl_ids[] __initconst = {
1225	X86_MATCH_VFM(INTEL_SANDYBRIDGE,	&rapl_defaults_core),
1226	X86_MATCH_VFM(INTEL_SANDYBRIDGE_X,	&rapl_defaults_core),
 
 
 
1227
1228	X86_MATCH_VFM(INTEL_IVYBRIDGE,		&rapl_defaults_core),
1229	X86_MATCH_VFM(INTEL_IVYBRIDGE_X,	&rapl_defaults_core),
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1230
1231	X86_MATCH_VFM(INTEL_HASWELL,		&rapl_defaults_core),
1232	X86_MATCH_VFM(INTEL_HASWELL_L,		&rapl_defaults_core),
1233	X86_MATCH_VFM(INTEL_HASWELL_G,		&rapl_defaults_core),
1234	X86_MATCH_VFM(INTEL_HASWELL_X,		&rapl_defaults_hsw_server),
1235
1236	X86_MATCH_VFM(INTEL_BROADWELL,		&rapl_defaults_core),
1237	X86_MATCH_VFM(INTEL_BROADWELL_G,	&rapl_defaults_core),
1238	X86_MATCH_VFM(INTEL_BROADWELL_D,	&rapl_defaults_core),
1239	X86_MATCH_VFM(INTEL_BROADWELL_X,	&rapl_defaults_hsw_server),
1240
1241	X86_MATCH_VFM(INTEL_SKYLAKE,		&rapl_defaults_core),
1242	X86_MATCH_VFM(INTEL_SKYLAKE_L,		&rapl_defaults_core),
1243	X86_MATCH_VFM(INTEL_SKYLAKE_X,		&rapl_defaults_hsw_server),
1244	X86_MATCH_VFM(INTEL_KABYLAKE_L,		&rapl_defaults_core),
1245	X86_MATCH_VFM(INTEL_KABYLAKE,		&rapl_defaults_core),
1246	X86_MATCH_VFM(INTEL_CANNONLAKE_L,	&rapl_defaults_core),
1247	X86_MATCH_VFM(INTEL_ICELAKE_L,		&rapl_defaults_core),
1248	X86_MATCH_VFM(INTEL_ICELAKE,		&rapl_defaults_core),
1249	X86_MATCH_VFM(INTEL_ICELAKE_NNPI,	&rapl_defaults_core),
1250	X86_MATCH_VFM(INTEL_ICELAKE_X,		&rapl_defaults_hsw_server),
1251	X86_MATCH_VFM(INTEL_ICELAKE_D,		&rapl_defaults_hsw_server),
1252	X86_MATCH_VFM(INTEL_COMETLAKE_L,	&rapl_defaults_core),
1253	X86_MATCH_VFM(INTEL_COMETLAKE,		&rapl_defaults_core),
1254	X86_MATCH_VFM(INTEL_TIGERLAKE_L,	&rapl_defaults_core),
1255	X86_MATCH_VFM(INTEL_TIGERLAKE,		&rapl_defaults_core),
1256	X86_MATCH_VFM(INTEL_ROCKETLAKE,		&rapl_defaults_core),
1257	X86_MATCH_VFM(INTEL_ALDERLAKE,		&rapl_defaults_core),
1258	X86_MATCH_VFM(INTEL_ALDERLAKE_L,	&rapl_defaults_core),
1259	X86_MATCH_VFM(INTEL_ATOM_GRACEMONT,	&rapl_defaults_core),
1260	X86_MATCH_VFM(INTEL_RAPTORLAKE,		&rapl_defaults_core),
1261	X86_MATCH_VFM(INTEL_RAPTORLAKE_P,        &rapl_defaults_core),
1262	X86_MATCH_VFM(INTEL_RAPTORLAKE_S,	&rapl_defaults_core),
1263	X86_MATCH_VFM(INTEL_METEORLAKE,		&rapl_defaults_core),
1264	X86_MATCH_VFM(INTEL_METEORLAKE_L,	&rapl_defaults_core),
1265	X86_MATCH_VFM(INTEL_SAPPHIRERAPIDS_X,	&rapl_defaults_spr_server),
1266	X86_MATCH_VFM(INTEL_EMERALDRAPIDS_X,	&rapl_defaults_spr_server),
1267	X86_MATCH_VFM(INTEL_LUNARLAKE_M,	&rapl_defaults_core),
1268	X86_MATCH_VFM(INTEL_ARROWLAKE_H,	&rapl_defaults_core),
1269	X86_MATCH_VFM(INTEL_ARROWLAKE,		&rapl_defaults_core),
1270	X86_MATCH_VFM(INTEL_ARROWLAKE_U,	&rapl_defaults_core),
1271	X86_MATCH_VFM(INTEL_LAKEFIELD,		&rapl_defaults_core),
1272
1273	X86_MATCH_VFM(INTEL_ATOM_SILVERMONT,	&rapl_defaults_byt),
1274	X86_MATCH_VFM(INTEL_ATOM_AIRMONT,	&rapl_defaults_cht),
1275	X86_MATCH_VFM(INTEL_ATOM_SILVERMONT_MID, &rapl_defaults_tng),
1276	X86_MATCH_VFM(INTEL_ATOM_AIRMONT_MID,	&rapl_defaults_ann),
1277	X86_MATCH_VFM(INTEL_ATOM_GOLDMONT,	&rapl_defaults_core),
1278	X86_MATCH_VFM(INTEL_ATOM_GOLDMONT_PLUS,	&rapl_defaults_core),
1279	X86_MATCH_VFM(INTEL_ATOM_GOLDMONT_D,	&rapl_defaults_core),
1280	X86_MATCH_VFM(INTEL_ATOM_TREMONT,	&rapl_defaults_core),
1281	X86_MATCH_VFM(INTEL_ATOM_TREMONT_D,	&rapl_defaults_core),
1282	X86_MATCH_VFM(INTEL_ATOM_TREMONT_L,	&rapl_defaults_core),
1283
1284	X86_MATCH_VFM(INTEL_XEON_PHI_KNL,	&rapl_defaults_hsw_server),
1285	X86_MATCH_VFM(INTEL_XEON_PHI_KNM,	&rapl_defaults_hsw_server),
1286
1287	X86_MATCH_VENDOR_FAM(AMD, 0x17, &rapl_defaults_amd),
1288	X86_MATCH_VENDOR_FAM(AMD, 0x19, &rapl_defaults_amd),
1289	X86_MATCH_VENDOR_FAM(AMD, 0x1A, &rapl_defaults_amd),
1290	X86_MATCH_VENDOR_FAM(HYGON, 0x18, &rapl_defaults_amd),
1291	{}
1292};
 
1293MODULE_DEVICE_TABLE(x86cpu, rapl_ids);
1294
1295/* Read once for all raw primitive data for domains */
1296static void rapl_update_domain_data(struct rapl_package *rp)
1297{
1298	int dmn, prim;
1299	u64 val;
1300
1301	for (dmn = 0; dmn < rp->nr_domains; dmn++) {
1302		pr_debug("update %s domain %s data\n", rp->name,
1303			 rp->domains[dmn].name);
1304		/* exclude non-raw primitives */
1305		for (prim = 0; prim < NR_RAW_PRIMITIVES; prim++) {
1306			struct rapl_primitive_info *rpi = get_rpi(rp, prim);
1307
1308			if (!rapl_read_data_raw(&rp->domains[dmn], prim,
1309						rpi->unit, &val))
1310				rp->domains[dmn].rdd.primitives[prim] = val;
1311		}
1312	}
1313
1314}
1315
1316static int rapl_package_register_powercap(struct rapl_package *rp)
1317{
1318	struct rapl_domain *rd;
1319	struct powercap_zone *power_zone = NULL;
1320	int nr_pl, ret;
1321
1322	/* Update the domain data of the new package */
1323	rapl_update_domain_data(rp);
1324
1325	/* first we register package domain as the parent zone */
1326	for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
1327		if (rd->id == RAPL_DOMAIN_PACKAGE) {
1328			nr_pl = find_nr_power_limit(rd);
1329			pr_debug("register package domain %s\n", rp->name);
1330			power_zone = powercap_register_zone(&rd->power_zone,
1331					    rp->priv->control_type, rp->name,
1332					    NULL, &zone_ops[rd->id], nr_pl,
1333					    &constraint_ops);
1334			if (IS_ERR(power_zone)) {
1335				pr_debug("failed to register power zone %s\n",
1336					 rp->name);
1337				return PTR_ERR(power_zone);
1338			}
1339			/* track parent zone in per package/socket data */
1340			rp->power_zone = power_zone;
1341			/* done, only one package domain per socket */
1342			break;
1343		}
1344	}
1345	if (!power_zone) {
1346		pr_err("no package domain found, unknown topology!\n");
1347		return -ENODEV;
1348	}
1349	/* now register domains as children of the socket/package */
1350	for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
1351		struct powercap_zone *parent = rp->power_zone;
1352
1353		if (rd->id == RAPL_DOMAIN_PACKAGE)
1354			continue;
1355		if (rd->id == RAPL_DOMAIN_PLATFORM)
1356			parent = NULL;
1357		/* number of power limits per domain varies */
1358		nr_pl = find_nr_power_limit(rd);
1359		power_zone = powercap_register_zone(&rd->power_zone,
1360						    rp->priv->control_type,
1361						    rd->name, parent,
1362						    &zone_ops[rd->id], nr_pl,
1363						    &constraint_ops);
1364
1365		if (IS_ERR(power_zone)) {
1366			pr_debug("failed to register power_zone, %s:%s\n",
1367				 rp->name, rd->name);
1368			ret = PTR_ERR(power_zone);
1369			goto err_cleanup;
1370		}
1371	}
1372	return 0;
1373
1374err_cleanup:
1375	/*
1376	 * Clean up previously initialized domains within the package if we
1377	 * failed after the first domain setup.
1378	 */
1379	while (--rd >= rp->domains) {
1380		pr_debug("unregister %s domain %s\n", rp->name, rd->name);
1381		powercap_unregister_zone(rp->priv->control_type,
1382					 &rd->power_zone);
1383	}
1384
1385	return ret;
1386}
1387
1388static int rapl_check_domain(int domain, struct rapl_package *rp)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1389{
1390	struct reg_action ra;
1391
1392	switch (domain) {
1393	case RAPL_DOMAIN_PACKAGE:
1394	case RAPL_DOMAIN_PP0:
1395	case RAPL_DOMAIN_PP1:
1396	case RAPL_DOMAIN_DRAM:
1397	case RAPL_DOMAIN_PLATFORM:
1398		ra.reg = rp->priv->regs[domain][RAPL_DOMAIN_REG_STATUS];
1399		break;
 
 
 
1400	default:
1401		pr_err("invalid domain id %d\n", domain);
1402		return -EINVAL;
1403	}
1404	/* make sure domain counters are available and contains non-zero
1405	 * values, otherwise skip it.
1406	 */
1407
1408	ra.mask = ENERGY_STATUS_MASK;
1409	if (rp->priv->read_raw(get_rid(rp), &ra) || !ra.value)
1410		return -ENODEV;
1411
1412	return 0;
1413}
1414
1415/*
1416 * Get per domain energy/power/time unit.
1417 * RAPL Interfaces without per domain unit register will use the package
1418 * scope unit register to set per domain units.
1419 */
1420static int rapl_get_domain_unit(struct rapl_domain *rd)
1421{
1422	struct rapl_defaults *defaults = get_defaults(rd->rp);
1423	int ret;
1424
1425	if (!rd->regs[RAPL_DOMAIN_REG_UNIT].val) {
1426		if (!rd->rp->priv->reg_unit.val) {
1427			pr_err("No valid Unit register found\n");
1428			return -ENODEV;
1429		}
1430		rd->regs[RAPL_DOMAIN_REG_UNIT] = rd->rp->priv->reg_unit;
1431	}
1432
1433	if (!defaults->check_unit) {
1434		pr_err("missing .check_unit() callback\n");
1435		return -ENODEV;
1436	}
1437
1438	ret = defaults->check_unit(rd);
1439	if (ret)
1440		return ret;
1441
1442	if (rd->id == RAPL_DOMAIN_DRAM && defaults->dram_domain_energy_unit)
1443		rd->energy_unit = defaults->dram_domain_energy_unit;
1444	if (rd->id == RAPL_DOMAIN_PLATFORM && defaults->psys_domain_energy_unit)
1445		rd->energy_unit = defaults->psys_domain_energy_unit;
1446	return 0;
1447}
1448
1449/*
1450 * Check if power limits are available. Two cases when they are not available:
1451 * 1. Locked by BIOS, in this case we still provide read-only access so that
1452 *    users can see what limit is set by the BIOS.
1453 * 2. Some CPUs make some domains monitoring only which means PLx MSRs may not
1454 *    exist at all. In this case, we do not show the constraints in powercap.
1455 *
1456 * Called after domains are detected and initialized.
1457 */
1458static void rapl_detect_powerlimit(struct rapl_domain *rd)
1459{
1460	u64 val64;
1461	int i;
1462
1463	for (i = POWER_LIMIT1; i < NR_POWER_LIMITS; i++) {
1464		if (!rapl_read_pl_data(rd, i, PL_LOCK, false, &val64)) {
1465			if (val64) {
1466				rd->rpl[i].locked = true;
1467				pr_info("%s:%s:%s locked by BIOS\n",
1468					rd->rp->name, rd->name, pl_names[i]);
1469			}
1470		}
 
 
 
 
1471
1472		if (rapl_read_pl_data(rd, i, PL_LIMIT, false, &val64))
1473			rd->rpl[i].name = NULL;
1474	}
1475}
1476
1477/* Detect active and valid domains for the given CPU, caller must
1478 * ensure the CPU belongs to the targeted package and CPU hotlug is disabled.
1479 */
1480static int rapl_detect_domains(struct rapl_package *rp)
1481{
1482	struct rapl_domain *rd;
1483	int i;
1484
1485	for (i = 0; i < RAPL_DOMAIN_MAX; i++) {
1486		/* use physical package id to read counters */
1487		if (!rapl_check_domain(i, rp)) {
1488			rp->domain_map |= 1 << i;
1489			pr_info("Found RAPL domain %s\n", rapl_domain_names[i]);
1490		}
1491	}
1492	rp->nr_domains = bitmap_weight(&rp->domain_map, RAPL_DOMAIN_MAX);
1493	if (!rp->nr_domains) {
1494		pr_debug("no valid rapl domains found in %s\n", rp->name);
1495		return -ENODEV;
1496	}
1497	pr_debug("found %d domains on %s\n", rp->nr_domains, rp->name);
1498
1499	rp->domains = kcalloc(rp->nr_domains, sizeof(struct rapl_domain),
1500			      GFP_KERNEL);
1501	if (!rp->domains)
1502		return -ENOMEM;
1503
1504	rapl_init_domains(rp);
1505
1506	for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
1507		rapl_get_domain_unit(rd);
1508		rapl_detect_powerlimit(rd);
1509	}
1510
1511	return 0;
1512}
1513
1514#ifdef CONFIG_PERF_EVENTS
1515
1516/*
1517 * Support for RAPL PMU
1518 *
1519 * Register a PMU if any of the registered RAPL Packages have the requirement
1520 * of exposing its energy counters via Perf PMU.
1521 *
1522 * PMU Name:
1523 *	power
1524 *
1525 * Events:
1526 *	Name		Event id	RAPL Domain
1527 *	energy_cores	0x01		RAPL_DOMAIN_PP0
1528 *	energy_pkg	0x02		RAPL_DOMAIN_PACKAGE
1529 *	energy_ram	0x03		RAPL_DOMAIN_DRAM
1530 *	energy_gpu	0x04		RAPL_DOMAIN_PP1
1531 *	energy_psys	0x05		RAPL_DOMAIN_PLATFORM
1532 *
1533 * Unit:
1534 *	Joules
1535 *
1536 * Scale:
1537 *	2.3283064365386962890625e-10
1538 *	The same RAPL domain in different RAPL Packages may have different
1539 *	energy units. Use 2.3283064365386962890625e-10 (2^-32) Joules as
1540 *	the fixed unit for all energy counters, and covert each hardware
1541 *	counter increase to N times of PMU event counter increases.
1542 *
1543 * This is fully compatible with the current MSR RAPL PMU. This means that
1544 * userspace programs like turbostat can use the same code to handle RAPL Perf
1545 * PMU, no matter what RAPL Interface driver (MSR/TPMI, etc) is running
1546 * underlying on the platform.
1547 *
1548 * Note that RAPL Packages can be probed/removed dynamically, and the events
1549 * supported by each TPMI RAPL device can be different. Thus the RAPL PMU
1550 * support is done on demand, which means
1551 * 1. PMU is registered only if it is needed by a RAPL Package. PMU events for
1552 *    unsupported counters are not exposed.
1553 * 2. PMU is unregistered and registered when a new RAPL Package is probed and
1554 *    supports new counters that are not supported by current PMU.
1555 * 3. PMU is unregistered when all registered RAPL Packages don't need PMU.
1556 */
1557
1558struct rapl_pmu {
1559	struct pmu pmu;			/* Perf PMU structure */
1560	u64 timer_ms;			/* Maximum expiration time to avoid counter overflow */
1561	unsigned long domain_map;	/* Events supported by current registered PMU */
1562	bool registered;		/* Whether the PMU has been registered or not */
1563};
1564
1565static struct rapl_pmu rapl_pmu;
1566
1567/* PMU helpers */
1568
1569static int get_pmu_cpu(struct rapl_package *rp)
1570{
1571	int cpu;
1572
1573	if (!rp->has_pmu)
1574		return nr_cpu_ids;
1575
1576	/* Only TPMI RAPL is supported for now */
1577	if (rp->priv->type != RAPL_IF_TPMI)
1578		return nr_cpu_ids;
1579
1580	/* TPMI RAPL uses any CPU in the package for PMU */
1581	for_each_online_cpu(cpu)
1582		if (topology_physical_package_id(cpu) == rp->id)
1583			return cpu;
1584
1585	return nr_cpu_ids;
1586}
1587
1588static bool is_rp_pmu_cpu(struct rapl_package *rp, int cpu)
1589{
1590	if (!rp->has_pmu)
1591		return false;
1592
1593	/* Only TPMI RAPL is supported for now */
1594	if (rp->priv->type != RAPL_IF_TPMI)
1595		return false;
1596
1597	/* TPMI RAPL uses any CPU in the package for PMU */
1598	return topology_physical_package_id(cpu) == rp->id;
1599}
1600
1601static struct rapl_package_pmu_data *event_to_pmu_data(struct perf_event *event)
1602{
1603	struct rapl_package *rp = event->pmu_private;
1604
1605	return &rp->pmu_data;
1606}
1607
1608/* PMU event callbacks */
1609
1610static u64 event_read_counter(struct perf_event *event)
1611{
1612	struct rapl_package *rp = event->pmu_private;
1613	u64 val;
1614	int ret;
1615
1616	/* Return 0 for unsupported events */
1617	if (event->hw.idx < 0)
1618		return 0;
1619
1620	ret = rapl_read_data_raw(&rp->domains[event->hw.idx], ENERGY_COUNTER, false, &val);
1621
1622	/* Return 0 for failed read */
1623	if (ret)
1624		return 0;
1625
1626	return val;
1627}
1628
1629static void __rapl_pmu_event_start(struct perf_event *event)
1630{
1631	struct rapl_package_pmu_data *data = event_to_pmu_data(event);
1632
1633	if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1634		return;
1635
1636	event->hw.state = 0;
1637
1638	list_add_tail(&event->active_entry, &data->active_list);
1639
1640	local64_set(&event->hw.prev_count, event_read_counter(event));
1641	if (++data->n_active == 1)
1642		hrtimer_start(&data->hrtimer, data->timer_interval,
1643			      HRTIMER_MODE_REL_PINNED);
1644}
1645
1646static void rapl_pmu_event_start(struct perf_event *event, int mode)
1647{
1648	struct rapl_package_pmu_data *data = event_to_pmu_data(event);
1649	unsigned long flags;
1650
1651	raw_spin_lock_irqsave(&data->lock, flags);
1652	__rapl_pmu_event_start(event);
1653	raw_spin_unlock_irqrestore(&data->lock, flags);
1654}
1655
1656static u64 rapl_event_update(struct perf_event *event)
1657{
1658	struct hw_perf_event *hwc = &event->hw;
1659	struct rapl_package_pmu_data *data = event_to_pmu_data(event);
1660	u64 prev_raw_count, new_raw_count;
1661	s64 delta, sdelta;
1662
1663	/*
1664	 * Follow the generic code to drain hwc->prev_count.
1665	 * The loop is not expected to run for multiple times.
1666	 */
1667	prev_raw_count = local64_read(&hwc->prev_count);
1668	do {
1669		new_raw_count = event_read_counter(event);
1670	} while (!local64_try_cmpxchg(&hwc->prev_count,
1671		&prev_raw_count, new_raw_count));
1672
1673
1674	/*
1675	 * Now we have the new raw value and have updated the prev
1676	 * timestamp already. We can now calculate the elapsed delta
1677	 * (event-)time and add that to the generic event.
1678	 */
1679	delta = new_raw_count - prev_raw_count;
1680
1681	/*
1682	 * Scale delta to smallest unit (2^-32)
1683	 * users must then scale back: count * 1/(1e9*2^32) to get Joules
1684	 * or use ldexp(count, -32).
1685	 * Watts = Joules/Time delta
1686	 */
1687	sdelta = delta * data->scale[event->hw.flags];
1688
1689	local64_add(sdelta, &event->count);
1690
1691	return new_raw_count;
1692}
1693
1694static void rapl_pmu_event_stop(struct perf_event *event, int mode)
1695{
1696	struct rapl_package_pmu_data *data = event_to_pmu_data(event);
1697	struct hw_perf_event *hwc = &event->hw;
1698	unsigned long flags;
1699
1700	raw_spin_lock_irqsave(&data->lock, flags);
1701
1702	/* Mark event as deactivated and stopped */
1703	if (!(hwc->state & PERF_HES_STOPPED)) {
1704		WARN_ON_ONCE(data->n_active <= 0);
1705		if (--data->n_active == 0)
1706			hrtimer_cancel(&data->hrtimer);
1707
1708		list_del(&event->active_entry);
1709
1710		WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1711		hwc->state |= PERF_HES_STOPPED;
1712	}
1713
1714	/* Check if update of sw counter is necessary */
1715	if ((mode & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1716		/*
1717		 * Drain the remaining delta count out of a event
1718		 * that we are disabling:
1719		 */
1720		rapl_event_update(event);
1721		hwc->state |= PERF_HES_UPTODATE;
1722	}
1723
1724	raw_spin_unlock_irqrestore(&data->lock, flags);
1725}
1726
1727static int rapl_pmu_event_add(struct perf_event *event, int mode)
1728{
1729	struct rapl_package_pmu_data *data = event_to_pmu_data(event);
1730	struct hw_perf_event *hwc = &event->hw;
1731	unsigned long flags;
1732
1733	raw_spin_lock_irqsave(&data->lock, flags);
1734
1735	hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1736
1737	if (mode & PERF_EF_START)
1738		__rapl_pmu_event_start(event);
1739
1740	raw_spin_unlock_irqrestore(&data->lock, flags);
1741
1742	return 0;
1743}
1744
1745static void rapl_pmu_event_del(struct perf_event *event, int flags)
1746{
1747	rapl_pmu_event_stop(event, PERF_EF_UPDATE);
1748}
1749
1750/* RAPL PMU event ids, same as shown in sysfs */
1751enum perf_rapl_events {
1752	PERF_RAPL_PP0 = 1,	/* all cores */
1753	PERF_RAPL_PKG,		/* entire package */
1754	PERF_RAPL_RAM,		/* DRAM */
1755	PERF_RAPL_PP1,		/* gpu */
1756	PERF_RAPL_PSYS,		/* psys */
1757	PERF_RAPL_MAX
1758};
1759#define RAPL_EVENT_MASK GENMASK(7, 0)
1760
1761static const int event_to_domain[PERF_RAPL_MAX] = {
1762	[PERF_RAPL_PP0]		= RAPL_DOMAIN_PP0,
1763	[PERF_RAPL_PKG]		= RAPL_DOMAIN_PACKAGE,
1764	[PERF_RAPL_RAM]		= RAPL_DOMAIN_DRAM,
1765	[PERF_RAPL_PP1]		= RAPL_DOMAIN_PP1,
1766	[PERF_RAPL_PSYS]	= RAPL_DOMAIN_PLATFORM,
1767};
1768
1769static int rapl_pmu_event_init(struct perf_event *event)
1770{
1771	struct rapl_package *pos, *rp = NULL;
1772	u64 cfg = event->attr.config & RAPL_EVENT_MASK;
1773	int domain, idx;
1774
1775	/* Only look at RAPL events */
1776	if (event->attr.type != event->pmu->type)
1777		return -ENOENT;
1778
1779	/* Check for supported events only */
1780	if (!cfg || cfg >= PERF_RAPL_MAX)
1781		return -EINVAL;
1782
1783	if (event->cpu < 0)
1784		return -EINVAL;
1785
1786	/* Find out which Package the event belongs to */
1787	list_for_each_entry(pos, &rapl_packages, plist) {
1788		if (is_rp_pmu_cpu(pos, event->cpu)) {
1789			rp = pos;
1790			break;
1791		}
1792	}
1793	if (!rp)
1794		return -ENODEV;
1795
1796	/* Find out which RAPL Domain the event belongs to */
1797	domain = event_to_domain[cfg];
1798
1799	event->event_caps |= PERF_EV_CAP_READ_ACTIVE_PKG;
1800	event->pmu_private = rp;	/* Which package */
1801	event->hw.flags = domain;	/* Which domain */
1802
1803	event->hw.idx = -1;
1804	/* Find out the index in rp->domains[] to get domain pointer */
1805	for (idx = 0; idx < rp->nr_domains; idx++) {
1806		if (rp->domains[idx].id == domain) {
1807			event->hw.idx = idx;
1808			break;
1809		}
1810	}
1811
1812	return 0;
1813}
1814
1815static void rapl_pmu_event_read(struct perf_event *event)
1816{
1817	rapl_event_update(event);
1818}
1819
1820static enum hrtimer_restart rapl_hrtimer_handle(struct hrtimer *hrtimer)
1821{
1822	struct rapl_package_pmu_data *data =
1823		container_of(hrtimer, struct rapl_package_pmu_data, hrtimer);
1824	struct perf_event *event;
1825	unsigned long flags;
1826
1827	if (!data->n_active)
1828		return HRTIMER_NORESTART;
1829
1830	raw_spin_lock_irqsave(&data->lock, flags);
1831
1832	list_for_each_entry(event, &data->active_list, active_entry)
1833		rapl_event_update(event);
1834
1835	raw_spin_unlock_irqrestore(&data->lock, flags);
1836
1837	hrtimer_forward_now(hrtimer, data->timer_interval);
1838
1839	return HRTIMER_RESTART;
1840}
1841
1842/* PMU sysfs attributes */
1843
1844/*
1845 * There are no default events, but we need to create "events" group (with
1846 * empty attrs) before updating it with detected events.
1847 */
1848static struct attribute *attrs_empty[] = {
1849	NULL,
1850};
1851
1852static struct attribute_group pmu_events_group = {
1853	.name = "events",
1854	.attrs = attrs_empty,
1855};
1856
1857static ssize_t cpumask_show(struct device *dev,
1858			    struct device_attribute *attr, char *buf)
1859{
1860	struct rapl_package *rp;
1861	cpumask_var_t cpu_mask;
1862	int cpu;
1863	int ret;
1864
1865	if (!alloc_cpumask_var(&cpu_mask, GFP_KERNEL))
1866		return -ENOMEM;
1867
1868	cpus_read_lock();
1869
1870	cpumask_clear(cpu_mask);
1871
1872	/* Choose a cpu for each RAPL Package */
1873	list_for_each_entry(rp, &rapl_packages, plist) {
1874		cpu = get_pmu_cpu(rp);
1875		if (cpu < nr_cpu_ids)
1876			cpumask_set_cpu(cpu, cpu_mask);
1877	}
1878	cpus_read_unlock();
1879
1880	ret = cpumap_print_to_pagebuf(true, buf, cpu_mask);
1881
1882	free_cpumask_var(cpu_mask);
1883
1884	return ret;
1885}
1886
1887static DEVICE_ATTR_RO(cpumask);
1888
1889static struct attribute *pmu_cpumask_attrs[] = {
1890	&dev_attr_cpumask.attr,
1891	NULL
1892};
1893
1894static struct attribute_group pmu_cpumask_group = {
1895	.attrs = pmu_cpumask_attrs,
1896};
1897
1898PMU_FORMAT_ATTR(event, "config:0-7");
1899static struct attribute *pmu_format_attr[] = {
1900	&format_attr_event.attr,
1901	NULL
1902};
1903
1904static struct attribute_group pmu_format_group = {
1905	.name = "format",
1906	.attrs = pmu_format_attr,
1907};
1908
1909static const struct attribute_group *pmu_attr_groups[] = {
1910	&pmu_events_group,
1911	&pmu_cpumask_group,
1912	&pmu_format_group,
1913	NULL
1914};
1915
1916#define RAPL_EVENT_ATTR_STR(_name, v, str)					\
1917static struct perf_pmu_events_attr event_attr_##v = {				\
1918	.attr		= __ATTR(_name, 0444, perf_event_sysfs_show, NULL),	\
1919	.event_str	= str,							\
1920}
1921
1922RAPL_EVENT_ATTR_STR(energy-cores,	rapl_cores,	"event=0x01");
1923RAPL_EVENT_ATTR_STR(energy-pkg,		rapl_pkg,	"event=0x02");
1924RAPL_EVENT_ATTR_STR(energy-ram,		rapl_ram,	"event=0x03");
1925RAPL_EVENT_ATTR_STR(energy-gpu,		rapl_gpu,	"event=0x04");
1926RAPL_EVENT_ATTR_STR(energy-psys,	rapl_psys,	"event=0x05");
1927
1928RAPL_EVENT_ATTR_STR(energy-cores.unit,	rapl_unit_cores,	"Joules");
1929RAPL_EVENT_ATTR_STR(energy-pkg.unit,	rapl_unit_pkg,		"Joules");
1930RAPL_EVENT_ATTR_STR(energy-ram.unit,	rapl_unit_ram,		"Joules");
1931RAPL_EVENT_ATTR_STR(energy-gpu.unit,	rapl_unit_gpu,		"Joules");
1932RAPL_EVENT_ATTR_STR(energy-psys.unit,	rapl_unit_psys,		"Joules");
1933
1934RAPL_EVENT_ATTR_STR(energy-cores.scale,	rapl_scale_cores,	"2.3283064365386962890625e-10");
1935RAPL_EVENT_ATTR_STR(energy-pkg.scale,	rapl_scale_pkg,		"2.3283064365386962890625e-10");
1936RAPL_EVENT_ATTR_STR(energy-ram.scale,	rapl_scale_ram,		"2.3283064365386962890625e-10");
1937RAPL_EVENT_ATTR_STR(energy-gpu.scale,	rapl_scale_gpu,		"2.3283064365386962890625e-10");
1938RAPL_EVENT_ATTR_STR(energy-psys.scale,	rapl_scale_psys,	"2.3283064365386962890625e-10");
1939
1940#define RAPL_EVENT_GROUP(_name, domain)			\
1941static struct attribute *pmu_attr_##_name[] = {		\
1942	&event_attr_rapl_##_name.attr.attr,		\
1943	&event_attr_rapl_unit_##_name.attr.attr,	\
1944	&event_attr_rapl_scale_##_name.attr.attr,	\
1945	NULL						\
1946};							\
1947static umode_t is_visible_##_name(struct kobject *kobj, struct attribute *attr, int event)	\
1948{											\
1949	return rapl_pmu.domain_map & BIT(domain) ? attr->mode : 0;	\
1950}							\
1951static struct attribute_group pmu_group_##_name = {	\
1952	.name  = "events",				\
1953	.attrs = pmu_attr_##_name,			\
1954	.is_visible = is_visible_##_name,		\
1955}
1956
1957RAPL_EVENT_GROUP(cores,	RAPL_DOMAIN_PP0);
1958RAPL_EVENT_GROUP(pkg,	RAPL_DOMAIN_PACKAGE);
1959RAPL_EVENT_GROUP(ram,	RAPL_DOMAIN_DRAM);
1960RAPL_EVENT_GROUP(gpu,	RAPL_DOMAIN_PP1);
1961RAPL_EVENT_GROUP(psys,	RAPL_DOMAIN_PLATFORM);
1962
1963static const struct attribute_group *pmu_attr_update[] = {
1964	&pmu_group_cores,
1965	&pmu_group_pkg,
1966	&pmu_group_ram,
1967	&pmu_group_gpu,
1968	&pmu_group_psys,
1969	NULL
1970};
1971
1972static int rapl_pmu_update(struct rapl_package *rp)
1973{
1974	int ret = 0;
1975
1976	/* Return if PMU already covers all events supported by current RAPL Package */
1977	if (rapl_pmu.registered && !(rp->domain_map & (~rapl_pmu.domain_map)))
1978		goto end;
1979
1980	/* Unregister previous registered PMU */
1981	if (rapl_pmu.registered)
1982		perf_pmu_unregister(&rapl_pmu.pmu);
1983
1984	rapl_pmu.registered = false;
1985	rapl_pmu.domain_map |= rp->domain_map;
1986
1987	memset(&rapl_pmu.pmu, 0, sizeof(struct pmu));
1988	rapl_pmu.pmu.attr_groups = pmu_attr_groups;
1989	rapl_pmu.pmu.attr_update = pmu_attr_update;
1990	rapl_pmu.pmu.task_ctx_nr = perf_invalid_context;
1991	rapl_pmu.pmu.event_init = rapl_pmu_event_init;
1992	rapl_pmu.pmu.add = rapl_pmu_event_add;
1993	rapl_pmu.pmu.del = rapl_pmu_event_del;
1994	rapl_pmu.pmu.start = rapl_pmu_event_start;
1995	rapl_pmu.pmu.stop = rapl_pmu_event_stop;
1996	rapl_pmu.pmu.read = rapl_pmu_event_read;
1997	rapl_pmu.pmu.module = THIS_MODULE;
1998	rapl_pmu.pmu.capabilities = PERF_PMU_CAP_NO_EXCLUDE | PERF_PMU_CAP_NO_INTERRUPT;
1999	ret = perf_pmu_register(&rapl_pmu.pmu, "power", -1);
2000	if (ret) {
2001		pr_info("Failed to register PMU\n");
2002		return ret;
2003	}
2004
2005	rapl_pmu.registered = true;
2006end:
2007	rp->has_pmu = true;
2008	return ret;
2009}
2010
2011int rapl_package_add_pmu(struct rapl_package *rp)
2012{
2013	struct rapl_package_pmu_data *data = &rp->pmu_data;
2014	int idx;
2015
2016	if (rp->has_pmu)
2017		return -EEXIST;
2018
2019	guard(cpus_read_lock)();
2020
2021	for (idx = 0; idx < rp->nr_domains; idx++) {
2022		struct rapl_domain *rd = &rp->domains[idx];
2023		int domain = rd->id;
2024		u64 val;
2025
2026		if (!test_bit(domain, &rp->domain_map))
2027			continue;
2028
2029		/*
2030		 * The RAPL PMU granularity is 2^-32 Joules
2031		 * data->scale[]: times of 2^-32 Joules for each ENERGY COUNTER increase
2032		 */
2033		val = rd->energy_unit * (1ULL << 32);
2034		do_div(val, ENERGY_UNIT_SCALE * 1000000);
2035		data->scale[domain] = val;
2036
2037		if (!rapl_pmu.timer_ms) {
2038			struct rapl_primitive_info *rpi = get_rpi(rp, ENERGY_COUNTER);
2039
2040			/*
2041			 * Calculate the timer rate:
2042			 * Use reference of 200W for scaling the timeout to avoid counter
2043			 * overflows.
2044			 *
2045			 * max_count = rpi->mask >> rpi->shift + 1
2046			 * max_energy_pj = max_count * rd->energy_unit
2047			 * max_time_sec = (max_energy_pj / 1000000000) / 200w
2048			 *
2049			 * rapl_pmu.timer_ms = max_time_sec * 1000 / 2
2050			 */
2051			val = (rpi->mask >> rpi->shift) + 1;
2052			val *= rd->energy_unit;
2053			do_div(val, 1000000 * 200 * 2);
2054			rapl_pmu.timer_ms = val;
2055
2056			pr_debug("%llu ms overflow timer\n", rapl_pmu.timer_ms);
2057		}
2058
2059		pr_debug("Domain %s: hw unit %lld * 2^-32 Joules\n", rd->name, data->scale[domain]);
2060	}
2061
2062	/* Initialize per package PMU data */
2063	raw_spin_lock_init(&data->lock);
2064	INIT_LIST_HEAD(&data->active_list);
2065	data->timer_interval = ms_to_ktime(rapl_pmu.timer_ms);
2066	hrtimer_init(&data->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2067	data->hrtimer.function = rapl_hrtimer_handle;
2068
2069	return rapl_pmu_update(rp);
2070}
2071EXPORT_SYMBOL_GPL(rapl_package_add_pmu);
2072
2073void rapl_package_remove_pmu(struct rapl_package *rp)
2074{
2075	struct rapl_package *pos;
2076
2077	if (!rp->has_pmu)
2078		return;
2079
2080	guard(cpus_read_lock)();
2081
2082	list_for_each_entry(pos, &rapl_packages, plist) {
2083		/* PMU is still needed */
2084		if (pos->has_pmu && pos != rp)
2085			return;
2086	}
2087
2088	perf_pmu_unregister(&rapl_pmu.pmu);
2089	memset(&rapl_pmu, 0, sizeof(struct rapl_pmu));
2090}
2091EXPORT_SYMBOL_GPL(rapl_package_remove_pmu);
2092#endif
2093
2094/* called from CPU hotplug notifier, hotplug lock held */
2095void rapl_remove_package_cpuslocked(struct rapl_package *rp)
2096{
2097	struct rapl_domain *rd, *rd_package = NULL;
2098
2099	package_power_limit_irq_restore(rp);
2100
2101	for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
2102		int i;
2103
2104		for (i = POWER_LIMIT1; i < NR_POWER_LIMITS; i++) {
2105			rapl_write_pl_data(rd, i, PL_ENABLE, 0);
2106			rapl_write_pl_data(rd, i, PL_CLAMP, 0);
2107		}
2108
2109		if (rd->id == RAPL_DOMAIN_PACKAGE) {
2110			rd_package = rd;
2111			continue;
2112		}
2113		pr_debug("remove package, undo power limit on %s: %s\n",
2114			 rp->name, rd->name);
2115		powercap_unregister_zone(rp->priv->control_type,
2116					 &rd->power_zone);
2117	}
2118	/* do parent zone last */
2119	powercap_unregister_zone(rp->priv->control_type,
2120				 &rd_package->power_zone);
2121	list_del(&rp->plist);
2122	kfree(rp);
2123}
2124EXPORT_SYMBOL_GPL(rapl_remove_package_cpuslocked);
2125
2126void rapl_remove_package(struct rapl_package *rp)
2127{
2128	guard(cpus_read_lock)();
2129	rapl_remove_package_cpuslocked(rp);
2130}
2131EXPORT_SYMBOL_GPL(rapl_remove_package);
2132
2133/*
2134 * RAPL Package energy counter scope:
2135 * 1. AMD/HYGON platforms use per-PKG package energy counter
2136 * 2. For Intel platforms
2137 *	2.1 CLX-AP platform has per-DIE package energy counter
2138 *	2.2 Other platforms that uses MSR RAPL are single die systems so the
2139 *          package energy counter can be considered as per-PKG/per-DIE,
2140 *          here it is considered as per-DIE.
2141 *	2.3 New platforms that use TPMI RAPL doesn't care about the
2142 *	    scope because they are not MSR/CPU based.
2143 */
2144#define rapl_msrs_are_pkg_scope()				\
2145	(boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||	\
2146	 boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
2147
2148/* caller to ensure CPU hotplug lock is held */
2149struct rapl_package *rapl_find_package_domain_cpuslocked(int id, struct rapl_if_priv *priv,
2150							 bool id_is_cpu)
2151{
 
2152	struct rapl_package *rp;
2153	int uid;
2154
2155	if (id_is_cpu) {
2156		uid = rapl_msrs_are_pkg_scope() ?
2157		      topology_physical_package_id(id) : topology_logical_die_id(id);
2158		if (uid < 0) {
2159			pr_err("topology_logical_(package/die)_id() returned a negative value");
2160			return NULL;
2161		}
2162	}
2163	else
2164		uid = id;
2165
2166	list_for_each_entry(rp, &rapl_packages, plist) {
2167		if (rp->id == uid
2168		    && rp->priv->control_type == priv->control_type)
2169			return rp;
2170	}
2171
2172	return NULL;
2173}
2174EXPORT_SYMBOL_GPL(rapl_find_package_domain_cpuslocked);
2175
2176struct rapl_package *rapl_find_package_domain(int id, struct rapl_if_priv *priv, bool id_is_cpu)
2177{
2178	guard(cpus_read_lock)();
2179	return rapl_find_package_domain_cpuslocked(id, priv, id_is_cpu);
2180}
2181EXPORT_SYMBOL_GPL(rapl_find_package_domain);
2182
2183/* called from CPU hotplug notifier, hotplug lock held */
2184struct rapl_package *rapl_add_package_cpuslocked(int id, struct rapl_if_priv *priv, bool id_is_cpu)
2185{
 
2186	struct rapl_package *rp;
 
2187	int ret;
2188
2189	rp = kzalloc(sizeof(struct rapl_package), GFP_KERNEL);
2190	if (!rp)
2191		return ERR_PTR(-ENOMEM);
2192
2193	if (id_is_cpu) {
2194		rp->id = rapl_msrs_are_pkg_scope() ?
2195			 topology_physical_package_id(id) : topology_logical_die_id(id);
2196		if ((int)(rp->id) < 0) {
2197			pr_err("topology_logical_(package/die)_id() returned a negative value");
2198			return ERR_PTR(-EINVAL);
2199		}
2200		rp->lead_cpu = id;
2201		if (!rapl_msrs_are_pkg_scope() && topology_max_dies_per_package() > 1)
2202			snprintf(rp->name, PACKAGE_DOMAIN_NAME_LENGTH, "package-%d-die-%d",
2203				 topology_physical_package_id(id), topology_die_id(id));
2204		else
2205			snprintf(rp->name, PACKAGE_DOMAIN_NAME_LENGTH, "package-%d",
2206				 topology_physical_package_id(id));
2207	} else {
2208		rp->id = id;
2209		rp->lead_cpu = -1;
2210		snprintf(rp->name, PACKAGE_DOMAIN_NAME_LENGTH, "package-%d", id);
2211	}
2212
2213	rp->priv = priv;
2214	ret = rapl_config(rp);
2215	if (ret)
2216		goto err_free_package;
 
 
 
 
2217
2218	/* check if the package contains valid domains */
2219	if (rapl_detect_domains(rp)) {
2220		ret = -ENODEV;
2221		goto err_free_package;
2222	}
2223	ret = rapl_package_register_powercap(rp);
2224	if (!ret) {
2225		INIT_LIST_HEAD(&rp->plist);
2226		list_add(&rp->plist, &rapl_packages);
2227		return rp;
2228	}
2229
2230err_free_package:
2231	kfree(rp->domains);
2232	kfree(rp);
2233	return ERR_PTR(ret);
2234}
2235EXPORT_SYMBOL_GPL(rapl_add_package_cpuslocked);
2236
2237struct rapl_package *rapl_add_package(int id, struct rapl_if_priv *priv, bool id_is_cpu)
2238{
2239	guard(cpus_read_lock)();
2240	return rapl_add_package_cpuslocked(id, priv, id_is_cpu);
2241}
2242EXPORT_SYMBOL_GPL(rapl_add_package);
2243
2244static void power_limit_state_save(void)
2245{
2246	struct rapl_package *rp;
2247	struct rapl_domain *rd;
2248	int ret, i;
2249
2250	cpus_read_lock();
2251	list_for_each_entry(rp, &rapl_packages, plist) {
2252		if (!rp->power_zone)
2253			continue;
2254		rd = power_zone_to_rapl_domain(rp->power_zone);
2255		for (i = POWER_LIMIT1; i < NR_POWER_LIMITS; i++) {
2256			ret = rapl_read_pl_data(rd, i, PL_LIMIT, true,
 
 
 
 
2257						 &rd->rpl[i].last_power_limit);
2258			if (ret)
2259				rd->rpl[i].last_power_limit = 0;
 
 
 
 
 
 
 
 
 
2260		}
2261	}
2262	cpus_read_unlock();
2263}
2264
2265static void power_limit_state_restore(void)
2266{
2267	struct rapl_package *rp;
2268	struct rapl_domain *rd;
2269	int i;
2270
2271	cpus_read_lock();
2272	list_for_each_entry(rp, &rapl_packages, plist) {
2273		if (!rp->power_zone)
2274			continue;
2275		rd = power_zone_to_rapl_domain(rp->power_zone);
2276		for (i = POWER_LIMIT1; i < NR_POWER_LIMITS; i++)
2277			if (rd->rpl[i].last_power_limit)
2278				rapl_write_pl_data(rd, i, PL_LIMIT,
2279					       rd->rpl[i].last_power_limit);
 
 
 
 
 
 
 
 
 
 
 
2280	}
2281	cpus_read_unlock();
2282}
2283
2284static int rapl_pm_callback(struct notifier_block *nb,
2285			    unsigned long mode, void *_unused)
2286{
2287	switch (mode) {
2288	case PM_SUSPEND_PREPARE:
2289		power_limit_state_save();
2290		break;
2291	case PM_POST_SUSPEND:
2292		power_limit_state_restore();
2293		break;
2294	}
2295	return NOTIFY_OK;
2296}
2297
2298static struct notifier_block rapl_pm_notifier = {
2299	.notifier_call = rapl_pm_callback,
2300};
2301
2302static struct platform_device *rapl_msr_platdev;
2303
2304static int __init rapl_init(void)
2305{
2306	const struct x86_cpu_id *id;
2307	int ret;
2308
2309	id = x86_match_cpu(rapl_ids);
2310	if (id) {
2311		defaults_msr = (struct rapl_defaults *)id->driver_data;
 
2312
2313		rapl_msr_platdev = platform_device_alloc("intel_rapl_msr", 0);
2314		if (!rapl_msr_platdev)
2315			return -ENOMEM;
2316
2317		ret = platform_device_add(rapl_msr_platdev);
2318		if (ret) {
2319			platform_device_put(rapl_msr_platdev);
2320			return ret;
2321		}
2322	}
2323
 
 
2324	ret = register_pm_notifier(&rapl_pm_notifier);
2325	if (ret && rapl_msr_platdev) {
2326		platform_device_del(rapl_msr_platdev);
2327		platform_device_put(rapl_msr_platdev);
 
 
 
 
2328	}
 
 
 
 
 
 
 
 
2329
2330	return ret;
2331}
2332
2333static void __exit rapl_exit(void)
2334{
2335	platform_device_unregister(rapl_msr_platdev);
2336	unregister_pm_notifier(&rapl_pm_notifier);
2337}
2338
2339fs_initcall(rapl_init);
2340module_exit(rapl_exit);
2341
2342MODULE_DESCRIPTION("Intel Runtime Average Power Limit (RAPL) common code");
2343MODULE_AUTHOR("Jacob Pan <jacob.jun.pan@intel.com>");
2344MODULE_LICENSE("GPL v2");
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Common code for Intel Running Average Power Limit (RAPL) support.
   4 * Copyright (c) 2019, Intel Corporation.
   5 */
   6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   7
 
 
 
 
 
 
   8#include <linux/kernel.h>
   9#include <linux/module.h>
  10#include <linux/list.h>
  11#include <linux/types.h>
  12#include <linux/device.h>
  13#include <linux/slab.h>
  14#include <linux/log2.h>
  15#include <linux/bitmap.h>
  16#include <linux/delay.h>
  17#include <linux/sysfs.h>
  18#include <linux/cpu.h>
  19#include <linux/powercap.h>
 
 
  20#include <linux/suspend.h>
  21#include <linux/intel_rapl.h>
  22#include <linux/processor.h>
  23#include <linux/platform_device.h>
  24
  25#include <asm/iosf_mbi.h>
  26#include <asm/cpu_device_id.h>
  27#include <asm/intel-family.h>
  28
  29/* Local defines */
  30#define MSR_PLATFORM_POWER_LIMIT	0x0000065C
  31
  32/* bitmasks for RAPL MSRs, used by primitive access functions */
  33#define ENERGY_STATUS_MASK      0xffffffff
  34
  35#define POWER_LIMIT1_MASK       0x7FFF
  36#define POWER_LIMIT1_ENABLE     BIT(15)
  37#define POWER_LIMIT1_CLAMP      BIT(16)
  38
  39#define POWER_LIMIT2_MASK       (0x7FFFULL<<32)
  40#define POWER_LIMIT2_ENABLE     BIT_ULL(47)
  41#define POWER_LIMIT2_CLAMP      BIT_ULL(48)
  42#define POWER_HIGH_LOCK         BIT_ULL(63)
  43#define POWER_LOW_LOCK          BIT(31)
  44
 
 
  45#define TIME_WINDOW1_MASK       (0x7FULL<<17)
  46#define TIME_WINDOW2_MASK       (0x7FULL<<49)
  47
  48#define POWER_UNIT_OFFSET	0
  49#define POWER_UNIT_MASK		0x0F
  50
  51#define ENERGY_UNIT_OFFSET	0x08
  52#define ENERGY_UNIT_MASK	0x1F00
  53
  54#define TIME_UNIT_OFFSET	0x10
  55#define TIME_UNIT_MASK		0xF0000
  56
  57#define POWER_INFO_MAX_MASK     (0x7fffULL<<32)
  58#define POWER_INFO_MIN_MASK     (0x7fffULL<<16)
  59#define POWER_INFO_MAX_TIME_WIN_MASK     (0x3fULL<<48)
  60#define POWER_INFO_THERMAL_SPEC_MASK     0x7fff
  61
  62#define PERF_STATUS_THROTTLE_TIME_MASK 0xffffffff
  63#define PP_POLICY_MASK         0x1F
  64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  65/* Non HW constants */
  66#define RAPL_PRIMITIVE_DERIVED       BIT(1)	/* not from raw data */
  67#define RAPL_PRIMITIVE_DUMMY         BIT(2)
  68
  69#define TIME_WINDOW_MAX_MSEC 40000
  70#define TIME_WINDOW_MIN_MSEC 250
  71#define ENERGY_UNIT_SCALE    1000	/* scale from driver unit to powercap unit */
  72enum unit_type {
  73	ARBITRARY_UNIT,		/* no translation */
  74	POWER_UNIT,
  75	ENERGY_UNIT,
  76	TIME_UNIT,
  77};
  78
  79/* per domain data, some are optional */
  80#define NR_RAW_PRIMITIVES (NR_RAPL_PRIMITIVES - 2)
  81
  82#define	DOMAIN_STATE_INACTIVE           BIT(0)
  83#define	DOMAIN_STATE_POWER_LIMIT_SET    BIT(1)
  84#define DOMAIN_STATE_BIOS_LOCKED        BIT(2)
  85
  86static const char pl1_name[] = "long_term";
  87static const char pl2_name[] = "short_term";
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  88
  89#define power_zone_to_rapl_domain(_zone) \
  90	container_of(_zone, struct rapl_domain, power_zone)
  91
  92struct rapl_defaults {
  93	u8 floor_freq_reg_addr;
  94	int (*check_unit)(struct rapl_package *rp, int cpu);
  95	void (*set_floor_freq)(struct rapl_domain *rd, bool mode);
  96	u64 (*compute_time_window)(struct rapl_package *rp, u64 val,
  97				    bool to_raw);
  98	unsigned int dram_domain_energy_unit;
 
 
  99};
 100static struct rapl_defaults *rapl_defaults;
 
 
 
 
 
 
 101
 102/* Sideband MBI registers */
 103#define IOSF_CPU_POWER_BUDGET_CTL_BYT (0x2)
 104#define IOSF_CPU_POWER_BUDGET_CTL_TNG (0xdf)
 105
 106#define PACKAGE_PLN_INT_SAVED   BIT(0)
 107#define MAX_PRIM_NAME (32)
 108
 109/* per domain data. used to describe individual knobs such that access function
 110 * can be consolidated into one instead of many inline functions.
 111 */
 112struct rapl_primitive_info {
 113	const char *name;
 114	u64 mask;
 115	int shift;
 116	enum rapl_domain_reg_id id;
 117	enum unit_type unit;
 118	u32 flag;
 119};
 120
 121#define PRIMITIVE_INFO_INIT(p, m, s, i, u, f) {	\
 122		.name = #p,			\
 123		.mask = m,			\
 124		.shift = s,			\
 125		.id = i,			\
 126		.unit = u,			\
 127		.flag = f			\
 128	}
 129
 130static void rapl_init_domains(struct rapl_package *rp);
 131static int rapl_read_data_raw(struct rapl_domain *rd,
 132			      enum rapl_primitives prim,
 133			      bool xlate, u64 *data);
 134static int rapl_write_data_raw(struct rapl_domain *rd,
 135			       enum rapl_primitives prim,
 136			       unsigned long long value);
 
 
 
 
 
 
 137static u64 rapl_unit_xlate(struct rapl_domain *rd,
 138			   enum unit_type type, u64 value, int to_raw);
 139static void package_power_limit_irq_save(struct rapl_package *rp);
 140
 141static LIST_HEAD(rapl_packages);	/* guarded by CPU hotplug lock */
 142
 143static const char *const rapl_domain_names[] = {
 144	"package",
 145	"core",
 146	"uncore",
 147	"dram",
 148	"psys",
 149};
 150
 151static int get_energy_counter(struct powercap_zone *power_zone,
 152			      u64 *energy_raw)
 153{
 154	struct rapl_domain *rd;
 155	u64 energy_now;
 156
 157	/* prevent CPU hotplug, make sure the RAPL domain does not go
 158	 * away while reading the counter.
 159	 */
 160	get_online_cpus();
 161	rd = power_zone_to_rapl_domain(power_zone);
 162
 163	if (!rapl_read_data_raw(rd, ENERGY_COUNTER, true, &energy_now)) {
 164		*energy_raw = energy_now;
 165		put_online_cpus();
 166
 167		return 0;
 168	}
 169	put_online_cpus();
 170
 171	return -EIO;
 172}
 173
 174static int get_max_energy_counter(struct powercap_zone *pcd_dev, u64 *energy)
 175{
 176	struct rapl_domain *rd = power_zone_to_rapl_domain(pcd_dev);
 177
 178	*energy = rapl_unit_xlate(rd, ENERGY_UNIT, ENERGY_STATUS_MASK, 0);
 179	return 0;
 180}
 181
 182static int release_zone(struct powercap_zone *power_zone)
 183{
 184	struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
 185	struct rapl_package *rp = rd->rp;
 186
 187	/* package zone is the last zone of a package, we can free
 188	 * memory here since all children has been unregistered.
 189	 */
 190	if (rd->id == RAPL_DOMAIN_PACKAGE) {
 191		kfree(rd);
 192		rp->domains = NULL;
 193	}
 194
 195	return 0;
 196
 197}
 198
 199static int find_nr_power_limit(struct rapl_domain *rd)
 200{
 201	int i, nr_pl = 0;
 202
 203	for (i = 0; i < NR_POWER_LIMITS; i++) {
 204		if (rd->rpl[i].name)
 205			nr_pl++;
 206	}
 207
 208	return nr_pl;
 209}
 210
 211static int set_domain_enable(struct powercap_zone *power_zone, bool mode)
 212{
 213	struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
 
 
 214
 215	if (rd->state & DOMAIN_STATE_BIOS_LOCKED)
 216		return -EACCES;
 
 
 
 217
 218	get_online_cpus();
 219	rapl_write_data_raw(rd, PL1_ENABLE, mode);
 220	if (rapl_defaults->set_floor_freq)
 221		rapl_defaults->set_floor_freq(rd, mode);
 222	put_online_cpus();
 223
 224	return 0;
 225}
 226
 227static int get_domain_enable(struct powercap_zone *power_zone, bool *mode)
 228{
 229	struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
 230	u64 val;
 
 231
 232	if (rd->state & DOMAIN_STATE_BIOS_LOCKED) {
 233		*mode = false;
 234		return 0;
 235	}
 236	get_online_cpus();
 237	if (rapl_read_data_raw(rd, PL1_ENABLE, true, &val)) {
 238		put_online_cpus();
 239		return -EIO;
 240	}
 241	*mode = val;
 242	put_online_cpus();
 243
 244	return 0;
 245}
 246
 247/* per RAPL domain ops, in the order of rapl_domain_type */
 248static const struct powercap_zone_ops zone_ops[] = {
 249	/* RAPL_DOMAIN_PACKAGE */
 250	{
 251	 .get_energy_uj = get_energy_counter,
 252	 .get_max_energy_range_uj = get_max_energy_counter,
 253	 .release = release_zone,
 254	 .set_enable = set_domain_enable,
 255	 .get_enable = get_domain_enable,
 256	 },
 257	/* RAPL_DOMAIN_PP0 */
 258	{
 259	 .get_energy_uj = get_energy_counter,
 260	 .get_max_energy_range_uj = get_max_energy_counter,
 261	 .release = release_zone,
 262	 .set_enable = set_domain_enable,
 263	 .get_enable = get_domain_enable,
 264	 },
 265	/* RAPL_DOMAIN_PP1 */
 266	{
 267	 .get_energy_uj = get_energy_counter,
 268	 .get_max_energy_range_uj = get_max_energy_counter,
 269	 .release = release_zone,
 270	 .set_enable = set_domain_enable,
 271	 .get_enable = get_domain_enable,
 272	 },
 273	/* RAPL_DOMAIN_DRAM */
 274	{
 275	 .get_energy_uj = get_energy_counter,
 276	 .get_max_energy_range_uj = get_max_energy_counter,
 277	 .release = release_zone,
 278	 .set_enable = set_domain_enable,
 279	 .get_enable = get_domain_enable,
 280	 },
 281	/* RAPL_DOMAIN_PLATFORM */
 282	{
 283	 .get_energy_uj = get_energy_counter,
 284	 .get_max_energy_range_uj = get_max_energy_counter,
 285	 .release = release_zone,
 286	 .set_enable = set_domain_enable,
 287	 .get_enable = get_domain_enable,
 288	 },
 289};
 290
 291/*
 292 * Constraint index used by powercap can be different than power limit (PL)
 293 * index in that some  PLs maybe missing due to non-existent MSRs. So we
 294 * need to convert here by finding the valid PLs only (name populated).
 295 */
 296static int contraint_to_pl(struct rapl_domain *rd, int cid)
 297{
 298	int i, j;
 299
 300	for (i = 0, j = 0; i < NR_POWER_LIMITS; i++) {
 301		if ((rd->rpl[i].name) && j++ == cid) {
 302			pr_debug("%s: index %d\n", __func__, i);
 303			return i;
 304		}
 305	}
 306	pr_err("Cannot find matching power limit for constraint %d\n", cid);
 307
 308	return -EINVAL;
 309}
 310
 311static int set_power_limit(struct powercap_zone *power_zone, int cid,
 312			   u64 power_limit)
 313{
 314	struct rapl_domain *rd;
 315	struct rapl_package *rp;
 316	int ret = 0;
 317	int id;
 318
 319	get_online_cpus();
 320	rd = power_zone_to_rapl_domain(power_zone);
 321	id = contraint_to_pl(rd, cid);
 322	if (id < 0) {
 323		ret = id;
 324		goto set_exit;
 325	}
 326
 327	rp = rd->rp;
 328
 329	if (rd->state & DOMAIN_STATE_BIOS_LOCKED) {
 330		dev_warn(&power_zone->dev,
 331			 "%s locked by BIOS, monitoring only\n", rd->name);
 332		ret = -EACCES;
 333		goto set_exit;
 334	}
 335
 336	switch (rd->rpl[id].prim_id) {
 337	case PL1_ENABLE:
 338		rapl_write_data_raw(rd, POWER_LIMIT1, power_limit);
 339		break;
 340	case PL2_ENABLE:
 341		rapl_write_data_raw(rd, POWER_LIMIT2, power_limit);
 342		break;
 343	default:
 344		ret = -EINVAL;
 345	}
 346	if (!ret)
 347		package_power_limit_irq_save(rp);
 348set_exit:
 349	put_online_cpus();
 350	return ret;
 351}
 352
 353static int get_current_power_limit(struct powercap_zone *power_zone, int cid,
 354				   u64 *data)
 355{
 356	struct rapl_domain *rd;
 357	u64 val;
 358	int prim;
 359	int ret = 0;
 360	int id;
 361
 362	get_online_cpus();
 363	rd = power_zone_to_rapl_domain(power_zone);
 364	id = contraint_to_pl(rd, cid);
 365	if (id < 0) {
 366		ret = id;
 367		goto get_exit;
 368	}
 369
 370	switch (rd->rpl[id].prim_id) {
 371	case PL1_ENABLE:
 372		prim = POWER_LIMIT1;
 373		break;
 374	case PL2_ENABLE:
 375		prim = POWER_LIMIT2;
 376		break;
 377	default:
 378		put_online_cpus();
 379		return -EINVAL;
 380	}
 381	if (rapl_read_data_raw(rd, prim, true, &val))
 382		ret = -EIO;
 383	else
 384		*data = val;
 385
 386get_exit:
 387	put_online_cpus();
 388
 389	return ret;
 390}
 391
 392static int set_time_window(struct powercap_zone *power_zone, int cid,
 393			   u64 window)
 394{
 395	struct rapl_domain *rd;
 396	int ret = 0;
 397	int id;
 398
 399	get_online_cpus();
 400	rd = power_zone_to_rapl_domain(power_zone);
 401	id = contraint_to_pl(rd, cid);
 402	if (id < 0) {
 403		ret = id;
 404		goto set_time_exit;
 405	}
 406
 407	switch (rd->rpl[id].prim_id) {
 408	case PL1_ENABLE:
 409		rapl_write_data_raw(rd, TIME_WINDOW1, window);
 410		break;
 411	case PL2_ENABLE:
 412		rapl_write_data_raw(rd, TIME_WINDOW2, window);
 413		break;
 414	default:
 415		ret = -EINVAL;
 416	}
 417
 418set_time_exit:
 419	put_online_cpus();
 420	return ret;
 421}
 422
 423static int get_time_window(struct powercap_zone *power_zone, int cid,
 424			   u64 *data)
 425{
 426	struct rapl_domain *rd;
 427	u64 val;
 428	int ret = 0;
 429	int id;
 430
 431	get_online_cpus();
 432	rd = power_zone_to_rapl_domain(power_zone);
 433	id = contraint_to_pl(rd, cid);
 434	if (id < 0) {
 435		ret = id;
 436		goto get_time_exit;
 437	}
 438
 439	switch (rd->rpl[id].prim_id) {
 440	case PL1_ENABLE:
 441		ret = rapl_read_data_raw(rd, TIME_WINDOW1, true, &val);
 442		break;
 443	case PL2_ENABLE:
 444		ret = rapl_read_data_raw(rd, TIME_WINDOW2, true, &val);
 445		break;
 446	default:
 447		put_online_cpus();
 448		return -EINVAL;
 449	}
 450	if (!ret)
 451		*data = val;
 452
 453get_time_exit:
 454	put_online_cpus();
 455
 456	return ret;
 457}
 458
 459static const char *get_constraint_name(struct powercap_zone *power_zone,
 460				       int cid)
 461{
 462	struct rapl_domain *rd;
 463	int id;
 464
 465	rd = power_zone_to_rapl_domain(power_zone);
 466	id = contraint_to_pl(rd, cid);
 467	if (id >= 0)
 468		return rd->rpl[id].name;
 469
 470	return NULL;
 471}
 472
 473static int get_max_power(struct powercap_zone *power_zone, int id, u64 *data)
 474{
 475	struct rapl_domain *rd;
 476	u64 val;
 477	int prim;
 478	int ret = 0;
 
 479
 480	get_online_cpus();
 481	rd = power_zone_to_rapl_domain(power_zone);
 482	switch (rd->rpl[id].prim_id) {
 483	case PL1_ENABLE:
 484		prim = THERMAL_SPEC_POWER;
 485		break;
 486	case PL2_ENABLE:
 487		prim = MAX_POWER;
 488		break;
 489	default:
 490		put_online_cpus();
 491		return -EINVAL;
 492	}
 493	if (rapl_read_data_raw(rd, prim, true, &val))
 494		ret = -EIO;
 495	else
 496		*data = val;
 497
 498	put_online_cpus();
 
 
 
 
 499
 500	return ret;
 501}
 502
 503static const struct powercap_zone_constraint_ops constraint_ops = {
 504	.set_power_limit_uw = set_power_limit,
 505	.get_power_limit_uw = get_current_power_limit,
 506	.set_time_window_us = set_time_window,
 507	.get_time_window_us = get_time_window,
 508	.get_max_power_uw = get_max_power,
 509	.get_name = get_constraint_name,
 510};
 511
 
 
 
 
 
 
 512/* called after domain detection and package level data are set */
 513static void rapl_init_domains(struct rapl_package *rp)
 514{
 515	enum rapl_domain_type i;
 516	enum rapl_domain_reg_id j;
 517	struct rapl_domain *rd = rp->domains;
 518
 519	for (i = 0; i < RAPL_DOMAIN_MAX; i++) {
 520		unsigned int mask = rp->domain_map & (1 << i);
 
 521
 522		if (!mask)
 523			continue;
 524
 525		rd->rp = rp;
 526		rd->name = rapl_domain_names[i];
 
 
 
 
 
 
 
 
 
 527		rd->id = i;
 528		rd->rpl[0].prim_id = PL1_ENABLE;
 529		rd->rpl[0].name = pl1_name;
 530		/* some domain may support two power limits */
 531		if (rp->priv->limits[i] == 2) {
 532			rd->rpl[1].prim_id = PL2_ENABLE;
 533			rd->rpl[1].name = pl2_name;
 
 534		}
 535
 536		for (j = 0; j < RAPL_DOMAIN_REG_MAX; j++)
 537			rd->regs[j] = rp->priv->regs[i][j];
 538
 539		if (i == RAPL_DOMAIN_DRAM) {
 540			rd->domain_energy_unit =
 541			    rapl_defaults->dram_domain_energy_unit;
 542			if (rd->domain_energy_unit)
 543				pr_info("DRAM domain energy unit %dpj\n",
 544					rd->domain_energy_unit);
 545		}
 546		rd++;
 547	}
 548}
 549
 550static u64 rapl_unit_xlate(struct rapl_domain *rd, enum unit_type type,
 551			   u64 value, int to_raw)
 552{
 553	u64 units = 1;
 554	struct rapl_package *rp = rd->rp;
 555	u64 scale = 1;
 556
 557	switch (type) {
 558	case POWER_UNIT:
 559		units = rp->power_unit;
 560		break;
 561	case ENERGY_UNIT:
 562		scale = ENERGY_UNIT_SCALE;
 563		/* per domain unit takes precedence */
 564		if (rd->domain_energy_unit)
 565			units = rd->domain_energy_unit;
 566		else
 567			units = rp->energy_unit;
 568		break;
 569	case TIME_UNIT:
 570		return rapl_defaults->compute_time_window(rp, value, to_raw);
 571	case ARBITRARY_UNIT:
 572	default:
 573		return value;
 574	};
 575
 576	if (to_raw)
 577		return div64_u64(value, units) * scale;
 578
 579	value *= units;
 580
 581	return div64_u64(value, scale);
 582}
 583
 584/* in the order of enum rapl_primitives */
 585static struct rapl_primitive_info rpi[] = {
 586	/* name, mask, shift, msr index, unit divisor */
 587	PRIMITIVE_INFO_INIT(ENERGY_COUNTER, ENERGY_STATUS_MASK, 0,
 588			    RAPL_DOMAIN_REG_STATUS, ENERGY_UNIT, 0),
 589	PRIMITIVE_INFO_INIT(POWER_LIMIT1, POWER_LIMIT1_MASK, 0,
 590			    RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
 591	PRIMITIVE_INFO_INIT(POWER_LIMIT2, POWER_LIMIT2_MASK, 32,
 592			    RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
 593	PRIMITIVE_INFO_INIT(FW_LOCK, POWER_LOW_LOCK, 31,
 
 
 
 
 
 
 594			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
 595	PRIMITIVE_INFO_INIT(PL1_ENABLE, POWER_LIMIT1_ENABLE, 15,
 596			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
 597	PRIMITIVE_INFO_INIT(PL1_CLAMP, POWER_LIMIT1_CLAMP, 16,
 598			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
 599	PRIMITIVE_INFO_INIT(PL2_ENABLE, POWER_LIMIT2_ENABLE, 47,
 600			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
 601	PRIMITIVE_INFO_INIT(PL2_CLAMP, POWER_LIMIT2_CLAMP, 48,
 602			    RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
 603	PRIMITIVE_INFO_INIT(TIME_WINDOW1, TIME_WINDOW1_MASK, 17,
 604			    RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
 605	PRIMITIVE_INFO_INIT(TIME_WINDOW2, TIME_WINDOW2_MASK, 49,
 606			    RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
 607	PRIMITIVE_INFO_INIT(THERMAL_SPEC_POWER, POWER_INFO_THERMAL_SPEC_MASK,
 608			    0, RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
 609	PRIMITIVE_INFO_INIT(MAX_POWER, POWER_INFO_MAX_MASK, 32,
 610			    RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
 611	PRIMITIVE_INFO_INIT(MIN_POWER, POWER_INFO_MIN_MASK, 16,
 612			    RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
 613	PRIMITIVE_INFO_INIT(MAX_TIME_WINDOW, POWER_INFO_MAX_TIME_WIN_MASK, 48,
 614			    RAPL_DOMAIN_REG_INFO, TIME_UNIT, 0),
 615	PRIMITIVE_INFO_INIT(THROTTLED_TIME, PERF_STATUS_THROTTLE_TIME_MASK, 0,
 616			    RAPL_DOMAIN_REG_PERF, TIME_UNIT, 0),
 617	PRIMITIVE_INFO_INIT(PRIORITY_LEVEL, PP_POLICY_MASK, 0,
 618			    RAPL_DOMAIN_REG_POLICY, ARBITRARY_UNIT, 0),
 
 
 
 
 
 
 
 
 
 
 
 
 619	/* non-hardware */
 620	PRIMITIVE_INFO_INIT(AVERAGE_POWER, 0, 0, 0, POWER_UNIT,
 621			    RAPL_PRIMITIVE_DERIVED),
 622	{NULL, 0, 0, 0},
 623};
 624
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 625/* Read primitive data based on its related struct rapl_primitive_info.
 626 * if xlate flag is set, return translated data based on data units, i.e.
 627 * time, energy, and power.
 628 * RAPL MSRs are non-architectual and are laid out not consistently across
 629 * domains. Here we use primitive info to allow writing consolidated access
 630 * functions.
 631 * For a given primitive, it is processed by MSR mask and shift. Unit conversion
 632 * is pre-assigned based on RAPL unit MSRs read at init time.
 633 * 63-------------------------- 31--------------------------- 0
 634 * |                           xxxxx (mask)                   |
 635 * |                                |<- shift ----------------|
 636 * 63-------------------------- 31--------------------------- 0
 637 */
 638static int rapl_read_data_raw(struct rapl_domain *rd,
 639			      enum rapl_primitives prim, bool xlate, u64 *data)
 640{
 641	u64 value;
 642	struct rapl_primitive_info *rp = &rpi[prim];
 
 643	struct reg_action ra;
 644	int cpu;
 645
 646	if (!rp->name || rp->flag & RAPL_PRIMITIVE_DUMMY)
 647		return -EINVAL;
 648
 649	ra.reg = rd->regs[rp->id];
 650	if (!ra.reg)
 651		return -EINVAL;
 652
 653	cpu = rd->rp->lead_cpu;
 654
 655	/* domain with 2 limits has different bit */
 656	if (prim == FW_LOCK && rd->rp->priv->limits[rd->id] == 2) {
 657		rp->mask = POWER_HIGH_LOCK;
 658		rp->shift = 63;
 659	}
 660	/* non-hardware data are collected by the polling thread */
 661	if (rp->flag & RAPL_PRIMITIVE_DERIVED) {
 662		*data = rd->rdd.primitives[prim];
 663		return 0;
 664	}
 665
 666	ra.mask = rp->mask;
 667
 668	if (rd->rp->priv->read_raw(cpu, &ra)) {
 669		pr_debug("failed to read reg 0x%llx on cpu %d\n", ra.reg, cpu);
 670		return -EIO;
 671	}
 672
 673	value = ra.value >> rp->shift;
 674
 675	if (xlate)
 676		*data = rapl_unit_xlate(rd, rp->unit, value, 0);
 677	else
 678		*data = value;
 679
 680	return 0;
 681}
 682
 683/* Similar use of primitive info in the read counterpart */
 684static int rapl_write_data_raw(struct rapl_domain *rd,
 685			       enum rapl_primitives prim,
 686			       unsigned long long value)
 687{
 688	struct rapl_primitive_info *rp = &rpi[prim];
 689	int cpu;
 690	u64 bits;
 691	struct reg_action ra;
 692	int ret;
 693
 694	cpu = rd->rp->lead_cpu;
 695	bits = rapl_unit_xlate(rd, rp->unit, value, 1);
 696	bits <<= rp->shift;
 697	bits &= rp->mask;
 
 
 698
 699	memset(&ra, 0, sizeof(ra));
 700
 701	ra.reg = rd->regs[rp->id];
 702	ra.mask = rp->mask;
 703	ra.value = bits;
 704
 705	ret = rd->rp->priv->write_raw(cpu, &ra);
 706
 707	return ret;
 708}
 709
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 710/*
 711 * Raw RAPL data stored in MSRs are in certain scales. We need to
 712 * convert them into standard units based on the units reported in
 713 * the RAPL unit MSRs. This is specific to CPUs as the method to
 714 * calculate units differ on different CPUs.
 715 * We convert the units to below format based on CPUs.
 716 * i.e.
 717 * energy unit: picoJoules  : Represented in picoJoules by default
 718 * power unit : microWatts  : Represented in milliWatts by default
 719 * time unit  : microseconds: Represented in seconds by default
 720 */
 721static int rapl_check_unit_core(struct rapl_package *rp, int cpu)
 722{
 723	struct reg_action ra;
 724	u32 value;
 725
 726	ra.reg = rp->priv->reg_unit;
 727	ra.mask = ~0;
 728	if (rp->priv->read_raw(cpu, &ra)) {
 729		pr_err("Failed to read power unit REG 0x%llx on CPU %d, exit.\n",
 730		       rp->priv->reg_unit, cpu);
 731		return -ENODEV;
 732	}
 733
 734	value = (ra.value & ENERGY_UNIT_MASK) >> ENERGY_UNIT_OFFSET;
 735	rp->energy_unit = ENERGY_UNIT_SCALE * 1000000 / (1 << value);
 736
 737	value = (ra.value & POWER_UNIT_MASK) >> POWER_UNIT_OFFSET;
 738	rp->power_unit = 1000000 / (1 << value);
 739
 740	value = (ra.value & TIME_UNIT_MASK) >> TIME_UNIT_OFFSET;
 741	rp->time_unit = 1000000 / (1 << value);
 742
 743	pr_debug("Core CPU %s energy=%dpJ, time=%dus, power=%duW\n",
 744		 rp->name, rp->energy_unit, rp->time_unit, rp->power_unit);
 745
 746	return 0;
 747}
 748
 749static int rapl_check_unit_atom(struct rapl_package *rp, int cpu)
 750{
 751	struct reg_action ra;
 752	u32 value;
 753
 754	ra.reg = rp->priv->reg_unit;
 755	ra.mask = ~0;
 756	if (rp->priv->read_raw(cpu, &ra)) {
 757		pr_err("Failed to read power unit REG 0x%llx on CPU %d, exit.\n",
 758		       rp->priv->reg_unit, cpu);
 759		return -ENODEV;
 760	}
 761
 762	value = (ra.value & ENERGY_UNIT_MASK) >> ENERGY_UNIT_OFFSET;
 763	rp->energy_unit = ENERGY_UNIT_SCALE * 1 << value;
 764
 765	value = (ra.value & POWER_UNIT_MASK) >> POWER_UNIT_OFFSET;
 766	rp->power_unit = (1 << value) * 1000;
 767
 768	value = (ra.value & TIME_UNIT_MASK) >> TIME_UNIT_OFFSET;
 769	rp->time_unit = 1000000 / (1 << value);
 770
 771	pr_debug("Atom %s energy=%dpJ, time=%dus, power=%duW\n",
 772		 rp->name, rp->energy_unit, rp->time_unit, rp->power_unit);
 773
 774	return 0;
 775}
 776
 777static void power_limit_irq_save_cpu(void *info)
 778{
 779	u32 l, h = 0;
 780	struct rapl_package *rp = (struct rapl_package *)info;
 781
 782	/* save the state of PLN irq mask bit before disabling it */
 783	rdmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, &l, &h);
 784	if (!(rp->power_limit_irq & PACKAGE_PLN_INT_SAVED)) {
 785		rp->power_limit_irq = l & PACKAGE_THERM_INT_PLN_ENABLE;
 786		rp->power_limit_irq |= PACKAGE_PLN_INT_SAVED;
 787	}
 788	l &= ~PACKAGE_THERM_INT_PLN_ENABLE;
 789	wrmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, l, h);
 790}
 791
 792/* REVISIT:
 793 * When package power limit is set artificially low by RAPL, LVT
 794 * thermal interrupt for package power limit should be ignored
 795 * since we are not really exceeding the real limit. The intention
 796 * is to avoid excessive interrupts while we are trying to save power.
 797 * A useful feature might be routing the package_power_limit interrupt
 798 * to userspace via eventfd. once we have a usecase, this is simple
 799 * to do by adding an atomic notifier.
 800 */
 801
 802static void package_power_limit_irq_save(struct rapl_package *rp)
 803{
 
 
 
 804	if (!boot_cpu_has(X86_FEATURE_PTS) || !boot_cpu_has(X86_FEATURE_PLN))
 805		return;
 806
 807	smp_call_function_single(rp->lead_cpu, power_limit_irq_save_cpu, rp, 1);
 808}
 809
 810/*
 811 * Restore per package power limit interrupt enable state. Called from cpu
 812 * hotplug code on package removal.
 813 */
 814static void package_power_limit_irq_restore(struct rapl_package *rp)
 815{
 816	u32 l, h;
 817
 
 
 
 818	if (!boot_cpu_has(X86_FEATURE_PTS) || !boot_cpu_has(X86_FEATURE_PLN))
 819		return;
 820
 821	/* irq enable state not saved, nothing to restore */
 822	if (!(rp->power_limit_irq & PACKAGE_PLN_INT_SAVED))
 823		return;
 824
 825	rdmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, &l, &h);
 826
 827	if (rp->power_limit_irq & PACKAGE_THERM_INT_PLN_ENABLE)
 828		l |= PACKAGE_THERM_INT_PLN_ENABLE;
 829	else
 830		l &= ~PACKAGE_THERM_INT_PLN_ENABLE;
 831
 832	wrmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, l, h);
 833}
 834
 835static void set_floor_freq_default(struct rapl_domain *rd, bool mode)
 836{
 837	int nr_powerlimit = find_nr_power_limit(rd);
 838
 839	/* always enable clamp such that p-state can go below OS requested
 840	 * range. power capping priority over guranteed frequency.
 841	 */
 842	rapl_write_data_raw(rd, PL1_CLAMP, mode);
 843
 844	/* some domains have pl2 */
 845	if (nr_powerlimit > 1) {
 846		rapl_write_data_raw(rd, PL2_ENABLE, mode);
 847		rapl_write_data_raw(rd, PL2_CLAMP, mode);
 848	}
 849}
 850
 851static void set_floor_freq_atom(struct rapl_domain *rd, bool enable)
 852{
 853	static u32 power_ctrl_orig_val;
 
 854	u32 mdata;
 855
 856	if (!rapl_defaults->floor_freq_reg_addr) {
 857		pr_err("Invalid floor frequency config register\n");
 858		return;
 859	}
 860
 861	if (!power_ctrl_orig_val)
 862		iosf_mbi_read(BT_MBI_UNIT_PMC, MBI_CR_READ,
 863			      rapl_defaults->floor_freq_reg_addr,
 864			      &power_ctrl_orig_val);
 865	mdata = power_ctrl_orig_val;
 866	if (enable) {
 867		mdata &= ~(0x7f << 8);
 868		mdata |= 1 << 8;
 869	}
 870	iosf_mbi_write(BT_MBI_UNIT_PMC, MBI_CR_WRITE,
 871		       rapl_defaults->floor_freq_reg_addr, mdata);
 872}
 873
 874static u64 rapl_compute_time_window_core(struct rapl_package *rp, u64 value,
 875					 bool to_raw)
 876{
 877	u64 f, y;		/* fraction and exp. used for time unit */
 878
 879	/*
 880	 * Special processing based on 2^Y*(1+F/4), refer
 881	 * to Intel Software Developer's manual Vol.3B: CH 14.9.3.
 882	 */
 883	if (!to_raw) {
 884		f = (value & 0x60) >> 5;
 885		y = value & 0x1f;
 886		value = (1 << y) * (4 + f) * rp->time_unit / 4;
 887	} else {
 888		do_div(value, rp->time_unit);
 
 
 
 889		y = ilog2(value);
 890		f = div64_u64(4 * (value - (1 << y)), 1 << y);
 
 
 
 
 
 
 
 
 891		value = (y & 0x1f) | ((f & 0x3) << 5);
 892	}
 893	return value;
 894}
 895
 896static u64 rapl_compute_time_window_atom(struct rapl_package *rp, u64 value,
 897					 bool to_raw)
 898{
 899	/*
 900	 * Atom time unit encoding is straight forward val * time_unit,
 901	 * where time_unit is default to 1 sec. Never 0.
 902	 */
 903	if (!to_raw)
 904		return (value) ? value *= rp->time_unit : rp->time_unit;
 905
 906	value = div64_u64(value, rp->time_unit);
 907
 908	return value;
 909}
 910
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 911static const struct rapl_defaults rapl_defaults_core = {
 912	.floor_freq_reg_addr = 0,
 913	.check_unit = rapl_check_unit_core,
 914	.set_floor_freq = set_floor_freq_default,
 915	.compute_time_window = rapl_compute_time_window_core,
 916};
 917
 918static const struct rapl_defaults rapl_defaults_hsw_server = {
 919	.check_unit = rapl_check_unit_core,
 920	.set_floor_freq = set_floor_freq_default,
 921	.compute_time_window = rapl_compute_time_window_core,
 922	.dram_domain_energy_unit = 15300,
 923};
 924
 
 
 
 
 
 
 
 
 925static const struct rapl_defaults rapl_defaults_byt = {
 926	.floor_freq_reg_addr = IOSF_CPU_POWER_BUDGET_CTL_BYT,
 927	.check_unit = rapl_check_unit_atom,
 928	.set_floor_freq = set_floor_freq_atom,
 929	.compute_time_window = rapl_compute_time_window_atom,
 930};
 931
 932static const struct rapl_defaults rapl_defaults_tng = {
 933	.floor_freq_reg_addr = IOSF_CPU_POWER_BUDGET_CTL_TNG,
 934	.check_unit = rapl_check_unit_atom,
 935	.set_floor_freq = set_floor_freq_atom,
 936	.compute_time_window = rapl_compute_time_window_atom,
 937};
 938
 939static const struct rapl_defaults rapl_defaults_ann = {
 940	.floor_freq_reg_addr = 0,
 941	.check_unit = rapl_check_unit_atom,
 942	.set_floor_freq = NULL,
 943	.compute_time_window = rapl_compute_time_window_atom,
 944};
 945
 946static const struct rapl_defaults rapl_defaults_cht = {
 947	.floor_freq_reg_addr = 0,
 948	.check_unit = rapl_check_unit_atom,
 949	.set_floor_freq = NULL,
 950	.compute_time_window = rapl_compute_time_window_atom,
 951};
 952
 
 
 
 
 953static const struct x86_cpu_id rapl_ids[] __initconst = {
 954	INTEL_CPU_FAM6(SANDYBRIDGE, rapl_defaults_core),
 955	INTEL_CPU_FAM6(SANDYBRIDGE_X, rapl_defaults_core),
 956
 957	INTEL_CPU_FAM6(IVYBRIDGE, rapl_defaults_core),
 958	INTEL_CPU_FAM6(IVYBRIDGE_X, rapl_defaults_core),
 959
 960	INTEL_CPU_FAM6(HASWELL, rapl_defaults_core),
 961	INTEL_CPU_FAM6(HASWELL_L, rapl_defaults_core),
 962	INTEL_CPU_FAM6(HASWELL_G, rapl_defaults_core),
 963	INTEL_CPU_FAM6(HASWELL_X, rapl_defaults_hsw_server),
 964
 965	INTEL_CPU_FAM6(BROADWELL, rapl_defaults_core),
 966	INTEL_CPU_FAM6(BROADWELL_G, rapl_defaults_core),
 967	INTEL_CPU_FAM6(BROADWELL_D, rapl_defaults_core),
 968	INTEL_CPU_FAM6(BROADWELL_X, rapl_defaults_hsw_server),
 969
 970	INTEL_CPU_FAM6(SKYLAKE, rapl_defaults_core),
 971	INTEL_CPU_FAM6(SKYLAKE_L, rapl_defaults_core),
 972	INTEL_CPU_FAM6(SKYLAKE_X, rapl_defaults_hsw_server),
 973	INTEL_CPU_FAM6(KABYLAKE_L, rapl_defaults_core),
 974	INTEL_CPU_FAM6(KABYLAKE, rapl_defaults_core),
 975	INTEL_CPU_FAM6(CANNONLAKE_L, rapl_defaults_core),
 976	INTEL_CPU_FAM6(ICELAKE_L, rapl_defaults_core),
 977	INTEL_CPU_FAM6(ICELAKE, rapl_defaults_core),
 978	INTEL_CPU_FAM6(ICELAKE_NNPI, rapl_defaults_core),
 979	INTEL_CPU_FAM6(ICELAKE_X, rapl_defaults_hsw_server),
 980	INTEL_CPU_FAM6(ICELAKE_D, rapl_defaults_hsw_server),
 981
 982	INTEL_CPU_FAM6(ATOM_SILVERMONT, rapl_defaults_byt),
 983	INTEL_CPU_FAM6(ATOM_AIRMONT, rapl_defaults_cht),
 984	INTEL_CPU_FAM6(ATOM_SILVERMONT_MID, rapl_defaults_tng),
 985	INTEL_CPU_FAM6(ATOM_AIRMONT_MID, rapl_defaults_ann),
 986	INTEL_CPU_FAM6(ATOM_GOLDMONT, rapl_defaults_core),
 987	INTEL_CPU_FAM6(ATOM_GOLDMONT_PLUS, rapl_defaults_core),
 988	INTEL_CPU_FAM6(ATOM_GOLDMONT_D, rapl_defaults_core),
 989	INTEL_CPU_FAM6(ATOM_TREMONT_D, rapl_defaults_core),
 990
 991	INTEL_CPU_FAM6(XEON_PHI_KNL, rapl_defaults_hsw_server),
 992	INTEL_CPU_FAM6(XEON_PHI_KNM, rapl_defaults_hsw_server),
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 993	{}
 994};
 995
 996MODULE_DEVICE_TABLE(x86cpu, rapl_ids);
 997
 998/* Read once for all raw primitive data for domains */
 999static void rapl_update_domain_data(struct rapl_package *rp)
1000{
1001	int dmn, prim;
1002	u64 val;
1003
1004	for (dmn = 0; dmn < rp->nr_domains; dmn++) {
1005		pr_debug("update %s domain %s data\n", rp->name,
1006			 rp->domains[dmn].name);
1007		/* exclude non-raw primitives */
1008		for (prim = 0; prim < NR_RAW_PRIMITIVES; prim++) {
 
 
1009			if (!rapl_read_data_raw(&rp->domains[dmn], prim,
1010						rpi[prim].unit, &val))
1011				rp->domains[dmn].rdd.primitives[prim] = val;
1012		}
1013	}
1014
1015}
1016
1017static int rapl_package_register_powercap(struct rapl_package *rp)
1018{
1019	struct rapl_domain *rd;
1020	struct powercap_zone *power_zone = NULL;
1021	int nr_pl, ret;
1022
1023	/* Update the domain data of the new package */
1024	rapl_update_domain_data(rp);
1025
1026	/* first we register package domain as the parent zone */
1027	for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
1028		if (rd->id == RAPL_DOMAIN_PACKAGE) {
1029			nr_pl = find_nr_power_limit(rd);
1030			pr_debug("register package domain %s\n", rp->name);
1031			power_zone = powercap_register_zone(&rd->power_zone,
1032					    rp->priv->control_type, rp->name,
1033					    NULL, &zone_ops[rd->id], nr_pl,
1034					    &constraint_ops);
1035			if (IS_ERR(power_zone)) {
1036				pr_debug("failed to register power zone %s\n",
1037					 rp->name);
1038				return PTR_ERR(power_zone);
1039			}
1040			/* track parent zone in per package/socket data */
1041			rp->power_zone = power_zone;
1042			/* done, only one package domain per socket */
1043			break;
1044		}
1045	}
1046	if (!power_zone) {
1047		pr_err("no package domain found, unknown topology!\n");
1048		return -ENODEV;
1049	}
1050	/* now register domains as children of the socket/package */
1051	for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
 
 
1052		if (rd->id == RAPL_DOMAIN_PACKAGE)
1053			continue;
 
 
1054		/* number of power limits per domain varies */
1055		nr_pl = find_nr_power_limit(rd);
1056		power_zone = powercap_register_zone(&rd->power_zone,
1057						    rp->priv->control_type,
1058						    rd->name, rp->power_zone,
1059						    &zone_ops[rd->id], nr_pl,
1060						    &constraint_ops);
1061
1062		if (IS_ERR(power_zone)) {
1063			pr_debug("failed to register power_zone, %s:%s\n",
1064				 rp->name, rd->name);
1065			ret = PTR_ERR(power_zone);
1066			goto err_cleanup;
1067		}
1068	}
1069	return 0;
1070
1071err_cleanup:
1072	/*
1073	 * Clean up previously initialized domains within the package if we
1074	 * failed after the first domain setup.
1075	 */
1076	while (--rd >= rp->domains) {
1077		pr_debug("unregister %s domain %s\n", rp->name, rd->name);
1078		powercap_unregister_zone(rp->priv->control_type,
1079					 &rd->power_zone);
1080	}
1081
1082	return ret;
1083}
1084
1085int rapl_add_platform_domain(struct rapl_if_priv *priv)
1086{
1087	struct rapl_domain *rd;
1088	struct powercap_zone *power_zone;
1089	struct reg_action ra;
1090	int ret;
1091
1092	ra.reg = priv->regs[RAPL_DOMAIN_PLATFORM][RAPL_DOMAIN_REG_STATUS];
1093	ra.mask = ~0;
1094	ret = priv->read_raw(0, &ra);
1095	if (ret || !ra.value)
1096		return -ENODEV;
1097
1098	ra.reg = priv->regs[RAPL_DOMAIN_PLATFORM][RAPL_DOMAIN_REG_LIMIT];
1099	ra.mask = ~0;
1100	ret = priv->read_raw(0, &ra);
1101	if (ret || !ra.value)
1102		return -ENODEV;
1103
1104	rd = kzalloc(sizeof(*rd), GFP_KERNEL);
1105	if (!rd)
1106		return -ENOMEM;
1107
1108	rd->name = rapl_domain_names[RAPL_DOMAIN_PLATFORM];
1109	rd->id = RAPL_DOMAIN_PLATFORM;
1110	rd->regs[RAPL_DOMAIN_REG_LIMIT] =
1111	    priv->regs[RAPL_DOMAIN_PLATFORM][RAPL_DOMAIN_REG_LIMIT];
1112	rd->regs[RAPL_DOMAIN_REG_STATUS] =
1113	    priv->regs[RAPL_DOMAIN_PLATFORM][RAPL_DOMAIN_REG_STATUS];
1114	rd->rpl[0].prim_id = PL1_ENABLE;
1115	rd->rpl[0].name = pl1_name;
1116	rd->rpl[1].prim_id = PL2_ENABLE;
1117	rd->rpl[1].name = pl2_name;
1118	rd->rp = rapl_find_package_domain(0, priv);
1119
1120	power_zone = powercap_register_zone(&rd->power_zone, priv->control_type,
1121					    "psys", NULL,
1122					    &zone_ops[RAPL_DOMAIN_PLATFORM],
1123					    2, &constraint_ops);
1124
1125	if (IS_ERR(power_zone)) {
1126		kfree(rd);
1127		return PTR_ERR(power_zone);
1128	}
1129
1130	priv->platform_rapl_domain = rd;
1131
1132	return 0;
1133}
1134EXPORT_SYMBOL_GPL(rapl_add_platform_domain);
1135
1136void rapl_remove_platform_domain(struct rapl_if_priv *priv)
1137{
1138	if (priv->platform_rapl_domain) {
1139		powercap_unregister_zone(priv->control_type,
1140				 &priv->platform_rapl_domain->power_zone);
1141		kfree(priv->platform_rapl_domain);
1142	}
1143}
1144EXPORT_SYMBOL_GPL(rapl_remove_platform_domain);
1145
1146static int rapl_check_domain(int cpu, int domain, struct rapl_package *rp)
1147{
1148	struct reg_action ra;
1149
1150	switch (domain) {
1151	case RAPL_DOMAIN_PACKAGE:
1152	case RAPL_DOMAIN_PP0:
1153	case RAPL_DOMAIN_PP1:
1154	case RAPL_DOMAIN_DRAM:
 
1155		ra.reg = rp->priv->regs[domain][RAPL_DOMAIN_REG_STATUS];
1156		break;
1157	case RAPL_DOMAIN_PLATFORM:
1158		/* PSYS(PLATFORM) is not a CPU domain, so avoid printng error */
1159		return -EINVAL;
1160	default:
1161		pr_err("invalid domain id %d\n", domain);
1162		return -EINVAL;
1163	}
1164	/* make sure domain counters are available and contains non-zero
1165	 * values, otherwise skip it.
1166	 */
1167
1168	ra.mask = ~0;
1169	if (rp->priv->read_raw(cpu, &ra) || !ra.value)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1170		return -ENODEV;
 
1171
 
 
 
 
 
 
 
 
1172	return 0;
1173}
1174
1175/*
1176 * Check if power limits are available. Two cases when they are not available:
1177 * 1. Locked by BIOS, in this case we still provide read-only access so that
1178 *    users can see what limit is set by the BIOS.
1179 * 2. Some CPUs make some domains monitoring only which means PLx MSRs may not
1180 *    exist at all. In this case, we do not show the constraints in powercap.
1181 *
1182 * Called after domains are detected and initialized.
1183 */
1184static void rapl_detect_powerlimit(struct rapl_domain *rd)
1185{
1186	u64 val64;
1187	int i;
1188
1189	/* check if the domain is locked by BIOS, ignore if MSR doesn't exist */
1190	if (!rapl_read_data_raw(rd, FW_LOCK, false, &val64)) {
1191		if (val64) {
1192			pr_info("RAPL %s domain %s locked by BIOS\n",
1193				rd->rp->name, rd->name);
1194			rd->state |= DOMAIN_STATE_BIOS_LOCKED;
 
1195		}
1196	}
1197	/* check if power limit MSR exists, otherwise domain is monitoring only */
1198	for (i = 0; i < NR_POWER_LIMITS; i++) {
1199		int prim = rd->rpl[i].prim_id;
1200
1201		if (rapl_read_data_raw(rd, prim, false, &val64))
1202			rd->rpl[i].name = NULL;
1203	}
1204}
1205
1206/* Detect active and valid domains for the given CPU, caller must
1207 * ensure the CPU belongs to the targeted package and CPU hotlug is disabled.
1208 */
1209static int rapl_detect_domains(struct rapl_package *rp, int cpu)
1210{
1211	struct rapl_domain *rd;
1212	int i;
1213
1214	for (i = 0; i < RAPL_DOMAIN_MAX; i++) {
1215		/* use physical package id to read counters */
1216		if (!rapl_check_domain(cpu, i, rp)) {
1217			rp->domain_map |= 1 << i;
1218			pr_info("Found RAPL domain %s\n", rapl_domain_names[i]);
1219		}
1220	}
1221	rp->nr_domains = bitmap_weight(&rp->domain_map, RAPL_DOMAIN_MAX);
1222	if (!rp->nr_domains) {
1223		pr_debug("no valid rapl domains found in %s\n", rp->name);
1224		return -ENODEV;
1225	}
1226	pr_debug("found %d domains on %s\n", rp->nr_domains, rp->name);
1227
1228	rp->domains = kcalloc(rp->nr_domains + 1, sizeof(struct rapl_domain),
1229			      GFP_KERNEL);
1230	if (!rp->domains)
1231		return -ENOMEM;
1232
1233	rapl_init_domains(rp);
1234
1235	for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++)
 
1236		rapl_detect_powerlimit(rd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1237
1238	return 0;
1239}
1240
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1241/* called from CPU hotplug notifier, hotplug lock held */
1242void rapl_remove_package(struct rapl_package *rp)
1243{
1244	struct rapl_domain *rd, *rd_package = NULL;
1245
1246	package_power_limit_irq_restore(rp);
1247
1248	for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
1249		rapl_write_data_raw(rd, PL1_ENABLE, 0);
1250		rapl_write_data_raw(rd, PL1_CLAMP, 0);
1251		if (find_nr_power_limit(rd) > 1) {
1252			rapl_write_data_raw(rd, PL2_ENABLE, 0);
1253			rapl_write_data_raw(rd, PL2_CLAMP, 0);
1254		}
 
1255		if (rd->id == RAPL_DOMAIN_PACKAGE) {
1256			rd_package = rd;
1257			continue;
1258		}
1259		pr_debug("remove package, undo power limit on %s: %s\n",
1260			 rp->name, rd->name);
1261		powercap_unregister_zone(rp->priv->control_type,
1262					 &rd->power_zone);
1263	}
1264	/* do parent zone last */
1265	powercap_unregister_zone(rp->priv->control_type,
1266				 &rd_package->power_zone);
1267	list_del(&rp->plist);
1268	kfree(rp);
1269}
 
 
 
 
 
 
 
1270EXPORT_SYMBOL_GPL(rapl_remove_package);
1271
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1272/* caller to ensure CPU hotplug lock is held */
1273struct rapl_package *rapl_find_package_domain(int cpu, struct rapl_if_priv *priv)
 
1274{
1275	int id = topology_logical_die_id(cpu);
1276	struct rapl_package *rp;
 
 
 
 
 
 
 
 
 
 
 
 
1277
1278	list_for_each_entry(rp, &rapl_packages, plist) {
1279		if (rp->id == id
1280		    && rp->priv->control_type == priv->control_type)
1281			return rp;
1282	}
1283
1284	return NULL;
1285}
 
 
 
 
 
 
 
1286EXPORT_SYMBOL_GPL(rapl_find_package_domain);
1287
1288/* called from CPU hotplug notifier, hotplug lock held */
1289struct rapl_package *rapl_add_package(int cpu, struct rapl_if_priv *priv)
1290{
1291	int id = topology_logical_die_id(cpu);
1292	struct rapl_package *rp;
1293	struct cpuinfo_x86 *c = &cpu_data(cpu);
1294	int ret;
1295
1296	rp = kzalloc(sizeof(struct rapl_package), GFP_KERNEL);
1297	if (!rp)
1298		return ERR_PTR(-ENOMEM);
1299
1300	/* add the new package to the list */
1301	rp->id = id;
1302	rp->lead_cpu = cpu;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1303	rp->priv = priv;
1304
1305	if (topology_max_die_per_package() > 1)
1306		snprintf(rp->name, PACKAGE_DOMAIN_NAME_LENGTH,
1307			 "package-%d-die-%d", c->phys_proc_id, c->cpu_die_id);
1308	else
1309		snprintf(rp->name, PACKAGE_DOMAIN_NAME_LENGTH, "package-%d",
1310			 c->phys_proc_id);
1311
1312	/* check if the package contains valid domains */
1313	if (rapl_detect_domains(rp, cpu) || rapl_defaults->check_unit(rp, cpu)) {
1314		ret = -ENODEV;
1315		goto err_free_package;
1316	}
1317	ret = rapl_package_register_powercap(rp);
1318	if (!ret) {
1319		INIT_LIST_HEAD(&rp->plist);
1320		list_add(&rp->plist, &rapl_packages);
1321		return rp;
1322	}
1323
1324err_free_package:
1325	kfree(rp->domains);
1326	kfree(rp);
1327	return ERR_PTR(ret);
1328}
 
 
 
 
 
 
 
1329EXPORT_SYMBOL_GPL(rapl_add_package);
1330
1331static void power_limit_state_save(void)
1332{
1333	struct rapl_package *rp;
1334	struct rapl_domain *rd;
1335	int nr_pl, ret, i;
1336
1337	get_online_cpus();
1338	list_for_each_entry(rp, &rapl_packages, plist) {
1339		if (!rp->power_zone)
1340			continue;
1341		rd = power_zone_to_rapl_domain(rp->power_zone);
1342		nr_pl = find_nr_power_limit(rd);
1343		for (i = 0; i < nr_pl; i++) {
1344			switch (rd->rpl[i].prim_id) {
1345			case PL1_ENABLE:
1346				ret = rapl_read_data_raw(rd,
1347						 POWER_LIMIT1, true,
1348						 &rd->rpl[i].last_power_limit);
1349				if (ret)
1350					rd->rpl[i].last_power_limit = 0;
1351				break;
1352			case PL2_ENABLE:
1353				ret = rapl_read_data_raw(rd,
1354						 POWER_LIMIT2, true,
1355						 &rd->rpl[i].last_power_limit);
1356				if (ret)
1357					rd->rpl[i].last_power_limit = 0;
1358				break;
1359			}
1360		}
1361	}
1362	put_online_cpus();
1363}
1364
1365static void power_limit_state_restore(void)
1366{
1367	struct rapl_package *rp;
1368	struct rapl_domain *rd;
1369	int nr_pl, i;
1370
1371	get_online_cpus();
1372	list_for_each_entry(rp, &rapl_packages, plist) {
1373		if (!rp->power_zone)
1374			continue;
1375		rd = power_zone_to_rapl_domain(rp->power_zone);
1376		nr_pl = find_nr_power_limit(rd);
1377		for (i = 0; i < nr_pl; i++) {
1378			switch (rd->rpl[i].prim_id) {
1379			case PL1_ENABLE:
1380				if (rd->rpl[i].last_power_limit)
1381					rapl_write_data_raw(rd, POWER_LIMIT1,
1382					    rd->rpl[i].last_power_limit);
1383				break;
1384			case PL2_ENABLE:
1385				if (rd->rpl[i].last_power_limit)
1386					rapl_write_data_raw(rd, POWER_LIMIT2,
1387					    rd->rpl[i].last_power_limit);
1388				break;
1389			}
1390		}
1391	}
1392	put_online_cpus();
1393}
1394
1395static int rapl_pm_callback(struct notifier_block *nb,
1396			    unsigned long mode, void *_unused)
1397{
1398	switch (mode) {
1399	case PM_SUSPEND_PREPARE:
1400		power_limit_state_save();
1401		break;
1402	case PM_POST_SUSPEND:
1403		power_limit_state_restore();
1404		break;
1405	}
1406	return NOTIFY_OK;
1407}
1408
1409static struct notifier_block rapl_pm_notifier = {
1410	.notifier_call = rapl_pm_callback,
1411};
1412
1413static struct platform_device *rapl_msr_platdev;
1414
1415static int __init rapl_init(void)
1416{
1417	const struct x86_cpu_id *id;
1418	int ret;
1419
1420	id = x86_match_cpu(rapl_ids);
1421	if (!id) {
1422		pr_err("driver does not support CPU family %d model %d\n",
1423		       boot_cpu_data.x86, boot_cpu_data.x86_model);
1424
1425		return -ENODEV;
 
 
 
 
 
 
 
 
1426	}
1427
1428	rapl_defaults = (struct rapl_defaults *)id->driver_data;
1429
1430	ret = register_pm_notifier(&rapl_pm_notifier);
1431	if (ret)
1432		return ret;
1433
1434	rapl_msr_platdev = platform_device_alloc("intel_rapl_msr", 0);
1435	if (!rapl_msr_platdev) {
1436		ret = -ENOMEM;
1437		goto end;
1438	}
1439
1440	ret = platform_device_add(rapl_msr_platdev);
1441	if (ret)
1442		platform_device_put(rapl_msr_platdev);
1443
1444end:
1445	if (ret)
1446		unregister_pm_notifier(&rapl_pm_notifier);
1447
1448	return ret;
1449}
1450
1451static void __exit rapl_exit(void)
1452{
1453	platform_device_unregister(rapl_msr_platdev);
1454	unregister_pm_notifier(&rapl_pm_notifier);
1455}
1456
1457fs_initcall(rapl_init);
1458module_exit(rapl_exit);
1459
1460MODULE_DESCRIPTION("Intel Runtime Average Power Limit (RAPL) common code");
1461MODULE_AUTHOR("Jacob Pan <jacob.jun.pan@intel.com>");
1462MODULE_LICENSE("GPL v2");