Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.13.7.
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *
   4 *	(c) Copyright 1998 Alan Cox <alan@lxorguk.ukuu.org.uk>
   5 *	(c) Copyright 2000, 2001 Red Hat Inc
   6 *
   7 *	Development of this driver was funded by Equiinet Ltd
   8 *			http://www.equiinet.com
   9 *
  10 *	ChangeLog:
  11 *
  12 *	Asynchronous mode dropped for 2.2. For 2.5 we will attempt the
  13 *	unification of all the Z85x30 asynchronous drivers for real.
  14 *
  15 *	DMA now uses get_free_page as kmalloc buffers may span a 64K 
  16 *	boundary.
  17 *
  18 *	Modified for SMP safety and SMP locking by Alan Cox
  19 *					<alan@lxorguk.ukuu.org.uk>
  20 *
  21 *	Performance
  22 *
  23 *	Z85230:
  24 *	Non DMA you want a 486DX50 or better to do 64Kbits. 9600 baud
  25 *	X.25 is not unrealistic on all machines. DMA mode can in theory
  26 *	handle T1/E1 quite nicely. In practice the limit seems to be about
  27 *	512Kbit->1Mbit depending on motherboard.
  28 *
  29 *	Z85C30:
  30 *	64K will take DMA, 9600 baud X.25 should be ok.
  31 *
  32 *	Z8530:
  33 *	Synchronous mode without DMA is unlikely to pass about 2400 baud.
  34 */
  35
  36#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  37
  38#include <linux/module.h>
  39#include <linux/kernel.h>
  40#include <linux/mm.h>
  41#include <linux/net.h>
  42#include <linux/skbuff.h>
  43#include <linux/netdevice.h>
  44#include <linux/if_arp.h>
  45#include <linux/delay.h>
  46#include <linux/hdlc.h>
  47#include <linux/ioport.h>
  48#include <linux/init.h>
  49#include <linux/gfp.h>
  50#include <asm/dma.h>
  51#include <asm/io.h>
  52#define RT_LOCK
  53#define RT_UNLOCK
  54#include <linux/spinlock.h>
  55
  56#include "z85230.h"
  57
  58
  59/**
  60 *	z8530_read_port - Architecture specific interface function
  61 *	@p: port to read
  62 *
  63 *	Provided port access methods. The Comtrol SV11 requires no delays
  64 *	between accesses and uses PC I/O. Some drivers may need a 5uS delay
  65 *	
  66 *	In the longer term this should become an architecture specific
  67 *	section so that this can become a generic driver interface for all
  68 *	platforms. For now we only handle PC I/O ports with or without the
  69 *	dread 5uS sanity delay.
  70 *
  71 *	The caller must hold sufficient locks to avoid violating the horrible
  72 *	5uS delay rule.
  73 */
  74
  75static inline int z8530_read_port(unsigned long p)
  76{
  77	u8 r=inb(Z8530_PORT_OF(p));
  78	if(p&Z8530_PORT_SLEEP)	/* gcc should figure this out efficiently ! */
  79		udelay(5);
  80	return r;
  81}
  82
  83/**
  84 *	z8530_write_port - Architecture specific interface function
  85 *	@p: port to write
  86 *	@d: value to write
  87 *
  88 *	Write a value to a port with delays if need be. Note that the
  89 *	caller must hold locks to avoid read/writes from other contexts
  90 *	violating the 5uS rule
  91 *
  92 *	In the longer term this should become an architecture specific
  93 *	section so that this can become a generic driver interface for all
  94 *	platforms. For now we only handle PC I/O ports with or without the
  95 *	dread 5uS sanity delay.
  96 */
  97
  98
  99static inline void z8530_write_port(unsigned long p, u8 d)
 100{
 101	outb(d,Z8530_PORT_OF(p));
 102	if(p&Z8530_PORT_SLEEP)
 103		udelay(5);
 104}
 105
 106
 107
 108static void z8530_rx_done(struct z8530_channel *c);
 109static void z8530_tx_done(struct z8530_channel *c);
 110
 111
 112/**
 113 *	read_zsreg - Read a register from a Z85230 
 114 *	@c: Z8530 channel to read from (2 per chip)
 115 *	@reg: Register to read
 116 *	FIXME: Use a spinlock.
 117 *	
 118 *	Most of the Z8530 registers are indexed off the control registers.
 119 *	A read is done by writing to the control register and reading the
 120 *	register back.  The caller must hold the lock
 121 */
 122 
 123static inline u8 read_zsreg(struct z8530_channel *c, u8 reg)
 124{
 125	if(reg)
 126		z8530_write_port(c->ctrlio, reg);
 127	return z8530_read_port(c->ctrlio);
 128}
 129
 130/**
 131 *	read_zsdata - Read the data port of a Z8530 channel
 132 *	@c: The Z8530 channel to read the data port from
 133 *
 134 *	The data port provides fast access to some things. We still
 135 *	have all the 5uS delays to worry about.
 136 */
 137
 138static inline u8 read_zsdata(struct z8530_channel *c)
 139{
 140	u8 r;
 141	r=z8530_read_port(c->dataio);
 142	return r;
 143}
 144
 145/**
 146 *	write_zsreg - Write to a Z8530 channel register
 147 *	@c: The Z8530 channel
 148 *	@reg: Register number
 149 *	@val: Value to write
 150 *
 151 *	Write a value to an indexed register. The caller must hold the lock
 152 *	to honour the irritating delay rules. We know about register 0
 153 *	being fast to access.
 154 *
 155 *      Assumes c->lock is held.
 156 */
 157static inline void write_zsreg(struct z8530_channel *c, u8 reg, u8 val)
 158{
 159	if(reg)
 160		z8530_write_port(c->ctrlio, reg);
 161	z8530_write_port(c->ctrlio, val);
 162
 163}
 164
 165/**
 166 *	write_zsctrl - Write to a Z8530 control register
 167 *	@c: The Z8530 channel
 168 *	@val: Value to write
 169 *
 170 *	Write directly to the control register on the Z8530
 171 */
 172
 173static inline void write_zsctrl(struct z8530_channel *c, u8 val)
 174{
 175	z8530_write_port(c->ctrlio, val);
 176}
 177
 178/**
 179 *	write_zsdata - Write to a Z8530 control register
 180 *	@c: The Z8530 channel
 181 *	@val: Value to write
 182 *
 183 *	Write directly to the data register on the Z8530
 184 */
 185
 186
 187static inline void write_zsdata(struct z8530_channel *c, u8 val)
 188{
 189	z8530_write_port(c->dataio, val);
 190}
 191
 192/*
 193 *	Register loading parameters for a dead port
 194 */
 195 
 196u8 z8530_dead_port[]=
 197{
 198	255
 199};
 200
 201EXPORT_SYMBOL(z8530_dead_port);
 202
 203/*
 204 *	Register loading parameters for currently supported circuit types
 205 */
 206
 207
 208/*
 209 *	Data clocked by telco end. This is the correct data for the UK
 210 *	"kilostream" service, and most other similar services.
 211 */
 212 
 213u8 z8530_hdlc_kilostream[]=
 214{
 215	4,	SYNC_ENAB|SDLC|X1CLK,
 216	2,	0,	/* No vector */
 217	1,	0,
 218	3,	ENT_HM|RxCRC_ENAB|Rx8,
 219	5,	TxCRC_ENAB|RTS|TxENAB|Tx8|DTR,
 220	9,	0,		/* Disable interrupts */
 221	6,	0xFF,
 222	7,	FLAG,
 223	10,	ABUNDER|NRZ|CRCPS,/*MARKIDLE ??*/
 224	11,	TCTRxCP,
 225	14,	DISDPLL,
 226	15,	DCDIE|SYNCIE|CTSIE|TxUIE|BRKIE,
 227	1,	EXT_INT_ENAB|TxINT_ENAB|INT_ALL_Rx,
 228	9,	NV|MIE|NORESET,
 229	255
 230};
 231
 232EXPORT_SYMBOL(z8530_hdlc_kilostream);
 233
 234/*
 235 *	As above but for enhanced chips.
 236 */
 237 
 238u8 z8530_hdlc_kilostream_85230[]=
 239{
 240	4,	SYNC_ENAB|SDLC|X1CLK,
 241	2,	0,	/* No vector */
 242	1,	0,
 243	3,	ENT_HM|RxCRC_ENAB|Rx8,
 244	5,	TxCRC_ENAB|RTS|TxENAB|Tx8|DTR,
 245	9,	0,		/* Disable interrupts */
 246	6,	0xFF,
 247	7,	FLAG,
 248	10,	ABUNDER|NRZ|CRCPS,	/* MARKIDLE?? */
 249	11,	TCTRxCP,
 250	14,	DISDPLL,
 251	15,	DCDIE|SYNCIE|CTSIE|TxUIE|BRKIE,
 252	1,	EXT_INT_ENAB|TxINT_ENAB|INT_ALL_Rx,
 253	9,	NV|MIE|NORESET,
 254	23,	3,		/* Extended mode AUTO TX and EOM*/
 255	
 256	255
 257};
 258
 259EXPORT_SYMBOL(z8530_hdlc_kilostream_85230);
 260
 261/**
 262 *	z8530_flush_fifo - Flush on chip RX FIFO
 263 *	@c: Channel to flush
 264 *
 265 *	Flush the receive FIFO. There is no specific option for this, we 
 266 *	blindly read bytes and discard them. Reading when there is no data
 267 *	is harmless. The 8530 has a 4 byte FIFO, the 85230 has 8 bytes.
 268 *	
 269 *	All locking is handled for the caller. On return data may still be
 270 *	present if it arrived during the flush.
 271 */
 272 
 273static void z8530_flush_fifo(struct z8530_channel *c)
 274{
 275	read_zsreg(c, R1);
 276	read_zsreg(c, R1);
 277	read_zsreg(c, R1);
 278	read_zsreg(c, R1);
 279	if(c->dev->type==Z85230)
 280	{
 281		read_zsreg(c, R1);
 282		read_zsreg(c, R1);
 283		read_zsreg(c, R1);
 284		read_zsreg(c, R1);
 285	}
 286}	
 287
 288/**
 289 *	z8530_rtsdtr - Control the outgoing DTS/RTS line
 290 *	@c: The Z8530 channel to control;
 291 *	@set: 1 to set, 0 to clear
 292 *
 293 *	Sets or clears DTR/RTS on the requested line. All locking is handled
 294 *	by the caller. For now we assume all boards use the actual RTS/DTR
 295 *	on the chip. Apparently one or two don't. We'll scream about them
 296 *	later.
 297 */
 298
 299static void z8530_rtsdtr(struct z8530_channel *c, int set)
 300{
 301	if (set)
 302		c->regs[5] |= (RTS | DTR);
 303	else
 304		c->regs[5] &= ~(RTS | DTR);
 305	write_zsreg(c, R5, c->regs[5]);
 306}
 307
 308/**
 309 *	z8530_rx - Handle a PIO receive event
 310 *	@c: Z8530 channel to process
 311 *
 312 *	Receive handler for receiving in PIO mode. This is much like the 
 313 *	async one but not quite the same or as complex
 314 *
 315 *	Note: Its intended that this handler can easily be separated from
 316 *	the main code to run realtime. That'll be needed for some machines
 317 *	(eg to ever clock 64kbits on a sparc ;)).
 318 *
 319 *	The RT_LOCK macros don't do anything now. Keep the code covered
 320 *	by them as short as possible in all circumstances - clocks cost
 321 *	baud. The interrupt handler is assumed to be atomic w.r.t. to
 322 *	other code - this is true in the RT case too.
 323 *
 324 *	We only cover the sync cases for this. If you want 2Mbit async
 325 *	do it yourself but consider medical assistance first. This non DMA 
 326 *	synchronous mode is portable code. The DMA mode assumes PCI like 
 327 *	ISA DMA
 328 *
 329 *	Called with the device lock held
 330 */
 331 
 332static void z8530_rx(struct z8530_channel *c)
 333{
 334	u8 ch,stat;
 335
 336	while(1)
 337	{
 338		/* FIFO empty ? */
 339		if(!(read_zsreg(c, R0)&1))
 340			break;
 341		ch=read_zsdata(c);
 342		stat=read_zsreg(c, R1);
 343	
 344		/*
 345		 *	Overrun ?
 346		 */
 347		if(c->count < c->max)
 348		{
 349			*c->dptr++=ch;
 350			c->count++;
 351		}
 352
 353		if(stat&END_FR)
 354		{
 355		
 356			/*
 357			 *	Error ?
 358			 */
 359			if(stat&(Rx_OVR|CRC_ERR))
 360			{
 361				/* Rewind the buffer and return */
 362				if(c->skb)
 363					c->dptr=c->skb->data;
 364				c->count=0;
 365				if(stat&Rx_OVR)
 366				{
 367					pr_warn("%s: overrun\n", c->dev->name);
 368					c->rx_overrun++;
 369				}
 370				if(stat&CRC_ERR)
 371				{
 372					c->rx_crc_err++;
 373					/* printk("crc error\n"); */
 374				}
 375				/* Shove the frame upstream */
 376			}
 377			else
 378			{
 379				/*
 380				 *	Drop the lock for RX processing, or
 381		 		 *	there are deadlocks
 382		 		 */
 383				z8530_rx_done(c);
 384				write_zsctrl(c, RES_Rx_CRC);
 385			}
 386		}
 387	}
 388	/*
 389	 *	Clear irq
 390	 */
 391	write_zsctrl(c, ERR_RES);
 392	write_zsctrl(c, RES_H_IUS);
 393}
 394
 395
 396/**
 397 *	z8530_tx - Handle a PIO transmit event
 398 *	@c: Z8530 channel to process
 399 *
 400 *	Z8530 transmit interrupt handler for the PIO mode. The basic
 401 *	idea is to attempt to keep the FIFO fed. We fill as many bytes
 402 *	in as possible, its quite possible that we won't keep up with the
 403 *	data rate otherwise.
 404 */
 405 
 406static void z8530_tx(struct z8530_channel *c)
 407{
 408	while(c->txcount) {
 409		/* FIFO full ? */
 410		if(!(read_zsreg(c, R0)&4))
 411			return;
 412		c->txcount--;
 413		/*
 414		 *	Shovel out the byte
 415		 */
 416		write_zsreg(c, R8, *c->tx_ptr++);
 417		write_zsctrl(c, RES_H_IUS);
 418		/* We are about to underflow */
 419		if(c->txcount==0)
 420		{
 421			write_zsctrl(c, RES_EOM_L);
 422			write_zsreg(c, R10, c->regs[10]&~ABUNDER);
 423		}
 424	}
 425
 426	
 427	/*
 428	 *	End of frame TX - fire another one
 429	 */
 430	 
 431	write_zsctrl(c, RES_Tx_P);
 432
 433	z8530_tx_done(c);	 
 434	write_zsctrl(c, RES_H_IUS);
 435}
 436
 437/**
 438 *	z8530_status - Handle a PIO status exception
 439 *	@chan: Z8530 channel to process
 440 *
 441 *	A status event occurred in PIO synchronous mode. There are several
 442 *	reasons the chip will bother us here. A transmit underrun means we
 443 *	failed to feed the chip fast enough and just broke a packet. A DCD
 444 *	change is a line up or down.
 445 */
 446
 447static void z8530_status(struct z8530_channel *chan)
 448{
 449	u8 status, altered;
 450
 451	status = read_zsreg(chan, R0);
 452	altered = chan->status ^ status;
 453
 454	chan->status = status;
 455
 456	if (status & TxEOM) {
 457/*		printk("%s: Tx underrun.\n", chan->dev->name); */
 458		chan->netdevice->stats.tx_fifo_errors++;
 459		write_zsctrl(chan, ERR_RES);
 460		z8530_tx_done(chan);
 461	}
 462
 463	if (altered & chan->dcdcheck)
 464	{
 465		if (status & chan->dcdcheck) {
 466			pr_info("%s: DCD raised\n", chan->dev->name);
 467			write_zsreg(chan, R3, chan->regs[3] | RxENABLE);
 468			if (chan->netdevice)
 469				netif_carrier_on(chan->netdevice);
 470		} else {
 471			pr_info("%s: DCD lost\n", chan->dev->name);
 472			write_zsreg(chan, R3, chan->regs[3] & ~RxENABLE);
 473			z8530_flush_fifo(chan);
 474			if (chan->netdevice)
 475				netif_carrier_off(chan->netdevice);
 476		}
 477
 478	}
 479	write_zsctrl(chan, RES_EXT_INT);
 480	write_zsctrl(chan, RES_H_IUS);
 481}
 482
 483struct z8530_irqhandler z8530_sync = {
 484	.rx = z8530_rx,
 485	.tx = z8530_tx,
 486	.status = z8530_status,
 487};
 488
 489EXPORT_SYMBOL(z8530_sync);
 490
 491/**
 492 *	z8530_dma_rx - Handle a DMA RX event
 493 *	@chan: Channel to handle
 494 *
 495 *	Non bus mastering DMA interfaces for the Z8x30 devices. This
 496 *	is really pretty PC specific. The DMA mode means that most receive
 497 *	events are handled by the DMA hardware. We get a kick here only if
 498 *	a frame ended.
 499 */
 500 
 501static void z8530_dma_rx(struct z8530_channel *chan)
 502{
 503	if(chan->rxdma_on)
 504	{
 505		/* Special condition check only */
 506		u8 status;
 507	
 508		read_zsreg(chan, R7);
 509		read_zsreg(chan, R6);
 510		
 511		status=read_zsreg(chan, R1);
 512	
 513		if(status&END_FR)
 514		{
 515			z8530_rx_done(chan);	/* Fire up the next one */
 516		}		
 517		write_zsctrl(chan, ERR_RES);
 518		write_zsctrl(chan, RES_H_IUS);
 519	}
 520	else
 521	{
 522		/* DMA is off right now, drain the slow way */
 523		z8530_rx(chan);
 524	}	
 525}
 526
 527/**
 528 *	z8530_dma_tx - Handle a DMA TX event
 529 *	@chan:	The Z8530 channel to handle
 530 *
 531 *	We have received an interrupt while doing DMA transmissions. It
 532 *	shouldn't happen. Scream loudly if it does.
 533 */
 534 
 535static void z8530_dma_tx(struct z8530_channel *chan)
 536{
 537	if(!chan->dma_tx)
 538	{
 539		pr_warn("Hey who turned the DMA off?\n");
 540		z8530_tx(chan);
 541		return;
 542	}
 543	/* This shouldn't occur in DMA mode */
 544	pr_err("DMA tx - bogus event!\n");
 545	z8530_tx(chan);
 546}
 547
 548/**
 549 *	z8530_dma_status - Handle a DMA status exception
 550 *	@chan: Z8530 channel to process
 551 *	
 552 *	A status event occurred on the Z8530. We receive these for two reasons
 553 *	when in DMA mode. Firstly if we finished a packet transfer we get one
 554 *	and kick the next packet out. Secondly we may see a DCD change.
 555 *
 556 */
 557 
 558static void z8530_dma_status(struct z8530_channel *chan)
 559{
 560	u8 status, altered;
 561
 562	status=read_zsreg(chan, R0);
 563	altered=chan->status^status;
 564	
 565	chan->status=status;
 566
 567
 568	if(chan->dma_tx)
 569	{
 570		if(status&TxEOM)
 571		{
 572			unsigned long flags;
 573	
 574			flags=claim_dma_lock();
 575			disable_dma(chan->txdma);
 576			clear_dma_ff(chan->txdma);	
 577			chan->txdma_on=0;
 578			release_dma_lock(flags);
 579			z8530_tx_done(chan);
 580		}
 581	}
 582
 583	if (altered & chan->dcdcheck)
 584	{
 585		if (status & chan->dcdcheck) {
 586			pr_info("%s: DCD raised\n", chan->dev->name);
 587			write_zsreg(chan, R3, chan->regs[3] | RxENABLE);
 588			if (chan->netdevice)
 589				netif_carrier_on(chan->netdevice);
 590		} else {
 591			pr_info("%s: DCD lost\n", chan->dev->name);
 592			write_zsreg(chan, R3, chan->regs[3] & ~RxENABLE);
 593			z8530_flush_fifo(chan);
 594			if (chan->netdevice)
 595				netif_carrier_off(chan->netdevice);
 596		}
 597	}
 598
 599	write_zsctrl(chan, RES_EXT_INT);
 600	write_zsctrl(chan, RES_H_IUS);
 601}
 602
 603static struct z8530_irqhandler z8530_dma_sync = {
 604	.rx = z8530_dma_rx,
 605	.tx = z8530_dma_tx,
 606	.status = z8530_dma_status,
 607};
 608
 609static struct z8530_irqhandler z8530_txdma_sync = {
 610	.rx = z8530_rx,
 611	.tx = z8530_dma_tx,
 612	.status = z8530_dma_status,
 613};
 614
 615/**
 616 *	z8530_rx_clear - Handle RX events from a stopped chip
 617 *	@c: Z8530 channel to shut up
 618 *
 619 *	Receive interrupt vectors for a Z8530 that is in 'parked' mode.
 620 *	For machines with PCI Z85x30 cards, or level triggered interrupts
 621 *	(eg the MacII) we must clear the interrupt cause or die.
 622 */
 623
 624
 625static void z8530_rx_clear(struct z8530_channel *c)
 626{
 627	/*
 628	 *	Data and status bytes
 629	 */
 630	u8 stat;
 631
 632	read_zsdata(c);
 633	stat=read_zsreg(c, R1);
 634	
 635	if(stat&END_FR)
 636		write_zsctrl(c, RES_Rx_CRC);
 637	/*
 638	 *	Clear irq
 639	 */
 640	write_zsctrl(c, ERR_RES);
 641	write_zsctrl(c, RES_H_IUS);
 642}
 643
 644/**
 645 *	z8530_tx_clear - Handle TX events from a stopped chip
 646 *	@c: Z8530 channel to shut up
 647 *
 648 *	Transmit interrupt vectors for a Z8530 that is in 'parked' mode.
 649 *	For machines with PCI Z85x30 cards, or level triggered interrupts
 650 *	(eg the MacII) we must clear the interrupt cause or die.
 651 */
 652
 653static void z8530_tx_clear(struct z8530_channel *c)
 654{
 655	write_zsctrl(c, RES_Tx_P);
 656	write_zsctrl(c, RES_H_IUS);
 657}
 658
 659/**
 660 *	z8530_status_clear - Handle status events from a stopped chip
 661 *	@chan: Z8530 channel to shut up
 662 *
 663 *	Status interrupt vectors for a Z8530 that is in 'parked' mode.
 664 *	For machines with PCI Z85x30 cards, or level triggered interrupts
 665 *	(eg the MacII) we must clear the interrupt cause or die.
 666 */
 667
 668static void z8530_status_clear(struct z8530_channel *chan)
 669{
 670	u8 status=read_zsreg(chan, R0);
 671	if(status&TxEOM)
 672		write_zsctrl(chan, ERR_RES);
 673	write_zsctrl(chan, RES_EXT_INT);
 674	write_zsctrl(chan, RES_H_IUS);
 675}
 676
 677struct z8530_irqhandler z8530_nop = {
 678	.rx = z8530_rx_clear,
 679	.tx = z8530_tx_clear,
 680	.status = z8530_status_clear,
 681};
 682
 683
 684EXPORT_SYMBOL(z8530_nop);
 685
 686/**
 687 *	z8530_interrupt - Handle an interrupt from a Z8530
 688 *	@irq: 	Interrupt number
 689 *	@dev_id: The Z8530 device that is interrupting.
 690 *
 691 *	A Z85[2]30 device has stuck its hand in the air for attention.
 692 *	We scan both the channels on the chip for events and then call
 693 *	the channel specific call backs for each channel that has events.
 694 *	We have to use callback functions because the two channels can be
 695 *	in different modes.
 696 *
 697 *	Locking is done for the handlers. Note that locking is done
 698 *	at the chip level (the 5uS delay issue is per chip not per
 699 *	channel). c->lock for both channels points to dev->lock
 700 */
 701
 702irqreturn_t z8530_interrupt(int irq, void *dev_id)
 703{
 704	struct z8530_dev *dev=dev_id;
 705	u8 uninitialized_var(intr);
 706	static volatile int locker=0;
 707	int work=0;
 708	struct z8530_irqhandler *irqs;
 709	
 710	if(locker)
 711	{
 712		pr_err("IRQ re-enter\n");
 713		return IRQ_NONE;
 714	}
 715	locker=1;
 716
 717	spin_lock(&dev->lock);
 718
 719	while(++work<5000)
 720	{
 721
 722		intr = read_zsreg(&dev->chanA, R3);
 723		if(!(intr & (CHARxIP|CHATxIP|CHAEXT|CHBRxIP|CHBTxIP|CHBEXT)))
 724			break;
 725	
 726		/* This holds the IRQ status. On the 8530 you must read it from chan 
 727		   A even though it applies to the whole chip */
 728		
 729		/* Now walk the chip and see what it is wanting - it may be
 730		   an IRQ for someone else remember */
 731		   
 732		irqs=dev->chanA.irqs;
 733
 734		if(intr & (CHARxIP|CHATxIP|CHAEXT))
 735		{
 736			if(intr&CHARxIP)
 737				irqs->rx(&dev->chanA);
 738			if(intr&CHATxIP)
 739				irqs->tx(&dev->chanA);
 740			if(intr&CHAEXT)
 741				irqs->status(&dev->chanA);
 742		}
 743
 744		irqs=dev->chanB.irqs;
 745
 746		if(intr & (CHBRxIP|CHBTxIP|CHBEXT))
 747		{
 748			if(intr&CHBRxIP)
 749				irqs->rx(&dev->chanB);
 750			if(intr&CHBTxIP)
 751				irqs->tx(&dev->chanB);
 752			if(intr&CHBEXT)
 753				irqs->status(&dev->chanB);
 754		}
 755	}
 756	spin_unlock(&dev->lock);
 757	if(work==5000)
 758		pr_err("%s: interrupt jammed - abort(0x%X)!\n",
 759		       dev->name, intr);
 760	/* Ok all done */
 761	locker=0;
 762	return IRQ_HANDLED;
 763}
 764
 765EXPORT_SYMBOL(z8530_interrupt);
 766
 767static const u8 reg_init[16]=
 768{
 769	0,0,0,0,
 770	0,0,0,0,
 771	0,0,0,0,
 772	0x55,0,0,0
 773};
 774
 775
 776/**
 777 *	z8530_sync_open - Open a Z8530 channel for PIO
 778 *	@dev:	The network interface we are using
 779 *	@c:	The Z8530 channel to open in synchronous PIO mode
 780 *
 781 *	Switch a Z8530 into synchronous mode without DMA assist. We
 782 *	raise the RTS/DTR and commence network operation.
 783 */
 784 
 785int z8530_sync_open(struct net_device *dev, struct z8530_channel *c)
 786{
 787	unsigned long flags;
 788
 789	spin_lock_irqsave(c->lock, flags);
 790
 791	c->sync = 1;
 792	c->mtu = dev->mtu+64;
 793	c->count = 0;
 794	c->skb = NULL;
 795	c->skb2 = NULL;
 796	c->irqs = &z8530_sync;
 797
 798	/* This loads the double buffer up */
 799	z8530_rx_done(c);	/* Load the frame ring */
 800	z8530_rx_done(c);	/* Load the backup frame */
 801	z8530_rtsdtr(c,1);
 802	c->dma_tx = 0;
 803	c->regs[R1]|=TxINT_ENAB;
 804	write_zsreg(c, R1, c->regs[R1]);
 805	write_zsreg(c, R3, c->regs[R3]|RxENABLE);
 806
 807	spin_unlock_irqrestore(c->lock, flags);
 808	return 0;
 809}
 810
 811
 812EXPORT_SYMBOL(z8530_sync_open);
 813
 814/**
 815 *	z8530_sync_close - Close a PIO Z8530 channel
 816 *	@dev: Network device to close
 817 *	@c: Z8530 channel to disassociate and move to idle
 818 *
 819 *	Close down a Z8530 interface and switch its interrupt handlers
 820 *	to discard future events.
 821 */
 822 
 823int z8530_sync_close(struct net_device *dev, struct z8530_channel *c)
 824{
 825	u8 chk;
 826	unsigned long flags;
 827	
 828	spin_lock_irqsave(c->lock, flags);
 829	c->irqs = &z8530_nop;
 830	c->max = 0;
 831	c->sync = 0;
 832	
 833	chk=read_zsreg(c,R0);
 834	write_zsreg(c, R3, c->regs[R3]);
 835	z8530_rtsdtr(c,0);
 836
 837	spin_unlock_irqrestore(c->lock, flags);
 838	return 0;
 839}
 840
 841EXPORT_SYMBOL(z8530_sync_close);
 842
 843/**
 844 *	z8530_sync_dma_open - Open a Z8530 for DMA I/O
 845 *	@dev: The network device to attach
 846 *	@c: The Z8530 channel to configure in sync DMA mode.
 847 *
 848 *	Set up a Z85x30 device for synchronous DMA in both directions. Two
 849 *	ISA DMA channels must be available for this to work. We assume ISA
 850 *	DMA driven I/O and PC limits on access.
 851 */
 852 
 853int z8530_sync_dma_open(struct net_device *dev, struct z8530_channel *c)
 854{
 855	unsigned long cflags, dflags;
 856	
 857	c->sync = 1;
 858	c->mtu = dev->mtu+64;
 859	c->count = 0;
 860	c->skb = NULL;
 861	c->skb2 = NULL;
 862	/*
 863	 *	Load the DMA interfaces up
 864	 */
 865	c->rxdma_on = 0;
 866	c->txdma_on = 0;
 867	
 868	/*
 869	 *	Allocate the DMA flip buffers. Limit by page size.
 870	 *	Everyone runs 1500 mtu or less on wan links so this
 871	 *	should be fine.
 872	 */
 873	 
 874	if(c->mtu  > PAGE_SIZE/2)
 875		return -EMSGSIZE;
 876	 
 877	c->rx_buf[0]=(void *)get_zeroed_page(GFP_KERNEL|GFP_DMA);
 878	if(c->rx_buf[0]==NULL)
 879		return -ENOBUFS;
 880	c->rx_buf[1]=c->rx_buf[0]+PAGE_SIZE/2;
 881	
 882	c->tx_dma_buf[0]=(void *)get_zeroed_page(GFP_KERNEL|GFP_DMA);
 883	if(c->tx_dma_buf[0]==NULL)
 884	{
 885		free_page((unsigned long)c->rx_buf[0]);
 886		c->rx_buf[0]=NULL;
 887		return -ENOBUFS;
 888	}
 889	c->tx_dma_buf[1]=c->tx_dma_buf[0]+PAGE_SIZE/2;
 890
 891	c->tx_dma_used=0;
 892	c->dma_tx = 1;
 893	c->dma_num=0;
 894	c->dma_ready=1;
 895	
 896	/*
 897	 *	Enable DMA control mode
 898	 */
 899
 900	spin_lock_irqsave(c->lock, cflags);
 901	 
 902	/*
 903	 *	TX DMA via DIR/REQ
 904	 */
 905	 
 906	c->regs[R14]|= DTRREQ;
 907	write_zsreg(c, R14, c->regs[R14]);     
 908
 909	c->regs[R1]&= ~TxINT_ENAB;
 910	write_zsreg(c, R1, c->regs[R1]);
 911	
 912	/*
 913	 *	RX DMA via W/Req
 914	 */	 
 915
 916	c->regs[R1]|= WT_FN_RDYFN;
 917	c->regs[R1]|= WT_RDY_RT;
 918	c->regs[R1]|= INT_ERR_Rx;
 919	c->regs[R1]&= ~TxINT_ENAB;
 920	write_zsreg(c, R1, c->regs[R1]);
 921	c->regs[R1]|= WT_RDY_ENAB;
 922	write_zsreg(c, R1, c->regs[R1]);            
 923	
 924	/*
 925	 *	DMA interrupts
 926	 */
 927	 
 928	/*
 929	 *	Set up the DMA configuration
 930	 */	
 931	 
 932	dflags=claim_dma_lock();
 933	 
 934	disable_dma(c->rxdma);
 935	clear_dma_ff(c->rxdma);
 936	set_dma_mode(c->rxdma, DMA_MODE_READ|0x10);
 937	set_dma_addr(c->rxdma, virt_to_bus(c->rx_buf[0]));
 938	set_dma_count(c->rxdma, c->mtu);
 939	enable_dma(c->rxdma);
 940
 941	disable_dma(c->txdma);
 942	clear_dma_ff(c->txdma);
 943	set_dma_mode(c->txdma, DMA_MODE_WRITE);
 944	disable_dma(c->txdma);
 945	
 946	release_dma_lock(dflags);
 947	
 948	/*
 949	 *	Select the DMA interrupt handlers
 950	 */
 951
 952	c->rxdma_on = 1;
 953	c->txdma_on = 1;
 954	c->tx_dma_used = 1;
 955	 
 956	c->irqs = &z8530_dma_sync;
 957	z8530_rtsdtr(c,1);
 958	write_zsreg(c, R3, c->regs[R3]|RxENABLE);
 959
 960	spin_unlock_irqrestore(c->lock, cflags);
 961	
 962	return 0;
 963}
 964
 965EXPORT_SYMBOL(z8530_sync_dma_open);
 966
 967/**
 968 *	z8530_sync_dma_close - Close down DMA I/O
 969 *	@dev: Network device to detach
 970 *	@c: Z8530 channel to move into discard mode
 971 *
 972 *	Shut down a DMA mode synchronous interface. Halt the DMA, and
 973 *	free the buffers.
 974 */
 975 
 976int z8530_sync_dma_close(struct net_device *dev, struct z8530_channel *c)
 977{
 978	u8 chk;
 979	unsigned long flags;
 980	
 981	c->irqs = &z8530_nop;
 982	c->max = 0;
 983	c->sync = 0;
 984	
 985	/*
 986	 *	Disable the PC DMA channels
 987	 */
 988	
 989	flags=claim_dma_lock(); 
 990	disable_dma(c->rxdma);
 991	clear_dma_ff(c->rxdma);
 992	
 993	c->rxdma_on = 0;
 994	
 995	disable_dma(c->txdma);
 996	clear_dma_ff(c->txdma);
 997	release_dma_lock(flags);
 998	
 999	c->txdma_on = 0;
1000	c->tx_dma_used = 0;
1001
1002	spin_lock_irqsave(c->lock, flags);
1003
1004	/*
1005	 *	Disable DMA control mode
1006	 */
1007	 
1008	c->regs[R1]&= ~WT_RDY_ENAB;
1009	write_zsreg(c, R1, c->regs[R1]);            
1010	c->regs[R1]&= ~(WT_RDY_RT|WT_FN_RDYFN|INT_ERR_Rx);
1011	c->regs[R1]|= INT_ALL_Rx;
1012	write_zsreg(c, R1, c->regs[R1]);
1013	c->regs[R14]&= ~DTRREQ;
1014	write_zsreg(c, R14, c->regs[R14]);   
1015	
1016	if(c->rx_buf[0])
1017	{
1018		free_page((unsigned long)c->rx_buf[0]);
1019		c->rx_buf[0]=NULL;
1020	}
1021	if(c->tx_dma_buf[0])
1022	{
1023		free_page((unsigned  long)c->tx_dma_buf[0]);
1024		c->tx_dma_buf[0]=NULL;
1025	}
1026	chk=read_zsreg(c,R0);
1027	write_zsreg(c, R3, c->regs[R3]);
1028	z8530_rtsdtr(c,0);
1029
1030	spin_unlock_irqrestore(c->lock, flags);
1031
1032	return 0;
1033}
1034
1035EXPORT_SYMBOL(z8530_sync_dma_close);
1036
1037/**
1038 *	z8530_sync_txdma_open - Open a Z8530 for TX driven DMA
1039 *	@dev: The network device to attach
1040 *	@c: The Z8530 channel to configure in sync DMA mode.
1041 *
1042 *	Set up a Z85x30 device for synchronous DMA transmission. One
1043 *	ISA DMA channel must be available for this to work. The receive
1044 *	side is run in PIO mode, but then it has the bigger FIFO.
1045 */
1046
1047int z8530_sync_txdma_open(struct net_device *dev, struct z8530_channel *c)
1048{
1049	unsigned long cflags, dflags;
1050
1051	printk("Opening sync interface for TX-DMA\n");
1052	c->sync = 1;
1053	c->mtu = dev->mtu+64;
1054	c->count = 0;
1055	c->skb = NULL;
1056	c->skb2 = NULL;
1057	
1058	/*
1059	 *	Allocate the DMA flip buffers. Limit by page size.
1060	 *	Everyone runs 1500 mtu or less on wan links so this
1061	 *	should be fine.
1062	 */
1063	 
1064	if(c->mtu  > PAGE_SIZE/2)
1065		return -EMSGSIZE;
1066	 
1067	c->tx_dma_buf[0]=(void *)get_zeroed_page(GFP_KERNEL|GFP_DMA);
1068	if(c->tx_dma_buf[0]==NULL)
1069		return -ENOBUFS;
1070
1071	c->tx_dma_buf[1] = c->tx_dma_buf[0] + PAGE_SIZE/2;
1072
1073
1074	spin_lock_irqsave(c->lock, cflags);
1075
1076	/*
1077	 *	Load the PIO receive ring
1078	 */
1079
1080	z8530_rx_done(c);
1081	z8530_rx_done(c);
1082
1083 	/*
1084	 *	Load the DMA interfaces up
1085	 */
1086
1087	c->rxdma_on = 0;
1088	c->txdma_on = 0;
1089	
1090	c->tx_dma_used=0;
1091	c->dma_num=0;
1092	c->dma_ready=1;
1093	c->dma_tx = 1;
1094
1095 	/*
1096	 *	Enable DMA control mode
1097	 */
1098
1099 	/*
1100	 *	TX DMA via DIR/REQ
1101 	 */
1102	c->regs[R14]|= DTRREQ;
1103	write_zsreg(c, R14, c->regs[R14]);     
1104	
1105	c->regs[R1]&= ~TxINT_ENAB;
1106	write_zsreg(c, R1, c->regs[R1]);
1107	
1108	/*
1109	 *	Set up the DMA configuration
1110	 */	
1111	 
1112	dflags = claim_dma_lock();
1113
1114	disable_dma(c->txdma);
1115	clear_dma_ff(c->txdma);
1116	set_dma_mode(c->txdma, DMA_MODE_WRITE);
1117	disable_dma(c->txdma);
1118
1119	release_dma_lock(dflags);
1120	
1121	/*
1122	 *	Select the DMA interrupt handlers
1123	 */
1124
1125	c->rxdma_on = 0;
1126	c->txdma_on = 1;
1127	c->tx_dma_used = 1;
1128	 
1129	c->irqs = &z8530_txdma_sync;
1130	z8530_rtsdtr(c,1);
1131	write_zsreg(c, R3, c->regs[R3]|RxENABLE);
1132	spin_unlock_irqrestore(c->lock, cflags);
1133	
1134	return 0;
1135}
1136
1137EXPORT_SYMBOL(z8530_sync_txdma_open);
1138
1139/**
1140 *	z8530_sync_txdma_close - Close down a TX driven DMA channel
1141 *	@dev: Network device to detach
1142 *	@c: Z8530 channel to move into discard mode
1143 *
1144 *	Shut down a DMA/PIO split mode synchronous interface. Halt the DMA, 
1145 *	and  free the buffers.
1146 */
1147
1148int z8530_sync_txdma_close(struct net_device *dev, struct z8530_channel *c)
1149{
1150	unsigned long dflags, cflags;
1151	u8 chk;
1152
1153	
1154	spin_lock_irqsave(c->lock, cflags);
1155	
1156	c->irqs = &z8530_nop;
1157	c->max = 0;
1158	c->sync = 0;
1159	
1160	/*
1161	 *	Disable the PC DMA channels
1162	 */
1163	 
1164	dflags = claim_dma_lock();
1165
1166	disable_dma(c->txdma);
1167	clear_dma_ff(c->txdma);
1168	c->txdma_on = 0;
1169	c->tx_dma_used = 0;
1170
1171	release_dma_lock(dflags);
1172
1173	/*
1174	 *	Disable DMA control mode
1175	 */
1176	 
1177	c->regs[R1]&= ~WT_RDY_ENAB;
1178	write_zsreg(c, R1, c->regs[R1]);            
1179	c->regs[R1]&= ~(WT_RDY_RT|WT_FN_RDYFN|INT_ERR_Rx);
1180	c->regs[R1]|= INT_ALL_Rx;
1181	write_zsreg(c, R1, c->regs[R1]);
1182	c->regs[R14]&= ~DTRREQ;
1183	write_zsreg(c, R14, c->regs[R14]);   
1184	
1185	if(c->tx_dma_buf[0])
1186	{
1187		free_page((unsigned long)c->tx_dma_buf[0]);
1188		c->tx_dma_buf[0]=NULL;
1189	}
1190	chk=read_zsreg(c,R0);
1191	write_zsreg(c, R3, c->regs[R3]);
1192	z8530_rtsdtr(c,0);
1193
1194	spin_unlock_irqrestore(c->lock, cflags);
1195	return 0;
1196}
1197
1198
1199EXPORT_SYMBOL(z8530_sync_txdma_close);
1200
1201
1202/*
1203 *	Name strings for Z8530 chips. SGI claim to have a 130, Zilog deny
1204 *	it exists...
1205 */
1206 
1207static const char *z8530_type_name[]={
1208	"Z8530",
1209	"Z85C30",
1210	"Z85230"
1211};
1212
1213/**
1214 *	z8530_describe - Uniformly describe a Z8530 port
1215 *	@dev: Z8530 device to describe
1216 *	@mapping: string holding mapping type (eg "I/O" or "Mem")
1217 *	@io: the port value in question
1218 *
1219 *	Describe a Z8530 in a standard format. We must pass the I/O as
1220 *	the port offset isn't predictable. The main reason for this function
1221 *	is to try and get a common format of report.
1222 */
1223
1224void z8530_describe(struct z8530_dev *dev, char *mapping, unsigned long io)
1225{
1226	pr_info("%s: %s found at %s 0x%lX, IRQ %d\n",
1227		dev->name, 
1228		z8530_type_name[dev->type],
1229		mapping,
1230		Z8530_PORT_OF(io),
1231		dev->irq);
1232}
1233
1234EXPORT_SYMBOL(z8530_describe);
1235
1236/*
1237 *	Locked operation part of the z8530 init code
1238 */
1239 
1240static inline int do_z8530_init(struct z8530_dev *dev)
1241{
1242	/* NOP the interrupt handlers first - we might get a
1243	   floating IRQ transition when we reset the chip */
1244	dev->chanA.irqs=&z8530_nop;
1245	dev->chanB.irqs=&z8530_nop;
1246	dev->chanA.dcdcheck=DCD;
1247	dev->chanB.dcdcheck=DCD;
1248
1249	/* Reset the chip */
1250	write_zsreg(&dev->chanA, R9, 0xC0);
1251	udelay(200);
1252	/* Now check its valid */
1253	write_zsreg(&dev->chanA, R12, 0xAA);
1254	if(read_zsreg(&dev->chanA, R12)!=0xAA)
1255		return -ENODEV;
1256	write_zsreg(&dev->chanA, R12, 0x55);
1257	if(read_zsreg(&dev->chanA, R12)!=0x55)
1258		return -ENODEV;
1259		
1260	dev->type=Z8530;
1261	
1262	/*
1263	 *	See the application note.
1264	 */
1265	 
1266	write_zsreg(&dev->chanA, R15, 0x01);
1267	
1268	/*
1269	 *	If we can set the low bit of R15 then
1270	 *	the chip is enhanced.
1271	 */
1272	 
1273	if(read_zsreg(&dev->chanA, R15)==0x01)
1274	{
1275		/* This C30 versus 230 detect is from Klaus Kudielka's dmascc */
1276		/* Put a char in the fifo */
1277		write_zsreg(&dev->chanA, R8, 0);
1278		if(read_zsreg(&dev->chanA, R0)&Tx_BUF_EMP)
1279			dev->type = Z85230;	/* Has a FIFO */
1280		else
1281			dev->type = Z85C30;	/* Z85C30, 1 byte FIFO */
1282	}
1283		
1284	/*
1285	 *	The code assumes R7' and friends are
1286	 *	off. Use write_zsext() for these and keep
1287	 *	this bit clear.
1288	 */
1289	 
1290	write_zsreg(&dev->chanA, R15, 0);
1291		
1292	/*
1293	 *	At this point it looks like the chip is behaving
1294	 */
1295	 
1296	memcpy(dev->chanA.regs, reg_init, 16);
1297	memcpy(dev->chanB.regs, reg_init ,16);
1298	
1299	return 0;
1300}
1301
1302/**
1303 *	z8530_init - Initialise a Z8530 device
1304 *	@dev: Z8530 device to initialise.
1305 *
1306 *	Configure up a Z8530/Z85C30 or Z85230 chip. We check the device
1307 *	is present, identify the type and then program it to hopefully
1308 *	keep quite and behave. This matters a lot, a Z8530 in the wrong
1309 *	state will sometimes get into stupid modes generating 10Khz
1310 *	interrupt streams and the like.
1311 *
1312 *	We set the interrupt handler up to discard any events, in case
1313 *	we get them during reset or setp.
1314 *
1315 *	Return 0 for success, or a negative value indicating the problem
1316 *	in errno form.
1317 */
1318
1319int z8530_init(struct z8530_dev *dev)
1320{
1321	unsigned long flags;
1322	int ret;
1323
1324	/* Set up the chip level lock */
1325	spin_lock_init(&dev->lock);
1326	dev->chanA.lock = &dev->lock;
1327	dev->chanB.lock = &dev->lock;
1328
1329	spin_lock_irqsave(&dev->lock, flags);
1330	ret = do_z8530_init(dev);
1331	spin_unlock_irqrestore(&dev->lock, flags);
1332
1333	return ret;
1334}
1335
1336
1337EXPORT_SYMBOL(z8530_init);
1338
1339/**
1340 *	z8530_shutdown - Shutdown a Z8530 device
1341 *	@dev: The Z8530 chip to shutdown
1342 *
1343 *	We set the interrupt handlers to silence any interrupts. We then 
1344 *	reset the chip and wait 100uS to be sure the reset completed. Just
1345 *	in case the caller then tries to do stuff.
1346 *
1347 *	This is called without the lock held
1348 */
1349 
1350int z8530_shutdown(struct z8530_dev *dev)
1351{
1352	unsigned long flags;
1353	/* Reset the chip */
1354
1355	spin_lock_irqsave(&dev->lock, flags);
1356	dev->chanA.irqs=&z8530_nop;
1357	dev->chanB.irqs=&z8530_nop;
1358	write_zsreg(&dev->chanA, R9, 0xC0);
1359	/* We must lock the udelay, the chip is offlimits here */
1360	udelay(100);
1361	spin_unlock_irqrestore(&dev->lock, flags);
1362	return 0;
1363}
1364
1365EXPORT_SYMBOL(z8530_shutdown);
1366
1367/**
1368 *	z8530_channel_load - Load channel data
1369 *	@c: Z8530 channel to configure
1370 *	@rtable: table of register, value pairs
1371 *	FIXME: ioctl to allow user uploaded tables
1372 *
1373 *	Load a Z8530 channel up from the system data. We use +16 to 
1374 *	indicate the "prime" registers. The value 255 terminates the
1375 *	table.
1376 */
1377
1378int z8530_channel_load(struct z8530_channel *c, u8 *rtable)
1379{
1380	unsigned long flags;
1381
1382	spin_lock_irqsave(c->lock, flags);
1383
1384	while(*rtable!=255)
1385	{
1386		int reg=*rtable++;
1387		if(reg>0x0F)
1388			write_zsreg(c, R15, c->regs[15]|1);
1389		write_zsreg(c, reg&0x0F, *rtable);
1390		if(reg>0x0F)
1391			write_zsreg(c, R15, c->regs[15]&~1);
1392		c->regs[reg]=*rtable++;
1393	}
1394	c->rx_function=z8530_null_rx;
1395	c->skb=NULL;
1396	c->tx_skb=NULL;
1397	c->tx_next_skb=NULL;
1398	c->mtu=1500;
1399	c->max=0;
1400	c->count=0;
1401	c->status=read_zsreg(c, R0);
1402	c->sync=1;
1403	write_zsreg(c, R3, c->regs[R3]|RxENABLE);
1404
1405	spin_unlock_irqrestore(c->lock, flags);
1406	return 0;
1407}
1408
1409EXPORT_SYMBOL(z8530_channel_load);
1410
1411
1412/**
1413 *	z8530_tx_begin - Begin packet transmission
1414 *	@c: The Z8530 channel to kick
1415 *
1416 *	This is the speed sensitive side of transmission. If we are called
1417 *	and no buffer is being transmitted we commence the next buffer. If
1418 *	nothing is queued we idle the sync. 
1419 *
1420 *	Note: We are handling this code path in the interrupt path, keep it
1421 *	fast or bad things will happen.
1422 *
1423 *	Called with the lock held.
1424 */
1425
1426static void z8530_tx_begin(struct z8530_channel *c)
1427{
1428	unsigned long flags;
1429	if(c->tx_skb)
1430		return;
1431		
1432	c->tx_skb=c->tx_next_skb;
1433	c->tx_next_skb=NULL;
1434	c->tx_ptr=c->tx_next_ptr;
1435	
1436	if(c->tx_skb==NULL)
1437	{
1438		/* Idle on */
1439		if(c->dma_tx)
1440		{
1441			flags=claim_dma_lock();
1442			disable_dma(c->txdma);
1443			/*
1444			 *	Check if we crapped out.
1445			 */
1446			if (get_dma_residue(c->txdma))
1447			{
1448				c->netdevice->stats.tx_dropped++;
1449				c->netdevice->stats.tx_fifo_errors++;
1450			}
1451			release_dma_lock(flags);
1452		}
1453		c->txcount=0;
1454	}
1455	else
1456	{
1457		c->txcount=c->tx_skb->len;
1458		
1459		
1460		if(c->dma_tx)
1461		{
1462			/*
1463			 *	FIXME. DMA is broken for the original 8530,
1464			 *	on the older parts we need to set a flag and
1465			 *	wait for a further TX interrupt to fire this
1466			 *	stage off	
1467			 */
1468			 
1469			flags=claim_dma_lock();
1470			disable_dma(c->txdma);
1471
1472			/*
1473			 *	These two are needed by the 8530/85C30
1474			 *	and must be issued when idling.
1475			 */
1476			 
1477			if(c->dev->type!=Z85230)
1478			{
1479				write_zsctrl(c, RES_Tx_CRC);
1480				write_zsctrl(c, RES_EOM_L);
1481			}	
1482			write_zsreg(c, R10, c->regs[10]&~ABUNDER);
1483			clear_dma_ff(c->txdma);
1484			set_dma_addr(c->txdma, virt_to_bus(c->tx_ptr));
1485			set_dma_count(c->txdma, c->txcount);
1486			enable_dma(c->txdma);
1487			release_dma_lock(flags);
1488			write_zsctrl(c, RES_EOM_L);
1489			write_zsreg(c, R5, c->regs[R5]|TxENAB);
1490		}
1491		else
1492		{
1493
1494			/* ABUNDER off */
1495			write_zsreg(c, R10, c->regs[10]);
1496			write_zsctrl(c, RES_Tx_CRC);
1497	
1498			while(c->txcount && (read_zsreg(c,R0)&Tx_BUF_EMP))
1499			{		
1500				write_zsreg(c, R8, *c->tx_ptr++);
1501				c->txcount--;
1502			}
1503
1504		}
1505	}
1506	/*
1507	 *	Since we emptied tx_skb we can ask for more
1508	 */
1509	netif_wake_queue(c->netdevice);
1510}
1511
1512/**
1513 *	z8530_tx_done - TX complete callback
1514 *	@c: The channel that completed a transmit.
1515 *
1516 *	This is called when we complete a packet send. We wake the queue,
1517 *	start the next packet going and then free the buffer of the existing
1518 *	packet. This code is fairly timing sensitive.
1519 *
1520 *	Called with the register lock held.
1521 */
1522
1523static void z8530_tx_done(struct z8530_channel *c)
1524{
1525	struct sk_buff *skb;
1526
1527	/* Actually this can happen.*/
1528	if (c->tx_skb == NULL)
1529		return;
1530
1531	skb = c->tx_skb;
1532	c->tx_skb = NULL;
1533	z8530_tx_begin(c);
1534	c->netdevice->stats.tx_packets++;
1535	c->netdevice->stats.tx_bytes += skb->len;
1536	dev_consume_skb_irq(skb);
1537}
1538
1539/**
1540 *	z8530_null_rx - Discard a packet
1541 *	@c: The channel the packet arrived on
1542 *	@skb: The buffer
1543 *
1544 *	We point the receive handler at this function when idle. Instead
1545 *	of processing the frames we get to throw them away.
1546 */
1547 
1548void z8530_null_rx(struct z8530_channel *c, struct sk_buff *skb)
1549{
1550	dev_kfree_skb_any(skb);
1551}
1552
1553EXPORT_SYMBOL(z8530_null_rx);
1554
1555/**
1556 *	z8530_rx_done - Receive completion callback
1557 *	@c: The channel that completed a receive
1558 *
1559 *	A new packet is complete. Our goal here is to get back into receive
1560 *	mode as fast as possible. On the Z85230 we could change to using
1561 *	ESCC mode, but on the older chips we have no choice. We flip to the
1562 *	new buffer immediately in DMA mode so that the DMA of the next
1563 *	frame can occur while we are copying the previous buffer to an sk_buff
1564 *
1565 *	Called with the lock held
1566 */
1567 
1568static void z8530_rx_done(struct z8530_channel *c)
1569{
1570	struct sk_buff *skb;
1571	int ct;
1572	
1573	/*
1574	 *	Is our receive engine in DMA mode
1575	 */
1576	 
1577	if(c->rxdma_on)
1578	{
1579		/*
1580		 *	Save the ready state and the buffer currently
1581		 *	being used as the DMA target
1582		 */
1583		 
1584		int ready=c->dma_ready;
1585		unsigned char *rxb=c->rx_buf[c->dma_num];
1586		unsigned long flags;
1587		
1588		/*
1589		 *	Complete this DMA. Necessary to find the length
1590		 */		
1591		 
1592		flags=claim_dma_lock();
1593		
1594		disable_dma(c->rxdma);
1595		clear_dma_ff(c->rxdma);
1596		c->rxdma_on=0;
1597		ct=c->mtu-get_dma_residue(c->rxdma);
1598		if(ct<0)
1599			ct=2;	/* Shit happens.. */
1600		c->dma_ready=0;
1601		
1602		/*
1603		 *	Normal case: the other slot is free, start the next DMA
1604		 *	into it immediately.
1605		 */
1606		 
1607		if(ready)
1608		{
1609			c->dma_num^=1;
1610			set_dma_mode(c->rxdma, DMA_MODE_READ|0x10);
1611			set_dma_addr(c->rxdma, virt_to_bus(c->rx_buf[c->dma_num]));
1612			set_dma_count(c->rxdma, c->mtu);
1613			c->rxdma_on = 1;
1614			enable_dma(c->rxdma);
1615			/* Stop any frames that we missed the head of 
1616			   from passing */
1617			write_zsreg(c, R0, RES_Rx_CRC);
1618		}
1619		else
1620			/* Can't occur as we dont reenable the DMA irq until
1621			   after the flip is done */
1622			netdev_warn(c->netdevice, "DMA flip overrun!\n");
1623
1624		release_dma_lock(flags);
1625
1626		/*
1627		 *	Shove the old buffer into an sk_buff. We can't DMA
1628		 *	directly into one on a PC - it might be above the 16Mb
1629		 *	boundary. Optimisation - we could check to see if we
1630		 *	can avoid the copy. Optimisation 2 - make the memcpy
1631		 *	a copychecksum.
1632		 */
1633
1634		skb = dev_alloc_skb(ct);
1635		if (skb == NULL) {
1636			c->netdevice->stats.rx_dropped++;
1637			netdev_warn(c->netdevice, "Memory squeeze\n");
1638		} else {
1639			skb_put(skb, ct);
1640			skb_copy_to_linear_data(skb, rxb, ct);
1641			c->netdevice->stats.rx_packets++;
1642			c->netdevice->stats.rx_bytes += ct;
1643		}
1644		c->dma_ready = 1;
1645	} else {
1646		RT_LOCK;
1647		skb = c->skb;
1648
1649		/*
1650		 *	The game we play for non DMA is similar. We want to
1651		 *	get the controller set up for the next packet as fast
1652		 *	as possible. We potentially only have one byte + the
1653		 *	fifo length for this. Thus we want to flip to the new
1654		 *	buffer and then mess around copying and allocating
1655		 *	things. For the current case it doesn't matter but
1656		 *	if you build a system where the sync irq isn't blocked
1657		 *	by the kernel IRQ disable then you need only block the
1658		 *	sync IRQ for the RT_LOCK area.
1659		 *
1660		 */
1661		ct=c->count;
1662
1663		c->skb = c->skb2;
1664		c->count = 0;
1665		c->max = c->mtu;
1666		if (c->skb) {
1667			c->dptr = c->skb->data;
1668			c->max = c->mtu;
1669		} else {
1670			c->count = 0;
1671			c->max = 0;
1672		}
1673		RT_UNLOCK;
1674
1675		c->skb2 = dev_alloc_skb(c->mtu);
1676		if (c->skb2 == NULL)
1677			netdev_warn(c->netdevice, "memory squeeze\n");
1678		else
1679			skb_put(c->skb2, c->mtu);
1680		c->netdevice->stats.rx_packets++;
1681		c->netdevice->stats.rx_bytes += ct;
1682	}
1683	/*
1684	 *	If we received a frame we must now process it.
1685	 */
1686	if (skb) {
1687		skb_trim(skb, ct);
1688		c->rx_function(c, skb);
1689	} else {
1690		c->netdevice->stats.rx_dropped++;
1691		netdev_err(c->netdevice, "Lost a frame\n");
1692	}
1693}
1694
1695/**
1696 *	spans_boundary - Check a packet can be ISA DMA'd
1697 *	@skb: The buffer to check
1698 *
1699 *	Returns true if the buffer cross a DMA boundary on a PC. The poor
1700 *	thing can only DMA within a 64K block not across the edges of it.
1701 */
1702
1703static inline int spans_boundary(struct sk_buff *skb)
1704{
1705	unsigned long a=(unsigned long)skb->data;
1706	a^=(a+skb->len);
1707	if(a&0x00010000)	/* If the 64K bit is different.. */
1708		return 1;
1709	return 0;
1710}
1711
1712/**
1713 *	z8530_queue_xmit - Queue a packet
1714 *	@c: The channel to use
1715 *	@skb: The packet to kick down the channel
1716 *
1717 *	Queue a packet for transmission. Because we have rather
1718 *	hard to hit interrupt latencies for the Z85230 per packet 
1719 *	even in DMA mode we do the flip to DMA buffer if needed here
1720 *	not in the IRQ.
1721 *
1722 *	Called from the network code. The lock is not held at this 
1723 *	point.
1724 */
1725
1726netdev_tx_t z8530_queue_xmit(struct z8530_channel *c, struct sk_buff *skb)
1727{
1728	unsigned long flags;
1729	
1730	netif_stop_queue(c->netdevice);
1731	if(c->tx_next_skb)
1732		return NETDEV_TX_BUSY;
1733
1734	
1735	/* PC SPECIFIC - DMA limits */
1736	
1737	/*
1738	 *	If we will DMA the transmit and its gone over the ISA bus
1739	 *	limit, then copy to the flip buffer
1740	 */
1741	 
1742	if(c->dma_tx && ((unsigned long)(virt_to_bus(skb->data+skb->len))>=16*1024*1024 || spans_boundary(skb)))
1743	{
1744		/* 
1745		 *	Send the flip buffer, and flip the flippy bit.
1746		 *	We don't care which is used when just so long as
1747		 *	we never use the same buffer twice in a row. Since
1748		 *	only one buffer can be going out at a time the other
1749		 *	has to be safe.
1750		 */
1751		c->tx_next_ptr=c->tx_dma_buf[c->tx_dma_used];
1752		c->tx_dma_used^=1;	/* Flip temp buffer */
1753		skb_copy_from_linear_data(skb, c->tx_next_ptr, skb->len);
1754	}
1755	else
1756		c->tx_next_ptr=skb->data;	
1757	RT_LOCK;
1758	c->tx_next_skb=skb;
1759	RT_UNLOCK;
1760	
1761	spin_lock_irqsave(c->lock, flags);
1762	z8530_tx_begin(c);
1763	spin_unlock_irqrestore(c->lock, flags);
1764	
1765	return NETDEV_TX_OK;
1766}
1767
1768EXPORT_SYMBOL(z8530_queue_xmit);
1769
1770/*
1771 *	Module support
1772 */
1773static const char banner[] __initconst =
1774	KERN_INFO "Generic Z85C30/Z85230 interface driver v0.02\n";
1775
1776static int __init z85230_init_driver(void)
1777{
1778	printk(banner);
1779	return 0;
1780}
1781module_init(z85230_init_driver);
1782
1783static void __exit z85230_cleanup_driver(void)
1784{
1785}
1786module_exit(z85230_cleanup_driver);
1787
1788MODULE_AUTHOR("Red Hat Inc.");
1789MODULE_DESCRIPTION("Z85x30 synchronous driver core");
1790MODULE_LICENSE("GPL");