Linux Audio

Check our new training course

Loading...
Note: File does not exist in v5.4.
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright (C) 2021, Intel Corporation. */
   3
   4#include "ice.h"
   5#include "ice_lib.h"
   6#include "ice_trace.h"
   7#include "ice_cgu_regs.h"
   8
   9static const char ice_pin_names[][64] = {
  10	"SDP0",
  11	"SDP1",
  12	"SDP2",
  13	"SDP3",
  14	"TIME_SYNC",
  15	"1PPS"
  16};
  17
  18static const struct ice_ptp_pin_desc ice_pin_desc_e82x[] = {
  19	/* name,        gpio */
  20	{  TIME_SYNC, {  4, -1 }},
  21	{  ONE_PPS,   { -1,  5 }},
  22};
  23
  24static const struct ice_ptp_pin_desc ice_pin_desc_e825c[] = {
  25	/* name,        gpio */
  26	{  SDP0,      {  0,  0 }},
  27	{  SDP1,      {  1,  1 }},
  28	{  SDP2,      {  2,  2 }},
  29	{  SDP3,      {  3,  3 }},
  30	{  TIME_SYNC, {  4, -1 }},
  31	{  ONE_PPS,   { -1,  5 }},
  32};
  33
  34static const struct ice_ptp_pin_desc ice_pin_desc_e810[] = {
  35	/* name,      gpio */
  36	{  SDP0,    {  0, 0 }},
  37	{  SDP1,    {  1, 1 }},
  38	{  SDP2,    {  2, 2 }},
  39	{  SDP3,    {  3, 3 }},
  40	{  ONE_PPS, { -1, 5 }},
  41};
  42
  43static const char ice_pin_names_nvm[][64] = {
  44	"GNSS",
  45	"SMA1",
  46	"U.FL1",
  47	"SMA2",
  48	"U.FL2",
  49};
  50
  51static const struct ice_ptp_pin_desc ice_pin_desc_e810_sma[] = {
  52	/* name,   gpio */
  53	{  GNSS, {  1, -1 }},
  54	{  SMA1, {  1,  0 }},
  55	{  UFL1, { -1,  0 }},
  56	{  SMA2, {  3,  2 }},
  57	{  UFL2, {  3, -1 }},
  58};
  59
  60static struct ice_pf *ice_get_ctrl_pf(struct ice_pf *pf)
  61{
  62	return !pf->adapter ? NULL : pf->adapter->ctrl_pf;
  63}
  64
  65static struct ice_ptp *ice_get_ctrl_ptp(struct ice_pf *pf)
  66{
  67	struct ice_pf *ctrl_pf = ice_get_ctrl_pf(pf);
  68
  69	return !ctrl_pf ? NULL : &ctrl_pf->ptp;
  70}
  71
  72/**
  73 * ice_ptp_find_pin_idx - Find pin index in ptp_pin_desc
  74 * @pf: Board private structure
  75 * @func: Pin function
  76 * @chan: GPIO channel
  77 *
  78 * Return: positive pin number when pin is present, -1 otherwise
  79 */
  80static int ice_ptp_find_pin_idx(struct ice_pf *pf, enum ptp_pin_function func,
  81				unsigned int chan)
  82{
  83	const struct ptp_clock_info *info = &pf->ptp.info;
  84	int i;
  85
  86	for (i = 0; i < info->n_pins; i++) {
  87		if (info->pin_config[i].func == func &&
  88		    info->pin_config[i].chan == chan)
  89			return i;
  90	}
  91
  92	return -1;
  93}
  94
  95/**
  96 * ice_ptp_update_sma_data - update SMA pins data according to pins setup
  97 * @pf: Board private structure
  98 * @sma_pins: parsed SMA pins status
  99 * @data: SMA data to update
 100 */
 101static void ice_ptp_update_sma_data(struct ice_pf *pf, unsigned int sma_pins[],
 102				    u8 *data)
 103{
 104	const char *state1, *state2;
 105
 106	/* Set the right state based on the desired configuration.
 107	 * When bit is set, functionality is disabled.
 108	 */
 109	*data &= ~ICE_ALL_SMA_MASK;
 110	if (!sma_pins[UFL1 - 1]) {
 111		if (sma_pins[SMA1 - 1] == PTP_PF_EXTTS) {
 112			state1 = "SMA1 Rx, U.FL1 disabled";
 113			*data |= ICE_SMA1_TX_EN;
 114		} else if (sma_pins[SMA1 - 1] == PTP_PF_PEROUT) {
 115			state1 = "SMA1 Tx U.FL1 disabled";
 116			*data |= ICE_SMA1_DIR_EN;
 117		} else {
 118			state1 = "SMA1 disabled, U.FL1 disabled";
 119			*data |= ICE_SMA1_MASK;
 120		}
 121	} else {
 122		/* U.FL1 Tx will always enable SMA1 Rx */
 123		state1 = "SMA1 Rx, U.FL1 Tx";
 124	}
 125
 126	if (!sma_pins[UFL2 - 1]) {
 127		if (sma_pins[SMA2 - 1] == PTP_PF_EXTTS) {
 128			state2 = "SMA2 Rx, U.FL2 disabled";
 129			*data |= ICE_SMA2_TX_EN | ICE_SMA2_UFL2_RX_DIS;
 130		} else if (sma_pins[SMA2 - 1] == PTP_PF_PEROUT) {
 131			state2 = "SMA2 Tx, U.FL2 disabled";
 132			*data |= ICE_SMA2_DIR_EN | ICE_SMA2_UFL2_RX_DIS;
 133		} else {
 134			state2 = "SMA2 disabled, U.FL2 disabled";
 135			*data |= ICE_SMA2_MASK;
 136		}
 137	} else {
 138		if (!sma_pins[SMA2 - 1]) {
 139			state2 = "SMA2 disabled, U.FL2 Rx";
 140			*data |= ICE_SMA2_DIR_EN | ICE_SMA2_TX_EN;
 141		} else {
 142			state2 = "SMA2 Tx, U.FL2 Rx";
 143			*data |= ICE_SMA2_DIR_EN;
 144		}
 145	}
 146
 147	dev_dbg(ice_pf_to_dev(pf), "%s, %s\n", state1, state2);
 148}
 149
 150/**
 151 * ice_ptp_set_sma_cfg - set the configuration of the SMA control logic
 152 * @pf: Board private structure
 153 *
 154 * Return: 0 on success, negative error code otherwise
 155 */
 156static int ice_ptp_set_sma_cfg(struct ice_pf *pf)
 157{
 158	const struct ice_ptp_pin_desc *ice_pins = pf->ptp.ice_pin_desc;
 159	struct ptp_pin_desc *pins = pf->ptp.pin_desc;
 160	unsigned int sma_pins[ICE_SMA_PINS_NUM] = {};
 161	int err;
 162	u8 data;
 163
 164	/* Read initial pin state value */
 165	err = ice_read_sma_ctrl(&pf->hw, &data);
 166	if (err)
 167		return err;
 168
 169	/* Get SMA/U.FL pins states */
 170	for (int i = 0; i < pf->ptp.info.n_pins; i++)
 171		if (pins[i].func) {
 172			int name_idx = ice_pins[i].name_idx;
 173
 174			switch (name_idx) {
 175			case SMA1:
 176			case UFL1:
 177			case SMA2:
 178			case UFL2:
 179				sma_pins[name_idx - 1] = pins[i].func;
 180				break;
 181			default:
 182				continue;
 183			}
 184		}
 185
 186	ice_ptp_update_sma_data(pf, sma_pins, &data);
 187	return ice_write_sma_ctrl(&pf->hw, data);
 188}
 189
 190/**
 191 * ice_ptp_cfg_tx_interrupt - Configure Tx timestamp interrupt for the device
 192 * @pf: Board private structure
 193 *
 194 * Program the device to respond appropriately to the Tx timestamp interrupt
 195 * cause.
 196 */
 197static void ice_ptp_cfg_tx_interrupt(struct ice_pf *pf)
 198{
 199	struct ice_hw *hw = &pf->hw;
 200	bool enable;
 201	u32 val;
 202
 203	switch (pf->ptp.tx_interrupt_mode) {
 204	case ICE_PTP_TX_INTERRUPT_ALL:
 205		/* React to interrupts across all quads. */
 206		wr32(hw, PFINT_TSYN_MSK + (0x4 * hw->pf_id), (u32)0x1f);
 207		enable = true;
 208		break;
 209	case ICE_PTP_TX_INTERRUPT_NONE:
 210		/* Do not react to interrupts on any quad. */
 211		wr32(hw, PFINT_TSYN_MSK + (0x4 * hw->pf_id), (u32)0x0);
 212		enable = false;
 213		break;
 214	case ICE_PTP_TX_INTERRUPT_SELF:
 215	default:
 216		enable = pf->ptp.tstamp_config.tx_type == HWTSTAMP_TX_ON;
 217		break;
 218	}
 219
 220	/* Configure the Tx timestamp interrupt */
 221	val = rd32(hw, PFINT_OICR_ENA);
 222	if (enable)
 223		val |= PFINT_OICR_TSYN_TX_M;
 224	else
 225		val &= ~PFINT_OICR_TSYN_TX_M;
 226	wr32(hw, PFINT_OICR_ENA, val);
 227}
 228
 229/**
 230 * ice_set_rx_tstamp - Enable or disable Rx timestamping
 231 * @pf: The PF pointer to search in
 232 * @on: bool value for whether timestamps are enabled or disabled
 233 */
 234static void ice_set_rx_tstamp(struct ice_pf *pf, bool on)
 235{
 236	struct ice_vsi *vsi;
 237	u16 i;
 238
 239	vsi = ice_get_main_vsi(pf);
 240	if (!vsi || !vsi->rx_rings)
 241		return;
 242
 243	/* Set the timestamp flag for all the Rx rings */
 244	ice_for_each_rxq(vsi, i) {
 245		if (!vsi->rx_rings[i])
 246			continue;
 247		vsi->rx_rings[i]->ptp_rx = on;
 248	}
 249}
 250
 251/**
 252 * ice_ptp_disable_timestamp_mode - Disable current timestamp mode
 253 * @pf: Board private structure
 254 *
 255 * Called during preparation for reset to temporarily disable timestamping on
 256 * the device. Called during remove to disable timestamping while cleaning up
 257 * driver resources.
 258 */
 259static void ice_ptp_disable_timestamp_mode(struct ice_pf *pf)
 260{
 261	struct ice_hw *hw = &pf->hw;
 262	u32 val;
 263
 264	val = rd32(hw, PFINT_OICR_ENA);
 265	val &= ~PFINT_OICR_TSYN_TX_M;
 266	wr32(hw, PFINT_OICR_ENA, val);
 267
 268	ice_set_rx_tstamp(pf, false);
 269}
 270
 271/**
 272 * ice_ptp_restore_timestamp_mode - Restore timestamp configuration
 273 * @pf: Board private structure
 274 *
 275 * Called at the end of rebuild to restore timestamp configuration after
 276 * a device reset.
 277 */
 278void ice_ptp_restore_timestamp_mode(struct ice_pf *pf)
 279{
 280	struct ice_hw *hw = &pf->hw;
 281	bool enable_rx;
 282
 283	ice_ptp_cfg_tx_interrupt(pf);
 284
 285	enable_rx = pf->ptp.tstamp_config.rx_filter == HWTSTAMP_FILTER_ALL;
 286	ice_set_rx_tstamp(pf, enable_rx);
 287
 288	/* Trigger an immediate software interrupt to ensure that timestamps
 289	 * which occurred during reset are handled now.
 290	 */
 291	wr32(hw, PFINT_OICR, PFINT_OICR_TSYN_TX_M);
 292	ice_flush(hw);
 293}
 294
 295/**
 296 * ice_ptp_read_src_clk_reg - Read the source clock register
 297 * @pf: Board private structure
 298 * @sts: Optional parameter for holding a pair of system timestamps from
 299 *       the system clock. Will be ignored if NULL is given.
 300 */
 301static u64
 302ice_ptp_read_src_clk_reg(struct ice_pf *pf, struct ptp_system_timestamp *sts)
 303{
 304	struct ice_hw *hw = &pf->hw;
 305	u32 hi, lo, lo2;
 306	u8 tmr_idx;
 307
 308	tmr_idx = ice_get_ptp_src_clock_index(hw);
 309	guard(spinlock)(&pf->adapter->ptp_gltsyn_time_lock);
 310	/* Read the system timestamp pre PHC read */
 311	ptp_read_system_prets(sts);
 312
 313	lo = rd32(hw, GLTSYN_TIME_L(tmr_idx));
 314
 315	/* Read the system timestamp post PHC read */
 316	ptp_read_system_postts(sts);
 317
 318	hi = rd32(hw, GLTSYN_TIME_H(tmr_idx));
 319	lo2 = rd32(hw, GLTSYN_TIME_L(tmr_idx));
 320
 321	if (lo2 < lo) {
 322		/* if TIME_L rolled over read TIME_L again and update
 323		 * system timestamps
 324		 */
 325		ptp_read_system_prets(sts);
 326		lo = rd32(hw, GLTSYN_TIME_L(tmr_idx));
 327		ptp_read_system_postts(sts);
 328		hi = rd32(hw, GLTSYN_TIME_H(tmr_idx));
 329	}
 330
 331	return ((u64)hi << 32) | lo;
 332}
 333
 334/**
 335 * ice_ptp_extend_32b_ts - Convert a 32b nanoseconds timestamp to 64b
 336 * @cached_phc_time: recently cached copy of PHC time
 337 * @in_tstamp: Ingress/egress 32b nanoseconds timestamp value
 338 *
 339 * Hardware captures timestamps which contain only 32 bits of nominal
 340 * nanoseconds, as opposed to the 64bit timestamps that the stack expects.
 341 * Note that the captured timestamp values may be 40 bits, but the lower
 342 * 8 bits are sub-nanoseconds and generally discarded.
 343 *
 344 * Extend the 32bit nanosecond timestamp using the following algorithm and
 345 * assumptions:
 346 *
 347 * 1) have a recently cached copy of the PHC time
 348 * 2) assume that the in_tstamp was captured 2^31 nanoseconds (~2.1
 349 *    seconds) before or after the PHC time was captured.
 350 * 3) calculate the delta between the cached time and the timestamp
 351 * 4) if the delta is smaller than 2^31 nanoseconds, then the timestamp was
 352 *    captured after the PHC time. In this case, the full timestamp is just
 353 *    the cached PHC time plus the delta.
 354 * 5) otherwise, if the delta is larger than 2^31 nanoseconds, then the
 355 *    timestamp was captured *before* the PHC time, i.e. because the PHC
 356 *    cache was updated after the timestamp was captured by hardware. In this
 357 *    case, the full timestamp is the cached time minus the inverse delta.
 358 *
 359 * This algorithm works even if the PHC time was updated after a Tx timestamp
 360 * was requested, but before the Tx timestamp event was reported from
 361 * hardware.
 362 *
 363 * This calculation primarily relies on keeping the cached PHC time up to
 364 * date. If the timestamp was captured more than 2^31 nanoseconds after the
 365 * PHC time, it is possible that the lower 32bits of PHC time have
 366 * overflowed more than once, and we might generate an incorrect timestamp.
 367 *
 368 * This is prevented by (a) periodically updating the cached PHC time once
 369 * a second, and (b) discarding any Tx timestamp packet if it has waited for
 370 * a timestamp for more than one second.
 371 */
 372static u64 ice_ptp_extend_32b_ts(u64 cached_phc_time, u32 in_tstamp)
 373{
 374	u32 delta, phc_time_lo;
 375	u64 ns;
 376
 377	/* Extract the lower 32 bits of the PHC time */
 378	phc_time_lo = (u32)cached_phc_time;
 379
 380	/* Calculate the delta between the lower 32bits of the cached PHC
 381	 * time and the in_tstamp value
 382	 */
 383	delta = (in_tstamp - phc_time_lo);
 384
 385	/* Do not assume that the in_tstamp is always more recent than the
 386	 * cached PHC time. If the delta is large, it indicates that the
 387	 * in_tstamp was taken in the past, and should be converted
 388	 * forward.
 389	 */
 390	if (delta > (U32_MAX / 2)) {
 391		/* reverse the delta calculation here */
 392		delta = (phc_time_lo - in_tstamp);
 393		ns = cached_phc_time - delta;
 394	} else {
 395		ns = cached_phc_time + delta;
 396	}
 397
 398	return ns;
 399}
 400
 401/**
 402 * ice_ptp_extend_40b_ts - Convert a 40b timestamp to 64b nanoseconds
 403 * @pf: Board private structure
 404 * @in_tstamp: Ingress/egress 40b timestamp value
 405 *
 406 * The Tx and Rx timestamps are 40 bits wide, including 32 bits of nominal
 407 * nanoseconds, 7 bits of sub-nanoseconds, and a valid bit.
 408 *
 409 *  *--------------------------------------------------------------*
 410 *  | 32 bits of nanoseconds | 7 high bits of sub ns underflow | v |
 411 *  *--------------------------------------------------------------*
 412 *
 413 * The low bit is an indicator of whether the timestamp is valid. The next
 414 * 7 bits are a capture of the upper 7 bits of the sub-nanosecond underflow,
 415 * and the remaining 32 bits are the lower 32 bits of the PHC timer.
 416 *
 417 * It is assumed that the caller verifies the timestamp is valid prior to
 418 * calling this function.
 419 *
 420 * Extract the 32bit nominal nanoseconds and extend them. Use the cached PHC
 421 * time stored in the device private PTP structure as the basis for timestamp
 422 * extension.
 423 *
 424 * See ice_ptp_extend_32b_ts for a detailed explanation of the extension
 425 * algorithm.
 426 */
 427static u64 ice_ptp_extend_40b_ts(struct ice_pf *pf, u64 in_tstamp)
 428{
 429	const u64 mask = GENMASK_ULL(31, 0);
 430	unsigned long discard_time;
 431
 432	/* Discard the hardware timestamp if the cached PHC time is too old */
 433	discard_time = pf->ptp.cached_phc_jiffies + msecs_to_jiffies(2000);
 434	if (time_is_before_jiffies(discard_time)) {
 435		pf->ptp.tx_hwtstamp_discarded++;
 436		return 0;
 437	}
 438
 439	return ice_ptp_extend_32b_ts(pf->ptp.cached_phc_time,
 440				     (in_tstamp >> 8) & mask);
 441}
 442
 443/**
 444 * ice_ptp_is_tx_tracker_up - Check if Tx tracker is ready for new timestamps
 445 * @tx: the PTP Tx timestamp tracker to check
 446 *
 447 * Check that a given PTP Tx timestamp tracker is up, i.e. that it is ready
 448 * to accept new timestamp requests.
 449 *
 450 * Assumes the tx->lock spinlock is already held.
 451 */
 452static bool
 453ice_ptp_is_tx_tracker_up(struct ice_ptp_tx *tx)
 454{
 455	lockdep_assert_held(&tx->lock);
 456
 457	return tx->init && !tx->calibrating;
 458}
 459
 460/**
 461 * ice_ptp_req_tx_single_tstamp - Request Tx timestamp for a port from FW
 462 * @tx: the PTP Tx timestamp tracker
 463 * @idx: index of the timestamp to request
 464 */
 465void ice_ptp_req_tx_single_tstamp(struct ice_ptp_tx *tx, u8 idx)
 466{
 467	struct ice_ptp_port *ptp_port;
 468	struct sk_buff *skb;
 469	struct ice_pf *pf;
 470
 471	if (!tx->init)
 472		return;
 473
 474	ptp_port = container_of(tx, struct ice_ptp_port, tx);
 475	pf = ptp_port_to_pf(ptp_port);
 476
 477	/* Drop packets which have waited for more than 2 seconds */
 478	if (time_is_before_jiffies(tx->tstamps[idx].start + 2 * HZ)) {
 479		/* Count the number of Tx timestamps that timed out */
 480		pf->ptp.tx_hwtstamp_timeouts++;
 481
 482		skb = tx->tstamps[idx].skb;
 483		tx->tstamps[idx].skb = NULL;
 484		clear_bit(idx, tx->in_use);
 485
 486		dev_kfree_skb_any(skb);
 487		return;
 488	}
 489
 490	ice_trace(tx_tstamp_fw_req, tx->tstamps[idx].skb, idx);
 491
 492	/* Write TS index to read to the PF register so the FW can read it */
 493	wr32(&pf->hw, PF_SB_ATQBAL,
 494	     TS_LL_READ_TS_INTR | FIELD_PREP(TS_LL_READ_TS_IDX, idx) |
 495	     TS_LL_READ_TS);
 496	tx->last_ll_ts_idx_read = idx;
 497}
 498
 499/**
 500 * ice_ptp_complete_tx_single_tstamp - Complete Tx timestamp for a port
 501 * @tx: the PTP Tx timestamp tracker
 502 */
 503void ice_ptp_complete_tx_single_tstamp(struct ice_ptp_tx *tx)
 504{
 505	struct skb_shared_hwtstamps shhwtstamps = {};
 506	u8 idx = tx->last_ll_ts_idx_read;
 507	struct ice_ptp_port *ptp_port;
 508	u64 raw_tstamp, tstamp;
 509	bool drop_ts = false;
 510	struct sk_buff *skb;
 511	struct ice_pf *pf;
 512	u32 val;
 513
 514	if (!tx->init || tx->last_ll_ts_idx_read < 0)
 515		return;
 516
 517	ptp_port = container_of(tx, struct ice_ptp_port, tx);
 518	pf = ptp_port_to_pf(ptp_port);
 519
 520	ice_trace(tx_tstamp_fw_done, tx->tstamps[idx].skb, idx);
 521
 522	val = rd32(&pf->hw, PF_SB_ATQBAL);
 523
 524	/* When the bit is cleared, the TS is ready in the register */
 525	if (val & TS_LL_READ_TS) {
 526		dev_err(ice_pf_to_dev(pf), "Failed to get the Tx tstamp - FW not ready");
 527		return;
 528	}
 529
 530	/* High 8 bit value of the TS is on the bits 16:23 */
 531	raw_tstamp = FIELD_GET(TS_LL_READ_TS_HIGH, val);
 532	raw_tstamp <<= 32;
 533
 534	/* Read the low 32 bit value */
 535	raw_tstamp |= (u64)rd32(&pf->hw, PF_SB_ATQBAH);
 536
 537	/* Devices using this interface always verify the timestamp differs
 538	 * relative to the last cached timestamp value.
 539	 */
 540	if (raw_tstamp == tx->tstamps[idx].cached_tstamp)
 541		return;
 542
 543	tx->tstamps[idx].cached_tstamp = raw_tstamp;
 544	clear_bit(idx, tx->in_use);
 545	skb = tx->tstamps[idx].skb;
 546	tx->tstamps[idx].skb = NULL;
 547	if (test_and_clear_bit(idx, tx->stale))
 548		drop_ts = true;
 549
 550	if (!skb)
 551		return;
 552
 553	if (drop_ts) {
 554		dev_kfree_skb_any(skb);
 555		return;
 556	}
 557
 558	/* Extend the timestamp using cached PHC time */
 559	tstamp = ice_ptp_extend_40b_ts(pf, raw_tstamp);
 560	if (tstamp) {
 561		shhwtstamps.hwtstamp = ns_to_ktime(tstamp);
 562		ice_trace(tx_tstamp_complete, skb, idx);
 563	}
 564
 565	skb_tstamp_tx(skb, &shhwtstamps);
 566	dev_kfree_skb_any(skb);
 567}
 568
 569/**
 570 * ice_ptp_process_tx_tstamp - Process Tx timestamps for a port
 571 * @tx: the PTP Tx timestamp tracker
 572 *
 573 * Process timestamps captured by the PHY associated with this port. To do
 574 * this, loop over each index with a waiting skb.
 575 *
 576 * If a given index has a valid timestamp, perform the following steps:
 577 *
 578 * 1) check that the timestamp request is not stale
 579 * 2) check that a timestamp is ready and available in the PHY memory bank
 580 * 3) read and copy the timestamp out of the PHY register
 581 * 4) unlock the index by clearing the associated in_use bit
 582 * 5) check if the timestamp is stale, and discard if so
 583 * 6) extend the 40 bit timestamp value to get a 64 bit timestamp value
 584 * 7) send this 64 bit timestamp to the stack
 585 *
 586 * Note that we do not hold the tracking lock while reading the Tx timestamp.
 587 * This is because reading the timestamp requires taking a mutex that might
 588 * sleep.
 589 *
 590 * The only place where we set in_use is when a new timestamp is initiated
 591 * with a slot index. This is only called in the hard xmit routine where an
 592 * SKB has a request flag set. The only places where we clear this bit is this
 593 * function, or during teardown when the Tx timestamp tracker is being
 594 * removed. A timestamp index will never be re-used until the in_use bit for
 595 * that index is cleared.
 596 *
 597 * If a Tx thread starts a new timestamp, we might not begin processing it
 598 * right away but we will notice it at the end when we re-queue the task.
 599 *
 600 * If a Tx thread starts a new timestamp just after this function exits, the
 601 * interrupt for that timestamp should re-trigger this function once
 602 * a timestamp is ready.
 603 *
 604 * In cases where the PTP hardware clock was directly adjusted, some
 605 * timestamps may not be able to safely use the timestamp extension math. In
 606 * this case, software will set the stale bit for any outstanding Tx
 607 * timestamps when the clock is adjusted. Then this function will discard
 608 * those captured timestamps instead of sending them to the stack.
 609 *
 610 * If a Tx packet has been waiting for more than 2 seconds, it is not possible
 611 * to correctly extend the timestamp using the cached PHC time. It is
 612 * extremely unlikely that a packet will ever take this long to timestamp. If
 613 * we detect a Tx timestamp request that has waited for this long we assume
 614 * the packet will never be sent by hardware and discard it without reading
 615 * the timestamp register.
 616 */
 617static void ice_ptp_process_tx_tstamp(struct ice_ptp_tx *tx)
 618{
 619	struct ice_ptp_port *ptp_port;
 620	unsigned long flags;
 621	struct ice_pf *pf;
 622	struct ice_hw *hw;
 623	u64 tstamp_ready;
 624	bool link_up;
 625	int err;
 626	u8 idx;
 627
 628	ptp_port = container_of(tx, struct ice_ptp_port, tx);
 629	pf = ptp_port_to_pf(ptp_port);
 630	hw = &pf->hw;
 631
 632	/* Read the Tx ready status first */
 633	if (tx->has_ready_bitmap) {
 634		err = ice_get_phy_tx_tstamp_ready(hw, tx->block, &tstamp_ready);
 635		if (err)
 636			return;
 637	}
 638
 639	/* Drop packets if the link went down */
 640	link_up = ptp_port->link_up;
 641
 642	for_each_set_bit(idx, tx->in_use, tx->len) {
 643		struct skb_shared_hwtstamps shhwtstamps = {};
 644		u8 phy_idx = idx + tx->offset;
 645		u64 raw_tstamp = 0, tstamp;
 646		bool drop_ts = !link_up;
 647		struct sk_buff *skb;
 648
 649		/* Drop packets which have waited for more than 2 seconds */
 650		if (time_is_before_jiffies(tx->tstamps[idx].start + 2 * HZ)) {
 651			drop_ts = true;
 652
 653			/* Count the number of Tx timestamps that timed out */
 654			pf->ptp.tx_hwtstamp_timeouts++;
 655		}
 656
 657		/* Only read a timestamp from the PHY if its marked as ready
 658		 * by the tstamp_ready register. This avoids unnecessary
 659		 * reading of timestamps which are not yet valid. This is
 660		 * important as we must read all timestamps which are valid
 661		 * and only timestamps which are valid during each interrupt.
 662		 * If we do not, the hardware logic for generating a new
 663		 * interrupt can get stuck on some devices.
 664		 */
 665		if (tx->has_ready_bitmap &&
 666		    !(tstamp_ready & BIT_ULL(phy_idx))) {
 667			if (drop_ts)
 668				goto skip_ts_read;
 669
 670			continue;
 671		}
 672
 673		ice_trace(tx_tstamp_fw_req, tx->tstamps[idx].skb, idx);
 674
 675		err = ice_read_phy_tstamp(hw, tx->block, phy_idx, &raw_tstamp);
 676		if (err && !drop_ts)
 677			continue;
 678
 679		ice_trace(tx_tstamp_fw_done, tx->tstamps[idx].skb, idx);
 680
 681		/* For PHYs which don't implement a proper timestamp ready
 682		 * bitmap, verify that the timestamp value is different
 683		 * from the last cached timestamp. If it is not, skip this for
 684		 * now assuming it hasn't yet been captured by hardware.
 685		 */
 686		if (!drop_ts && !tx->has_ready_bitmap &&
 687		    raw_tstamp == tx->tstamps[idx].cached_tstamp)
 688			continue;
 689
 690		/* Discard any timestamp value without the valid bit set */
 691		if (!(raw_tstamp & ICE_PTP_TS_VALID))
 692			drop_ts = true;
 693
 694skip_ts_read:
 695		spin_lock_irqsave(&tx->lock, flags);
 696		if (!tx->has_ready_bitmap && raw_tstamp)
 697			tx->tstamps[idx].cached_tstamp = raw_tstamp;
 698		clear_bit(idx, tx->in_use);
 699		skb = tx->tstamps[idx].skb;
 700		tx->tstamps[idx].skb = NULL;
 701		if (test_and_clear_bit(idx, tx->stale))
 702			drop_ts = true;
 703		spin_unlock_irqrestore(&tx->lock, flags);
 704
 705		/* It is unlikely but possible that the SKB will have been
 706		 * flushed at this point due to link change or teardown.
 707		 */
 708		if (!skb)
 709			continue;
 710
 711		if (drop_ts) {
 712			dev_kfree_skb_any(skb);
 713			continue;
 714		}
 715
 716		/* Extend the timestamp using cached PHC time */
 717		tstamp = ice_ptp_extend_40b_ts(pf, raw_tstamp);
 718		if (tstamp) {
 719			shhwtstamps.hwtstamp = ns_to_ktime(tstamp);
 720			ice_trace(tx_tstamp_complete, skb, idx);
 721		}
 722
 723		skb_tstamp_tx(skb, &shhwtstamps);
 724		dev_kfree_skb_any(skb);
 725	}
 726}
 727
 728/**
 729 * ice_ptp_tx_tstamp_owner - Process Tx timestamps for all ports on the device
 730 * @pf: Board private structure
 731 */
 732static enum ice_tx_tstamp_work ice_ptp_tx_tstamp_owner(struct ice_pf *pf)
 733{
 734	struct ice_ptp_port *port;
 735	unsigned int i;
 736
 737	mutex_lock(&pf->adapter->ports.lock);
 738	list_for_each_entry(port, &pf->adapter->ports.ports, list_node) {
 739		struct ice_ptp_tx *tx = &port->tx;
 740
 741		if (!tx || !tx->init)
 742			continue;
 743
 744		ice_ptp_process_tx_tstamp(tx);
 745	}
 746	mutex_unlock(&pf->adapter->ports.lock);
 747
 748	for (i = 0; i < ICE_GET_QUAD_NUM(pf->hw.ptp.num_lports); i++) {
 749		u64 tstamp_ready;
 750		int err;
 751
 752		/* Read the Tx ready status first */
 753		err = ice_get_phy_tx_tstamp_ready(&pf->hw, i, &tstamp_ready);
 754		if (err)
 755			break;
 756		else if (tstamp_ready)
 757			return ICE_TX_TSTAMP_WORK_PENDING;
 758	}
 759
 760	return ICE_TX_TSTAMP_WORK_DONE;
 761}
 762
 763/**
 764 * ice_ptp_tx_tstamp - Process Tx timestamps for this function.
 765 * @tx: Tx tracking structure to initialize
 766 *
 767 * Returns: ICE_TX_TSTAMP_WORK_PENDING if there are any outstanding incomplete
 768 * Tx timestamps, or ICE_TX_TSTAMP_WORK_DONE otherwise.
 769 */
 770static enum ice_tx_tstamp_work ice_ptp_tx_tstamp(struct ice_ptp_tx *tx)
 771{
 772	bool more_timestamps;
 773	unsigned long flags;
 774
 775	if (!tx->init)
 776		return ICE_TX_TSTAMP_WORK_DONE;
 777
 778	/* Process the Tx timestamp tracker */
 779	ice_ptp_process_tx_tstamp(tx);
 780
 781	/* Check if there are outstanding Tx timestamps */
 782	spin_lock_irqsave(&tx->lock, flags);
 783	more_timestamps = tx->init && !bitmap_empty(tx->in_use, tx->len);
 784	spin_unlock_irqrestore(&tx->lock, flags);
 785
 786	if (more_timestamps)
 787		return ICE_TX_TSTAMP_WORK_PENDING;
 788
 789	return ICE_TX_TSTAMP_WORK_DONE;
 790}
 791
 792/**
 793 * ice_ptp_alloc_tx_tracker - Initialize tracking for Tx timestamps
 794 * @tx: Tx tracking structure to initialize
 795 *
 796 * Assumes that the length has already been initialized. Do not call directly,
 797 * use the ice_ptp_init_tx_* instead.
 798 */
 799static int
 800ice_ptp_alloc_tx_tracker(struct ice_ptp_tx *tx)
 801{
 802	unsigned long *in_use, *stale;
 803	struct ice_tx_tstamp *tstamps;
 804
 805	tstamps = kcalloc(tx->len, sizeof(*tstamps), GFP_KERNEL);
 806	in_use = bitmap_zalloc(tx->len, GFP_KERNEL);
 807	stale = bitmap_zalloc(tx->len, GFP_KERNEL);
 808
 809	if (!tstamps || !in_use || !stale) {
 810		kfree(tstamps);
 811		bitmap_free(in_use);
 812		bitmap_free(stale);
 813
 814		return -ENOMEM;
 815	}
 816
 817	tx->tstamps = tstamps;
 818	tx->in_use = in_use;
 819	tx->stale = stale;
 820	tx->init = 1;
 821	tx->last_ll_ts_idx_read = -1;
 822
 823	spin_lock_init(&tx->lock);
 824
 825	return 0;
 826}
 827
 828/**
 829 * ice_ptp_flush_tx_tracker - Flush any remaining timestamps from the tracker
 830 * @pf: Board private structure
 831 * @tx: the tracker to flush
 832 *
 833 * Called during teardown when a Tx tracker is being removed.
 834 */
 835static void
 836ice_ptp_flush_tx_tracker(struct ice_pf *pf, struct ice_ptp_tx *tx)
 837{
 838	struct ice_hw *hw = &pf->hw;
 839	unsigned long flags;
 840	u64 tstamp_ready;
 841	int err;
 842	u8 idx;
 843
 844	err = ice_get_phy_tx_tstamp_ready(hw, tx->block, &tstamp_ready);
 845	if (err) {
 846		dev_dbg(ice_pf_to_dev(pf), "Failed to get the Tx tstamp ready bitmap for block %u, err %d\n",
 847			tx->block, err);
 848
 849		/* If we fail to read the Tx timestamp ready bitmap just
 850		 * skip clearing the PHY timestamps.
 851		 */
 852		tstamp_ready = 0;
 853	}
 854
 855	for_each_set_bit(idx, tx->in_use, tx->len) {
 856		u8 phy_idx = idx + tx->offset;
 857		struct sk_buff *skb;
 858
 859		/* In case this timestamp is ready, we need to clear it. */
 860		if (!hw->reset_ongoing && (tstamp_ready & BIT_ULL(phy_idx)))
 861			ice_clear_phy_tstamp(hw, tx->block, phy_idx);
 862
 863		spin_lock_irqsave(&tx->lock, flags);
 864		skb = tx->tstamps[idx].skb;
 865		tx->tstamps[idx].skb = NULL;
 866		clear_bit(idx, tx->in_use);
 867		clear_bit(idx, tx->stale);
 868		spin_unlock_irqrestore(&tx->lock, flags);
 869
 870		/* Count the number of Tx timestamps flushed */
 871		pf->ptp.tx_hwtstamp_flushed++;
 872
 873		/* Free the SKB after we've cleared the bit */
 874		dev_kfree_skb_any(skb);
 875	}
 876}
 877
 878/**
 879 * ice_ptp_mark_tx_tracker_stale - Mark unfinished timestamps as stale
 880 * @tx: the tracker to mark
 881 *
 882 * Mark currently outstanding Tx timestamps as stale. This prevents sending
 883 * their timestamp value to the stack. This is required to prevent extending
 884 * the 40bit hardware timestamp incorrectly.
 885 *
 886 * This should be called when the PTP clock is modified such as after a set
 887 * time request.
 888 */
 889static void
 890ice_ptp_mark_tx_tracker_stale(struct ice_ptp_tx *tx)
 891{
 892	unsigned long flags;
 893
 894	spin_lock_irqsave(&tx->lock, flags);
 895	bitmap_or(tx->stale, tx->stale, tx->in_use, tx->len);
 896	spin_unlock_irqrestore(&tx->lock, flags);
 897}
 898
 899/**
 900 * ice_ptp_flush_all_tx_tracker - Flush all timestamp trackers on this clock
 901 * @pf: Board private structure
 902 *
 903 * Called by the clock owner to flush all the Tx timestamp trackers associated
 904 * with the clock.
 905 */
 906static void
 907ice_ptp_flush_all_tx_tracker(struct ice_pf *pf)
 908{
 909	struct ice_ptp_port *port;
 910
 911	list_for_each_entry(port, &pf->adapter->ports.ports, list_node)
 912		ice_ptp_flush_tx_tracker(ptp_port_to_pf(port), &port->tx);
 913}
 914
 915/**
 916 * ice_ptp_release_tx_tracker - Release allocated memory for Tx tracker
 917 * @pf: Board private structure
 918 * @tx: Tx tracking structure to release
 919 *
 920 * Free memory associated with the Tx timestamp tracker.
 921 */
 922static void
 923ice_ptp_release_tx_tracker(struct ice_pf *pf, struct ice_ptp_tx *tx)
 924{
 925	unsigned long flags;
 926
 927	spin_lock_irqsave(&tx->lock, flags);
 928	tx->init = 0;
 929	spin_unlock_irqrestore(&tx->lock, flags);
 930
 931	/* wait for potentially outstanding interrupt to complete */
 932	synchronize_irq(pf->oicr_irq.virq);
 933
 934	ice_ptp_flush_tx_tracker(pf, tx);
 935
 936	kfree(tx->tstamps);
 937	tx->tstamps = NULL;
 938
 939	bitmap_free(tx->in_use);
 940	tx->in_use = NULL;
 941
 942	bitmap_free(tx->stale);
 943	tx->stale = NULL;
 944
 945	tx->len = 0;
 946}
 947
 948/**
 949 * ice_ptp_init_tx_eth56g - Initialize tracking for Tx timestamps
 950 * @pf: Board private structure
 951 * @tx: the Tx tracking structure to initialize
 952 * @port: the port this structure tracks
 953 *
 954 * Initialize the Tx timestamp tracker for this port. ETH56G PHYs
 955 * have independent memory blocks for all ports.
 956 *
 957 * Return: 0 for success, -ENOMEM when failed to allocate Tx tracker
 958 */
 959static int ice_ptp_init_tx_eth56g(struct ice_pf *pf, struct ice_ptp_tx *tx,
 960				  u8 port)
 961{
 962	tx->block = port;
 963	tx->offset = 0;
 964	tx->len = INDEX_PER_PORT_ETH56G;
 965	tx->has_ready_bitmap = 1;
 966
 967	return ice_ptp_alloc_tx_tracker(tx);
 968}
 969
 970/**
 971 * ice_ptp_init_tx_e82x - Initialize tracking for Tx timestamps
 972 * @pf: Board private structure
 973 * @tx: the Tx tracking structure to initialize
 974 * @port: the port this structure tracks
 975 *
 976 * Initialize the Tx timestamp tracker for this port. For generic MAC devices,
 977 * the timestamp block is shared for all ports in the same quad. To avoid
 978 * ports using the same timestamp index, logically break the block of
 979 * registers into chunks based on the port number.
 980 */
 981static int
 982ice_ptp_init_tx_e82x(struct ice_pf *pf, struct ice_ptp_tx *tx, u8 port)
 983{
 984	tx->block = ICE_GET_QUAD_NUM(port);
 985	tx->offset = (port % ICE_PORTS_PER_QUAD) * INDEX_PER_PORT_E82X;
 986	tx->len = INDEX_PER_PORT_E82X;
 987	tx->has_ready_bitmap = 1;
 988
 989	return ice_ptp_alloc_tx_tracker(tx);
 990}
 991
 992/**
 993 * ice_ptp_init_tx_e810 - Initialize tracking for Tx timestamps
 994 * @pf: Board private structure
 995 * @tx: the Tx tracking structure to initialize
 996 *
 997 * Initialize the Tx timestamp tracker for this PF. For E810 devices, each
 998 * port has its own block of timestamps, independent of the other ports.
 999 */
1000static int
1001ice_ptp_init_tx_e810(struct ice_pf *pf, struct ice_ptp_tx *tx)
1002{
1003	tx->block = pf->hw.port_info->lport;
1004	tx->offset = 0;
1005	tx->len = INDEX_PER_PORT_E810;
1006	/* The E810 PHY does not provide a timestamp ready bitmap. Instead,
1007	 * verify new timestamps against cached copy of the last read
1008	 * timestamp.
1009	 */
1010	tx->has_ready_bitmap = 0;
1011
1012	return ice_ptp_alloc_tx_tracker(tx);
1013}
1014
1015/**
1016 * ice_ptp_update_cached_phctime - Update the cached PHC time values
1017 * @pf: Board specific private structure
1018 *
1019 * This function updates the system time values which are cached in the PF
1020 * structure and the Rx rings.
1021 *
1022 * This function must be called periodically to ensure that the cached value
1023 * is never more than 2 seconds old.
1024 *
1025 * Note that the cached copy in the PF PTP structure is always updated, even
1026 * if we can't update the copy in the Rx rings.
1027 *
1028 * Return:
1029 * * 0 - OK, successfully updated
1030 * * -EAGAIN - PF was busy, need to reschedule the update
1031 */
1032static int ice_ptp_update_cached_phctime(struct ice_pf *pf)
1033{
1034	struct device *dev = ice_pf_to_dev(pf);
1035	unsigned long update_before;
1036	u64 systime;
1037	int i;
1038
1039	update_before = pf->ptp.cached_phc_jiffies + msecs_to_jiffies(2000);
1040	if (pf->ptp.cached_phc_time &&
1041	    time_is_before_jiffies(update_before)) {
1042		unsigned long time_taken = jiffies - pf->ptp.cached_phc_jiffies;
1043
1044		dev_warn(dev, "%u msecs passed between update to cached PHC time\n",
1045			 jiffies_to_msecs(time_taken));
1046		pf->ptp.late_cached_phc_updates++;
1047	}
1048
1049	/* Read the current PHC time */
1050	systime = ice_ptp_read_src_clk_reg(pf, NULL);
1051
1052	/* Update the cached PHC time stored in the PF structure */
1053	WRITE_ONCE(pf->ptp.cached_phc_time, systime);
1054	WRITE_ONCE(pf->ptp.cached_phc_jiffies, jiffies);
1055
1056	if (test_and_set_bit(ICE_CFG_BUSY, pf->state))
1057		return -EAGAIN;
1058
1059	ice_for_each_vsi(pf, i) {
1060		struct ice_vsi *vsi = pf->vsi[i];
1061		int j;
1062
1063		if (!vsi)
1064			continue;
1065
1066		if (vsi->type != ICE_VSI_PF)
1067			continue;
1068
1069		ice_for_each_rxq(vsi, j) {
1070			if (!vsi->rx_rings[j])
1071				continue;
1072			WRITE_ONCE(vsi->rx_rings[j]->cached_phctime, systime);
1073		}
1074	}
1075	clear_bit(ICE_CFG_BUSY, pf->state);
1076
1077	return 0;
1078}
1079
1080/**
1081 * ice_ptp_reset_cached_phctime - Reset cached PHC time after an update
1082 * @pf: Board specific private structure
1083 *
1084 * This function must be called when the cached PHC time is no longer valid,
1085 * such as after a time adjustment. It marks any currently outstanding Tx
1086 * timestamps as stale and updates the cached PHC time for both the PF and Rx
1087 * rings.
1088 *
1089 * If updating the PHC time cannot be done immediately, a warning message is
1090 * logged and the work item is scheduled immediately to minimize the window
1091 * with a wrong cached timestamp.
1092 */
1093static void ice_ptp_reset_cached_phctime(struct ice_pf *pf)
1094{
1095	struct device *dev = ice_pf_to_dev(pf);
1096	int err;
1097
1098	/* Update the cached PHC time immediately if possible, otherwise
1099	 * schedule the work item to execute soon.
1100	 */
1101	err = ice_ptp_update_cached_phctime(pf);
1102	if (err) {
1103		/* If another thread is updating the Rx rings, we won't
1104		 * properly reset them here. This could lead to reporting of
1105		 * invalid timestamps, but there isn't much we can do.
1106		 */
1107		dev_warn(dev, "%s: ICE_CFG_BUSY, unable to immediately update cached PHC time\n",
1108			 __func__);
1109
1110		/* Queue the work item to update the Rx rings when possible */
1111		kthread_queue_delayed_work(pf->ptp.kworker, &pf->ptp.work,
1112					   msecs_to_jiffies(10));
1113	}
1114
1115	/* Mark any outstanding timestamps as stale, since they might have
1116	 * been captured in hardware before the time update. This could lead
1117	 * to us extending them with the wrong cached value resulting in
1118	 * incorrect timestamp values.
1119	 */
1120	ice_ptp_mark_tx_tracker_stale(&pf->ptp.port.tx);
1121}
1122
1123/**
1124 * ice_ptp_write_init - Set PHC time to provided value
1125 * @pf: Board private structure
1126 * @ts: timespec structure that holds the new time value
1127 *
1128 * Set the PHC time to the specified time provided in the timespec.
1129 */
1130static int ice_ptp_write_init(struct ice_pf *pf, struct timespec64 *ts)
1131{
1132	u64 ns = timespec64_to_ns(ts);
1133	struct ice_hw *hw = &pf->hw;
1134
1135	return ice_ptp_init_time(hw, ns);
1136}
1137
1138/**
1139 * ice_ptp_write_adj - Adjust PHC clock time atomically
1140 * @pf: Board private structure
1141 * @adj: Adjustment in nanoseconds
1142 *
1143 * Perform an atomic adjustment of the PHC time by the specified number of
1144 * nanoseconds.
1145 */
1146static int ice_ptp_write_adj(struct ice_pf *pf, s32 adj)
1147{
1148	struct ice_hw *hw = &pf->hw;
1149
1150	return ice_ptp_adj_clock(hw, adj);
1151}
1152
1153/**
1154 * ice_base_incval - Get base timer increment value
1155 * @pf: Board private structure
1156 *
1157 * Look up the base timer increment value for this device. The base increment
1158 * value is used to define the nominal clock tick rate. This increment value
1159 * is programmed during device initialization. It is also used as the basis
1160 * for calculating adjustments using scaled_ppm.
1161 */
1162static u64 ice_base_incval(struct ice_pf *pf)
1163{
1164	struct ice_hw *hw = &pf->hw;
1165	u64 incval;
1166
1167	incval = ice_get_base_incval(hw);
1168
1169	dev_dbg(ice_pf_to_dev(pf), "PTP: using base increment value of 0x%016llx\n",
1170		incval);
1171
1172	return incval;
1173}
1174
1175/**
1176 * ice_ptp_check_tx_fifo - Check whether Tx FIFO is in an OK state
1177 * @port: PTP port for which Tx FIFO is checked
1178 */
1179static int ice_ptp_check_tx_fifo(struct ice_ptp_port *port)
1180{
1181	int offs = port->port_num % ICE_PORTS_PER_QUAD;
1182	int quad = ICE_GET_QUAD_NUM(port->port_num);
1183	struct ice_pf *pf;
1184	struct ice_hw *hw;
1185	u32 val, phy_sts;
1186	int err;
1187
1188	pf = ptp_port_to_pf(port);
1189	hw = &pf->hw;
1190
1191	if (port->tx_fifo_busy_cnt == FIFO_OK)
1192		return 0;
1193
1194	/* need to read FIFO state */
1195	if (offs == 0 || offs == 1)
1196		err = ice_read_quad_reg_e82x(hw, quad, Q_REG_FIFO01_STATUS,
1197					     &val);
1198	else
1199		err = ice_read_quad_reg_e82x(hw, quad, Q_REG_FIFO23_STATUS,
1200					     &val);
1201
1202	if (err) {
1203		dev_err(ice_pf_to_dev(pf), "PTP failed to check port %d Tx FIFO, err %d\n",
1204			port->port_num, err);
1205		return err;
1206	}
1207
1208	if (offs & 0x1)
1209		phy_sts = FIELD_GET(Q_REG_FIFO13_M, val);
1210	else
1211		phy_sts = FIELD_GET(Q_REG_FIFO02_M, val);
1212
1213	if (phy_sts & FIFO_EMPTY) {
1214		port->tx_fifo_busy_cnt = FIFO_OK;
1215		return 0;
1216	}
1217
1218	port->tx_fifo_busy_cnt++;
1219
1220	dev_dbg(ice_pf_to_dev(pf), "Try %d, port %d FIFO not empty\n",
1221		port->tx_fifo_busy_cnt, port->port_num);
1222
1223	if (port->tx_fifo_busy_cnt == ICE_PTP_FIFO_NUM_CHECKS) {
1224		dev_dbg(ice_pf_to_dev(pf),
1225			"Port %d Tx FIFO still not empty; resetting quad %d\n",
1226			port->port_num, quad);
1227		ice_ptp_reset_ts_memory_quad_e82x(hw, quad);
1228		port->tx_fifo_busy_cnt = FIFO_OK;
1229		return 0;
1230	}
1231
1232	return -EAGAIN;
1233}
1234
1235/**
1236 * ice_ptp_wait_for_offsets - Check for valid Tx and Rx offsets
1237 * @work: Pointer to the kthread_work structure for this task
1238 *
1239 * Check whether hardware has completed measuring the Tx and Rx offset values
1240 * used to configure and enable vernier timestamp calibration.
1241 *
1242 * Once the offset in either direction is measured, configure the associated
1243 * registers with the calibrated offset values and enable timestamping. The Tx
1244 * and Rx directions are configured independently as soon as their associated
1245 * offsets are known.
1246 *
1247 * This function reschedules itself until both Tx and Rx calibration have
1248 * completed.
1249 */
1250static void ice_ptp_wait_for_offsets(struct kthread_work *work)
1251{
1252	struct ice_ptp_port *port;
1253	struct ice_pf *pf;
1254	struct ice_hw *hw;
1255	int tx_err;
1256	int rx_err;
1257
1258	port = container_of(work, struct ice_ptp_port, ov_work.work);
1259	pf = ptp_port_to_pf(port);
1260	hw = &pf->hw;
1261
1262	if (ice_is_reset_in_progress(pf->state)) {
1263		/* wait for device driver to complete reset */
1264		kthread_queue_delayed_work(pf->ptp.kworker,
1265					   &port->ov_work,
1266					   msecs_to_jiffies(100));
1267		return;
1268	}
1269
1270	tx_err = ice_ptp_check_tx_fifo(port);
1271	if (!tx_err)
1272		tx_err = ice_phy_cfg_tx_offset_e82x(hw, port->port_num);
1273	rx_err = ice_phy_cfg_rx_offset_e82x(hw, port->port_num);
1274	if (tx_err || rx_err) {
1275		/* Tx and/or Rx offset not yet configured, try again later */
1276		kthread_queue_delayed_work(pf->ptp.kworker,
1277					   &port->ov_work,
1278					   msecs_to_jiffies(100));
1279		return;
1280	}
1281}
1282
1283/**
1284 * ice_ptp_port_phy_stop - Stop timestamping for a PHY port
1285 * @ptp_port: PTP port to stop
1286 */
1287static int
1288ice_ptp_port_phy_stop(struct ice_ptp_port *ptp_port)
1289{
1290	struct ice_pf *pf = ptp_port_to_pf(ptp_port);
1291	u8 port = ptp_port->port_num;
1292	struct ice_hw *hw = &pf->hw;
1293	int err;
1294
1295	if (ice_is_e810(hw))
1296		return 0;
1297
1298	mutex_lock(&ptp_port->ps_lock);
1299
1300	switch (ice_get_phy_model(hw)) {
1301	case ICE_PHY_ETH56G:
1302		err = ice_stop_phy_timer_eth56g(hw, port, true);
1303		break;
1304	case ICE_PHY_E82X:
1305		kthread_cancel_delayed_work_sync(&ptp_port->ov_work);
1306
1307		err = ice_stop_phy_timer_e82x(hw, port, true);
1308		break;
1309	default:
1310		err = -ENODEV;
1311	}
1312	if (err && err != -EBUSY)
1313		dev_err(ice_pf_to_dev(pf), "PTP failed to set PHY port %d down, err %d\n",
1314			port, err);
1315
1316	mutex_unlock(&ptp_port->ps_lock);
1317
1318	return err;
1319}
1320
1321/**
1322 * ice_ptp_port_phy_restart - (Re)start and calibrate PHY timestamping
1323 * @ptp_port: PTP port for which the PHY start is set
1324 *
1325 * Start the PHY timestamping block, and initiate Vernier timestamping
1326 * calibration. If timestamping cannot be calibrated (such as if link is down)
1327 * then disable the timestamping block instead.
1328 */
1329static int
1330ice_ptp_port_phy_restart(struct ice_ptp_port *ptp_port)
1331{
1332	struct ice_pf *pf = ptp_port_to_pf(ptp_port);
1333	u8 port = ptp_port->port_num;
1334	struct ice_hw *hw = &pf->hw;
1335	unsigned long flags;
1336	int err;
1337
1338	if (ice_is_e810(hw))
1339		return 0;
1340
1341	if (!ptp_port->link_up)
1342		return ice_ptp_port_phy_stop(ptp_port);
1343
1344	mutex_lock(&ptp_port->ps_lock);
1345
1346	switch (ice_get_phy_model(hw)) {
1347	case ICE_PHY_ETH56G:
1348		err = ice_start_phy_timer_eth56g(hw, port);
1349		break;
1350	case ICE_PHY_E82X:
1351		/* Start the PHY timer in Vernier mode */
1352		kthread_cancel_delayed_work_sync(&ptp_port->ov_work);
1353
1354		/* temporarily disable Tx timestamps while calibrating
1355		 * PHY offset
1356		 */
1357		spin_lock_irqsave(&ptp_port->tx.lock, flags);
1358		ptp_port->tx.calibrating = true;
1359		spin_unlock_irqrestore(&ptp_port->tx.lock, flags);
1360		ptp_port->tx_fifo_busy_cnt = 0;
1361
1362		/* Start the PHY timer in Vernier mode */
1363		err = ice_start_phy_timer_e82x(hw, port);
1364		if (err)
1365			break;
1366
1367		/* Enable Tx timestamps right away */
1368		spin_lock_irqsave(&ptp_port->tx.lock, flags);
1369		ptp_port->tx.calibrating = false;
1370		spin_unlock_irqrestore(&ptp_port->tx.lock, flags);
1371
1372		kthread_queue_delayed_work(pf->ptp.kworker, &ptp_port->ov_work,
1373					   0);
1374		break;
1375	default:
1376		err = -ENODEV;
1377	}
1378
1379	if (err)
1380		dev_err(ice_pf_to_dev(pf), "PTP failed to set PHY port %d up, err %d\n",
1381			port, err);
1382
1383	mutex_unlock(&ptp_port->ps_lock);
1384
1385	return err;
1386}
1387
1388/**
1389 * ice_ptp_link_change - Reconfigure PTP after link status change
1390 * @pf: Board private structure
1391 * @linkup: Link is up or down
1392 */
1393void ice_ptp_link_change(struct ice_pf *pf, bool linkup)
1394{
1395	struct ice_ptp_port *ptp_port;
1396	struct ice_hw *hw = &pf->hw;
1397
1398	if (pf->ptp.state != ICE_PTP_READY)
1399		return;
1400
1401	ptp_port = &pf->ptp.port;
1402
1403	/* Update cached link status for this port immediately */
1404	ptp_port->link_up = linkup;
1405
1406	/* Skip HW writes if reset is in progress */
1407	if (pf->hw.reset_ongoing)
1408		return;
1409	switch (ice_get_phy_model(hw)) {
1410	case ICE_PHY_E810:
1411		/* Do not reconfigure E810 PHY */
1412		return;
1413	case ICE_PHY_ETH56G:
1414	case ICE_PHY_E82X:
1415		ice_ptp_port_phy_restart(ptp_port);
1416		return;
1417	default:
1418		dev_warn(ice_pf_to_dev(pf), "%s: Unknown PHY type\n", __func__);
1419	}
1420}
1421
1422/**
1423 * ice_ptp_cfg_phy_interrupt - Configure PHY interrupt settings
1424 * @pf: PF private structure
1425 * @ena: bool value to enable or disable interrupt
1426 * @threshold: Minimum number of packets at which intr is triggered
1427 *
1428 * Utility function to configure all the PHY interrupt settings, including
1429 * whether the PHY interrupt is enabled, and what threshold to use. Also
1430 * configures The E82X timestamp owner to react to interrupts from all PHYs.
1431 *
1432 * Return: 0 on success, -EOPNOTSUPP when PHY model incorrect, other error codes
1433 * when failed to configure PHY interrupt for E82X
1434 */
1435static int ice_ptp_cfg_phy_interrupt(struct ice_pf *pf, bool ena, u32 threshold)
1436{
1437	struct device *dev = ice_pf_to_dev(pf);
1438	struct ice_hw *hw = &pf->hw;
1439
1440	ice_ptp_reset_ts_memory(hw);
1441
1442	switch (ice_get_phy_model(hw)) {
1443	case ICE_PHY_ETH56G: {
1444		int port;
1445
1446		for (port = 0; port < hw->ptp.num_lports; port++) {
1447			int err;
1448
1449			err = ice_phy_cfg_intr_eth56g(hw, port, ena, threshold);
1450			if (err) {
1451				dev_err(dev, "Failed to configure PHY interrupt for port %d, err %d\n",
1452					port, err);
1453				return err;
1454			}
1455		}
1456
1457		return 0;
1458	}
1459	case ICE_PHY_E82X: {
1460		int quad;
1461
1462		for (quad = 0; quad < ICE_GET_QUAD_NUM(hw->ptp.num_lports);
1463		     quad++) {
1464			int err;
1465
1466			err = ice_phy_cfg_intr_e82x(hw, quad, ena, threshold);
1467			if (err) {
1468				dev_err(dev, "Failed to configure PHY interrupt for quad %d, err %d\n",
1469					quad, err);
1470				return err;
1471			}
1472		}
1473
1474		return 0;
1475	}
1476	case ICE_PHY_E810:
1477		return 0;
1478	case ICE_PHY_UNSUP:
1479	default:
1480		dev_warn(dev, "%s: Unexpected PHY model %d\n", __func__,
1481			 ice_get_phy_model(hw));
1482		return -EOPNOTSUPP;
1483	}
1484}
1485
1486/**
1487 * ice_ptp_reset_phy_timestamping - Reset PHY timestamping block
1488 * @pf: Board private structure
1489 */
1490static void ice_ptp_reset_phy_timestamping(struct ice_pf *pf)
1491{
1492	ice_ptp_port_phy_restart(&pf->ptp.port);
1493}
1494
1495/**
1496 * ice_ptp_restart_all_phy - Restart all PHYs to recalibrate timestamping
1497 * @pf: Board private structure
1498 */
1499static void ice_ptp_restart_all_phy(struct ice_pf *pf)
1500{
1501	struct list_head *entry;
1502
1503	list_for_each(entry, &pf->adapter->ports.ports) {
1504		struct ice_ptp_port *port = list_entry(entry,
1505						       struct ice_ptp_port,
1506						       list_node);
1507
1508		if (port->link_up)
1509			ice_ptp_port_phy_restart(port);
1510	}
1511}
1512
1513/**
1514 * ice_ptp_adjfine - Adjust clock increment rate
1515 * @info: the driver's PTP info structure
1516 * @scaled_ppm: Parts per million with 16-bit fractional field
1517 *
1518 * Adjust the frequency of the clock by the indicated scaled ppm from the
1519 * base frequency.
1520 */
1521static int ice_ptp_adjfine(struct ptp_clock_info *info, long scaled_ppm)
1522{
1523	struct ice_pf *pf = ptp_info_to_pf(info);
1524	struct ice_hw *hw = &pf->hw;
1525	u64 incval;
1526	int err;
1527
1528	incval = adjust_by_scaled_ppm(ice_base_incval(pf), scaled_ppm);
1529	err = ice_ptp_write_incval_locked(hw, incval);
1530	if (err) {
1531		dev_err(ice_pf_to_dev(pf), "PTP failed to set incval, err %d\n",
1532			err);
1533		return -EIO;
1534	}
1535
1536	return 0;
1537}
1538
1539/**
1540 * ice_ptp_extts_event - Process PTP external clock event
1541 * @pf: Board private structure
1542 */
1543void ice_ptp_extts_event(struct ice_pf *pf)
1544{
1545	struct ptp_clock_event event;
1546	struct ice_hw *hw = &pf->hw;
1547	u8 chan, tmr_idx;
1548	u32 hi, lo;
1549
1550	/* Don't process timestamp events if PTP is not ready */
1551	if (pf->ptp.state != ICE_PTP_READY)
1552		return;
1553
1554	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
1555	/* Event time is captured by one of the two matched registers
1556	 *      GLTSYN_EVNT_L: 32 LSB of sampled time event
1557	 *      GLTSYN_EVNT_H: 32 MSB of sampled time event
1558	 * Event is defined in GLTSYN_EVNT_0 register
1559	 */
1560	for (chan = 0; chan < GLTSYN_EVNT_H_IDX_MAX; chan++) {
1561		/* Check if channel is enabled */
1562		if (pf->ptp.ext_ts_irq & (1 << chan)) {
1563			lo = rd32(hw, GLTSYN_EVNT_L(chan, tmr_idx));
1564			hi = rd32(hw, GLTSYN_EVNT_H(chan, tmr_idx));
1565			event.timestamp = (((u64)hi) << 32) | lo;
1566			event.type = PTP_CLOCK_EXTTS;
1567			event.index = chan;
1568
1569			/* Fire event */
1570			ptp_clock_event(pf->ptp.clock, &event);
1571			pf->ptp.ext_ts_irq &= ~(1 << chan);
1572		}
1573	}
1574}
1575
1576/**
1577 * ice_ptp_cfg_extts - Configure EXTTS pin and channel
1578 * @pf: Board private structure
1579 * @rq: External timestamp request
1580 * @on: Enable/disable flag
1581 *
1582 * Configure an external timestamp event on the requested channel.
1583 *
1584 * Return: 0 on success, negative error code otherwise
1585 */
1586static int ice_ptp_cfg_extts(struct ice_pf *pf, struct ptp_extts_request *rq,
1587			     int on)
1588{
1589	u32 aux_reg, gpio_reg, irq_reg;
1590	struct ice_hw *hw = &pf->hw;
1591	unsigned int chan, gpio_pin;
1592	int pin_desc_idx;
1593	u8 tmr_idx;
1594
1595	/* Reject requests with unsupported flags */
1596
1597	if (rq->flags & ~(PTP_ENABLE_FEATURE |
1598			  PTP_RISING_EDGE |
1599			  PTP_FALLING_EDGE |
1600			  PTP_STRICT_FLAGS))
1601		return -EOPNOTSUPP;
1602
1603	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
1604	chan = rq->index;
1605
1606	pin_desc_idx = ice_ptp_find_pin_idx(pf, PTP_PF_EXTTS, chan);
1607	if (pin_desc_idx < 0)
1608		return -EIO;
1609
1610	gpio_pin = pf->ptp.ice_pin_desc[pin_desc_idx].gpio[0];
1611	irq_reg = rd32(hw, PFINT_OICR_ENA);
1612
1613	if (on) {
1614		/* Enable the interrupt */
1615		irq_reg |= PFINT_OICR_TSYN_EVNT_M;
1616		aux_reg = GLTSYN_AUX_IN_0_INT_ENA_M;
1617
1618#define GLTSYN_AUX_IN_0_EVNTLVL_RISING_EDGE	BIT(0)
1619#define GLTSYN_AUX_IN_0_EVNTLVL_FALLING_EDGE	BIT(1)
1620
1621		/* set event level to requested edge */
1622		if (rq->flags & PTP_FALLING_EDGE)
1623			aux_reg |= GLTSYN_AUX_IN_0_EVNTLVL_FALLING_EDGE;
1624		if (rq->flags & PTP_RISING_EDGE)
1625			aux_reg |= GLTSYN_AUX_IN_0_EVNTLVL_RISING_EDGE;
1626
1627		/* Write GPIO CTL reg.
1628		 * 0x1 is input sampled by EVENT register(channel)
1629		 * + num_in_channels * tmr_idx
1630		 */
1631		gpio_reg = FIELD_PREP(GLGEN_GPIO_CTL_PIN_FUNC_M,
1632				      1 + chan + (tmr_idx * 3));
1633	} else {
1634		bool last_enabled = true;
1635
1636		/* clear the values we set to reset defaults */
1637		aux_reg = 0;
1638		gpio_reg = 0;
1639
1640		for (unsigned int i = 0; i < pf->ptp.info.n_ext_ts; i++)
1641			if ((pf->ptp.extts_rqs[i].flags &
1642			     PTP_ENABLE_FEATURE) &&
1643			    i != chan) {
1644				last_enabled = false;
1645			}
1646
1647		if (last_enabled)
1648			irq_reg &= ~PFINT_OICR_TSYN_EVNT_M;
1649	}
1650
1651	wr32(hw, PFINT_OICR_ENA, irq_reg);
1652	wr32(hw, GLTSYN_AUX_IN(chan, tmr_idx), aux_reg);
1653	wr32(hw, GLGEN_GPIO_CTL(gpio_pin), gpio_reg);
1654
1655	return 0;
1656}
1657
1658/**
1659 * ice_ptp_disable_all_extts - Disable all EXTTS channels
1660 * @pf: Board private structure
1661 */
1662static void ice_ptp_disable_all_extts(struct ice_pf *pf)
1663{
1664	for (unsigned int i = 0; i < pf->ptp.info.n_ext_ts ; i++)
1665		if (pf->ptp.extts_rqs[i].flags & PTP_ENABLE_FEATURE)
1666			ice_ptp_cfg_extts(pf, &pf->ptp.extts_rqs[i],
1667					  false);
1668
1669	synchronize_irq(pf->oicr_irq.virq);
1670}
1671
1672/**
1673 * ice_ptp_enable_all_extts - Enable all EXTTS channels
1674 * @pf: Board private structure
1675 *
1676 * Called during reset to restore user configuration.
1677 */
1678static void ice_ptp_enable_all_extts(struct ice_pf *pf)
1679{
1680	for (unsigned int i = 0; i < pf->ptp.info.n_ext_ts ; i++)
1681		if (pf->ptp.extts_rqs[i].flags & PTP_ENABLE_FEATURE)
1682			ice_ptp_cfg_extts(pf, &pf->ptp.extts_rqs[i],
1683					  true);
1684}
1685
1686/**
1687 * ice_ptp_write_perout - Write periodic wave parameters to HW
1688 * @hw: pointer to the HW struct
1689 * @chan: target channel
1690 * @gpio_pin: target GPIO pin
1691 * @start: target time to start periodic output
1692 * @period: target period
1693 *
1694 * Return: 0 on success, negative error code otherwise
1695 */
1696static int ice_ptp_write_perout(struct ice_hw *hw, unsigned int chan,
1697				unsigned int gpio_pin, u64 start, u64 period)
1698{
1699
1700	u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
1701	u32 val = 0;
1702
1703	/* 0. Reset mode & out_en in AUX_OUT */
1704	wr32(hw, GLTSYN_AUX_OUT(chan, tmr_idx), 0);
1705
1706	if (ice_is_e825c(hw)) {
1707		int err;
1708
1709		/* Enable/disable CGU 1PPS output for E825C */
1710		err = ice_cgu_cfg_pps_out(hw, !!period);
1711		if (err)
1712			return err;
1713	}
1714
1715	/* 1. Write perout with half of required period value.
1716	 * HW toggles output when source clock hits the TGT and then adds
1717	 * GLTSYN_CLKO value to the target, so it ends up with 50% duty cycle.
1718	 */
1719	period >>= 1;
1720
1721	/* For proper operation, GLTSYN_CLKO must be larger than clock tick and
1722	 * period has to fit in 32 bit register.
1723	 */
1724#define MIN_PULSE 3
1725	if (!!period && (period <= MIN_PULSE || period > U32_MAX)) {
1726		dev_err(ice_hw_to_dev(hw), "CLK period ticks must be >= %d && <= 2^32",
1727			MIN_PULSE);
1728		return -EIO;
1729	}
1730
1731	wr32(hw, GLTSYN_CLKO(chan, tmr_idx), lower_32_bits(period));
1732
1733	/* 2. Write TARGET time */
1734	wr32(hw, GLTSYN_TGT_L(chan, tmr_idx), lower_32_bits(start));
1735	wr32(hw, GLTSYN_TGT_H(chan, tmr_idx), upper_32_bits(start));
1736
1737	/* 3. Write AUX_OUT register */
1738	if (!!period)
1739		val = GLTSYN_AUX_OUT_0_OUT_ENA_M | GLTSYN_AUX_OUT_0_OUTMOD_M;
1740	wr32(hw, GLTSYN_AUX_OUT(chan, tmr_idx), val);
1741
1742	/* 4. write GPIO CTL reg */
1743	val = GLGEN_GPIO_CTL_PIN_DIR_M;
1744	if (!!period)
1745		val |= FIELD_PREP(GLGEN_GPIO_CTL_PIN_FUNC_M,
1746				  8 + chan + (tmr_idx * 4));
1747
1748	wr32(hw, GLGEN_GPIO_CTL(gpio_pin), val);
1749
1750	return 0;
1751}
1752
1753/**
1754 * ice_ptp_cfg_perout - Configure clock to generate periodic wave
1755 * @pf: Board private structure
1756 * @rq: Periodic output request
1757 * @on: Enable/disable flag
1758 *
1759 * Configure the internal clock generator modules to generate the clock wave of
1760 * specified period.
1761 *
1762 * Return: 0 on success, negative error code otherwise
1763 */
1764static int ice_ptp_cfg_perout(struct ice_pf *pf, struct ptp_perout_request *rq,
1765			      int on)
1766{
1767	u64 clk, period, start, phase;
1768	struct ice_hw *hw = &pf->hw;
1769	unsigned int gpio_pin;
1770	int pin_desc_idx;
1771
1772	if (rq->flags & ~PTP_PEROUT_PHASE)
1773		return -EOPNOTSUPP;
1774
1775	pin_desc_idx = ice_ptp_find_pin_idx(pf, PTP_PF_PEROUT, rq->index);
1776	if (pin_desc_idx < 0)
1777		return -EIO;
1778
1779	gpio_pin = pf->ptp.ice_pin_desc[pin_desc_idx].gpio[1];
1780	period = rq->period.sec * NSEC_PER_SEC + rq->period.nsec;
1781
1782	/* If we're disabling the output or period is 0, clear out CLKO and TGT
1783	 * and keep output level low.
1784	 */
1785	if (!on || !period)
1786		return ice_ptp_write_perout(hw, rq->index, gpio_pin, 0, 0);
1787
1788	if (strncmp(pf->ptp.pin_desc[pin_desc_idx].name, "1PPS", 64) == 0 &&
1789	    period != NSEC_PER_SEC && hw->ptp.phy_model == ICE_PHY_E82X) {
1790		dev_err(ice_pf_to_dev(pf), "1PPS pin supports only 1 s period\n");
1791		return -EOPNOTSUPP;
1792	}
1793
1794	if (period & 0x1) {
1795		dev_err(ice_pf_to_dev(pf), "CLK Period must be an even value\n");
1796		return -EIO;
1797	}
1798
1799	start = rq->start.sec * NSEC_PER_SEC + rq->start.nsec;
1800
1801	/* If PTP_PEROUT_PHASE is set, rq has phase instead of start time */
1802	if (rq->flags & PTP_PEROUT_PHASE)
1803		phase = start;
1804	else
1805		div64_u64_rem(start, period, &phase);
1806
1807	/* If we have only phase or start time is in the past, start the timer
1808	 * at the next multiple of period, maintaining phase.
1809	 */
1810	clk = ice_ptp_read_src_clk_reg(pf, NULL);
1811	if (rq->flags & PTP_PEROUT_PHASE || start <= clk - ice_prop_delay(hw))
1812		start = div64_u64(clk + period - 1, period) * period + phase;
1813
1814	/* Compensate for propagation delay from the generator to the pin. */
1815	start -= ice_prop_delay(hw);
1816
1817	return ice_ptp_write_perout(hw, rq->index, gpio_pin, start, period);
1818}
1819
1820/**
1821 * ice_ptp_disable_all_perout - Disable all currently configured outputs
1822 * @pf: Board private structure
1823 *
1824 * Disable all currently configured clock outputs. This is necessary before
1825 * certain changes to the PTP hardware clock. Use ice_ptp_enable_all_perout to
1826 * re-enable the clocks again.
1827 */
1828static void ice_ptp_disable_all_perout(struct ice_pf *pf)
1829{
1830	for (unsigned int i = 0; i < pf->ptp.info.n_per_out; i++)
1831		if (pf->ptp.perout_rqs[i].period.sec ||
1832		    pf->ptp.perout_rqs[i].period.nsec)
1833			ice_ptp_cfg_perout(pf, &pf->ptp.perout_rqs[i],
1834					   false);
1835}
1836
1837/**
1838 * ice_ptp_enable_all_perout - Enable all configured periodic clock outputs
1839 * @pf: Board private structure
1840 *
1841 * Enable all currently configured clock outputs. Use this after
1842 * ice_ptp_disable_all_perout to reconfigure the output signals according to
1843 * their configuration.
1844 */
1845static void ice_ptp_enable_all_perout(struct ice_pf *pf)
1846{
1847	for (unsigned int i = 0; i < pf->ptp.info.n_per_out; i++)
1848		if (pf->ptp.perout_rqs[i].period.sec ||
1849		    pf->ptp.perout_rqs[i].period.nsec)
1850			ice_ptp_cfg_perout(pf, &pf->ptp.perout_rqs[i],
1851					   true);
1852}
1853
1854/**
1855 * ice_ptp_disable_shared_pin - Disable enabled pin that shares GPIO
1856 * @pf: Board private structure
1857 * @pin: Pin index
1858 * @func: Assigned function
1859 *
1860 * Return: 0 on success, negative error code otherwise
1861 */
1862static int ice_ptp_disable_shared_pin(struct ice_pf *pf, unsigned int pin,
1863				      enum ptp_pin_function func)
1864{
1865	unsigned int gpio_pin;
1866
1867	switch (func) {
1868	case PTP_PF_PEROUT:
1869		gpio_pin = pf->ptp.ice_pin_desc[pin].gpio[1];
1870		break;
1871	case PTP_PF_EXTTS:
1872		gpio_pin = pf->ptp.ice_pin_desc[pin].gpio[0];
1873		break;
1874	default:
1875		return -EOPNOTSUPP;
1876	}
1877
1878	for (unsigned int i = 0; i < pf->ptp.info.n_pins; i++) {
1879		struct ptp_pin_desc *pin_desc = &pf->ptp.pin_desc[i];
1880		unsigned int chan = pin_desc->chan;
1881
1882		/* Skip pin idx from the request */
1883		if (i == pin)
1884			continue;
1885
1886		if (pin_desc->func == PTP_PF_PEROUT &&
1887		    pf->ptp.ice_pin_desc[i].gpio[1] == gpio_pin) {
1888			pf->ptp.perout_rqs[chan].period.sec = 0;
1889			pf->ptp.perout_rqs[chan].period.nsec = 0;
1890			pin_desc->func = PTP_PF_NONE;
1891			pin_desc->chan = 0;
1892			dev_dbg(ice_pf_to_dev(pf), "Disabling pin %u with shared output GPIO pin %u\n",
1893				i, gpio_pin);
1894			return ice_ptp_cfg_perout(pf, &pf->ptp.perout_rqs[chan],
1895						  false);
1896		} else if (pf->ptp.pin_desc->func == PTP_PF_EXTTS &&
1897			   pf->ptp.ice_pin_desc[i].gpio[0] == gpio_pin) {
1898			pf->ptp.extts_rqs[chan].flags &= ~PTP_ENABLE_FEATURE;
1899			pin_desc->func = PTP_PF_NONE;
1900			pin_desc->chan = 0;
1901			dev_dbg(ice_pf_to_dev(pf), "Disabling pin %u with shared input GPIO pin %u\n",
1902				i, gpio_pin);
1903			return ice_ptp_cfg_extts(pf, &pf->ptp.extts_rqs[chan],
1904						 false);
1905		}
1906	}
1907
1908	return 0;
1909}
1910
1911/**
1912 * ice_verify_pin - verify if pin supports requested pin function
1913 * @info: the driver's PTP info structure
1914 * @pin: Pin index
1915 * @func: Assigned function
1916 * @chan: Assigned channel
1917 *
1918 * Return: 0 on success, -EOPNOTSUPP when function is not supported.
1919 */
1920static int ice_verify_pin(struct ptp_clock_info *info, unsigned int pin,
1921			  enum ptp_pin_function func, unsigned int chan)
1922{
1923	struct ice_pf *pf = ptp_info_to_pf(info);
1924	const struct ice_ptp_pin_desc *pin_desc;
1925
1926	pin_desc = &pf->ptp.ice_pin_desc[pin];
1927
1928	/* Is assigned function allowed? */
1929	switch (func) {
1930	case PTP_PF_EXTTS:
1931		if (pin_desc->gpio[0] < 0)
1932			return -EOPNOTSUPP;
1933		break;
1934	case PTP_PF_PEROUT:
1935		if (pin_desc->gpio[1] < 0)
1936			return -EOPNOTSUPP;
1937		break;
1938	case PTP_PF_NONE:
1939		break;
1940	case PTP_PF_PHYSYNC:
1941	default:
1942		return -EOPNOTSUPP;
1943	}
1944
1945	/* On adapters with SMA_CTRL disable other pins that share same GPIO */
1946	if (ice_is_feature_supported(pf, ICE_F_SMA_CTRL)) {
1947		ice_ptp_disable_shared_pin(pf, pin, func);
1948		pf->ptp.pin_desc[pin].func = func;
1949		pf->ptp.pin_desc[pin].chan = chan;
1950		return ice_ptp_set_sma_cfg(pf);
1951	}
1952
1953	return 0;
1954}
1955
1956/**
1957 * ice_ptp_gpio_enable - Enable/disable ancillary features of PHC
1958 * @info: The driver's PTP info structure
1959 * @rq: The requested feature to change
1960 * @on: Enable/disable flag
1961 *
1962 * Return: 0 on success, negative error code otherwise
1963 */
1964static int ice_ptp_gpio_enable(struct ptp_clock_info *info,
1965			       struct ptp_clock_request *rq, int on)
1966{
1967	struct ice_pf *pf = ptp_info_to_pf(info);
1968	int err;
1969
1970	switch (rq->type) {
1971	case PTP_CLK_REQ_PEROUT:
1972	{
1973		struct ptp_perout_request *cached =
1974			&pf->ptp.perout_rqs[rq->perout.index];
1975
1976		err = ice_ptp_cfg_perout(pf, &rq->perout, on);
1977		if (!err) {
1978			*cached = rq->perout;
1979		} else {
1980			cached->period.sec = 0;
1981			cached->period.nsec = 0;
1982		}
1983		return err;
1984	}
1985	case PTP_CLK_REQ_EXTTS:
1986	{
1987		struct ptp_extts_request *cached =
1988			&pf->ptp.extts_rqs[rq->extts.index];
1989
1990		err = ice_ptp_cfg_extts(pf, &rq->extts, on);
1991		if (!err)
1992			*cached = rq->extts;
1993		else
1994			cached->flags &= ~PTP_ENABLE_FEATURE;
1995		return err;
1996	}
1997	default:
1998		return -EOPNOTSUPP;
1999	}
2000}
2001
2002/**
2003 * ice_ptp_gettimex64 - Get the time of the clock
2004 * @info: the driver's PTP info structure
2005 * @ts: timespec64 structure to hold the current time value
2006 * @sts: Optional parameter for holding a pair of system timestamps from
2007 *       the system clock. Will be ignored if NULL is given.
2008 *
2009 * Read the device clock and return the correct value on ns, after converting it
2010 * into a timespec struct.
2011 */
2012static int
2013ice_ptp_gettimex64(struct ptp_clock_info *info, struct timespec64 *ts,
2014		   struct ptp_system_timestamp *sts)
2015{
2016	struct ice_pf *pf = ptp_info_to_pf(info);
2017	u64 time_ns;
2018
2019	time_ns = ice_ptp_read_src_clk_reg(pf, sts);
2020	*ts = ns_to_timespec64(time_ns);
2021	return 0;
2022}
2023
2024/**
2025 * ice_ptp_settime64 - Set the time of the clock
2026 * @info: the driver's PTP info structure
2027 * @ts: timespec64 structure that holds the new time value
2028 *
2029 * Set the device clock to the user input value. The conversion from timespec
2030 * to ns happens in the write function.
2031 */
2032static int
2033ice_ptp_settime64(struct ptp_clock_info *info, const struct timespec64 *ts)
2034{
2035	struct ice_pf *pf = ptp_info_to_pf(info);
2036	struct timespec64 ts64 = *ts;
2037	struct ice_hw *hw = &pf->hw;
2038	int err;
2039
2040	/* For Vernier mode on E82X, we need to recalibrate after new settime.
2041	 * Start with marking timestamps as invalid.
2042	 */
2043	if (ice_get_phy_model(hw) == ICE_PHY_E82X) {
2044		err = ice_ptp_clear_phy_offset_ready_e82x(hw);
2045		if (err)
2046			dev_warn(ice_pf_to_dev(pf), "Failed to mark timestamps as invalid before settime\n");
2047	}
2048
2049	if (!ice_ptp_lock(hw)) {
2050		err = -EBUSY;
2051		goto exit;
2052	}
2053
2054	/* Disable periodic outputs */
2055	ice_ptp_disable_all_perout(pf);
2056
2057	err = ice_ptp_write_init(pf, &ts64);
2058	ice_ptp_unlock(hw);
2059
2060	if (!err)
2061		ice_ptp_reset_cached_phctime(pf);
2062
2063	/* Reenable periodic outputs */
2064	ice_ptp_enable_all_perout(pf);
2065
2066	/* Recalibrate and re-enable timestamp blocks for E822/E823 */
2067	if (ice_get_phy_model(hw) == ICE_PHY_E82X)
2068		ice_ptp_restart_all_phy(pf);
2069exit:
2070	if (err) {
2071		dev_err(ice_pf_to_dev(pf), "PTP failed to set time %d\n", err);
2072		return err;
2073	}
2074
2075	return 0;
2076}
2077
2078/**
2079 * ice_ptp_adjtime_nonatomic - Do a non-atomic clock adjustment
2080 * @info: the driver's PTP info structure
2081 * @delta: Offset in nanoseconds to adjust the time by
2082 */
2083static int ice_ptp_adjtime_nonatomic(struct ptp_clock_info *info, s64 delta)
2084{
2085	struct timespec64 now, then;
2086	int ret;
2087
2088	then = ns_to_timespec64(delta);
2089	ret = ice_ptp_gettimex64(info, &now, NULL);
2090	if (ret)
2091		return ret;
2092	now = timespec64_add(now, then);
2093
2094	return ice_ptp_settime64(info, (const struct timespec64 *)&now);
2095}
2096
2097/**
2098 * ice_ptp_adjtime - Adjust the time of the clock by the indicated delta
2099 * @info: the driver's PTP info structure
2100 * @delta: Offset in nanoseconds to adjust the time by
2101 */
2102static int ice_ptp_adjtime(struct ptp_clock_info *info, s64 delta)
2103{
2104	struct ice_pf *pf = ptp_info_to_pf(info);
2105	struct ice_hw *hw = &pf->hw;
2106	struct device *dev;
2107	int err;
2108
2109	dev = ice_pf_to_dev(pf);
2110
2111	/* Hardware only supports atomic adjustments using signed 32-bit
2112	 * integers. For any adjustment outside this range, perform
2113	 * a non-atomic get->adjust->set flow.
2114	 */
2115	if (delta > S32_MAX || delta < S32_MIN) {
2116		dev_dbg(dev, "delta = %lld, adjtime non-atomic\n", delta);
2117		return ice_ptp_adjtime_nonatomic(info, delta);
2118	}
2119
2120	if (!ice_ptp_lock(hw)) {
2121		dev_err(dev, "PTP failed to acquire semaphore in adjtime\n");
2122		return -EBUSY;
2123	}
2124
2125	/* Disable periodic outputs */
2126	ice_ptp_disable_all_perout(pf);
2127
2128	err = ice_ptp_write_adj(pf, delta);
2129
2130	/* Reenable periodic outputs */
2131	ice_ptp_enable_all_perout(pf);
2132
2133	ice_ptp_unlock(hw);
2134
2135	if (err) {
2136		dev_err(dev, "PTP failed to adjust time, err %d\n", err);
2137		return err;
2138	}
2139
2140	ice_ptp_reset_cached_phctime(pf);
2141
2142	return 0;
2143}
2144
2145#ifdef CONFIG_ICE_HWTS
2146/**
2147 * ice_ptp_get_syncdevicetime - Get the cross time stamp info
2148 * @device: Current device time
2149 * @system: System counter value read synchronously with device time
2150 * @ctx: Context provided by timekeeping code
2151 *
2152 * Read device and system (ART) clock simultaneously and return the corrected
2153 * clock values in ns.
2154 */
2155static int
2156ice_ptp_get_syncdevicetime(ktime_t *device,
2157			   struct system_counterval_t *system,
2158			   void *ctx)
2159{
2160	struct ice_pf *pf = (struct ice_pf *)ctx;
2161	struct ice_hw *hw = &pf->hw;
2162	u32 hh_lock, hh_art_ctl;
2163	int i;
2164
2165#define MAX_HH_HW_LOCK_TRIES	5
2166#define MAX_HH_CTL_LOCK_TRIES	100
2167
2168	for (i = 0; i < MAX_HH_HW_LOCK_TRIES; i++) {
2169		/* Get the HW lock */
2170		hh_lock = rd32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id));
2171		if (hh_lock & PFHH_SEM_BUSY_M) {
2172			usleep_range(10000, 15000);
2173			continue;
2174		}
2175		break;
2176	}
2177	if (hh_lock & PFHH_SEM_BUSY_M) {
2178		dev_err(ice_pf_to_dev(pf), "PTP failed to get hh lock\n");
2179		return -EBUSY;
2180	}
2181
2182	/* Program cmd to master timer */
2183	ice_ptp_src_cmd(hw, ICE_PTP_READ_TIME);
2184
2185	/* Start the ART and device clock sync sequence */
2186	hh_art_ctl = rd32(hw, GLHH_ART_CTL);
2187	hh_art_ctl = hh_art_ctl | GLHH_ART_CTL_ACTIVE_M;
2188	wr32(hw, GLHH_ART_CTL, hh_art_ctl);
2189
2190	for (i = 0; i < MAX_HH_CTL_LOCK_TRIES; i++) {
2191		/* Wait for sync to complete */
2192		hh_art_ctl = rd32(hw, GLHH_ART_CTL);
2193		if (hh_art_ctl & GLHH_ART_CTL_ACTIVE_M) {
2194			udelay(1);
2195			continue;
2196		} else {
2197			u32 hh_ts_lo, hh_ts_hi, tmr_idx;
2198			u64 hh_ts;
2199
2200			tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc;
2201			/* Read ART time */
2202			hh_ts_lo = rd32(hw, GLHH_ART_TIME_L);
2203			hh_ts_hi = rd32(hw, GLHH_ART_TIME_H);
2204			hh_ts = ((u64)hh_ts_hi << 32) | hh_ts_lo;
2205			system->cycles = hh_ts;
2206			system->cs_id = CSID_X86_ART;
2207			/* Read Device source clock time */
2208			hh_ts_lo = rd32(hw, GLTSYN_HHTIME_L(tmr_idx));
2209			hh_ts_hi = rd32(hw, GLTSYN_HHTIME_H(tmr_idx));
2210			hh_ts = ((u64)hh_ts_hi << 32) | hh_ts_lo;
2211			*device = ns_to_ktime(hh_ts);
2212			break;
2213		}
2214	}
2215
2216	/* Clear the master timer */
2217	ice_ptp_src_cmd(hw, ICE_PTP_NOP);
2218
2219	/* Release HW lock */
2220	hh_lock = rd32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id));
2221	hh_lock = hh_lock & ~PFHH_SEM_BUSY_M;
2222	wr32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id), hh_lock);
2223
2224	if (i == MAX_HH_CTL_LOCK_TRIES)
2225		return -ETIMEDOUT;
2226
2227	return 0;
2228}
2229
2230/**
2231 * ice_ptp_getcrosststamp_e82x - Capture a device cross timestamp
2232 * @info: the driver's PTP info structure
2233 * @cts: The memory to fill the cross timestamp info
2234 *
2235 * Capture a cross timestamp between the ART and the device PTP hardware
2236 * clock. Fill the cross timestamp information and report it back to the
2237 * caller.
2238 *
2239 * This is only valid for E822 and E823 devices which have support for
2240 * generating the cross timestamp via PCIe PTM.
2241 *
2242 * In order to correctly correlate the ART timestamp back to the TSC time, the
2243 * CPU must have X86_FEATURE_TSC_KNOWN_FREQ.
2244 */
2245static int
2246ice_ptp_getcrosststamp_e82x(struct ptp_clock_info *info,
2247			    struct system_device_crosststamp *cts)
2248{
2249	struct ice_pf *pf = ptp_info_to_pf(info);
2250
2251	return get_device_system_crosststamp(ice_ptp_get_syncdevicetime,
2252					     pf, NULL, cts);
2253}
2254#endif /* CONFIG_ICE_HWTS */
2255
2256/**
2257 * ice_ptp_get_ts_config - ioctl interface to read the timestamping config
2258 * @pf: Board private structure
2259 * @ifr: ioctl data
2260 *
2261 * Copy the timestamping config to user buffer
2262 */
2263int ice_ptp_get_ts_config(struct ice_pf *pf, struct ifreq *ifr)
2264{
2265	struct hwtstamp_config *config;
2266
2267	if (pf->ptp.state != ICE_PTP_READY)
2268		return -EIO;
2269
2270	config = &pf->ptp.tstamp_config;
2271
2272	return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
2273		-EFAULT : 0;
2274}
2275
2276/**
2277 * ice_ptp_set_timestamp_mode - Setup driver for requested timestamp mode
2278 * @pf: Board private structure
2279 * @config: hwtstamp settings requested or saved
2280 */
2281static int
2282ice_ptp_set_timestamp_mode(struct ice_pf *pf, struct hwtstamp_config *config)
2283{
2284	switch (config->tx_type) {
2285	case HWTSTAMP_TX_OFF:
2286		pf->ptp.tstamp_config.tx_type = HWTSTAMP_TX_OFF;
2287		break;
2288	case HWTSTAMP_TX_ON:
2289		pf->ptp.tstamp_config.tx_type = HWTSTAMP_TX_ON;
2290		break;
2291	default:
2292		return -ERANGE;
2293	}
2294
2295	switch (config->rx_filter) {
2296	case HWTSTAMP_FILTER_NONE:
2297		pf->ptp.tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
2298		break;
2299	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
2300	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
2301	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
2302	case HWTSTAMP_FILTER_PTP_V2_EVENT:
2303	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
2304	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
2305	case HWTSTAMP_FILTER_PTP_V2_SYNC:
2306	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
2307	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
2308	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
2309	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
2310	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
2311	case HWTSTAMP_FILTER_NTP_ALL:
2312	case HWTSTAMP_FILTER_ALL:
2313		pf->ptp.tstamp_config.rx_filter = HWTSTAMP_FILTER_ALL;
2314		break;
2315	default:
2316		return -ERANGE;
2317	}
2318
2319	/* Immediately update the device timestamping mode */
2320	ice_ptp_restore_timestamp_mode(pf);
2321
2322	return 0;
2323}
2324
2325/**
2326 * ice_ptp_set_ts_config - ioctl interface to control the timestamping
2327 * @pf: Board private structure
2328 * @ifr: ioctl data
2329 *
2330 * Get the user config and store it
2331 */
2332int ice_ptp_set_ts_config(struct ice_pf *pf, struct ifreq *ifr)
2333{
2334	struct hwtstamp_config config;
2335	int err;
2336
2337	if (pf->ptp.state != ICE_PTP_READY)
2338		return -EAGAIN;
2339
2340	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
2341		return -EFAULT;
2342
2343	err = ice_ptp_set_timestamp_mode(pf, &config);
2344	if (err)
2345		return err;
2346
2347	/* Return the actual configuration set */
2348	config = pf->ptp.tstamp_config;
2349
2350	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
2351		-EFAULT : 0;
2352}
2353
2354/**
2355 * ice_ptp_get_rx_hwts - Get packet Rx timestamp in ns
2356 * @rx_desc: Receive descriptor
2357 * @pkt_ctx: Packet context to get the cached time
2358 *
2359 * The driver receives a notification in the receive descriptor with timestamp.
2360 */
2361u64 ice_ptp_get_rx_hwts(const union ice_32b_rx_flex_desc *rx_desc,
2362			const struct ice_pkt_ctx *pkt_ctx)
2363{
2364	u64 ts_ns, cached_time;
2365	u32 ts_high;
2366
2367	if (!(rx_desc->wb.time_stamp_low & ICE_PTP_TS_VALID))
2368		return 0;
2369
2370	cached_time = READ_ONCE(pkt_ctx->cached_phctime);
2371
2372	/* Do not report a timestamp if we don't have a cached PHC time */
2373	if (!cached_time)
2374		return 0;
2375
2376	/* Use ice_ptp_extend_32b_ts directly, using the ring-specific cached
2377	 * PHC value, rather than accessing the PF. This also allows us to
2378	 * simply pass the upper 32bits of nanoseconds directly. Calling
2379	 * ice_ptp_extend_40b_ts is unnecessary as it would just discard these
2380	 * bits itself.
2381	 */
2382	ts_high = le32_to_cpu(rx_desc->wb.flex_ts.ts_high);
2383	ts_ns = ice_ptp_extend_32b_ts(cached_time, ts_high);
2384
2385	return ts_ns;
2386}
2387
2388/**
2389 * ice_ptp_setup_pin_cfg - setup PTP pin_config structure
2390 * @pf: Board private structure
2391 */
2392static void ice_ptp_setup_pin_cfg(struct ice_pf *pf)
2393{
2394	for (unsigned int i = 0; i < pf->ptp.info.n_pins; i++) {
2395		const struct ice_ptp_pin_desc *desc = &pf->ptp.ice_pin_desc[i];
2396		struct ptp_pin_desc *pin = &pf->ptp.pin_desc[i];
2397		const char *name = NULL;
2398
2399		if (!ice_is_feature_supported(pf, ICE_F_SMA_CTRL))
2400			name = ice_pin_names[desc->name_idx];
2401		else if (desc->name_idx != GPIO_NA)
2402			name = ice_pin_names_nvm[desc->name_idx];
2403		if (name)
2404			strscpy(pin->name, name, sizeof(pin->name));
2405
2406		pin->index = i;
2407	}
2408
2409	pf->ptp.info.pin_config = pf->ptp.pin_desc;
2410}
2411
2412/**
2413 * ice_ptp_disable_pins - Disable PTP pins
2414 * @pf: pointer to the PF structure
2415 *
2416 * Disable the OS access to the SMA pins. Called to clear out the OS
2417 * indications of pin support when we fail to setup the SMA control register.
2418 */
2419static void ice_ptp_disable_pins(struct ice_pf *pf)
2420{
2421	struct ptp_clock_info *info = &pf->ptp.info;
2422
2423	dev_warn(ice_pf_to_dev(pf), "Failed to configure PTP pin control\n");
2424
2425	info->enable = NULL;
2426	info->verify = NULL;
2427	info->n_pins = 0;
2428	info->n_ext_ts = 0;
2429	info->n_per_out = 0;
2430}
2431
2432/**
2433 * ice_ptp_parse_sdp_entries - update ice_ptp_pin_desc structure from NVM
2434 * @pf: pointer to the PF structure
2435 * @entries: SDP connection section from NVM
2436 * @num_entries: number of valid entries in sdp_entries
2437 * @pins: PTP pins array to update
2438 *
2439 * Return: 0 on success, negative error code otherwise.
2440 */
2441static int ice_ptp_parse_sdp_entries(struct ice_pf *pf, __le16 *entries,
2442				     unsigned int num_entries,
2443				     struct ice_ptp_pin_desc *pins)
2444{
2445	unsigned int n_pins = 0;
2446	unsigned int i;
2447
2448	/* Setup ice_pin_desc array */
2449	for (i = 0; i < ICE_N_PINS_MAX; i++) {
2450		pins[i].name_idx = -1;
2451		pins[i].gpio[0] = -1;
2452		pins[i].gpio[1] = -1;
2453	}
2454
2455	for (i = 0; i < num_entries; i++) {
2456		u16 entry = le16_to_cpu(entries[i]);
2457		DECLARE_BITMAP(bitmap, GPIO_NA);
2458		unsigned int bitmap_idx;
2459		bool dir;
2460		u16 gpio;
2461
2462		*bitmap = FIELD_GET(ICE_AQC_NVM_SDP_AC_PIN_M, entry);
2463		dir = !!FIELD_GET(ICE_AQC_NVM_SDP_AC_DIR_M, entry);
2464		gpio = FIELD_GET(ICE_AQC_NVM_SDP_AC_SDP_NUM_M, entry);
2465		for_each_set_bit(bitmap_idx, bitmap, GPIO_NA + 1) {
2466			unsigned int idx;
2467
2468			/* Check if entry's pin bit is valid */
2469			if (bitmap_idx >= NUM_PTP_PINS_NVM &&
2470			    bitmap_idx != GPIO_NA)
2471				continue;
2472
2473			/* Check if pin already exists */
2474			for (idx = 0; idx < ICE_N_PINS_MAX; idx++)
2475				if (pins[idx].name_idx == bitmap_idx)
2476					break;
2477
2478			if (idx == ICE_N_PINS_MAX) {
2479				/* Pin not found, setup its entry and name */
2480				idx = n_pins++;
2481				pins[idx].name_idx = bitmap_idx;
2482				if (bitmap_idx == GPIO_NA)
2483					strscpy(pf->ptp.pin_desc[idx].name,
2484						ice_pin_names[gpio],
2485						sizeof(pf->ptp.pin_desc[idx]
2486							       .name));
2487			}
2488
2489			/* Setup in/out GPIO number */
2490			pins[idx].gpio[dir] = gpio;
2491		}
2492	}
2493
2494	for (i = 0; i < n_pins; i++) {
2495		dev_dbg(ice_pf_to_dev(pf),
2496			"NVM pin entry[%d] : name_idx %d gpio_out %d gpio_in %d\n",
2497			i, pins[i].name_idx, pins[i].gpio[1], pins[i].gpio[0]);
2498	}
2499
2500	pf->ptp.info.n_pins = n_pins;
2501	return 0;
2502}
2503
2504/**
2505 * ice_ptp_set_funcs_e82x - Set specialized functions for E82X support
2506 * @pf: Board private structure
2507 *
2508 * Assign functions to the PTP capabilities structure for E82X devices.
2509 * Functions which operate across all device families should be set directly
2510 * in ice_ptp_set_caps. Only add functions here which are distinct for E82X
2511 * devices.
2512 */
2513static void ice_ptp_set_funcs_e82x(struct ice_pf *pf)
2514{
2515#ifdef CONFIG_ICE_HWTS
2516	if (boot_cpu_has(X86_FEATURE_ART) &&
2517	    boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ))
2518		pf->ptp.info.getcrosststamp = ice_ptp_getcrosststamp_e82x;
2519
2520#endif /* CONFIG_ICE_HWTS */
2521	if (ice_is_e825c(&pf->hw)) {
2522		pf->ptp.ice_pin_desc = ice_pin_desc_e825c;
2523		pf->ptp.info.n_pins = ICE_PIN_DESC_ARR_LEN(ice_pin_desc_e825c);
2524	} else {
2525		pf->ptp.ice_pin_desc = ice_pin_desc_e82x;
2526		pf->ptp.info.n_pins = ICE_PIN_DESC_ARR_LEN(ice_pin_desc_e82x);
2527	}
2528	ice_ptp_setup_pin_cfg(pf);
2529}
2530
2531/**
2532 * ice_ptp_set_funcs_e810 - Set specialized functions for E810 support
2533 * @pf: Board private structure
2534 *
2535 * Assign functions to the PTP capabiltiies structure for E810 devices.
2536 * Functions which operate across all device families should be set directly
2537 * in ice_ptp_set_caps. Only add functions here which are distinct for E810
2538 * devices.
2539 */
2540static void ice_ptp_set_funcs_e810(struct ice_pf *pf)
2541{
2542	__le16 entries[ICE_AQC_NVM_SDP_AC_MAX_SIZE];
2543	struct ice_ptp_pin_desc *desc = NULL;
2544	struct ice_ptp *ptp = &pf->ptp;
2545	unsigned int num_entries;
2546	int err;
2547
2548	err = ice_ptp_read_sdp_ac(&pf->hw, entries, &num_entries);
2549	if (err) {
2550		/* SDP section does not exist in NVM or is corrupted */
2551		if (ice_is_feature_supported(pf, ICE_F_SMA_CTRL)) {
2552			ptp->ice_pin_desc = ice_pin_desc_e810_sma;
2553			ptp->info.n_pins =
2554				ICE_PIN_DESC_ARR_LEN(ice_pin_desc_e810_sma);
2555		} else {
2556			pf->ptp.ice_pin_desc = ice_pin_desc_e810;
2557			pf->ptp.info.n_pins =
2558				ICE_PIN_DESC_ARR_LEN(ice_pin_desc_e810);
2559			err = 0;
2560		}
2561	} else {
2562		desc = devm_kcalloc(ice_pf_to_dev(pf), ICE_N_PINS_MAX,
2563				    sizeof(struct ice_ptp_pin_desc),
2564				    GFP_KERNEL);
2565		if (!desc)
2566			goto err;
2567
2568		err = ice_ptp_parse_sdp_entries(pf, entries, num_entries, desc);
2569		if (err)
2570			goto err;
2571
2572		ptp->ice_pin_desc = (const struct ice_ptp_pin_desc *)desc;
2573	}
2574
2575	ptp->info.pin_config = ptp->pin_desc;
2576	ice_ptp_setup_pin_cfg(pf);
2577
2578	if (ice_is_feature_supported(pf, ICE_F_SMA_CTRL))
2579		err = ice_ptp_set_sma_cfg(pf);
2580err:
2581	if (err) {
2582		devm_kfree(ice_pf_to_dev(pf), desc);
2583		ice_ptp_disable_pins(pf);
2584	}
2585}
2586
2587/**
2588 * ice_ptp_set_caps - Set PTP capabilities
2589 * @pf: Board private structure
2590 */
2591static void ice_ptp_set_caps(struct ice_pf *pf)
2592{
2593	struct ptp_clock_info *info = &pf->ptp.info;
2594	struct device *dev = ice_pf_to_dev(pf);
2595
2596	snprintf(info->name, sizeof(info->name) - 1, "%s-%s-clk",
2597		 dev_driver_string(dev), dev_name(dev));
2598	info->owner = THIS_MODULE;
2599	info->max_adj = 100000000;
2600	info->adjtime = ice_ptp_adjtime;
2601	info->adjfine = ice_ptp_adjfine;
2602	info->gettimex64 = ice_ptp_gettimex64;
2603	info->settime64 = ice_ptp_settime64;
2604	info->n_per_out = GLTSYN_TGT_H_IDX_MAX;
2605	info->n_ext_ts = GLTSYN_EVNT_H_IDX_MAX;
2606	info->enable = ice_ptp_gpio_enable;
2607	info->verify = ice_verify_pin;
2608
2609	if (ice_is_e810(&pf->hw))
2610		ice_ptp_set_funcs_e810(pf);
2611	else
2612		ice_ptp_set_funcs_e82x(pf);
2613}
2614
2615/**
2616 * ice_ptp_create_clock - Create PTP clock device for userspace
2617 * @pf: Board private structure
2618 *
2619 * This function creates a new PTP clock device. It only creates one if we
2620 * don't already have one. Will return error if it can't create one, but success
2621 * if we already have a device. Should be used by ice_ptp_init to create clock
2622 * initially, and prevent global resets from creating new clock devices.
2623 */
2624static long ice_ptp_create_clock(struct ice_pf *pf)
2625{
2626	struct ptp_clock_info *info;
2627	struct device *dev;
2628
2629	/* No need to create a clock device if we already have one */
2630	if (pf->ptp.clock)
2631		return 0;
2632
2633	ice_ptp_set_caps(pf);
2634
2635	info = &pf->ptp.info;
2636	dev = ice_pf_to_dev(pf);
2637
2638	/* Attempt to register the clock before enabling the hardware. */
2639	pf->ptp.clock = ptp_clock_register(info, dev);
2640	if (IS_ERR(pf->ptp.clock)) {
2641		dev_err(ice_pf_to_dev(pf), "Failed to register PTP clock device");
2642		return PTR_ERR(pf->ptp.clock);
2643	}
2644
2645	return 0;
2646}
2647
2648/**
2649 * ice_ptp_request_ts - Request an available Tx timestamp index
2650 * @tx: the PTP Tx timestamp tracker to request from
2651 * @skb: the SKB to associate with this timestamp request
2652 */
2653s8 ice_ptp_request_ts(struct ice_ptp_tx *tx, struct sk_buff *skb)
2654{
2655	unsigned long flags;
2656	u8 idx;
2657
2658	spin_lock_irqsave(&tx->lock, flags);
2659
2660	/* Check that this tracker is accepting new timestamp requests */
2661	if (!ice_ptp_is_tx_tracker_up(tx)) {
2662		spin_unlock_irqrestore(&tx->lock, flags);
2663		return -1;
2664	}
2665
2666	/* Find and set the first available index */
2667	idx = find_next_zero_bit(tx->in_use, tx->len,
2668				 tx->last_ll_ts_idx_read + 1);
2669	if (idx == tx->len)
2670		idx = find_first_zero_bit(tx->in_use, tx->len);
2671
2672	if (idx < tx->len) {
2673		/* We got a valid index that no other thread could have set. Store
2674		 * a reference to the skb and the start time to allow discarding old
2675		 * requests.
2676		 */
2677		set_bit(idx, tx->in_use);
2678		clear_bit(idx, tx->stale);
2679		tx->tstamps[idx].start = jiffies;
2680		tx->tstamps[idx].skb = skb_get(skb);
2681		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2682		ice_trace(tx_tstamp_request, skb, idx);
2683	}
2684
2685	spin_unlock_irqrestore(&tx->lock, flags);
2686
2687	/* return the appropriate PHY timestamp register index, -1 if no
2688	 * indexes were available.
2689	 */
2690	if (idx >= tx->len)
2691		return -1;
2692	else
2693		return idx + tx->offset;
2694}
2695
2696/**
2697 * ice_ptp_process_ts - Process the PTP Tx timestamps
2698 * @pf: Board private structure
2699 *
2700 * Returns: ICE_TX_TSTAMP_WORK_PENDING if there are any outstanding Tx
2701 * timestamps that need processing, and ICE_TX_TSTAMP_WORK_DONE otherwise.
2702 */
2703enum ice_tx_tstamp_work ice_ptp_process_ts(struct ice_pf *pf)
2704{
2705	switch (pf->ptp.tx_interrupt_mode) {
2706	case ICE_PTP_TX_INTERRUPT_NONE:
2707		/* This device has the clock owner handle timestamps for it */
2708		return ICE_TX_TSTAMP_WORK_DONE;
2709	case ICE_PTP_TX_INTERRUPT_SELF:
2710		/* This device handles its own timestamps */
2711		return ice_ptp_tx_tstamp(&pf->ptp.port.tx);
2712	case ICE_PTP_TX_INTERRUPT_ALL:
2713		/* This device handles timestamps for all ports */
2714		return ice_ptp_tx_tstamp_owner(pf);
2715	default:
2716		WARN_ONCE(1, "Unexpected Tx timestamp interrupt mode %u\n",
2717			  pf->ptp.tx_interrupt_mode);
2718		return ICE_TX_TSTAMP_WORK_DONE;
2719	}
2720}
2721
2722/**
2723 * ice_ptp_maybe_trigger_tx_interrupt - Trigger Tx timstamp interrupt
2724 * @pf: Board private structure
2725 *
2726 * The device PHY issues Tx timestamp interrupts to the driver for processing
2727 * timestamp data from the PHY. It will not interrupt again until all
2728 * current timestamp data is read. In rare circumstances, it is possible that
2729 * the driver fails to read all outstanding data.
2730 *
2731 * To avoid getting permanently stuck, periodically check if the PHY has
2732 * outstanding timestamp data. If so, trigger an interrupt from software to
2733 * process this data.
2734 */
2735static void ice_ptp_maybe_trigger_tx_interrupt(struct ice_pf *pf)
2736{
2737	struct device *dev = ice_pf_to_dev(pf);
2738	struct ice_hw *hw = &pf->hw;
2739	bool trigger_oicr = false;
2740	unsigned int i;
2741
2742	if (ice_is_e810(hw))
2743		return;
2744
2745	if (!ice_pf_src_tmr_owned(pf))
2746		return;
2747
2748	for (i = 0; i < ICE_GET_QUAD_NUM(hw->ptp.num_lports); i++) {
2749		u64 tstamp_ready;
2750		int err;
2751
2752		err = ice_get_phy_tx_tstamp_ready(&pf->hw, i, &tstamp_ready);
2753		if (!err && tstamp_ready) {
2754			trigger_oicr = true;
2755			break;
2756		}
2757	}
2758
2759	if (trigger_oicr) {
2760		/* Trigger a software interrupt, to ensure this data
2761		 * gets processed.
2762		 */
2763		dev_dbg(dev, "PTP periodic task detected waiting timestamps. Triggering Tx timestamp interrupt now.\n");
2764
2765		wr32(hw, PFINT_OICR, PFINT_OICR_TSYN_TX_M);
2766		ice_flush(hw);
2767	}
2768}
2769
2770static void ice_ptp_periodic_work(struct kthread_work *work)
2771{
2772	struct ice_ptp *ptp = container_of(work, struct ice_ptp, work.work);
2773	struct ice_pf *pf = container_of(ptp, struct ice_pf, ptp);
2774	int err;
2775
2776	if (pf->ptp.state != ICE_PTP_READY)
2777		return;
2778
2779	err = ice_ptp_update_cached_phctime(pf);
2780
2781	ice_ptp_maybe_trigger_tx_interrupt(pf);
2782
2783	/* Run twice a second or reschedule if phc update failed */
2784	kthread_queue_delayed_work(ptp->kworker, &ptp->work,
2785				   msecs_to_jiffies(err ? 10 : 500));
2786}
2787
2788/**
2789 * ice_ptp_prepare_for_reset - Prepare PTP for reset
2790 * @pf: Board private structure
2791 * @reset_type: the reset type being performed
2792 */
2793void ice_ptp_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
2794{
2795	struct ice_ptp *ptp = &pf->ptp;
2796	u8 src_tmr;
2797
2798	if (ptp->state != ICE_PTP_READY)
2799		return;
2800
2801	ptp->state = ICE_PTP_RESETTING;
2802
2803	/* Disable timestamping for both Tx and Rx */
2804	ice_ptp_disable_timestamp_mode(pf);
2805
2806	kthread_cancel_delayed_work_sync(&ptp->work);
2807
2808	if (reset_type == ICE_RESET_PFR)
2809		return;
2810
2811	ice_ptp_release_tx_tracker(pf, &pf->ptp.port.tx);
2812
2813	/* Disable periodic outputs */
2814	ice_ptp_disable_all_perout(pf);
2815
2816	src_tmr = ice_get_ptp_src_clock_index(&pf->hw);
2817
2818	/* Disable source clock */
2819	wr32(&pf->hw, GLTSYN_ENA(src_tmr), (u32)~GLTSYN_ENA_TSYN_ENA_M);
2820
2821	/* Acquire PHC and system timer to restore after reset */
2822	ptp->reset_time = ktime_get_real_ns();
2823}
2824
2825/**
2826 * ice_ptp_rebuild_owner - Initialize PTP clock owner after reset
2827 * @pf: Board private structure
2828 *
2829 * Companion function for ice_ptp_rebuild() which handles tasks that only the
2830 * PTP clock owner instance should perform.
2831 */
2832static int ice_ptp_rebuild_owner(struct ice_pf *pf)
2833{
2834	struct ice_ptp *ptp = &pf->ptp;
2835	struct ice_hw *hw = &pf->hw;
2836	struct timespec64 ts;
2837	u64 time_diff;
2838	int err;
2839
2840	err = ice_ptp_init_phc(hw);
2841	if (err)
2842		return err;
2843
2844	/* Acquire the global hardware lock */
2845	if (!ice_ptp_lock(hw)) {
2846		err = -EBUSY;
2847		return err;
2848	}
2849
2850	/* Write the increment time value to PHY and LAN */
2851	err = ice_ptp_write_incval(hw, ice_base_incval(pf));
2852	if (err)
2853		goto err_unlock;
2854
2855	/* Write the initial Time value to PHY and LAN using the cached PHC
2856	 * time before the reset and time difference between stopping and
2857	 * starting the clock.
2858	 */
2859	if (ptp->cached_phc_time) {
2860		time_diff = ktime_get_real_ns() - ptp->reset_time;
2861		ts = ns_to_timespec64(ptp->cached_phc_time + time_diff);
2862	} else {
2863		ts = ktime_to_timespec64(ktime_get_real());
2864	}
2865	err = ice_ptp_write_init(pf, &ts);
2866	if (err)
2867		goto err_unlock;
2868
2869	/* Release the global hardware lock */
2870	ice_ptp_unlock(hw);
2871
2872	/* Flush software tracking of any outstanding timestamps since we're
2873	 * about to flush the PHY timestamp block.
2874	 */
2875	ice_ptp_flush_all_tx_tracker(pf);
2876
2877	if (!ice_is_e810(hw)) {
2878		/* Enable quad interrupts */
2879		err = ice_ptp_cfg_phy_interrupt(pf, true, 1);
2880		if (err)
2881			return err;
2882
2883		ice_ptp_restart_all_phy(pf);
2884	}
2885
2886	/* Re-enable all periodic outputs and external timestamp events */
2887	ice_ptp_enable_all_perout(pf);
2888	ice_ptp_enable_all_extts(pf);
2889
2890	return 0;
2891
2892err_unlock:
2893	ice_ptp_unlock(hw);
2894	return err;
2895}
2896
2897/**
2898 * ice_ptp_rebuild - Initialize PTP hardware clock support after reset
2899 * @pf: Board private structure
2900 * @reset_type: the reset type being performed
2901 */
2902void ice_ptp_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type)
2903{
2904	struct ice_ptp *ptp = &pf->ptp;
2905	int err;
2906
2907	if (ptp->state == ICE_PTP_READY) {
2908		ice_ptp_prepare_for_reset(pf, reset_type);
2909	} else if (ptp->state != ICE_PTP_RESETTING) {
2910		err = -EINVAL;
2911		dev_err(ice_pf_to_dev(pf), "PTP was not initialized\n");
2912		goto err;
2913	}
2914
2915	if (ice_pf_src_tmr_owned(pf) && reset_type != ICE_RESET_PFR) {
2916		err = ice_ptp_rebuild_owner(pf);
2917		if (err)
2918			goto err;
2919	}
2920
2921	ptp->state = ICE_PTP_READY;
2922
2923	/* Start periodic work going */
2924	kthread_queue_delayed_work(ptp->kworker, &ptp->work, 0);
2925
2926	dev_info(ice_pf_to_dev(pf), "PTP reset successful\n");
2927	return;
2928
2929err:
2930	ptp->state = ICE_PTP_ERROR;
2931	dev_err(ice_pf_to_dev(pf), "PTP reset failed %d\n", err);
2932}
2933
2934static bool ice_is_primary(struct ice_hw *hw)
2935{
2936	return ice_is_e825c(hw) && ice_is_dual(hw) ?
2937		!!(hw->dev_caps.nac_topo.mode & ICE_NAC_TOPO_PRIMARY_M) : true;
2938}
2939
2940static int ice_ptp_setup_adapter(struct ice_pf *pf)
2941{
2942	if (!ice_pf_src_tmr_owned(pf) || !ice_is_primary(&pf->hw))
2943		return -EPERM;
2944
2945	pf->adapter->ctrl_pf = pf;
2946
2947	return 0;
2948}
2949
2950static int ice_ptp_setup_pf(struct ice_pf *pf)
2951{
2952	struct ice_ptp *ctrl_ptp = ice_get_ctrl_ptp(pf);
2953	struct ice_ptp *ptp = &pf->ptp;
2954
2955	if (WARN_ON(!ctrl_ptp) || ice_get_phy_model(&pf->hw) == ICE_PHY_UNSUP)
2956		return -ENODEV;
2957
2958	INIT_LIST_HEAD(&ptp->port.list_node);
2959	mutex_lock(&pf->adapter->ports.lock);
2960
2961	list_add(&ptp->port.list_node,
2962		 &pf->adapter->ports.ports);
2963	mutex_unlock(&pf->adapter->ports.lock);
2964
2965	return 0;
2966}
2967
2968static void ice_ptp_cleanup_pf(struct ice_pf *pf)
2969{
2970	struct ice_ptp *ptp = &pf->ptp;
2971
2972	if (ice_get_phy_model(&pf->hw) != ICE_PHY_UNSUP) {
2973		mutex_lock(&pf->adapter->ports.lock);
2974		list_del(&ptp->port.list_node);
2975		mutex_unlock(&pf->adapter->ports.lock);
2976	}
2977}
2978
2979/**
2980 * ice_ptp_clock_index - Get the PTP clock index for this device
2981 * @pf: Board private structure
2982 *
2983 * Returns: the PTP clock index associated with this PF, or -1 if no PTP clock
2984 * is associated.
2985 */
2986int ice_ptp_clock_index(struct ice_pf *pf)
2987{
2988	struct ice_ptp *ctrl_ptp = ice_get_ctrl_ptp(pf);
2989	struct ptp_clock *clock;
2990
2991	if (!ctrl_ptp)
2992		return -1;
2993	clock = ctrl_ptp->clock;
2994
2995	return clock ? ptp_clock_index(clock) : -1;
2996}
2997
2998/**
2999 * ice_ptp_init_owner - Initialize PTP_1588_CLOCK device
3000 * @pf: Board private structure
3001 *
3002 * Setup and initialize a PTP clock device that represents the device hardware
3003 * clock. Save the clock index for other functions connected to the same
3004 * hardware resource.
3005 */
3006static int ice_ptp_init_owner(struct ice_pf *pf)
3007{
3008	struct ice_hw *hw = &pf->hw;
3009	struct timespec64 ts;
3010	int err;
3011
3012	err = ice_ptp_init_phc(hw);
3013	if (err) {
3014		dev_err(ice_pf_to_dev(pf), "Failed to initialize PHC, err %d\n",
3015			err);
3016		return err;
3017	}
3018
3019	/* Acquire the global hardware lock */
3020	if (!ice_ptp_lock(hw)) {
3021		err = -EBUSY;
3022		goto err_exit;
3023	}
3024
3025	/* Write the increment time value to PHY and LAN */
3026	err = ice_ptp_write_incval(hw, ice_base_incval(pf));
3027	if (err)
3028		goto err_unlock;
3029
3030	ts = ktime_to_timespec64(ktime_get_real());
3031	/* Write the initial Time value to PHY and LAN */
3032	err = ice_ptp_write_init(pf, &ts);
3033	if (err)
3034		goto err_unlock;
3035
3036	/* Release the global hardware lock */
3037	ice_ptp_unlock(hw);
3038
3039	/* Configure PHY interrupt settings */
3040	err = ice_ptp_cfg_phy_interrupt(pf, true, 1);
3041	if (err)
3042		goto err_exit;
3043
3044	/* Ensure we have a clock device */
3045	err = ice_ptp_create_clock(pf);
3046	if (err)
3047		goto err_clk;
3048
3049	return 0;
3050err_clk:
3051	pf->ptp.clock = NULL;
3052err_exit:
3053	return err;
3054
3055err_unlock:
3056	ice_ptp_unlock(hw);
3057	return err;
3058}
3059
3060/**
3061 * ice_ptp_init_work - Initialize PTP work threads
3062 * @pf: Board private structure
3063 * @ptp: PF PTP structure
3064 */
3065static int ice_ptp_init_work(struct ice_pf *pf, struct ice_ptp *ptp)
3066{
3067	struct kthread_worker *kworker;
3068
3069	/* Initialize work functions */
3070	kthread_init_delayed_work(&ptp->work, ice_ptp_periodic_work);
3071
3072	/* Allocate a kworker for handling work required for the ports
3073	 * connected to the PTP hardware clock.
3074	 */
3075	kworker = kthread_create_worker(0, "ice-ptp-%s",
3076					dev_name(ice_pf_to_dev(pf)));
3077	if (IS_ERR(kworker))
3078		return PTR_ERR(kworker);
3079
3080	ptp->kworker = kworker;
3081
3082	/* Start periodic work going */
3083	kthread_queue_delayed_work(ptp->kworker, &ptp->work, 0);
3084
3085	return 0;
3086}
3087
3088/**
3089 * ice_ptp_init_port - Initialize PTP port structure
3090 * @pf: Board private structure
3091 * @ptp_port: PTP port structure
3092 */
3093static int ice_ptp_init_port(struct ice_pf *pf, struct ice_ptp_port *ptp_port)
3094{
3095	struct ice_hw *hw = &pf->hw;
3096
3097	mutex_init(&ptp_port->ps_lock);
3098
3099	switch (ice_get_phy_model(hw)) {
3100	case ICE_PHY_ETH56G:
3101		return ice_ptp_init_tx_eth56g(pf, &ptp_port->tx,
3102					      ptp_port->port_num);
3103	case ICE_PHY_E810:
3104		return ice_ptp_init_tx_e810(pf, &ptp_port->tx);
3105	case ICE_PHY_E82X:
3106		kthread_init_delayed_work(&ptp_port->ov_work,
3107					  ice_ptp_wait_for_offsets);
3108
3109		return ice_ptp_init_tx_e82x(pf, &ptp_port->tx,
3110					    ptp_port->port_num);
3111	default:
3112		return -ENODEV;
3113	}
3114}
3115
3116/**
3117 * ice_ptp_init_tx_interrupt_mode - Initialize device Tx interrupt mode
3118 * @pf: Board private structure
3119 *
3120 * Initialize the Tx timestamp interrupt mode for this device. For most device
3121 * types, each PF processes the interrupt and manages its own timestamps. For
3122 * E822-based devices, only the clock owner processes the timestamps. Other
3123 * PFs disable the interrupt and do not process their own timestamps.
3124 */
3125static void ice_ptp_init_tx_interrupt_mode(struct ice_pf *pf)
3126{
3127	switch (ice_get_phy_model(&pf->hw)) {
3128	case ICE_PHY_E82X:
3129		/* E822 based PHY has the clock owner process the interrupt
3130		 * for all ports.
3131		 */
3132		if (ice_pf_src_tmr_owned(pf))
3133			pf->ptp.tx_interrupt_mode = ICE_PTP_TX_INTERRUPT_ALL;
3134		else
3135			pf->ptp.tx_interrupt_mode = ICE_PTP_TX_INTERRUPT_NONE;
3136		break;
3137	default:
3138		/* other PHY types handle their own Tx interrupt */
3139		pf->ptp.tx_interrupt_mode = ICE_PTP_TX_INTERRUPT_SELF;
3140	}
3141}
3142
3143/**
3144 * ice_ptp_init - Initialize PTP hardware clock support
3145 * @pf: Board private structure
3146 *
3147 * Set up the device for interacting with the PTP hardware clock for all
3148 * functions, both the function that owns the clock hardware, and the
3149 * functions connected to the clock hardware.
3150 *
3151 * The clock owner will allocate and register a ptp_clock with the
3152 * PTP_1588_CLOCK infrastructure. All functions allocate a kthread and work
3153 * items used for asynchronous work such as Tx timestamps and periodic work.
3154 */
3155void ice_ptp_init(struct ice_pf *pf)
3156{
3157	struct ice_ptp *ptp = &pf->ptp;
3158	struct ice_hw *hw = &pf->hw;
3159	int lane_num, err;
3160
3161	ptp->state = ICE_PTP_INITIALIZING;
3162
3163	lane_num = ice_get_phy_lane_number(hw);
3164	if (lane_num < 0) {
3165		err = lane_num;
3166		goto err_exit;
3167	}
3168
3169	ptp->port.port_num = (u8)lane_num;
3170	ice_ptp_init_hw(hw);
3171
3172	ice_ptp_init_tx_interrupt_mode(pf);
3173
3174	/* If this function owns the clock hardware, it must allocate and
3175	 * configure the PTP clock device to represent it.
3176	 */
3177	if (ice_pf_src_tmr_owned(pf) && ice_is_primary(hw)) {
3178		err = ice_ptp_setup_adapter(pf);
3179		if (err)
3180			goto err_exit;
3181		err = ice_ptp_init_owner(pf);
3182		if (err)
3183			goto err_exit;
3184	}
3185
3186	err = ice_ptp_setup_pf(pf);
3187	if (err)
3188		goto err_exit;
3189
3190	err = ice_ptp_init_port(pf, &ptp->port);
3191	if (err)
3192		goto err_exit;
3193
3194	/* Start the PHY timestamping block */
3195	ice_ptp_reset_phy_timestamping(pf);
3196
3197	/* Configure initial Tx interrupt settings */
3198	ice_ptp_cfg_tx_interrupt(pf);
3199
3200	ptp->state = ICE_PTP_READY;
3201
3202	err = ice_ptp_init_work(pf, ptp);
3203	if (err)
3204		goto err_exit;
3205
3206	dev_info(ice_pf_to_dev(pf), "PTP init successful\n");
3207	return;
3208
3209err_exit:
3210	/* If we registered a PTP clock, release it */
3211	if (pf->ptp.clock) {
3212		ptp_clock_unregister(ptp->clock);
3213		pf->ptp.clock = NULL;
3214	}
3215	ptp->state = ICE_PTP_ERROR;
3216	dev_err(ice_pf_to_dev(pf), "PTP failed %d\n", err);
3217}
3218
3219/**
3220 * ice_ptp_release - Disable the driver/HW support and unregister the clock
3221 * @pf: Board private structure
3222 *
3223 * This function handles the cleanup work required from the initialization by
3224 * clearing out the important information and unregistering the clock
3225 */
3226void ice_ptp_release(struct ice_pf *pf)
3227{
3228	if (pf->ptp.state != ICE_PTP_READY)
3229		return;
3230
3231	pf->ptp.state = ICE_PTP_UNINIT;
3232
3233	/* Disable timestamping for both Tx and Rx */
3234	ice_ptp_disable_timestamp_mode(pf);
3235
3236	ice_ptp_cleanup_pf(pf);
3237
3238	ice_ptp_release_tx_tracker(pf, &pf->ptp.port.tx);
3239
3240	ice_ptp_disable_all_extts(pf);
3241
3242	kthread_cancel_delayed_work_sync(&pf->ptp.work);
3243
3244	ice_ptp_port_phy_stop(&pf->ptp.port);
3245	mutex_destroy(&pf->ptp.port.ps_lock);
3246	if (pf->ptp.kworker) {
3247		kthread_destroy_worker(pf->ptp.kworker);
3248		pf->ptp.kworker = NULL;
3249	}
3250
3251	if (!pf->ptp.clock)
3252		return;
3253
3254	/* Disable periodic outputs */
3255	ice_ptp_disable_all_perout(pf);
3256
3257	ptp_clock_unregister(pf->ptp.clock);
3258	pf->ptp.clock = NULL;
3259
3260	dev_info(ice_pf_to_dev(pf), "Removed PTP clock\n");
3261}