Linux Audio

Check our new training course

Loading...
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0+
  2/*
  3 * APM X-Gene MSI Driver
  4 *
  5 * Copyright (c) 2014, Applied Micro Circuits Corporation
  6 * Author: Tanmay Inamdar <tinamdar@apm.com>
  7 *	   Duc Dang <dhdang@apm.com>
  8 */
  9#include <linux/cpu.h>
 10#include <linux/interrupt.h>
 11#include <linux/irqdomain.h>
 12#include <linux/module.h>
 13#include <linux/msi.h>
 
 14#include <linux/irqchip/chained_irq.h>
 15#include <linux/pci.h>
 16#include <linux/platform_device.h>
 17#include <linux/of_pci.h>
 18
 19#define MSI_IR0			0x000000
 20#define MSI_INT0		0x800000
 21#define IDX_PER_GROUP		8
 22#define IRQS_PER_IDX		16
 23#define NR_HW_IRQS		16
 24#define NR_MSI_VEC		(IDX_PER_GROUP * IRQS_PER_IDX * NR_HW_IRQS)
 25
 26struct xgene_msi_group {
 27	struct xgene_msi	*msi;
 28	int			gic_irq;
 29	u32			msi_grp;
 30};
 31
 32struct xgene_msi {
 33	struct device_node	*node;
 34	struct irq_domain	*inner_domain;
 35	struct irq_domain	*msi_domain;
 36	u64			msi_addr;
 37	void __iomem		*msi_regs;
 38	unsigned long		*bitmap;
 39	struct mutex		bitmap_lock;
 40	struct xgene_msi_group	*msi_groups;
 41	int			num_cpus;
 42};
 43
 44/* Global data */
 45static struct xgene_msi xgene_msi_ctrl;
 46
 47static struct irq_chip xgene_msi_top_irq_chip = {
 48	.name		= "X-Gene1 MSI",
 49	.irq_enable	= pci_msi_unmask_irq,
 50	.irq_disable	= pci_msi_mask_irq,
 51	.irq_mask	= pci_msi_mask_irq,
 52	.irq_unmask	= pci_msi_unmask_irq,
 53};
 54
 55static struct  msi_domain_info xgene_msi_domain_info = {
 56	.flags	= (MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS |
 57		  MSI_FLAG_PCI_MSIX),
 58	.chip	= &xgene_msi_top_irq_chip,
 59};
 60
 61/*
 62 * X-Gene v1 has 16 groups of MSI termination registers MSInIRx, where
 63 * n is group number (0..F), x is index of registers in each group (0..7)
 64 * The register layout is as follows:
 65 * MSI0IR0			base_addr
 66 * MSI0IR1			base_addr +  0x10000
 67 * ...				...
 68 * MSI0IR6			base_addr +  0x60000
 69 * MSI0IR7			base_addr +  0x70000
 70 * MSI1IR0			base_addr +  0x80000
 71 * MSI1IR1			base_addr +  0x90000
 72 * ...				...
 73 * MSI1IR7			base_addr +  0xF0000
 74 * MSI2IR0			base_addr + 0x100000
 75 * ...				...
 76 * MSIFIR0			base_addr + 0x780000
 77 * MSIFIR1			base_addr + 0x790000
 78 * ...				...
 79 * MSIFIR7			base_addr + 0x7F0000
 80 * MSIINT0			base_addr + 0x800000
 81 * MSIINT1			base_addr + 0x810000
 82 * ...				...
 83 * MSIINTF			base_addr + 0x8F0000
 84 *
 85 * Each index register supports 16 MSI vectors (0..15) to generate interrupt.
 86 * There are total 16 GIC IRQs assigned for these 16 groups of MSI termination
 87 * registers.
 88 *
 89 * Each MSI termination group has 1 MSIINTn register (n is 0..15) to indicate
 90 * the MSI pending status caused by 1 of its 8 index registers.
 91 */
 92
 93/* MSInIRx read helper */
 94static u32 xgene_msi_ir_read(struct xgene_msi *msi,
 95				    u32 msi_grp, u32 msir_idx)
 96{
 97	return readl_relaxed(msi->msi_regs + MSI_IR0 +
 98			      (msi_grp << 19) + (msir_idx << 16));
 99}
100
101/* MSIINTn read helper */
102static u32 xgene_msi_int_read(struct xgene_msi *msi, u32 msi_grp)
103{
104	return readl_relaxed(msi->msi_regs + MSI_INT0 + (msi_grp << 16));
105}
106
107/*
108 * With 2048 MSI vectors supported, the MSI message can be constructed using
109 * following scheme:
110 * - Divide into 8 256-vector groups
111 *		Group 0: 0-255
112 *		Group 1: 256-511
113 *		Group 2: 512-767
114 *		...
115 *		Group 7: 1792-2047
116 * - Each 256-vector group is divided into 16 16-vector groups
117 *	As an example: 16 16-vector groups for 256-vector group 0-255 is
118 *		Group 0: 0-15
119 *		Group 1: 16-32
120 *		...
121 *		Group 15: 240-255
122 * - The termination address of MSI vector in 256-vector group n and 16-vector
123 *   group x is the address of MSIxIRn
124 * - The data for MSI vector in 16-vector group x is x
125 */
126static u32 hwirq_to_reg_set(unsigned long hwirq)
127{
128	return (hwirq / (NR_HW_IRQS * IRQS_PER_IDX));
129}
130
131static u32 hwirq_to_group(unsigned long hwirq)
132{
133	return (hwirq % NR_HW_IRQS);
134}
135
136static u32 hwirq_to_msi_data(unsigned long hwirq)
137{
138	return ((hwirq / NR_HW_IRQS) % IRQS_PER_IDX);
139}
140
141static void xgene_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
142{
143	struct xgene_msi *msi = irq_data_get_irq_chip_data(data);
144	u32 reg_set = hwirq_to_reg_set(data->hwirq);
145	u32 group = hwirq_to_group(data->hwirq);
146	u64 target_addr = msi->msi_addr + (((8 * group) + reg_set) << 16);
147
148	msg->address_hi = upper_32_bits(target_addr);
149	msg->address_lo = lower_32_bits(target_addr);
150	msg->data = hwirq_to_msi_data(data->hwirq);
151}
152
153/*
154 * X-Gene v1 only has 16 MSI GIC IRQs for 2048 MSI vectors.  To maintain
155 * the expected behaviour of .set_affinity for each MSI interrupt, the 16
156 * MSI GIC IRQs are statically allocated to 8 X-Gene v1 cores (2 GIC IRQs
157 * for each core).  The MSI vector is moved fom 1 MSI GIC IRQ to another
158 * MSI GIC IRQ to steer its MSI interrupt to correct X-Gene v1 core.  As a
159 * consequence, the total MSI vectors that X-Gene v1 supports will be
160 * reduced to 256 (2048/8) vectors.
161 */
162static int hwirq_to_cpu(unsigned long hwirq)
163{
164	return (hwirq % xgene_msi_ctrl.num_cpus);
165}
166
167static unsigned long hwirq_to_canonical_hwirq(unsigned long hwirq)
168{
169	return (hwirq - hwirq_to_cpu(hwirq));
170}
171
172static int xgene_msi_set_affinity(struct irq_data *irqdata,
173				  const struct cpumask *mask, bool force)
174{
175	int target_cpu = cpumask_first(mask);
176	int curr_cpu;
177
178	curr_cpu = hwirq_to_cpu(irqdata->hwirq);
179	if (curr_cpu == target_cpu)
180		return IRQ_SET_MASK_OK_DONE;
181
182	/* Update MSI number to target the new CPU */
183	irqdata->hwirq = hwirq_to_canonical_hwirq(irqdata->hwirq) + target_cpu;
184
185	return IRQ_SET_MASK_OK;
186}
187
188static struct irq_chip xgene_msi_bottom_irq_chip = {
189	.name			= "MSI",
190	.irq_set_affinity       = xgene_msi_set_affinity,
191	.irq_compose_msi_msg	= xgene_compose_msi_msg,
192};
193
194static int xgene_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
195				  unsigned int nr_irqs, void *args)
196{
197	struct xgene_msi *msi = domain->host_data;
198	int msi_irq;
199
200	mutex_lock(&msi->bitmap_lock);
201
202	msi_irq = bitmap_find_next_zero_area(msi->bitmap, NR_MSI_VEC, 0,
203					     msi->num_cpus, 0);
204	if (msi_irq < NR_MSI_VEC)
205		bitmap_set(msi->bitmap, msi_irq, msi->num_cpus);
206	else
207		msi_irq = -ENOSPC;
208
209	mutex_unlock(&msi->bitmap_lock);
210
211	if (msi_irq < 0)
212		return msi_irq;
213
214	irq_domain_set_info(domain, virq, msi_irq,
215			    &xgene_msi_bottom_irq_chip, domain->host_data,
216			    handle_simple_irq, NULL, NULL);
217
218	return 0;
219}
220
221static void xgene_irq_domain_free(struct irq_domain *domain,
222				  unsigned int virq, unsigned int nr_irqs)
223{
224	struct irq_data *d = irq_domain_get_irq_data(domain, virq);
225	struct xgene_msi *msi = irq_data_get_irq_chip_data(d);
226	u32 hwirq;
227
228	mutex_lock(&msi->bitmap_lock);
229
230	hwirq = hwirq_to_canonical_hwirq(d->hwirq);
231	bitmap_clear(msi->bitmap, hwirq, msi->num_cpus);
232
233	mutex_unlock(&msi->bitmap_lock);
234
235	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
236}
237
238static const struct irq_domain_ops msi_domain_ops = {
239	.alloc  = xgene_irq_domain_alloc,
240	.free   = xgene_irq_domain_free,
241};
242
243static int xgene_allocate_domains(struct xgene_msi *msi)
244{
245	msi->inner_domain = irq_domain_add_linear(NULL, NR_MSI_VEC,
246						  &msi_domain_ops, msi);
247	if (!msi->inner_domain)
248		return -ENOMEM;
249
250	msi->msi_domain = pci_msi_create_irq_domain(of_node_to_fwnode(msi->node),
251						    &xgene_msi_domain_info,
252						    msi->inner_domain);
253
254	if (!msi->msi_domain) {
255		irq_domain_remove(msi->inner_domain);
256		return -ENOMEM;
257	}
258
259	return 0;
260}
261
262static void xgene_free_domains(struct xgene_msi *msi)
263{
264	if (msi->msi_domain)
265		irq_domain_remove(msi->msi_domain);
266	if (msi->inner_domain)
267		irq_domain_remove(msi->inner_domain);
268}
269
270static int xgene_msi_init_allocator(struct xgene_msi *xgene_msi)
271{
272	xgene_msi->bitmap = bitmap_zalloc(NR_MSI_VEC, GFP_KERNEL);
 
 
273	if (!xgene_msi->bitmap)
274		return -ENOMEM;
275
276	mutex_init(&xgene_msi->bitmap_lock);
277
278	xgene_msi->msi_groups = kcalloc(NR_HW_IRQS,
279					sizeof(struct xgene_msi_group),
280					GFP_KERNEL);
281	if (!xgene_msi->msi_groups)
282		return -ENOMEM;
283
284	return 0;
285}
286
287static void xgene_msi_isr(struct irq_desc *desc)
288{
289	struct irq_chip *chip = irq_desc_get_chip(desc);
290	struct xgene_msi_group *msi_groups;
291	struct xgene_msi *xgene_msi;
292	int msir_index, msir_val, hw_irq, ret;
 
293	u32 intr_index, grp_select, msi_grp;
294
295	chained_irq_enter(chip, desc);
296
297	msi_groups = irq_desc_get_handler_data(desc);
298	xgene_msi = msi_groups->msi;
299	msi_grp = msi_groups->msi_grp;
300
301	/*
302	 * MSIINTn (n is 0..F) indicates if there is a pending MSI interrupt
303	 * If bit x of this register is set (x is 0..7), one or more interrupts
304	 * corresponding to MSInIRx is set.
305	 */
306	grp_select = xgene_msi_int_read(xgene_msi, msi_grp);
307	while (grp_select) {
308		msir_index = ffs(grp_select) - 1;
309		/*
310		 * Calculate MSInIRx address to read to check for interrupts
311		 * (refer to termination address and data assignment
312		 * described in xgene_compose_msi_msg() )
313		 */
314		msir_val = xgene_msi_ir_read(xgene_msi, msi_grp, msir_index);
315		while (msir_val) {
316			intr_index = ffs(msir_val) - 1;
317			/*
318			 * Calculate MSI vector number (refer to the termination
319			 * address and data assignment described in
320			 * xgene_compose_msi_msg function)
321			 */
322			hw_irq = (((msir_index * IRQS_PER_IDX) + intr_index) *
323				 NR_HW_IRQS) + msi_grp;
324			/*
325			 * As we have multiple hw_irq that maps to single MSI,
326			 * always look up the virq using the hw_irq as seen from
327			 * CPU0
328			 */
329			hw_irq = hwirq_to_canonical_hwirq(hw_irq);
330			ret = generic_handle_domain_irq(xgene_msi->inner_domain, hw_irq);
331			WARN_ON_ONCE(ret);
 
 
332			msir_val &= ~(1 << intr_index);
333		}
334		grp_select &= ~(1 << msir_index);
335
336		if (!grp_select) {
337			/*
338			 * We handled all interrupts happened in this group,
339			 * resample this group MSI_INTx register in case
340			 * something else has been made pending in the meantime
341			 */
342			grp_select = xgene_msi_int_read(xgene_msi, msi_grp);
343		}
344	}
345
346	chained_irq_exit(chip, desc);
347}
348
349static enum cpuhp_state pci_xgene_online;
350
351static void xgene_msi_remove(struct platform_device *pdev)
352{
353	struct xgene_msi *msi = platform_get_drvdata(pdev);
354
355	if (pci_xgene_online)
356		cpuhp_remove_state(pci_xgene_online);
357	cpuhp_remove_state(CPUHP_PCI_XGENE_DEAD);
358
359	kfree(msi->msi_groups);
360
361	bitmap_free(msi->bitmap);
362	msi->bitmap = NULL;
363
364	xgene_free_domains(msi);
 
 
365}
366
367static int xgene_msi_hwirq_alloc(unsigned int cpu)
368{
369	struct xgene_msi *msi = &xgene_msi_ctrl;
370	struct xgene_msi_group *msi_group;
371	cpumask_var_t mask;
372	int i;
373	int err;
374
375	for (i = cpu; i < NR_HW_IRQS; i += msi->num_cpus) {
376		msi_group = &msi->msi_groups[i];
377		if (!msi_group->gic_irq)
378			continue;
379
380		irq_set_chained_handler_and_data(msi_group->gic_irq,
381			xgene_msi_isr, msi_group);
382
 
 
 
 
383		/*
384		 * Statically allocate MSI GIC IRQs to each CPU core.
385		 * With 8-core X-Gene v1, 2 MSI GIC IRQs are allocated
386		 * to each core.
387		 */
388		if (alloc_cpumask_var(&mask, GFP_KERNEL)) {
389			cpumask_clear(mask);
390			cpumask_set_cpu(cpu, mask);
391			err = irq_set_affinity(msi_group->gic_irq, mask);
392			if (err)
393				pr_err("failed to set affinity for GIC IRQ");
394			free_cpumask_var(mask);
395		} else {
396			pr_err("failed to alloc CPU mask for affinity\n");
397			err = -EINVAL;
398		}
399
400		if (err) {
401			irq_set_chained_handler_and_data(msi_group->gic_irq,
402							 NULL, NULL);
403			return err;
404		}
405	}
406
407	return 0;
408}
409
410static int xgene_msi_hwirq_free(unsigned int cpu)
411{
412	struct xgene_msi *msi = &xgene_msi_ctrl;
413	struct xgene_msi_group *msi_group;
414	int i;
415
416	for (i = cpu; i < NR_HW_IRQS; i += msi->num_cpus) {
417		msi_group = &msi->msi_groups[i];
418		if (!msi_group->gic_irq)
419			continue;
420
421		irq_set_chained_handler_and_data(msi_group->gic_irq, NULL,
422						 NULL);
423	}
424	return 0;
425}
426
427static const struct of_device_id xgene_msi_match_table[] = {
428	{.compatible = "apm,xgene1-msi"},
429	{},
430};
431
432static int xgene_msi_probe(struct platform_device *pdev)
433{
434	struct resource *res;
435	int rc, irq_index;
436	struct xgene_msi *xgene_msi;
437	int virt_msir;
438	u32 msi_val, msi_idx;
439
440	xgene_msi = &xgene_msi_ctrl;
441
442	platform_set_drvdata(pdev, xgene_msi);
443
444	xgene_msi->msi_regs = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
 
445	if (IS_ERR(xgene_msi->msi_regs)) {
 
446		rc = PTR_ERR(xgene_msi->msi_regs);
447		goto error;
448	}
449	xgene_msi->msi_addr = res->start;
450	xgene_msi->node = pdev->dev.of_node;
451	xgene_msi->num_cpus = num_possible_cpus();
452
453	rc = xgene_msi_init_allocator(xgene_msi);
454	if (rc) {
455		dev_err(&pdev->dev, "Error allocating MSI bitmap\n");
456		goto error;
457	}
458
459	rc = xgene_allocate_domains(xgene_msi);
460	if (rc) {
461		dev_err(&pdev->dev, "Failed to allocate MSI domain\n");
462		goto error;
463	}
464
465	for (irq_index = 0; irq_index < NR_HW_IRQS; irq_index++) {
466		virt_msir = platform_get_irq(pdev, irq_index);
467		if (virt_msir < 0) {
 
 
468			rc = virt_msir;
469			goto error;
470		}
471		xgene_msi->msi_groups[irq_index].gic_irq = virt_msir;
472		xgene_msi->msi_groups[irq_index].msi_grp = irq_index;
473		xgene_msi->msi_groups[irq_index].msi = xgene_msi;
474	}
475
476	/*
477	 * MSInIRx registers are read-to-clear; before registering
478	 * interrupt handlers, read all of them to clear spurious
479	 * interrupts that may occur before the driver is probed.
480	 */
481	for (irq_index = 0; irq_index < NR_HW_IRQS; irq_index++) {
482		for (msi_idx = 0; msi_idx < IDX_PER_GROUP; msi_idx++)
483			xgene_msi_ir_read(xgene_msi, irq_index, msi_idx);
484
485		/* Read MSIINTn to confirm */
486		msi_val = xgene_msi_int_read(xgene_msi, irq_index);
487		if (msi_val) {
488			dev_err(&pdev->dev, "Failed to clear spurious IRQ\n");
489			rc = -EINVAL;
490			goto error;
491		}
492	}
493
494	rc = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "pci/xgene:online",
495			       xgene_msi_hwirq_alloc, NULL);
496	if (rc < 0)
497		goto err_cpuhp;
498	pci_xgene_online = rc;
499	rc = cpuhp_setup_state(CPUHP_PCI_XGENE_DEAD, "pci/xgene:dead", NULL,
500			       xgene_msi_hwirq_free);
501	if (rc)
502		goto err_cpuhp;
503
504	dev_info(&pdev->dev, "APM X-Gene PCIe MSI driver loaded\n");
505
506	return 0;
507
508err_cpuhp:
509	dev_err(&pdev->dev, "failed to add CPU MSI notifier\n");
510error:
511	xgene_msi_remove(pdev);
512	return rc;
513}
514
515static struct platform_driver xgene_msi_driver = {
516	.driver = {
517		.name = "xgene-msi",
518		.of_match_table = xgene_msi_match_table,
519	},
520	.probe = xgene_msi_probe,
521	.remove = xgene_msi_remove,
522};
523
524static int __init xgene_pcie_msi_init(void)
525{
526	return platform_driver_register(&xgene_msi_driver);
527}
528subsys_initcall(xgene_pcie_msi_init);
v5.4
  1// SPDX-License-Identifier: GPL-2.0+
  2/*
  3 * APM X-Gene MSI Driver
  4 *
  5 * Copyright (c) 2014, Applied Micro Circuits Corporation
  6 * Author: Tanmay Inamdar <tinamdar@apm.com>
  7 *	   Duc Dang <dhdang@apm.com>
  8 */
  9#include <linux/cpu.h>
 10#include <linux/interrupt.h>
 
 11#include <linux/module.h>
 12#include <linux/msi.h>
 13#include <linux/of_irq.h>
 14#include <linux/irqchip/chained_irq.h>
 15#include <linux/pci.h>
 16#include <linux/platform_device.h>
 17#include <linux/of_pci.h>
 18
 19#define MSI_IR0			0x000000
 20#define MSI_INT0		0x800000
 21#define IDX_PER_GROUP		8
 22#define IRQS_PER_IDX		16
 23#define NR_HW_IRQS		16
 24#define NR_MSI_VEC		(IDX_PER_GROUP * IRQS_PER_IDX * NR_HW_IRQS)
 25
 26struct xgene_msi_group {
 27	struct xgene_msi	*msi;
 28	int			gic_irq;
 29	u32			msi_grp;
 30};
 31
 32struct xgene_msi {
 33	struct device_node	*node;
 34	struct irq_domain	*inner_domain;
 35	struct irq_domain	*msi_domain;
 36	u64			msi_addr;
 37	void __iomem		*msi_regs;
 38	unsigned long		*bitmap;
 39	struct mutex		bitmap_lock;
 40	struct xgene_msi_group	*msi_groups;
 41	int			num_cpus;
 42};
 43
 44/* Global data */
 45static struct xgene_msi xgene_msi_ctrl;
 46
 47static struct irq_chip xgene_msi_top_irq_chip = {
 48	.name		= "X-Gene1 MSI",
 49	.irq_enable	= pci_msi_unmask_irq,
 50	.irq_disable	= pci_msi_mask_irq,
 51	.irq_mask	= pci_msi_mask_irq,
 52	.irq_unmask	= pci_msi_unmask_irq,
 53};
 54
 55static struct  msi_domain_info xgene_msi_domain_info = {
 56	.flags	= (MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS |
 57		  MSI_FLAG_PCI_MSIX),
 58	.chip	= &xgene_msi_top_irq_chip,
 59};
 60
 61/*
 62 * X-Gene v1 has 16 groups of MSI termination registers MSInIRx, where
 63 * n is group number (0..F), x is index of registers in each group (0..7)
 64 * The register layout is as follows:
 65 * MSI0IR0			base_addr
 66 * MSI0IR1			base_addr +  0x10000
 67 * ...				...
 68 * MSI0IR6			base_addr +  0x60000
 69 * MSI0IR7			base_addr +  0x70000
 70 * MSI1IR0			base_addr +  0x80000
 71 * MSI1IR1			base_addr +  0x90000
 72 * ...				...
 73 * MSI1IR7			base_addr +  0xF0000
 74 * MSI2IR0			base_addr + 0x100000
 75 * ...				...
 76 * MSIFIR0			base_addr + 0x780000
 77 * MSIFIR1			base_addr + 0x790000
 78 * ...				...
 79 * MSIFIR7			base_addr + 0x7F0000
 80 * MSIINT0			base_addr + 0x800000
 81 * MSIINT1			base_addr + 0x810000
 82 * ...				...
 83 * MSIINTF			base_addr + 0x8F0000
 84 *
 85 * Each index register supports 16 MSI vectors (0..15) to generate interrupt.
 86 * There are total 16 GIC IRQs assigned for these 16 groups of MSI termination
 87 * registers.
 88 *
 89 * Each MSI termination group has 1 MSIINTn register (n is 0..15) to indicate
 90 * the MSI pending status caused by 1 of its 8 index registers.
 91 */
 92
 93/* MSInIRx read helper */
 94static u32 xgene_msi_ir_read(struct xgene_msi *msi,
 95				    u32 msi_grp, u32 msir_idx)
 96{
 97	return readl_relaxed(msi->msi_regs + MSI_IR0 +
 98			      (msi_grp << 19) + (msir_idx << 16));
 99}
100
101/* MSIINTn read helper */
102static u32 xgene_msi_int_read(struct xgene_msi *msi, u32 msi_grp)
103{
104	return readl_relaxed(msi->msi_regs + MSI_INT0 + (msi_grp << 16));
105}
106
107/*
108 * With 2048 MSI vectors supported, the MSI message can be constructed using
109 * following scheme:
110 * - Divide into 8 256-vector groups
111 *		Group 0: 0-255
112 *		Group 1: 256-511
113 *		Group 2: 512-767
114 *		...
115 *		Group 7: 1792-2047
116 * - Each 256-vector group is divided into 16 16-vector groups
117 *	As an example: 16 16-vector groups for 256-vector group 0-255 is
118 *		Group 0: 0-15
119 *		Group 1: 16-32
120 *		...
121 *		Group 15: 240-255
122 * - The termination address of MSI vector in 256-vector group n and 16-vector
123 *   group x is the address of MSIxIRn
124 * - The data for MSI vector in 16-vector group x is x
125 */
126static u32 hwirq_to_reg_set(unsigned long hwirq)
127{
128	return (hwirq / (NR_HW_IRQS * IRQS_PER_IDX));
129}
130
131static u32 hwirq_to_group(unsigned long hwirq)
132{
133	return (hwirq % NR_HW_IRQS);
134}
135
136static u32 hwirq_to_msi_data(unsigned long hwirq)
137{
138	return ((hwirq / NR_HW_IRQS) % IRQS_PER_IDX);
139}
140
141static void xgene_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
142{
143	struct xgene_msi *msi = irq_data_get_irq_chip_data(data);
144	u32 reg_set = hwirq_to_reg_set(data->hwirq);
145	u32 group = hwirq_to_group(data->hwirq);
146	u64 target_addr = msi->msi_addr + (((8 * group) + reg_set) << 16);
147
148	msg->address_hi = upper_32_bits(target_addr);
149	msg->address_lo = lower_32_bits(target_addr);
150	msg->data = hwirq_to_msi_data(data->hwirq);
151}
152
153/*
154 * X-Gene v1 only has 16 MSI GIC IRQs for 2048 MSI vectors.  To maintain
155 * the expected behaviour of .set_affinity for each MSI interrupt, the 16
156 * MSI GIC IRQs are statically allocated to 8 X-Gene v1 cores (2 GIC IRQs
157 * for each core).  The MSI vector is moved fom 1 MSI GIC IRQ to another
158 * MSI GIC IRQ to steer its MSI interrupt to correct X-Gene v1 core.  As a
159 * consequence, the total MSI vectors that X-Gene v1 supports will be
160 * reduced to 256 (2048/8) vectors.
161 */
162static int hwirq_to_cpu(unsigned long hwirq)
163{
164	return (hwirq % xgene_msi_ctrl.num_cpus);
165}
166
167static unsigned long hwirq_to_canonical_hwirq(unsigned long hwirq)
168{
169	return (hwirq - hwirq_to_cpu(hwirq));
170}
171
172static int xgene_msi_set_affinity(struct irq_data *irqdata,
173				  const struct cpumask *mask, bool force)
174{
175	int target_cpu = cpumask_first(mask);
176	int curr_cpu;
177
178	curr_cpu = hwirq_to_cpu(irqdata->hwirq);
179	if (curr_cpu == target_cpu)
180		return IRQ_SET_MASK_OK_DONE;
181
182	/* Update MSI number to target the new CPU */
183	irqdata->hwirq = hwirq_to_canonical_hwirq(irqdata->hwirq) + target_cpu;
184
185	return IRQ_SET_MASK_OK;
186}
187
188static struct irq_chip xgene_msi_bottom_irq_chip = {
189	.name			= "MSI",
190	.irq_set_affinity       = xgene_msi_set_affinity,
191	.irq_compose_msi_msg	= xgene_compose_msi_msg,
192};
193
194static int xgene_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
195				  unsigned int nr_irqs, void *args)
196{
197	struct xgene_msi *msi = domain->host_data;
198	int msi_irq;
199
200	mutex_lock(&msi->bitmap_lock);
201
202	msi_irq = bitmap_find_next_zero_area(msi->bitmap, NR_MSI_VEC, 0,
203					     msi->num_cpus, 0);
204	if (msi_irq < NR_MSI_VEC)
205		bitmap_set(msi->bitmap, msi_irq, msi->num_cpus);
206	else
207		msi_irq = -ENOSPC;
208
209	mutex_unlock(&msi->bitmap_lock);
210
211	if (msi_irq < 0)
212		return msi_irq;
213
214	irq_domain_set_info(domain, virq, msi_irq,
215			    &xgene_msi_bottom_irq_chip, domain->host_data,
216			    handle_simple_irq, NULL, NULL);
217
218	return 0;
219}
220
221static void xgene_irq_domain_free(struct irq_domain *domain,
222				  unsigned int virq, unsigned int nr_irqs)
223{
224	struct irq_data *d = irq_domain_get_irq_data(domain, virq);
225	struct xgene_msi *msi = irq_data_get_irq_chip_data(d);
226	u32 hwirq;
227
228	mutex_lock(&msi->bitmap_lock);
229
230	hwirq = hwirq_to_canonical_hwirq(d->hwirq);
231	bitmap_clear(msi->bitmap, hwirq, msi->num_cpus);
232
233	mutex_unlock(&msi->bitmap_lock);
234
235	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
236}
237
238static const struct irq_domain_ops msi_domain_ops = {
239	.alloc  = xgene_irq_domain_alloc,
240	.free   = xgene_irq_domain_free,
241};
242
243static int xgene_allocate_domains(struct xgene_msi *msi)
244{
245	msi->inner_domain = irq_domain_add_linear(NULL, NR_MSI_VEC,
246						  &msi_domain_ops, msi);
247	if (!msi->inner_domain)
248		return -ENOMEM;
249
250	msi->msi_domain = pci_msi_create_irq_domain(of_node_to_fwnode(msi->node),
251						    &xgene_msi_domain_info,
252						    msi->inner_domain);
253
254	if (!msi->msi_domain) {
255		irq_domain_remove(msi->inner_domain);
256		return -ENOMEM;
257	}
258
259	return 0;
260}
261
262static void xgene_free_domains(struct xgene_msi *msi)
263{
264	if (msi->msi_domain)
265		irq_domain_remove(msi->msi_domain);
266	if (msi->inner_domain)
267		irq_domain_remove(msi->inner_domain);
268}
269
270static int xgene_msi_init_allocator(struct xgene_msi *xgene_msi)
271{
272	int size = BITS_TO_LONGS(NR_MSI_VEC) * sizeof(long);
273
274	xgene_msi->bitmap = kzalloc(size, GFP_KERNEL);
275	if (!xgene_msi->bitmap)
276		return -ENOMEM;
277
278	mutex_init(&xgene_msi->bitmap_lock);
279
280	xgene_msi->msi_groups = kcalloc(NR_HW_IRQS,
281					sizeof(struct xgene_msi_group),
282					GFP_KERNEL);
283	if (!xgene_msi->msi_groups)
284		return -ENOMEM;
285
286	return 0;
287}
288
289static void xgene_msi_isr(struct irq_desc *desc)
290{
291	struct irq_chip *chip = irq_desc_get_chip(desc);
292	struct xgene_msi_group *msi_groups;
293	struct xgene_msi *xgene_msi;
294	unsigned int virq;
295	int msir_index, msir_val, hw_irq;
296	u32 intr_index, grp_select, msi_grp;
297
298	chained_irq_enter(chip, desc);
299
300	msi_groups = irq_desc_get_handler_data(desc);
301	xgene_msi = msi_groups->msi;
302	msi_grp = msi_groups->msi_grp;
303
304	/*
305	 * MSIINTn (n is 0..F) indicates if there is a pending MSI interrupt
306	 * If bit x of this register is set (x is 0..7), one or more interupts
307	 * corresponding to MSInIRx is set.
308	 */
309	grp_select = xgene_msi_int_read(xgene_msi, msi_grp);
310	while (grp_select) {
311		msir_index = ffs(grp_select) - 1;
312		/*
313		 * Calculate MSInIRx address to read to check for interrupts
314		 * (refer to termination address and data assignment
315		 * described in xgene_compose_msi_msg() )
316		 */
317		msir_val = xgene_msi_ir_read(xgene_msi, msi_grp, msir_index);
318		while (msir_val) {
319			intr_index = ffs(msir_val) - 1;
320			/*
321			 * Calculate MSI vector number (refer to the termination
322			 * address and data assignment described in
323			 * xgene_compose_msi_msg function)
324			 */
325			hw_irq = (((msir_index * IRQS_PER_IDX) + intr_index) *
326				 NR_HW_IRQS) + msi_grp;
327			/*
328			 * As we have multiple hw_irq that maps to single MSI,
329			 * always look up the virq using the hw_irq as seen from
330			 * CPU0
331			 */
332			hw_irq = hwirq_to_canonical_hwirq(hw_irq);
333			virq = irq_find_mapping(xgene_msi->inner_domain, hw_irq);
334			WARN_ON(!virq);
335			if (virq != 0)
336				generic_handle_irq(virq);
337			msir_val &= ~(1 << intr_index);
338		}
339		grp_select &= ~(1 << msir_index);
340
341		if (!grp_select) {
342			/*
343			 * We handled all interrupts happened in this group,
344			 * resample this group MSI_INTx register in case
345			 * something else has been made pending in the meantime
346			 */
347			grp_select = xgene_msi_int_read(xgene_msi, msi_grp);
348		}
349	}
350
351	chained_irq_exit(chip, desc);
352}
353
354static enum cpuhp_state pci_xgene_online;
355
356static int xgene_msi_remove(struct platform_device *pdev)
357{
358	struct xgene_msi *msi = platform_get_drvdata(pdev);
359
360	if (pci_xgene_online)
361		cpuhp_remove_state(pci_xgene_online);
362	cpuhp_remove_state(CPUHP_PCI_XGENE_DEAD);
363
364	kfree(msi->msi_groups);
365
366	kfree(msi->bitmap);
367	msi->bitmap = NULL;
368
369	xgene_free_domains(msi);
370
371	return 0;
372}
373
374static int xgene_msi_hwirq_alloc(unsigned int cpu)
375{
376	struct xgene_msi *msi = &xgene_msi_ctrl;
377	struct xgene_msi_group *msi_group;
378	cpumask_var_t mask;
379	int i;
380	int err;
381
382	for (i = cpu; i < NR_HW_IRQS; i += msi->num_cpus) {
383		msi_group = &msi->msi_groups[i];
384		if (!msi_group->gic_irq)
385			continue;
386
387		irq_set_chained_handler(msi_group->gic_irq,
388					xgene_msi_isr);
389		err = irq_set_handler_data(msi_group->gic_irq, msi_group);
390		if (err) {
391			pr_err("failed to register GIC IRQ handler\n");
392			return -EINVAL;
393		}
394		/*
395		 * Statically allocate MSI GIC IRQs to each CPU core.
396		 * With 8-core X-Gene v1, 2 MSI GIC IRQs are allocated
397		 * to each core.
398		 */
399		if (alloc_cpumask_var(&mask, GFP_KERNEL)) {
400			cpumask_clear(mask);
401			cpumask_set_cpu(cpu, mask);
402			err = irq_set_affinity(msi_group->gic_irq, mask);
403			if (err)
404				pr_err("failed to set affinity for GIC IRQ");
405			free_cpumask_var(mask);
406		} else {
407			pr_err("failed to alloc CPU mask for affinity\n");
408			err = -EINVAL;
409		}
410
411		if (err) {
412			irq_set_chained_handler_and_data(msi_group->gic_irq,
413							 NULL, NULL);
414			return err;
415		}
416	}
417
418	return 0;
419}
420
421static int xgene_msi_hwirq_free(unsigned int cpu)
422{
423	struct xgene_msi *msi = &xgene_msi_ctrl;
424	struct xgene_msi_group *msi_group;
425	int i;
426
427	for (i = cpu; i < NR_HW_IRQS; i += msi->num_cpus) {
428		msi_group = &msi->msi_groups[i];
429		if (!msi_group->gic_irq)
430			continue;
431
432		irq_set_chained_handler_and_data(msi_group->gic_irq, NULL,
433						 NULL);
434	}
435	return 0;
436}
437
438static const struct of_device_id xgene_msi_match_table[] = {
439	{.compatible = "apm,xgene1-msi"},
440	{},
441};
442
443static int xgene_msi_probe(struct platform_device *pdev)
444{
445	struct resource *res;
446	int rc, irq_index;
447	struct xgene_msi *xgene_msi;
448	int virt_msir;
449	u32 msi_val, msi_idx;
450
451	xgene_msi = &xgene_msi_ctrl;
452
453	platform_set_drvdata(pdev, xgene_msi);
454
455	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
456	xgene_msi->msi_regs = devm_ioremap_resource(&pdev->dev, res);
457	if (IS_ERR(xgene_msi->msi_regs)) {
458		dev_err(&pdev->dev, "no reg space\n");
459		rc = PTR_ERR(xgene_msi->msi_regs);
460		goto error;
461	}
462	xgene_msi->msi_addr = res->start;
463	xgene_msi->node = pdev->dev.of_node;
464	xgene_msi->num_cpus = num_possible_cpus();
465
466	rc = xgene_msi_init_allocator(xgene_msi);
467	if (rc) {
468		dev_err(&pdev->dev, "Error allocating MSI bitmap\n");
469		goto error;
470	}
471
472	rc = xgene_allocate_domains(xgene_msi);
473	if (rc) {
474		dev_err(&pdev->dev, "Failed to allocate MSI domain\n");
475		goto error;
476	}
477
478	for (irq_index = 0; irq_index < NR_HW_IRQS; irq_index++) {
479		virt_msir = platform_get_irq(pdev, irq_index);
480		if (virt_msir < 0) {
481			dev_err(&pdev->dev, "Cannot translate IRQ index %d\n",
482				irq_index);
483			rc = virt_msir;
484			goto error;
485		}
486		xgene_msi->msi_groups[irq_index].gic_irq = virt_msir;
487		xgene_msi->msi_groups[irq_index].msi_grp = irq_index;
488		xgene_msi->msi_groups[irq_index].msi = xgene_msi;
489	}
490
491	/*
492	 * MSInIRx registers are read-to-clear; before registering
493	 * interrupt handlers, read all of them to clear spurious
494	 * interrupts that may occur before the driver is probed.
495	 */
496	for (irq_index = 0; irq_index < NR_HW_IRQS; irq_index++) {
497		for (msi_idx = 0; msi_idx < IDX_PER_GROUP; msi_idx++)
498			msi_val = xgene_msi_ir_read(xgene_msi, irq_index,
499						    msi_idx);
500		/* Read MSIINTn to confirm */
501		msi_val = xgene_msi_int_read(xgene_msi, irq_index);
502		if (msi_val) {
503			dev_err(&pdev->dev, "Failed to clear spurious IRQ\n");
504			rc = -EINVAL;
505			goto error;
506		}
507	}
508
509	rc = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "pci/xgene:online",
510			       xgene_msi_hwirq_alloc, NULL);
511	if (rc < 0)
512		goto err_cpuhp;
513	pci_xgene_online = rc;
514	rc = cpuhp_setup_state(CPUHP_PCI_XGENE_DEAD, "pci/xgene:dead", NULL,
515			       xgene_msi_hwirq_free);
516	if (rc)
517		goto err_cpuhp;
518
519	dev_info(&pdev->dev, "APM X-Gene PCIe MSI driver loaded\n");
520
521	return 0;
522
523err_cpuhp:
524	dev_err(&pdev->dev, "failed to add CPU MSI notifier\n");
525error:
526	xgene_msi_remove(pdev);
527	return rc;
528}
529
530static struct platform_driver xgene_msi_driver = {
531	.driver = {
532		.name = "xgene-msi",
533		.of_match_table = xgene_msi_match_table,
534	},
535	.probe = xgene_msi_probe,
536	.remove = xgene_msi_remove,
537};
538
539static int __init xgene_pcie_msi_init(void)
540{
541	return platform_driver_register(&xgene_msi_driver);
542}
543subsys_initcall(xgene_pcie_msi_init);