Linux Audio

Check our new training course

Real-Time Linux with PREEMPT_RT training

Feb 18-20, 2025
Register
Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright (c) 2019, Intel Corporation. */
   3
   4#include "ice_common.h"
   5#include "ice_flex_pipe.h"
   6#include "ice_flow.h"
   7#include "ice.h"
   8
   9static const u32 ice_sect_lkup[ICE_BLK_COUNT][ICE_SECT_COUNT] = {
  10	/* SWITCH */
  11	{
  12		ICE_SID_XLT0_SW,
  13		ICE_SID_XLT_KEY_BUILDER_SW,
  14		ICE_SID_XLT1_SW,
  15		ICE_SID_XLT2_SW,
  16		ICE_SID_PROFID_TCAM_SW,
  17		ICE_SID_PROFID_REDIR_SW,
  18		ICE_SID_FLD_VEC_SW,
  19		ICE_SID_CDID_KEY_BUILDER_SW,
  20		ICE_SID_CDID_REDIR_SW
  21	},
  22
  23	/* ACL */
  24	{
  25		ICE_SID_XLT0_ACL,
  26		ICE_SID_XLT_KEY_BUILDER_ACL,
  27		ICE_SID_XLT1_ACL,
  28		ICE_SID_XLT2_ACL,
  29		ICE_SID_PROFID_TCAM_ACL,
  30		ICE_SID_PROFID_REDIR_ACL,
  31		ICE_SID_FLD_VEC_ACL,
  32		ICE_SID_CDID_KEY_BUILDER_ACL,
  33		ICE_SID_CDID_REDIR_ACL
  34	},
  35
  36	/* FD */
  37	{
  38		ICE_SID_XLT0_FD,
  39		ICE_SID_XLT_KEY_BUILDER_FD,
  40		ICE_SID_XLT1_FD,
  41		ICE_SID_XLT2_FD,
  42		ICE_SID_PROFID_TCAM_FD,
  43		ICE_SID_PROFID_REDIR_FD,
  44		ICE_SID_FLD_VEC_FD,
  45		ICE_SID_CDID_KEY_BUILDER_FD,
  46		ICE_SID_CDID_REDIR_FD
  47	},
  48
  49	/* RSS */
  50	{
  51		ICE_SID_XLT0_RSS,
  52		ICE_SID_XLT_KEY_BUILDER_RSS,
  53		ICE_SID_XLT1_RSS,
  54		ICE_SID_XLT2_RSS,
  55		ICE_SID_PROFID_TCAM_RSS,
  56		ICE_SID_PROFID_REDIR_RSS,
  57		ICE_SID_FLD_VEC_RSS,
  58		ICE_SID_CDID_KEY_BUILDER_RSS,
  59		ICE_SID_CDID_REDIR_RSS
  60	},
  61
  62	/* PE */
  63	{
  64		ICE_SID_XLT0_PE,
  65		ICE_SID_XLT_KEY_BUILDER_PE,
  66		ICE_SID_XLT1_PE,
  67		ICE_SID_XLT2_PE,
  68		ICE_SID_PROFID_TCAM_PE,
  69		ICE_SID_PROFID_REDIR_PE,
  70		ICE_SID_FLD_VEC_PE,
  71		ICE_SID_CDID_KEY_BUILDER_PE,
  72		ICE_SID_CDID_REDIR_PE
  73	}
  74};
  75
  76/**
  77 * ice_sect_id - returns section ID
  78 * @blk: block type
  79 * @sect: section type
  80 *
  81 * This helper function returns the proper section ID given a block type and a
  82 * section type.
  83 */
  84static u32 ice_sect_id(enum ice_block blk, enum ice_sect sect)
  85{
  86	return ice_sect_lkup[blk][sect];
 
 
 
 
 
 
 
  87}
  88
  89/**
  90 * ice_hw_ptype_ena - check if the PTYPE is enabled or not
  91 * @hw: pointer to the HW structure
  92 * @ptype: the hardware PTYPE
 
 
 
 
 
 
 
  93 */
  94bool ice_hw_ptype_ena(struct ice_hw *hw, u16 ptype)
 
  95{
  96	return ptype < ICE_FLOW_PTYPE_MAX &&
  97	       test_bit(ptype, hw->hw_ptype);
  98}
 
  99
 100/* Key creation */
 
 
 101
 102#define ICE_DC_KEY	0x1	/* don't care */
 103#define ICE_DC_KEYINV	0x1
 104#define ICE_NM_KEY	0x0	/* never match */
 105#define ICE_NM_KEYINV	0x0
 106#define ICE_0_KEY	0x1	/* match 0 */
 107#define ICE_0_KEYINV	0x0
 108#define ICE_1_KEY	0x0	/* match 1 */
 109#define ICE_1_KEYINV	0x1
 110
 111/**
 112 * ice_gen_key_word - generate 16-bits of a key/mask word
 113 * @val: the value
 114 * @valid: valid bits mask (change only the valid bits)
 115 * @dont_care: don't care mask
 116 * @nvr_mtch: never match mask
 117 * @key: pointer to an array of where the resulting key portion
 118 * @key_inv: pointer to an array of where the resulting key invert portion
 119 *
 120 * This function generates 16-bits from a 8-bit value, an 8-bit don't care mask
 121 * and an 8-bit never match mask. The 16-bits of output are divided into 8 bits
 122 * of key and 8 bits of key invert.
 123 *
 124 *     '0' =    b01, always match a 0 bit
 125 *     '1' =    b10, always match a 1 bit
 126 *     '?' =    b11, don't care bit (always matches)
 127 *     '~' =    b00, never match bit
 128 *
 129 * Input:
 130 *          val:         b0  1  0  1  0  1
 131 *          dont_care:   b0  0  1  1  0  0
 132 *          never_mtch:  b0  0  0  0  1  1
 133 *          ------------------------------
 134 * Result:  key:        b01 10 11 11 00 00
 135 */
 136static int
 137ice_gen_key_word(u8 val, u8 valid, u8 dont_care, u8 nvr_mtch, u8 *key,
 138		 u8 *key_inv)
 139{
 140	u8 in_key = *key, in_key_inv = *key_inv;
 141	u8 i;
 142
 143	/* 'dont_care' and 'nvr_mtch' masks cannot overlap */
 144	if ((dont_care ^ nvr_mtch) != (dont_care | nvr_mtch))
 145		return -EIO;
 146
 147	*key = 0;
 148	*key_inv = 0;
 149
 150	/* encode the 8 bits into 8-bit key and 8-bit key invert */
 151	for (i = 0; i < 8; i++) {
 152		*key >>= 1;
 153		*key_inv >>= 1;
 154
 155		if (!(valid & 0x1)) { /* change only valid bits */
 156			*key |= (in_key & 0x1) << 7;
 157			*key_inv |= (in_key_inv & 0x1) << 7;
 158		} else if (dont_care & 0x1) { /* don't care bit */
 159			*key |= ICE_DC_KEY << 7;
 160			*key_inv |= ICE_DC_KEYINV << 7;
 161		} else if (nvr_mtch & 0x1) { /* never match bit */
 162			*key |= ICE_NM_KEY << 7;
 163			*key_inv |= ICE_NM_KEYINV << 7;
 164		} else if (val & 0x01) { /* exact 1 match */
 165			*key |= ICE_1_KEY << 7;
 166			*key_inv |= ICE_1_KEYINV << 7;
 167		} else { /* exact 0 match */
 168			*key |= ICE_0_KEY << 7;
 169			*key_inv |= ICE_0_KEYINV << 7;
 170		}
 171
 172		dont_care >>= 1;
 173		nvr_mtch >>= 1;
 174		valid >>= 1;
 175		val >>= 1;
 176		in_key >>= 1;
 177		in_key_inv >>= 1;
 178	}
 179
 180	return 0;
 
 
 181}
 182
 183/**
 184 * ice_bits_max_set - determine if the number of bits set is within a maximum
 185 * @mask: pointer to the byte array which is the mask
 186 * @size: the number of bytes in the mask
 187 * @max: the max number of set bits
 188 *
 189 * This function determines if there are at most 'max' number of bits set in an
 190 * array. Returns true if the number for bits set is <= max or will return false
 191 * otherwise.
 
 
 192 */
 193static bool ice_bits_max_set(const u8 *mask, u16 size, u16 max)
 
 
 194{
 195	u16 count = 0;
 196	u16 i;
 197
 198	/* check each byte */
 199	for (i = 0; i < size; i++) {
 200		/* if 0, go to next byte */
 201		if (!mask[i])
 202			continue;
 203
 204		/* We know there is at least one set bit in this byte because of
 205		 * the above check; if we already have found 'max' number of
 206		 * bits set, then we can return failure now.
 207		 */
 208		if (count == max)
 209			return false;
 210
 211		/* count the bits in this byte, checking threshold */
 212		count += hweight8(mask[i]);
 213		if (count > max)
 214			return false;
 215	}
 216
 217	return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 218}
 219
 220/**
 221 * ice_set_key - generate a variable sized key with multiples of 16-bits
 222 * @key: pointer to where the key will be stored
 223 * @size: the size of the complete key in bytes (must be even)
 224 * @val: array of 8-bit values that makes up the value portion of the key
 225 * @upd: array of 8-bit masks that determine what key portion to update
 226 * @dc: array of 8-bit masks that make up the don't care mask
 227 * @nm: array of 8-bit masks that make up the never match mask
 228 * @off: the offset of the first byte in the key to update
 229 * @len: the number of bytes in the key update
 230 *
 231 * This function generates a key from a value, a don't care mask and a never
 232 * match mask.
 233 * upd, dc, and nm are optional parameters, and can be NULL:
 234 *	upd == NULL --> upd mask is all 1's (update all bits)
 235 *	dc == NULL --> dc mask is all 0's (no don't care bits)
 236 *	nm == NULL --> nm mask is all 0's (no never match bits)
 237 */
 238static int
 239ice_set_key(u8 *key, u16 size, u8 *val, u8 *upd, u8 *dc, u8 *nm, u16 off,
 240	    u16 len)
 
 
 
 
 241{
 242	u16 half_size;
 243	u16 i;
 244
 245	/* size must be a multiple of 2 bytes. */
 246	if (size % 2)
 247		return -EIO;
 248
 249	half_size = size / 2;
 250	if (off + len > half_size)
 251		return -EIO;
 252
 253	/* Make sure at most one bit is set in the never match mask. Having more
 254	 * than one never match mask bit set will cause HW to consume excessive
 255	 * power otherwise; this is a power management efficiency check.
 256	 */
 257#define ICE_NVR_MTCH_BITS_MAX	1
 258	if (nm && !ice_bits_max_set(nm, len, ICE_NVR_MTCH_BITS_MAX))
 259		return -EIO;
 260
 261	for (i = 0; i < len; i++)
 262		if (ice_gen_key_word(val[i], upd ? upd[i] : 0xff,
 263				     dc ? dc[i] : 0, nm ? nm[i] : 0,
 264				     key + off + i, key + half_size + off + i))
 265			return -EIO;
 266
 267	return 0;
 
 
 
 
 
 
 268}
 269
 270/**
 271 * ice_acquire_change_lock
 272 * @hw: pointer to the HW structure
 273 * @access: access type (read or write)
 274 *
 275 * This function will request ownership of the change lock.
 276 */
 277int
 278ice_acquire_change_lock(struct ice_hw *hw, enum ice_aq_res_access_type access)
 279{
 280	return ice_acquire_res(hw, ICE_CHANGE_LOCK_RES_ID, access,
 281			       ICE_CHANGE_LOCK_TIMEOUT);
 282}
 283
 284/**
 285 * ice_release_change_lock
 286 * @hw: pointer to the HW structure
 
 
 
 
 
 
 287 *
 288 * This function will release the change lock using the proper Admin Command.
 289 */
 290void ice_release_change_lock(struct ice_hw *hw)
 
 
 
 291{
 292	ice_release_res(hw, ICE_CHANGE_LOCK_RES_ID);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 293}
 294
 295/**
 296 * ice_get_open_tunnel_port - retrieve an open tunnel port
 297 * @hw: pointer to the HW structure
 298 * @port: returns open port
 299 * @type: type of tunnel, can be TNL_LAST if it doesn't matter
 
 
 
 
 300 */
 301bool
 302ice_get_open_tunnel_port(struct ice_hw *hw, u16 *port,
 303			 enum ice_tunnel_type type)
 304{
 305	bool res = false;
 306	u16 i;
 307
 308	mutex_lock(&hw->tnl_lock);
 
 
 309
 310	for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++)
 311		if (hw->tnl.tbl[i].valid && hw->tnl.tbl[i].port &&
 312		    (type == TNL_LAST || type == hw->tnl.tbl[i].type)) {
 313			*port = hw->tnl.tbl[i].port;
 314			res = true;
 315			break;
 316		}
 317
 318	mutex_unlock(&hw->tnl_lock);
 
 
 
 
 
 319
 320	return res;
 321}
 322
 323/**
 324 * ice_upd_dvm_boost_entry
 325 * @hw: pointer to the HW structure
 326 * @entry: pointer to double vlan boost entry info
 
 
 
 
 
 327 */
 328static int
 329ice_upd_dvm_boost_entry(struct ice_hw *hw, struct ice_dvm_entry *entry)
 330{
 331	struct ice_boost_tcam_section *sect_rx, *sect_tx;
 332	int status = -ENOSPC;
 333	struct ice_buf_build *bld;
 334	u8 val, dc, nm;
 335
 336	bld = ice_pkg_buf_alloc(hw);
 337	if (!bld)
 338		return -ENOMEM;
 339
 340	/* allocate 2 sections, one for Rx parser, one for Tx parser */
 341	if (ice_pkg_buf_reserve_section(bld, 2))
 342		goto ice_upd_dvm_boost_entry_err;
 343
 344	sect_rx = ice_pkg_buf_alloc_section(bld, ICE_SID_RXPARSER_BOOST_TCAM,
 345					    struct_size(sect_rx, tcam, 1));
 346	if (!sect_rx)
 347		goto ice_upd_dvm_boost_entry_err;
 348	sect_rx->count = cpu_to_le16(1);
 349
 350	sect_tx = ice_pkg_buf_alloc_section(bld, ICE_SID_TXPARSER_BOOST_TCAM,
 351					    struct_size(sect_tx, tcam, 1));
 352	if (!sect_tx)
 353		goto ice_upd_dvm_boost_entry_err;
 354	sect_tx->count = cpu_to_le16(1);
 355
 356	/* copy original boost entry to update package buffer */
 357	memcpy(sect_rx->tcam, entry->boost_entry, sizeof(*sect_rx->tcam));
 358
 359	/* re-write the don't care and never match bits accordingly */
 360	if (entry->enable) {
 361		/* all bits are don't care */
 362		val = 0x00;
 363		dc = 0xFF;
 364		nm = 0x00;
 365	} else {
 366		/* disable, one never match bit, the rest are don't care */
 367		val = 0x00;
 368		dc = 0xF7;
 369		nm = 0x08;
 370	}
 371
 372	ice_set_key((u8 *)&sect_rx->tcam[0].key, sizeof(sect_rx->tcam[0].key),
 373		    &val, NULL, &dc, &nm, 0, sizeof(u8));
 374
 375	/* exact copy of entry to Tx section entry */
 376	memcpy(sect_tx->tcam, sect_rx->tcam, sizeof(*sect_tx->tcam));
 
 
 
 
 
 
 
 
 
 
 
 377
 378	status = ice_update_pkg_no_lock(hw, ice_pkg_buf(bld), 1);
 379
 380ice_upd_dvm_boost_entry_err:
 381	ice_pkg_buf_free(hw, bld);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 382
 383	return status;
 384}
 385
 386/**
 387 * ice_set_dvm_boost_entries
 388 * @hw: pointer to the HW structure
 
 
 
 389 *
 390 * Enable double vlan by updating the appropriate boost tcam entries.
 391 */
 392int ice_set_dvm_boost_entries(struct ice_hw *hw)
 
 
 
 393{
 394	u16 i;
 395
 396	for (i = 0; i < hw->dvm_upd.count; i++) {
 397		int status;
 398
 399		status = ice_upd_dvm_boost_entry(hw, &hw->dvm_upd.tbl[i]);
 400		if (status)
 401			return status;
 402	}
 403
 404	return 0;
 405}
 406
 407/**
 408 * ice_tunnel_idx_to_entry - convert linear index to the sparse one
 409 * @hw: pointer to the HW structure
 410 * @type: type of tunnel
 411 * @idx: linear index
 412 *
 413 * Stack assumes we have 2 linear tables with indexes [0, count_valid),
 414 * but really the port table may be sprase, and types are mixed, so convert
 415 * the stack index into the device index.
 416 */
 417static u16 ice_tunnel_idx_to_entry(struct ice_hw *hw, enum ice_tunnel_type type,
 418				   u16 idx)
 419{
 420	u16 i;
 421
 422	for (i = 0; i < hw->tnl.count && i < ICE_TUNNEL_MAX_ENTRIES; i++)
 423		if (hw->tnl.tbl[i].valid &&
 424		    hw->tnl.tbl[i].type == type &&
 425		    idx-- == 0)
 426			return i;
 427
 428	WARN_ON_ONCE(1);
 429	return 0;
 
 
 
 
 
 
 
 
 
 430}
 431
 432/**
 433 * ice_create_tunnel
 434 * @hw: pointer to the HW structure
 435 * @index: device table entry
 436 * @type: type of tunnel
 437 * @port: port of tunnel to create
 438 *
 439 * Create a tunnel by updating the parse graph in the parser. We do that by
 440 * creating a package buffer with the tunnel info and issuing an update package
 441 * command.
 442 */
 443static int
 444ice_create_tunnel(struct ice_hw *hw, u16 index,
 445		  enum ice_tunnel_type type, u16 port)
 446{
 447	struct ice_boost_tcam_section *sect_rx, *sect_tx;
 448	struct ice_buf_build *bld;
 449	int status = -ENOSPC;
 450
 451	mutex_lock(&hw->tnl_lock);
 452
 453	bld = ice_pkg_buf_alloc(hw);
 454	if (!bld) {
 455		status = -ENOMEM;
 456		goto ice_create_tunnel_end;
 
 
 
 
 
 
 
 
 
 
 457	}
 458
 459	/* allocate 2 sections, one for Rx parser, one for Tx parser */
 460	if (ice_pkg_buf_reserve_section(bld, 2))
 461		goto ice_create_tunnel_err;
 462
 463	sect_rx = ice_pkg_buf_alloc_section(bld, ICE_SID_RXPARSER_BOOST_TCAM,
 464					    struct_size(sect_rx, tcam, 1));
 465	if (!sect_rx)
 466		goto ice_create_tunnel_err;
 467	sect_rx->count = cpu_to_le16(1);
 468
 469	sect_tx = ice_pkg_buf_alloc_section(bld, ICE_SID_TXPARSER_BOOST_TCAM,
 470					    struct_size(sect_tx, tcam, 1));
 471	if (!sect_tx)
 472		goto ice_create_tunnel_err;
 473	sect_tx->count = cpu_to_le16(1);
 474
 475	/* copy original boost entry to update package buffer */
 476	memcpy(sect_rx->tcam, hw->tnl.tbl[index].boost_entry,
 477	       sizeof(*sect_rx->tcam));
 478
 479	/* over-write the never-match dest port key bits with the encoded port
 480	 * bits
 481	 */
 482	ice_set_key((u8 *)&sect_rx->tcam[0].key, sizeof(sect_rx->tcam[0].key),
 483		    (u8 *)&port, NULL, NULL, NULL,
 484		    (u16)offsetof(struct ice_boost_key_value, hv_dst_port_key),
 485		    sizeof(sect_rx->tcam[0].key.key.hv_dst_port_key));
 486
 487	/* exact copy of entry to Tx section entry */
 488	memcpy(sect_tx->tcam, sect_rx->tcam, sizeof(*sect_tx->tcam));
 
 
 
 
 
 
 
 
 
 
 489
 490	status = ice_update_pkg(hw, ice_pkg_buf(bld), 1);
 491	if (!status)
 492		hw->tnl.tbl[index].port = port;
 
 
 493
 494ice_create_tunnel_err:
 495	ice_pkg_buf_free(hw, bld);
 
 496
 497ice_create_tunnel_end:
 498	mutex_unlock(&hw->tnl_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 499
 500	return status;
 501}
 502
 503/**
 504 * ice_destroy_tunnel
 505 * @hw: pointer to the HW structure
 506 * @index: device table entry
 507 * @type: type of tunnel
 508 * @port: port of tunnel to destroy (ignored if the all parameter is true)
 509 *
 510 * Destroys a tunnel or all tunnels by creating an update package buffer
 511 * targeting the specific updates requested and then performing an update
 512 * package.
 513 */
 514static int
 515ice_destroy_tunnel(struct ice_hw *hw, u16 index, enum ice_tunnel_type type,
 516		   u16 port)
 517{
 518	struct ice_boost_tcam_section *sect_rx, *sect_tx;
 519	struct ice_buf_build *bld;
 520	int status = -ENOSPC;
 521
 522	mutex_lock(&hw->tnl_lock);
 523
 524	if (WARN_ON(!hw->tnl.tbl[index].valid ||
 525		    hw->tnl.tbl[index].type != type ||
 526		    hw->tnl.tbl[index].port != port)) {
 527		status = -EIO;
 528		goto ice_destroy_tunnel_end;
 529	}
 530
 531	bld = ice_pkg_buf_alloc(hw);
 532	if (!bld) {
 533		status = -ENOMEM;
 534		goto ice_destroy_tunnel_end;
 535	}
 536
 537	/* allocate 2 sections, one for Rx parser, one for Tx parser */
 538	if (ice_pkg_buf_reserve_section(bld, 2))
 539		goto ice_destroy_tunnel_err;
 540
 541	sect_rx = ice_pkg_buf_alloc_section(bld, ICE_SID_RXPARSER_BOOST_TCAM,
 542					    struct_size(sect_rx, tcam, 1));
 543	if (!sect_rx)
 544		goto ice_destroy_tunnel_err;
 545	sect_rx->count = cpu_to_le16(1);
 546
 547	sect_tx = ice_pkg_buf_alloc_section(bld, ICE_SID_TXPARSER_BOOST_TCAM,
 548					    struct_size(sect_tx, tcam, 1));
 549	if (!sect_tx)
 550		goto ice_destroy_tunnel_err;
 551	sect_tx->count = cpu_to_le16(1);
 552
 553	/* copy original boost entry to update package buffer, one copy to Rx
 554	 * section, another copy to the Tx section
 555	 */
 556	memcpy(sect_rx->tcam, hw->tnl.tbl[index].boost_entry,
 557	       sizeof(*sect_rx->tcam));
 558	memcpy(sect_tx->tcam, hw->tnl.tbl[index].boost_entry,
 559	       sizeof(*sect_tx->tcam));
 560
 561	status = ice_update_pkg(hw, ice_pkg_buf(bld), 1);
 562	if (!status)
 563		hw->tnl.tbl[index].port = 0;
 564
 565ice_destroy_tunnel_err:
 566	ice_pkg_buf_free(hw, bld);
 
 
 567
 568ice_destroy_tunnel_end:
 569	mutex_unlock(&hw->tnl_lock);
 
 570
 571	return status;
 
 
 
 
 
 
 
 572}
 573
 574int ice_udp_tunnel_set_port(struct net_device *netdev, unsigned int table,
 575			    unsigned int idx, struct udp_tunnel_info *ti)
 
 
 
 
 
 
 576{
 577	struct ice_netdev_priv *np = netdev_priv(netdev);
 578	struct ice_vsi *vsi = np->vsi;
 579	struct ice_pf *pf = vsi->back;
 580	enum ice_tunnel_type tnl_type;
 581	int status;
 582	u16 index;
 
 583
 584	tnl_type = ti->type == UDP_TUNNEL_TYPE_VXLAN ? TNL_VXLAN : TNL_GENEVE;
 585	index = ice_tunnel_idx_to_entry(&pf->hw, tnl_type, idx);
 
 
 
 
 
 
 
 586
 587	status = ice_create_tunnel(&pf->hw, index, tnl_type, ntohs(ti->port));
 588	if (status) {
 589		netdev_err(netdev, "Error adding UDP tunnel - %d\n",
 590			   status);
 591		return -EIO;
 592	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 593
 594	udp_tunnel_nic_set_port_priv(netdev, table, idx, index);
 595	return 0;
 596}
 597
 598int ice_udp_tunnel_unset_port(struct net_device *netdev, unsigned int table,
 599			      unsigned int idx, struct udp_tunnel_info *ti)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 600{
 601	struct ice_netdev_priv *np = netdev_priv(netdev);
 602	struct ice_vsi *vsi = np->vsi;
 603	struct ice_pf *pf = vsi->back;
 604	enum ice_tunnel_type tnl_type;
 605	int status;
 606
 607	tnl_type = ti->type == UDP_TUNNEL_TYPE_VXLAN ? TNL_VXLAN : TNL_GENEVE;
 
 608
 609	status = ice_destroy_tunnel(&pf->hw, ti->hw_priv, tnl_type,
 610				    ntohs(ti->port));
 611	if (status) {
 612		netdev_err(netdev, "Error removing UDP tunnel - %d\n",
 613			   status);
 614		return -EIO;
 615	}
 616
 617	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 618}
 619
 620/**
 621 * ice_find_prot_off - find prot ID and offset pair, based on prof and FV index
 622 * @hw: pointer to the hardware structure
 623 * @blk: hardware block
 624 * @prof: profile ID
 625 * @fv_idx: field vector word index
 626 * @prot: variable to receive the protocol ID
 627 * @off: variable to receive the protocol offset
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 628 */
 629int
 630ice_find_prot_off(struct ice_hw *hw, enum ice_block blk, u8 prof, u16 fv_idx,
 631		  u8 *prot, u16 *off)
 632{
 633	struct ice_fv_word *fv_ext;
 634
 635	if (prof >= hw->blk[blk].es.count)
 636		return -EINVAL;
 637
 638	if (fv_idx >= hw->blk[blk].es.fvw)
 639		return -EINVAL;
 640
 641	fv_ext = hw->blk[blk].es.t + (prof * hw->blk[blk].es.fvw);
 642
 643	*prot = fv_ext[fv_idx].prot_id;
 644	*off = fv_ext[fv_idx].off;
 
 
 
 
 
 
 
 645
 646	return 0;
 647}
 648
 649/* PTG Management */
 650
 651/**
 652 * ice_ptg_find_ptype - Search for packet type group using packet type (ptype)
 653 * @hw: pointer to the hardware structure
 654 * @blk: HW block
 655 * @ptype: the ptype to search for
 656 * @ptg: pointer to variable that receives the PTG
 657 *
 658 * This function will search the PTGs for a particular ptype, returning the
 659 * PTG ID that contains it through the PTG parameter, with the value of
 660 * ICE_DEFAULT_PTG (0) meaning it is part the default PTG.
 661 */
 662static int
 663ice_ptg_find_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 *ptg)
 664{
 665	if (ptype >= ICE_XLT1_CNT || !ptg)
 666		return -EINVAL;
 667
 668	*ptg = hw->blk[blk].xlt1.ptypes[ptype].ptg;
 669	return 0;
 670}
 671
 672/**
 673 * ice_ptg_alloc_val - Allocates a new packet type group ID by value
 674 * @hw: pointer to the hardware structure
 675 * @blk: HW block
 676 * @ptg: the PTG to allocate
 677 *
 678 * This function allocates a given packet type group ID specified by the PTG
 679 * parameter.
 680 */
 681static void ice_ptg_alloc_val(struct ice_hw *hw, enum ice_block blk, u8 ptg)
 682{
 683	hw->blk[blk].xlt1.ptg_tbl[ptg].in_use = true;
 684}
 685
 686/**
 687 * ice_ptg_remove_ptype - Removes ptype from a particular packet type group
 688 * @hw: pointer to the hardware structure
 689 * @blk: HW block
 690 * @ptype: the ptype to remove
 691 * @ptg: the PTG to remove the ptype from
 692 *
 693 * This function will remove the ptype from the specific PTG, and move it to
 694 * the default PTG (ICE_DEFAULT_PTG).
 695 */
 696static int
 697ice_ptg_remove_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 ptg)
 698{
 699	struct ice_ptg_ptype **ch;
 700	struct ice_ptg_ptype *p;
 701
 702	if (ptype > ICE_XLT1_CNT - 1)
 703		return -EINVAL;
 704
 705	if (!hw->blk[blk].xlt1.ptg_tbl[ptg].in_use)
 706		return -ENOENT;
 707
 708	/* Should not happen if .in_use is set, bad config */
 709	if (!hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype)
 710		return -EIO;
 711
 712	/* find the ptype within this PTG, and bypass the link over it */
 713	p = hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype;
 714	ch = &hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype;
 715	while (p) {
 716		if (ptype == (p - hw->blk[blk].xlt1.ptypes)) {
 717			*ch = p->next_ptype;
 718			break;
 719		}
 720
 721		ch = &p->next_ptype;
 722		p = p->next_ptype;
 723	}
 724
 725	hw->blk[blk].xlt1.ptypes[ptype].ptg = ICE_DEFAULT_PTG;
 726	hw->blk[blk].xlt1.ptypes[ptype].next_ptype = NULL;
 727
 728	return 0;
 729}
 730
 731/**
 732 * ice_ptg_add_mv_ptype - Adds/moves ptype to a particular packet type group
 733 * @hw: pointer to the hardware structure
 734 * @blk: HW block
 735 * @ptype: the ptype to add or move
 736 * @ptg: the PTG to add or move the ptype to
 737 *
 738 * This function will either add or move a ptype to a particular PTG depending
 739 * on if the ptype is already part of another group. Note that using a
 740 * destination PTG ID of ICE_DEFAULT_PTG (0) will move the ptype to the
 741 * default PTG.
 742 */
 743static int
 744ice_ptg_add_mv_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 ptg)
 745{
 
 746	u8 original_ptg;
 747	int status;
 748
 749	if (ptype > ICE_XLT1_CNT - 1)
 750		return -EINVAL;
 751
 752	if (!hw->blk[blk].xlt1.ptg_tbl[ptg].in_use && ptg != ICE_DEFAULT_PTG)
 753		return -ENOENT;
 754
 755	status = ice_ptg_find_ptype(hw, blk, ptype, &original_ptg);
 756	if (status)
 757		return status;
 758
 759	/* Is ptype already in the correct PTG? */
 760	if (original_ptg == ptg)
 761		return 0;
 762
 763	/* Remove from original PTG and move back to the default PTG */
 764	if (original_ptg != ICE_DEFAULT_PTG)
 765		ice_ptg_remove_ptype(hw, blk, ptype, original_ptg);
 766
 767	/* Moving to default PTG? Then we're done with this request */
 768	if (ptg == ICE_DEFAULT_PTG)
 769		return 0;
 770
 771	/* Add ptype to PTG at beginning of list */
 772	hw->blk[blk].xlt1.ptypes[ptype].next_ptype =
 773		hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype;
 774	hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype =
 775		&hw->blk[blk].xlt1.ptypes[ptype];
 776
 777	hw->blk[blk].xlt1.ptypes[ptype].ptg = ptg;
 778	hw->blk[blk].xlt1.t[ptype] = ptg;
 779
 780	return 0;
 781}
 782
 783/* Block / table size info */
 784struct ice_blk_size_details {
 785	u16 xlt1;			/* # XLT1 entries */
 786	u16 xlt2;			/* # XLT2 entries */
 787	u16 prof_tcam;			/* # profile ID TCAM entries */
 788	u16 prof_id;			/* # profile IDs */
 789	u8 prof_cdid_bits;		/* # CDID one-hot bits used in key */
 790	u16 prof_redir;			/* # profile redirection entries */
 791	u16 es;				/* # extraction sequence entries */
 792	u16 fvw;			/* # field vector words */
 793	u8 overwrite;			/* overwrite existing entries allowed */
 794	u8 reverse;			/* reverse FV order */
 795};
 796
 797static const struct ice_blk_size_details blk_sizes[ICE_BLK_COUNT] = {
 798	/**
 799	 * Table Definitions
 800	 * XLT1 - Number of entries in XLT1 table
 801	 * XLT2 - Number of entries in XLT2 table
 802	 * TCAM - Number of entries Profile ID TCAM table
 803	 * CDID - Control Domain ID of the hardware block
 804	 * PRED - Number of entries in the Profile Redirection Table
 805	 * FV   - Number of entries in the Field Vector
 806	 * FVW  - Width (in WORDs) of the Field Vector
 807	 * OVR  - Overwrite existing table entries
 808	 * REV  - Reverse FV
 809	 */
 810	/*          XLT1        , XLT2        ,TCAM, PID,CDID,PRED,   FV, FVW */
 811	/*          Overwrite   , Reverse FV */
 812	/* SW  */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 256,   0,  256, 256,  48,
 813		    false, false },
 814	/* ACL */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128,   0,  128, 128,  32,
 815		    false, false },
 816	/* FD  */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128,   0,  128, 128,  24,
 817		    false, true  },
 818	/* RSS */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128,   0,  128, 128,  24,
 819		    true,  true  },
 820	/* PE  */ { ICE_XLT1_CNT, ICE_XLT2_CNT,  64,  32,   0,   32,  32,  24,
 821		    false, false },
 822};
 823
 824enum ice_sid_all {
 825	ICE_SID_XLT1_OFF = 0,
 826	ICE_SID_XLT2_OFF,
 827	ICE_SID_PR_OFF,
 828	ICE_SID_PR_REDIR_OFF,
 829	ICE_SID_ES_OFF,
 830	ICE_SID_OFF_COUNT,
 831};
 832
 833/* Characteristic handling */
 834
 835/**
 836 * ice_match_prop_lst - determine if properties of two lists match
 837 * @list1: first properties list
 838 * @list2: second properties list
 839 *
 840 * Count, cookies and the order must match in order to be considered equivalent.
 841 */
 842static bool
 843ice_match_prop_lst(struct list_head *list1, struct list_head *list2)
 844{
 845	struct ice_vsig_prof *tmp1;
 846	struct ice_vsig_prof *tmp2;
 847	u16 chk_count = 0;
 848	u16 count = 0;
 849
 850	/* compare counts */
 851	list_for_each_entry(tmp1, list1, list)
 852		count++;
 853	list_for_each_entry(tmp2, list2, list)
 854		chk_count++;
 855	if (!count || count != chk_count)
 856		return false;
 857
 858	tmp1 = list_first_entry(list1, struct ice_vsig_prof, list);
 859	tmp2 = list_first_entry(list2, struct ice_vsig_prof, list);
 860
 861	/* profile cookies must compare, and in the exact same order to take
 862	 * into account priority
 863	 */
 864	while (count--) {
 865		if (tmp2->profile_cookie != tmp1->profile_cookie)
 866			return false;
 867
 868		tmp1 = list_next_entry(tmp1, list);
 869		tmp2 = list_next_entry(tmp2, list);
 870	}
 871
 872	return true;
 873}
 874
 875/* VSIG Management */
 876
 877/**
 878 * ice_vsig_find_vsi - find a VSIG that contains a specified VSI
 879 * @hw: pointer to the hardware structure
 880 * @blk: HW block
 881 * @vsi: VSI of interest
 882 * @vsig: pointer to receive the VSI group
 883 *
 884 * This function will lookup the VSI entry in the XLT2 list and return
 885 * the VSI group its associated with.
 886 */
 887static int
 888ice_vsig_find_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 *vsig)
 889{
 890	if (!vsig || vsi >= ICE_MAX_VSI)
 891		return -EINVAL;
 892
 893	/* As long as there's a default or valid VSIG associated with the input
 894	 * VSI, the functions returns a success. Any handling of VSIG will be
 895	 * done by the following add, update or remove functions.
 896	 */
 897	*vsig = hw->blk[blk].xlt2.vsis[vsi].vsig;
 898
 899	return 0;
 900}
 901
 902/**
 903 * ice_vsig_alloc_val - allocate a new VSIG by value
 904 * @hw: pointer to the hardware structure
 905 * @blk: HW block
 906 * @vsig: the VSIG to allocate
 907 *
 908 * This function will allocate a given VSIG specified by the VSIG parameter.
 909 */
 910static u16 ice_vsig_alloc_val(struct ice_hw *hw, enum ice_block blk, u16 vsig)
 911{
 912	u16 idx = vsig & ICE_VSIG_IDX_M;
 913
 914	if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use) {
 915		INIT_LIST_HEAD(&hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst);
 916		hw->blk[blk].xlt2.vsig_tbl[idx].in_use = true;
 917	}
 918
 919	return ICE_VSIG_VALUE(idx, hw->pf_id);
 920}
 921
 922/**
 923 * ice_vsig_alloc - Finds a free entry and allocates a new VSIG
 924 * @hw: pointer to the hardware structure
 925 * @blk: HW block
 926 *
 927 * This function will iterate through the VSIG list and mark the first
 928 * unused entry for the new VSIG entry as used and return that value.
 929 */
 930static u16 ice_vsig_alloc(struct ice_hw *hw, enum ice_block blk)
 931{
 932	u16 i;
 933
 934	for (i = 1; i < ICE_MAX_VSIGS; i++)
 935		if (!hw->blk[blk].xlt2.vsig_tbl[i].in_use)
 936			return ice_vsig_alloc_val(hw, blk, i);
 937
 938	return ICE_DEFAULT_VSIG;
 939}
 940
 941/**
 942 * ice_find_dup_props_vsig - find VSI group with a specified set of properties
 943 * @hw: pointer to the hardware structure
 944 * @blk: HW block
 945 * @chs: characteristic list
 946 * @vsig: returns the VSIG with the matching profiles, if found
 947 *
 948 * Each VSIG is associated with a characteristic set; i.e. all VSIs under
 949 * a group have the same characteristic set. To check if there exists a VSIG
 950 * which has the same characteristics as the input characteristics; this
 951 * function will iterate through the XLT2 list and return the VSIG that has a
 952 * matching configuration. In order to make sure that priorities are accounted
 953 * for, the list must match exactly, including the order in which the
 954 * characteristics are listed.
 955 */
 956static int
 957ice_find_dup_props_vsig(struct ice_hw *hw, enum ice_block blk,
 958			struct list_head *chs, u16 *vsig)
 959{
 960	struct ice_xlt2 *xlt2 = &hw->blk[blk].xlt2;
 961	u16 i;
 962
 963	for (i = 0; i < xlt2->count; i++)
 964		if (xlt2->vsig_tbl[i].in_use &&
 965		    ice_match_prop_lst(chs, &xlt2->vsig_tbl[i].prop_lst)) {
 966			*vsig = ICE_VSIG_VALUE(i, hw->pf_id);
 967			return 0;
 968		}
 969
 970	return -ENOENT;
 971}
 972
 973/**
 974 * ice_vsig_free - free VSI group
 975 * @hw: pointer to the hardware structure
 976 * @blk: HW block
 977 * @vsig: VSIG to remove
 978 *
 979 * The function will remove all VSIs associated with the input VSIG and move
 980 * them to the DEFAULT_VSIG and mark the VSIG available.
 981 */
 982static int ice_vsig_free(struct ice_hw *hw, enum ice_block blk, u16 vsig)
 983{
 984	struct ice_vsig_prof *dtmp, *del;
 985	struct ice_vsig_vsi *vsi_cur;
 986	u16 idx;
 987
 988	idx = vsig & ICE_VSIG_IDX_M;
 989	if (idx >= ICE_MAX_VSIGS)
 990		return -EINVAL;
 991
 992	if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use)
 993		return -ENOENT;
 994
 995	hw->blk[blk].xlt2.vsig_tbl[idx].in_use = false;
 996
 997	vsi_cur = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
 998	/* If the VSIG has at least 1 VSI then iterate through the
 999	 * list and remove the VSIs before deleting the group.
1000	 */
1001	if (vsi_cur) {
1002		/* remove all vsis associated with this VSIG XLT2 entry */
1003		do {
1004			struct ice_vsig_vsi *tmp = vsi_cur->next_vsi;
1005
1006			vsi_cur->vsig = ICE_DEFAULT_VSIG;
1007			vsi_cur->changed = 1;
1008			vsi_cur->next_vsi = NULL;
1009			vsi_cur = tmp;
1010		} while (vsi_cur);
1011
1012		/* NULL terminate head of VSI list */
1013		hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi = NULL;
1014	}
1015
1016	/* free characteristic list */
1017	list_for_each_entry_safe(del, dtmp,
1018				 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
1019				 list) {
1020		list_del(&del->list);
1021		devm_kfree(ice_hw_to_dev(hw), del);
1022	}
1023
1024	/* if VSIG characteristic list was cleared for reset
1025	 * re-initialize the list head
1026	 */
1027	INIT_LIST_HEAD(&hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst);
1028
1029	return 0;
1030}
1031
1032/**
1033 * ice_vsig_remove_vsi - remove VSI from VSIG
1034 * @hw: pointer to the hardware structure
1035 * @blk: HW block
1036 * @vsi: VSI to remove
1037 * @vsig: VSI group to remove from
1038 *
1039 * The function will remove the input VSI from its VSI group and move it
1040 * to the DEFAULT_VSIG.
1041 */
1042static int
1043ice_vsig_remove_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig)
1044{
1045	struct ice_vsig_vsi **vsi_head, *vsi_cur, *vsi_tgt;
1046	u16 idx;
1047
1048	idx = vsig & ICE_VSIG_IDX_M;
1049
1050	if (vsi >= ICE_MAX_VSI || idx >= ICE_MAX_VSIGS)
1051		return -EINVAL;
1052
1053	if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use)
1054		return -ENOENT;
1055
1056	/* entry already in default VSIG, don't have to remove */
1057	if (idx == ICE_DEFAULT_VSIG)
1058		return 0;
1059
1060	vsi_head = &hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
1061	if (!(*vsi_head))
1062		return -EIO;
1063
1064	vsi_tgt = &hw->blk[blk].xlt2.vsis[vsi];
1065	vsi_cur = (*vsi_head);
1066
1067	/* iterate the VSI list, skip over the entry to be removed */
1068	while (vsi_cur) {
1069		if (vsi_tgt == vsi_cur) {
1070			(*vsi_head) = vsi_cur->next_vsi;
1071			break;
1072		}
1073		vsi_head = &vsi_cur->next_vsi;
1074		vsi_cur = vsi_cur->next_vsi;
1075	}
1076
1077	/* verify if VSI was removed from group list */
1078	if (!vsi_cur)
1079		return -ENOENT;
1080
1081	vsi_cur->vsig = ICE_DEFAULT_VSIG;
1082	vsi_cur->changed = 1;
1083	vsi_cur->next_vsi = NULL;
1084
1085	return 0;
1086}
1087
1088/**
1089 * ice_vsig_add_mv_vsi - add or move a VSI to a VSI group
1090 * @hw: pointer to the hardware structure
1091 * @blk: HW block
1092 * @vsi: VSI to move
1093 * @vsig: destination VSI group
1094 *
1095 * This function will move or add the input VSI to the target VSIG.
1096 * The function will find the original VSIG the VSI belongs to and
1097 * move the entry to the DEFAULT_VSIG, update the original VSIG and
1098 * then move entry to the new VSIG.
1099 */
1100static int
1101ice_vsig_add_mv_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig)
1102{
1103	struct ice_vsig_vsi *tmp;
 
1104	u16 orig_vsig, idx;
1105	int status;
1106
1107	idx = vsig & ICE_VSIG_IDX_M;
1108
1109	if (vsi >= ICE_MAX_VSI || idx >= ICE_MAX_VSIGS)
1110		return -EINVAL;
1111
1112	/* if VSIG not in use and VSIG is not default type this VSIG
1113	 * doesn't exist.
1114	 */
1115	if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use &&
1116	    vsig != ICE_DEFAULT_VSIG)
1117		return -ENOENT;
1118
1119	status = ice_vsig_find_vsi(hw, blk, vsi, &orig_vsig);
1120	if (status)
1121		return status;
1122
1123	/* no update required if vsigs match */
1124	if (orig_vsig == vsig)
1125		return 0;
1126
1127	if (orig_vsig != ICE_DEFAULT_VSIG) {
1128		/* remove entry from orig_vsig and add to default VSIG */
1129		status = ice_vsig_remove_vsi(hw, blk, vsi, orig_vsig);
1130		if (status)
1131			return status;
1132	}
1133
1134	if (idx == ICE_DEFAULT_VSIG)
1135		return 0;
1136
1137	/* Create VSI entry and add VSIG and prop_mask values */
1138	hw->blk[blk].xlt2.vsis[vsi].vsig = vsig;
1139	hw->blk[blk].xlt2.vsis[vsi].changed = 1;
1140
1141	/* Add new entry to the head of the VSIG list */
1142	tmp = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
1143	hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi =
1144		&hw->blk[blk].xlt2.vsis[vsi];
1145	hw->blk[blk].xlt2.vsis[vsi].next_vsi = tmp;
1146	hw->blk[blk].xlt2.t[vsi] = vsig;
1147
1148	return 0;
1149}
1150
1151/**
1152 * ice_prof_has_mask_idx - determine if profile index masking is identical
1153 * @hw: pointer to the hardware structure
1154 * @blk: HW block
1155 * @prof: profile to check
1156 * @idx: profile index to check
1157 * @mask: mask to match
1158 */
1159static bool
1160ice_prof_has_mask_idx(struct ice_hw *hw, enum ice_block blk, u8 prof, u16 idx,
1161		      u16 mask)
1162{
1163	bool expect_no_mask = false;
1164	bool found = false;
1165	bool match = false;
1166	u16 i;
1167
1168	/* If mask is 0x0000 or 0xffff, then there is no masking */
1169	if (mask == 0 || mask == 0xffff)
1170		expect_no_mask = true;
1171
1172	/* Scan the enabled masks on this profile, for the specified idx */
1173	for (i = hw->blk[blk].masks.first; i < hw->blk[blk].masks.first +
1174	     hw->blk[blk].masks.count; i++)
1175		if (hw->blk[blk].es.mask_ena[prof] & BIT(i))
1176			if (hw->blk[blk].masks.masks[i].in_use &&
1177			    hw->blk[blk].masks.masks[i].idx == idx) {
1178				found = true;
1179				if (hw->blk[blk].masks.masks[i].mask == mask)
1180					match = true;
1181				break;
1182			}
1183
1184	if (expect_no_mask) {
1185		if (found)
1186			return false;
1187	} else {
1188		if (!match)
1189			return false;
1190	}
1191
1192	return true;
1193}
1194
1195/**
1196 * ice_prof_has_mask - determine if profile masking is identical
1197 * @hw: pointer to the hardware structure
1198 * @blk: HW block
1199 * @prof: profile to check
1200 * @masks: masks to match
1201 */
1202static bool
1203ice_prof_has_mask(struct ice_hw *hw, enum ice_block blk, u8 prof, u16 *masks)
1204{
1205	u16 i;
1206
1207	/* es->mask_ena[prof] will have the mask */
1208	for (i = 0; i < hw->blk[blk].es.fvw; i++)
1209		if (!ice_prof_has_mask_idx(hw, blk, prof, i, masks[i]))
1210			return false;
1211
1212	return true;
1213}
1214
1215/**
1216 * ice_find_prof_id_with_mask - find profile ID for a given field vector
1217 * @hw: pointer to the hardware structure
1218 * @blk: HW block
1219 * @fv: field vector to search for
1220 * @masks: masks for FV
1221 * @symm: symmetric setting for RSS flows
1222 * @prof_id: receives the profile ID
1223 */
1224static int
1225ice_find_prof_id_with_mask(struct ice_hw *hw, enum ice_block blk,
1226			   struct ice_fv_word *fv, u16 *masks, bool symm,
1227			   u8 *prof_id)
1228{
1229	struct ice_es *es = &hw->blk[blk].es;
1230	u8 i;
1231
1232	/* For FD, we don't want to re-use a existed profile with the same
1233	 * field vector and mask. This will cause rule interference.
1234	 */
1235	if (blk == ICE_BLK_FD)
1236		return -ENOENT;
1237
1238	for (i = 0; i < (u8)es->count; i++) {
1239		u16 off = i * es->fvw;
1240
1241		if (blk == ICE_BLK_RSS && es->symm[i] != symm)
1242			continue;
1243
1244		if (memcmp(&es->t[off], fv, es->fvw * sizeof(*fv)))
1245			continue;
1246
1247		/* check if masks settings are the same for this profile */
1248		if (masks && !ice_prof_has_mask(hw, blk, i, masks))
1249			continue;
1250
1251		*prof_id = i;
1252		return 0;
1253	}
1254
1255	return -ENOENT;
1256}
1257
1258/**
1259 * ice_prof_id_rsrc_type - get profile ID resource type for a block type
1260 * @blk: the block type
1261 * @rsrc_type: pointer to variable to receive the resource type
1262 */
1263static bool ice_prof_id_rsrc_type(enum ice_block blk, u16 *rsrc_type)
1264{
1265	switch (blk) {
1266	case ICE_BLK_FD:
1267		*rsrc_type = ICE_AQC_RES_TYPE_FD_PROF_BLDR_PROFID;
1268		break;
1269	case ICE_BLK_RSS:
1270		*rsrc_type = ICE_AQC_RES_TYPE_HASH_PROF_BLDR_PROFID;
1271		break;
1272	default:
1273		return false;
1274	}
1275	return true;
1276}
1277
1278/**
1279 * ice_tcam_ent_rsrc_type - get TCAM entry resource type for a block type
1280 * @blk: the block type
1281 * @rsrc_type: pointer to variable to receive the resource type
1282 */
1283static bool ice_tcam_ent_rsrc_type(enum ice_block blk, u16 *rsrc_type)
1284{
1285	switch (blk) {
1286	case ICE_BLK_FD:
1287		*rsrc_type = ICE_AQC_RES_TYPE_FD_PROF_BLDR_TCAM;
1288		break;
1289	case ICE_BLK_RSS:
1290		*rsrc_type = ICE_AQC_RES_TYPE_HASH_PROF_BLDR_TCAM;
1291		break;
1292	default:
1293		return false;
1294	}
1295	return true;
1296}
1297
1298/**
1299 * ice_alloc_tcam_ent - allocate hardware TCAM entry
1300 * @hw: pointer to the HW struct
1301 * @blk: the block to allocate the TCAM for
1302 * @btm: true to allocate from bottom of table, false to allocate from top
1303 * @tcam_idx: pointer to variable to receive the TCAM entry
1304 *
1305 * This function allocates a new entry in a Profile ID TCAM for a specific
1306 * block.
1307 */
1308static int
1309ice_alloc_tcam_ent(struct ice_hw *hw, enum ice_block blk, bool btm,
1310		   u16 *tcam_idx)
1311{
1312	u16 res_type;
1313
1314	if (!ice_tcam_ent_rsrc_type(blk, &res_type))
1315		return -EINVAL;
1316
1317	return ice_alloc_hw_res(hw, res_type, 1, btm, tcam_idx);
1318}
1319
1320/**
1321 * ice_free_tcam_ent - free hardware TCAM entry
1322 * @hw: pointer to the HW struct
1323 * @blk: the block from which to free the TCAM entry
1324 * @tcam_idx: the TCAM entry to free
1325 *
1326 * This function frees an entry in a Profile ID TCAM for a specific block.
1327 */
1328static int
1329ice_free_tcam_ent(struct ice_hw *hw, enum ice_block blk, u16 tcam_idx)
1330{
1331	u16 res_type;
1332
1333	if (!ice_tcam_ent_rsrc_type(blk, &res_type))
1334		return -EINVAL;
1335
1336	return ice_free_hw_res(hw, res_type, 1, &tcam_idx);
1337}
1338
1339/**
1340 * ice_alloc_prof_id - allocate profile ID
1341 * @hw: pointer to the HW struct
1342 * @blk: the block to allocate the profile ID for
1343 * @prof_id: pointer to variable to receive the profile ID
1344 *
1345 * This function allocates a new profile ID, which also corresponds to a Field
1346 * Vector (Extraction Sequence) entry.
1347 */
1348static int ice_alloc_prof_id(struct ice_hw *hw, enum ice_block blk, u8 *prof_id)
1349{
1350	u16 res_type;
1351	u16 get_prof;
1352	int status;
1353
1354	if (!ice_prof_id_rsrc_type(blk, &res_type))
1355		return -EINVAL;
1356
1357	status = ice_alloc_hw_res(hw, res_type, 1, false, &get_prof);
1358	if (!status)
1359		*prof_id = (u8)get_prof;
1360
1361	return status;
1362}
1363
1364/**
1365 * ice_free_prof_id - free profile ID
1366 * @hw: pointer to the HW struct
1367 * @blk: the block from which to free the profile ID
1368 * @prof_id: the profile ID to free
1369 *
1370 * This function frees a profile ID, which also corresponds to a Field Vector.
1371 */
1372static int ice_free_prof_id(struct ice_hw *hw, enum ice_block blk, u8 prof_id)
1373{
1374	u16 tmp_prof_id = (u16)prof_id;
1375	u16 res_type;
1376
1377	if (!ice_prof_id_rsrc_type(blk, &res_type))
1378		return -EINVAL;
1379
1380	return ice_free_hw_res(hw, res_type, 1, &tmp_prof_id);
1381}
1382
1383/**
1384 * ice_prof_inc_ref - increment reference count for profile
1385 * @hw: pointer to the HW struct
1386 * @blk: the block from which to free the profile ID
1387 * @prof_id: the profile ID for which to increment the reference count
1388 */
1389static int ice_prof_inc_ref(struct ice_hw *hw, enum ice_block blk, u8 prof_id)
1390{
1391	if (prof_id > hw->blk[blk].es.count)
1392		return -EINVAL;
1393
1394	hw->blk[blk].es.ref_count[prof_id]++;
1395
1396	return 0;
1397}
1398
1399/**
1400 * ice_write_prof_mask_reg - write profile mask register
1401 * @hw: pointer to the HW struct
1402 * @blk: hardware block
1403 * @mask_idx: mask index
1404 * @idx: index of the FV which will use the mask
1405 * @mask: the 16-bit mask
1406 */
1407static void
1408ice_write_prof_mask_reg(struct ice_hw *hw, enum ice_block blk, u16 mask_idx,
1409			u16 idx, u16 mask)
1410{
1411	u32 offset;
1412	u32 val;
1413
1414	switch (blk) {
1415	case ICE_BLK_RSS:
1416		offset = GLQF_HMASK(mask_idx);
1417		val = FIELD_PREP(GLQF_HMASK_MSK_INDEX_M, idx);
1418		val |= FIELD_PREP(GLQF_HMASK_MASK_M, mask);
1419		break;
1420	case ICE_BLK_FD:
1421		offset = GLQF_FDMASK(mask_idx);
1422		val = FIELD_PREP(GLQF_FDMASK_MSK_INDEX_M, idx);
1423		val |= FIELD_PREP(GLQF_FDMASK_MASK_M, mask);
1424		break;
1425	default:
1426		ice_debug(hw, ICE_DBG_PKG, "No profile masks for block %d\n",
1427			  blk);
1428		return;
1429	}
1430
1431	wr32(hw, offset, val);
1432	ice_debug(hw, ICE_DBG_PKG, "write mask, blk %d (%d): %x = %x\n",
1433		  blk, idx, offset, val);
1434}
1435
1436/**
1437 * ice_write_prof_mask_enable_res - write profile mask enable register
1438 * @hw: pointer to the HW struct
1439 * @blk: hardware block
1440 * @prof_id: profile ID
1441 * @enable_mask: enable mask
1442 */
1443static void
1444ice_write_prof_mask_enable_res(struct ice_hw *hw, enum ice_block blk,
1445			       u16 prof_id, u32 enable_mask)
1446{
1447	u32 offset;
1448
1449	switch (blk) {
1450	case ICE_BLK_RSS:
1451		offset = GLQF_HMASK_SEL(prof_id);
1452		break;
1453	case ICE_BLK_FD:
1454		offset = GLQF_FDMASK_SEL(prof_id);
1455		break;
1456	default:
1457		ice_debug(hw, ICE_DBG_PKG, "No profile masks for block %d\n",
1458			  blk);
1459		return;
1460	}
1461
1462	wr32(hw, offset, enable_mask);
1463	ice_debug(hw, ICE_DBG_PKG, "write mask enable, blk %d (%d): %x = %x\n",
1464		  blk, prof_id, offset, enable_mask);
1465}
1466
1467/**
1468 * ice_init_prof_masks - initial prof masks
1469 * @hw: pointer to the HW struct
1470 * @blk: hardware block
1471 */
1472static void ice_init_prof_masks(struct ice_hw *hw, enum ice_block blk)
1473{
1474	u16 per_pf;
1475	u16 i;
1476
1477	mutex_init(&hw->blk[blk].masks.lock);
1478
1479	per_pf = ICE_PROF_MASK_COUNT / hw->dev_caps.num_funcs;
1480
1481	hw->blk[blk].masks.count = per_pf;
1482	hw->blk[blk].masks.first = hw->pf_id * per_pf;
1483
1484	memset(hw->blk[blk].masks.masks, 0, sizeof(hw->blk[blk].masks.masks));
1485
1486	for (i = hw->blk[blk].masks.first;
1487	     i < hw->blk[blk].masks.first + hw->blk[blk].masks.count; i++)
1488		ice_write_prof_mask_reg(hw, blk, i, 0, 0);
1489}
1490
1491/**
1492 * ice_init_all_prof_masks - initialize all prof masks
1493 * @hw: pointer to the HW struct
1494 */
1495static void ice_init_all_prof_masks(struct ice_hw *hw)
1496{
1497	ice_init_prof_masks(hw, ICE_BLK_RSS);
1498	ice_init_prof_masks(hw, ICE_BLK_FD);
1499}
1500
1501/**
1502 * ice_alloc_prof_mask - allocate profile mask
1503 * @hw: pointer to the HW struct
1504 * @blk: hardware block
1505 * @idx: index of FV which will use the mask
1506 * @mask: the 16-bit mask
1507 * @mask_idx: variable to receive the mask index
1508 */
1509static int
1510ice_alloc_prof_mask(struct ice_hw *hw, enum ice_block blk, u16 idx, u16 mask,
1511		    u16 *mask_idx)
1512{
1513	bool found_unused = false, found_copy = false;
1514	u16 unused_idx = 0, copy_idx = 0;
1515	int status = -ENOSPC;
1516	u16 i;
1517
1518	if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD)
1519		return -EINVAL;
1520
1521	mutex_lock(&hw->blk[blk].masks.lock);
1522
1523	for (i = hw->blk[blk].masks.first;
1524	     i < hw->blk[blk].masks.first + hw->blk[blk].masks.count; i++)
1525		if (hw->blk[blk].masks.masks[i].in_use) {
1526			/* if mask is in use and it exactly duplicates the
1527			 * desired mask and index, then in can be reused
1528			 */
1529			if (hw->blk[blk].masks.masks[i].mask == mask &&
1530			    hw->blk[blk].masks.masks[i].idx == idx) {
1531				found_copy = true;
1532				copy_idx = i;
1533				break;
1534			}
1535		} else {
1536			/* save off unused index, but keep searching in case
1537			 * there is an exact match later on
1538			 */
1539			if (!found_unused) {
1540				found_unused = true;
1541				unused_idx = i;
1542			}
1543		}
1544
1545	if (found_copy)
1546		i = copy_idx;
1547	else if (found_unused)
1548		i = unused_idx;
1549	else
1550		goto err_ice_alloc_prof_mask;
1551
1552	/* update mask for a new entry */
1553	if (found_unused) {
1554		hw->blk[blk].masks.masks[i].in_use = true;
1555		hw->blk[blk].masks.masks[i].mask = mask;
1556		hw->blk[blk].masks.masks[i].idx = idx;
1557		hw->blk[blk].masks.masks[i].ref = 0;
1558		ice_write_prof_mask_reg(hw, blk, i, idx, mask);
1559	}
1560
1561	hw->blk[blk].masks.masks[i].ref++;
1562	*mask_idx = i;
1563	status = 0;
1564
1565err_ice_alloc_prof_mask:
1566	mutex_unlock(&hw->blk[blk].masks.lock);
1567
1568	return status;
1569}
1570
1571/**
1572 * ice_free_prof_mask - free profile mask
1573 * @hw: pointer to the HW struct
1574 * @blk: hardware block
1575 * @mask_idx: index of mask
1576 */
1577static int
1578ice_free_prof_mask(struct ice_hw *hw, enum ice_block blk, u16 mask_idx)
1579{
1580	if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD)
1581		return -EINVAL;
1582
1583	if (!(mask_idx >= hw->blk[blk].masks.first &&
1584	      mask_idx < hw->blk[blk].masks.first + hw->blk[blk].masks.count))
1585		return -ENOENT;
1586
1587	mutex_lock(&hw->blk[blk].masks.lock);
1588
1589	if (!hw->blk[blk].masks.masks[mask_idx].in_use)
1590		goto exit_ice_free_prof_mask;
1591
1592	if (hw->blk[blk].masks.masks[mask_idx].ref > 1) {
1593		hw->blk[blk].masks.masks[mask_idx].ref--;
1594		goto exit_ice_free_prof_mask;
1595	}
1596
1597	/* remove mask */
1598	hw->blk[blk].masks.masks[mask_idx].in_use = false;
1599	hw->blk[blk].masks.masks[mask_idx].mask = 0;
1600	hw->blk[blk].masks.masks[mask_idx].idx = 0;
1601
1602	/* update mask as unused entry */
1603	ice_debug(hw, ICE_DBG_PKG, "Free mask, blk %d, mask %d\n", blk,
1604		  mask_idx);
1605	ice_write_prof_mask_reg(hw, blk, mask_idx, 0, 0);
1606
1607exit_ice_free_prof_mask:
1608	mutex_unlock(&hw->blk[blk].masks.lock);
1609
1610	return 0;
1611}
1612
1613/**
1614 * ice_free_prof_masks - free all profile masks for a profile
1615 * @hw: pointer to the HW struct
1616 * @blk: hardware block
1617 * @prof_id: profile ID
1618 */
1619static int
1620ice_free_prof_masks(struct ice_hw *hw, enum ice_block blk, u16 prof_id)
1621{
1622	u32 mask_bm;
1623	u16 i;
1624
1625	if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD)
1626		return -EINVAL;
1627
1628	mask_bm = hw->blk[blk].es.mask_ena[prof_id];
1629	for (i = 0; i < BITS_PER_BYTE * sizeof(mask_bm); i++)
1630		if (mask_bm & BIT(i))
1631			ice_free_prof_mask(hw, blk, i);
1632
1633	return 0;
1634}
1635
1636/**
1637 * ice_shutdown_prof_masks - releases lock for masking
1638 * @hw: pointer to the HW struct
1639 * @blk: hardware block
1640 *
1641 * This should be called before unloading the driver
1642 */
1643static void ice_shutdown_prof_masks(struct ice_hw *hw, enum ice_block blk)
1644{
1645	u16 i;
1646
1647	mutex_lock(&hw->blk[blk].masks.lock);
1648
1649	for (i = hw->blk[blk].masks.first;
1650	     i < hw->blk[blk].masks.first + hw->blk[blk].masks.count; i++) {
1651		ice_write_prof_mask_reg(hw, blk, i, 0, 0);
1652
1653		hw->blk[blk].masks.masks[i].in_use = false;
1654		hw->blk[blk].masks.masks[i].idx = 0;
1655		hw->blk[blk].masks.masks[i].mask = 0;
1656	}
1657
1658	mutex_unlock(&hw->blk[blk].masks.lock);
1659	mutex_destroy(&hw->blk[blk].masks.lock);
1660}
1661
1662/**
1663 * ice_shutdown_all_prof_masks - releases all locks for masking
1664 * @hw: pointer to the HW struct
1665 *
1666 * This should be called before unloading the driver
1667 */
1668static void ice_shutdown_all_prof_masks(struct ice_hw *hw)
1669{
1670	ice_shutdown_prof_masks(hw, ICE_BLK_RSS);
1671	ice_shutdown_prof_masks(hw, ICE_BLK_FD);
1672}
1673
1674/**
1675 * ice_update_prof_masking - set registers according to masking
1676 * @hw: pointer to the HW struct
1677 * @blk: hardware block
1678 * @prof_id: profile ID
1679 * @masks: masks
1680 */
1681static int
1682ice_update_prof_masking(struct ice_hw *hw, enum ice_block blk, u16 prof_id,
1683			u16 *masks)
1684{
1685	bool err = false;
1686	u32 ena_mask = 0;
1687	u16 idx;
1688	u16 i;
1689
1690	/* Only support FD and RSS masking, otherwise nothing to be done */
1691	if (blk != ICE_BLK_RSS && blk != ICE_BLK_FD)
1692		return 0;
1693
1694	for (i = 0; i < hw->blk[blk].es.fvw; i++)
1695		if (masks[i] && masks[i] != 0xFFFF) {
1696			if (!ice_alloc_prof_mask(hw, blk, i, masks[i], &idx)) {
1697				ena_mask |= BIT(idx);
1698			} else {
1699				/* not enough bitmaps */
1700				err = true;
1701				break;
1702			}
1703		}
1704
1705	if (err) {
1706		/* free any bitmaps we have allocated */
1707		for (i = 0; i < BITS_PER_BYTE * sizeof(ena_mask); i++)
1708			if (ena_mask & BIT(i))
1709				ice_free_prof_mask(hw, blk, i);
1710
1711		return -EIO;
1712	}
1713
1714	/* enable the masks for this profile */
1715	ice_write_prof_mask_enable_res(hw, blk, prof_id, ena_mask);
1716
1717	/* store enabled masks with profile so that they can be freed later */
1718	hw->blk[blk].es.mask_ena[prof_id] = ena_mask;
1719
1720	return 0;
1721}
1722
1723/**
1724 * ice_write_es - write an extraction sequence and symmetric setting to hardware
1725 * @hw: pointer to the HW struct
1726 * @blk: the block in which to write the extraction sequence
1727 * @prof_id: the profile ID to write
1728 * @fv: pointer to the extraction sequence to write - NULL to clear extraction
1729 * @symm: symmetric setting for RSS profiles
1730 */
1731static void
1732ice_write_es(struct ice_hw *hw, enum ice_block blk, u8 prof_id,
1733	     struct ice_fv_word *fv, bool symm)
1734{
1735	u16 off;
1736
1737	off = prof_id * hw->blk[blk].es.fvw;
1738	if (!fv) {
1739		memset(&hw->blk[blk].es.t[off], 0,
1740		       hw->blk[blk].es.fvw * sizeof(*fv));
1741		hw->blk[blk].es.written[prof_id] = false;
1742	} else {
1743		memcpy(&hw->blk[blk].es.t[off], fv,
1744		       hw->blk[blk].es.fvw * sizeof(*fv));
1745	}
1746
1747	if (blk == ICE_BLK_RSS)
1748		hw->blk[blk].es.symm[prof_id] = symm;
1749}
1750
1751/**
1752 * ice_prof_dec_ref - decrement reference count for profile
1753 * @hw: pointer to the HW struct
1754 * @blk: the block from which to free the profile ID
1755 * @prof_id: the profile ID for which to decrement the reference count
1756 */
1757static int
1758ice_prof_dec_ref(struct ice_hw *hw, enum ice_block blk, u8 prof_id)
1759{
1760	if (prof_id > hw->blk[blk].es.count)
1761		return -EINVAL;
1762
1763	if (hw->blk[blk].es.ref_count[prof_id] > 0) {
1764		if (!--hw->blk[blk].es.ref_count[prof_id]) {
1765			ice_write_es(hw, blk, prof_id, NULL, false);
1766			ice_free_prof_masks(hw, blk, prof_id);
1767			return ice_free_prof_id(hw, blk, prof_id);
1768		}
1769	}
1770
1771	return 0;
1772}
1773
1774/* Block / table section IDs */
1775static const u32 ice_blk_sids[ICE_BLK_COUNT][ICE_SID_OFF_COUNT] = {
1776	/* SWITCH */
1777	{	ICE_SID_XLT1_SW,
1778		ICE_SID_XLT2_SW,
1779		ICE_SID_PROFID_TCAM_SW,
1780		ICE_SID_PROFID_REDIR_SW,
1781		ICE_SID_FLD_VEC_SW
1782	},
1783
1784	/* ACL */
1785	{	ICE_SID_XLT1_ACL,
1786		ICE_SID_XLT2_ACL,
1787		ICE_SID_PROFID_TCAM_ACL,
1788		ICE_SID_PROFID_REDIR_ACL,
1789		ICE_SID_FLD_VEC_ACL
1790	},
1791
1792	/* FD */
1793	{	ICE_SID_XLT1_FD,
1794		ICE_SID_XLT2_FD,
1795		ICE_SID_PROFID_TCAM_FD,
1796		ICE_SID_PROFID_REDIR_FD,
1797		ICE_SID_FLD_VEC_FD
1798	},
1799
1800	/* RSS */
1801	{	ICE_SID_XLT1_RSS,
1802		ICE_SID_XLT2_RSS,
1803		ICE_SID_PROFID_TCAM_RSS,
1804		ICE_SID_PROFID_REDIR_RSS,
1805		ICE_SID_FLD_VEC_RSS
1806	},
1807
1808	/* PE */
1809	{	ICE_SID_XLT1_PE,
1810		ICE_SID_XLT2_PE,
1811		ICE_SID_PROFID_TCAM_PE,
1812		ICE_SID_PROFID_REDIR_PE,
1813		ICE_SID_FLD_VEC_PE
1814	}
1815};
1816
1817/**
1818 * ice_init_sw_xlt1_db - init software XLT1 database from HW tables
1819 * @hw: pointer to the hardware structure
1820 * @blk: the HW block to initialize
1821 */
1822static void ice_init_sw_xlt1_db(struct ice_hw *hw, enum ice_block blk)
1823{
1824	u16 pt;
1825
1826	for (pt = 0; pt < hw->blk[blk].xlt1.count; pt++) {
1827		u8 ptg;
1828
1829		ptg = hw->blk[blk].xlt1.t[pt];
1830		if (ptg != ICE_DEFAULT_PTG) {
1831			ice_ptg_alloc_val(hw, blk, ptg);
1832			ice_ptg_add_mv_ptype(hw, blk, pt, ptg);
1833		}
1834	}
1835}
1836
1837/**
1838 * ice_init_sw_xlt2_db - init software XLT2 database from HW tables
1839 * @hw: pointer to the hardware structure
1840 * @blk: the HW block to initialize
1841 */
1842static void ice_init_sw_xlt2_db(struct ice_hw *hw, enum ice_block blk)
1843{
1844	u16 vsi;
1845
1846	for (vsi = 0; vsi < hw->blk[blk].xlt2.count; vsi++) {
1847		u16 vsig;
1848
1849		vsig = hw->blk[blk].xlt2.t[vsi];
1850		if (vsig) {
1851			ice_vsig_alloc_val(hw, blk, vsig);
1852			ice_vsig_add_mv_vsi(hw, blk, vsi, vsig);
1853			/* no changes at this time, since this has been
1854			 * initialized from the original package
1855			 */
1856			hw->blk[blk].xlt2.vsis[vsi].changed = 0;
1857		}
1858	}
1859}
1860
1861/**
1862 * ice_init_sw_db - init software database from HW tables
1863 * @hw: pointer to the hardware structure
1864 */
1865static void ice_init_sw_db(struct ice_hw *hw)
1866{
1867	u16 i;
1868
1869	for (i = 0; i < ICE_BLK_COUNT; i++) {
1870		ice_init_sw_xlt1_db(hw, (enum ice_block)i);
1871		ice_init_sw_xlt2_db(hw, (enum ice_block)i);
1872	}
1873}
1874
1875/**
1876 * ice_fill_tbl - Reads content of a single table type into database
1877 * @hw: pointer to the hardware structure
1878 * @block_id: Block ID of the table to copy
1879 * @sid: Section ID of the table to copy
1880 *
1881 * Will attempt to read the entire content of a given table of a single block
1882 * into the driver database. We assume that the buffer will always
1883 * be as large or larger than the data contained in the package. If
1884 * this condition is not met, there is most likely an error in the package
1885 * contents.
1886 */
1887static void ice_fill_tbl(struct ice_hw *hw, enum ice_block block_id, u32 sid)
1888{
1889	u32 dst_len, sect_len, offset = 0;
1890	struct ice_prof_redir_section *pr;
1891	struct ice_prof_id_section *pid;
1892	struct ice_xlt1_section *xlt1;
1893	struct ice_xlt2_section *xlt2;
1894	struct ice_sw_fv_section *es;
1895	struct ice_pkg_enum state;
1896	u8 *src, *dst;
1897	void *sect;
1898
1899	/* if the HW segment pointer is null then the first iteration of
1900	 * ice_pkg_enum_section() will fail. In this case the HW tables will
1901	 * not be filled and return success.
1902	 */
1903	if (!hw->seg) {
1904		ice_debug(hw, ICE_DBG_PKG, "hw->seg is NULL, tables are not filled\n");
1905		return;
1906	}
1907
1908	memset(&state, 0, sizeof(state));
1909
1910	sect = ice_pkg_enum_section(hw->seg, &state, sid);
1911
1912	while (sect) {
1913		switch (sid) {
1914		case ICE_SID_XLT1_SW:
1915		case ICE_SID_XLT1_FD:
1916		case ICE_SID_XLT1_RSS:
1917		case ICE_SID_XLT1_ACL:
1918		case ICE_SID_XLT1_PE:
1919			xlt1 = sect;
1920			src = xlt1->value;
1921			sect_len = le16_to_cpu(xlt1->count) *
1922				sizeof(*hw->blk[block_id].xlt1.t);
1923			dst = hw->blk[block_id].xlt1.t;
1924			dst_len = hw->blk[block_id].xlt1.count *
1925				sizeof(*hw->blk[block_id].xlt1.t);
1926			break;
1927		case ICE_SID_XLT2_SW:
1928		case ICE_SID_XLT2_FD:
1929		case ICE_SID_XLT2_RSS:
1930		case ICE_SID_XLT2_ACL:
1931		case ICE_SID_XLT2_PE:
1932			xlt2 = sect;
1933			src = (__force u8 *)xlt2->value;
1934			sect_len = le16_to_cpu(xlt2->count) *
1935				sizeof(*hw->blk[block_id].xlt2.t);
1936			dst = (u8 *)hw->blk[block_id].xlt2.t;
1937			dst_len = hw->blk[block_id].xlt2.count *
1938				sizeof(*hw->blk[block_id].xlt2.t);
1939			break;
1940		case ICE_SID_PROFID_TCAM_SW:
1941		case ICE_SID_PROFID_TCAM_FD:
1942		case ICE_SID_PROFID_TCAM_RSS:
1943		case ICE_SID_PROFID_TCAM_ACL:
1944		case ICE_SID_PROFID_TCAM_PE:
1945			pid = sect;
1946			src = (u8 *)pid->entry;
1947			sect_len = le16_to_cpu(pid->count) *
1948				sizeof(*hw->blk[block_id].prof.t);
1949			dst = (u8 *)hw->blk[block_id].prof.t;
1950			dst_len = hw->blk[block_id].prof.count *
1951				sizeof(*hw->blk[block_id].prof.t);
1952			break;
1953		case ICE_SID_PROFID_REDIR_SW:
1954		case ICE_SID_PROFID_REDIR_FD:
1955		case ICE_SID_PROFID_REDIR_RSS:
1956		case ICE_SID_PROFID_REDIR_ACL:
1957		case ICE_SID_PROFID_REDIR_PE:
1958			pr = sect;
1959			src = pr->redir_value;
1960			sect_len = le16_to_cpu(pr->count) *
1961				sizeof(*hw->blk[block_id].prof_redir.t);
1962			dst = hw->blk[block_id].prof_redir.t;
1963			dst_len = hw->blk[block_id].prof_redir.count *
1964				sizeof(*hw->blk[block_id].prof_redir.t);
1965			break;
1966		case ICE_SID_FLD_VEC_SW:
1967		case ICE_SID_FLD_VEC_FD:
1968		case ICE_SID_FLD_VEC_RSS:
1969		case ICE_SID_FLD_VEC_ACL:
1970		case ICE_SID_FLD_VEC_PE:
1971			es = sect;
1972			src = (u8 *)es->fv;
1973			sect_len = (u32)(le16_to_cpu(es->count) *
1974					 hw->blk[block_id].es.fvw) *
1975				sizeof(*hw->blk[block_id].es.t);
1976			dst = (u8 *)hw->blk[block_id].es.t;
1977			dst_len = (u32)(hw->blk[block_id].es.count *
1978					hw->blk[block_id].es.fvw) *
1979				sizeof(*hw->blk[block_id].es.t);
1980			break;
1981		default:
1982			return;
1983		}
1984
1985		/* if the section offset exceeds destination length, terminate
1986		 * table fill.
1987		 */
1988		if (offset > dst_len)
1989			return;
1990
1991		/* if the sum of section size and offset exceed destination size
1992		 * then we are out of bounds of the HW table size for that PF.
1993		 * Changing section length to fill the remaining table space
1994		 * of that PF.
1995		 */
1996		if ((offset + sect_len) > dst_len)
1997			sect_len = dst_len - offset;
1998
1999		memcpy(dst + offset, src, sect_len);
2000		offset += sect_len;
2001		sect = ice_pkg_enum_section(NULL, &state, sid);
2002	}
2003}
2004
2005/**
2006 * ice_fill_blk_tbls - Read package context for tables
2007 * @hw: pointer to the hardware structure
2008 *
2009 * Reads the current package contents and populates the driver
2010 * database with the data iteratively for all advanced feature
2011 * blocks. Assume that the HW tables have been allocated.
2012 */
2013void ice_fill_blk_tbls(struct ice_hw *hw)
2014{
2015	u8 i;
2016
2017	for (i = 0; i < ICE_BLK_COUNT; i++) {
2018		enum ice_block blk_id = (enum ice_block)i;
2019
2020		ice_fill_tbl(hw, blk_id, hw->blk[blk_id].xlt1.sid);
2021		ice_fill_tbl(hw, blk_id, hw->blk[blk_id].xlt2.sid);
2022		ice_fill_tbl(hw, blk_id, hw->blk[blk_id].prof.sid);
2023		ice_fill_tbl(hw, blk_id, hw->blk[blk_id].prof_redir.sid);
2024		ice_fill_tbl(hw, blk_id, hw->blk[blk_id].es.sid);
2025	}
2026
2027	ice_init_sw_db(hw);
2028}
2029
2030/**
2031 * ice_free_prof_map - free profile map
2032 * @hw: pointer to the hardware structure
2033 * @blk_idx: HW block index
2034 */
2035static void ice_free_prof_map(struct ice_hw *hw, u8 blk_idx)
2036{
2037	struct ice_es *es = &hw->blk[blk_idx].es;
2038	struct ice_prof_map *del, *tmp;
2039
2040	mutex_lock(&es->prof_map_lock);
2041	list_for_each_entry_safe(del, tmp, &es->prof_map, list) {
2042		list_del(&del->list);
2043		devm_kfree(ice_hw_to_dev(hw), del);
2044	}
2045	INIT_LIST_HEAD(&es->prof_map);
2046	mutex_unlock(&es->prof_map_lock);
2047}
2048
2049/**
2050 * ice_free_flow_profs - free flow profile entries
2051 * @hw: pointer to the hardware structure
2052 * @blk_idx: HW block index
2053 */
2054static void ice_free_flow_profs(struct ice_hw *hw, u8 blk_idx)
2055{
2056	struct ice_flow_prof *p, *tmp;
2057
2058	mutex_lock(&hw->fl_profs_locks[blk_idx]);
2059	list_for_each_entry_safe(p, tmp, &hw->fl_profs[blk_idx], l_entry) {
2060		struct ice_flow_entry *e, *t;
2061
2062		list_for_each_entry_safe(e, t, &p->entries, l_entry)
2063			ice_flow_rem_entry(hw, (enum ice_block)blk_idx,
2064					   ICE_FLOW_ENTRY_HNDL(e));
2065
2066		list_del(&p->l_entry);
2067
2068		mutex_destroy(&p->entries_lock);
2069		devm_kfree(ice_hw_to_dev(hw), p);
2070	}
2071	mutex_unlock(&hw->fl_profs_locks[blk_idx]);
2072
2073	/* if driver is in reset and tables are being cleared
2074	 * re-initialize the flow profile list heads
2075	 */
2076	INIT_LIST_HEAD(&hw->fl_profs[blk_idx]);
2077}
2078
2079/**
2080 * ice_free_vsig_tbl - free complete VSIG table entries
2081 * @hw: pointer to the hardware structure
2082 * @blk: the HW block on which to free the VSIG table entries
2083 */
2084static void ice_free_vsig_tbl(struct ice_hw *hw, enum ice_block blk)
2085{
2086	u16 i;
2087
2088	if (!hw->blk[blk].xlt2.vsig_tbl)
2089		return;
2090
2091	for (i = 1; i < ICE_MAX_VSIGS; i++)
2092		if (hw->blk[blk].xlt2.vsig_tbl[i].in_use)
2093			ice_vsig_free(hw, blk, i);
2094}
2095
2096/**
2097 * ice_free_hw_tbls - free hardware table memory
2098 * @hw: pointer to the hardware structure
2099 */
2100void ice_free_hw_tbls(struct ice_hw *hw)
2101{
2102	struct ice_rss_cfg *r, *rt;
2103	u8 i;
2104
2105	for (i = 0; i < ICE_BLK_COUNT; i++) {
2106		if (hw->blk[i].is_list_init) {
2107			struct ice_es *es = &hw->blk[i].es;
2108
2109			ice_free_prof_map(hw, i);
2110			mutex_destroy(&es->prof_map_lock);
2111
2112			ice_free_flow_profs(hw, i);
2113			mutex_destroy(&hw->fl_profs_locks[i]);
2114
2115			hw->blk[i].is_list_init = false;
2116		}
2117		ice_free_vsig_tbl(hw, (enum ice_block)i);
2118		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt1.ptypes);
2119		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt1.ptg_tbl);
2120		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt1.t);
2121		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt2.t);
2122		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt2.vsig_tbl);
2123		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt2.vsis);
2124		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].prof.t);
2125		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].prof_redir.t);
2126		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.t);
2127		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.ref_count);
2128		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.symm);
2129		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.written);
2130		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.mask_ena);
2131		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].prof_id.id);
2132	}
2133
2134	list_for_each_entry_safe(r, rt, &hw->rss_list_head, l_entry) {
2135		list_del(&r->l_entry);
2136		devm_kfree(ice_hw_to_dev(hw), r);
2137	}
2138	mutex_destroy(&hw->rss_locks);
2139	ice_shutdown_all_prof_masks(hw);
2140	memset(hw->blk, 0, sizeof(hw->blk));
2141}
2142
2143/**
2144 * ice_init_flow_profs - init flow profile locks and list heads
2145 * @hw: pointer to the hardware structure
2146 * @blk_idx: HW block index
2147 */
2148static void ice_init_flow_profs(struct ice_hw *hw, u8 blk_idx)
2149{
2150	mutex_init(&hw->fl_profs_locks[blk_idx]);
2151	INIT_LIST_HEAD(&hw->fl_profs[blk_idx]);
2152}
2153
2154/**
2155 * ice_clear_hw_tbls - clear HW tables and flow profiles
2156 * @hw: pointer to the hardware structure
2157 */
2158void ice_clear_hw_tbls(struct ice_hw *hw)
2159{
2160	u8 i;
2161
2162	for (i = 0; i < ICE_BLK_COUNT; i++) {
2163		struct ice_prof_redir *prof_redir = &hw->blk[i].prof_redir;
2164		struct ice_prof_id *prof_id = &hw->blk[i].prof_id;
2165		struct ice_prof_tcam *prof = &hw->blk[i].prof;
2166		struct ice_xlt1 *xlt1 = &hw->blk[i].xlt1;
2167		struct ice_xlt2 *xlt2 = &hw->blk[i].xlt2;
2168		struct ice_es *es = &hw->blk[i].es;
2169
2170		if (hw->blk[i].is_list_init) {
2171			ice_free_prof_map(hw, i);
2172			ice_free_flow_profs(hw, i);
2173		}
2174
2175		ice_free_vsig_tbl(hw, (enum ice_block)i);
2176
2177		memset(xlt1->ptypes, 0, xlt1->count * sizeof(*xlt1->ptypes));
2178		memset(xlt1->ptg_tbl, 0,
2179		       ICE_MAX_PTGS * sizeof(*xlt1->ptg_tbl));
2180		memset(xlt1->t, 0, xlt1->count * sizeof(*xlt1->t));
2181
2182		memset(xlt2->vsis, 0, xlt2->count * sizeof(*xlt2->vsis));
2183		memset(xlt2->vsig_tbl, 0,
2184		       xlt2->count * sizeof(*xlt2->vsig_tbl));
2185		memset(xlt2->t, 0, xlt2->count * sizeof(*xlt2->t));
2186
2187		memset(prof->t, 0, prof->count * sizeof(*prof->t));
2188		memset(prof_redir->t, 0,
2189		       prof_redir->count * sizeof(*prof_redir->t));
2190
2191		memset(es->t, 0, es->count * sizeof(*es->t) * es->fvw);
2192		memset(es->ref_count, 0, es->count * sizeof(*es->ref_count));
2193		memset(es->symm, 0, es->count * sizeof(*es->symm));
2194		memset(es->written, 0, es->count * sizeof(*es->written));
2195		memset(es->mask_ena, 0, es->count * sizeof(*es->mask_ena));
2196
2197		memset(prof_id->id, 0, prof_id->count * sizeof(*prof_id->id));
2198	}
2199}
2200
2201/**
2202 * ice_init_hw_tbls - init hardware table memory
2203 * @hw: pointer to the hardware structure
2204 */
2205int ice_init_hw_tbls(struct ice_hw *hw)
2206{
2207	u8 i;
2208
2209	mutex_init(&hw->rss_locks);
2210	INIT_LIST_HEAD(&hw->rss_list_head);
2211	ice_init_all_prof_masks(hw);
2212	for (i = 0; i < ICE_BLK_COUNT; i++) {
2213		struct ice_prof_redir *prof_redir = &hw->blk[i].prof_redir;
2214		struct ice_prof_id *prof_id = &hw->blk[i].prof_id;
2215		struct ice_prof_tcam *prof = &hw->blk[i].prof;
2216		struct ice_xlt1 *xlt1 = &hw->blk[i].xlt1;
2217		struct ice_xlt2 *xlt2 = &hw->blk[i].xlt2;
2218		struct ice_es *es = &hw->blk[i].es;
2219		u16 j;
2220
2221		if (hw->blk[i].is_list_init)
2222			continue;
2223
2224		ice_init_flow_profs(hw, i);
2225		mutex_init(&es->prof_map_lock);
2226		INIT_LIST_HEAD(&es->prof_map);
2227		hw->blk[i].is_list_init = true;
2228
2229		hw->blk[i].overwrite = blk_sizes[i].overwrite;
2230		es->reverse = blk_sizes[i].reverse;
2231
2232		xlt1->sid = ice_blk_sids[i][ICE_SID_XLT1_OFF];
2233		xlt1->count = blk_sizes[i].xlt1;
2234
2235		xlt1->ptypes = devm_kcalloc(ice_hw_to_dev(hw), xlt1->count,
2236					    sizeof(*xlt1->ptypes), GFP_KERNEL);
2237
2238		if (!xlt1->ptypes)
2239			goto err;
2240
2241		xlt1->ptg_tbl = devm_kcalloc(ice_hw_to_dev(hw), ICE_MAX_PTGS,
2242					     sizeof(*xlt1->ptg_tbl),
2243					     GFP_KERNEL);
2244
2245		if (!xlt1->ptg_tbl)
2246			goto err;
2247
2248		xlt1->t = devm_kcalloc(ice_hw_to_dev(hw), xlt1->count,
2249				       sizeof(*xlt1->t), GFP_KERNEL);
2250		if (!xlt1->t)
2251			goto err;
2252
2253		xlt2->sid = ice_blk_sids[i][ICE_SID_XLT2_OFF];
2254		xlt2->count = blk_sizes[i].xlt2;
2255
2256		xlt2->vsis = devm_kcalloc(ice_hw_to_dev(hw), xlt2->count,
2257					  sizeof(*xlt2->vsis), GFP_KERNEL);
2258
2259		if (!xlt2->vsis)
2260			goto err;
2261
2262		xlt2->vsig_tbl = devm_kcalloc(ice_hw_to_dev(hw), xlt2->count,
2263					      sizeof(*xlt2->vsig_tbl),
2264					      GFP_KERNEL);
2265		if (!xlt2->vsig_tbl)
2266			goto err;
2267
2268		for (j = 0; j < xlt2->count; j++)
2269			INIT_LIST_HEAD(&xlt2->vsig_tbl[j].prop_lst);
2270
2271		xlt2->t = devm_kcalloc(ice_hw_to_dev(hw), xlt2->count,
2272				       sizeof(*xlt2->t), GFP_KERNEL);
2273		if (!xlt2->t)
2274			goto err;
2275
2276		prof->sid = ice_blk_sids[i][ICE_SID_PR_OFF];
2277		prof->count = blk_sizes[i].prof_tcam;
2278		prof->max_prof_id = blk_sizes[i].prof_id;
2279		prof->cdid_bits = blk_sizes[i].prof_cdid_bits;
2280		prof->t = devm_kcalloc(ice_hw_to_dev(hw), prof->count,
2281				       sizeof(*prof->t), GFP_KERNEL);
2282
2283		if (!prof->t)
2284			goto err;
2285
2286		prof_redir->sid = ice_blk_sids[i][ICE_SID_PR_REDIR_OFF];
2287		prof_redir->count = blk_sizes[i].prof_redir;
2288		prof_redir->t = devm_kcalloc(ice_hw_to_dev(hw),
2289					     prof_redir->count,
2290					     sizeof(*prof_redir->t),
2291					     GFP_KERNEL);
2292
2293		if (!prof_redir->t)
2294			goto err;
2295
2296		es->sid = ice_blk_sids[i][ICE_SID_ES_OFF];
2297		es->count = blk_sizes[i].es;
2298		es->fvw = blk_sizes[i].fvw;
2299		es->t = devm_kcalloc(ice_hw_to_dev(hw),
2300				     (u32)(es->count * es->fvw),
2301				     sizeof(*es->t), GFP_KERNEL);
2302		if (!es->t)
2303			goto err;
2304
2305		es->ref_count = devm_kcalloc(ice_hw_to_dev(hw), es->count,
2306					     sizeof(*es->ref_count),
2307					     GFP_KERNEL);
2308		if (!es->ref_count)
2309			goto err;
2310
2311		es->symm = devm_kcalloc(ice_hw_to_dev(hw), es->count,
2312					sizeof(*es->symm), GFP_KERNEL);
2313		if (!es->symm)
2314			goto err;
2315
2316		es->written = devm_kcalloc(ice_hw_to_dev(hw), es->count,
2317					   sizeof(*es->written), GFP_KERNEL);
2318		if (!es->written)
2319			goto err;
2320
2321		es->mask_ena = devm_kcalloc(ice_hw_to_dev(hw), es->count,
2322					    sizeof(*es->mask_ena), GFP_KERNEL);
2323		if (!es->mask_ena)
2324			goto err;
2325
2326		prof_id->count = blk_sizes[i].prof_id;
2327		prof_id->id = devm_kcalloc(ice_hw_to_dev(hw), prof_id->count,
2328					   sizeof(*prof_id->id), GFP_KERNEL);
2329		if (!prof_id->id)
2330			goto err;
2331	}
2332	return 0;
2333
2334err:
2335	ice_free_hw_tbls(hw);
2336	return -ENOMEM;
2337}
2338
2339/**
2340 * ice_prof_gen_key - generate profile ID key
2341 * @hw: pointer to the HW struct
2342 * @blk: the block in which to write profile ID to
2343 * @ptg: packet type group (PTG) portion of key
2344 * @vsig: VSIG portion of key
2345 * @cdid: CDID portion of key
2346 * @flags: flag portion of key
2347 * @vl_msk: valid mask
2348 * @dc_msk: don't care mask
2349 * @nm_msk: never match mask
2350 * @key: output of profile ID key
2351 */
2352static int
2353ice_prof_gen_key(struct ice_hw *hw, enum ice_block blk, u8 ptg, u16 vsig,
2354		 u8 cdid, u16 flags, u8 vl_msk[ICE_TCAM_KEY_VAL_SZ],
2355		 u8 dc_msk[ICE_TCAM_KEY_VAL_SZ], u8 nm_msk[ICE_TCAM_KEY_VAL_SZ],
2356		 u8 key[ICE_TCAM_KEY_SZ])
2357{
2358	struct ice_prof_id_key inkey;
2359
2360	inkey.xlt1 = ptg;
2361	inkey.xlt2_cdid = cpu_to_le16(vsig);
2362	inkey.flags = cpu_to_le16(flags);
2363
2364	switch (hw->blk[blk].prof.cdid_bits) {
2365	case 0:
2366		break;
2367	case 2:
2368#define ICE_CD_2_M 0xC000U
2369#define ICE_CD_2_S 14
2370		inkey.xlt2_cdid &= ~cpu_to_le16(ICE_CD_2_M);
2371		inkey.xlt2_cdid |= cpu_to_le16(BIT(cdid) << ICE_CD_2_S);
2372		break;
2373	case 4:
2374#define ICE_CD_4_M 0xF000U
2375#define ICE_CD_4_S 12
2376		inkey.xlt2_cdid &= ~cpu_to_le16(ICE_CD_4_M);
2377		inkey.xlt2_cdid |= cpu_to_le16(BIT(cdid) << ICE_CD_4_S);
2378		break;
2379	case 8:
2380#define ICE_CD_8_M 0xFF00U
2381#define ICE_CD_8_S 16
2382		inkey.xlt2_cdid &= ~cpu_to_le16(ICE_CD_8_M);
2383		inkey.xlt2_cdid |= cpu_to_le16(BIT(cdid) << ICE_CD_8_S);
2384		break;
2385	default:
2386		ice_debug(hw, ICE_DBG_PKG, "Error in profile config\n");
2387		break;
2388	}
2389
2390	return ice_set_key(key, ICE_TCAM_KEY_SZ, (u8 *)&inkey, vl_msk, dc_msk,
2391			   nm_msk, 0, ICE_TCAM_KEY_SZ / 2);
2392}
2393
2394/**
2395 * ice_tcam_write_entry - write TCAM entry
2396 * @hw: pointer to the HW struct
2397 * @blk: the block in which to write profile ID to
2398 * @idx: the entry index to write to
2399 * @prof_id: profile ID
2400 * @ptg: packet type group (PTG) portion of key
2401 * @vsig: VSIG portion of key
2402 * @cdid: CDID portion of key
2403 * @flags: flag portion of key
2404 * @vl_msk: valid mask
2405 * @dc_msk: don't care mask
2406 * @nm_msk: never match mask
2407 */
2408static int
2409ice_tcam_write_entry(struct ice_hw *hw, enum ice_block blk, u16 idx,
2410		     u8 prof_id, u8 ptg, u16 vsig, u8 cdid, u16 flags,
2411		     u8 vl_msk[ICE_TCAM_KEY_VAL_SZ],
2412		     u8 dc_msk[ICE_TCAM_KEY_VAL_SZ],
2413		     u8 nm_msk[ICE_TCAM_KEY_VAL_SZ])
2414{
2415	struct ice_prof_tcam_entry;
2416	int status;
2417
2418	status = ice_prof_gen_key(hw, blk, ptg, vsig, cdid, flags, vl_msk,
2419				  dc_msk, nm_msk, hw->blk[blk].prof.t[idx].key);
2420	if (!status) {
2421		hw->blk[blk].prof.t[idx].addr = cpu_to_le16(idx);
2422		hw->blk[blk].prof.t[idx].prof_id = prof_id;
2423	}
2424
2425	return status;
2426}
2427
2428/**
2429 * ice_vsig_get_ref - returns number of VSIs belong to a VSIG
2430 * @hw: pointer to the hardware structure
2431 * @blk: HW block
2432 * @vsig: VSIG to query
2433 * @refs: pointer to variable to receive the reference count
2434 */
2435static int
2436ice_vsig_get_ref(struct ice_hw *hw, enum ice_block blk, u16 vsig, u16 *refs)
2437{
2438	u16 idx = vsig & ICE_VSIG_IDX_M;
2439	struct ice_vsig_vsi *ptr;
2440
2441	*refs = 0;
2442
2443	if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use)
2444		return -ENOENT;
2445
2446	ptr = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
2447	while (ptr) {
2448		(*refs)++;
2449		ptr = ptr->next_vsi;
2450	}
2451
2452	return 0;
2453}
2454
2455/**
2456 * ice_has_prof_vsig - check to see if VSIG has a specific profile
2457 * @hw: pointer to the hardware structure
2458 * @blk: HW block
2459 * @vsig: VSIG to check against
2460 * @hdl: profile handle
2461 */
2462static bool
2463ice_has_prof_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl)
2464{
2465	u16 idx = vsig & ICE_VSIG_IDX_M;
2466	struct ice_vsig_prof *ent;
2467
2468	list_for_each_entry(ent, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
2469			    list)
2470		if (ent->profile_cookie == hdl)
2471			return true;
2472
2473	ice_debug(hw, ICE_DBG_INIT, "Characteristic list for VSI group %d not found.\n",
2474		  vsig);
2475	return false;
2476}
2477
2478/**
2479 * ice_prof_bld_es - build profile ID extraction sequence changes
2480 * @hw: pointer to the HW struct
2481 * @blk: hardware block
2482 * @bld: the update package buffer build to add to
2483 * @chgs: the list of changes to make in hardware
2484 */
2485static int
2486ice_prof_bld_es(struct ice_hw *hw, enum ice_block blk,
2487		struct ice_buf_build *bld, struct list_head *chgs)
2488{
2489	u16 vec_size = hw->blk[blk].es.fvw * sizeof(struct ice_fv_word);
2490	struct ice_chs_chg *tmp;
2491
2492	list_for_each_entry(tmp, chgs, list_entry)
2493		if (tmp->type == ICE_PTG_ES_ADD && tmp->add_prof) {
2494			u16 off = tmp->prof_id * hw->blk[blk].es.fvw;
2495			struct ice_pkg_es *p;
2496			u32 id;
2497
2498			id = ice_sect_id(blk, ICE_VEC_TBL);
2499			p = ice_pkg_buf_alloc_section(bld, id,
2500						      struct_size(p, es, 1) +
2501						      vec_size -
2502						      sizeof(p->es[0]));
2503
2504			if (!p)
2505				return -ENOSPC;
2506
2507			p->count = cpu_to_le16(1);
2508			p->offset = cpu_to_le16(tmp->prof_id);
2509
2510			memcpy(p->es, &hw->blk[blk].es.t[off], vec_size);
2511		}
2512
2513	return 0;
2514}
2515
2516/**
2517 * ice_prof_bld_tcam - build profile ID TCAM changes
2518 * @hw: pointer to the HW struct
2519 * @blk: hardware block
2520 * @bld: the update package buffer build to add to
2521 * @chgs: the list of changes to make in hardware
2522 */
2523static int
2524ice_prof_bld_tcam(struct ice_hw *hw, enum ice_block blk,
2525		  struct ice_buf_build *bld, struct list_head *chgs)
2526{
2527	struct ice_chs_chg *tmp;
2528
2529	list_for_each_entry(tmp, chgs, list_entry)
2530		if (tmp->type == ICE_TCAM_ADD && tmp->add_tcam_idx) {
2531			struct ice_prof_id_section *p;
2532			u32 id;
2533
2534			id = ice_sect_id(blk, ICE_PROF_TCAM);
2535			p = ice_pkg_buf_alloc_section(bld, id,
2536						      struct_size(p, entry, 1));
2537
2538			if (!p)
2539				return -ENOSPC;
2540
2541			p->count = cpu_to_le16(1);
2542			p->entry[0].addr = cpu_to_le16(tmp->tcam_idx);
2543			p->entry[0].prof_id = tmp->prof_id;
2544
2545			memcpy(p->entry[0].key,
2546			       &hw->blk[blk].prof.t[tmp->tcam_idx].key,
2547			       sizeof(hw->blk[blk].prof.t->key));
2548		}
2549
2550	return 0;
2551}
2552
2553/**
2554 * ice_prof_bld_xlt1 - build XLT1 changes
2555 * @blk: hardware block
2556 * @bld: the update package buffer build to add to
2557 * @chgs: the list of changes to make in hardware
2558 */
2559static int
2560ice_prof_bld_xlt1(enum ice_block blk, struct ice_buf_build *bld,
2561		  struct list_head *chgs)
2562{
2563	struct ice_chs_chg *tmp;
2564
2565	list_for_each_entry(tmp, chgs, list_entry)
2566		if (tmp->type == ICE_PTG_ES_ADD && tmp->add_ptg) {
2567			struct ice_xlt1_section *p;
2568			u32 id;
2569
2570			id = ice_sect_id(blk, ICE_XLT1);
2571			p = ice_pkg_buf_alloc_section(bld, id,
2572						      struct_size(p, value, 1));
2573
2574			if (!p)
2575				return -ENOSPC;
2576
2577			p->count = cpu_to_le16(1);
2578			p->offset = cpu_to_le16(tmp->ptype);
2579			p->value[0] = tmp->ptg;
2580		}
2581
2582	return 0;
2583}
2584
2585/**
2586 * ice_prof_bld_xlt2 - build XLT2 changes
2587 * @blk: hardware block
2588 * @bld: the update package buffer build to add to
2589 * @chgs: the list of changes to make in hardware
2590 */
2591static int
2592ice_prof_bld_xlt2(enum ice_block blk, struct ice_buf_build *bld,
2593		  struct list_head *chgs)
2594{
2595	struct ice_chs_chg *tmp;
2596
2597	list_for_each_entry(tmp, chgs, list_entry) {
2598		struct ice_xlt2_section *p;
2599		u32 id;
2600
2601		switch (tmp->type) {
2602		case ICE_VSIG_ADD:
2603		case ICE_VSI_MOVE:
2604		case ICE_VSIG_REM:
2605			id = ice_sect_id(blk, ICE_XLT2);
2606			p = ice_pkg_buf_alloc_section(bld, id,
2607						      struct_size(p, value, 1));
2608
2609			if (!p)
2610				return -ENOSPC;
2611
2612			p->count = cpu_to_le16(1);
2613			p->offset = cpu_to_le16(tmp->vsi);
2614			p->value[0] = cpu_to_le16(tmp->vsig);
2615			break;
2616		default:
2617			break;
2618		}
2619	}
2620
2621	return 0;
2622}
2623
2624/**
2625 * ice_upd_prof_hw - update hardware using the change list
2626 * @hw: pointer to the HW struct
2627 * @blk: hardware block
2628 * @chgs: the list of changes to make in hardware
2629 */
2630static int
2631ice_upd_prof_hw(struct ice_hw *hw, enum ice_block blk,
2632		struct list_head *chgs)
2633{
2634	struct ice_buf_build *b;
2635	struct ice_chs_chg *tmp;
2636	u16 pkg_sects;
2637	u16 xlt1 = 0;
2638	u16 xlt2 = 0;
2639	u16 tcam = 0;
2640	u16 es = 0;
2641	int status;
2642	u16 sects;
2643
2644	/* count number of sections we need */
2645	list_for_each_entry(tmp, chgs, list_entry) {
2646		switch (tmp->type) {
2647		case ICE_PTG_ES_ADD:
2648			if (tmp->add_ptg)
2649				xlt1++;
2650			if (tmp->add_prof)
2651				es++;
2652			break;
2653		case ICE_TCAM_ADD:
2654			tcam++;
2655			break;
2656		case ICE_VSIG_ADD:
2657		case ICE_VSI_MOVE:
2658		case ICE_VSIG_REM:
2659			xlt2++;
2660			break;
2661		default:
2662			break;
2663		}
2664	}
2665	sects = xlt1 + xlt2 + tcam + es;
2666
2667	if (!sects)
2668		return 0;
2669
2670	/* Build update package buffer */
2671	b = ice_pkg_buf_alloc(hw);
2672	if (!b)
2673		return -ENOMEM;
2674
2675	status = ice_pkg_buf_reserve_section(b, sects);
2676	if (status)
2677		goto error_tmp;
2678
2679	/* Preserve order of table update: ES, TCAM, PTG, VSIG */
2680	if (es) {
2681		status = ice_prof_bld_es(hw, blk, b, chgs);
2682		if (status)
2683			goto error_tmp;
2684	}
2685
2686	if (tcam) {
2687		status = ice_prof_bld_tcam(hw, blk, b, chgs);
2688		if (status)
2689			goto error_tmp;
2690	}
2691
2692	if (xlt1) {
2693		status = ice_prof_bld_xlt1(blk, b, chgs);
2694		if (status)
2695			goto error_tmp;
2696	}
2697
2698	if (xlt2) {
2699		status = ice_prof_bld_xlt2(blk, b, chgs);
2700		if (status)
2701			goto error_tmp;
2702	}
2703
2704	/* After package buffer build check if the section count in buffer is
2705	 * non-zero and matches the number of sections detected for package
2706	 * update.
2707	 */
2708	pkg_sects = ice_pkg_buf_get_active_sections(b);
2709	if (!pkg_sects || pkg_sects != sects) {
2710		status = -EINVAL;
2711		goto error_tmp;
2712	}
2713
2714	/* update package */
2715	status = ice_update_pkg(hw, ice_pkg_buf(b), 1);
2716	if (status == -EIO)
2717		ice_debug(hw, ICE_DBG_INIT, "Unable to update HW profile\n");
2718
2719error_tmp:
2720	ice_pkg_buf_free(hw, b);
2721	return status;
2722}
2723
2724/**
2725 * ice_update_fd_mask - set Flow Director Field Vector mask for a profile
2726 * @hw: pointer to the HW struct
2727 * @prof_id: profile ID
2728 * @mask_sel: mask select
2729 *
2730 * This function enable any of the masks selected by the mask select parameter
2731 * for the profile specified.
2732 */
2733static void ice_update_fd_mask(struct ice_hw *hw, u16 prof_id, u32 mask_sel)
2734{
2735	wr32(hw, GLQF_FDMASK_SEL(prof_id), mask_sel);
2736
2737	ice_debug(hw, ICE_DBG_INIT, "fd mask(%d): %x = %x\n", prof_id,
2738		  GLQF_FDMASK_SEL(prof_id), mask_sel);
2739}
2740
2741struct ice_fd_src_dst_pair {
2742	u8 prot_id;
2743	u8 count;
2744	u16 off;
2745};
2746
2747static const struct ice_fd_src_dst_pair ice_fd_pairs[] = {
2748	/* These are defined in pairs */
2749	{ ICE_PROT_IPV4_OF_OR_S, 2, 12 },
2750	{ ICE_PROT_IPV4_OF_OR_S, 2, 16 },
2751
2752	{ ICE_PROT_IPV4_IL, 2, 12 },
2753	{ ICE_PROT_IPV4_IL, 2, 16 },
2754
2755	{ ICE_PROT_IPV6_OF_OR_S, 8, 8 },
2756	{ ICE_PROT_IPV6_OF_OR_S, 8, 24 },
2757
2758	{ ICE_PROT_IPV6_IL, 8, 8 },
2759	{ ICE_PROT_IPV6_IL, 8, 24 },
2760
2761	{ ICE_PROT_TCP_IL, 1, 0 },
2762	{ ICE_PROT_TCP_IL, 1, 2 },
2763
2764	{ ICE_PROT_UDP_OF, 1, 0 },
2765	{ ICE_PROT_UDP_OF, 1, 2 },
2766
2767	{ ICE_PROT_UDP_IL_OR_S, 1, 0 },
2768	{ ICE_PROT_UDP_IL_OR_S, 1, 2 },
2769
2770	{ ICE_PROT_SCTP_IL, 1, 0 },
2771	{ ICE_PROT_SCTP_IL, 1, 2 }
2772};
2773
2774#define ICE_FD_SRC_DST_PAIR_COUNT	ARRAY_SIZE(ice_fd_pairs)
2775
2776/**
2777 * ice_update_fd_swap - set register appropriately for a FD FV extraction
2778 * @hw: pointer to the HW struct
2779 * @prof_id: profile ID
2780 * @es: extraction sequence (length of array is determined by the block)
2781 */
2782static int
2783ice_update_fd_swap(struct ice_hw *hw, u16 prof_id, struct ice_fv_word *es)
2784{
2785	DECLARE_BITMAP(pair_list, ICE_FD_SRC_DST_PAIR_COUNT);
2786	u8 pair_start[ICE_FD_SRC_DST_PAIR_COUNT] = { 0 };
2787#define ICE_FD_FV_NOT_FOUND (-2)
2788	s8 first_free = ICE_FD_FV_NOT_FOUND;
2789	u8 used[ICE_MAX_FV_WORDS] = { 0 };
2790	s8 orig_free, si;
2791	u32 mask_sel = 0;
2792	u8 i, j, k;
2793
2794	bitmap_zero(pair_list, ICE_FD_SRC_DST_PAIR_COUNT);
2795
2796	/* This code assumes that the Flow Director field vectors are assigned
2797	 * from the end of the FV indexes working towards the zero index, that
2798	 * only complete fields will be included and will be consecutive, and
2799	 * that there are no gaps between valid indexes.
2800	 */
2801
2802	/* Determine swap fields present */
2803	for (i = 0; i < hw->blk[ICE_BLK_FD].es.fvw; i++) {
2804		/* Find the first free entry, assuming right to left population.
2805		 * This is where we can start adding additional pairs if needed.
2806		 */
2807		if (first_free == ICE_FD_FV_NOT_FOUND && es[i].prot_id !=
2808		    ICE_PROT_INVALID)
2809			first_free = i - 1;
2810
2811		for (j = 0; j < ICE_FD_SRC_DST_PAIR_COUNT; j++)
2812			if (es[i].prot_id == ice_fd_pairs[j].prot_id &&
2813			    es[i].off == ice_fd_pairs[j].off) {
2814				__set_bit(j, pair_list);
2815				pair_start[j] = i;
2816			}
2817	}
2818
2819	orig_free = first_free;
2820
2821	/* determine missing swap fields that need to be added */
2822	for (i = 0; i < ICE_FD_SRC_DST_PAIR_COUNT; i += 2) {
2823		u8 bit1 = test_bit(i + 1, pair_list);
2824		u8 bit0 = test_bit(i, pair_list);
2825
2826		if (bit0 ^ bit1) {
2827			u8 index;
2828
2829			/* add the appropriate 'paired' entry */
2830			if (!bit0)
2831				index = i;
2832			else
2833				index = i + 1;
2834
2835			/* check for room */
2836			if (first_free + 1 < (s8)ice_fd_pairs[index].count)
2837				return -ENOSPC;
2838
2839			/* place in extraction sequence */
2840			for (k = 0; k < ice_fd_pairs[index].count; k++) {
2841				es[first_free - k].prot_id =
2842					ice_fd_pairs[index].prot_id;
2843				es[first_free - k].off =
2844					ice_fd_pairs[index].off + (k * 2);
2845
2846				if (k > first_free)
2847					return -EIO;
2848
2849				/* keep track of non-relevant fields */
2850				mask_sel |= BIT(first_free - k);
2851			}
2852
2853			pair_start[index] = first_free;
2854			first_free -= ice_fd_pairs[index].count;
2855		}
2856	}
2857
2858	/* fill in the swap array */
2859	si = hw->blk[ICE_BLK_FD].es.fvw - 1;
2860	while (si >= 0) {
2861		u8 indexes_used = 1;
2862
2863		/* assume flat at this index */
2864#define ICE_SWAP_VALID	0x80
2865		used[si] = si | ICE_SWAP_VALID;
2866
2867		if (orig_free == ICE_FD_FV_NOT_FOUND || si <= orig_free) {
2868			si -= indexes_used;
2869			continue;
2870		}
2871
2872		/* check for a swap location */
2873		for (j = 0; j < ICE_FD_SRC_DST_PAIR_COUNT; j++)
2874			if (es[si].prot_id == ice_fd_pairs[j].prot_id &&
2875			    es[si].off == ice_fd_pairs[j].off) {
2876				u8 idx;
2877
2878				/* determine the appropriate matching field */
2879				idx = j + ((j % 2) ? -1 : 1);
2880
2881				indexes_used = ice_fd_pairs[idx].count;
2882				for (k = 0; k < indexes_used; k++) {
2883					used[si - k] = (pair_start[idx] - k) |
2884						ICE_SWAP_VALID;
2885				}
2886
2887				break;
2888			}
2889
2890		si -= indexes_used;
2891	}
2892
2893	/* for each set of 4 swap and 4 inset indexes, write the appropriate
2894	 * register
2895	 */
2896	for (j = 0; j < hw->blk[ICE_BLK_FD].es.fvw / 4; j++) {
2897		u32 raw_swap = 0;
2898		u32 raw_in = 0;
2899
2900		for (k = 0; k < 4; k++) {
2901			u8 idx;
2902
2903			idx = (j * 4) + k;
2904			if (used[idx] && !(mask_sel & BIT(idx))) {
2905				raw_swap |= used[idx] << (k * BITS_PER_BYTE);
2906#define ICE_INSET_DFLT 0x9f
2907				raw_in |= ICE_INSET_DFLT << (k * BITS_PER_BYTE);
2908			}
2909		}
2910
2911		/* write the appropriate swap register set */
2912		wr32(hw, GLQF_FDSWAP(prof_id, j), raw_swap);
2913
2914		ice_debug(hw, ICE_DBG_INIT, "swap wr(%d, %d): %x = %08x\n",
2915			  prof_id, j, GLQF_FDSWAP(prof_id, j), raw_swap);
2916
2917		/* write the appropriate inset register set */
2918		wr32(hw, GLQF_FDINSET(prof_id, j), raw_in);
2919
2920		ice_debug(hw, ICE_DBG_INIT, "inset wr(%d, %d): %x = %08x\n",
2921			  prof_id, j, GLQF_FDINSET(prof_id, j), raw_in);
2922	}
2923
2924	/* initially clear the mask select for this profile */
2925	ice_update_fd_mask(hw, prof_id, 0);
2926
2927	return 0;
2928}
2929
2930/* The entries here needs to match the order of enum ice_ptype_attrib */
2931static const struct ice_ptype_attrib_info ice_ptype_attributes[] = {
2932	{ ICE_GTP_PDU_EH,	ICE_GTP_PDU_FLAG_MASK },
2933	{ ICE_GTP_SESSION,	ICE_GTP_FLAGS_MASK },
2934	{ ICE_GTP_DOWNLINK,	ICE_GTP_FLAGS_MASK },
2935	{ ICE_GTP_UPLINK,	ICE_GTP_FLAGS_MASK },
2936};
2937
2938/**
2939 * ice_get_ptype_attrib_info - get PTYPE attribute information
2940 * @type: attribute type
2941 * @info: pointer to variable to the attribute information
2942 */
2943static void
2944ice_get_ptype_attrib_info(enum ice_ptype_attrib_type type,
2945			  struct ice_ptype_attrib_info *info)
2946{
2947	*info = ice_ptype_attributes[type];
2948}
2949
2950/**
2951 * ice_add_prof_attrib - add any PTG with attributes to profile
2952 * @prof: pointer to the profile to which PTG entries will be added
2953 * @ptg: PTG to be added
2954 * @ptype: PTYPE that needs to be looked up
2955 * @attr: array of attributes that will be considered
2956 * @attr_cnt: number of elements in the attribute array
2957 */
2958static int
2959ice_add_prof_attrib(struct ice_prof_map *prof, u8 ptg, u16 ptype,
2960		    const struct ice_ptype_attributes *attr, u16 attr_cnt)
2961{
2962	bool found = false;
2963	u16 i;
2964
2965	for (i = 0; i < attr_cnt; i++)
2966		if (attr[i].ptype == ptype) {
2967			found = true;
2968
2969			prof->ptg[prof->ptg_cnt] = ptg;
2970			ice_get_ptype_attrib_info(attr[i].attrib,
2971						  &prof->attr[prof->ptg_cnt]);
2972
2973			if (++prof->ptg_cnt >= ICE_MAX_PTG_PER_PROFILE)
2974				return -ENOSPC;
2975		}
2976
2977	if (!found)
2978		return -ENOENT;
2979
2980	return 0;
2981}
2982
2983/**
2984 * ice_disable_fd_swap - set register appropriately to disable FD SWAP
2985 * @hw: pointer to the HW struct
2986 * @prof_id: profile ID
2987 */
2988static void
2989ice_disable_fd_swap(struct ice_hw *hw, u8 prof_id)
2990{
2991	u16 swap_val, fvw_num;
2992	unsigned int i;
2993
2994	swap_val = ICE_SWAP_VALID;
2995	fvw_num = hw->blk[ICE_BLK_FD].es.fvw / ICE_FDIR_REG_SET_SIZE;
2996
2997	/* Since the SWAP Flag in the Programming Desc doesn't work,
2998	 * here add method to disable the SWAP Option via setting
2999	 * certain SWAP and INSET register sets.
3000	 */
3001	for (i = 0; i < fvw_num ; i++) {
3002		u32 raw_swap, raw_in;
3003		unsigned int j;
3004
3005		raw_swap = 0;
3006		raw_in = 0;
3007
3008		for (j = 0; j < ICE_FDIR_REG_SET_SIZE; j++) {
3009			raw_swap |= (swap_val++) << (j * BITS_PER_BYTE);
3010			raw_in |= ICE_INSET_DFLT << (j * BITS_PER_BYTE);
3011		}
3012
3013		/* write the FDIR swap register set */
3014		wr32(hw, GLQF_FDSWAP(prof_id, i), raw_swap);
3015
3016		ice_debug(hw, ICE_DBG_INIT, "swap wr(%d, %d): 0x%x = 0x%08x\n",
3017			  prof_id, i, GLQF_FDSWAP(prof_id, i), raw_swap);
3018
3019		/* write the FDIR inset register set */
3020		wr32(hw, GLQF_FDINSET(prof_id, i), raw_in);
3021
3022		ice_debug(hw, ICE_DBG_INIT, "inset wr(%d, %d): 0x%x = 0x%08x\n",
3023			  prof_id, i, GLQF_FDINSET(prof_id, i), raw_in);
3024	}
3025}
3026
3027/*
3028 * ice_add_prof - add profile
3029 * @hw: pointer to the HW struct
3030 * @blk: hardware block
3031 * @id: profile tracking ID
3032 * @ptypes: array of bitmaps indicating ptypes (ICE_FLOW_PTYPE_MAX bits)
3033 * @attr: array of attributes
3034 * @attr_cnt: number of elements in attr array
3035 * @es: extraction sequence (length of array is determined by the block)
3036 * @masks: mask for extraction sequence
3037 * @symm: symmetric setting for RSS profiles
3038 * @fd_swap: enable/disable FDIR paired src/dst fields swap option
3039 *
3040 * This function registers a profile, which matches a set of PTYPES with a
3041 * particular extraction sequence. While the hardware profile is allocated
3042 * it will not be written until the first call to ice_add_flow that specifies
3043 * the ID value used here.
3044 */
3045int
3046ice_add_prof(struct ice_hw *hw, enum ice_block blk, u64 id, u8 ptypes[],
3047	     const struct ice_ptype_attributes *attr, u16 attr_cnt,
3048	     struct ice_fv_word *es, u16 *masks, bool symm, bool fd_swap)
3049{
3050	u32 bytes = DIV_ROUND_UP(ICE_FLOW_PTYPE_MAX, BITS_PER_BYTE);
3051	DECLARE_BITMAP(ptgs_used, ICE_XLT1_CNT);
3052	struct ice_prof_map *prof;
3053	u8 byte = 0;
3054	u8 prof_id;
3055	int status;
3056
3057	bitmap_zero(ptgs_used, ICE_XLT1_CNT);
3058
3059	mutex_lock(&hw->blk[blk].es.prof_map_lock);
3060
3061	/* search for existing profile */
3062	status = ice_find_prof_id_with_mask(hw, blk, es, masks, symm, &prof_id);
3063	if (status) {
3064		/* allocate profile ID */
3065		status = ice_alloc_prof_id(hw, blk, &prof_id);
3066		if (status)
3067			goto err_ice_add_prof;
3068		if (blk == ICE_BLK_FD && fd_swap) {
3069			/* For Flow Director block, the extraction sequence may
3070			 * need to be altered in the case where there are paired
3071			 * fields that have no match. This is necessary because
3072			 * for Flow Director, src and dest fields need to paired
3073			 * for filter programming and these values are swapped
3074			 * during Tx.
3075			 */
3076			status = ice_update_fd_swap(hw, prof_id, es);
3077			if (status)
3078				goto err_ice_add_prof;
3079		} else if (blk == ICE_BLK_FD) {
3080			ice_disable_fd_swap(hw, prof_id);
3081		}
3082		status = ice_update_prof_masking(hw, blk, prof_id, masks);
3083		if (status)
3084			goto err_ice_add_prof;
3085
3086		/* and write new es */
3087		ice_write_es(hw, blk, prof_id, es, symm);
3088	}
3089
3090	ice_prof_inc_ref(hw, blk, prof_id);
3091
3092	/* add profile info */
3093	prof = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*prof), GFP_KERNEL);
3094	if (!prof) {
3095		status = -ENOMEM;
3096		goto err_ice_add_prof;
3097	}
3098
3099	prof->profile_cookie = id;
3100	prof->prof_id = prof_id;
3101	prof->ptg_cnt = 0;
3102	prof->context = 0;
3103
3104	/* build list of ptgs */
3105	while (bytes && prof->ptg_cnt < ICE_MAX_PTG_PER_PROFILE) {
3106		u8 bit;
3107
3108		if (!ptypes[byte]) {
3109			bytes--;
3110			byte++;
3111			continue;
3112		}
3113
3114		/* Examine 8 bits per byte */
3115		for_each_set_bit(bit, (unsigned long *)&ptypes[byte],
3116				 BITS_PER_BYTE) {
3117			u16 ptype;
3118			u8 ptg;
3119
3120			ptype = byte * BITS_PER_BYTE + bit;
3121
3122			/* The package should place all ptypes in a non-zero
3123			 * PTG, so the following call should never fail.
3124			 */
3125			if (ice_ptg_find_ptype(hw, blk, ptype, &ptg))
3126				continue;
3127
3128			/* If PTG is already added, skip and continue */
3129			if (test_bit(ptg, ptgs_used))
3130				continue;
3131
3132			__set_bit(ptg, ptgs_used);
3133			/* Check to see there are any attributes for
3134			 * this PTYPE, and add them if found.
3135			 */
3136			status = ice_add_prof_attrib(prof, ptg, ptype,
3137						     attr, attr_cnt);
3138			if (status == -ENOSPC)
3139				break;
3140			if (status) {
3141				/* This is simple a PTYPE/PTG with no
3142				 * attribute
3143				 */
3144				prof->ptg[prof->ptg_cnt] = ptg;
3145				prof->attr[prof->ptg_cnt].flags = 0;
3146				prof->attr[prof->ptg_cnt].mask = 0;
3147
3148				if (++prof->ptg_cnt >=
3149				    ICE_MAX_PTG_PER_PROFILE)
3150					break;
3151			}
3152		}
3153
3154		bytes--;
3155		byte++;
3156	}
3157
3158	list_add(&prof->list, &hw->blk[blk].es.prof_map);
3159	status = 0;
3160
3161err_ice_add_prof:
3162	mutex_unlock(&hw->blk[blk].es.prof_map_lock);
3163	return status;
3164}
3165
3166/**
3167 * ice_search_prof_id - Search for a profile tracking ID
3168 * @hw: pointer to the HW struct
3169 * @blk: hardware block
3170 * @id: profile tracking ID
3171 *
3172 * This will search for a profile tracking ID which was previously added.
3173 * The profile map lock should be held before calling this function.
3174 */
3175struct ice_prof_map *
3176ice_search_prof_id(struct ice_hw *hw, enum ice_block blk, u64 id)
3177{
3178	struct ice_prof_map *entry = NULL;
3179	struct ice_prof_map *map;
3180
3181	list_for_each_entry(map, &hw->blk[blk].es.prof_map, list)
3182		if (map->profile_cookie == id) {
3183			entry = map;
3184			break;
3185		}
3186
3187	return entry;
3188}
3189
3190/**
3191 * ice_vsig_prof_id_count - count profiles in a VSIG
3192 * @hw: pointer to the HW struct
3193 * @blk: hardware block
3194 * @vsig: VSIG to remove the profile from
3195 */
3196static u16
3197ice_vsig_prof_id_count(struct ice_hw *hw, enum ice_block blk, u16 vsig)
3198{
3199	u16 idx = vsig & ICE_VSIG_IDX_M, count = 0;
3200	struct ice_vsig_prof *p;
3201
3202	list_for_each_entry(p, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
3203			    list)
3204		count++;
3205
3206	return count;
3207}
3208
3209/**
3210 * ice_rel_tcam_idx - release a TCAM index
3211 * @hw: pointer to the HW struct
3212 * @blk: hardware block
3213 * @idx: the index to release
3214 */
3215static int ice_rel_tcam_idx(struct ice_hw *hw, enum ice_block blk, u16 idx)
3216{
3217	/* Masks to invoke a never match entry */
3218	u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
3219	u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFE, 0xFF, 0xFF, 0xFF, 0xFF };
3220	u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x01, 0x00, 0x00, 0x00, 0x00 };
3221	int status;
3222
3223	/* write the TCAM entry */
3224	status = ice_tcam_write_entry(hw, blk, idx, 0, 0, 0, 0, 0, vl_msk,
3225				      dc_msk, nm_msk);
3226	if (status)
3227		return status;
3228
3229	/* release the TCAM entry */
3230	status = ice_free_tcam_ent(hw, blk, idx);
3231
3232	return status;
3233}
3234
3235/**
3236 * ice_rem_prof_id - remove one profile from a VSIG
3237 * @hw: pointer to the HW struct
3238 * @blk: hardware block
3239 * @prof: pointer to profile structure to remove
3240 */
3241static int
3242ice_rem_prof_id(struct ice_hw *hw, enum ice_block blk,
3243		struct ice_vsig_prof *prof)
3244{
3245	int status;
3246	u16 i;
3247
3248	for (i = 0; i < prof->tcam_count; i++)
3249		if (prof->tcam[i].in_use) {
3250			prof->tcam[i].in_use = false;
3251			status = ice_rel_tcam_idx(hw, blk,
3252						  prof->tcam[i].tcam_idx);
3253			if (status)
3254				return -EIO;
3255		}
3256
3257	return 0;
3258}
3259
3260/**
3261 * ice_rem_vsig - remove VSIG
3262 * @hw: pointer to the HW struct
3263 * @blk: hardware block
3264 * @vsig: the VSIG to remove
3265 * @chg: the change list
3266 */
3267static int
3268ice_rem_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig,
3269	     struct list_head *chg)
3270{
3271	u16 idx = vsig & ICE_VSIG_IDX_M;
3272	struct ice_vsig_vsi *vsi_cur;
3273	struct ice_vsig_prof *d, *t;
3274
3275	/* remove TCAM entries */
3276	list_for_each_entry_safe(d, t,
3277				 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
3278				 list) {
3279		int status;
3280
3281		status = ice_rem_prof_id(hw, blk, d);
3282		if (status)
3283			return status;
3284
3285		list_del(&d->list);
3286		devm_kfree(ice_hw_to_dev(hw), d);
3287	}
3288
3289	/* Move all VSIS associated with this VSIG to the default VSIG */
3290	vsi_cur = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
3291	/* If the VSIG has at least 1 VSI then iterate through the list
3292	 * and remove the VSIs before deleting the group.
3293	 */
3294	if (vsi_cur)
3295		do {
3296			struct ice_vsig_vsi *tmp = vsi_cur->next_vsi;
3297			struct ice_chs_chg *p;
3298
3299			p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p),
3300					 GFP_KERNEL);
3301			if (!p)
3302				return -ENOMEM;
3303
3304			p->type = ICE_VSIG_REM;
3305			p->orig_vsig = vsig;
3306			p->vsig = ICE_DEFAULT_VSIG;
3307			p->vsi = vsi_cur - hw->blk[blk].xlt2.vsis;
3308
3309			list_add(&p->list_entry, chg);
3310
3311			vsi_cur = tmp;
3312		} while (vsi_cur);
3313
3314	return ice_vsig_free(hw, blk, vsig);
3315}
3316
3317/**
3318 * ice_rem_prof_id_vsig - remove a specific profile from a VSIG
3319 * @hw: pointer to the HW struct
3320 * @blk: hardware block
3321 * @vsig: VSIG to remove the profile from
3322 * @hdl: profile handle indicating which profile to remove
3323 * @chg: list to receive a record of changes
3324 */
3325static int
3326ice_rem_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl,
3327		     struct list_head *chg)
3328{
3329	u16 idx = vsig & ICE_VSIG_IDX_M;
3330	struct ice_vsig_prof *p, *t;
3331
3332	list_for_each_entry_safe(p, t,
3333				 &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
3334				 list)
3335		if (p->profile_cookie == hdl) {
3336			int status;
3337
3338			if (ice_vsig_prof_id_count(hw, blk, vsig) == 1)
3339				/* this is the last profile, remove the VSIG */
3340				return ice_rem_vsig(hw, blk, vsig, chg);
3341
3342			status = ice_rem_prof_id(hw, blk, p);
3343			if (!status) {
3344				list_del(&p->list);
3345				devm_kfree(ice_hw_to_dev(hw), p);
3346			}
3347			return status;
3348		}
3349
3350	return -ENOENT;
3351}
3352
3353/**
3354 * ice_rem_flow_all - remove all flows with a particular profile
3355 * @hw: pointer to the HW struct
3356 * @blk: hardware block
3357 * @id: profile tracking ID
3358 */
3359static int ice_rem_flow_all(struct ice_hw *hw, enum ice_block blk, u64 id)
3360{
3361	struct ice_chs_chg *del, *tmp;
3362	struct list_head chg;
3363	int status;
3364	u16 i;
3365
3366	INIT_LIST_HEAD(&chg);
3367
3368	for (i = 1; i < ICE_MAX_VSIGS; i++)
3369		if (hw->blk[blk].xlt2.vsig_tbl[i].in_use) {
3370			if (ice_has_prof_vsig(hw, blk, i, id)) {
3371				status = ice_rem_prof_id_vsig(hw, blk, i, id,
3372							      &chg);
3373				if (status)
3374					goto err_ice_rem_flow_all;
3375			}
3376		}
3377
3378	status = ice_upd_prof_hw(hw, blk, &chg);
3379
3380err_ice_rem_flow_all:
3381	list_for_each_entry_safe(del, tmp, &chg, list_entry) {
3382		list_del(&del->list_entry);
3383		devm_kfree(ice_hw_to_dev(hw), del);
3384	}
3385
3386	return status;
3387}
3388
3389/**
3390 * ice_rem_prof - remove profile
3391 * @hw: pointer to the HW struct
3392 * @blk: hardware block
3393 * @id: profile tracking ID
3394 *
3395 * This will remove the profile specified by the ID parameter, which was
3396 * previously created through ice_add_prof. If any existing entries
3397 * are associated with this profile, they will be removed as well.
3398 */
3399int ice_rem_prof(struct ice_hw *hw, enum ice_block blk, u64 id)
3400{
3401	struct ice_prof_map *pmap;
3402	int status;
3403
3404	mutex_lock(&hw->blk[blk].es.prof_map_lock);
3405
3406	pmap = ice_search_prof_id(hw, blk, id);
3407	if (!pmap) {
3408		status = -ENOENT;
3409		goto err_ice_rem_prof;
3410	}
3411
3412	/* remove all flows with this profile */
3413	status = ice_rem_flow_all(hw, blk, pmap->profile_cookie);
3414	if (status)
3415		goto err_ice_rem_prof;
3416
3417	/* dereference profile, and possibly remove */
3418	ice_prof_dec_ref(hw, blk, pmap->prof_id);
3419
3420	list_del(&pmap->list);
3421	devm_kfree(ice_hw_to_dev(hw), pmap);
3422
3423err_ice_rem_prof:
3424	mutex_unlock(&hw->blk[blk].es.prof_map_lock);
3425	return status;
3426}
3427
3428/**
3429 * ice_get_prof - get profile
3430 * @hw: pointer to the HW struct
3431 * @blk: hardware block
3432 * @hdl: profile handle
3433 * @chg: change list
3434 */
3435static int
3436ice_get_prof(struct ice_hw *hw, enum ice_block blk, u64 hdl,
3437	     struct list_head *chg)
3438{
3439	struct ice_prof_map *map;
3440	struct ice_chs_chg *p;
3441	int status = 0;
3442	u16 i;
3443
3444	mutex_lock(&hw->blk[blk].es.prof_map_lock);
3445	/* Get the details on the profile specified by the handle ID */
3446	map = ice_search_prof_id(hw, blk, hdl);
3447	if (!map) {
3448		status = -ENOENT;
3449		goto err_ice_get_prof;
3450	}
3451
3452	for (i = 0; i < map->ptg_cnt; i++)
3453		if (!hw->blk[blk].es.written[map->prof_id]) {
3454			/* add ES to change list */
3455			p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p),
3456					 GFP_KERNEL);
3457			if (!p) {
3458				status = -ENOMEM;
3459				goto err_ice_get_prof;
3460			}
3461
3462			p->type = ICE_PTG_ES_ADD;
3463			p->ptype = 0;
3464			p->ptg = map->ptg[i];
3465			p->add_ptg = 0;
3466
3467			p->add_prof = 1;
3468			p->prof_id = map->prof_id;
3469
3470			hw->blk[blk].es.written[map->prof_id] = true;
3471
3472			list_add(&p->list_entry, chg);
3473		}
3474
3475err_ice_get_prof:
3476	mutex_unlock(&hw->blk[blk].es.prof_map_lock);
3477	/* let caller clean up the change list */
3478	return status;
3479}
3480
3481/**
3482 * ice_get_profs_vsig - get a copy of the list of profiles from a VSIG
3483 * @hw: pointer to the HW struct
3484 * @blk: hardware block
3485 * @vsig: VSIG from which to copy the list
3486 * @lst: output list
3487 *
3488 * This routine makes a copy of the list of profiles in the specified VSIG.
3489 */
3490static int
3491ice_get_profs_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig,
3492		   struct list_head *lst)
3493{
3494	struct ice_vsig_prof *ent1, *ent2;
3495	u16 idx = vsig & ICE_VSIG_IDX_M;
3496
3497	list_for_each_entry(ent1, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
3498			    list) {
3499		struct ice_vsig_prof *p;
3500
3501		/* copy to the input list */
3502		p = devm_kmemdup(ice_hw_to_dev(hw), ent1, sizeof(*p),
3503				 GFP_KERNEL);
3504		if (!p)
3505			goto err_ice_get_profs_vsig;
3506
3507		list_add_tail(&p->list, lst);
3508	}
3509
3510	return 0;
3511
3512err_ice_get_profs_vsig:
3513	list_for_each_entry_safe(ent1, ent2, lst, list) {
3514		list_del(&ent1->list);
3515		devm_kfree(ice_hw_to_dev(hw), ent1);
3516	}
3517
3518	return -ENOMEM;
3519}
3520
3521/**
3522 * ice_add_prof_to_lst - add profile entry to a list
3523 * @hw: pointer to the HW struct
3524 * @blk: hardware block
3525 * @lst: the list to be added to
3526 * @hdl: profile handle of entry to add
3527 */
3528static int
3529ice_add_prof_to_lst(struct ice_hw *hw, enum ice_block blk,
3530		    struct list_head *lst, u64 hdl)
3531{
3532	struct ice_prof_map *map;
3533	struct ice_vsig_prof *p;
3534	int status = 0;
3535	u16 i;
3536
3537	mutex_lock(&hw->blk[blk].es.prof_map_lock);
3538	map = ice_search_prof_id(hw, blk, hdl);
3539	if (!map) {
3540		status = -ENOENT;
3541		goto err_ice_add_prof_to_lst;
3542	}
3543
3544	p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL);
3545	if (!p) {
3546		status = -ENOMEM;
3547		goto err_ice_add_prof_to_lst;
3548	}
3549
3550	p->profile_cookie = map->profile_cookie;
3551	p->prof_id = map->prof_id;
3552	p->tcam_count = map->ptg_cnt;
3553
3554	for (i = 0; i < map->ptg_cnt; i++) {
3555		p->tcam[i].prof_id = map->prof_id;
3556		p->tcam[i].tcam_idx = ICE_INVALID_TCAM;
3557		p->tcam[i].ptg = map->ptg[i];
3558	}
3559
3560	list_add(&p->list, lst);
3561
3562err_ice_add_prof_to_lst:
3563	mutex_unlock(&hw->blk[blk].es.prof_map_lock);
3564	return status;
3565}
3566
3567/**
3568 * ice_move_vsi - move VSI to another VSIG
3569 * @hw: pointer to the HW struct
3570 * @blk: hardware block
3571 * @vsi: the VSI to move
3572 * @vsig: the VSIG to move the VSI to
3573 * @chg: the change list
3574 */
3575static int
3576ice_move_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig,
3577	     struct list_head *chg)
3578{
3579	struct ice_chs_chg *p;
3580	u16 orig_vsig;
3581	int status;
3582
3583	p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL);
3584	if (!p)
3585		return -ENOMEM;
3586
3587	status = ice_vsig_find_vsi(hw, blk, vsi, &orig_vsig);
3588	if (!status)
3589		status = ice_vsig_add_mv_vsi(hw, blk, vsi, vsig);
3590
3591	if (status) {
3592		devm_kfree(ice_hw_to_dev(hw), p);
3593		return status;
3594	}
3595
3596	p->type = ICE_VSI_MOVE;
3597	p->vsi = vsi;
3598	p->orig_vsig = orig_vsig;
3599	p->vsig = vsig;
3600
3601	list_add(&p->list_entry, chg);
3602
3603	return 0;
3604}
3605
3606/**
3607 * ice_rem_chg_tcam_ent - remove a specific TCAM entry from change list
3608 * @hw: pointer to the HW struct
3609 * @idx: the index of the TCAM entry to remove
3610 * @chg: the list of change structures to search
3611 */
3612static void
3613ice_rem_chg_tcam_ent(struct ice_hw *hw, u16 idx, struct list_head *chg)
3614{
3615	struct ice_chs_chg *pos, *tmp;
3616
3617	list_for_each_entry_safe(tmp, pos, chg, list_entry)
3618		if (tmp->type == ICE_TCAM_ADD && tmp->tcam_idx == idx) {
3619			list_del(&tmp->list_entry);
3620			devm_kfree(ice_hw_to_dev(hw), tmp);
3621		}
3622}
3623
3624/**
3625 * ice_prof_tcam_ena_dis - add enable or disable TCAM change
3626 * @hw: pointer to the HW struct
3627 * @blk: hardware block
3628 * @enable: true to enable, false to disable
3629 * @vsig: the VSIG of the TCAM entry
3630 * @tcam: pointer the TCAM info structure of the TCAM to disable
3631 * @chg: the change list
3632 *
3633 * This function appends an enable or disable TCAM entry in the change log
3634 */
3635static int
3636ice_prof_tcam_ena_dis(struct ice_hw *hw, enum ice_block blk, bool enable,
3637		      u16 vsig, struct ice_tcam_inf *tcam,
3638		      struct list_head *chg)
3639{
3640	struct ice_chs_chg *p;
3641	int status;
3642
3643	u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
3644	u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0x00, 0x00, 0x00 };
3645	u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x00, 0x00, 0x00, 0x00, 0x00 };
3646
3647	/* if disabling, free the TCAM */
3648	if (!enable) {
3649		status = ice_rel_tcam_idx(hw, blk, tcam->tcam_idx);
3650
3651		/* if we have already created a change for this TCAM entry, then
3652		 * we need to remove that entry, in order to prevent writing to
3653		 * a TCAM entry we no longer will have ownership of.
3654		 */
3655		ice_rem_chg_tcam_ent(hw, tcam->tcam_idx, chg);
3656		tcam->tcam_idx = 0;
3657		tcam->in_use = 0;
3658		return status;
3659	}
3660
3661	/* for re-enabling, reallocate a TCAM */
3662	/* for entries with empty attribute masks, allocate entry from
3663	 * the bottom of the TCAM table; otherwise, allocate from the
3664	 * top of the table in order to give it higher priority
3665	 */
3666	status = ice_alloc_tcam_ent(hw, blk, tcam->attr.mask == 0,
3667				    &tcam->tcam_idx);
3668	if (status)
3669		return status;
3670
3671	/* add TCAM to change list */
3672	p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL);
3673	if (!p)
3674		return -ENOMEM;
3675
3676	status = ice_tcam_write_entry(hw, blk, tcam->tcam_idx, tcam->prof_id,
3677				      tcam->ptg, vsig, 0, tcam->attr.flags,
3678				      vl_msk, dc_msk, nm_msk);
3679	if (status)
3680		goto err_ice_prof_tcam_ena_dis;
3681
3682	tcam->in_use = 1;
3683
3684	p->type = ICE_TCAM_ADD;
3685	p->add_tcam_idx = true;
3686	p->prof_id = tcam->prof_id;
3687	p->ptg = tcam->ptg;
3688	p->vsig = 0;
3689	p->tcam_idx = tcam->tcam_idx;
3690
3691	/* log change */
3692	list_add(&p->list_entry, chg);
3693
3694	return 0;
3695
3696err_ice_prof_tcam_ena_dis:
3697	devm_kfree(ice_hw_to_dev(hw), p);
3698	return status;
3699}
3700
3701/**
3702 * ice_adj_prof_priorities - adjust profile based on priorities
3703 * @hw: pointer to the HW struct
3704 * @blk: hardware block
3705 * @vsig: the VSIG for which to adjust profile priorities
3706 * @chg: the change list
3707 */
3708static int
3709ice_adj_prof_priorities(struct ice_hw *hw, enum ice_block blk, u16 vsig,
3710			struct list_head *chg)
3711{
3712	DECLARE_BITMAP(ptgs_used, ICE_XLT1_CNT);
3713	struct ice_vsig_prof *t;
3714	int status;
3715	u16 idx;
3716
3717	bitmap_zero(ptgs_used, ICE_XLT1_CNT);
3718	idx = vsig & ICE_VSIG_IDX_M;
3719
3720	/* Priority is based on the order in which the profiles are added. The
3721	 * newest added profile has highest priority and the oldest added
3722	 * profile has the lowest priority. Since the profile property list for
3723	 * a VSIG is sorted from newest to oldest, this code traverses the list
3724	 * in order and enables the first of each PTG that it finds (that is not
3725	 * already enabled); it also disables any duplicate PTGs that it finds
3726	 * in the older profiles (that are currently enabled).
3727	 */
3728
3729	list_for_each_entry(t, &hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst,
3730			    list) {
3731		u16 i;
3732
3733		for (i = 0; i < t->tcam_count; i++) {
3734			/* Scan the priorities from newest to oldest.
3735			 * Make sure that the newest profiles take priority.
3736			 */
3737			if (test_bit(t->tcam[i].ptg, ptgs_used) &&
3738			    t->tcam[i].in_use) {
3739				/* need to mark this PTG as never match, as it
3740				 * was already in use and therefore duplicate
3741				 * (and lower priority)
3742				 */
3743				status = ice_prof_tcam_ena_dis(hw, blk, false,
3744							       vsig,
3745							       &t->tcam[i],
3746							       chg);
3747				if (status)
3748					return status;
3749			} else if (!test_bit(t->tcam[i].ptg, ptgs_used) &&
3750				   !t->tcam[i].in_use) {
3751				/* need to enable this PTG, as it in not in use
3752				 * and not enabled (highest priority)
3753				 */
3754				status = ice_prof_tcam_ena_dis(hw, blk, true,
3755							       vsig,
3756							       &t->tcam[i],
3757							       chg);
3758				if (status)
3759					return status;
3760			}
3761
3762			/* keep track of used ptgs */
3763			__set_bit(t->tcam[i].ptg, ptgs_used);
3764		}
3765	}
3766
3767	return 0;
3768}
3769
3770/**
3771 * ice_add_prof_id_vsig - add profile to VSIG
3772 * @hw: pointer to the HW struct
3773 * @blk: hardware block
3774 * @vsig: the VSIG to which this profile is to be added
3775 * @hdl: the profile handle indicating the profile to add
3776 * @rev: true to add entries to the end of the list
3777 * @chg: the change list
3778 */
3779static int
3780ice_add_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsig, u64 hdl,
3781		     bool rev, struct list_head *chg)
3782{
3783	/* Masks that ignore flags */
3784	u8 vl_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
3785	u8 dc_msk[ICE_TCAM_KEY_VAL_SZ] = { 0xFF, 0xFF, 0x00, 0x00, 0x00 };
3786	u8 nm_msk[ICE_TCAM_KEY_VAL_SZ] = { 0x00, 0x00, 0x00, 0x00, 0x00 };
3787	struct ice_prof_map *map;
3788	struct ice_vsig_prof *t;
3789	struct ice_chs_chg *p;
3790	u16 vsig_idx, i;
3791	int status = 0;
3792
3793	/* Error, if this VSIG already has this profile */
3794	if (ice_has_prof_vsig(hw, blk, vsig, hdl))
3795		return -EEXIST;
3796
3797	/* new VSIG profile structure */
3798	t = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*t), GFP_KERNEL);
3799	if (!t)
3800		return -ENOMEM;
3801
3802	mutex_lock(&hw->blk[blk].es.prof_map_lock);
3803	/* Get the details on the profile specified by the handle ID */
3804	map = ice_search_prof_id(hw, blk, hdl);
3805	if (!map) {
3806		status = -ENOENT;
3807		goto err_ice_add_prof_id_vsig;
3808	}
3809
3810	t->profile_cookie = map->profile_cookie;
3811	t->prof_id = map->prof_id;
3812	t->tcam_count = map->ptg_cnt;
3813
3814	/* create TCAM entries */
3815	for (i = 0; i < map->ptg_cnt; i++) {
3816		u16 tcam_idx;
3817
3818		/* add TCAM to change list */
3819		p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL);
3820		if (!p) {
3821			status = -ENOMEM;
3822			goto err_ice_add_prof_id_vsig;
3823		}
3824
3825		/* allocate the TCAM entry index */
3826		/* for entries with empty attribute masks, allocate entry from
3827		 * the bottom of the TCAM table; otherwise, allocate from the
3828		 * top of the table in order to give it higher priority
3829		 */
3830		status = ice_alloc_tcam_ent(hw, blk, map->attr[i].mask == 0,
3831					    &tcam_idx);
3832		if (status) {
3833			devm_kfree(ice_hw_to_dev(hw), p);
3834			goto err_ice_add_prof_id_vsig;
3835		}
3836
3837		t->tcam[i].ptg = map->ptg[i];
3838		t->tcam[i].prof_id = map->prof_id;
3839		t->tcam[i].tcam_idx = tcam_idx;
3840		t->tcam[i].attr = map->attr[i];
3841		t->tcam[i].in_use = true;
3842
3843		p->type = ICE_TCAM_ADD;
3844		p->add_tcam_idx = true;
3845		p->prof_id = t->tcam[i].prof_id;
3846		p->ptg = t->tcam[i].ptg;
3847		p->vsig = vsig;
3848		p->tcam_idx = t->tcam[i].tcam_idx;
3849
3850		/* write the TCAM entry */
3851		status = ice_tcam_write_entry(hw, blk, t->tcam[i].tcam_idx,
3852					      t->tcam[i].prof_id,
3853					      t->tcam[i].ptg, vsig, 0, 0,
3854					      vl_msk, dc_msk, nm_msk);
3855		if (status) {
3856			devm_kfree(ice_hw_to_dev(hw), p);
3857			goto err_ice_add_prof_id_vsig;
3858		}
3859
3860		/* log change */
3861		list_add(&p->list_entry, chg);
3862	}
3863
3864	/* add profile to VSIG */
3865	vsig_idx = vsig & ICE_VSIG_IDX_M;
3866	if (rev)
3867		list_add_tail(&t->list,
3868			      &hw->blk[blk].xlt2.vsig_tbl[vsig_idx].prop_lst);
3869	else
3870		list_add(&t->list,
3871			 &hw->blk[blk].xlt2.vsig_tbl[vsig_idx].prop_lst);
3872
3873	mutex_unlock(&hw->blk[blk].es.prof_map_lock);
3874	return status;
3875
3876err_ice_add_prof_id_vsig:
3877	mutex_unlock(&hw->blk[blk].es.prof_map_lock);
3878	/* let caller clean up the change list */
3879	devm_kfree(ice_hw_to_dev(hw), t);
3880	return status;
3881}
3882
3883/**
3884 * ice_create_prof_id_vsig - add a new VSIG with a single profile
3885 * @hw: pointer to the HW struct
3886 * @blk: hardware block
3887 * @vsi: the initial VSI that will be in VSIG
3888 * @hdl: the profile handle of the profile that will be added to the VSIG
3889 * @chg: the change list
3890 */
3891static int
3892ice_create_prof_id_vsig(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl,
3893			struct list_head *chg)
3894{
3895	struct ice_chs_chg *p;
3896	u16 new_vsig;
3897	int status;
3898
3899	p = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*p), GFP_KERNEL);
3900	if (!p)
3901		return -ENOMEM;
3902
3903	new_vsig = ice_vsig_alloc(hw, blk);
3904	if (!new_vsig) {
3905		status = -EIO;
3906		goto err_ice_create_prof_id_vsig;
3907	}
3908
3909	status = ice_move_vsi(hw, blk, vsi, new_vsig, chg);
3910	if (status)
3911		goto err_ice_create_prof_id_vsig;
3912
3913	status = ice_add_prof_id_vsig(hw, blk, new_vsig, hdl, false, chg);
3914	if (status)
3915		goto err_ice_create_prof_id_vsig;
3916
3917	p->type = ICE_VSIG_ADD;
3918	p->vsi = vsi;
3919	p->orig_vsig = ICE_DEFAULT_VSIG;
3920	p->vsig = new_vsig;
3921
3922	list_add(&p->list_entry, chg);
3923
3924	return 0;
3925
3926err_ice_create_prof_id_vsig:
3927	/* let caller clean up the change list */
3928	devm_kfree(ice_hw_to_dev(hw), p);
3929	return status;
3930}
3931
3932/**
3933 * ice_create_vsig_from_lst - create a new VSIG with a list of profiles
3934 * @hw: pointer to the HW struct
3935 * @blk: hardware block
3936 * @vsi: the initial VSI that will be in VSIG
3937 * @lst: the list of profile that will be added to the VSIG
3938 * @new_vsig: return of new VSIG
3939 * @chg: the change list
3940 */
3941static int
3942ice_create_vsig_from_lst(struct ice_hw *hw, enum ice_block blk, u16 vsi,
3943			 struct list_head *lst, u16 *new_vsig,
3944			 struct list_head *chg)
3945{
3946	struct ice_vsig_prof *t;
3947	int status;
3948	u16 vsig;
3949
3950	vsig = ice_vsig_alloc(hw, blk);
3951	if (!vsig)
3952		return -EIO;
3953
3954	status = ice_move_vsi(hw, blk, vsi, vsig, chg);
3955	if (status)
3956		return status;
3957
3958	list_for_each_entry(t, lst, list) {
3959		/* Reverse the order here since we are copying the list */
3960		status = ice_add_prof_id_vsig(hw, blk, vsig, t->profile_cookie,
3961					      true, chg);
3962		if (status)
3963			return status;
3964	}
3965
3966	*new_vsig = vsig;
3967
3968	return 0;
3969}
3970
3971/**
3972 * ice_find_prof_vsig - find a VSIG with a specific profile handle
3973 * @hw: pointer to the HW struct
3974 * @blk: hardware block
3975 * @hdl: the profile handle of the profile to search for
3976 * @vsig: returns the VSIG with the matching profile
3977 */
3978static bool
3979ice_find_prof_vsig(struct ice_hw *hw, enum ice_block blk, u64 hdl, u16 *vsig)
3980{
3981	struct ice_vsig_prof *t;
3982	struct list_head lst;
3983	int status;
3984
3985	INIT_LIST_HEAD(&lst);
3986
3987	t = kzalloc(sizeof(*t), GFP_KERNEL);
3988	if (!t)
3989		return false;
3990
3991	t->profile_cookie = hdl;
3992	list_add(&t->list, &lst);
3993
3994	status = ice_find_dup_props_vsig(hw, blk, &lst, vsig);
3995
3996	list_del(&t->list);
3997	kfree(t);
3998
3999	return !status;
4000}
4001
4002/**
4003 * ice_add_prof_id_flow - add profile flow
4004 * @hw: pointer to the HW struct
4005 * @blk: hardware block
4006 * @vsi: the VSI to enable with the profile specified by ID
4007 * @hdl: profile handle
4008 *
4009 * Calling this function will update the hardware tables to enable the
4010 * profile indicated by the ID parameter for the VSIs specified in the VSI
4011 * array. Once successfully called, the flow will be enabled.
4012 */
4013int
4014ice_add_prof_id_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl)
4015{
4016	struct ice_vsig_prof *tmp1, *del1;
4017	struct ice_chs_chg *tmp, *del;
4018	struct list_head union_lst;
4019	struct list_head chg;
4020	int status;
4021	u16 vsig;
4022
4023	INIT_LIST_HEAD(&union_lst);
4024	INIT_LIST_HEAD(&chg);
4025
4026	/* Get profile */
4027	status = ice_get_prof(hw, blk, hdl, &chg);
4028	if (status)
4029		return status;
4030
4031	/* determine if VSI is already part of a VSIG */
4032	status = ice_vsig_find_vsi(hw, blk, vsi, &vsig);
4033	if (!status && vsig) {
4034		bool only_vsi;
4035		u16 or_vsig;
4036		u16 ref;
4037
4038		/* found in VSIG */
4039		or_vsig = vsig;
4040
4041		/* make sure that there is no overlap/conflict between the new
4042		 * characteristics and the existing ones; we don't support that
4043		 * scenario
4044		 */
4045		if (ice_has_prof_vsig(hw, blk, vsig, hdl)) {
4046			status = -EEXIST;
4047			goto err_ice_add_prof_id_flow;
4048		}
4049
4050		/* last VSI in the VSIG? */
4051		status = ice_vsig_get_ref(hw, blk, vsig, &ref);
4052		if (status)
4053			goto err_ice_add_prof_id_flow;
4054		only_vsi = (ref == 1);
4055
4056		/* create a union of the current profiles and the one being
4057		 * added
4058		 */
4059		status = ice_get_profs_vsig(hw, blk, vsig, &union_lst);
4060		if (status)
4061			goto err_ice_add_prof_id_flow;
4062
4063		status = ice_add_prof_to_lst(hw, blk, &union_lst, hdl);
4064		if (status)
4065			goto err_ice_add_prof_id_flow;
4066
4067		/* search for an existing VSIG with an exact charc match */
4068		status = ice_find_dup_props_vsig(hw, blk, &union_lst, &vsig);
4069		if (!status) {
4070			/* move VSI to the VSIG that matches */
4071			status = ice_move_vsi(hw, blk, vsi, vsig, &chg);
4072			if (status)
4073				goto err_ice_add_prof_id_flow;
4074
4075			/* VSI has been moved out of or_vsig. If the or_vsig had
4076			 * only that VSI it is now empty and can be removed.
4077			 */
4078			if (only_vsi) {
4079				status = ice_rem_vsig(hw, blk, or_vsig, &chg);
4080				if (status)
4081					goto err_ice_add_prof_id_flow;
4082			}
4083		} else if (only_vsi) {
4084			/* If the original VSIG only contains one VSI, then it
4085			 * will be the requesting VSI. In this case the VSI is
4086			 * not sharing entries and we can simply add the new
4087			 * profile to the VSIG.
4088			 */
4089			status = ice_add_prof_id_vsig(hw, blk, vsig, hdl, false,
4090						      &chg);
4091			if (status)
4092				goto err_ice_add_prof_id_flow;
4093
4094			/* Adjust priorities */
4095			status = ice_adj_prof_priorities(hw, blk, vsig, &chg);
4096			if (status)
4097				goto err_ice_add_prof_id_flow;
4098		} else {
4099			/* No match, so we need a new VSIG */
4100			status = ice_create_vsig_from_lst(hw, blk, vsi,
4101							  &union_lst, &vsig,
4102							  &chg);
4103			if (status)
4104				goto err_ice_add_prof_id_flow;
4105
4106			/* Adjust priorities */
4107			status = ice_adj_prof_priorities(hw, blk, vsig, &chg);
4108			if (status)
4109				goto err_ice_add_prof_id_flow;
4110		}
4111	} else {
4112		/* need to find or add a VSIG */
4113		/* search for an existing VSIG with an exact charc match */
4114		if (ice_find_prof_vsig(hw, blk, hdl, &vsig)) {
4115			/* found an exact match */
4116			/* add or move VSI to the VSIG that matches */
4117			status = ice_move_vsi(hw, blk, vsi, vsig, &chg);
4118			if (status)
4119				goto err_ice_add_prof_id_flow;
4120		} else {
4121			/* we did not find an exact match */
4122			/* we need to add a VSIG */
4123			status = ice_create_prof_id_vsig(hw, blk, vsi, hdl,
4124							 &chg);
4125			if (status)
4126				goto err_ice_add_prof_id_flow;
4127		}
4128	}
4129
4130	/* update hardware */
4131	if (!status)
4132		status = ice_upd_prof_hw(hw, blk, &chg);
4133
4134err_ice_add_prof_id_flow:
4135	list_for_each_entry_safe(del, tmp, &chg, list_entry) {
4136		list_del(&del->list_entry);
4137		devm_kfree(ice_hw_to_dev(hw), del);
4138	}
4139
4140	list_for_each_entry_safe(del1, tmp1, &union_lst, list) {
4141		list_del(&del1->list);
4142		devm_kfree(ice_hw_to_dev(hw), del1);
4143	}
4144
4145	return status;
4146}
4147
4148/**
4149 * ice_flow_assoc_fdir_prof - add an FDIR profile for main/ctrl VSI
4150 * @hw: pointer to the HW struct
4151 * @blk: HW block
4152 * @dest_vsi: dest VSI
4153 * @fdir_vsi: fdir programming VSI
4154 * @hdl: profile handle
4155 *
4156 * Update the hardware tables to enable the FDIR profile indicated by @hdl for
4157 * the VSI specified by @dest_vsi. On success, the flow will be enabled.
4158 *
4159 * Return: 0 on success or negative errno on failure.
4160 */
4161int
4162ice_flow_assoc_fdir_prof(struct ice_hw *hw, enum ice_block blk,
4163			 u16 dest_vsi, u16 fdir_vsi, u64 hdl)
4164{
4165	u16 vsi_num;
4166	int status;
4167
4168	if (blk != ICE_BLK_FD)
4169		return -EINVAL;
4170
4171	vsi_num = ice_get_hw_vsi_num(hw, dest_vsi);
4172	status = ice_add_prof_id_flow(hw, blk, vsi_num, hdl);
4173	if (status) {
4174		ice_debug(hw, ICE_DBG_FLOW, "Adding HW profile failed for main VSI flow entry: %d\n",
4175			  status);
4176		return status;
4177	}
4178
4179	vsi_num = ice_get_hw_vsi_num(hw, fdir_vsi);
4180	status = ice_add_prof_id_flow(hw, blk, vsi_num, hdl);
4181	if (status) {
4182		ice_debug(hw, ICE_DBG_FLOW, "Adding HW profile failed for ctrl VSI flow entry: %d\n",
4183			  status);
4184		goto err;
4185	}
4186
4187	return 0;
4188
4189err:
4190	vsi_num = ice_get_hw_vsi_num(hw, dest_vsi);
4191	ice_rem_prof_id_flow(hw, blk, vsi_num, hdl);
4192
4193	return status;
4194}
4195
4196/**
4197 * ice_rem_prof_from_list - remove a profile from list
4198 * @hw: pointer to the HW struct
4199 * @lst: list to remove the profile from
4200 * @hdl: the profile handle indicating the profile to remove
4201 */
4202static int
4203ice_rem_prof_from_list(struct ice_hw *hw, struct list_head *lst, u64 hdl)
4204{
4205	struct ice_vsig_prof *ent, *tmp;
4206
4207	list_for_each_entry_safe(ent, tmp, lst, list)
4208		if (ent->profile_cookie == hdl) {
4209			list_del(&ent->list);
4210			devm_kfree(ice_hw_to_dev(hw), ent);
4211			return 0;
4212		}
4213
4214	return -ENOENT;
4215}
4216
4217/**
4218 * ice_rem_prof_id_flow - remove flow
4219 * @hw: pointer to the HW struct
4220 * @blk: hardware block
4221 * @vsi: the VSI from which to remove the profile specified by ID
4222 * @hdl: profile tracking handle
4223 *
4224 * Calling this function will update the hardware tables to remove the
4225 * profile indicated by the ID parameter for the VSIs specified in the VSI
4226 * array. Once successfully called, the flow will be disabled.
4227 */
4228int
4229ice_rem_prof_id_flow(struct ice_hw *hw, enum ice_block blk, u16 vsi, u64 hdl)
4230{
4231	struct ice_vsig_prof *tmp1, *del1;
4232	struct ice_chs_chg *tmp, *del;
4233	struct list_head chg, copy;
4234	int status;
4235	u16 vsig;
4236
4237	INIT_LIST_HEAD(&copy);
4238	INIT_LIST_HEAD(&chg);
4239
4240	/* determine if VSI is already part of a VSIG */
4241	status = ice_vsig_find_vsi(hw, blk, vsi, &vsig);
4242	if (!status && vsig) {
4243		bool last_profile;
4244		bool only_vsi;
4245		u16 ref;
4246
4247		/* found in VSIG */
4248		last_profile = ice_vsig_prof_id_count(hw, blk, vsig) == 1;
4249		status = ice_vsig_get_ref(hw, blk, vsig, &ref);
4250		if (status)
4251			goto err_ice_rem_prof_id_flow;
4252		only_vsi = (ref == 1);
4253
4254		if (only_vsi) {
4255			/* If the original VSIG only contains one reference,
4256			 * which will be the requesting VSI, then the VSI is not
4257			 * sharing entries and we can simply remove the specific
4258			 * characteristics from the VSIG.
4259			 */
4260
4261			if (last_profile) {
4262				/* If there are no profiles left for this VSIG,
4263				 * then simply remove the VSIG.
4264				 */
4265				status = ice_rem_vsig(hw, blk, vsig, &chg);
4266				if (status)
4267					goto err_ice_rem_prof_id_flow;
4268			} else {
4269				status = ice_rem_prof_id_vsig(hw, blk, vsig,
4270							      hdl, &chg);
4271				if (status)
4272					goto err_ice_rem_prof_id_flow;
4273
4274				/* Adjust priorities */
4275				status = ice_adj_prof_priorities(hw, blk, vsig,
4276								 &chg);
4277				if (status)
4278					goto err_ice_rem_prof_id_flow;
4279			}
4280
4281		} else {
4282			/* Make a copy of the VSIG's list of Profiles */
4283			status = ice_get_profs_vsig(hw, blk, vsig, &copy);
4284			if (status)
4285				goto err_ice_rem_prof_id_flow;
4286
4287			/* Remove specified profile entry from the list */
4288			status = ice_rem_prof_from_list(hw, &copy, hdl);
4289			if (status)
4290				goto err_ice_rem_prof_id_flow;
4291
4292			if (list_empty(&copy)) {
4293				status = ice_move_vsi(hw, blk, vsi,
4294						      ICE_DEFAULT_VSIG, &chg);
4295				if (status)
4296					goto err_ice_rem_prof_id_flow;
4297
4298			} else if (!ice_find_dup_props_vsig(hw, blk, &copy,
4299							    &vsig)) {
4300				/* found an exact match */
4301				/* add or move VSI to the VSIG that matches */
4302				/* Search for a VSIG with a matching profile
4303				 * list
4304				 */
4305
4306				/* Found match, move VSI to the matching VSIG */
4307				status = ice_move_vsi(hw, blk, vsi, vsig, &chg);
4308				if (status)
4309					goto err_ice_rem_prof_id_flow;
4310			} else {
4311				/* since no existing VSIG supports this
4312				 * characteristic pattern, we need to create a
4313				 * new VSIG and TCAM entries
4314				 */
4315				status = ice_create_vsig_from_lst(hw, blk, vsi,
4316								  &copy, &vsig,
4317								  &chg);
4318				if (status)
4319					goto err_ice_rem_prof_id_flow;
4320
4321				/* Adjust priorities */
4322				status = ice_adj_prof_priorities(hw, blk, vsig,
4323								 &chg);
4324				if (status)
4325					goto err_ice_rem_prof_id_flow;
4326			}
4327		}
4328	} else {
4329		status = -ENOENT;
4330	}
4331
4332	/* update hardware tables */
4333	if (!status)
4334		status = ice_upd_prof_hw(hw, blk, &chg);
4335
4336err_ice_rem_prof_id_flow:
4337	list_for_each_entry_safe(del, tmp, &chg, list_entry) {
4338		list_del(&del->list_entry);
4339		devm_kfree(ice_hw_to_dev(hw), del);
4340	}
4341
4342	list_for_each_entry_safe(del1, tmp1, &copy, list) {
4343		list_del(&del1->list);
4344		devm_kfree(ice_hw_to_dev(hw), del1);
4345	}
4346
4347	return status;
4348}
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright (c) 2019, Intel Corporation. */
   3
   4#include "ice_common.h"
   5#include "ice_flex_pipe.h"
 
 
   6
   7/**
   8 * ice_pkg_val_buf
   9 * @buf: pointer to the ice buffer
  10 *
  11 * This helper function validates a buffer's header.
  12 */
  13static struct ice_buf_hdr *ice_pkg_val_buf(struct ice_buf *buf)
  14{
  15	struct ice_buf_hdr *hdr;
  16	u16 section_count;
  17	u16 data_end;
 
 
  18
  19	hdr = (struct ice_buf_hdr *)buf->buf;
  20	/* verify data */
  21	section_count = le16_to_cpu(hdr->section_count);
  22	if (section_count < ICE_MIN_S_COUNT || section_count > ICE_MAX_S_COUNT)
  23		return NULL;
 
 
 
 
 
 
 
  24
  25	data_end = le16_to_cpu(hdr->data_end);
  26	if (data_end < ICE_MIN_S_DATA_END || data_end > ICE_MAX_S_DATA_END)
  27		return NULL;
 
 
 
 
 
 
 
 
 
  28
  29	return hdr;
  30}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  31
  32/**
  33 * ice_find_buf_table
  34 * @ice_seg: pointer to the ice segment
 
  35 *
  36 * Returns the address of the buffer table within the ice segment.
 
  37 */
  38static struct ice_buf_table *ice_find_buf_table(struct ice_seg *ice_seg)
  39{
  40	struct ice_nvm_table *nvms;
  41
  42	nvms = (struct ice_nvm_table *)
  43		(ice_seg->device_table +
  44		 le32_to_cpu(ice_seg->device_table_count));
  45
  46	return (__force struct ice_buf_table *)
  47		(nvms->vers + le32_to_cpu(nvms->table_count));
  48}
  49
  50/**
  51 * ice_pkg_enum_buf
  52 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls)
  53 * @state: pointer to the enum state
  54 *
  55 * This function will enumerate all the buffers in the ice segment. The first
  56 * call is made with the ice_seg parameter non-NULL; on subsequent calls,
  57 * ice_seg is set to NULL which continues the enumeration. When the function
  58 * returns a NULL pointer, then the end of the buffers has been reached, or an
  59 * unexpected value has been detected (for example an invalid section count or
  60 * an invalid buffer end value).
  61 */
  62static struct ice_buf_hdr *
  63ice_pkg_enum_buf(struct ice_seg *ice_seg, struct ice_pkg_enum *state)
  64{
  65	if (ice_seg) {
  66		state->buf_table = ice_find_buf_table(ice_seg);
  67		if (!state->buf_table)
  68			return NULL;
  69
  70		state->buf_idx = 0;
  71		return ice_pkg_val_buf(state->buf_table->buf_array);
  72	}
  73
  74	if (++state->buf_idx < le32_to_cpu(state->buf_table->buf_count))
  75		return ice_pkg_val_buf(state->buf_table->buf_array +
  76				       state->buf_idx);
  77	else
  78		return NULL;
  79}
 
 
  80
  81/**
  82 * ice_pkg_advance_sect
  83 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls)
  84 * @state: pointer to the enum state
 
 
 
 
 
 
 
 
 
 
 
 
 
  85 *
  86 * This helper function will advance the section within the ice segment,
  87 * also advancing the buffer if needed.
 
 
 
 
  88 */
  89static bool
  90ice_pkg_advance_sect(struct ice_seg *ice_seg, struct ice_pkg_enum *state)
 
  91{
  92	if (!ice_seg && !state->buf)
  93		return false;
  94
  95	if (!ice_seg && state->buf)
  96		if (++state->sect_idx < le16_to_cpu(state->buf->section_count))
  97			return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  98
  99	state->buf = ice_pkg_enum_buf(ice_seg, state);
 100	if (!state->buf)
 101		return false;
 
 
 
 
 102
 103	/* start of new buffer, reset section index */
 104	state->sect_idx = 0;
 105	return true;
 106}
 107
 108/**
 109 * ice_pkg_enum_section
 110 * @ice_seg: pointer to the ice segment (or NULL on subsequent calls)
 111 * @state: pointer to the enum state
 112 * @sect_type: section type to enumerate
 113 *
 114 * This function will enumerate all the sections of a particular type in the
 115 * ice segment. The first call is made with the ice_seg parameter non-NULL;
 116 * on subsequent calls, ice_seg is set to NULL which continues the enumeration.
 117 * When the function returns a NULL pointer, then the end of the matching
 118 * sections has been reached.
 119 */
 120static void *
 121ice_pkg_enum_section(struct ice_seg *ice_seg, struct ice_pkg_enum *state,
 122		     u32 sect_type)
 123{
 124	u16 offset, size;
 
 125
 126	if (ice_seg)
 127		state->type = sect_type;
 
 
 
 128
 129	if (!ice_pkg_advance_sect(ice_seg, state))
 130		return NULL;
 
 
 
 
 131
 132	/* scan for next matching section */
 133	while (state->buf->section_entry[state->sect_idx].type !=
 134	       cpu_to_le32(state->type))
 135		if (!ice_pkg_advance_sect(NULL, state))
 136			return NULL;
 137
 138	/* validate section */
 139	offset = le16_to_cpu(state->buf->section_entry[state->sect_idx].offset);
 140	if (offset < ICE_MIN_S_OFF || offset > ICE_MAX_S_OFF)
 141		return NULL;
 142
 143	size = le16_to_cpu(state->buf->section_entry[state->sect_idx].size);
 144	if (size < ICE_MIN_S_SZ || size > ICE_MAX_S_SZ)
 145		return NULL;
 146
 147	/* make sure the section fits in the buffer */
 148	if (offset + size > ICE_PKG_BUF_SIZE)
 149		return NULL;
 150
 151	state->sect_type =
 152		le32_to_cpu(state->buf->section_entry[state->sect_idx].type);
 153
 154	/* calc pointer to this section */
 155	state->sect = ((u8 *)state->buf) +
 156		le16_to_cpu(state->buf->section_entry[state->sect_idx].offset);
 157
 158	return state->sect;
 159}
 160
 161/**
 162 * ice_acquire_global_cfg_lock
 163 * @hw: pointer to the HW structure
 164 * @access: access type (read or write)
 
 
 
 
 
 
 165 *
 166 * This function will request ownership of the global config lock for reading
 167 * or writing of the package. When attempting to obtain write access, the
 168 * caller must check for the following two return values:
 169 *
 170 * ICE_SUCCESS        - Means the caller has acquired the global config lock
 171 *                      and can perform writing of the package.
 172 * ICE_ERR_AQ_NO_WORK - Indicates another driver has already written the
 173 *                      package or has found that no update was necessary; in
 174 *                      this case, the caller can just skip performing any
 175 *                      update of the package.
 176 */
 177static enum ice_status
 178ice_acquire_global_cfg_lock(struct ice_hw *hw,
 179			    enum ice_aq_res_access_type access)
 180{
 181	enum ice_status status;
 
 182
 183	status = ice_acquire_res(hw, ICE_GLOBAL_CFG_LOCK_RES_ID, access,
 184				 ICE_GLOBAL_CFG_LOCK_TIMEOUT);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 185
 186	if (!status)
 187		mutex_lock(&ice_global_cfg_lock_sw);
 188	else if (status == ICE_ERR_AQ_NO_WORK)
 189		ice_debug(hw, ICE_DBG_PKG,
 190			  "Global config lock: No work to do\n");
 191
 192	return status;
 193}
 194
 195/**
 196 * ice_release_global_cfg_lock
 197 * @hw: pointer to the HW structure
 
 198 *
 199 * This function will release the global config lock.
 200 */
 201static void ice_release_global_cfg_lock(struct ice_hw *hw)
 
 202{
 203	mutex_unlock(&ice_global_cfg_lock_sw);
 204	ice_release_res(hw, ICE_GLOBAL_CFG_LOCK_RES_ID);
 205}
 206
 207/**
 208 * ice_aq_download_pkg
 209 * @hw: pointer to the hardware structure
 210 * @pkg_buf: the package buffer to transfer
 211 * @buf_size: the size of the package buffer
 212 * @last_buf: last buffer indicator
 213 * @error_offset: returns error offset
 214 * @error_info: returns error information
 215 * @cd: pointer to command details structure or NULL
 216 *
 217 * Download Package (0x0C40)
 218 */
 219static enum ice_status
 220ice_aq_download_pkg(struct ice_hw *hw, struct ice_buf_hdr *pkg_buf,
 221		    u16 buf_size, bool last_buf, u32 *error_offset,
 222		    u32 *error_info, struct ice_sq_cd *cd)
 223{
 224	struct ice_aqc_download_pkg *cmd;
 225	struct ice_aq_desc desc;
 226	enum ice_status status;
 227
 228	if (error_offset)
 229		*error_offset = 0;
 230	if (error_info)
 231		*error_info = 0;
 232
 233	cmd = &desc.params.download_pkg;
 234	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_download_pkg);
 235	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
 236
 237	if (last_buf)
 238		cmd->flags |= ICE_AQC_DOWNLOAD_PKG_LAST_BUF;
 239
 240	status = ice_aq_send_cmd(hw, &desc, pkg_buf, buf_size, cd);
 241	if (status == ICE_ERR_AQ_ERROR) {
 242		/* Read error from buffer only when the FW returned an error */
 243		struct ice_aqc_download_pkg_resp *resp;
 244
 245		resp = (struct ice_aqc_download_pkg_resp *)pkg_buf;
 246		if (error_offset)
 247			*error_offset = le32_to_cpu(resp->error_offset);
 248		if (error_info)
 249			*error_info = le32_to_cpu(resp->error_info);
 250	}
 251
 252	return status;
 253}
 254
 255/**
 256 * ice_find_seg_in_pkg
 257 * @hw: pointer to the hardware structure
 258 * @seg_type: the segment type to search for (i.e., SEGMENT_TYPE_CPK)
 259 * @pkg_hdr: pointer to the package header to be searched
 260 *
 261 * This function searches a package file for a particular segment type. On
 262 * success it returns a pointer to the segment header, otherwise it will
 263 * return NULL.
 264 */
 265static struct ice_generic_seg_hdr *
 266ice_find_seg_in_pkg(struct ice_hw *hw, u32 seg_type,
 267		    struct ice_pkg_hdr *pkg_hdr)
 268{
 269	u32 i;
 
 270
 271	ice_debug(hw, ICE_DBG_PKG, "Package format version: %d.%d.%d.%d\n",
 272		  pkg_hdr->format_ver.major, pkg_hdr->format_ver.minor,
 273		  pkg_hdr->format_ver.update, pkg_hdr->format_ver.draft);
 274
 275	/* Search all package segments for the requested segment type */
 276	for (i = 0; i < le32_to_cpu(pkg_hdr->seg_count); i++) {
 277		struct ice_generic_seg_hdr *seg;
 
 
 
 
 278
 279		seg = (struct ice_generic_seg_hdr *)
 280			((u8 *)pkg_hdr + le32_to_cpu(pkg_hdr->seg_offset[i]));
 281
 282		if (le32_to_cpu(seg->seg_type) == seg_type)
 283			return seg;
 284	}
 285
 286	return NULL;
 287}
 288
 289/**
 290 * ice_dwnld_cfg_bufs
 291 * @hw: pointer to the hardware structure
 292 * @bufs: pointer to an array of buffers
 293 * @count: the number of buffers in the array
 294 *
 295 * Obtains global config lock and downloads the package configuration buffers
 296 * to the firmware. Metadata buffers are skipped, and the first metadata buffer
 297 * found indicates that the rest of the buffers are all metadata buffers.
 298 */
 299static enum ice_status
 300ice_dwnld_cfg_bufs(struct ice_hw *hw, struct ice_buf *bufs, u32 count)
 301{
 302	enum ice_status status;
 303	struct ice_buf_hdr *bh;
 304	u32 offset, info, i;
 305
 306	if (!bufs || !count)
 307		return ICE_ERR_PARAM;
 308
 309	/* If the first buffer's first section has its metadata bit set
 310	 * then there are no buffers to be downloaded, and the operation is
 311	 * considered a success.
 312	 */
 313	bh = (struct ice_buf_hdr *)bufs;
 314	if (le32_to_cpu(bh->section_entry[0].type) & ICE_METADATA_BUF)
 315		return 0;
 316
 317	/* reset pkg_dwnld_status in case this function is called in the
 318	 * reset/rebuild flow
 319	 */
 320	hw->pkg_dwnld_status = ICE_AQ_RC_OK;
 321
 322	status = ice_acquire_global_cfg_lock(hw, ICE_RES_WRITE);
 323	if (status) {
 324		if (status == ICE_ERR_AQ_NO_WORK)
 325			hw->pkg_dwnld_status = ICE_AQ_RC_EEXIST;
 326		else
 327			hw->pkg_dwnld_status = hw->adminq.sq_last_status;
 328		return status;
 
 
 
 
 
 
 
 
 
 
 
 
 329	}
 330
 331	for (i = 0; i < count; i++) {
 332		bool last = ((i + 1) == count);
 333
 334		if (!last) {
 335			/* check next buffer for metadata flag */
 336			bh = (struct ice_buf_hdr *)(bufs + i + 1);
 337
 338			/* A set metadata flag in the next buffer will signal
 339			 * that the current buffer will be the last buffer
 340			 * downloaded
 341			 */
 342			if (le16_to_cpu(bh->section_count))
 343				if (le32_to_cpu(bh->section_entry[0].type) &
 344				    ICE_METADATA_BUF)
 345					last = true;
 346		}
 347
 348		bh = (struct ice_buf_hdr *)(bufs + i);
 349
 350		status = ice_aq_download_pkg(hw, bh, ICE_PKG_BUF_SIZE, last,
 351					     &offset, &info, NULL);
 352
 353		/* Save AQ status from download package */
 354		hw->pkg_dwnld_status = hw->adminq.sq_last_status;
 355		if (status) {
 356			ice_debug(hw, ICE_DBG_PKG,
 357				  "Pkg download failed: err %d off %d inf %d\n",
 358				  status, offset, info);
 359
 360			break;
 361		}
 362
 363		if (last)
 364			break;
 365	}
 366
 367	ice_release_global_cfg_lock(hw);
 368
 369	return status;
 370}
 371
 372/**
 373 * ice_aq_get_pkg_info_list
 374 * @hw: pointer to the hardware structure
 375 * @pkg_info: the buffer which will receive the information list
 376 * @buf_size: the size of the pkg_info information buffer
 377 * @cd: pointer to command details structure or NULL
 378 *
 379 * Get Package Info List (0x0C43)
 380 */
 381static enum ice_status
 382ice_aq_get_pkg_info_list(struct ice_hw *hw,
 383			 struct ice_aqc_get_pkg_info_resp *pkg_info,
 384			 u16 buf_size, struct ice_sq_cd *cd)
 385{
 386	struct ice_aq_desc desc;
 387
 388	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_pkg_info_list);
 
 
 
 
 
 
 389
 390	return ice_aq_send_cmd(hw, &desc, pkg_info, buf_size, cd);
 391}
 392
 393/**
 394 * ice_download_pkg
 395 * @hw: pointer to the hardware structure
 396 * @ice_seg: pointer to the segment of the package to be downloaded
 
 397 *
 398 * Handles the download of a complete package.
 
 
 399 */
 400static enum ice_status
 401ice_download_pkg(struct ice_hw *hw, struct ice_seg *ice_seg)
 402{
 403	struct ice_buf_table *ice_buf_tbl;
 404
 405	ice_debug(hw, ICE_DBG_PKG, "Segment version: %d.%d.%d.%d\n",
 406		  ice_seg->hdr.seg_ver.major, ice_seg->hdr.seg_ver.minor,
 407		  ice_seg->hdr.seg_ver.update, ice_seg->hdr.seg_ver.draft);
 
 
 408
 409	ice_debug(hw, ICE_DBG_PKG, "Seg: type 0x%X, size %d, name %s\n",
 410		  le32_to_cpu(ice_seg->hdr.seg_type),
 411		  le32_to_cpu(ice_seg->hdr.seg_size), ice_seg->hdr.seg_name);
 412
 413	ice_buf_tbl = ice_find_buf_table(ice_seg);
 414
 415	ice_debug(hw, ICE_DBG_PKG, "Seg buf count: %d\n",
 416		  le32_to_cpu(ice_buf_tbl->buf_count));
 417
 418	return ice_dwnld_cfg_bufs(hw, ice_buf_tbl->buf_array,
 419				  le32_to_cpu(ice_buf_tbl->buf_count));
 420}
 421
 422/**
 423 * ice_init_pkg_info
 424 * @hw: pointer to the hardware structure
 425 * @pkg_hdr: pointer to the driver's package hdr
 
 
 426 *
 427 * Saves off the package details into the HW structure.
 
 
 428 */
 429static enum ice_status
 430ice_init_pkg_info(struct ice_hw *hw, struct ice_pkg_hdr *pkg_hdr)
 
 431{
 432	struct ice_global_metadata_seg *meta_seg;
 433	struct ice_generic_seg_hdr *seg_hdr;
 434
 435	if (!pkg_hdr)
 436		return ICE_ERR_PARAM;
 437
 438	meta_seg = (struct ice_global_metadata_seg *)
 439		   ice_find_seg_in_pkg(hw, SEGMENT_TYPE_METADATA, pkg_hdr);
 440	if (meta_seg) {
 441		hw->pkg_ver = meta_seg->pkg_ver;
 442		memcpy(hw->pkg_name, meta_seg->pkg_name, sizeof(hw->pkg_name));
 443
 444		ice_debug(hw, ICE_DBG_PKG, "Pkg: %d.%d.%d.%d, %s\n",
 445			  meta_seg->pkg_ver.major, meta_seg->pkg_ver.minor,
 446			  meta_seg->pkg_ver.update, meta_seg->pkg_ver.draft,
 447			  meta_seg->pkg_name);
 448	} else {
 449		ice_debug(hw, ICE_DBG_INIT,
 450			  "Did not find metadata segment in driver package\n");
 451		return ICE_ERR_CFG;
 452	}
 453
 454	seg_hdr = ice_find_seg_in_pkg(hw, SEGMENT_TYPE_ICE, pkg_hdr);
 455	if (seg_hdr) {
 456		hw->ice_pkg_ver = seg_hdr->seg_ver;
 457		memcpy(hw->ice_pkg_name, seg_hdr->seg_name,
 458		       sizeof(hw->ice_pkg_name));
 459
 460		ice_debug(hw, ICE_DBG_PKG, "Ice Pkg: %d.%d.%d.%d, %s\n",
 461			  seg_hdr->seg_ver.major, seg_hdr->seg_ver.minor,
 462			  seg_hdr->seg_ver.update, seg_hdr->seg_ver.draft,
 463			  seg_hdr->seg_name);
 464	} else {
 465		ice_debug(hw, ICE_DBG_INIT,
 466			  "Did not find ice segment in driver package\n");
 467		return ICE_ERR_CFG;
 468	}
 
 
 
 
 469
 470	return 0;
 471}
 
 
 
 
 
 472
 473/**
 474 * ice_get_pkg_info
 475 * @hw: pointer to the hardware structure
 476 *
 477 * Store details of the package currently loaded in HW into the HW structure.
 478 */
 479static enum ice_status ice_get_pkg_info(struct ice_hw *hw)
 480{
 481	struct ice_aqc_get_pkg_info_resp *pkg_info;
 482	enum ice_status status;
 483	u16 size;
 484	u32 i;
 485
 486	size = sizeof(*pkg_info) + (sizeof(pkg_info->pkg_info[0]) *
 487				    (ICE_PKG_CNT - 1));
 488	pkg_info = kzalloc(size, GFP_KERNEL);
 489	if (!pkg_info)
 490		return ICE_ERR_NO_MEMORY;
 491
 492	status = ice_aq_get_pkg_info_list(hw, pkg_info, size, NULL);
 493	if (status)
 494		goto init_pkg_free_alloc;
 495
 496	for (i = 0; i < le32_to_cpu(pkg_info->count); i++) {
 497#define ICE_PKG_FLAG_COUNT	4
 498		char flags[ICE_PKG_FLAG_COUNT + 1] = { 0 };
 499		u8 place = 0;
 500
 501		if (pkg_info->pkg_info[i].is_active) {
 502			flags[place++] = 'A';
 503			hw->active_pkg_ver = pkg_info->pkg_info[i].ver;
 504			memcpy(hw->active_pkg_name,
 505			       pkg_info->pkg_info[i].name,
 506			       sizeof(hw->active_pkg_name));
 507			hw->active_pkg_in_nvm = pkg_info->pkg_info[i].is_in_nvm;
 508		}
 509		if (pkg_info->pkg_info[i].is_active_at_boot)
 510			flags[place++] = 'B';
 511		if (pkg_info->pkg_info[i].is_modified)
 512			flags[place++] = 'M';
 513		if (pkg_info->pkg_info[i].is_in_nvm)
 514			flags[place++] = 'N';
 515
 516		ice_debug(hw, ICE_DBG_PKG, "Pkg[%d]: %d.%d.%d.%d,%s,%s\n",
 517			  i, pkg_info->pkg_info[i].ver.major,
 518			  pkg_info->pkg_info[i].ver.minor,
 519			  pkg_info->pkg_info[i].ver.update,
 520			  pkg_info->pkg_info[i].ver.draft,
 521			  pkg_info->pkg_info[i].name, flags);
 522	}
 523
 524init_pkg_free_alloc:
 525	kfree(pkg_info);
 526
 527	return status;
 528}
 529
 530/**
 531 * ice_verify_pkg - verify package
 532 * @pkg: pointer to the package buffer
 533 * @len: size of the package buffer
 
 
 534 *
 535 * Verifies various attributes of the package file, including length, format
 536 * version, and the requirement of at least one segment.
 
 537 */
 538static enum ice_status ice_verify_pkg(struct ice_pkg_hdr *pkg, u32 len)
 
 
 539{
 540	u32 seg_count;
 541	u32 i;
 
 
 
 
 
 
 
 
 
 
 542
 543	if (len < sizeof(*pkg))
 544		return ICE_ERR_BUF_TOO_SHORT;
 
 
 
 545
 546	if (pkg->format_ver.major != ICE_PKG_FMT_VER_MAJ ||
 547	    pkg->format_ver.minor != ICE_PKG_FMT_VER_MNR ||
 548	    pkg->format_ver.update != ICE_PKG_FMT_VER_UPD ||
 549	    pkg->format_ver.draft != ICE_PKG_FMT_VER_DFT)
 550		return ICE_ERR_CFG;
 
 
 
 
 
 
 
 
 
 
 551
 552	/* pkg must have at least one segment */
 553	seg_count = le32_to_cpu(pkg->seg_count);
 554	if (seg_count < 1)
 555		return ICE_ERR_CFG;
 
 
 
 556
 557	/* make sure segment array fits in package length */
 558	if (len < sizeof(*pkg) + ((seg_count - 1) * sizeof(pkg->seg_offset)))
 559		return ICE_ERR_BUF_TOO_SHORT;
 560
 561	/* all segments must fit within length */
 562	for (i = 0; i < seg_count; i++) {
 563		u32 off = le32_to_cpu(pkg->seg_offset[i]);
 564		struct ice_generic_seg_hdr *seg;
 565
 566		/* segment header must fit */
 567		if (len < off + sizeof(*seg))
 568			return ICE_ERR_BUF_TOO_SHORT;
 569
 570		seg = (struct ice_generic_seg_hdr *)((u8 *)pkg + off);
 571
 572		/* segment body must fit */
 573		if (len < off + le32_to_cpu(seg->seg_size))
 574			return ICE_ERR_BUF_TOO_SHORT;
 575	}
 576
 577	return 0;
 578}
 579
 580/**
 581 * ice_free_seg - free package segment pointer
 582 * @hw: pointer to the hardware structure
 583 *
 584 * Frees the package segment pointer in the proper manner, depending on if the
 585 * segment was allocated or just the passed in pointer was stored.
 586 */
 587void ice_free_seg(struct ice_hw *hw)
 588{
 589	if (hw->pkg_copy) {
 590		devm_kfree(ice_hw_to_dev(hw), hw->pkg_copy);
 591		hw->pkg_copy = NULL;
 592		hw->pkg_size = 0;
 593	}
 594	hw->seg = NULL;
 595}
 596
 597/**
 598 * ice_init_pkg_regs - initialize additional package registers
 599 * @hw: pointer to the hardware structure
 600 */
 601static void ice_init_pkg_regs(struct ice_hw *hw)
 602{
 603#define ICE_SW_BLK_INP_MASK_L 0xFFFFFFFF
 604#define ICE_SW_BLK_INP_MASK_H 0x0000FFFF
 605#define ICE_SW_BLK_IDX	0
 606
 607	/* setup Switch block input mask, which is 48-bits in two parts */
 608	wr32(hw, GL_PREEXT_L2_PMASK0(ICE_SW_BLK_IDX), ICE_SW_BLK_INP_MASK_L);
 609	wr32(hw, GL_PREEXT_L2_PMASK1(ICE_SW_BLK_IDX), ICE_SW_BLK_INP_MASK_H);
 610}
 611
 612/**
 613 * ice_chk_pkg_version - check package version for compatibility with driver
 614 * @pkg_ver: pointer to a version structure to check
 615 *
 616 * Check to make sure that the package about to be downloaded is compatible with
 617 * the driver. To be compatible, the major and minor components of the package
 618 * version must match our ICE_PKG_SUPP_VER_MAJ and ICE_PKG_SUPP_VER_MNR
 619 * definitions.
 620 */
 621static enum ice_status ice_chk_pkg_version(struct ice_pkg_ver *pkg_ver)
 622{
 623	if (pkg_ver->major != ICE_PKG_SUPP_VER_MAJ ||
 624	    pkg_ver->minor != ICE_PKG_SUPP_VER_MNR)
 625		return ICE_ERR_NOT_SUPPORTED;
 626
 
 627	return 0;
 628}
 629
 630/**
 631 * ice_init_pkg - initialize/download package
 632 * @hw: pointer to the hardware structure
 633 * @buf: pointer to the package buffer
 634 * @len: size of the package buffer
 635 *
 636 * This function initializes a package. The package contains HW tables
 637 * required to do packet processing. First, the function extracts package
 638 * information such as version. Then it finds the ice configuration segment
 639 * within the package; this function then saves a copy of the segment pointer
 640 * within the supplied package buffer. Next, the function will cache any hints
 641 * from the package, followed by downloading the package itself. Note, that if
 642 * a previous PF driver has already downloaded the package successfully, then
 643 * the current driver will not have to download the package again.
 644 *
 645 * The local package contents will be used to query default behavior and to
 646 * update specific sections of the HW's version of the package (e.g. to update
 647 * the parse graph to understand new protocols).
 648 *
 649 * This function stores a pointer to the package buffer memory, and it is
 650 * expected that the supplied buffer will not be freed immediately. If the
 651 * package buffer needs to be freed, such as when read from a file, use
 652 * ice_copy_and_init_pkg() instead of directly calling ice_init_pkg() in this
 653 * case.
 654 */
 655enum ice_status ice_init_pkg(struct ice_hw *hw, u8 *buf, u32 len)
 656{
 657	struct ice_pkg_hdr *pkg;
 658	enum ice_status status;
 659	struct ice_seg *seg;
 
 
 660
 661	if (!buf || !len)
 662		return ICE_ERR_PARAM;
 663
 664	pkg = (struct ice_pkg_hdr *)buf;
 665	status = ice_verify_pkg(pkg, len);
 666	if (status) {
 667		ice_debug(hw, ICE_DBG_INIT, "failed to verify pkg (err: %d)\n",
 668			  status);
 669		return status;
 670	}
 671
 672	/* initialize package info */
 673	status = ice_init_pkg_info(hw, pkg);
 674	if (status)
 675		return status;
 676
 677	/* before downloading the package, check package version for
 678	 * compatibility with driver
 679	 */
 680	status = ice_chk_pkg_version(&hw->pkg_ver);
 681	if (status)
 682		return status;
 683
 684	/* find segment in given package */
 685	seg = (struct ice_seg *)ice_find_seg_in_pkg(hw, SEGMENT_TYPE_ICE, pkg);
 686	if (!seg) {
 687		ice_debug(hw, ICE_DBG_INIT, "no ice segment in package.\n");
 688		return ICE_ERR_CFG;
 689	}
 690
 691	/* download package */
 692	status = ice_download_pkg(hw, seg);
 693	if (status == ICE_ERR_AQ_NO_WORK) {
 694		ice_debug(hw, ICE_DBG_INIT,
 695			  "package previously loaded - no work.\n");
 696		status = 0;
 697	}
 698
 699	/* Get information on the package currently loaded in HW, then make sure
 700	 * the driver is compatible with this version.
 701	 */
 702	if (!status) {
 703		status = ice_get_pkg_info(hw);
 704		if (!status)
 705			status = ice_chk_pkg_version(&hw->active_pkg_ver);
 706	}
 707
 708	if (!status) {
 709		hw->seg = seg;
 710		/* on successful package download update other required
 711		 * registers to support the package and fill HW tables
 712		 * with package content.
 713		 */
 714		ice_init_pkg_regs(hw);
 715		ice_fill_blk_tbls(hw);
 716	} else {
 717		ice_debug(hw, ICE_DBG_INIT, "package load failed, %d\n",
 718			  status);
 719	}
 720
 721	return status;
 722}
 723
 724/**
 725 * ice_copy_and_init_pkg - initialize/download a copy of the package
 726 * @hw: pointer to the hardware structure
 727 * @buf: pointer to the package buffer
 728 * @len: size of the package buffer
 729 *
 730 * This function copies the package buffer, and then calls ice_init_pkg() to
 731 * initialize the copied package contents.
 732 *
 733 * The copying is necessary if the package buffer supplied is constant, or if
 734 * the memory may disappear shortly after calling this function.
 735 *
 736 * If the package buffer resides in the data segment and can be modified, the
 737 * caller is free to use ice_init_pkg() instead of ice_copy_and_init_pkg().
 738 *
 739 * However, if the package buffer needs to be copied first, such as when being
 740 * read from a file, the caller should use ice_copy_and_init_pkg().
 741 *
 742 * This function will first copy the package buffer, before calling
 743 * ice_init_pkg(). The caller is free to immediately destroy the original
 744 * package buffer, as the new copy will be managed by this function and
 745 * related routines.
 746 */
 747enum ice_status ice_copy_and_init_pkg(struct ice_hw *hw, const u8 *buf, u32 len)
 
 
 748{
 749	enum ice_status status;
 750	u8 *buf_copy;
 
 
 751
 752	if (!buf || !len)
 753		return ICE_ERR_PARAM;
 754
 755	buf_copy = devm_kmemdup(ice_hw_to_dev(hw), buf, len, GFP_KERNEL);
 756
 757	status = ice_init_pkg(hw, buf_copy, len);
 758	if (status) {
 759		/* Free the copy, since we failed to initialize the package */
 760		devm_kfree(ice_hw_to_dev(hw), buf_copy);
 761	} else {
 762		/* Track the copied pkg so we can free it later */
 763		hw->pkg_copy = buf_copy;
 764		hw->pkg_size = len;
 765	}
 766
 767	return status;
 768}
 769
 770/* PTG Management */
 771
 772/**
 773 * ice_ptg_find_ptype - Search for packet type group using packet type (ptype)
 774 * @hw: pointer to the hardware structure
 775 * @blk: HW block
 776 * @ptype: the ptype to search for
 777 * @ptg: pointer to variable that receives the PTG
 778 *
 779 * This function will search the PTGs for a particular ptype, returning the
 780 * PTG ID that contains it through the PTG parameter, with the value of
 781 * ICE_DEFAULT_PTG (0) meaning it is part the default PTG.
 782 */
 783static enum ice_status
 784ice_ptg_find_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 *ptg)
 785{
 786	if (ptype >= ICE_XLT1_CNT || !ptg)
 787		return ICE_ERR_PARAM;
 788
 789	*ptg = hw->blk[blk].xlt1.ptypes[ptype].ptg;
 790	return 0;
 791}
 792
 793/**
 794 * ice_ptg_alloc_val - Allocates a new packet type group ID by value
 795 * @hw: pointer to the hardware structure
 796 * @blk: HW block
 797 * @ptg: the PTG to allocate
 798 *
 799 * This function allocates a given packet type group ID specified by the PTG
 800 * parameter.
 801 */
 802static void ice_ptg_alloc_val(struct ice_hw *hw, enum ice_block blk, u8 ptg)
 803{
 804	hw->blk[blk].xlt1.ptg_tbl[ptg].in_use = true;
 805}
 806
 807/**
 808 * ice_ptg_remove_ptype - Removes ptype from a particular packet type group
 809 * @hw: pointer to the hardware structure
 810 * @blk: HW block
 811 * @ptype: the ptype to remove
 812 * @ptg: the PTG to remove the ptype from
 813 *
 814 * This function will remove the ptype from the specific PTG, and move it to
 815 * the default PTG (ICE_DEFAULT_PTG).
 816 */
 817static enum ice_status
 818ice_ptg_remove_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 ptg)
 819{
 820	struct ice_ptg_ptype **ch;
 821	struct ice_ptg_ptype *p;
 822
 823	if (ptype > ICE_XLT1_CNT - 1)
 824		return ICE_ERR_PARAM;
 825
 826	if (!hw->blk[blk].xlt1.ptg_tbl[ptg].in_use)
 827		return ICE_ERR_DOES_NOT_EXIST;
 828
 829	/* Should not happen if .in_use is set, bad config */
 830	if (!hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype)
 831		return ICE_ERR_CFG;
 832
 833	/* find the ptype within this PTG, and bypass the link over it */
 834	p = hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype;
 835	ch = &hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype;
 836	while (p) {
 837		if (ptype == (p - hw->blk[blk].xlt1.ptypes)) {
 838			*ch = p->next_ptype;
 839			break;
 840		}
 841
 842		ch = &p->next_ptype;
 843		p = p->next_ptype;
 844	}
 845
 846	hw->blk[blk].xlt1.ptypes[ptype].ptg = ICE_DEFAULT_PTG;
 847	hw->blk[blk].xlt1.ptypes[ptype].next_ptype = NULL;
 848
 849	return 0;
 850}
 851
 852/**
 853 * ice_ptg_add_mv_ptype - Adds/moves ptype to a particular packet type group
 854 * @hw: pointer to the hardware structure
 855 * @blk: HW block
 856 * @ptype: the ptype to add or move
 857 * @ptg: the PTG to add or move the ptype to
 858 *
 859 * This function will either add or move a ptype to a particular PTG depending
 860 * on if the ptype is already part of another group. Note that using a
 861 * a destination PTG ID of ICE_DEFAULT_PTG (0) will move the ptype to the
 862 * default PTG.
 863 */
 864static enum ice_status
 865ice_ptg_add_mv_ptype(struct ice_hw *hw, enum ice_block blk, u16 ptype, u8 ptg)
 866{
 867	enum ice_status status;
 868	u8 original_ptg;
 
 869
 870	if (ptype > ICE_XLT1_CNT - 1)
 871		return ICE_ERR_PARAM;
 872
 873	if (!hw->blk[blk].xlt1.ptg_tbl[ptg].in_use && ptg != ICE_DEFAULT_PTG)
 874		return ICE_ERR_DOES_NOT_EXIST;
 875
 876	status = ice_ptg_find_ptype(hw, blk, ptype, &original_ptg);
 877	if (status)
 878		return status;
 879
 880	/* Is ptype already in the correct PTG? */
 881	if (original_ptg == ptg)
 882		return 0;
 883
 884	/* Remove from original PTG and move back to the default PTG */
 885	if (original_ptg != ICE_DEFAULT_PTG)
 886		ice_ptg_remove_ptype(hw, blk, ptype, original_ptg);
 887
 888	/* Moving to default PTG? Then we're done with this request */
 889	if (ptg == ICE_DEFAULT_PTG)
 890		return 0;
 891
 892	/* Add ptype to PTG at beginning of list */
 893	hw->blk[blk].xlt1.ptypes[ptype].next_ptype =
 894		hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype;
 895	hw->blk[blk].xlt1.ptg_tbl[ptg].first_ptype =
 896		&hw->blk[blk].xlt1.ptypes[ptype];
 897
 898	hw->blk[blk].xlt1.ptypes[ptype].ptg = ptg;
 899	hw->blk[blk].xlt1.t[ptype] = ptg;
 900
 901	return 0;
 902}
 903
 904/* Block / table size info */
 905struct ice_blk_size_details {
 906	u16 xlt1;			/* # XLT1 entries */
 907	u16 xlt2;			/* # XLT2 entries */
 908	u16 prof_tcam;			/* # profile ID TCAM entries */
 909	u16 prof_id;			/* # profile IDs */
 910	u8 prof_cdid_bits;		/* # CDID one-hot bits used in key */
 911	u16 prof_redir;			/* # profile redirection entries */
 912	u16 es;				/* # extraction sequence entries */
 913	u16 fvw;			/* # field vector words */
 914	u8 overwrite;			/* overwrite existing entries allowed */
 915	u8 reverse;			/* reverse FV order */
 916};
 917
 918static const struct ice_blk_size_details blk_sizes[ICE_BLK_COUNT] = {
 919	/**
 920	 * Table Definitions
 921	 * XLT1 - Number of entries in XLT1 table
 922	 * XLT2 - Number of entries in XLT2 table
 923	 * TCAM - Number of entries Profile ID TCAM table
 924	 * CDID - Control Domain ID of the hardware block
 925	 * PRED - Number of entries in the Profile Redirection Table
 926	 * FV   - Number of entries in the Field Vector
 927	 * FVW  - Width (in WORDs) of the Field Vector
 928	 * OVR  - Overwrite existing table entries
 929	 * REV  - Reverse FV
 930	 */
 931	/*          XLT1        , XLT2        ,TCAM, PID,CDID,PRED,   FV, FVW */
 932	/*          Overwrite   , Reverse FV */
 933	/* SW  */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 256,   0,  256, 256,  48,
 934		    false, false },
 935	/* ACL */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128,   0,  128, 128,  32,
 936		    false, false },
 937	/* FD  */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128,   0,  128, 128,  24,
 938		    false, true  },
 939	/* RSS */ { ICE_XLT1_CNT, ICE_XLT2_CNT, 512, 128,   0,  128, 128,  24,
 940		    true,  true  },
 941	/* PE  */ { ICE_XLT1_CNT, ICE_XLT2_CNT,  64,  32,   0,   32,  32,  24,
 942		    false, false },
 943};
 944
 945enum ice_sid_all {
 946	ICE_SID_XLT1_OFF = 0,
 947	ICE_SID_XLT2_OFF,
 948	ICE_SID_PR_OFF,
 949	ICE_SID_PR_REDIR_OFF,
 950	ICE_SID_ES_OFF,
 951	ICE_SID_OFF_COUNT,
 952};
 953
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 954/* VSIG Management */
 955
 956/**
 957 * ice_vsig_find_vsi - find a VSIG that contains a specified VSI
 958 * @hw: pointer to the hardware structure
 959 * @blk: HW block
 960 * @vsi: VSI of interest
 961 * @vsig: pointer to receive the VSI group
 962 *
 963 * This function will lookup the VSI entry in the XLT2 list and return
 964 * the VSI group its associated with.
 965 */
 966static enum ice_status
 967ice_vsig_find_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 *vsig)
 968{
 969	if (!vsig || vsi >= ICE_MAX_VSI)
 970		return ICE_ERR_PARAM;
 971
 972	/* As long as there's a default or valid VSIG associated with the input
 973	 * VSI, the functions returns a success. Any handling of VSIG will be
 974	 * done by the following add, update or remove functions.
 975	 */
 976	*vsig = hw->blk[blk].xlt2.vsis[vsi].vsig;
 977
 978	return 0;
 979}
 980
 981/**
 982 * ice_vsig_alloc_val - allocate a new VSIG by value
 983 * @hw: pointer to the hardware structure
 984 * @blk: HW block
 985 * @vsig: the VSIG to allocate
 986 *
 987 * This function will allocate a given VSIG specified by the VSIG parameter.
 988 */
 989static u16 ice_vsig_alloc_val(struct ice_hw *hw, enum ice_block blk, u16 vsig)
 990{
 991	u16 idx = vsig & ICE_VSIG_IDX_M;
 992
 993	if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use) {
 994		INIT_LIST_HEAD(&hw->blk[blk].xlt2.vsig_tbl[idx].prop_lst);
 995		hw->blk[blk].xlt2.vsig_tbl[idx].in_use = true;
 996	}
 997
 998	return ICE_VSIG_VALUE(idx, hw->pf_id);
 999}
1000
1001/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1002 * ice_vsig_remove_vsi - remove VSI from VSIG
1003 * @hw: pointer to the hardware structure
1004 * @blk: HW block
1005 * @vsi: VSI to remove
1006 * @vsig: VSI group to remove from
1007 *
1008 * The function will remove the input VSI from its VSI group and move it
1009 * to the DEFAULT_VSIG.
1010 */
1011static enum ice_status
1012ice_vsig_remove_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig)
1013{
1014	struct ice_vsig_vsi **vsi_head, *vsi_cur, *vsi_tgt;
1015	u16 idx;
1016
1017	idx = vsig & ICE_VSIG_IDX_M;
1018
1019	if (vsi >= ICE_MAX_VSI || idx >= ICE_MAX_VSIGS)
1020		return ICE_ERR_PARAM;
1021
1022	if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use)
1023		return ICE_ERR_DOES_NOT_EXIST;
1024
1025	/* entry already in default VSIG, don't have to remove */
1026	if (idx == ICE_DEFAULT_VSIG)
1027		return 0;
1028
1029	vsi_head = &hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
1030	if (!(*vsi_head))
1031		return ICE_ERR_CFG;
1032
1033	vsi_tgt = &hw->blk[blk].xlt2.vsis[vsi];
1034	vsi_cur = (*vsi_head);
1035
1036	/* iterate the VSI list, skip over the entry to be removed */
1037	while (vsi_cur) {
1038		if (vsi_tgt == vsi_cur) {
1039			(*vsi_head) = vsi_cur->next_vsi;
1040			break;
1041		}
1042		vsi_head = &vsi_cur->next_vsi;
1043		vsi_cur = vsi_cur->next_vsi;
1044	}
1045
1046	/* verify if VSI was removed from group list */
1047	if (!vsi_cur)
1048		return ICE_ERR_DOES_NOT_EXIST;
1049
1050	vsi_cur->vsig = ICE_DEFAULT_VSIG;
1051	vsi_cur->changed = 1;
1052	vsi_cur->next_vsi = NULL;
1053
1054	return 0;
1055}
1056
1057/**
1058 * ice_vsig_add_mv_vsi - add or move a VSI to a VSI group
1059 * @hw: pointer to the hardware structure
1060 * @blk: HW block
1061 * @vsi: VSI to move
1062 * @vsig: destination VSI group
1063 *
1064 * This function will move or add the input VSI to the target VSIG.
1065 * The function will find the original VSIG the VSI belongs to and
1066 * move the entry to the DEFAULT_VSIG, update the original VSIG and
1067 * then move entry to the new VSIG.
1068 */
1069static enum ice_status
1070ice_vsig_add_mv_vsi(struct ice_hw *hw, enum ice_block blk, u16 vsi, u16 vsig)
1071{
1072	struct ice_vsig_vsi *tmp;
1073	enum ice_status status;
1074	u16 orig_vsig, idx;
 
1075
1076	idx = vsig & ICE_VSIG_IDX_M;
1077
1078	if (vsi >= ICE_MAX_VSI || idx >= ICE_MAX_VSIGS)
1079		return ICE_ERR_PARAM;
1080
1081	/* if VSIG not in use and VSIG is not default type this VSIG
1082	 * doesn't exist.
1083	 */
1084	if (!hw->blk[blk].xlt2.vsig_tbl[idx].in_use &&
1085	    vsig != ICE_DEFAULT_VSIG)
1086		return ICE_ERR_DOES_NOT_EXIST;
1087
1088	status = ice_vsig_find_vsi(hw, blk, vsi, &orig_vsig);
1089	if (status)
1090		return status;
1091
1092	/* no update required if vsigs match */
1093	if (orig_vsig == vsig)
1094		return 0;
1095
1096	if (orig_vsig != ICE_DEFAULT_VSIG) {
1097		/* remove entry from orig_vsig and add to default VSIG */
1098		status = ice_vsig_remove_vsi(hw, blk, vsi, orig_vsig);
1099		if (status)
1100			return status;
1101	}
1102
1103	if (idx == ICE_DEFAULT_VSIG)
1104		return 0;
1105
1106	/* Create VSI entry and add VSIG and prop_mask values */
1107	hw->blk[blk].xlt2.vsis[vsi].vsig = vsig;
1108	hw->blk[blk].xlt2.vsis[vsi].changed = 1;
1109
1110	/* Add new entry to the head of the VSIG list */
1111	tmp = hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi;
1112	hw->blk[blk].xlt2.vsig_tbl[idx].first_vsi =
1113		&hw->blk[blk].xlt2.vsis[vsi];
1114	hw->blk[blk].xlt2.vsis[vsi].next_vsi = tmp;
1115	hw->blk[blk].xlt2.t[vsi] = vsig;
1116
1117	return 0;
1118}
1119
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1120/* Block / table section IDs */
1121static const u32 ice_blk_sids[ICE_BLK_COUNT][ICE_SID_OFF_COUNT] = {
1122	/* SWITCH */
1123	{	ICE_SID_XLT1_SW,
1124		ICE_SID_XLT2_SW,
1125		ICE_SID_PROFID_TCAM_SW,
1126		ICE_SID_PROFID_REDIR_SW,
1127		ICE_SID_FLD_VEC_SW
1128	},
1129
1130	/* ACL */
1131	{	ICE_SID_XLT1_ACL,
1132		ICE_SID_XLT2_ACL,
1133		ICE_SID_PROFID_TCAM_ACL,
1134		ICE_SID_PROFID_REDIR_ACL,
1135		ICE_SID_FLD_VEC_ACL
1136	},
1137
1138	/* FD */
1139	{	ICE_SID_XLT1_FD,
1140		ICE_SID_XLT2_FD,
1141		ICE_SID_PROFID_TCAM_FD,
1142		ICE_SID_PROFID_REDIR_FD,
1143		ICE_SID_FLD_VEC_FD
1144	},
1145
1146	/* RSS */
1147	{	ICE_SID_XLT1_RSS,
1148		ICE_SID_XLT2_RSS,
1149		ICE_SID_PROFID_TCAM_RSS,
1150		ICE_SID_PROFID_REDIR_RSS,
1151		ICE_SID_FLD_VEC_RSS
1152	},
1153
1154	/* PE */
1155	{	ICE_SID_XLT1_PE,
1156		ICE_SID_XLT2_PE,
1157		ICE_SID_PROFID_TCAM_PE,
1158		ICE_SID_PROFID_REDIR_PE,
1159		ICE_SID_FLD_VEC_PE
1160	}
1161};
1162
1163/**
1164 * ice_init_sw_xlt1_db - init software XLT1 database from HW tables
1165 * @hw: pointer to the hardware structure
1166 * @blk: the HW block to initialize
1167 */
1168static void ice_init_sw_xlt1_db(struct ice_hw *hw, enum ice_block blk)
1169{
1170	u16 pt;
1171
1172	for (pt = 0; pt < hw->blk[blk].xlt1.count; pt++) {
1173		u8 ptg;
1174
1175		ptg = hw->blk[blk].xlt1.t[pt];
1176		if (ptg != ICE_DEFAULT_PTG) {
1177			ice_ptg_alloc_val(hw, blk, ptg);
1178			ice_ptg_add_mv_ptype(hw, blk, pt, ptg);
1179		}
1180	}
1181}
1182
1183/**
1184 * ice_init_sw_xlt2_db - init software XLT2 database from HW tables
1185 * @hw: pointer to the hardware structure
1186 * @blk: the HW block to initialize
1187 */
1188static void ice_init_sw_xlt2_db(struct ice_hw *hw, enum ice_block blk)
1189{
1190	u16 vsi;
1191
1192	for (vsi = 0; vsi < hw->blk[blk].xlt2.count; vsi++) {
1193		u16 vsig;
1194
1195		vsig = hw->blk[blk].xlt2.t[vsi];
1196		if (vsig) {
1197			ice_vsig_alloc_val(hw, blk, vsig);
1198			ice_vsig_add_mv_vsi(hw, blk, vsi, vsig);
1199			/* no changes at this time, since this has been
1200			 * initialized from the original package
1201			 */
1202			hw->blk[blk].xlt2.vsis[vsi].changed = 0;
1203		}
1204	}
1205}
1206
1207/**
1208 * ice_init_sw_db - init software database from HW tables
1209 * @hw: pointer to the hardware structure
1210 */
1211static void ice_init_sw_db(struct ice_hw *hw)
1212{
1213	u16 i;
1214
1215	for (i = 0; i < ICE_BLK_COUNT; i++) {
1216		ice_init_sw_xlt1_db(hw, (enum ice_block)i);
1217		ice_init_sw_xlt2_db(hw, (enum ice_block)i);
1218	}
1219}
1220
1221/**
1222 * ice_fill_tbl - Reads content of a single table type into database
1223 * @hw: pointer to the hardware structure
1224 * @block_id: Block ID of the table to copy
1225 * @sid: Section ID of the table to copy
1226 *
1227 * Will attempt to read the entire content of a given table of a single block
1228 * into the driver database. We assume that the buffer will always
1229 * be as large or larger than the data contained in the package. If
1230 * this condition is not met, there is most likely an error in the package
1231 * contents.
1232 */
1233static void ice_fill_tbl(struct ice_hw *hw, enum ice_block block_id, u32 sid)
1234{
1235	u32 dst_len, sect_len, offset = 0;
1236	struct ice_prof_redir_section *pr;
1237	struct ice_prof_id_section *pid;
1238	struct ice_xlt1_section *xlt1;
1239	struct ice_xlt2_section *xlt2;
1240	struct ice_sw_fv_section *es;
1241	struct ice_pkg_enum state;
1242	u8 *src, *dst;
1243	void *sect;
1244
1245	/* if the HW segment pointer is null then the first iteration of
1246	 * ice_pkg_enum_section() will fail. In this case the HW tables will
1247	 * not be filled and return success.
1248	 */
1249	if (!hw->seg) {
1250		ice_debug(hw, ICE_DBG_PKG, "hw->seg is NULL, tables are not filled\n");
1251		return;
1252	}
1253
1254	memset(&state, 0, sizeof(state));
1255
1256	sect = ice_pkg_enum_section(hw->seg, &state, sid);
1257
1258	while (sect) {
1259		switch (sid) {
1260		case ICE_SID_XLT1_SW:
1261		case ICE_SID_XLT1_FD:
1262		case ICE_SID_XLT1_RSS:
1263		case ICE_SID_XLT1_ACL:
1264		case ICE_SID_XLT1_PE:
1265			xlt1 = (struct ice_xlt1_section *)sect;
1266			src = xlt1->value;
1267			sect_len = le16_to_cpu(xlt1->count) *
1268				sizeof(*hw->blk[block_id].xlt1.t);
1269			dst = hw->blk[block_id].xlt1.t;
1270			dst_len = hw->blk[block_id].xlt1.count *
1271				sizeof(*hw->blk[block_id].xlt1.t);
1272			break;
1273		case ICE_SID_XLT2_SW:
1274		case ICE_SID_XLT2_FD:
1275		case ICE_SID_XLT2_RSS:
1276		case ICE_SID_XLT2_ACL:
1277		case ICE_SID_XLT2_PE:
1278			xlt2 = (struct ice_xlt2_section *)sect;
1279			src = (__force u8 *)xlt2->value;
1280			sect_len = le16_to_cpu(xlt2->count) *
1281				sizeof(*hw->blk[block_id].xlt2.t);
1282			dst = (u8 *)hw->blk[block_id].xlt2.t;
1283			dst_len = hw->blk[block_id].xlt2.count *
1284				sizeof(*hw->blk[block_id].xlt2.t);
1285			break;
1286		case ICE_SID_PROFID_TCAM_SW:
1287		case ICE_SID_PROFID_TCAM_FD:
1288		case ICE_SID_PROFID_TCAM_RSS:
1289		case ICE_SID_PROFID_TCAM_ACL:
1290		case ICE_SID_PROFID_TCAM_PE:
1291			pid = (struct ice_prof_id_section *)sect;
1292			src = (u8 *)pid->entry;
1293			sect_len = le16_to_cpu(pid->count) *
1294				sizeof(*hw->blk[block_id].prof.t);
1295			dst = (u8 *)hw->blk[block_id].prof.t;
1296			dst_len = hw->blk[block_id].prof.count *
1297				sizeof(*hw->blk[block_id].prof.t);
1298			break;
1299		case ICE_SID_PROFID_REDIR_SW:
1300		case ICE_SID_PROFID_REDIR_FD:
1301		case ICE_SID_PROFID_REDIR_RSS:
1302		case ICE_SID_PROFID_REDIR_ACL:
1303		case ICE_SID_PROFID_REDIR_PE:
1304			pr = (struct ice_prof_redir_section *)sect;
1305			src = pr->redir_value;
1306			sect_len = le16_to_cpu(pr->count) *
1307				sizeof(*hw->blk[block_id].prof_redir.t);
1308			dst = hw->blk[block_id].prof_redir.t;
1309			dst_len = hw->blk[block_id].prof_redir.count *
1310				sizeof(*hw->blk[block_id].prof_redir.t);
1311			break;
1312		case ICE_SID_FLD_VEC_SW:
1313		case ICE_SID_FLD_VEC_FD:
1314		case ICE_SID_FLD_VEC_RSS:
1315		case ICE_SID_FLD_VEC_ACL:
1316		case ICE_SID_FLD_VEC_PE:
1317			es = (struct ice_sw_fv_section *)sect;
1318			src = (u8 *)es->fv;
1319			sect_len = (u32)(le16_to_cpu(es->count) *
1320					 hw->blk[block_id].es.fvw) *
1321				sizeof(*hw->blk[block_id].es.t);
1322			dst = (u8 *)hw->blk[block_id].es.t;
1323			dst_len = (u32)(hw->blk[block_id].es.count *
1324					hw->blk[block_id].es.fvw) *
1325				sizeof(*hw->blk[block_id].es.t);
1326			break;
1327		default:
1328			return;
1329		}
1330
1331		/* if the section offset exceeds destination length, terminate
1332		 * table fill.
1333		 */
1334		if (offset > dst_len)
1335			return;
1336
1337		/* if the sum of section size and offset exceed destination size
1338		 * then we are out of bounds of the HW table size for that PF.
1339		 * Changing section length to fill the remaining table space
1340		 * of that PF.
1341		 */
1342		if ((offset + sect_len) > dst_len)
1343			sect_len = dst_len - offset;
1344
1345		memcpy(dst + offset, src, sect_len);
1346		offset += sect_len;
1347		sect = ice_pkg_enum_section(NULL, &state, sid);
1348	}
1349}
1350
1351/**
1352 * ice_fill_blk_tbls - Read package context for tables
1353 * @hw: pointer to the hardware structure
1354 *
1355 * Reads the current package contents and populates the driver
1356 * database with the data iteratively for all advanced feature
1357 * blocks. Assume that the HW tables have been allocated.
1358 */
1359void ice_fill_blk_tbls(struct ice_hw *hw)
1360{
1361	u8 i;
1362
1363	for (i = 0; i < ICE_BLK_COUNT; i++) {
1364		enum ice_block blk_id = (enum ice_block)i;
1365
1366		ice_fill_tbl(hw, blk_id, hw->blk[blk_id].xlt1.sid);
1367		ice_fill_tbl(hw, blk_id, hw->blk[blk_id].xlt2.sid);
1368		ice_fill_tbl(hw, blk_id, hw->blk[blk_id].prof.sid);
1369		ice_fill_tbl(hw, blk_id, hw->blk[blk_id].prof_redir.sid);
1370		ice_fill_tbl(hw, blk_id, hw->blk[blk_id].es.sid);
1371	}
1372
1373	ice_init_sw_db(hw);
1374}
1375
1376/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1377 * ice_free_hw_tbls - free hardware table memory
1378 * @hw: pointer to the hardware structure
1379 */
1380void ice_free_hw_tbls(struct ice_hw *hw)
1381{
 
1382	u8 i;
1383
1384	for (i = 0; i < ICE_BLK_COUNT; i++) {
1385		hw->blk[i].is_list_init = false;
 
 
 
 
1386
 
 
 
 
 
 
1387		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt1.ptypes);
1388		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt1.ptg_tbl);
1389		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt1.t);
1390		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt2.t);
1391		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt2.vsig_tbl);
1392		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].xlt2.vsis);
1393		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].prof.t);
1394		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].prof_redir.t);
1395		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.t);
1396		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.ref_count);
 
1397		devm_kfree(ice_hw_to_dev(hw), hw->blk[i].es.written);
 
 
1398	}
1399
 
 
 
 
 
 
1400	memset(hw->blk, 0, sizeof(hw->blk));
1401}
1402
1403/**
 
 
 
 
 
 
 
 
 
 
 
1404 * ice_clear_hw_tbls - clear HW tables and flow profiles
1405 * @hw: pointer to the hardware structure
1406 */
1407void ice_clear_hw_tbls(struct ice_hw *hw)
1408{
1409	u8 i;
1410
1411	for (i = 0; i < ICE_BLK_COUNT; i++) {
1412		struct ice_prof_redir *prof_redir = &hw->blk[i].prof_redir;
 
1413		struct ice_prof_tcam *prof = &hw->blk[i].prof;
1414		struct ice_xlt1 *xlt1 = &hw->blk[i].xlt1;
1415		struct ice_xlt2 *xlt2 = &hw->blk[i].xlt2;
1416		struct ice_es *es = &hw->blk[i].es;
1417
 
 
 
 
 
 
 
1418		memset(xlt1->ptypes, 0, xlt1->count * sizeof(*xlt1->ptypes));
1419		memset(xlt1->ptg_tbl, 0,
1420		       ICE_MAX_PTGS * sizeof(*xlt1->ptg_tbl));
1421		memset(xlt1->t, 0, xlt1->count * sizeof(*xlt1->t));
1422
1423		memset(xlt2->vsis, 0, xlt2->count * sizeof(*xlt2->vsis));
1424		memset(xlt2->vsig_tbl, 0,
1425		       xlt2->count * sizeof(*xlt2->vsig_tbl));
1426		memset(xlt2->t, 0, xlt2->count * sizeof(*xlt2->t));
1427
1428		memset(prof->t, 0, prof->count * sizeof(*prof->t));
1429		memset(prof_redir->t, 0,
1430		       prof_redir->count * sizeof(*prof_redir->t));
1431
1432		memset(es->t, 0, es->count * sizeof(*es->t));
1433		memset(es->ref_count, 0, es->count * sizeof(*es->ref_count));
 
1434		memset(es->written, 0, es->count * sizeof(*es->written));
 
 
 
1435	}
1436}
1437
1438/**
1439 * ice_init_hw_tbls - init hardware table memory
1440 * @hw: pointer to the hardware structure
1441 */
1442enum ice_status ice_init_hw_tbls(struct ice_hw *hw)
1443{
1444	u8 i;
1445
 
 
 
1446	for (i = 0; i < ICE_BLK_COUNT; i++) {
1447		struct ice_prof_redir *prof_redir = &hw->blk[i].prof_redir;
 
1448		struct ice_prof_tcam *prof = &hw->blk[i].prof;
1449		struct ice_xlt1 *xlt1 = &hw->blk[i].xlt1;
1450		struct ice_xlt2 *xlt2 = &hw->blk[i].xlt2;
1451		struct ice_es *es = &hw->blk[i].es;
1452		u16 j;
1453
1454		if (hw->blk[i].is_list_init)
1455			continue;
1456
 
 
 
1457		hw->blk[i].is_list_init = true;
1458
1459		hw->blk[i].overwrite = blk_sizes[i].overwrite;
1460		es->reverse = blk_sizes[i].reverse;
1461
1462		xlt1->sid = ice_blk_sids[i][ICE_SID_XLT1_OFF];
1463		xlt1->count = blk_sizes[i].xlt1;
1464
1465		xlt1->ptypes = devm_kcalloc(ice_hw_to_dev(hw), xlt1->count,
1466					    sizeof(*xlt1->ptypes), GFP_KERNEL);
1467
1468		if (!xlt1->ptypes)
1469			goto err;
1470
1471		xlt1->ptg_tbl = devm_kcalloc(ice_hw_to_dev(hw), ICE_MAX_PTGS,
1472					     sizeof(*xlt1->ptg_tbl),
1473					     GFP_KERNEL);
1474
1475		if (!xlt1->ptg_tbl)
1476			goto err;
1477
1478		xlt1->t = devm_kcalloc(ice_hw_to_dev(hw), xlt1->count,
1479				       sizeof(*xlt1->t), GFP_KERNEL);
1480		if (!xlt1->t)
1481			goto err;
1482
1483		xlt2->sid = ice_blk_sids[i][ICE_SID_XLT2_OFF];
1484		xlt2->count = blk_sizes[i].xlt2;
1485
1486		xlt2->vsis = devm_kcalloc(ice_hw_to_dev(hw), xlt2->count,
1487					  sizeof(*xlt2->vsis), GFP_KERNEL);
1488
1489		if (!xlt2->vsis)
1490			goto err;
1491
1492		xlt2->vsig_tbl = devm_kcalloc(ice_hw_to_dev(hw), xlt2->count,
1493					      sizeof(*xlt2->vsig_tbl),
1494					      GFP_KERNEL);
1495		if (!xlt2->vsig_tbl)
1496			goto err;
1497
1498		for (j = 0; j < xlt2->count; j++)
1499			INIT_LIST_HEAD(&xlt2->vsig_tbl[j].prop_lst);
1500
1501		xlt2->t = devm_kcalloc(ice_hw_to_dev(hw), xlt2->count,
1502				       sizeof(*xlt2->t), GFP_KERNEL);
1503		if (!xlt2->t)
1504			goto err;
1505
1506		prof->sid = ice_blk_sids[i][ICE_SID_PR_OFF];
1507		prof->count = blk_sizes[i].prof_tcam;
1508		prof->max_prof_id = blk_sizes[i].prof_id;
1509		prof->cdid_bits = blk_sizes[i].prof_cdid_bits;
1510		prof->t = devm_kcalloc(ice_hw_to_dev(hw), prof->count,
1511				       sizeof(*prof->t), GFP_KERNEL);
1512
1513		if (!prof->t)
1514			goto err;
1515
1516		prof_redir->sid = ice_blk_sids[i][ICE_SID_PR_REDIR_OFF];
1517		prof_redir->count = blk_sizes[i].prof_redir;
1518		prof_redir->t = devm_kcalloc(ice_hw_to_dev(hw),
1519					     prof_redir->count,
1520					     sizeof(*prof_redir->t),
1521					     GFP_KERNEL);
1522
1523		if (!prof_redir->t)
1524			goto err;
1525
1526		es->sid = ice_blk_sids[i][ICE_SID_ES_OFF];
1527		es->count = blk_sizes[i].es;
1528		es->fvw = blk_sizes[i].fvw;
1529		es->t = devm_kcalloc(ice_hw_to_dev(hw),
1530				     (u32)(es->count * es->fvw),
1531				     sizeof(*es->t), GFP_KERNEL);
1532		if (!es->t)
1533			goto err;
1534
1535		es->ref_count = devm_kcalloc(ice_hw_to_dev(hw), es->count,
1536					     sizeof(*es->ref_count),
1537					     GFP_KERNEL);
 
 
 
 
 
 
 
1538
1539		es->written = devm_kcalloc(ice_hw_to_dev(hw), es->count,
1540					   sizeof(*es->written), GFP_KERNEL);
1541		if (!es->ref_count)
 
 
 
 
 
 
 
 
 
 
 
1542			goto err;
1543	}
1544	return 0;
1545
1546err:
1547	ice_free_hw_tbls(hw);
1548	return ICE_ERR_NO_MEMORY;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1549}