Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright (c) 2018-2023, Intel Corporation. */
   3
   4#include "ice_common.h"
   5#include "ice_sched.h"
   6#include "ice_adminq_cmd.h"
   7#include "ice_flow.h"
   8#include "ice_ptp_hw.h"
   9
  10#define ICE_PF_RESET_WAIT_COUNT	300
  11#define ICE_MAX_NETLIST_SIZE	10
  12
  13static const char * const ice_link_mode_str_low[] = {
  14	[0] = "100BASE_TX",
  15	[1] = "100M_SGMII",
  16	[2] = "1000BASE_T",
  17	[3] = "1000BASE_SX",
  18	[4] = "1000BASE_LX",
  19	[5] = "1000BASE_KX",
  20	[6] = "1G_SGMII",
  21	[7] = "2500BASE_T",
  22	[8] = "2500BASE_X",
  23	[9] = "2500BASE_KX",
  24	[10] = "5GBASE_T",
  25	[11] = "5GBASE_KR",
  26	[12] = "10GBASE_T",
  27	[13] = "10G_SFI_DA",
  28	[14] = "10GBASE_SR",
  29	[15] = "10GBASE_LR",
  30	[16] = "10GBASE_KR_CR1",
  31	[17] = "10G_SFI_AOC_ACC",
  32	[18] = "10G_SFI_C2C",
  33	[19] = "25GBASE_T",
  34	[20] = "25GBASE_CR",
  35	[21] = "25GBASE_CR_S",
  36	[22] = "25GBASE_CR1",
  37	[23] = "25GBASE_SR",
  38	[24] = "25GBASE_LR",
  39	[25] = "25GBASE_KR",
  40	[26] = "25GBASE_KR_S",
  41	[27] = "25GBASE_KR1",
  42	[28] = "25G_AUI_AOC_ACC",
  43	[29] = "25G_AUI_C2C",
  44	[30] = "40GBASE_CR4",
  45	[31] = "40GBASE_SR4",
  46	[32] = "40GBASE_LR4",
  47	[33] = "40GBASE_KR4",
  48	[34] = "40G_XLAUI_AOC_ACC",
  49	[35] = "40G_XLAUI",
  50	[36] = "50GBASE_CR2",
  51	[37] = "50GBASE_SR2",
  52	[38] = "50GBASE_LR2",
  53	[39] = "50GBASE_KR2",
  54	[40] = "50G_LAUI2_AOC_ACC",
  55	[41] = "50G_LAUI2",
  56	[42] = "50G_AUI2_AOC_ACC",
  57	[43] = "50G_AUI2",
  58	[44] = "50GBASE_CP",
  59	[45] = "50GBASE_SR",
  60	[46] = "50GBASE_FR",
  61	[47] = "50GBASE_LR",
  62	[48] = "50GBASE_KR_PAM4",
  63	[49] = "50G_AUI1_AOC_ACC",
  64	[50] = "50G_AUI1",
  65	[51] = "100GBASE_CR4",
  66	[52] = "100GBASE_SR4",
  67	[53] = "100GBASE_LR4",
  68	[54] = "100GBASE_KR4",
  69	[55] = "100G_CAUI4_AOC_ACC",
  70	[56] = "100G_CAUI4",
  71	[57] = "100G_AUI4_AOC_ACC",
  72	[58] = "100G_AUI4",
  73	[59] = "100GBASE_CR_PAM4",
  74	[60] = "100GBASE_KR_PAM4",
  75	[61] = "100GBASE_CP2",
  76	[62] = "100GBASE_SR2",
  77	[63] = "100GBASE_DR",
  78};
  79
  80static const char * const ice_link_mode_str_high[] = {
  81	[0] = "100GBASE_KR2_PAM4",
  82	[1] = "100G_CAUI2_AOC_ACC",
  83	[2] = "100G_CAUI2",
  84	[3] = "100G_AUI2_AOC_ACC",
  85	[4] = "100G_AUI2",
  86};
  87
  88/**
  89 * ice_dump_phy_type - helper function to dump phy_type
  90 * @hw: pointer to the HW structure
  91 * @low: 64 bit value for phy_type_low
  92 * @high: 64 bit value for phy_type_high
  93 * @prefix: prefix string to differentiate multiple dumps
  94 */
  95static void
  96ice_dump_phy_type(struct ice_hw *hw, u64 low, u64 high, const char *prefix)
  97{
  98	ice_debug(hw, ICE_DBG_PHY, "%s: phy_type_low: 0x%016llx\n", prefix, low);
  99
 100	for (u32 i = 0; i < BITS_PER_TYPE(typeof(low)); i++) {
 101		if (low & BIT_ULL(i))
 102			ice_debug(hw, ICE_DBG_PHY, "%s:   bit(%d): %s\n",
 103				  prefix, i, ice_link_mode_str_low[i]);
 104	}
 105
 106	ice_debug(hw, ICE_DBG_PHY, "%s: phy_type_high: 0x%016llx\n", prefix, high);
 107
 108	for (u32 i = 0; i < BITS_PER_TYPE(typeof(high)); i++) {
 109		if (high & BIT_ULL(i))
 110			ice_debug(hw, ICE_DBG_PHY, "%s:   bit(%d): %s\n",
 111				  prefix, i, ice_link_mode_str_high[i]);
 112	}
 113}
 114
 115/**
 116 * ice_set_mac_type - Sets MAC type
 117 * @hw: pointer to the HW structure
 118 *
 119 * This function sets the MAC type of the adapter based on the
 120 * vendor ID and device ID stored in the HW structure.
 121 */
 122static int ice_set_mac_type(struct ice_hw *hw)
 123{
 124	if (hw->vendor_id != PCI_VENDOR_ID_INTEL)
 125		return -ENODEV;
 126
 127	switch (hw->device_id) {
 128	case ICE_DEV_ID_E810C_BACKPLANE:
 129	case ICE_DEV_ID_E810C_QSFP:
 130	case ICE_DEV_ID_E810C_SFP:
 131	case ICE_DEV_ID_E810_XXV_BACKPLANE:
 132	case ICE_DEV_ID_E810_XXV_QSFP:
 133	case ICE_DEV_ID_E810_XXV_SFP:
 134		hw->mac_type = ICE_MAC_E810;
 135		break;
 136	case ICE_DEV_ID_E823C_10G_BASE_T:
 137	case ICE_DEV_ID_E823C_BACKPLANE:
 138	case ICE_DEV_ID_E823C_QSFP:
 139	case ICE_DEV_ID_E823C_SFP:
 140	case ICE_DEV_ID_E823C_SGMII:
 141	case ICE_DEV_ID_E822C_10G_BASE_T:
 142	case ICE_DEV_ID_E822C_BACKPLANE:
 143	case ICE_DEV_ID_E822C_QSFP:
 144	case ICE_DEV_ID_E822C_SFP:
 145	case ICE_DEV_ID_E822C_SGMII:
 146	case ICE_DEV_ID_E822L_10G_BASE_T:
 147	case ICE_DEV_ID_E822L_BACKPLANE:
 148	case ICE_DEV_ID_E822L_SFP:
 149	case ICE_DEV_ID_E822L_SGMII:
 150	case ICE_DEV_ID_E823L_10G_BASE_T:
 151	case ICE_DEV_ID_E823L_1GBE:
 152	case ICE_DEV_ID_E823L_BACKPLANE:
 153	case ICE_DEV_ID_E823L_QSFP:
 154	case ICE_DEV_ID_E823L_SFP:
 155		hw->mac_type = ICE_MAC_GENERIC;
 156		break;
 157	case ICE_DEV_ID_E825C_BACKPLANE:
 158	case ICE_DEV_ID_E825C_QSFP:
 159	case ICE_DEV_ID_E825C_SFP:
 160	case ICE_DEV_ID_E825C_SGMII:
 161		hw->mac_type = ICE_MAC_GENERIC_3K_E825;
 162		break;
 163	case ICE_DEV_ID_E830CC_BACKPLANE:
 164	case ICE_DEV_ID_E830CC_QSFP56:
 165	case ICE_DEV_ID_E830CC_SFP:
 166	case ICE_DEV_ID_E830CC_SFP_DD:
 167	case ICE_DEV_ID_E830C_BACKPLANE:
 168	case ICE_DEV_ID_E830_XXV_BACKPLANE:
 169	case ICE_DEV_ID_E830C_QSFP:
 170	case ICE_DEV_ID_E830_XXV_QSFP:
 171	case ICE_DEV_ID_E830C_SFP:
 172	case ICE_DEV_ID_E830_XXV_SFP:
 173		hw->mac_type = ICE_MAC_E830;
 174		break;
 175	default:
 176		hw->mac_type = ICE_MAC_UNKNOWN;
 177		break;
 178	}
 179
 180	ice_debug(hw, ICE_DBG_INIT, "mac_type: %d\n", hw->mac_type);
 181	return 0;
 182}
 183
 184/**
 185 * ice_is_generic_mac - check if device's mac_type is generic
 186 * @hw: pointer to the hardware structure
 187 *
 188 * Return: true if mac_type is generic (with SBQ support), false if not
 189 */
 190bool ice_is_generic_mac(struct ice_hw *hw)
 191{
 192	return (hw->mac_type == ICE_MAC_GENERIC ||
 193		hw->mac_type == ICE_MAC_GENERIC_3K_E825);
 194}
 195
 196/**
 197 * ice_is_e810
 198 * @hw: pointer to the hardware structure
 199 *
 200 * returns true if the device is E810 based, false if not.
 201 */
 202bool ice_is_e810(struct ice_hw *hw)
 203{
 204	return hw->mac_type == ICE_MAC_E810;
 205}
 206
 207/**
 208 * ice_is_e810t
 209 * @hw: pointer to the hardware structure
 210 *
 211 * returns true if the device is E810T based, false if not.
 212 */
 213bool ice_is_e810t(struct ice_hw *hw)
 214{
 215	switch (hw->device_id) {
 216	case ICE_DEV_ID_E810C_SFP:
 217		switch (hw->subsystem_device_id) {
 218		case ICE_SUBDEV_ID_E810T:
 219		case ICE_SUBDEV_ID_E810T2:
 220		case ICE_SUBDEV_ID_E810T3:
 221		case ICE_SUBDEV_ID_E810T4:
 222		case ICE_SUBDEV_ID_E810T6:
 223		case ICE_SUBDEV_ID_E810T7:
 224			return true;
 225		}
 226		break;
 227	case ICE_DEV_ID_E810C_QSFP:
 228		switch (hw->subsystem_device_id) {
 229		case ICE_SUBDEV_ID_E810T2:
 230		case ICE_SUBDEV_ID_E810T3:
 231		case ICE_SUBDEV_ID_E810T5:
 232			return true;
 233		}
 234		break;
 235	default:
 236		break;
 237	}
 238
 239	return false;
 240}
 241
 242/**
 243 * ice_is_e822 - Check if a device is E822 family device
 244 * @hw: pointer to the hardware structure
 245 *
 246 * Return: true if the device is E822 based, false if not.
 247 */
 248bool ice_is_e822(struct ice_hw *hw)
 249{
 250	switch (hw->device_id) {
 251	case ICE_DEV_ID_E822C_BACKPLANE:
 252	case ICE_DEV_ID_E822C_QSFP:
 253	case ICE_DEV_ID_E822C_SFP:
 254	case ICE_DEV_ID_E822C_10G_BASE_T:
 255	case ICE_DEV_ID_E822C_SGMII:
 256	case ICE_DEV_ID_E822L_BACKPLANE:
 257	case ICE_DEV_ID_E822L_SFP:
 258	case ICE_DEV_ID_E822L_10G_BASE_T:
 259	case ICE_DEV_ID_E822L_SGMII:
 260		return true;
 261	default:
 262		return false;
 263	}
 264}
 265
 266/**
 267 * ice_is_e823
 268 * @hw: pointer to the hardware structure
 269 *
 270 * returns true if the device is E823-L or E823-C based, false if not.
 271 */
 272bool ice_is_e823(struct ice_hw *hw)
 273{
 274	switch (hw->device_id) {
 275	case ICE_DEV_ID_E823L_BACKPLANE:
 276	case ICE_DEV_ID_E823L_SFP:
 277	case ICE_DEV_ID_E823L_10G_BASE_T:
 278	case ICE_DEV_ID_E823L_1GBE:
 279	case ICE_DEV_ID_E823L_QSFP:
 280	case ICE_DEV_ID_E823C_BACKPLANE:
 281	case ICE_DEV_ID_E823C_QSFP:
 282	case ICE_DEV_ID_E823C_SFP:
 283	case ICE_DEV_ID_E823C_10G_BASE_T:
 284	case ICE_DEV_ID_E823C_SGMII:
 285		return true;
 286	default:
 287		return false;
 288	}
 289}
 290
 291/**
 292 * ice_is_e825c - Check if a device is E825C family device
 293 * @hw: pointer to the hardware structure
 294 *
 295 * Return: true if the device is E825-C based, false if not.
 
 296 */
 297bool ice_is_e825c(struct ice_hw *hw)
 298{
 299	switch (hw->device_id) {
 300	case ICE_DEV_ID_E825C_BACKPLANE:
 301	case ICE_DEV_ID_E825C_QSFP:
 302	case ICE_DEV_ID_E825C_SFP:
 303	case ICE_DEV_ID_E825C_SGMII:
 304		return true;
 305	default:
 306		return false;
 307	}
 308}
 309
 310/**
 311 * ice_clear_pf_cfg - Clear PF configuration
 312 * @hw: pointer to the hardware structure
 313 *
 314 * Clears any existing PF configuration (VSIs, VSI lists, switch rules, port
 315 * configuration, flow director filters, etc.).
 316 */
 317int ice_clear_pf_cfg(struct ice_hw *hw)
 318{
 319	struct ice_aq_desc desc;
 320
 321	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pf_cfg);
 322
 323	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
 324}
 325
 326/**
 327 * ice_aq_manage_mac_read - manage MAC address read command
 328 * @hw: pointer to the HW struct
 329 * @buf: a virtual buffer to hold the manage MAC read response
 330 * @buf_size: Size of the virtual buffer
 331 * @cd: pointer to command details structure or NULL
 332 *
 333 * This function is used to return per PF station MAC address (0x0107).
 334 * NOTE: Upon successful completion of this command, MAC address information
 335 * is returned in user specified buffer. Please interpret user specified
 336 * buffer as "manage_mac_read" response.
 337 * Response such as various MAC addresses are stored in HW struct (port.mac)
 338 * ice_discover_dev_caps is expected to be called before this function is
 339 * called.
 340 */
 341static int
 342ice_aq_manage_mac_read(struct ice_hw *hw, void *buf, u16 buf_size,
 343		       struct ice_sq_cd *cd)
 344{
 345	struct ice_aqc_manage_mac_read_resp *resp;
 346	struct ice_aqc_manage_mac_read *cmd;
 347	struct ice_aq_desc desc;
 348	int status;
 349	u16 flags;
 350	u8 i;
 351
 352	cmd = &desc.params.mac_read;
 353
 354	if (buf_size < sizeof(*resp))
 355		return -EINVAL;
 356
 357	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_read);
 358
 359	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
 360	if (status)
 361		return status;
 362
 363	resp = buf;
 364	flags = le16_to_cpu(cmd->flags) & ICE_AQC_MAN_MAC_READ_M;
 365
 366	if (!(flags & ICE_AQC_MAN_MAC_LAN_ADDR_VALID)) {
 367		ice_debug(hw, ICE_DBG_LAN, "got invalid MAC address\n");
 368		return -EIO;
 369	}
 370
 371	/* A single port can report up to two (LAN and WoL) addresses */
 372	for (i = 0; i < cmd->num_addr; i++)
 373		if (resp[i].addr_type == ICE_AQC_MAN_MAC_ADDR_TYPE_LAN) {
 374			ether_addr_copy(hw->port_info->mac.lan_addr,
 375					resp[i].mac_addr);
 376			ether_addr_copy(hw->port_info->mac.perm_addr,
 377					resp[i].mac_addr);
 378			break;
 379		}
 380
 381	return 0;
 382}
 383
 384/**
 385 * ice_aq_get_phy_caps - returns PHY capabilities
 386 * @pi: port information structure
 387 * @qual_mods: report qualified modules
 388 * @report_mode: report mode capabilities
 389 * @pcaps: structure for PHY capabilities to be filled
 390 * @cd: pointer to command details structure or NULL
 391 *
 392 * Returns the various PHY capabilities supported on the Port (0x0600)
 393 */
 394int
 395ice_aq_get_phy_caps(struct ice_port_info *pi, bool qual_mods, u8 report_mode,
 396		    struct ice_aqc_get_phy_caps_data *pcaps,
 397		    struct ice_sq_cd *cd)
 398{
 399	struct ice_aqc_get_phy_caps *cmd;
 400	u16 pcaps_size = sizeof(*pcaps);
 401	struct ice_aq_desc desc;
 402	const char *prefix;
 403	struct ice_hw *hw;
 404	int status;
 405
 406	cmd = &desc.params.get_phy;
 407
 408	if (!pcaps || (report_mode & ~ICE_AQC_REPORT_MODE_M) || !pi)
 409		return -EINVAL;
 410	hw = pi->hw;
 411
 412	if (report_mode == ICE_AQC_REPORT_DFLT_CFG &&
 413	    !ice_fw_supports_report_dflt_cfg(hw))
 414		return -EINVAL;
 415
 416	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_phy_caps);
 417
 418	if (qual_mods)
 419		cmd->param0 |= cpu_to_le16(ICE_AQC_GET_PHY_RQM);
 420
 421	cmd->param0 |= cpu_to_le16(report_mode);
 422	status = ice_aq_send_cmd(hw, &desc, pcaps, pcaps_size, cd);
 423
 424	ice_debug(hw, ICE_DBG_LINK, "get phy caps dump\n");
 425
 426	switch (report_mode) {
 427	case ICE_AQC_REPORT_TOPO_CAP_MEDIA:
 428		prefix = "phy_caps_media";
 429		break;
 430	case ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA:
 431		prefix = "phy_caps_no_media";
 432		break;
 433	case ICE_AQC_REPORT_ACTIVE_CFG:
 434		prefix = "phy_caps_active";
 435		break;
 436	case ICE_AQC_REPORT_DFLT_CFG:
 437		prefix = "phy_caps_default";
 438		break;
 439	default:
 440		prefix = "phy_caps_invalid";
 441	}
 442
 443	ice_dump_phy_type(hw, le64_to_cpu(pcaps->phy_type_low),
 444			  le64_to_cpu(pcaps->phy_type_high), prefix);
 445
 446	ice_debug(hw, ICE_DBG_LINK, "%s: report_mode = 0x%x\n",
 447		  prefix, report_mode);
 448	ice_debug(hw, ICE_DBG_LINK, "%s: caps = 0x%x\n", prefix, pcaps->caps);
 449	ice_debug(hw, ICE_DBG_LINK, "%s: low_power_ctrl_an = 0x%x\n", prefix,
 450		  pcaps->low_power_ctrl_an);
 451	ice_debug(hw, ICE_DBG_LINK, "%s: eee_cap = 0x%x\n", prefix,
 452		  pcaps->eee_cap);
 453	ice_debug(hw, ICE_DBG_LINK, "%s: eeer_value = 0x%x\n", prefix,
 454		  pcaps->eeer_value);
 455	ice_debug(hw, ICE_DBG_LINK, "%s: link_fec_options = 0x%x\n", prefix,
 456		  pcaps->link_fec_options);
 457	ice_debug(hw, ICE_DBG_LINK, "%s: module_compliance_enforcement = 0x%x\n",
 458		  prefix, pcaps->module_compliance_enforcement);
 459	ice_debug(hw, ICE_DBG_LINK, "%s: extended_compliance_code = 0x%x\n",
 460		  prefix, pcaps->extended_compliance_code);
 461	ice_debug(hw, ICE_DBG_LINK, "%s: module_type[0] = 0x%x\n", prefix,
 462		  pcaps->module_type[0]);
 463	ice_debug(hw, ICE_DBG_LINK, "%s: module_type[1] = 0x%x\n", prefix,
 464		  pcaps->module_type[1]);
 465	ice_debug(hw, ICE_DBG_LINK, "%s: module_type[2] = 0x%x\n", prefix,
 466		  pcaps->module_type[2]);
 467
 468	if (!status && report_mode == ICE_AQC_REPORT_TOPO_CAP_MEDIA) {
 469		pi->phy.phy_type_low = le64_to_cpu(pcaps->phy_type_low);
 470		pi->phy.phy_type_high = le64_to_cpu(pcaps->phy_type_high);
 471		memcpy(pi->phy.link_info.module_type, &pcaps->module_type,
 472		       sizeof(pi->phy.link_info.module_type));
 473	}
 474
 475	return status;
 476}
 477
 478/**
 479 * ice_aq_get_link_topo_handle - get link topology node return status
 480 * @pi: port information structure
 481 * @node_type: requested node type
 482 * @cd: pointer to command details structure or NULL
 483 *
 484 * Get link topology node return status for specified node type (0x06E0)
 485 *
 486 * Node type cage can be used to determine if cage is present. If AQC
 487 * returns error (ENOENT), then no cage present. If no cage present, then
 488 * connection type is backplane or BASE-T.
 489 */
 490static int
 491ice_aq_get_link_topo_handle(struct ice_port_info *pi, u8 node_type,
 492			    struct ice_sq_cd *cd)
 493{
 494	struct ice_aqc_get_link_topo *cmd;
 495	struct ice_aq_desc desc;
 496
 497	cmd = &desc.params.get_link_topo;
 498
 499	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo);
 500
 501	cmd->addr.topo_params.node_type_ctx =
 502		(ICE_AQC_LINK_TOPO_NODE_CTX_PORT <<
 503		 ICE_AQC_LINK_TOPO_NODE_CTX_S);
 504
 505	/* set node type */
 506	cmd->addr.topo_params.node_type_ctx |=
 507		(ICE_AQC_LINK_TOPO_NODE_TYPE_M & node_type);
 508
 509	return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
 510}
 511
 512/**
 513 * ice_aq_get_netlist_node
 514 * @hw: pointer to the hw struct
 515 * @cmd: get_link_topo AQ structure
 516 * @node_part_number: output node part number if node found
 517 * @node_handle: output node handle parameter if node found
 518 *
 519 * Get netlist node handle.
 520 */
 521int
 522ice_aq_get_netlist_node(struct ice_hw *hw, struct ice_aqc_get_link_topo *cmd,
 523			u8 *node_part_number, u16 *node_handle)
 524{
 525	struct ice_aq_desc desc;
 526
 527	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_topo);
 528	desc.params.get_link_topo = *cmd;
 529
 530	if (ice_aq_send_cmd(hw, &desc, NULL, 0, NULL))
 531		return -EINTR;
 532
 533	if (node_handle)
 534		*node_handle =
 535			le16_to_cpu(desc.params.get_link_topo.addr.handle);
 536	if (node_part_number)
 537		*node_part_number = desc.params.get_link_topo.node_part_num;
 538
 539	return 0;
 540}
 541
 542/**
 543 * ice_find_netlist_node
 544 * @hw: pointer to the hw struct
 545 * @node_type: type of netlist node to look for
 546 * @ctx: context of the search
 547 * @node_part_number: node part number to look for
 548 * @node_handle: output parameter if node found - optional
 549 *
 550 * Scan the netlist for a node handle of the given node type and part number.
 551 *
 552 * If node_handle is non-NULL it will be modified on function exit. It is only
 553 * valid if the function returns zero, and should be ignored on any non-zero
 554 * return value.
 555 *
 556 * Return:
 557 * * 0 if the node is found,
 558 * * -ENOENT if no handle was found,
 559 * * negative error code on failure to access the AQ.
 560 */
 561static int ice_find_netlist_node(struct ice_hw *hw, u8 node_type, u8 ctx,
 562				 u8 node_part_number, u16 *node_handle)
 563{
 564	u8 idx;
 565
 566	for (idx = 0; idx < ICE_MAX_NETLIST_SIZE; idx++) {
 567		struct ice_aqc_get_link_topo cmd = {};
 568		u8 rec_node_part_number;
 569		int status;
 570
 571		cmd.addr.topo_params.node_type_ctx =
 572			FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_TYPE_M, node_type) |
 573			FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_CTX_M, ctx);
 574		cmd.addr.topo_params.index = idx;
 575
 576		status = ice_aq_get_netlist_node(hw, &cmd,
 577						 &rec_node_part_number,
 578						 node_handle);
 579		if (status)
 580			return status;
 581
 582		if (rec_node_part_number == node_part_number)
 583			return 0;
 584	}
 585
 586	return -ENOENT;
 587}
 588
 589/**
 590 * ice_is_media_cage_present
 591 * @pi: port information structure
 592 *
 593 * Returns true if media cage is present, else false. If no cage, then
 594 * media type is backplane or BASE-T.
 595 */
 596static bool ice_is_media_cage_present(struct ice_port_info *pi)
 597{
 598	/* Node type cage can be used to determine if cage is present. If AQC
 599	 * returns error (ENOENT), then no cage present. If no cage present then
 600	 * connection type is backplane or BASE-T.
 601	 */
 602	return !ice_aq_get_link_topo_handle(pi,
 603					    ICE_AQC_LINK_TOPO_NODE_TYPE_CAGE,
 604					    NULL);
 605}
 606
 607/**
 608 * ice_get_media_type - Gets media type
 609 * @pi: port information structure
 610 */
 611static enum ice_media_type ice_get_media_type(struct ice_port_info *pi)
 612{
 613	struct ice_link_status *hw_link_info;
 614
 615	if (!pi)
 616		return ICE_MEDIA_UNKNOWN;
 617
 618	hw_link_info = &pi->phy.link_info;
 619	if (hw_link_info->phy_type_low && hw_link_info->phy_type_high)
 620		/* If more than one media type is selected, report unknown */
 621		return ICE_MEDIA_UNKNOWN;
 622
 623	if (hw_link_info->phy_type_low) {
 624		/* 1G SGMII is a special case where some DA cable PHYs
 625		 * may show this as an option when it really shouldn't
 626		 * be since SGMII is meant to be between a MAC and a PHY
 627		 * in a backplane. Try to detect this case and handle it
 628		 */
 629		if (hw_link_info->phy_type_low == ICE_PHY_TYPE_LOW_1G_SGMII &&
 630		    (hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] ==
 631		    ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_ACTIVE ||
 632		    hw_link_info->module_type[ICE_AQC_MOD_TYPE_IDENT] ==
 633		    ICE_AQC_MOD_TYPE_BYTE1_SFP_PLUS_CU_PASSIVE))
 634			return ICE_MEDIA_DA;
 635
 636		switch (hw_link_info->phy_type_low) {
 637		case ICE_PHY_TYPE_LOW_1000BASE_SX:
 638		case ICE_PHY_TYPE_LOW_1000BASE_LX:
 639		case ICE_PHY_TYPE_LOW_10GBASE_SR:
 640		case ICE_PHY_TYPE_LOW_10GBASE_LR:
 641		case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
 642		case ICE_PHY_TYPE_LOW_25GBASE_SR:
 643		case ICE_PHY_TYPE_LOW_25GBASE_LR:
 
 644		case ICE_PHY_TYPE_LOW_40GBASE_SR4:
 645		case ICE_PHY_TYPE_LOW_40GBASE_LR4:
 646		case ICE_PHY_TYPE_LOW_50GBASE_SR2:
 647		case ICE_PHY_TYPE_LOW_50GBASE_LR2:
 648		case ICE_PHY_TYPE_LOW_50GBASE_SR:
 649		case ICE_PHY_TYPE_LOW_50GBASE_FR:
 650		case ICE_PHY_TYPE_LOW_50GBASE_LR:
 651		case ICE_PHY_TYPE_LOW_100GBASE_SR4:
 652		case ICE_PHY_TYPE_LOW_100GBASE_LR4:
 653		case ICE_PHY_TYPE_LOW_100GBASE_SR2:
 654		case ICE_PHY_TYPE_LOW_100GBASE_DR:
 655		case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
 656		case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
 657		case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
 658		case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
 659		case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
 660		case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
 661		case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
 662		case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
 663			return ICE_MEDIA_FIBER;
 664		case ICE_PHY_TYPE_LOW_100BASE_TX:
 665		case ICE_PHY_TYPE_LOW_1000BASE_T:
 666		case ICE_PHY_TYPE_LOW_2500BASE_T:
 667		case ICE_PHY_TYPE_LOW_5GBASE_T:
 668		case ICE_PHY_TYPE_LOW_10GBASE_T:
 669		case ICE_PHY_TYPE_LOW_25GBASE_T:
 670			return ICE_MEDIA_BASET;
 671		case ICE_PHY_TYPE_LOW_10G_SFI_DA:
 672		case ICE_PHY_TYPE_LOW_25GBASE_CR:
 673		case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
 674		case ICE_PHY_TYPE_LOW_25GBASE_CR1:
 675		case ICE_PHY_TYPE_LOW_40GBASE_CR4:
 676		case ICE_PHY_TYPE_LOW_50GBASE_CR2:
 677		case ICE_PHY_TYPE_LOW_50GBASE_CP:
 678		case ICE_PHY_TYPE_LOW_100GBASE_CR4:
 679		case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
 680		case ICE_PHY_TYPE_LOW_100GBASE_CP2:
 681			return ICE_MEDIA_DA;
 682		case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
 683		case ICE_PHY_TYPE_LOW_40G_XLAUI:
 684		case ICE_PHY_TYPE_LOW_50G_LAUI2:
 685		case ICE_PHY_TYPE_LOW_50G_AUI2:
 686		case ICE_PHY_TYPE_LOW_50G_AUI1:
 687		case ICE_PHY_TYPE_LOW_100G_AUI4:
 688		case ICE_PHY_TYPE_LOW_100G_CAUI4:
 689			if (ice_is_media_cage_present(pi))
 690				return ICE_MEDIA_DA;
 691			fallthrough;
 692		case ICE_PHY_TYPE_LOW_1000BASE_KX:
 693		case ICE_PHY_TYPE_LOW_2500BASE_KX:
 694		case ICE_PHY_TYPE_LOW_2500BASE_X:
 695		case ICE_PHY_TYPE_LOW_5GBASE_KR:
 696		case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
 697		case ICE_PHY_TYPE_LOW_25GBASE_KR:
 698		case ICE_PHY_TYPE_LOW_25GBASE_KR1:
 699		case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
 700		case ICE_PHY_TYPE_LOW_40GBASE_KR4:
 701		case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
 702		case ICE_PHY_TYPE_LOW_50GBASE_KR2:
 703		case ICE_PHY_TYPE_LOW_100GBASE_KR4:
 704		case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
 705			return ICE_MEDIA_BACKPLANE;
 706		}
 707	} else {
 708		switch (hw_link_info->phy_type_high) {
 709		case ICE_PHY_TYPE_HIGH_100G_AUI2:
 710		case ICE_PHY_TYPE_HIGH_100G_CAUI2:
 711			if (ice_is_media_cage_present(pi))
 712				return ICE_MEDIA_DA;
 713			fallthrough;
 714		case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
 715			return ICE_MEDIA_BACKPLANE;
 716		case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
 717		case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
 718			return ICE_MEDIA_FIBER;
 719		}
 720	}
 721	return ICE_MEDIA_UNKNOWN;
 722}
 723
 724/**
 725 * ice_get_link_status_datalen
 726 * @hw: pointer to the HW struct
 727 *
 728 * Returns datalength for the Get Link Status AQ command, which is bigger for
 729 * newer adapter families handled by ice driver.
 730 */
 731static u16 ice_get_link_status_datalen(struct ice_hw *hw)
 732{
 733	switch (hw->mac_type) {
 734	case ICE_MAC_E830:
 735		return ICE_AQC_LS_DATA_SIZE_V2;
 736	case ICE_MAC_E810:
 737	default:
 738		return ICE_AQC_LS_DATA_SIZE_V1;
 739	}
 740}
 741
 742/**
 743 * ice_aq_get_link_info
 744 * @pi: port information structure
 745 * @ena_lse: enable/disable LinkStatusEvent reporting
 746 * @link: pointer to link status structure - optional
 747 * @cd: pointer to command details structure or NULL
 748 *
 749 * Get Link Status (0x607). Returns the link status of the adapter.
 750 */
 751int
 752ice_aq_get_link_info(struct ice_port_info *pi, bool ena_lse,
 753		     struct ice_link_status *link, struct ice_sq_cd *cd)
 754{
 755	struct ice_aqc_get_link_status_data link_data = { 0 };
 756	struct ice_aqc_get_link_status *resp;
 757	struct ice_link_status *li_old, *li;
 758	enum ice_media_type *hw_media_type;
 759	struct ice_fc_info *hw_fc_info;
 760	bool tx_pause, rx_pause;
 761	struct ice_aq_desc desc;
 
 762	struct ice_hw *hw;
 763	u16 cmd_flags;
 764	int status;
 765
 766	if (!pi)
 767		return -EINVAL;
 768	hw = pi->hw;
 769	li_old = &pi->phy.link_info_old;
 770	hw_media_type = &pi->phy.media_type;
 771	li = &pi->phy.link_info;
 772	hw_fc_info = &pi->fc;
 773
 774	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_status);
 775	cmd_flags = (ena_lse) ? ICE_AQ_LSE_ENA : ICE_AQ_LSE_DIS;
 776	resp = &desc.params.get_link_status;
 777	resp->cmd_flags = cpu_to_le16(cmd_flags);
 778	resp->lport_num = pi->lport;
 779
 780	status = ice_aq_send_cmd(hw, &desc, &link_data,
 781				 ice_get_link_status_datalen(hw), cd);
 782	if (status)
 783		return status;
 784
 785	/* save off old link status information */
 786	*li_old = *li;
 787
 788	/* update current link status information */
 789	li->link_speed = le16_to_cpu(link_data.link_speed);
 790	li->phy_type_low = le64_to_cpu(link_data.phy_type_low);
 791	li->phy_type_high = le64_to_cpu(link_data.phy_type_high);
 792	*hw_media_type = ice_get_media_type(pi);
 793	li->link_info = link_data.link_info;
 794	li->link_cfg_err = link_data.link_cfg_err;
 795	li->an_info = link_data.an_info;
 796	li->ext_info = link_data.ext_info;
 797	li->max_frame_size = le16_to_cpu(link_data.max_frame_size);
 798	li->fec_info = link_data.cfg & ICE_AQ_FEC_MASK;
 799	li->topo_media_conflict = link_data.topo_media_conflict;
 800	li->pacing = link_data.cfg & (ICE_AQ_CFG_PACING_M |
 801				      ICE_AQ_CFG_PACING_TYPE_M);
 802
 803	/* update fc info */
 804	tx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_TX);
 805	rx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_RX);
 806	if (tx_pause && rx_pause)
 807		hw_fc_info->current_mode = ICE_FC_FULL;
 808	else if (tx_pause)
 809		hw_fc_info->current_mode = ICE_FC_TX_PAUSE;
 810	else if (rx_pause)
 811		hw_fc_info->current_mode = ICE_FC_RX_PAUSE;
 812	else
 813		hw_fc_info->current_mode = ICE_FC_NONE;
 814
 815	li->lse_ena = !!(resp->cmd_flags & cpu_to_le16(ICE_AQ_LSE_IS_ENABLED));
 816
 817	ice_debug(hw, ICE_DBG_LINK, "get link info\n");
 818	ice_debug(hw, ICE_DBG_LINK, "	link_speed = 0x%x\n", li->link_speed);
 819	ice_debug(hw, ICE_DBG_LINK, "	phy_type_low = 0x%llx\n",
 820		  (unsigned long long)li->phy_type_low);
 821	ice_debug(hw, ICE_DBG_LINK, "	phy_type_high = 0x%llx\n",
 822		  (unsigned long long)li->phy_type_high);
 823	ice_debug(hw, ICE_DBG_LINK, "	media_type = 0x%x\n", *hw_media_type);
 824	ice_debug(hw, ICE_DBG_LINK, "	link_info = 0x%x\n", li->link_info);
 825	ice_debug(hw, ICE_DBG_LINK, "	link_cfg_err = 0x%x\n", li->link_cfg_err);
 826	ice_debug(hw, ICE_DBG_LINK, "	an_info = 0x%x\n", li->an_info);
 827	ice_debug(hw, ICE_DBG_LINK, "	ext_info = 0x%x\n", li->ext_info);
 828	ice_debug(hw, ICE_DBG_LINK, "	fec_info = 0x%x\n", li->fec_info);
 829	ice_debug(hw, ICE_DBG_LINK, "	lse_ena = 0x%x\n", li->lse_ena);
 830	ice_debug(hw, ICE_DBG_LINK, "	max_frame = 0x%x\n",
 831		  li->max_frame_size);
 832	ice_debug(hw, ICE_DBG_LINK, "	pacing = 0x%x\n", li->pacing);
 833
 834	/* save link status information */
 835	if (link)
 836		*link = *li;
 837
 838	/* flag cleared so calling functions don't call AQ again */
 839	pi->phy.get_link_info = false;
 840
 841	return 0;
 842}
 843
 844/**
 845 * ice_fill_tx_timer_and_fc_thresh
 846 * @hw: pointer to the HW struct
 847 * @cmd: pointer to MAC cfg structure
 848 *
 849 * Add Tx timer and FC refresh threshold info to Set MAC Config AQ command
 850 * descriptor
 851 */
 852static void
 853ice_fill_tx_timer_and_fc_thresh(struct ice_hw *hw,
 854				struct ice_aqc_set_mac_cfg *cmd)
 855{
 856	u32 val, fc_thres_m;
 857
 858	/* We read back the transmit timer and FC threshold value of
 859	 * LFC. Thus, we will use index =
 860	 * PRTMAC_HSEC_CTL_TX_PAUSE_QUANTA_MAX_INDEX.
 861	 *
 862	 * Also, because we are operating on transmit timer and FC
 863	 * threshold of LFC, we don't turn on any bit in tx_tmr_priority
 864	 */
 865#define E800_IDX_OF_LFC E800_PRTMAC_HSEC_CTL_TX_PS_QNT_MAX
 866#define E800_REFRESH_TMR E800_PRTMAC_HSEC_CTL_TX_PS_RFSH_TMR
 867
 868	if (hw->mac_type == ICE_MAC_E830) {
 869		/* Retrieve the transmit timer */
 870		val = rd32(hw, E830_PRTMAC_CL01_PS_QNT);
 871		cmd->tx_tmr_value =
 872			le16_encode_bits(val, E830_PRTMAC_CL01_PS_QNT_CL0_M);
 873
 874		/* Retrieve the fc threshold */
 875		val = rd32(hw, E830_PRTMAC_CL01_QNT_THR);
 876		fc_thres_m = E830_PRTMAC_CL01_QNT_THR_CL0_M;
 877	} else {
 878		/* Retrieve the transmit timer */
 879		val = rd32(hw,
 880			   E800_PRTMAC_HSEC_CTL_TX_PS_QNT(E800_IDX_OF_LFC));
 881		cmd->tx_tmr_value =
 882			le16_encode_bits(val,
 883					 E800_PRTMAC_HSEC_CTL_TX_PS_QNT_M);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 884
 885		/* Retrieve the fc threshold */
 886		val = rd32(hw,
 887			   E800_REFRESH_TMR(E800_IDX_OF_LFC));
 888		fc_thres_m = E800_PRTMAC_HSEC_CTL_TX_PS_RFSH_TMR_M;
 889	}
 890	cmd->fc_refresh_threshold = le16_encode_bits(val, fc_thres_m);
 891}
 892
 893/**
 894 * ice_aq_set_mac_cfg
 895 * @hw: pointer to the HW struct
 896 * @max_frame_size: Maximum Frame Size to be supported
 897 * @cd: pointer to command details structure or NULL
 898 *
 899 * Set MAC configuration (0x0603)
 900 */
 901int
 902ice_aq_set_mac_cfg(struct ice_hw *hw, u16 max_frame_size, struct ice_sq_cd *cd)
 903{
 904	struct ice_aqc_set_mac_cfg *cmd;
 905	struct ice_aq_desc desc;
 906
 907	cmd = &desc.params.set_mac_cfg;
 908
 909	if (max_frame_size == 0)
 910		return -EINVAL;
 
 
 
 
 911
 912	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_cfg);
 
 913
 914	cmd->max_frame_size = cpu_to_le16(max_frame_size);
 915
 916	ice_fill_tx_timer_and_fc_thresh(hw, cmd);
 
 917
 918	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
 
 
 
 
 919}
 920
 921/**
 922 * ice_init_fltr_mgmt_struct - initializes filter management list and locks
 923 * @hw: pointer to the HW struct
 924 */
 925static int ice_init_fltr_mgmt_struct(struct ice_hw *hw)
 926{
 927	struct ice_switch_info *sw;
 928	int status;
 929
 930	hw->switch_info = devm_kzalloc(ice_hw_to_dev(hw),
 931				       sizeof(*hw->switch_info), GFP_KERNEL);
 932	sw = hw->switch_info;
 933
 934	if (!sw)
 935		return -ENOMEM;
 936
 937	INIT_LIST_HEAD(&sw->vsi_list_map_head);
 938	sw->prof_res_bm_init = 0;
 939
 940	/* Initialize recipe count with default recipes read from NVM */
 941	sw->recp_cnt = ICE_SW_LKUP_LAST;
 942
 943	status = ice_init_def_sw_recp(hw);
 944	if (status) {
 945		devm_kfree(ice_hw_to_dev(hw), hw->switch_info);
 946		return status;
 947	}
 948	return 0;
 949}
 950
 951/**
 952 * ice_cleanup_fltr_mgmt_struct - cleanup filter management list and locks
 953 * @hw: pointer to the HW struct
 954 */
 955static void ice_cleanup_fltr_mgmt_struct(struct ice_hw *hw)
 956{
 957	struct ice_switch_info *sw = hw->switch_info;
 958	struct ice_vsi_list_map_info *v_pos_map;
 959	struct ice_vsi_list_map_info *v_tmp_map;
 960	struct ice_sw_recipe *recps;
 961	u8 i;
 962
 963	list_for_each_entry_safe(v_pos_map, v_tmp_map, &sw->vsi_list_map_head,
 964				 list_entry) {
 965		list_del(&v_pos_map->list_entry);
 966		devm_kfree(ice_hw_to_dev(hw), v_pos_map);
 967	}
 968	recps = sw->recp_list;
 969	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++) {
 
 
 970		recps[i].root_rid = i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 971
 972		if (recps[i].adv_rule) {
 973			struct ice_adv_fltr_mgmt_list_entry *tmp_entry;
 974			struct ice_adv_fltr_mgmt_list_entry *lst_itr;
 975
 976			mutex_destroy(&recps[i].filt_rule_lock);
 977			list_for_each_entry_safe(lst_itr, tmp_entry,
 978						 &recps[i].filt_rules,
 979						 list_entry) {
 980				list_del(&lst_itr->list_entry);
 981				devm_kfree(ice_hw_to_dev(hw), lst_itr->lkups);
 982				devm_kfree(ice_hw_to_dev(hw), lst_itr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 983			}
 984		} else {
 985			struct ice_fltr_mgmt_list_entry *lst_itr, *tmp_entry;
 986
 987			mutex_destroy(&recps[i].filt_rule_lock);
 988			list_for_each_entry_safe(lst_itr, tmp_entry,
 989						 &recps[i].filt_rules,
 990						 list_entry) {
 991				list_del(&lst_itr->list_entry);
 992				devm_kfree(ice_hw_to_dev(hw), lst_itr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 993			}
 
 
 
 
 994		}
 995	}
 996	ice_rm_all_sw_replay_rule_info(hw);
 997	devm_kfree(ice_hw_to_dev(hw), sw->recp_list);
 998	devm_kfree(ice_hw_to_dev(hw), sw);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 999}
1000
1001/**
1002 * ice_get_itr_intrl_gran
1003 * @hw: pointer to the HW struct
1004 *
1005 * Determines the ITR/INTRL granularities based on the maximum aggregate
1006 * bandwidth according to the device's configuration during power-on.
1007 */
1008static void ice_get_itr_intrl_gran(struct ice_hw *hw)
1009{
1010	u8 max_agg_bw = FIELD_GET(GL_PWR_MODE_CTL_CAR_MAX_BW_M,
1011				  rd32(hw, GL_PWR_MODE_CTL));
 
1012
1013	switch (max_agg_bw) {
1014	case ICE_MAX_AGG_BW_200G:
1015	case ICE_MAX_AGG_BW_100G:
1016	case ICE_MAX_AGG_BW_50G:
1017		hw->itr_gran = ICE_ITR_GRAN_ABOVE_25;
1018		hw->intrl_gran = ICE_INTRL_GRAN_ABOVE_25;
1019		break;
1020	case ICE_MAX_AGG_BW_25G:
1021		hw->itr_gran = ICE_ITR_GRAN_MAX_25;
1022		hw->intrl_gran = ICE_INTRL_GRAN_MAX_25;
1023		break;
1024	}
1025}
1026
1027/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1028 * ice_init_hw - main hardware initialization routine
1029 * @hw: pointer to the hardware structure
1030 */
1031int ice_init_hw(struct ice_hw *hw)
1032{
1033	struct ice_aqc_get_phy_caps_data *pcaps __free(kfree) = NULL;
1034	void *mac_buf __free(kfree) = NULL;
1035	u16 mac_buf_len;
1036	int status;
1037
1038	/* Set MAC type based on DeviceID */
1039	status = ice_set_mac_type(hw);
1040	if (status)
1041		return status;
1042
1043	hw->pf_id = FIELD_GET(PF_FUNC_RID_FUNC_NUM_M, rd32(hw, PF_FUNC_RID));
 
 
1044
1045	status = ice_reset(hw, ICE_RESET_PFR);
1046	if (status)
1047		return status;
1048
1049	ice_get_itr_intrl_gran(hw);
1050
1051	status = ice_create_all_ctrlq(hw);
1052	if (status)
1053		goto err_unroll_cqinit;
1054
1055	status = ice_fwlog_init(hw);
 
1056	if (status)
1057		ice_debug(hw, ICE_DBG_FW_LOG, "Error initializing FW logging: %d\n",
1058			  status);
1059
1060	status = ice_clear_pf_cfg(hw);
1061	if (status)
1062		goto err_unroll_cqinit;
1063
1064	/* Set bit to enable Flow Director filters */
1065	wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
1066	INIT_LIST_HEAD(&hw->fdir_list_head);
1067
1068	ice_clear_pxe_mode(hw);
1069
1070	status = ice_init_nvm(hw);
1071	if (status)
1072		goto err_unroll_cqinit;
1073
1074	status = ice_get_caps(hw);
1075	if (status)
1076		goto err_unroll_cqinit;
1077
1078	if (!hw->port_info)
1079		hw->port_info = devm_kzalloc(ice_hw_to_dev(hw),
1080					     sizeof(*hw->port_info),
1081					     GFP_KERNEL);
1082	if (!hw->port_info) {
1083		status = -ENOMEM;
1084		goto err_unroll_cqinit;
1085	}
1086
1087	hw->port_info->local_fwd_mode = ICE_LOCAL_FWD_MODE_ENABLED;
1088	/* set the back pointer to HW */
1089	hw->port_info->hw = hw;
1090
1091	/* Initialize port_info struct with switch configuration data */
1092	status = ice_get_initial_sw_cfg(hw);
1093	if (status)
1094		goto err_unroll_alloc;
1095
1096	hw->evb_veb = true;
1097
1098	/* init xarray for identifying scheduling nodes uniquely */
1099	xa_init_flags(&hw->port_info->sched_node_ids, XA_FLAGS_ALLOC);
1100
1101	/* Query the allocated resources for Tx scheduler */
1102	status = ice_sched_query_res_alloc(hw);
1103	if (status) {
1104		ice_debug(hw, ICE_DBG_SCHED, "Failed to get scheduler allocated resources\n");
 
1105		goto err_unroll_alloc;
1106	}
1107	ice_sched_get_psm_clk_freq(hw);
1108
1109	/* Initialize port_info struct with scheduler data */
1110	status = ice_sched_init_port(hw->port_info);
1111	if (status)
1112		goto err_unroll_sched;
1113
1114	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1115	if (!pcaps) {
1116		status = -ENOMEM;
1117		goto err_unroll_sched;
1118	}
1119
1120	/* Initialize port_info struct with PHY capabilities */
1121	status = ice_aq_get_phy_caps(hw->port_info, false,
1122				     ICE_AQC_REPORT_TOPO_CAP_MEDIA, pcaps,
1123				     NULL);
1124	if (status)
1125		dev_warn(ice_hw_to_dev(hw), "Get PHY capabilities failed status = %d, continuing anyway\n",
1126			 status);
1127
1128	/* Initialize port_info struct with link information */
1129	status = ice_aq_get_link_info(hw->port_info, false, NULL, NULL);
1130	if (status)
1131		goto err_unroll_sched;
1132
1133	/* need a valid SW entry point to build a Tx tree */
1134	if (!hw->sw_entry_point_layer) {
1135		ice_debug(hw, ICE_DBG_SCHED, "invalid sw entry point\n");
1136		status = -EIO;
1137		goto err_unroll_sched;
1138	}
1139	INIT_LIST_HEAD(&hw->agg_list);
1140	/* Initialize max burst size */
1141	if (!hw->max_burst_size)
1142		ice_cfg_rl_burst_size(hw, ICE_SCHED_DFLT_BURST_SIZE);
1143
1144	status = ice_init_fltr_mgmt_struct(hw);
1145	if (status)
1146		goto err_unroll_sched;
1147
 
 
1148	/* Get MAC information */
1149	/* A single port can report up to two (LAN and WoL) addresses */
1150	mac_buf = kcalloc(2, sizeof(struct ice_aqc_manage_mac_read_resp),
1151			  GFP_KERNEL);
 
 
 
1152	if (!mac_buf) {
1153		status = -ENOMEM;
1154		goto err_unroll_fltr_mgmt_struct;
1155	}
1156
1157	mac_buf_len = 2 * sizeof(struct ice_aqc_manage_mac_read_resp);
1158	status = ice_aq_manage_mac_read(hw, mac_buf, mac_buf_len, NULL);
 
1159
1160	if (status)
1161		goto err_unroll_fltr_mgmt_struct;
1162	/* enable jumbo frame support at MAC level */
1163	status = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
1164	if (status)
1165		goto err_unroll_fltr_mgmt_struct;
1166	/* Obtain counter base index which would be used by flow director */
1167	status = ice_alloc_fd_res_cntr(hw, &hw->fd_ctr_base);
1168	if (status)
1169		goto err_unroll_fltr_mgmt_struct;
1170	status = ice_init_hw_tbls(hw);
1171	if (status)
1172		goto err_unroll_fltr_mgmt_struct;
1173	mutex_init(&hw->tnl_lock);
1174	ice_init_chk_recipe_reuse_support(hw);
1175
1176	return 0;
1177
1178err_unroll_fltr_mgmt_struct:
1179	ice_cleanup_fltr_mgmt_struct(hw);
1180err_unroll_sched:
1181	ice_sched_cleanup_all(hw);
1182err_unroll_alloc:
1183	devm_kfree(ice_hw_to_dev(hw), hw->port_info);
1184err_unroll_cqinit:
1185	ice_destroy_all_ctrlq(hw);
1186	return status;
1187}
1188
1189/**
1190 * ice_deinit_hw - unroll initialization operations done by ice_init_hw
1191 * @hw: pointer to the hardware structure
1192 *
1193 * This should be called only during nominal operation, not as a result of
1194 * ice_init_hw() failing since ice_init_hw() will take care of unrolling
1195 * applicable initializations if it fails for any reason.
1196 */
1197void ice_deinit_hw(struct ice_hw *hw)
1198{
1199	ice_free_fd_res_cntr(hw, hw->fd_ctr_base);
1200	ice_cleanup_fltr_mgmt_struct(hw);
1201
1202	ice_sched_cleanup_all(hw);
1203	ice_sched_clear_agg(hw);
1204	ice_free_seg(hw);
1205	ice_free_hw_tbls(hw);
1206	mutex_destroy(&hw->tnl_lock);
1207
1208	ice_fwlog_deinit(hw);
 
 
 
 
 
 
1209	ice_destroy_all_ctrlq(hw);
1210
1211	/* Clear VSI contexts if not already cleared */
1212	ice_clear_all_vsi_ctx(hw);
1213}
1214
1215/**
1216 * ice_check_reset - Check to see if a global reset is complete
1217 * @hw: pointer to the hardware structure
1218 */
1219int ice_check_reset(struct ice_hw *hw)
1220{
1221	u32 cnt, reg = 0, grst_timeout, uld_mask;
1222
1223	/* Poll for Device Active state in case a recent CORER, GLOBR,
1224	 * or EMPR has occurred. The grst delay value is in 100ms units.
1225	 * Add 1sec for outstanding AQ commands that can take a long time.
1226	 */
1227	grst_timeout = FIELD_GET(GLGEN_RSTCTL_GRSTDEL_M,
1228				 rd32(hw, GLGEN_RSTCTL)) + 10;
1229
1230	for (cnt = 0; cnt < grst_timeout; cnt++) {
1231		mdelay(100);
1232		reg = rd32(hw, GLGEN_RSTAT);
1233		if (!(reg & GLGEN_RSTAT_DEVSTATE_M))
1234			break;
1235	}
1236
1237	if (cnt == grst_timeout) {
1238		ice_debug(hw, ICE_DBG_INIT, "Global reset polling failed to complete.\n");
1239		return -EIO;
 
1240	}
1241
1242#define ICE_RESET_DONE_MASK	(GLNVM_ULD_PCIER_DONE_M |\
1243				 GLNVM_ULD_PCIER_DONE_1_M |\
1244				 GLNVM_ULD_CORER_DONE_M |\
1245				 GLNVM_ULD_GLOBR_DONE_M |\
1246				 GLNVM_ULD_POR_DONE_M |\
1247				 GLNVM_ULD_POR_DONE_1_M |\
1248				 GLNVM_ULD_PCIER_DONE_2_M)
1249
1250	uld_mask = ICE_RESET_DONE_MASK | (hw->func_caps.common_cap.rdma ?
1251					  GLNVM_ULD_PE_DONE_M : 0);
1252
1253	/* Device is Active; check Global Reset processes are done */
1254	for (cnt = 0; cnt < ICE_PF_RESET_WAIT_COUNT; cnt++) {
1255		reg = rd32(hw, GLNVM_ULD) & uld_mask;
1256		if (reg == uld_mask) {
1257			ice_debug(hw, ICE_DBG_INIT, "Global reset processes done. %d\n", cnt);
 
1258			break;
1259		}
1260		mdelay(10);
1261	}
1262
1263	if (cnt == ICE_PF_RESET_WAIT_COUNT) {
1264		ice_debug(hw, ICE_DBG_INIT, "Wait for Reset Done timed out. GLNVM_ULD = 0x%x\n",
 
1265			  reg);
1266		return -EIO;
1267	}
1268
1269	return 0;
1270}
1271
1272/**
1273 * ice_pf_reset - Reset the PF
1274 * @hw: pointer to the hardware structure
1275 *
1276 * If a global reset has been triggered, this function checks
1277 * for its completion and then issues the PF reset
1278 */
1279static int ice_pf_reset(struct ice_hw *hw)
1280{
1281	u32 cnt, reg;
1282
1283	/* If at function entry a global reset was already in progress, i.e.
1284	 * state is not 'device active' or any of the reset done bits are not
1285	 * set in GLNVM_ULD, there is no need for a PF Reset; poll until the
1286	 * global reset is done.
1287	 */
1288	if ((rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_DEVSTATE_M) ||
1289	    (rd32(hw, GLNVM_ULD) & ICE_RESET_DONE_MASK) ^ ICE_RESET_DONE_MASK) {
1290		/* poll on global reset currently in progress until done */
1291		if (ice_check_reset(hw))
1292			return -EIO;
1293
1294		return 0;
1295	}
1296
1297	/* Reset the PF */
1298	reg = rd32(hw, PFGEN_CTRL);
1299
1300	wr32(hw, PFGEN_CTRL, (reg | PFGEN_CTRL_PFSWR_M));
1301
1302	/* Wait for the PFR to complete. The wait time is the global config lock
1303	 * timeout plus the PFR timeout which will account for a possible reset
1304	 * that is occurring during a download package operation.
1305	 */
1306	for (cnt = 0; cnt < ICE_GLOBAL_CFG_LOCK_TIMEOUT +
1307	     ICE_PF_RESET_WAIT_COUNT; cnt++) {
1308		reg = rd32(hw, PFGEN_CTRL);
1309		if (!(reg & PFGEN_CTRL_PFSWR_M))
1310			break;
1311
1312		mdelay(1);
1313	}
1314
1315	if (cnt == ICE_PF_RESET_WAIT_COUNT) {
1316		ice_debug(hw, ICE_DBG_INIT, "PF reset polling failed to complete.\n");
1317		return -EIO;
 
1318	}
1319
1320	return 0;
1321}
1322
1323/**
1324 * ice_reset - Perform different types of reset
1325 * @hw: pointer to the hardware structure
1326 * @req: reset request
1327 *
1328 * This function triggers a reset as specified by the req parameter.
1329 *
1330 * Note:
1331 * If anything other than a PF reset is triggered, PXE mode is restored.
1332 * This has to be cleared using ice_clear_pxe_mode again, once the AQ
1333 * interface has been restored in the rebuild flow.
1334 */
1335int ice_reset(struct ice_hw *hw, enum ice_reset_req req)
1336{
1337	u32 val = 0;
1338
1339	switch (req) {
1340	case ICE_RESET_PFR:
1341		return ice_pf_reset(hw);
1342	case ICE_RESET_CORER:
1343		ice_debug(hw, ICE_DBG_INIT, "CoreR requested\n");
1344		val = GLGEN_RTRIG_CORER_M;
1345		break;
1346	case ICE_RESET_GLOBR:
1347		ice_debug(hw, ICE_DBG_INIT, "GlobalR requested\n");
1348		val = GLGEN_RTRIG_GLOBR_M;
1349		break;
1350	default:
1351		return -EINVAL;
1352	}
1353
1354	val |= rd32(hw, GLGEN_RTRIG);
1355	wr32(hw, GLGEN_RTRIG, val);
1356	ice_flush(hw);
1357
1358	/* wait for the FW to be ready */
1359	return ice_check_reset(hw);
1360}
1361
1362/**
1363 * ice_copy_rxq_ctx_to_hw
1364 * @hw: pointer to the hardware structure
1365 * @ice_rxq_ctx: pointer to the rxq context
1366 * @rxq_index: the index of the Rx queue
1367 *
1368 * Copies rxq context from dense structure to HW register space
1369 */
1370static int
1371ice_copy_rxq_ctx_to_hw(struct ice_hw *hw, u8 *ice_rxq_ctx, u32 rxq_index)
1372{
1373	u8 i;
1374
1375	if (!ice_rxq_ctx)
1376		return -EINVAL;
1377
1378	if (rxq_index > QRX_CTRL_MAX_INDEX)
1379		return -EINVAL;
1380
1381	/* Copy each dword separately to HW */
1382	for (i = 0; i < ICE_RXQ_CTX_SIZE_DWORDS; i++) {
1383		wr32(hw, QRX_CONTEXT(i, rxq_index),
1384		     *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
1385
1386		ice_debug(hw, ICE_DBG_QCTX, "qrxdata[%d]: %08X\n", i,
1387			  *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
1388	}
1389
1390	return 0;
1391}
1392
1393/* LAN Rx Queue Context */
1394static const struct ice_ctx_ele ice_rlan_ctx_info[] = {
1395	/* Field		Width	LSB */
1396	ICE_CTX_STORE(ice_rlan_ctx, head,		13,	0),
1397	ICE_CTX_STORE(ice_rlan_ctx, cpuid,		8,	13),
1398	ICE_CTX_STORE(ice_rlan_ctx, base,		57,	32),
1399	ICE_CTX_STORE(ice_rlan_ctx, qlen,		13,	89),
1400	ICE_CTX_STORE(ice_rlan_ctx, dbuf,		7,	102),
1401	ICE_CTX_STORE(ice_rlan_ctx, hbuf,		5,	109),
1402	ICE_CTX_STORE(ice_rlan_ctx, dtype,		2,	114),
1403	ICE_CTX_STORE(ice_rlan_ctx, dsize,		1,	116),
1404	ICE_CTX_STORE(ice_rlan_ctx, crcstrip,		1,	117),
1405	ICE_CTX_STORE(ice_rlan_ctx, l2tsel,		1,	119),
1406	ICE_CTX_STORE(ice_rlan_ctx, hsplit_0,		4,	120),
1407	ICE_CTX_STORE(ice_rlan_ctx, hsplit_1,		2,	124),
1408	ICE_CTX_STORE(ice_rlan_ctx, showiv,		1,	127),
1409	ICE_CTX_STORE(ice_rlan_ctx, rxmax,		14,	174),
1410	ICE_CTX_STORE(ice_rlan_ctx, tphrdesc_ena,	1,	193),
1411	ICE_CTX_STORE(ice_rlan_ctx, tphwdesc_ena,	1,	194),
1412	ICE_CTX_STORE(ice_rlan_ctx, tphdata_ena,	1,	195),
1413	ICE_CTX_STORE(ice_rlan_ctx, tphhead_ena,	1,	196),
1414	ICE_CTX_STORE(ice_rlan_ctx, lrxqthresh,		3,	198),
1415	ICE_CTX_STORE(ice_rlan_ctx, prefena,		1,	201),
1416	{ 0 }
1417};
1418
1419/**
1420 * ice_write_rxq_ctx
1421 * @hw: pointer to the hardware structure
1422 * @rlan_ctx: pointer to the rxq context
1423 * @rxq_index: the index of the Rx queue
1424 *
1425 * Converts rxq context from sparse to dense structure and then writes
1426 * it to HW register space and enables the hardware to prefetch descriptors
1427 * instead of only fetching them on demand
1428 */
1429int ice_write_rxq_ctx(struct ice_hw *hw, struct ice_rlan_ctx *rlan_ctx,
1430		      u32 rxq_index)
 
1431{
1432	u8 ctx_buf[ICE_RXQ_CTX_SZ] = { 0 };
1433
1434	if (!rlan_ctx)
1435		return -EINVAL;
1436
1437	rlan_ctx->prefena = 1;
1438
1439	ice_set_ctx(hw, (u8 *)rlan_ctx, ctx_buf, ice_rlan_ctx_info);
1440	return ice_copy_rxq_ctx_to_hw(hw, ctx_buf, rxq_index);
1441}
1442
1443/* LAN Tx Queue Context */
1444const struct ice_ctx_ele ice_tlan_ctx_info[] = {
1445				    /* Field			Width	LSB */
1446	ICE_CTX_STORE(ice_tlan_ctx, base,			57,	0),
1447	ICE_CTX_STORE(ice_tlan_ctx, port_num,			3,	57),
1448	ICE_CTX_STORE(ice_tlan_ctx, cgd_num,			5,	60),
1449	ICE_CTX_STORE(ice_tlan_ctx, pf_num,			3,	65),
1450	ICE_CTX_STORE(ice_tlan_ctx, vmvf_num,			10,	68),
1451	ICE_CTX_STORE(ice_tlan_ctx, vmvf_type,			2,	78),
1452	ICE_CTX_STORE(ice_tlan_ctx, src_vsi,			10,	80),
1453	ICE_CTX_STORE(ice_tlan_ctx, tsyn_ena,			1,	90),
1454	ICE_CTX_STORE(ice_tlan_ctx, internal_usage_flag,	1,	91),
1455	ICE_CTX_STORE(ice_tlan_ctx, alt_vlan,			1,	92),
1456	ICE_CTX_STORE(ice_tlan_ctx, cpuid,			8,	93),
1457	ICE_CTX_STORE(ice_tlan_ctx, wb_mode,			1,	101),
1458	ICE_CTX_STORE(ice_tlan_ctx, tphrd_desc,			1,	102),
1459	ICE_CTX_STORE(ice_tlan_ctx, tphrd,			1,	103),
1460	ICE_CTX_STORE(ice_tlan_ctx, tphwr_desc,			1,	104),
1461	ICE_CTX_STORE(ice_tlan_ctx, cmpq_id,			9,	105),
1462	ICE_CTX_STORE(ice_tlan_ctx, qnum_in_func,		14,	114),
1463	ICE_CTX_STORE(ice_tlan_ctx, itr_notification_mode,	1,	128),
1464	ICE_CTX_STORE(ice_tlan_ctx, adjust_prof_id,		6,	129),
1465	ICE_CTX_STORE(ice_tlan_ctx, qlen,			13,	135),
1466	ICE_CTX_STORE(ice_tlan_ctx, quanta_prof_idx,		4,	148),
1467	ICE_CTX_STORE(ice_tlan_ctx, tso_ena,			1,	152),
1468	ICE_CTX_STORE(ice_tlan_ctx, tso_qnum,			11,	153),
1469	ICE_CTX_STORE(ice_tlan_ctx, legacy_int,			1,	164),
1470	ICE_CTX_STORE(ice_tlan_ctx, drop_ena,			1,	165),
1471	ICE_CTX_STORE(ice_tlan_ctx, cache_prof_idx,		2,	166),
1472	ICE_CTX_STORE(ice_tlan_ctx, pkt_shaper_prof_idx,	3,	168),
1473	ICE_CTX_STORE(ice_tlan_ctx, int_q_state,		122,	171),
1474	{ 0 }
1475};
1476
1477/* Sideband Queue command wrappers */
1478
1479/**
1480 * ice_sbq_send_cmd - send Sideband Queue command to Sideband Queue
1481 * @hw: pointer to the HW struct
1482 * @desc: descriptor describing the command
1483 * @buf: buffer to use for indirect commands (NULL for direct commands)
1484 * @buf_size: size of buffer for indirect commands (0 for direct commands)
1485 * @cd: pointer to command details structure
 
 
1486 */
1487static int
1488ice_sbq_send_cmd(struct ice_hw *hw, struct ice_sbq_cmd_desc *desc,
1489		 void *buf, u16 buf_size, struct ice_sq_cd *cd)
1490{
1491	return ice_sq_send_cmd(hw, ice_get_sbq(hw),
1492			       (struct ice_aq_desc *)desc, buf, buf_size, cd);
1493}
1494
1495/**
1496 * ice_sbq_rw_reg - Fill Sideband Queue command
1497 * @hw: pointer to the HW struct
1498 * @in: message info to be filled in descriptor
1499 * @flags: control queue descriptor flags
1500 */
1501int ice_sbq_rw_reg(struct ice_hw *hw, struct ice_sbq_msg_input *in, u16 flags)
1502{
1503	struct ice_sbq_cmd_desc desc = {0};
1504	struct ice_sbq_msg_req msg = {0};
1505	u16 msg_len;
1506	int status;
1507
1508	msg_len = sizeof(msg);
1509
1510	msg.dest_dev = in->dest_dev;
1511	msg.opcode = in->opcode;
1512	msg.flags = ICE_SBQ_MSG_FLAGS;
1513	msg.sbe_fbe = ICE_SBQ_MSG_SBE_FBE;
1514	msg.msg_addr_low = cpu_to_le16(in->msg_addr_low);
1515	msg.msg_addr_high = cpu_to_le32(in->msg_addr_high);
1516
1517	if (in->opcode)
1518		msg.data = cpu_to_le32(in->data);
1519	else
1520		/* data read comes back in completion, so shorten the struct by
1521		 * sizeof(msg.data)
1522		 */
1523		msg_len -= sizeof(msg.data);
1524
1525	desc.flags = cpu_to_le16(flags);
1526	desc.opcode = cpu_to_le16(ice_sbq_opc_neigh_dev_req);
1527	desc.param0.cmd_len = cpu_to_le16(msg_len);
1528	status = ice_sbq_send_cmd(hw, &desc, &msg, msg_len, NULL);
1529	if (!status && !in->opcode)
1530		in->data = le32_to_cpu
1531			(((struct ice_sbq_msg_cmpl *)&msg)->data);
1532	return status;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1533}
1534
1535/* FW Admin Queue command wrappers */
1536
1537/* Software lock/mutex that is meant to be held while the Global Config Lock
1538 * in firmware is acquired by the software to prevent most (but not all) types
1539 * of AQ commands from being sent to FW
1540 */
1541DEFINE_MUTEX(ice_global_cfg_lock_sw);
1542
1543/**
1544 * ice_should_retry_sq_send_cmd
1545 * @opcode: AQ opcode
1546 *
1547 * Decide if we should retry the send command routine for the ATQ, depending
1548 * on the opcode.
1549 */
1550static bool ice_should_retry_sq_send_cmd(u16 opcode)
1551{
1552	switch (opcode) {
1553	case ice_aqc_opc_get_link_topo:
1554	case ice_aqc_opc_lldp_stop:
1555	case ice_aqc_opc_lldp_start:
1556	case ice_aqc_opc_lldp_filter_ctrl:
1557		return true;
1558	}
1559
1560	return false;
1561}
1562
1563/**
1564 * ice_sq_send_cmd_retry - send command to Control Queue (ATQ)
1565 * @hw: pointer to the HW struct
1566 * @cq: pointer to the specific Control queue
1567 * @desc: prefilled descriptor describing the command
1568 * @buf: buffer to use for indirect commands (or NULL for direct commands)
1569 * @buf_size: size of buffer for indirect commands (or 0 for direct commands)
1570 * @cd: pointer to command details structure
1571 *
1572 * Retry sending the FW Admin Queue command, multiple times, to the FW Admin
1573 * Queue if the EBUSY AQ error is returned.
1574 */
1575static int
1576ice_sq_send_cmd_retry(struct ice_hw *hw, struct ice_ctl_q_info *cq,
1577		      struct ice_aq_desc *desc, void *buf, u16 buf_size,
1578		      struct ice_sq_cd *cd)
1579{
1580	struct ice_aq_desc desc_cpy;
1581	bool is_cmd_for_retry;
1582	u8 idx = 0;
1583	u16 opcode;
1584	int status;
1585
1586	opcode = le16_to_cpu(desc->opcode);
1587	is_cmd_for_retry = ice_should_retry_sq_send_cmd(opcode);
1588	memset(&desc_cpy, 0, sizeof(desc_cpy));
1589
1590	if (is_cmd_for_retry) {
1591		/* All retryable cmds are direct, without buf. */
1592		WARN_ON(buf);
1593
1594		memcpy(&desc_cpy, desc, sizeof(desc_cpy));
1595	}
1596
1597	do {
1598		status = ice_sq_send_cmd(hw, cq, desc, buf, buf_size, cd);
1599
1600		if (!is_cmd_for_retry || !status ||
1601		    hw->adminq.sq_last_status != ICE_AQ_RC_EBUSY)
1602			break;
1603
1604		memcpy(desc, &desc_cpy, sizeof(desc_cpy));
1605
1606		msleep(ICE_SQ_SEND_DELAY_TIME_MS);
1607
1608	} while (++idx < ICE_SQ_SEND_MAX_EXECUTE);
1609
1610	return status;
1611}
1612
1613/**
1614 * ice_aq_send_cmd - send FW Admin Queue command to FW Admin Queue
1615 * @hw: pointer to the HW struct
1616 * @desc: descriptor describing the command
1617 * @buf: buffer to use for indirect commands (NULL for direct commands)
1618 * @buf_size: size of buffer for indirect commands (0 for direct commands)
1619 * @cd: pointer to command details structure
1620 *
1621 * Helper function to send FW Admin Queue commands to the FW Admin Queue.
1622 */
1623int
1624ice_aq_send_cmd(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf,
1625		u16 buf_size, struct ice_sq_cd *cd)
1626{
1627	struct ice_aqc_req_res *cmd = &desc->params.res_owner;
1628	bool lock_acquired = false;
1629	int status;
1630
1631	/* When a package download is in process (i.e. when the firmware's
1632	 * Global Configuration Lock resource is held), only the Download
1633	 * Package, Get Version, Get Package Info List, Upload Section,
1634	 * Update Package, Set Port Parameters, Get/Set VLAN Mode Parameters,
1635	 * Add Recipe, Set Recipes to Profile Association, Get Recipe, and Get
1636	 * Recipes to Profile Association, and Release Resource (with resource
1637	 * ID set to Global Config Lock) AdminQ commands are allowed; all others
1638	 * must block until the package download completes and the Global Config
1639	 * Lock is released.  See also ice_acquire_global_cfg_lock().
1640	 */
1641	switch (le16_to_cpu(desc->opcode)) {
1642	case ice_aqc_opc_download_pkg:
1643	case ice_aqc_opc_get_pkg_info_list:
1644	case ice_aqc_opc_get_ver:
1645	case ice_aqc_opc_upload_section:
1646	case ice_aqc_opc_update_pkg:
1647	case ice_aqc_opc_set_port_params:
1648	case ice_aqc_opc_get_vlan_mode_parameters:
1649	case ice_aqc_opc_set_vlan_mode_parameters:
1650	case ice_aqc_opc_set_tx_topo:
1651	case ice_aqc_opc_get_tx_topo:
1652	case ice_aqc_opc_add_recipe:
1653	case ice_aqc_opc_recipe_to_profile:
1654	case ice_aqc_opc_get_recipe:
1655	case ice_aqc_opc_get_recipe_to_profile:
1656		break;
1657	case ice_aqc_opc_release_res:
1658		if (le16_to_cpu(cmd->res_id) == ICE_AQC_RES_ID_GLBL_LOCK)
1659			break;
1660		fallthrough;
1661	default:
1662		mutex_lock(&ice_global_cfg_lock_sw);
1663		lock_acquired = true;
1664		break;
1665	}
1666
1667	status = ice_sq_send_cmd_retry(hw, &hw->adminq, desc, buf, buf_size, cd);
1668	if (lock_acquired)
1669		mutex_unlock(&ice_global_cfg_lock_sw);
1670
1671	return status;
1672}
1673
1674/**
1675 * ice_aq_get_fw_ver
1676 * @hw: pointer to the HW struct
1677 * @cd: pointer to command details structure or NULL
1678 *
1679 * Get the firmware version (0x0001) from the admin queue commands
1680 */
1681int ice_aq_get_fw_ver(struct ice_hw *hw, struct ice_sq_cd *cd)
1682{
1683	struct ice_aqc_get_ver *resp;
1684	struct ice_aq_desc desc;
1685	int status;
1686
1687	resp = &desc.params.get_ver;
1688
1689	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_ver);
1690
1691	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1692
1693	if (!status) {
1694		hw->fw_branch = resp->fw_branch;
1695		hw->fw_maj_ver = resp->fw_major;
1696		hw->fw_min_ver = resp->fw_minor;
1697		hw->fw_patch = resp->fw_patch;
1698		hw->fw_build = le32_to_cpu(resp->fw_build);
1699		hw->api_branch = resp->api_branch;
1700		hw->api_maj_ver = resp->api_major;
1701		hw->api_min_ver = resp->api_minor;
1702		hw->api_patch = resp->api_patch;
1703	}
1704
1705	return status;
1706}
1707
1708/**
1709 * ice_aq_send_driver_ver
1710 * @hw: pointer to the HW struct
1711 * @dv: driver's major, minor version
1712 * @cd: pointer to command details structure or NULL
1713 *
1714 * Send the driver version (0x0002) to the firmware
1715 */
1716int
1717ice_aq_send_driver_ver(struct ice_hw *hw, struct ice_driver_ver *dv,
1718		       struct ice_sq_cd *cd)
1719{
1720	struct ice_aqc_driver_ver *cmd;
1721	struct ice_aq_desc desc;
1722	u16 len;
1723
1724	cmd = &desc.params.driver_ver;
1725
1726	if (!dv)
1727		return -EINVAL;
1728
1729	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_driver_ver);
1730
1731	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1732	cmd->major_ver = dv->major_ver;
1733	cmd->minor_ver = dv->minor_ver;
1734	cmd->build_ver = dv->build_ver;
1735	cmd->subbuild_ver = dv->subbuild_ver;
1736
1737	len = 0;
1738	while (len < sizeof(dv->driver_string) &&
1739	       isascii(dv->driver_string[len]) && dv->driver_string[len])
1740		len++;
1741
1742	return ice_aq_send_cmd(hw, &desc, dv->driver_string, len, cd);
1743}
1744
1745/**
1746 * ice_aq_q_shutdown
1747 * @hw: pointer to the HW struct
1748 * @unloading: is the driver unloading itself
1749 *
1750 * Tell the Firmware that we're shutting down the AdminQ and whether
1751 * or not the driver is unloading as well (0x0003).
1752 */
1753int ice_aq_q_shutdown(struct ice_hw *hw, bool unloading)
1754{
1755	struct ice_aqc_q_shutdown *cmd;
1756	struct ice_aq_desc desc;
1757
1758	cmd = &desc.params.q_shutdown;
1759
1760	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_q_shutdown);
1761
1762	if (unloading)
1763		cmd->driver_unloading = ICE_AQC_DRIVER_UNLOADING;
1764
1765	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
1766}
1767
1768/**
1769 * ice_aq_req_res
1770 * @hw: pointer to the HW struct
1771 * @res: resource ID
1772 * @access: access type
1773 * @sdp_number: resource number
1774 * @timeout: the maximum time in ms that the driver may hold the resource
1775 * @cd: pointer to command details structure or NULL
1776 *
1777 * Requests common resource using the admin queue commands (0x0008).
1778 * When attempting to acquire the Global Config Lock, the driver can
1779 * learn of three states:
1780 *  1) 0 -         acquired lock, and can perform download package
1781 *  2) -EIO -      did not get lock, driver should fail to load
1782 *  3) -EALREADY - did not get lock, but another driver has
1783 *                 successfully downloaded the package; the driver does
1784 *                 not have to download the package and can continue
1785 *                 loading
1786 *
1787 * Note that if the caller is in an acquire lock, perform action, release lock
1788 * phase of operation, it is possible that the FW may detect a timeout and issue
1789 * a CORER. In this case, the driver will receive a CORER interrupt and will
1790 * have to determine its cause. The calling thread that is handling this flow
1791 * will likely get an error propagated back to it indicating the Download
1792 * Package, Update Package or the Release Resource AQ commands timed out.
1793 */
1794static int
1795ice_aq_req_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1796	       enum ice_aq_res_access_type access, u8 sdp_number, u32 *timeout,
1797	       struct ice_sq_cd *cd)
1798{
1799	struct ice_aqc_req_res *cmd_resp;
1800	struct ice_aq_desc desc;
1801	int status;
1802
1803	cmd_resp = &desc.params.res_owner;
1804
1805	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_req_res);
1806
1807	cmd_resp->res_id = cpu_to_le16(res);
1808	cmd_resp->access_type = cpu_to_le16(access);
1809	cmd_resp->res_number = cpu_to_le32(sdp_number);
1810	cmd_resp->timeout = cpu_to_le32(*timeout);
1811	*timeout = 0;
1812
1813	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1814
1815	/* The completion specifies the maximum time in ms that the driver
1816	 * may hold the resource in the Timeout field.
1817	 */
1818
1819	/* Global config lock response utilizes an additional status field.
1820	 *
1821	 * If the Global config lock resource is held by some other driver, the
1822	 * command completes with ICE_AQ_RES_GLBL_IN_PROG in the status field
1823	 * and the timeout field indicates the maximum time the current owner
1824	 * of the resource has to free it.
1825	 */
1826	if (res == ICE_GLOBAL_CFG_LOCK_RES_ID) {
1827		if (le16_to_cpu(cmd_resp->status) == ICE_AQ_RES_GLBL_SUCCESS) {
1828			*timeout = le32_to_cpu(cmd_resp->timeout);
1829			return 0;
1830		} else if (le16_to_cpu(cmd_resp->status) ==
1831			   ICE_AQ_RES_GLBL_IN_PROG) {
1832			*timeout = le32_to_cpu(cmd_resp->timeout);
1833			return -EIO;
1834		} else if (le16_to_cpu(cmd_resp->status) ==
1835			   ICE_AQ_RES_GLBL_DONE) {
1836			return -EALREADY;
1837		}
1838
1839		/* invalid FW response, force a timeout immediately */
1840		*timeout = 0;
1841		return -EIO;
1842	}
1843
1844	/* If the resource is held by some other driver, the command completes
1845	 * with a busy return value and the timeout field indicates the maximum
1846	 * time the current owner of the resource has to free it.
1847	 */
1848	if (!status || hw->adminq.sq_last_status == ICE_AQ_RC_EBUSY)
1849		*timeout = le32_to_cpu(cmd_resp->timeout);
1850
1851	return status;
1852}
1853
1854/**
1855 * ice_aq_release_res
1856 * @hw: pointer to the HW struct
1857 * @res: resource ID
1858 * @sdp_number: resource number
1859 * @cd: pointer to command details structure or NULL
1860 *
1861 * release common resource using the admin queue commands (0x0009)
1862 */
1863static int
1864ice_aq_release_res(struct ice_hw *hw, enum ice_aq_res_ids res, u8 sdp_number,
1865		   struct ice_sq_cd *cd)
1866{
1867	struct ice_aqc_req_res *cmd;
1868	struct ice_aq_desc desc;
1869
1870	cmd = &desc.params.res_owner;
1871
1872	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_release_res);
1873
1874	cmd->res_id = cpu_to_le16(res);
1875	cmd->res_number = cpu_to_le32(sdp_number);
1876
1877	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1878}
1879
1880/**
1881 * ice_acquire_res
1882 * @hw: pointer to the HW structure
1883 * @res: resource ID
1884 * @access: access type (read or write)
1885 * @timeout: timeout in milliseconds
1886 *
1887 * This function will attempt to acquire the ownership of a resource.
1888 */
1889int
1890ice_acquire_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1891		enum ice_aq_res_access_type access, u32 timeout)
1892{
1893#define ICE_RES_POLLING_DELAY_MS	10
1894	u32 delay = ICE_RES_POLLING_DELAY_MS;
1895	u32 time_left = timeout;
1896	int status;
1897
1898	status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
1899
1900	/* A return code of -EALREADY means that another driver has
1901	 * previously acquired the resource and performed any necessary updates;
1902	 * in this case the caller does not obtain the resource and has no
1903	 * further work to do.
1904	 */
1905	if (status == -EALREADY)
1906		goto ice_acquire_res_exit;
1907
1908	if (status)
1909		ice_debug(hw, ICE_DBG_RES, "resource %d acquire type %d failed.\n", res, access);
 
1910
1911	/* If necessary, poll until the current lock owner timeouts */
1912	timeout = time_left;
1913	while (status && timeout && time_left) {
1914		mdelay(delay);
1915		timeout = (timeout > delay) ? timeout - delay : 0;
1916		status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
1917
1918		if (status == -EALREADY)
1919			/* lock free, but no work to do */
1920			break;
1921
1922		if (!status)
1923			/* lock acquired */
1924			break;
1925	}
1926	if (status && status != -EALREADY)
1927		ice_debug(hw, ICE_DBG_RES, "resource acquire timed out.\n");
1928
1929ice_acquire_res_exit:
1930	if (status == -EALREADY) {
1931		if (access == ICE_RES_WRITE)
1932			ice_debug(hw, ICE_DBG_RES, "resource indicates no work to do.\n");
 
1933		else
1934			ice_debug(hw, ICE_DBG_RES, "Warning: -EALREADY not expected\n");
 
1935	}
1936	return status;
1937}
1938
1939/**
1940 * ice_release_res
1941 * @hw: pointer to the HW structure
1942 * @res: resource ID
1943 *
1944 * This function will release a resource using the proper Admin Command.
1945 */
1946void ice_release_res(struct ice_hw *hw, enum ice_aq_res_ids res)
1947{
1948	unsigned long timeout;
1949	int status;
 
 
1950
1951	/* there are some rare cases when trying to release the resource
1952	 * results in an admin queue timeout, so handle them correctly
1953	 */
1954	timeout = jiffies + 10 * ICE_CTL_Q_SQ_CMD_TIMEOUT;
1955	do {
 
1956		status = ice_aq_release_res(hw, res, 0, NULL);
1957		if (status != -EIO)
1958			break;
1959		usleep_range(1000, 2000);
1960	} while (time_before(jiffies, timeout));
1961}
1962
1963/**
1964 * ice_aq_alloc_free_res - command to allocate/free resources
1965 * @hw: pointer to the HW struct
1966 * @buf: Indirect buffer to hold data parameters and response
1967 * @buf_size: size of buffer for indirect commands
1968 * @opc: pass in the command opcode
1969 *
1970 * Helper function to allocate/free resources using the admin queue commands
1971 */
1972int ice_aq_alloc_free_res(struct ice_hw *hw,
1973			  struct ice_aqc_alloc_free_res_elem *buf, u16 buf_size,
1974			  enum ice_adminq_opc opc)
1975{
1976	struct ice_aqc_alloc_free_res_cmd *cmd;
1977	struct ice_aq_desc desc;
1978
1979	cmd = &desc.params.sw_res_ctrl;
1980
1981	if (!buf || buf_size < flex_array_size(buf, elem, 1))
1982		return -EINVAL;
1983
1984	ice_fill_dflt_direct_cmd_desc(&desc, opc);
1985
1986	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1987
1988	cmd->num_entries = cpu_to_le16(1);
1989
1990	return ice_aq_send_cmd(hw, &desc, buf, buf_size, NULL);
1991}
1992
1993/**
1994 * ice_alloc_hw_res - allocate resource
1995 * @hw: pointer to the HW struct
1996 * @type: type of resource
1997 * @num: number of resources to allocate
1998 * @btm: allocate from bottom
1999 * @res: pointer to array that will receive the resources
2000 */
2001int
2002ice_alloc_hw_res(struct ice_hw *hw, u16 type, u16 num, bool btm, u16 *res)
2003{
2004	struct ice_aqc_alloc_free_res_elem *buf;
2005	u16 buf_len;
2006	int status;
2007
2008	buf_len = struct_size(buf, elem, num);
2009	buf = kzalloc(buf_len, GFP_KERNEL);
2010	if (!buf)
2011		return -ENOMEM;
2012
2013	/* Prepare buffer to allocate resource. */
2014	buf->num_elems = cpu_to_le16(num);
2015	buf->res_type = cpu_to_le16(type | ICE_AQC_RES_TYPE_FLAG_DEDICATED |
2016				    ICE_AQC_RES_TYPE_FLAG_IGNORE_INDEX);
2017	if (btm)
2018		buf->res_type |= cpu_to_le16(ICE_AQC_RES_TYPE_FLAG_SCAN_BOTTOM);
2019
2020	status = ice_aq_alloc_free_res(hw, buf, buf_len, ice_aqc_opc_alloc_res);
2021	if (status)
2022		goto ice_alloc_res_exit;
2023
2024	memcpy(res, buf->elem, sizeof(*buf->elem) * num);
2025
2026ice_alloc_res_exit:
2027	kfree(buf);
2028	return status;
2029}
2030
2031/**
2032 * ice_free_hw_res - free allocated HW resource
2033 * @hw: pointer to the HW struct
2034 * @type: type of resource to free
2035 * @num: number of resources
2036 * @res: pointer to array that contains the resources to free
2037 */
2038int ice_free_hw_res(struct ice_hw *hw, u16 type, u16 num, u16 *res)
2039{
2040	struct ice_aqc_alloc_free_res_elem *buf;
2041	u16 buf_len;
2042	int status;
2043
2044	buf_len = struct_size(buf, elem, num);
2045	buf = kzalloc(buf_len, GFP_KERNEL);
2046	if (!buf)
2047		return -ENOMEM;
2048
2049	/* Prepare buffer to free resource. */
2050	buf->num_elems = cpu_to_le16(num);
2051	buf->res_type = cpu_to_le16(type);
2052	memcpy(buf->elem, res, sizeof(*buf->elem) * num);
2053
2054	status = ice_aq_alloc_free_res(hw, buf, buf_len, ice_aqc_opc_free_res);
2055	if (status)
2056		ice_debug(hw, ICE_DBG_SW, "CQ CMD Buffer:\n");
2057
2058	kfree(buf);
2059	return status;
2060}
2061
2062/**
2063 * ice_get_num_per_func - determine number of resources per PF
2064 * @hw: pointer to the HW structure
2065 * @max: value to be evenly split between each PF
2066 *
2067 * Determine the number of valid functions by going through the bitmap returned
2068 * from parsing capabilities and use this to calculate the number of resources
2069 * per PF based on the max value passed in.
2070 */
2071static u32 ice_get_num_per_func(struct ice_hw *hw, u32 max)
2072{
2073	u8 funcs;
2074
2075#define ICE_CAPS_VALID_FUNCS_M	0xFF
2076	funcs = hweight8(hw->dev_caps.common_cap.valid_functions &
2077			 ICE_CAPS_VALID_FUNCS_M);
2078
2079	if (!funcs)
2080		return 0;
2081
2082	return max / funcs;
2083}
2084
2085/**
2086 * ice_parse_common_caps - parse common device/function capabilities
2087 * @hw: pointer to the HW struct
2088 * @caps: pointer to common capabilities structure
2089 * @elem: the capability element to parse
2090 * @prefix: message prefix for tracing capabilities
2091 *
2092 * Given a capability element, extract relevant details into the common
2093 * capability structure.
2094 *
2095 * Returns: true if the capability matches one of the common capability ids,
2096 * false otherwise.
2097 */
2098static bool
2099ice_parse_common_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps,
2100		      struct ice_aqc_list_caps_elem *elem, const char *prefix)
2101{
2102	u32 logical_id = le32_to_cpu(elem->logical_id);
2103	u32 phys_id = le32_to_cpu(elem->phys_id);
2104	u32 number = le32_to_cpu(elem->number);
2105	u16 cap = le16_to_cpu(elem->cap);
2106	bool found = true;
2107
2108	switch (cap) {
2109	case ICE_AQC_CAPS_VALID_FUNCTIONS:
2110		caps->valid_functions = number;
2111		ice_debug(hw, ICE_DBG_INIT, "%s: valid_functions (bitmap) = %d\n", prefix,
2112			  caps->valid_functions);
2113		break;
2114	case ICE_AQC_CAPS_SRIOV:
2115		caps->sr_iov_1_1 = (number == 1);
2116		ice_debug(hw, ICE_DBG_INIT, "%s: sr_iov_1_1 = %d\n", prefix,
2117			  caps->sr_iov_1_1);
2118		break;
2119	case ICE_AQC_CAPS_DCB:
2120		caps->dcb = (number == 1);
2121		caps->active_tc_bitmap = logical_id;
2122		caps->maxtc = phys_id;
2123		ice_debug(hw, ICE_DBG_INIT, "%s: dcb = %d\n", prefix, caps->dcb);
2124		ice_debug(hw, ICE_DBG_INIT, "%s: active_tc_bitmap = %d\n", prefix,
2125			  caps->active_tc_bitmap);
2126		ice_debug(hw, ICE_DBG_INIT, "%s: maxtc = %d\n", prefix, caps->maxtc);
2127		break;
2128	case ICE_AQC_CAPS_RSS:
2129		caps->rss_table_size = number;
2130		caps->rss_table_entry_width = logical_id;
2131		ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_size = %d\n", prefix,
2132			  caps->rss_table_size);
2133		ice_debug(hw, ICE_DBG_INIT, "%s: rss_table_entry_width = %d\n", prefix,
2134			  caps->rss_table_entry_width);
2135		break;
2136	case ICE_AQC_CAPS_RXQS:
2137		caps->num_rxq = number;
2138		caps->rxq_first_id = phys_id;
2139		ice_debug(hw, ICE_DBG_INIT, "%s: num_rxq = %d\n", prefix,
2140			  caps->num_rxq);
2141		ice_debug(hw, ICE_DBG_INIT, "%s: rxq_first_id = %d\n", prefix,
2142			  caps->rxq_first_id);
2143		break;
2144	case ICE_AQC_CAPS_TXQS:
2145		caps->num_txq = number;
2146		caps->txq_first_id = phys_id;
2147		ice_debug(hw, ICE_DBG_INIT, "%s: num_txq = %d\n", prefix,
2148			  caps->num_txq);
2149		ice_debug(hw, ICE_DBG_INIT, "%s: txq_first_id = %d\n", prefix,
2150			  caps->txq_first_id);
2151		break;
2152	case ICE_AQC_CAPS_MSIX:
2153		caps->num_msix_vectors = number;
2154		caps->msix_vector_first_id = phys_id;
2155		ice_debug(hw, ICE_DBG_INIT, "%s: num_msix_vectors = %d\n", prefix,
2156			  caps->num_msix_vectors);
2157		ice_debug(hw, ICE_DBG_INIT, "%s: msix_vector_first_id = %d\n", prefix,
2158			  caps->msix_vector_first_id);
2159		break;
2160	case ICE_AQC_CAPS_PENDING_NVM_VER:
2161		caps->nvm_update_pending_nvm = true;
2162		ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_nvm\n", prefix);
2163		break;
2164	case ICE_AQC_CAPS_PENDING_OROM_VER:
2165		caps->nvm_update_pending_orom = true;
2166		ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_orom\n", prefix);
2167		break;
2168	case ICE_AQC_CAPS_PENDING_NET_VER:
2169		caps->nvm_update_pending_netlist = true;
2170		ice_debug(hw, ICE_DBG_INIT, "%s: update_pending_netlist\n", prefix);
2171		break;
2172	case ICE_AQC_CAPS_NVM_MGMT:
2173		caps->nvm_unified_update =
2174			(number & ICE_NVM_MGMT_UNIFIED_UPD_SUPPORT) ?
2175			true : false;
2176		ice_debug(hw, ICE_DBG_INIT, "%s: nvm_unified_update = %d\n", prefix,
2177			  caps->nvm_unified_update);
2178		break;
2179	case ICE_AQC_CAPS_RDMA:
2180		caps->rdma = (number == 1);
2181		ice_debug(hw, ICE_DBG_INIT, "%s: rdma = %d\n", prefix, caps->rdma);
2182		break;
2183	case ICE_AQC_CAPS_MAX_MTU:
2184		caps->max_mtu = number;
2185		ice_debug(hw, ICE_DBG_INIT, "%s: max_mtu = %d\n",
2186			  prefix, caps->max_mtu);
2187		break;
2188	case ICE_AQC_CAPS_PCIE_RESET_AVOIDANCE:
2189		caps->pcie_reset_avoidance = (number > 0);
2190		ice_debug(hw, ICE_DBG_INIT,
2191			  "%s: pcie_reset_avoidance = %d\n", prefix,
2192			  caps->pcie_reset_avoidance);
2193		break;
2194	case ICE_AQC_CAPS_POST_UPDATE_RESET_RESTRICT:
2195		caps->reset_restrict_support = (number == 1);
2196		ice_debug(hw, ICE_DBG_INIT,
2197			  "%s: reset_restrict_support = %d\n", prefix,
2198			  caps->reset_restrict_support);
2199		break;
2200	case ICE_AQC_CAPS_FW_LAG_SUPPORT:
2201		caps->roce_lag = !!(number & ICE_AQC_BIT_ROCEV2_LAG);
2202		ice_debug(hw, ICE_DBG_INIT, "%s: roce_lag = %u\n",
2203			  prefix, caps->roce_lag);
2204		caps->sriov_lag = !!(number & ICE_AQC_BIT_SRIOV_LAG);
2205		ice_debug(hw, ICE_DBG_INIT, "%s: sriov_lag = %u\n",
2206			  prefix, caps->sriov_lag);
2207		break;
2208	case ICE_AQC_CAPS_TX_SCHED_TOPO_COMP_MODE:
2209		caps->tx_sched_topo_comp_mode_en = (number == 1);
2210		break;
2211	default:
2212		/* Not one of the recognized common capabilities */
2213		found = false;
2214	}
2215
2216	return found;
2217}
2218
2219/**
2220 * ice_recalc_port_limited_caps - Recalculate port limited capabilities
2221 * @hw: pointer to the HW structure
2222 * @caps: pointer to capabilities structure to fix
2223 *
2224 * Re-calculate the capabilities that are dependent on the number of physical
2225 * ports; i.e. some features are not supported or function differently on
2226 * devices with more than 4 ports.
2227 */
2228static void
2229ice_recalc_port_limited_caps(struct ice_hw *hw, struct ice_hw_common_caps *caps)
2230{
2231	/* This assumes device capabilities are always scanned before function
2232	 * capabilities during the initialization flow.
2233	 */
2234	if (hw->dev_caps.num_funcs > 4) {
2235		/* Max 4 TCs per port */
2236		caps->maxtc = 4;
2237		ice_debug(hw, ICE_DBG_INIT, "reducing maxtc to %d (based on #ports)\n",
2238			  caps->maxtc);
2239		if (caps->rdma) {
2240			ice_debug(hw, ICE_DBG_INIT, "forcing RDMA off\n");
2241			caps->rdma = 0;
2242		}
2243
2244		/* print message only when processing device capabilities
2245		 * during initialization.
2246		 */
2247		if (caps == &hw->dev_caps.common_cap)
2248			dev_info(ice_hw_to_dev(hw), "RDMA functionality is not available with the current device configuration.\n");
2249	}
2250}
2251
2252/**
2253 * ice_parse_vf_func_caps - Parse ICE_AQC_CAPS_VF function caps
2254 * @hw: pointer to the HW struct
2255 * @func_p: pointer to function capabilities structure
2256 * @cap: pointer to the capability element to parse
2257 *
2258 * Extract function capabilities for ICE_AQC_CAPS_VF.
2259 */
2260static void
2261ice_parse_vf_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2262		       struct ice_aqc_list_caps_elem *cap)
2263{
2264	u32 logical_id = le32_to_cpu(cap->logical_id);
2265	u32 number = le32_to_cpu(cap->number);
2266
2267	func_p->num_allocd_vfs = number;
2268	func_p->vf_base_id = logical_id;
2269	ice_debug(hw, ICE_DBG_INIT, "func caps: num_allocd_vfs = %d\n",
2270		  func_p->num_allocd_vfs);
2271	ice_debug(hw, ICE_DBG_INIT, "func caps: vf_base_id = %d\n",
2272		  func_p->vf_base_id);
2273}
2274
2275/**
2276 * ice_parse_vsi_func_caps - Parse ICE_AQC_CAPS_VSI function caps
2277 * @hw: pointer to the HW struct
2278 * @func_p: pointer to function capabilities structure
2279 * @cap: pointer to the capability element to parse
2280 *
2281 * Extract function capabilities for ICE_AQC_CAPS_VSI.
2282 */
2283static void
2284ice_parse_vsi_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2285			struct ice_aqc_list_caps_elem *cap)
2286{
2287	func_p->guar_num_vsi = ice_get_num_per_func(hw, ICE_MAX_VSI);
2288	ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi (fw) = %d\n",
2289		  le32_to_cpu(cap->number));
2290	ice_debug(hw, ICE_DBG_INIT, "func caps: guar_num_vsi = %d\n",
2291		  func_p->guar_num_vsi);
2292}
2293
2294/**
2295 * ice_parse_1588_func_caps - Parse ICE_AQC_CAPS_1588 function caps
2296 * @hw: pointer to the HW struct
2297 * @func_p: pointer to function capabilities structure
2298 * @cap: pointer to the capability element to parse
2299 *
2300 * Extract function capabilities for ICE_AQC_CAPS_1588.
2301 */
2302static void
2303ice_parse_1588_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2304			 struct ice_aqc_list_caps_elem *cap)
2305{
2306	struct ice_ts_func_info *info = &func_p->ts_func_info;
2307	u32 number = le32_to_cpu(cap->number);
2308
2309	info->ena = ((number & ICE_TS_FUNC_ENA_M) != 0);
2310	func_p->common_cap.ieee_1588 = info->ena;
2311
2312	info->src_tmr_owned = ((number & ICE_TS_SRC_TMR_OWND_M) != 0);
2313	info->tmr_ena = ((number & ICE_TS_TMR_ENA_M) != 0);
2314	info->tmr_index_owned = ((number & ICE_TS_TMR_IDX_OWND_M) != 0);
2315	info->tmr_index_assoc = ((number & ICE_TS_TMR_IDX_ASSOC_M) != 0);
2316
2317	if (!ice_is_e825c(hw)) {
2318		info->clk_freq = FIELD_GET(ICE_TS_CLK_FREQ_M, number);
2319		info->clk_src = ((number & ICE_TS_CLK_SRC_M) != 0);
2320	} else {
2321		info->clk_freq = ICE_TIME_REF_FREQ_156_250;
2322		info->clk_src = ICE_CLK_SRC_TCXO;
2323	}
2324
2325	if (info->clk_freq < NUM_ICE_TIME_REF_FREQ) {
2326		info->time_ref = (enum ice_time_ref_freq)info->clk_freq;
2327	} else {
2328		/* Unknown clock frequency, so assume a (probably incorrect)
2329		 * default to avoid out-of-bounds look ups of frequency
2330		 * related information.
2331		 */
2332		ice_debug(hw, ICE_DBG_INIT, "1588 func caps: unknown clock frequency %u\n",
2333			  info->clk_freq);
2334		info->time_ref = ICE_TIME_REF_FREQ_25_000;
2335	}
2336
2337	ice_debug(hw, ICE_DBG_INIT, "func caps: ieee_1588 = %u\n",
2338		  func_p->common_cap.ieee_1588);
2339	ice_debug(hw, ICE_DBG_INIT, "func caps: src_tmr_owned = %u\n",
2340		  info->src_tmr_owned);
2341	ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_ena = %u\n",
2342		  info->tmr_ena);
2343	ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_index_owned = %u\n",
2344		  info->tmr_index_owned);
2345	ice_debug(hw, ICE_DBG_INIT, "func caps: tmr_index_assoc = %u\n",
2346		  info->tmr_index_assoc);
2347	ice_debug(hw, ICE_DBG_INIT, "func caps: clk_freq = %u\n",
2348		  info->clk_freq);
2349	ice_debug(hw, ICE_DBG_INIT, "func caps: clk_src = %u\n",
2350		  info->clk_src);
2351}
2352
2353/**
2354 * ice_parse_fdir_func_caps - Parse ICE_AQC_CAPS_FD function caps
2355 * @hw: pointer to the HW struct
2356 * @func_p: pointer to function capabilities structure
2357 *
2358 * Extract function capabilities for ICE_AQC_CAPS_FD.
2359 */
2360static void
2361ice_parse_fdir_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p)
2362{
2363	u32 reg_val, gsize, bsize;
2364
2365	reg_val = rd32(hw, GLQF_FD_SIZE);
2366	switch (hw->mac_type) {
2367	case ICE_MAC_E830:
2368		gsize = FIELD_GET(E830_GLQF_FD_SIZE_FD_GSIZE_M, reg_val);
2369		bsize = FIELD_GET(E830_GLQF_FD_SIZE_FD_BSIZE_M, reg_val);
2370		break;
2371	case ICE_MAC_E810:
2372	default:
2373		gsize = FIELD_GET(E800_GLQF_FD_SIZE_FD_GSIZE_M, reg_val);
2374		bsize = FIELD_GET(E800_GLQF_FD_SIZE_FD_BSIZE_M, reg_val);
2375	}
2376	func_p->fd_fltr_guar = ice_get_num_per_func(hw, gsize);
2377	func_p->fd_fltr_best_effort = bsize;
2378
2379	ice_debug(hw, ICE_DBG_INIT, "func caps: fd_fltr_guar = %d\n",
2380		  func_p->fd_fltr_guar);
2381	ice_debug(hw, ICE_DBG_INIT, "func caps: fd_fltr_best_effort = %d\n",
2382		  func_p->fd_fltr_best_effort);
2383}
2384
2385/**
2386 * ice_parse_func_caps - Parse function capabilities
2387 * @hw: pointer to the HW struct
2388 * @func_p: pointer to function capabilities structure
2389 * @buf: buffer containing the function capability records
2390 * @cap_count: the number of capabilities
2391 *
2392 * Helper function to parse function (0x000A) capabilities list. For
2393 * capabilities shared between device and function, this relies on
2394 * ice_parse_common_caps.
2395 *
2396 * Loop through the list of provided capabilities and extract the relevant
2397 * data into the function capabilities structured.
2398 */
2399static void
2400ice_parse_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_p,
2401		    void *buf, u32 cap_count)
2402{
2403	struct ice_aqc_list_caps_elem *cap_resp;
 
 
 
 
2404	u32 i;
2405
2406	cap_resp = buf;
2407
2408	memset(func_p, 0, sizeof(*func_p));
2409
2410	for (i = 0; i < cap_count; i++) {
2411		u16 cap = le16_to_cpu(cap_resp[i].cap);
2412		bool found;
2413
2414		found = ice_parse_common_caps(hw, &func_p->common_cap,
2415					      &cap_resp[i], "func caps");
2416
2417		switch (cap) {
2418		case ICE_AQC_CAPS_VF:
2419			ice_parse_vf_func_caps(hw, func_p, &cap_resp[i]);
2420			break;
2421		case ICE_AQC_CAPS_VSI:
2422			ice_parse_vsi_func_caps(hw, func_p, &cap_resp[i]);
2423			break;
2424		case ICE_AQC_CAPS_1588:
2425			ice_parse_1588_func_caps(hw, func_p, &cap_resp[i]);
2426			break;
2427		case ICE_AQC_CAPS_FD:
2428			ice_parse_fdir_func_caps(hw, func_p);
2429			break;
2430		default:
2431			/* Don't list common capabilities as unknown */
2432			if (!found)
2433				ice_debug(hw, ICE_DBG_INIT, "func caps: unknown capability[%d]: 0x%x\n",
2434					  i, cap);
2435			break;
2436		}
2437	}
2438
2439	ice_recalc_port_limited_caps(hw, &func_p->common_cap);
2440}
2441
2442/**
2443 * ice_func_id_to_logical_id - map from function id to logical pf id
2444 * @active_function_bitmap: active function bitmap
2445 * @pf_id: function number of device
2446 *
2447 * Return: logical PF ID.
2448 */
2449static int ice_func_id_to_logical_id(u32 active_function_bitmap, u8 pf_id)
2450{
2451	u8 logical_id = 0;
2452	u8 i;
2453
2454	for (i = 0; i < pf_id; i++)
2455		if (active_function_bitmap & BIT(i))
2456			logical_id++;
2457
2458	return logical_id;
2459}
2460
2461/**
2462 * ice_parse_valid_functions_cap - Parse ICE_AQC_CAPS_VALID_FUNCTIONS caps
2463 * @hw: pointer to the HW struct
2464 * @dev_p: pointer to device capabilities structure
2465 * @cap: capability element to parse
2466 *
2467 * Parse ICE_AQC_CAPS_VALID_FUNCTIONS for device capabilities.
2468 */
2469static void
2470ice_parse_valid_functions_cap(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2471			      struct ice_aqc_list_caps_elem *cap)
2472{
2473	u32 number = le32_to_cpu(cap->number);
2474
2475	dev_p->num_funcs = hweight32(number);
2476	ice_debug(hw, ICE_DBG_INIT, "dev caps: num_funcs = %d\n",
2477		  dev_p->num_funcs);
2478
2479	hw->logical_pf_id = ice_func_id_to_logical_id(number, hw->pf_id);
2480}
2481
2482/**
2483 * ice_parse_vf_dev_caps - Parse ICE_AQC_CAPS_VF device caps
2484 * @hw: pointer to the HW struct
2485 * @dev_p: pointer to device capabilities structure
2486 * @cap: capability element to parse
2487 *
2488 * Parse ICE_AQC_CAPS_VF for device capabilities.
2489 */
2490static void
2491ice_parse_vf_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2492		      struct ice_aqc_list_caps_elem *cap)
2493{
2494	u32 number = le32_to_cpu(cap->number);
2495
2496	dev_p->num_vfs_exposed = number;
2497	ice_debug(hw, ICE_DBG_INIT, "dev_caps: num_vfs_exposed = %d\n",
2498		  dev_p->num_vfs_exposed);
2499}
2500
2501/**
2502 * ice_parse_vsi_dev_caps - Parse ICE_AQC_CAPS_VSI device caps
2503 * @hw: pointer to the HW struct
2504 * @dev_p: pointer to device capabilities structure
2505 * @cap: capability element to parse
2506 *
2507 * Parse ICE_AQC_CAPS_VSI for device capabilities.
2508 */
2509static void
2510ice_parse_vsi_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2511		       struct ice_aqc_list_caps_elem *cap)
2512{
2513	u32 number = le32_to_cpu(cap->number);
2514
2515	dev_p->num_vsi_allocd_to_host = number;
2516	ice_debug(hw, ICE_DBG_INIT, "dev caps: num_vsi_allocd_to_host = %d\n",
2517		  dev_p->num_vsi_allocd_to_host);
2518}
2519
2520/**
2521 * ice_parse_1588_dev_caps - Parse ICE_AQC_CAPS_1588 device caps
2522 * @hw: pointer to the HW struct
2523 * @dev_p: pointer to device capabilities structure
2524 * @cap: capability element to parse
2525 *
2526 * Parse ICE_AQC_CAPS_1588 for device capabilities.
2527 */
2528static void
2529ice_parse_1588_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2530			struct ice_aqc_list_caps_elem *cap)
2531{
2532	struct ice_ts_dev_info *info = &dev_p->ts_dev_info;
2533	u32 logical_id = le32_to_cpu(cap->logical_id);
2534	u32 phys_id = le32_to_cpu(cap->phys_id);
2535	u32 number = le32_to_cpu(cap->number);
2536
2537	info->ena = ((number & ICE_TS_DEV_ENA_M) != 0);
2538	dev_p->common_cap.ieee_1588 = info->ena;
2539
2540	info->tmr0_owner = number & ICE_TS_TMR0_OWNR_M;
2541	info->tmr0_owned = ((number & ICE_TS_TMR0_OWND_M) != 0);
2542	info->tmr0_ena = ((number & ICE_TS_TMR0_ENA_M) != 0);
2543
2544	info->tmr1_owner = FIELD_GET(ICE_TS_TMR1_OWNR_M, number);
2545	info->tmr1_owned = ((number & ICE_TS_TMR1_OWND_M) != 0);
2546	info->tmr1_ena = ((number & ICE_TS_TMR1_ENA_M) != 0);
2547
2548	info->ts_ll_read = ((number & ICE_TS_LL_TX_TS_READ_M) != 0);
2549	info->ts_ll_int_read = ((number & ICE_TS_LL_TX_TS_INT_READ_M) != 0);
2550
2551	info->ena_ports = logical_id;
2552	info->tmr_own_map = phys_id;
2553
2554	ice_debug(hw, ICE_DBG_INIT, "dev caps: ieee_1588 = %u\n",
2555		  dev_p->common_cap.ieee_1588);
2556	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_owner = %u\n",
2557		  info->tmr0_owner);
2558	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_owned = %u\n",
2559		  info->tmr0_owned);
2560	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr0_ena = %u\n",
2561		  info->tmr0_ena);
2562	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_owner = %u\n",
2563		  info->tmr1_owner);
2564	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_owned = %u\n",
2565		  info->tmr1_owned);
2566	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr1_ena = %u\n",
2567		  info->tmr1_ena);
2568	ice_debug(hw, ICE_DBG_INIT, "dev caps: ts_ll_read = %u\n",
2569		  info->ts_ll_read);
2570	ice_debug(hw, ICE_DBG_INIT, "dev caps: ts_ll_int_read = %u\n",
2571		  info->ts_ll_int_read);
2572	ice_debug(hw, ICE_DBG_INIT, "dev caps: ieee_1588 ena_ports = %u\n",
2573		  info->ena_ports);
2574	ice_debug(hw, ICE_DBG_INIT, "dev caps: tmr_own_map = %u\n",
2575		  info->tmr_own_map);
2576}
2577
2578/**
2579 * ice_parse_fdir_dev_caps - Parse ICE_AQC_CAPS_FD device caps
2580 * @hw: pointer to the HW struct
2581 * @dev_p: pointer to device capabilities structure
2582 * @cap: capability element to parse
2583 *
2584 * Parse ICE_AQC_CAPS_FD for device capabilities.
2585 */
2586static void
2587ice_parse_fdir_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2588			struct ice_aqc_list_caps_elem *cap)
2589{
2590	u32 number = le32_to_cpu(cap->number);
2591
2592	dev_p->num_flow_director_fltr = number;
2593	ice_debug(hw, ICE_DBG_INIT, "dev caps: num_flow_director_fltr = %d\n",
2594		  dev_p->num_flow_director_fltr);
2595}
2596
2597/**
2598 * ice_parse_sensor_reading_cap - Parse ICE_AQC_CAPS_SENSOR_READING cap
2599 * @hw: pointer to the HW struct
2600 * @dev_p: pointer to device capabilities structure
2601 * @cap: capability element to parse
2602 *
2603 * Parse ICE_AQC_CAPS_SENSOR_READING for device capability for reading
2604 * enabled sensors.
2605 */
2606static void
2607ice_parse_sensor_reading_cap(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2608			     struct ice_aqc_list_caps_elem *cap)
2609{
2610	dev_p->supported_sensors = le32_to_cpu(cap->number);
2611
2612	ice_debug(hw, ICE_DBG_INIT,
2613		  "dev caps: supported sensors (bitmap) = 0x%x\n",
2614		  dev_p->supported_sensors);
2615}
2616
2617/**
2618 * ice_parse_nac_topo_dev_caps - Parse ICE_AQC_CAPS_NAC_TOPOLOGY cap
2619 * @hw: pointer to the HW struct
2620 * @dev_p: pointer to device capabilities structure
2621 * @cap: capability element to parse
2622 *
2623 * Parse ICE_AQC_CAPS_NAC_TOPOLOGY for device capabilities.
2624 */
2625static void ice_parse_nac_topo_dev_caps(struct ice_hw *hw,
2626					struct ice_hw_dev_caps *dev_p,
2627					struct ice_aqc_list_caps_elem *cap)
2628{
2629	dev_p->nac_topo.mode = le32_to_cpu(cap->number);
2630	dev_p->nac_topo.id = le32_to_cpu(cap->phys_id) & ICE_NAC_TOPO_ID_M;
2631
2632	dev_info(ice_hw_to_dev(hw),
2633		 "PF is configured in %s mode with IP instance ID %d\n",
2634		 (dev_p->nac_topo.mode & ICE_NAC_TOPO_PRIMARY_M) ?
2635		 "primary" : "secondary", dev_p->nac_topo.id);
2636
2637	ice_debug(hw, ICE_DBG_INIT, "dev caps: nac topology is_primary = %d\n",
2638		  !!(dev_p->nac_topo.mode & ICE_NAC_TOPO_PRIMARY_M));
2639	ice_debug(hw, ICE_DBG_INIT, "dev caps: nac topology is_dual = %d\n",
2640		  !!(dev_p->nac_topo.mode & ICE_NAC_TOPO_DUAL_M));
2641	ice_debug(hw, ICE_DBG_INIT, "dev caps: nac topology id = %d\n",
2642		  dev_p->nac_topo.id);
2643}
2644
2645/**
2646 * ice_parse_dev_caps - Parse device capabilities
2647 * @hw: pointer to the HW struct
2648 * @dev_p: pointer to device capabilities structure
2649 * @buf: buffer containing the device capability records
2650 * @cap_count: the number of capabilities
2651 *
2652 * Helper device to parse device (0x000B) capabilities list. For
2653 * capabilities shared between device and function, this relies on
2654 * ice_parse_common_caps.
2655 *
2656 * Loop through the list of provided capabilities and extract the relevant
2657 * data into the device capabilities structured.
2658 */
2659static void
2660ice_parse_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_p,
2661		   void *buf, u32 cap_count)
2662{
2663	struct ice_aqc_list_caps_elem *cap_resp;
2664	u32 i;
2665
2666	cap_resp = buf;
2667
2668	memset(dev_p, 0, sizeof(*dev_p));
2669
2670	for (i = 0; i < cap_count; i++) {
2671		u16 cap = le16_to_cpu(cap_resp[i].cap);
2672		bool found;
2673
2674		found = ice_parse_common_caps(hw, &dev_p->common_cap,
2675					      &cap_resp[i], "dev caps");
2676
2677		switch (cap) {
2678		case ICE_AQC_CAPS_VALID_FUNCTIONS:
2679			ice_parse_valid_functions_cap(hw, dev_p, &cap_resp[i]);
 
 
 
 
 
 
 
 
 
2680			break;
2681		case ICE_AQC_CAPS_VF:
2682			ice_parse_vf_dev_caps(hw, dev_p, &cap_resp[i]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2683			break;
2684		case ICE_AQC_CAPS_VSI:
2685			ice_parse_vsi_dev_caps(hw, dev_p, &cap_resp[i]);
2686			break;
2687		case ICE_AQC_CAPS_1588:
2688			ice_parse_1588_dev_caps(hw, dev_p, &cap_resp[i]);
2689			break;
2690		case ICE_AQC_CAPS_FD:
2691			ice_parse_fdir_dev_caps(hw, dev_p, &cap_resp[i]);
2692			break;
2693		case ICE_AQC_CAPS_SENSOR_READING:
2694			ice_parse_sensor_reading_cap(hw, dev_p, &cap_resp[i]);
 
 
 
 
 
 
2695			break;
2696		case ICE_AQC_CAPS_NAC_TOPOLOGY:
2697			ice_parse_nac_topo_dev_caps(hw, dev_p, &cap_resp[i]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2698			break;
2699		default:
2700			/* Don't list common capabilities as unknown */
2701			if (!found)
2702				ice_debug(hw, ICE_DBG_INIT, "dev caps: unknown capability[%d]: 0x%x\n",
2703					  i, cap);
2704			break;
2705		}
2706	}
2707
2708	ice_recalc_port_limited_caps(hw, &dev_p->common_cap);
2709}
2710
2711/**
2712 * ice_is_pf_c827 - check if pf contains c827 phy
2713 * @hw: pointer to the hw struct
2714 */
2715bool ice_is_pf_c827(struct ice_hw *hw)
2716{
2717	struct ice_aqc_get_link_topo cmd = {};
2718	u8 node_part_number;
2719	u16 node_handle;
2720	int status;
2721
2722	if (hw->mac_type != ICE_MAC_E810)
2723		return false;
2724
2725	if (hw->device_id != ICE_DEV_ID_E810C_QSFP)
2726		return true;
2727
2728	cmd.addr.topo_params.node_type_ctx =
2729		FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_TYPE_M, ICE_AQC_LINK_TOPO_NODE_TYPE_PHY) |
2730		FIELD_PREP(ICE_AQC_LINK_TOPO_NODE_CTX_M, ICE_AQC_LINK_TOPO_NODE_CTX_PORT);
2731	cmd.addr.topo_params.index = 0;
2732
2733	status = ice_aq_get_netlist_node(hw, &cmd, &node_part_number,
2734					 &node_handle);
2735
2736	if (status || node_part_number != ICE_AQC_GET_LINK_TOPO_NODE_NR_C827)
2737		return false;
2738
2739	if (node_handle == E810C_QSFP_C827_0_HANDLE || node_handle == E810C_QSFP_C827_1_HANDLE)
2740		return true;
2741
2742	return false;
2743}
2744
2745/**
2746 * ice_is_phy_rclk_in_netlist
2747 * @hw: pointer to the hw struct
2748 *
2749 * Check if the PHY Recovered Clock device is present in the netlist
2750 */
2751bool ice_is_phy_rclk_in_netlist(struct ice_hw *hw)
2752{
2753	if (ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_PHY,
2754				  ICE_AQC_LINK_TOPO_NODE_CTX_PORT,
2755				  ICE_AQC_GET_LINK_TOPO_NODE_NR_C827, NULL) &&
2756	    ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_PHY,
2757				  ICE_AQC_LINK_TOPO_NODE_CTX_PORT,
2758				  ICE_AQC_GET_LINK_TOPO_NODE_NR_E822_PHY, NULL))
2759		return false;
2760
2761	return true;
2762}
2763
2764/**
2765 * ice_is_clock_mux_in_netlist
2766 * @hw: pointer to the hw struct
2767 *
2768 * Check if the Clock Multiplexer device is present in the netlist
2769 */
2770bool ice_is_clock_mux_in_netlist(struct ice_hw *hw)
2771{
2772	if (ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_CLK_MUX,
2773				  ICE_AQC_LINK_TOPO_NODE_CTX_GLOBAL,
2774				  ICE_AQC_GET_LINK_TOPO_NODE_NR_GEN_CLK_MUX,
2775				  NULL))
2776		return false;
2777
2778	return true;
2779}
2780
2781/**
2782 * ice_is_cgu_in_netlist - check for CGU presence
2783 * @hw: pointer to the hw struct
2784 *
2785 * Check if the Clock Generation Unit (CGU) device is present in the netlist.
2786 * Save the CGU part number in the hw structure for later use.
2787 * Return:
2788 * * true - cgu is present
2789 * * false - cgu is not present
2790 */
2791bool ice_is_cgu_in_netlist(struct ice_hw *hw)
2792{
2793	if (!ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_CLK_CTRL,
2794				   ICE_AQC_LINK_TOPO_NODE_CTX_GLOBAL,
2795				   ICE_AQC_GET_LINK_TOPO_NODE_NR_ZL30632_80032,
2796				   NULL)) {
2797		hw->cgu_part_number = ICE_AQC_GET_LINK_TOPO_NODE_NR_ZL30632_80032;
2798		return true;
2799	} else if (!ice_find_netlist_node(hw,
2800					  ICE_AQC_LINK_TOPO_NODE_TYPE_CLK_CTRL,
2801					  ICE_AQC_LINK_TOPO_NODE_CTX_GLOBAL,
2802					  ICE_AQC_GET_LINK_TOPO_NODE_NR_SI5383_5384,
2803					  NULL)) {
2804		hw->cgu_part_number = ICE_AQC_GET_LINK_TOPO_NODE_NR_SI5383_5384;
2805		return true;
2806	}
2807
2808	return false;
2809}
2810
2811/**
2812 * ice_is_gps_in_netlist
2813 * @hw: pointer to the hw struct
2814 *
2815 * Check if the GPS generic device is present in the netlist
2816 */
2817bool ice_is_gps_in_netlist(struct ice_hw *hw)
2818{
2819	if (ice_find_netlist_node(hw, ICE_AQC_LINK_TOPO_NODE_TYPE_GPS,
2820				  ICE_AQC_LINK_TOPO_NODE_CTX_GLOBAL,
2821				  ICE_AQC_GET_LINK_TOPO_NODE_NR_GEN_GPS, NULL))
2822		return false;
2823
2824	return true;
2825}
2826
2827/**
2828 * ice_aq_list_caps - query function/device capabilities
2829 * @hw: pointer to the HW struct
2830 * @buf: a buffer to hold the capabilities
2831 * @buf_size: size of the buffer
2832 * @cap_count: if not NULL, set to the number of capabilities reported
2833 * @opc: capabilities type to discover, device or function
2834 * @cd: pointer to command details structure or NULL
2835 *
2836 * Get the function (0x000A) or device (0x000B) capabilities description from
2837 * firmware and store it in the buffer.
2838 *
2839 * If the cap_count pointer is not NULL, then it is set to the number of
2840 * capabilities firmware will report. Note that if the buffer size is too
2841 * small, it is possible the command will return ICE_AQ_ERR_ENOMEM. The
2842 * cap_count will still be updated in this case. It is recommended that the
2843 * buffer size be set to ICE_AQ_MAX_BUF_LEN (the largest possible buffer that
2844 * firmware could return) to avoid this.
2845 */
2846int
2847ice_aq_list_caps(struct ice_hw *hw, void *buf, u16 buf_size, u32 *cap_count,
2848		 enum ice_adminq_opc opc, struct ice_sq_cd *cd)
2849{
2850	struct ice_aqc_list_caps *cmd;
2851	struct ice_aq_desc desc;
2852	int status;
2853
2854	cmd = &desc.params.get_cap;
2855
2856	if (opc != ice_aqc_opc_list_func_caps &&
2857	    opc != ice_aqc_opc_list_dev_caps)
2858		return -EINVAL;
2859
2860	ice_fill_dflt_direct_cmd_desc(&desc, opc);
2861	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
2862
2863	if (cap_count)
 
 
 
2864		*cap_count = le32_to_cpu(cmd->count);
2865
2866	return status;
2867}
2868
2869/**
2870 * ice_discover_dev_caps - Read and extract device capabilities
2871 * @hw: pointer to the hardware structure
2872 * @dev_caps: pointer to device capabilities structure
2873 *
2874 * Read the device capabilities and extract them into the dev_caps structure
2875 * for later use.
2876 */
2877int
2878ice_discover_dev_caps(struct ice_hw *hw, struct ice_hw_dev_caps *dev_caps)
2879{
2880	u32 cap_count = 0;
2881	void *cbuf;
2882	int status;
2883
2884	cbuf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
2885	if (!cbuf)
2886		return -ENOMEM;
2887
2888	/* Although the driver doesn't know the number of capabilities the
2889	 * device will return, we can simply send a 4KB buffer, the maximum
2890	 * possible size that firmware can return.
2891	 */
2892	cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem);
 
2893
2894	status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
2895				  ice_aqc_opc_list_dev_caps, NULL);
2896	if (!status)
2897		ice_parse_dev_caps(hw, dev_caps, cbuf, cap_count);
2898	kfree(cbuf);
2899
2900	return status;
2901}
2902
2903/**
2904 * ice_discover_func_caps - Read and extract function capabilities
2905 * @hw: pointer to the hardware structure
2906 * @func_caps: pointer to function capabilities structure
2907 *
2908 * Read the function capabilities and extract them into the func_caps structure
2909 * for later use.
2910 */
2911static int
2912ice_discover_func_caps(struct ice_hw *hw, struct ice_hw_func_caps *func_caps)
2913{
2914	u32 cap_count = 0;
2915	void *cbuf;
2916	int status;
2917
2918	cbuf = kzalloc(ICE_AQ_MAX_BUF_LEN, GFP_KERNEL);
2919	if (!cbuf)
2920		return -ENOMEM;
2921
2922	/* Although the driver doesn't know the number of capabilities the
2923	 * device will return, we can simply send a 4KB buffer, the maximum
2924	 * possible size that firmware can return.
2925	 */
2926	cap_count = ICE_AQ_MAX_BUF_LEN / sizeof(struct ice_aqc_list_caps_elem);
2927
2928	status = ice_aq_list_caps(hw, cbuf, ICE_AQ_MAX_BUF_LEN, &cap_count,
2929				  ice_aqc_opc_list_func_caps, NULL);
2930	if (!status)
2931		ice_parse_func_caps(hw, func_caps, cbuf, cap_count);
2932	kfree(cbuf);
2933
2934	return status;
2935}
2936
2937/**
2938 * ice_set_safe_mode_caps - Override dev/func capabilities when in safe mode
2939 * @hw: pointer to the hardware structure
2940 */
2941void ice_set_safe_mode_caps(struct ice_hw *hw)
2942{
2943	struct ice_hw_func_caps *func_caps = &hw->func_caps;
2944	struct ice_hw_dev_caps *dev_caps = &hw->dev_caps;
2945	struct ice_hw_common_caps cached_caps;
2946	u32 num_funcs;
 
 
2947
2948	/* cache some func_caps values that should be restored after memset */
2949	cached_caps = func_caps->common_cap;
 
 
 
 
2950
2951	/* unset func capabilities */
2952	memset(func_caps, 0, sizeof(*func_caps));
2953
2954#define ICE_RESTORE_FUNC_CAP(name) \
2955	func_caps->common_cap.name = cached_caps.name
2956
2957	/* restore cached values */
2958	ICE_RESTORE_FUNC_CAP(valid_functions);
2959	ICE_RESTORE_FUNC_CAP(txq_first_id);
2960	ICE_RESTORE_FUNC_CAP(rxq_first_id);
2961	ICE_RESTORE_FUNC_CAP(msix_vector_first_id);
2962	ICE_RESTORE_FUNC_CAP(max_mtu);
2963	ICE_RESTORE_FUNC_CAP(nvm_unified_update);
2964	ICE_RESTORE_FUNC_CAP(nvm_update_pending_nvm);
2965	ICE_RESTORE_FUNC_CAP(nvm_update_pending_orom);
2966	ICE_RESTORE_FUNC_CAP(nvm_update_pending_netlist);
2967
2968	/* one Tx and one Rx queue in safe mode */
2969	func_caps->common_cap.num_rxq = 1;
2970	func_caps->common_cap.num_txq = 1;
2971
2972	/* two MSIX vectors, one for traffic and one for misc causes */
2973	func_caps->common_cap.num_msix_vectors = 2;
2974	func_caps->guar_num_vsi = 1;
2975
2976	/* cache some dev_caps values that should be restored after memset */
2977	cached_caps = dev_caps->common_cap;
2978	num_funcs = dev_caps->num_funcs;
 
 
 
2979
2980	/* unset dev capabilities */
2981	memset(dev_caps, 0, sizeof(*dev_caps));
2982
2983#define ICE_RESTORE_DEV_CAP(name) \
2984	dev_caps->common_cap.name = cached_caps.name
2985
2986	/* restore cached values */
2987	ICE_RESTORE_DEV_CAP(valid_functions);
2988	ICE_RESTORE_DEV_CAP(txq_first_id);
2989	ICE_RESTORE_DEV_CAP(rxq_first_id);
2990	ICE_RESTORE_DEV_CAP(msix_vector_first_id);
2991	ICE_RESTORE_DEV_CAP(max_mtu);
2992	ICE_RESTORE_DEV_CAP(nvm_unified_update);
2993	ICE_RESTORE_DEV_CAP(nvm_update_pending_nvm);
2994	ICE_RESTORE_DEV_CAP(nvm_update_pending_orom);
2995	ICE_RESTORE_DEV_CAP(nvm_update_pending_netlist);
2996	dev_caps->num_funcs = num_funcs;
 
2997
2998	/* one Tx and one Rx queue per function in safe mode */
2999	dev_caps->common_cap.num_rxq = num_funcs;
3000	dev_caps->common_cap.num_txq = num_funcs;
3001
3002	/* two MSIX vectors per function */
3003	dev_caps->common_cap.num_msix_vectors = 2 * num_funcs;
3004}
3005
3006/**
3007 * ice_get_caps - get info about the HW
3008 * @hw: pointer to the hardware structure
3009 */
3010int ice_get_caps(struct ice_hw *hw)
3011{
3012	int status;
3013
3014	status = ice_discover_dev_caps(hw, &hw->dev_caps);
3015	if (status)
3016		return status;
3017
3018	return ice_discover_func_caps(hw, &hw->func_caps);
3019}
3020
3021/**
3022 * ice_aq_manage_mac_write - manage MAC address write command
3023 * @hw: pointer to the HW struct
3024 * @mac_addr: MAC address to be written as LAA/LAA+WoL/Port address
3025 * @flags: flags to control write behavior
3026 * @cd: pointer to command details structure or NULL
3027 *
3028 * This function is used to write MAC address to the NVM (0x0108).
3029 */
3030int
3031ice_aq_manage_mac_write(struct ice_hw *hw, const u8 *mac_addr, u8 flags,
3032			struct ice_sq_cd *cd)
3033{
3034	struct ice_aqc_manage_mac_write *cmd;
3035	struct ice_aq_desc desc;
3036
3037	cmd = &desc.params.mac_write;
3038	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_write);
3039
3040	cmd->flags = flags;
3041	ether_addr_copy(cmd->mac_addr, mac_addr);
 
 
 
3042
3043	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3044}
3045
3046/**
3047 * ice_aq_clear_pxe_mode
3048 * @hw: pointer to the HW struct
3049 *
3050 * Tell the firmware that the driver is taking over from PXE (0x0110).
3051 */
3052static int ice_aq_clear_pxe_mode(struct ice_hw *hw)
3053{
3054	struct ice_aq_desc desc;
3055
3056	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pxe_mode);
3057	desc.params.clear_pxe.rx_cnt = ICE_AQC_CLEAR_PXE_RX_CNT;
3058
3059	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
3060}
3061
3062/**
3063 * ice_clear_pxe_mode - clear pxe operations mode
3064 * @hw: pointer to the HW struct
3065 *
3066 * Make sure all PXE mode settings are cleared, including things
3067 * like descriptor fetch/write-back mode.
3068 */
3069void ice_clear_pxe_mode(struct ice_hw *hw)
3070{
3071	if (ice_check_sq_alive(hw, &hw->adminq))
3072		ice_aq_clear_pxe_mode(hw);
3073}
3074
3075/**
3076 * ice_aq_set_port_params - set physical port parameters.
3077 * @pi: pointer to the port info struct
3078 * @double_vlan: if set double VLAN is enabled
3079 * @cd: pointer to command details structure or NULL
3080 *
3081 * Set Physical port parameters (0x0203)
3082 */
3083int
3084ice_aq_set_port_params(struct ice_port_info *pi, bool double_vlan,
3085		       struct ice_sq_cd *cd)
3086
3087{
3088	struct ice_aqc_set_port_params *cmd;
3089	struct ice_hw *hw = pi->hw;
3090	struct ice_aq_desc desc;
3091	u16 cmd_flags = 0;
3092
3093	cmd = &desc.params.set_port_params;
3094
3095	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_params);
3096	if (double_vlan)
3097		cmd_flags |= ICE_AQC_SET_P_PARAMS_DOUBLE_VLAN_ENA;
3098	cmd->cmd_flags = cpu_to_le16(cmd_flags);
3099
3100	cmd->local_fwd_mode = pi->local_fwd_mode |
3101				ICE_AQC_SET_P_PARAMS_LOCAL_FWD_MODE_VALID;
3102
3103	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3104}
3105
3106/**
3107 * ice_is_100m_speed_supported
3108 * @hw: pointer to the HW struct
3109 *
3110 * returns true if 100M speeds are supported by the device,
3111 * false otherwise.
3112 */
3113bool ice_is_100m_speed_supported(struct ice_hw *hw)
3114{
3115	switch (hw->device_id) {
3116	case ICE_DEV_ID_E822C_SGMII:
3117	case ICE_DEV_ID_E822L_SGMII:
3118	case ICE_DEV_ID_E823L_1GBE:
3119	case ICE_DEV_ID_E823C_SGMII:
3120		return true;
3121	default:
3122		return false;
3123	}
3124}
3125
3126/**
3127 * ice_get_link_speed_based_on_phy_type - returns link speed
3128 * @phy_type_low: lower part of phy_type
3129 * @phy_type_high: higher part of phy_type
3130 *
3131 * This helper function will convert an entry in PHY type structure
3132 * [phy_type_low, phy_type_high] to its corresponding link speed.
3133 * Note: In the structure of [phy_type_low, phy_type_high], there should
3134 * be one bit set, as this function will convert one PHY type to its
3135 * speed.
3136 *
3137 * Return:
3138 * * PHY speed for recognized PHY type
3139 * * If no bit gets set, ICE_AQ_LINK_SPEED_UNKNOWN will be returned
3140 * * If more than one bit gets set, ICE_AQ_LINK_SPEED_UNKNOWN will be returned
3141 */
3142u16 ice_get_link_speed_based_on_phy_type(u64 phy_type_low, u64 phy_type_high)
 
3143{
3144	u16 speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
3145	u16 speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
3146
3147	switch (phy_type_low) {
3148	case ICE_PHY_TYPE_LOW_100BASE_TX:
3149	case ICE_PHY_TYPE_LOW_100M_SGMII:
3150		speed_phy_type_low = ICE_AQ_LINK_SPEED_100MB;
3151		break;
3152	case ICE_PHY_TYPE_LOW_1000BASE_T:
3153	case ICE_PHY_TYPE_LOW_1000BASE_SX:
3154	case ICE_PHY_TYPE_LOW_1000BASE_LX:
3155	case ICE_PHY_TYPE_LOW_1000BASE_KX:
3156	case ICE_PHY_TYPE_LOW_1G_SGMII:
3157		speed_phy_type_low = ICE_AQ_LINK_SPEED_1000MB;
3158		break;
3159	case ICE_PHY_TYPE_LOW_2500BASE_T:
3160	case ICE_PHY_TYPE_LOW_2500BASE_X:
3161	case ICE_PHY_TYPE_LOW_2500BASE_KX:
3162		speed_phy_type_low = ICE_AQ_LINK_SPEED_2500MB;
3163		break;
3164	case ICE_PHY_TYPE_LOW_5GBASE_T:
3165	case ICE_PHY_TYPE_LOW_5GBASE_KR:
3166		speed_phy_type_low = ICE_AQ_LINK_SPEED_5GB;
3167		break;
3168	case ICE_PHY_TYPE_LOW_10GBASE_T:
3169	case ICE_PHY_TYPE_LOW_10G_SFI_DA:
3170	case ICE_PHY_TYPE_LOW_10GBASE_SR:
3171	case ICE_PHY_TYPE_LOW_10GBASE_LR:
3172	case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
3173	case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
3174	case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
3175		speed_phy_type_low = ICE_AQ_LINK_SPEED_10GB;
3176		break;
3177	case ICE_PHY_TYPE_LOW_25GBASE_T:
3178	case ICE_PHY_TYPE_LOW_25GBASE_CR:
3179	case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
3180	case ICE_PHY_TYPE_LOW_25GBASE_CR1:
3181	case ICE_PHY_TYPE_LOW_25GBASE_SR:
3182	case ICE_PHY_TYPE_LOW_25GBASE_LR:
3183	case ICE_PHY_TYPE_LOW_25GBASE_KR:
3184	case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
3185	case ICE_PHY_TYPE_LOW_25GBASE_KR1:
3186	case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
3187	case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
3188		speed_phy_type_low = ICE_AQ_LINK_SPEED_25GB;
3189		break;
3190	case ICE_PHY_TYPE_LOW_40GBASE_CR4:
3191	case ICE_PHY_TYPE_LOW_40GBASE_SR4:
3192	case ICE_PHY_TYPE_LOW_40GBASE_LR4:
3193	case ICE_PHY_TYPE_LOW_40GBASE_KR4:
3194	case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
3195	case ICE_PHY_TYPE_LOW_40G_XLAUI:
3196		speed_phy_type_low = ICE_AQ_LINK_SPEED_40GB;
3197		break;
3198	case ICE_PHY_TYPE_LOW_50GBASE_CR2:
3199	case ICE_PHY_TYPE_LOW_50GBASE_SR2:
3200	case ICE_PHY_TYPE_LOW_50GBASE_LR2:
3201	case ICE_PHY_TYPE_LOW_50GBASE_KR2:
3202	case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
3203	case ICE_PHY_TYPE_LOW_50G_LAUI2:
3204	case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
3205	case ICE_PHY_TYPE_LOW_50G_AUI2:
3206	case ICE_PHY_TYPE_LOW_50GBASE_CP:
3207	case ICE_PHY_TYPE_LOW_50GBASE_SR:
3208	case ICE_PHY_TYPE_LOW_50GBASE_FR:
3209	case ICE_PHY_TYPE_LOW_50GBASE_LR:
3210	case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
3211	case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
3212	case ICE_PHY_TYPE_LOW_50G_AUI1:
3213		speed_phy_type_low = ICE_AQ_LINK_SPEED_50GB;
3214		break;
3215	case ICE_PHY_TYPE_LOW_100GBASE_CR4:
3216	case ICE_PHY_TYPE_LOW_100GBASE_SR4:
3217	case ICE_PHY_TYPE_LOW_100GBASE_LR4:
3218	case ICE_PHY_TYPE_LOW_100GBASE_KR4:
3219	case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
3220	case ICE_PHY_TYPE_LOW_100G_CAUI4:
3221	case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
3222	case ICE_PHY_TYPE_LOW_100G_AUI4:
3223	case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
3224	case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
3225	case ICE_PHY_TYPE_LOW_100GBASE_CP2:
3226	case ICE_PHY_TYPE_LOW_100GBASE_SR2:
3227	case ICE_PHY_TYPE_LOW_100GBASE_DR:
3228		speed_phy_type_low = ICE_AQ_LINK_SPEED_100GB;
3229		break;
3230	default:
3231		speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
3232		break;
3233	}
3234
3235	switch (phy_type_high) {
3236	case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
3237	case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
3238	case ICE_PHY_TYPE_HIGH_100G_CAUI2:
3239	case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
3240	case ICE_PHY_TYPE_HIGH_100G_AUI2:
3241		speed_phy_type_high = ICE_AQ_LINK_SPEED_100GB;
3242		break;
3243	case ICE_PHY_TYPE_HIGH_200G_CR4_PAM4:
3244	case ICE_PHY_TYPE_HIGH_200G_SR4:
3245	case ICE_PHY_TYPE_HIGH_200G_FR4:
3246	case ICE_PHY_TYPE_HIGH_200G_LR4:
3247	case ICE_PHY_TYPE_HIGH_200G_DR4:
3248	case ICE_PHY_TYPE_HIGH_200G_KR4_PAM4:
3249	case ICE_PHY_TYPE_HIGH_200G_AUI4_AOC_ACC:
3250	case ICE_PHY_TYPE_HIGH_200G_AUI4:
3251		speed_phy_type_high = ICE_AQ_LINK_SPEED_200GB;
3252		break;
3253	default:
3254		speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
3255		break;
3256	}
3257
3258	if (speed_phy_type_low == ICE_AQ_LINK_SPEED_UNKNOWN &&
3259	    speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
3260		return ICE_AQ_LINK_SPEED_UNKNOWN;
3261	else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
3262		 speed_phy_type_high != ICE_AQ_LINK_SPEED_UNKNOWN)
3263		return ICE_AQ_LINK_SPEED_UNKNOWN;
3264	else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
3265		 speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
3266		return speed_phy_type_low;
3267	else
3268		return speed_phy_type_high;
3269}
3270
3271/**
3272 * ice_update_phy_type
3273 * @phy_type_low: pointer to the lower part of phy_type
3274 * @phy_type_high: pointer to the higher part of phy_type
3275 * @link_speeds_bitmap: targeted link speeds bitmap
3276 *
3277 * Note: For the link_speeds_bitmap structure, you can check it at
3278 * [ice_aqc_get_link_status->link_speed]. Caller can pass in
3279 * link_speeds_bitmap include multiple speeds.
3280 *
3281 * Each entry in this [phy_type_low, phy_type_high] structure will
3282 * present a certain link speed. This helper function will turn on bits
3283 * in [phy_type_low, phy_type_high] structure based on the value of
3284 * link_speeds_bitmap input parameter.
3285 */
3286void
3287ice_update_phy_type(u64 *phy_type_low, u64 *phy_type_high,
3288		    u16 link_speeds_bitmap)
3289{
3290	u64 pt_high;
3291	u64 pt_low;
3292	int index;
3293	u16 speed;
3294
3295	/* We first check with low part of phy_type */
3296	for (index = 0; index <= ICE_PHY_TYPE_LOW_MAX_INDEX; index++) {
3297		pt_low = BIT_ULL(index);
3298		speed = ice_get_link_speed_based_on_phy_type(pt_low, 0);
3299
3300		if (link_speeds_bitmap & speed)
3301			*phy_type_low |= BIT_ULL(index);
3302	}
3303
3304	/* We then check with high part of phy_type */
3305	for (index = 0; index <= ICE_PHY_TYPE_HIGH_MAX_INDEX; index++) {
3306		pt_high = BIT_ULL(index);
3307		speed = ice_get_link_speed_based_on_phy_type(0, pt_high);
3308
3309		if (link_speeds_bitmap & speed)
3310			*phy_type_high |= BIT_ULL(index);
3311	}
3312}
3313
3314/**
3315 * ice_aq_set_phy_cfg
3316 * @hw: pointer to the HW struct
3317 * @pi: port info structure of the interested logical port
3318 * @cfg: structure with PHY configuration data to be set
3319 * @cd: pointer to command details structure or NULL
3320 *
3321 * Set the various PHY configuration parameters supported on the Port.
3322 * One or more of the Set PHY config parameters may be ignored in an MFP
3323 * mode as the PF may not have the privilege to set some of the PHY Config
3324 * parameters. This status will be indicated by the command response (0x0601).
3325 */
3326int
3327ice_aq_set_phy_cfg(struct ice_hw *hw, struct ice_port_info *pi,
3328		   struct ice_aqc_set_phy_cfg_data *cfg, struct ice_sq_cd *cd)
3329{
3330	struct ice_aq_desc desc;
3331	int status;
3332
3333	if (!cfg)
3334		return -EINVAL;
3335
3336	/* Ensure that only valid bits of cfg->caps can be turned on. */
3337	if (cfg->caps & ~ICE_AQ_PHY_ENA_VALID_MASK) {
3338		ice_debug(hw, ICE_DBG_PHY, "Invalid bit is set in ice_aqc_set_phy_cfg_data->caps : 0x%x\n",
 
3339			  cfg->caps);
3340
3341		cfg->caps &= ICE_AQ_PHY_ENA_VALID_MASK;
3342	}
3343
3344	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_phy_cfg);
3345	desc.params.set_phy.lport_num = pi->lport;
3346	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
3347
3348	ice_debug(hw, ICE_DBG_LINK, "set phy cfg\n");
3349	ice_debug(hw, ICE_DBG_LINK, "	phy_type_low = 0x%llx\n",
3350		  (unsigned long long)le64_to_cpu(cfg->phy_type_low));
3351	ice_debug(hw, ICE_DBG_LINK, "	phy_type_high = 0x%llx\n",
3352		  (unsigned long long)le64_to_cpu(cfg->phy_type_high));
3353	ice_debug(hw, ICE_DBG_LINK, "	caps = 0x%x\n", cfg->caps);
3354	ice_debug(hw, ICE_DBG_LINK, "	low_power_ctrl_an = 0x%x\n",
3355		  cfg->low_power_ctrl_an);
3356	ice_debug(hw, ICE_DBG_LINK, "	eee_cap = 0x%x\n", cfg->eee_cap);
3357	ice_debug(hw, ICE_DBG_LINK, "	eeer_value = 0x%x\n", cfg->eeer_value);
3358	ice_debug(hw, ICE_DBG_LINK, "	link_fec_opt = 0x%x\n",
3359		  cfg->link_fec_opt);
3360
3361	status = ice_aq_send_cmd(hw, &desc, cfg, sizeof(*cfg), cd);
3362	if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE)
3363		status = 0;
3364
3365	if (!status)
3366		pi->phy.curr_user_phy_cfg = *cfg;
3367
3368	return status;
3369}
3370
3371/**
3372 * ice_update_link_info - update status of the HW network link
3373 * @pi: port info structure of the interested logical port
3374 */
3375int ice_update_link_info(struct ice_port_info *pi)
3376{
3377	struct ice_link_status *li;
3378	int status;
3379
3380	if (!pi)
3381		return -EINVAL;
3382
3383	li = &pi->phy.link_info;
3384
3385	status = ice_aq_get_link_info(pi, true, NULL, NULL);
3386	if (status)
3387		return status;
3388
3389	if (li->link_info & ICE_AQ_MEDIA_AVAILABLE) {
3390		struct ice_aqc_get_phy_caps_data *pcaps __free(kfree) = NULL;
 
3391
3392		pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
 
 
3393		if (!pcaps)
3394			return -ENOMEM;
3395
3396		status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
3397					     pcaps, NULL);
 
 
 
 
 
3398	}
3399
3400	return status;
3401}
3402
3403/**
3404 * ice_aq_get_phy_equalization - function to read serdes equaliser
3405 * value from firmware using admin queue command.
3406 * @hw: pointer to the HW struct
3407 * @data_in: represents the serdes equalization parameter requested
3408 * @op_code: represents the serdes number and flag to represent tx or rx
3409 * @serdes_num: represents the serdes number
3410 * @output: pointer to the caller-supplied buffer to return serdes equaliser
3411 *
3412 * Return: non-zero status on error and 0 on success.
3413 */
3414int ice_aq_get_phy_equalization(struct ice_hw *hw, u16 data_in, u16 op_code,
3415				u8 serdes_num, int *output)
3416{
3417	struct ice_aqc_dnl_call_command *cmd;
3418	struct ice_aqc_dnl_call buf = {};
3419	struct ice_aq_desc desc;
3420	int err;
3421
3422	buf.sto.txrx_equa_reqs.data_in = cpu_to_le16(data_in);
3423	buf.sto.txrx_equa_reqs.op_code_serdes_sel =
3424		cpu_to_le16(op_code | (serdes_num & 0xF));
3425	cmd = &desc.params.dnl_call;
3426	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_dnl_call);
3427	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_BUF |
3428				  ICE_AQ_FLAG_RD |
3429				  ICE_AQ_FLAG_SI);
3430	desc.datalen = cpu_to_le16(sizeof(struct ice_aqc_dnl_call));
3431	cmd->activity_id = cpu_to_le16(ICE_AQC_ACT_ID_DNL);
3432
3433	err = ice_aq_send_cmd(hw, &desc, &buf, sizeof(struct ice_aqc_dnl_call),
3434			      NULL);
3435	*output = err ? 0 : buf.sto.txrx_equa_resp.val;
3436
3437	return err;
3438}
3439
3440#define FEC_REG_PORT(port) {	\
3441	FEC_CORR_LOW_REG_PORT##port,		\
3442	FEC_CORR_HIGH_REG_PORT##port,	\
3443	FEC_UNCORR_LOW_REG_PORT##port,	\
3444	FEC_UNCORR_HIGH_REG_PORT##port,	\
3445}
3446
3447static const u32 fec_reg[][ICE_FEC_MAX] = {
3448	FEC_REG_PORT(0),
3449	FEC_REG_PORT(1),
3450	FEC_REG_PORT(2),
3451	FEC_REG_PORT(3)
3452};
3453
3454/**
3455 * ice_aq_get_fec_stats - reads fec stats from phy
3456 * @hw: pointer to the HW struct
3457 * @pcs_quad: represents pcsquad of user input serdes
3458 * @pcs_port: represents the pcs port number part of above pcs quad
3459 * @fec_type: represents FEC stats type
3460 * @output: pointer to the caller-supplied buffer to return requested fec stats
3461 *
3462 * Return: non-zero status on error and 0 on success.
3463 */
3464int ice_aq_get_fec_stats(struct ice_hw *hw, u16 pcs_quad, u16 pcs_port,
3465			 enum ice_fec_stats_types fec_type, u32 *output)
3466{
3467	u16 flag = (ICE_AQ_FLAG_RD | ICE_AQ_FLAG_BUF | ICE_AQ_FLAG_SI);
3468	struct ice_sbq_msg_input msg = {};
3469	u32 receiver_id, reg_offset;
3470	int err;
3471
3472	if (pcs_port > 3)
3473		return -EINVAL;
3474
3475	reg_offset = fec_reg[pcs_port][fec_type];
3476
3477	if (pcs_quad == 0)
3478		receiver_id = FEC_RECEIVER_ID_PCS0;
3479	else if (pcs_quad == 1)
3480		receiver_id = FEC_RECEIVER_ID_PCS1;
3481	else
3482		return -EINVAL;
3483
3484	msg.msg_addr_low = lower_16_bits(reg_offset);
3485	msg.msg_addr_high = receiver_id;
3486	msg.opcode = ice_sbq_msg_rd;
3487	msg.dest_dev = rmn_0;
3488
3489	err = ice_sbq_rw_reg(hw, &msg, flag);
3490	if (err)
3491		return err;
3492
3493	*output = msg.data;
3494	return 0;
3495}
3496
3497/**
3498 * ice_cache_phy_user_req
3499 * @pi: port information structure
3500 * @cache_data: PHY logging data
3501 * @cache_mode: PHY logging mode
3502 *
3503 * Log the user request on (FC, FEC, SPEED) for later use.
3504 */
3505static void
3506ice_cache_phy_user_req(struct ice_port_info *pi,
3507		       struct ice_phy_cache_mode_data cache_data,
3508		       enum ice_phy_cache_mode cache_mode)
3509{
3510	if (!pi)
3511		return;
3512
3513	switch (cache_mode) {
3514	case ICE_FC_MODE:
3515		pi->phy.curr_user_fc_req = cache_data.data.curr_user_fc_req;
3516		break;
3517	case ICE_SPEED_MODE:
3518		pi->phy.curr_user_speed_req =
3519			cache_data.data.curr_user_speed_req;
3520		break;
3521	case ICE_FEC_MODE:
3522		pi->phy.curr_user_fec_req = cache_data.data.curr_user_fec_req;
3523		break;
3524	default:
3525		break;
3526	}
3527}
3528
3529/**
3530 * ice_caps_to_fc_mode
3531 * @caps: PHY capabilities
3532 *
3533 * Convert PHY FC capabilities to ice FC mode
3534 */
3535enum ice_fc_mode ice_caps_to_fc_mode(u8 caps)
3536{
3537	if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE &&
3538	    caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
3539		return ICE_FC_FULL;
3540
3541	if (caps & ICE_AQC_PHY_EN_TX_LINK_PAUSE)
3542		return ICE_FC_TX_PAUSE;
3543
3544	if (caps & ICE_AQC_PHY_EN_RX_LINK_PAUSE)
3545		return ICE_FC_RX_PAUSE;
3546
3547	return ICE_FC_NONE;
3548}
3549
3550/**
3551 * ice_caps_to_fec_mode
3552 * @caps: PHY capabilities
3553 * @fec_options: Link FEC options
3554 *
3555 * Convert PHY FEC capabilities to ice FEC mode
3556 */
3557enum ice_fec_mode ice_caps_to_fec_mode(u8 caps, u8 fec_options)
3558{
3559	if (caps & ICE_AQC_PHY_EN_AUTO_FEC)
3560		return ICE_FEC_AUTO;
3561
3562	if (fec_options & (ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
3563			   ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
3564			   ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN |
3565			   ICE_AQC_PHY_FEC_25G_KR_REQ))
3566		return ICE_FEC_BASER;
3567
3568	if (fec_options & (ICE_AQC_PHY_FEC_25G_RS_528_REQ |
3569			   ICE_AQC_PHY_FEC_25G_RS_544_REQ |
3570			   ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN))
3571		return ICE_FEC_RS;
3572
3573	return ICE_FEC_NONE;
3574}
3575
3576/**
3577 * ice_cfg_phy_fc - Configure PHY FC data based on FC mode
3578 * @pi: port information structure
3579 * @cfg: PHY configuration data to set FC mode
3580 * @req_mode: FC mode to configure
3581 */
3582int
3583ice_cfg_phy_fc(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
3584	       enum ice_fc_mode req_mode)
3585{
3586	struct ice_phy_cache_mode_data cache_data;
 
 
3587	u8 pause_mask = 0x0;
 
3588
3589	if (!pi || !cfg)
3590		return -EINVAL;
 
 
3591
3592	switch (req_mode) {
3593	case ICE_FC_FULL:
3594		pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
3595		pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
3596		break;
3597	case ICE_FC_RX_PAUSE:
3598		pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
3599		break;
3600	case ICE_FC_TX_PAUSE:
3601		pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
3602		break;
3603	default:
3604		break;
3605	}
3606
3607	/* clear the old pause settings */
3608	cfg->caps &= ~(ICE_AQC_PHY_EN_TX_LINK_PAUSE |
3609		ICE_AQC_PHY_EN_RX_LINK_PAUSE);
3610
3611	/* set the new capabilities */
3612	cfg->caps |= pause_mask;
3613
3614	/* Cache user FC request */
3615	cache_data.data.curr_user_fc_req = req_mode;
3616	ice_cache_phy_user_req(pi, cache_data, ICE_FC_MODE);
3617
3618	return 0;
3619}
3620
3621/**
3622 * ice_set_fc
3623 * @pi: port information structure
3624 * @aq_failures: pointer to status code, specific to ice_set_fc routine
3625 * @ena_auto_link_update: enable automatic link update
3626 *
3627 * Set the requested flow control mode.
3628 */
3629int
3630ice_set_fc(struct ice_port_info *pi, u8 *aq_failures, bool ena_auto_link_update)
3631{
3632	struct ice_aqc_get_phy_caps_data *pcaps __free(kfree) = NULL;
3633	struct ice_aqc_set_phy_cfg_data cfg = { 0 };
3634	struct ice_hw *hw;
3635	int status;
3636
3637	if (!pi || !aq_failures)
3638		return -EINVAL;
3639
3640	*aq_failures = 0;
3641	hw = pi->hw;
3642
3643	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
3644	if (!pcaps)
3645		return -ENOMEM;
3646
3647	/* Get the current PHY config */
3648	status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG,
3649				     pcaps, NULL);
3650	if (status) {
3651		*aq_failures = ICE_SET_FC_AQ_FAIL_GET;
3652		goto out;
3653	}
3654
3655	ice_copy_phy_caps_to_cfg(pi, pcaps, &cfg);
 
 
3656
3657	/* Configure the set PHY data */
3658	status = ice_cfg_phy_fc(pi, &cfg, pi->fc.req_mode);
3659	if (status)
3660		goto out;
3661
3662	/* If the capabilities have changed, then set the new config */
3663	if (cfg.caps != pcaps->caps) {
3664		int retry_count, retry_max = 10;
3665
3666		/* Auto restart link so settings take effect */
3667		if (ena_auto_link_update)
3668			cfg.caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
 
 
 
 
 
 
 
3669
3670		status = ice_aq_set_phy_cfg(hw, pi, &cfg, NULL);
3671		if (status) {
3672			*aq_failures = ICE_SET_FC_AQ_FAIL_SET;
3673			goto out;
3674		}
3675
3676		/* Update the link info
3677		 * It sometimes takes a really long time for link to
3678		 * come back from the atomic reset. Thus, we wait a
3679		 * little bit.
3680		 */
3681		for (retry_count = 0; retry_count < retry_max; retry_count++) {
3682			status = ice_update_link_info(pi);
3683
3684			if (!status)
3685				break;
3686
3687			mdelay(100);
3688		}
3689
3690		if (status)
3691			*aq_failures = ICE_SET_FC_AQ_FAIL_UPDATE;
3692	}
3693
3694out:
 
3695	return status;
3696}
3697
3698/**
3699 * ice_phy_caps_equals_cfg
3700 * @phy_caps: PHY capabilities
3701 * @phy_cfg: PHY configuration
3702 *
3703 * Helper function to determine if PHY capabilities matches PHY
3704 * configuration
3705 */
3706bool
3707ice_phy_caps_equals_cfg(struct ice_aqc_get_phy_caps_data *phy_caps,
3708			struct ice_aqc_set_phy_cfg_data *phy_cfg)
3709{
3710	u8 caps_mask, cfg_mask;
3711
3712	if (!phy_caps || !phy_cfg)
3713		return false;
3714
3715	/* These bits are not common between capabilities and configuration.
3716	 * Do not use them to determine equality.
3717	 */
3718	caps_mask = ICE_AQC_PHY_CAPS_MASK & ~(ICE_AQC_PHY_AN_MODE |
3719					      ICE_AQC_GET_PHY_EN_MOD_QUAL);
3720	cfg_mask = ICE_AQ_PHY_ENA_VALID_MASK & ~ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
3721
3722	if (phy_caps->phy_type_low != phy_cfg->phy_type_low ||
3723	    phy_caps->phy_type_high != phy_cfg->phy_type_high ||
3724	    ((phy_caps->caps & caps_mask) != (phy_cfg->caps & cfg_mask)) ||
3725	    phy_caps->low_power_ctrl_an != phy_cfg->low_power_ctrl_an ||
3726	    phy_caps->eee_cap != phy_cfg->eee_cap ||
3727	    phy_caps->eeer_value != phy_cfg->eeer_value ||
3728	    phy_caps->link_fec_options != phy_cfg->link_fec_opt)
3729		return false;
3730
3731	return true;
3732}
3733
3734/**
3735 * ice_copy_phy_caps_to_cfg - Copy PHY ability data to configuration data
3736 * @pi: port information structure
3737 * @caps: PHY ability structure to copy date from
3738 * @cfg: PHY configuration structure to copy data to
3739 *
3740 * Helper function to copy AQC PHY get ability data to PHY set configuration
3741 * data structure
3742 */
3743void
3744ice_copy_phy_caps_to_cfg(struct ice_port_info *pi,
3745			 struct ice_aqc_get_phy_caps_data *caps,
3746			 struct ice_aqc_set_phy_cfg_data *cfg)
3747{
3748	if (!pi || !caps || !cfg)
3749		return;
3750
3751	memset(cfg, 0, sizeof(*cfg));
3752	cfg->phy_type_low = caps->phy_type_low;
3753	cfg->phy_type_high = caps->phy_type_high;
3754	cfg->caps = caps->caps;
3755	cfg->low_power_ctrl_an = caps->low_power_ctrl_an;
3756	cfg->eee_cap = caps->eee_cap;
3757	cfg->eeer_value = caps->eeer_value;
3758	cfg->link_fec_opt = caps->link_fec_options;
3759	cfg->module_compliance_enforcement =
3760		caps->module_compliance_enforcement;
3761}
3762
3763/**
3764 * ice_cfg_phy_fec - Configure PHY FEC data based on FEC mode
3765 * @pi: port information structure
3766 * @cfg: PHY configuration data to set FEC mode
3767 * @fec: FEC mode to configure
 
 
 
 
3768 */
3769int
3770ice_cfg_phy_fec(struct ice_port_info *pi, struct ice_aqc_set_phy_cfg_data *cfg,
3771		enum ice_fec_mode fec)
3772{
3773	struct ice_aqc_get_phy_caps_data *pcaps __free(kfree) = NULL;
3774	struct ice_hw *hw;
3775	int status;
3776
3777	if (!pi || !cfg)
3778		return -EINVAL;
3779
3780	hw = pi->hw;
3781
3782	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
3783	if (!pcaps)
3784		return -ENOMEM;
3785
3786	status = ice_aq_get_phy_caps(pi, false,
3787				     (ice_fw_supports_report_dflt_cfg(hw) ?
3788				      ICE_AQC_REPORT_DFLT_CFG :
3789				      ICE_AQC_REPORT_TOPO_CAP_MEDIA), pcaps, NULL);
3790	if (status)
3791		goto out;
3792
3793	cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
3794	cfg->link_fec_opt = pcaps->link_fec_options;
3795
3796	switch (fec) {
3797	case ICE_FEC_BASER:
3798		/* Clear RS bits, and AND BASE-R ability
3799		 * bits and OR request bits.
3800		 */
3801		cfg->link_fec_opt &= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
3802			ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN;
3803		cfg->link_fec_opt |= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
3804			ICE_AQC_PHY_FEC_25G_KR_REQ;
3805		break;
3806	case ICE_FEC_RS:
3807		/* Clear BASE-R bits, and AND RS ability
3808		 * bits and OR request bits.
3809		 */
3810		cfg->link_fec_opt &= ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN;
3811		cfg->link_fec_opt |= ICE_AQC_PHY_FEC_25G_RS_528_REQ |
3812			ICE_AQC_PHY_FEC_25G_RS_544_REQ;
3813		break;
3814	case ICE_FEC_NONE:
3815		/* Clear all FEC option bits. */
3816		cfg->link_fec_opt &= ~ICE_AQC_PHY_FEC_MASK;
3817		break;
3818	case ICE_FEC_AUTO:
3819		/* AND auto FEC bit, and all caps bits. */
3820		cfg->caps &= ICE_AQC_PHY_CAPS_MASK;
3821		cfg->link_fec_opt |= pcaps->link_fec_options;
3822		break;
3823	default:
3824		status = -EINVAL;
3825		break;
3826	}
3827
3828	if (fec == ICE_FEC_AUTO && ice_fw_supports_link_override(hw) &&
3829	    !ice_fw_supports_report_dflt_cfg(hw)) {
3830		struct ice_link_default_override_tlv tlv = { 0 };
3831
3832		status = ice_get_link_default_override(&tlv, pi);
3833		if (status)
3834			goto out;
3835
3836		if (!(tlv.options & ICE_LINK_OVERRIDE_STRICT_MODE) &&
3837		    (tlv.options & ICE_LINK_OVERRIDE_EN))
3838			cfg->link_fec_opt = tlv.fec_options;
3839	}
3840
3841out:
3842	return status;
3843}
3844
3845/**
3846 * ice_get_link_status - get status of the HW network link
3847 * @pi: port information structure
3848 * @link_up: pointer to bool (true/false = linkup/linkdown)
3849 *
3850 * Variable link_up is true if link is up, false if link is down.
3851 * The variable link_up is invalid if status is non zero. As a
3852 * result of this call, link status reporting becomes enabled
3853 */
3854int ice_get_link_status(struct ice_port_info *pi, bool *link_up)
3855{
3856	struct ice_phy_info *phy_info;
3857	int status = 0;
3858
3859	if (!pi || !link_up)
3860		return -EINVAL;
3861
3862	phy_info = &pi->phy;
3863
3864	if (phy_info->get_link_info) {
3865		status = ice_update_link_info(pi);
3866
3867		if (status)
3868			ice_debug(pi->hw, ICE_DBG_LINK, "get link status error, status = %d\n",
 
3869				  status);
3870	}
3871
3872	*link_up = phy_info->link_info.link_info & ICE_AQ_LINK_UP;
3873
3874	return status;
3875}
3876
3877/**
3878 * ice_aq_set_link_restart_an
3879 * @pi: pointer to the port information structure
3880 * @ena_link: if true: enable link, if false: disable link
3881 * @cd: pointer to command details structure or NULL
3882 *
3883 * Sets up the link and restarts the Auto-Negotiation over the link.
3884 */
3885int
3886ice_aq_set_link_restart_an(struct ice_port_info *pi, bool ena_link,
3887			   struct ice_sq_cd *cd)
3888{
3889	struct ice_aqc_restart_an *cmd;
3890	struct ice_aq_desc desc;
3891
3892	cmd = &desc.params.restart_an;
3893
3894	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_restart_an);
3895
3896	cmd->cmd_flags = ICE_AQC_RESTART_AN_LINK_RESTART;
3897	cmd->lport_num = pi->lport;
3898	if (ena_link)
3899		cmd->cmd_flags |= ICE_AQC_RESTART_AN_LINK_ENABLE;
3900	else
3901		cmd->cmd_flags &= ~ICE_AQC_RESTART_AN_LINK_ENABLE;
3902
3903	return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
3904}
3905
3906/**
3907 * ice_aq_set_event_mask
3908 * @hw: pointer to the HW struct
3909 * @port_num: port number of the physical function
3910 * @mask: event mask to be set
3911 * @cd: pointer to command details structure or NULL
3912 *
3913 * Set event mask (0x0613)
3914 */
3915int
3916ice_aq_set_event_mask(struct ice_hw *hw, u8 port_num, u16 mask,
3917		      struct ice_sq_cd *cd)
3918{
3919	struct ice_aqc_set_event_mask *cmd;
3920	struct ice_aq_desc desc;
3921
3922	cmd = &desc.params.set_event_mask;
3923
3924	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_event_mask);
3925
3926	cmd->lport_num = port_num;
3927
3928	cmd->event_mask = cpu_to_le16(mask);
3929	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3930}
3931
3932/**
3933 * ice_aq_set_mac_loopback
3934 * @hw: pointer to the HW struct
3935 * @ena_lpbk: Enable or Disable loopback
3936 * @cd: pointer to command details structure or NULL
3937 *
3938 * Enable/disable loopback on a given port
3939 */
3940int
3941ice_aq_set_mac_loopback(struct ice_hw *hw, bool ena_lpbk, struct ice_sq_cd *cd)
3942{
3943	struct ice_aqc_set_mac_lb *cmd;
3944	struct ice_aq_desc desc;
3945
3946	cmd = &desc.params.set_mac_lb;
3947
3948	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_lb);
3949	if (ena_lpbk)
3950		cmd->lb_mode = ICE_AQ_MAC_LB_EN;
3951
3952	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3953}
3954
3955/**
3956 * ice_aq_set_port_id_led
3957 * @pi: pointer to the port information
3958 * @is_orig_mode: is this LED set to original mode (by the net-list)
3959 * @cd: pointer to command details structure or NULL
3960 *
3961 * Set LED value for the given port (0x06e9)
3962 */
3963int
3964ice_aq_set_port_id_led(struct ice_port_info *pi, bool is_orig_mode,
3965		       struct ice_sq_cd *cd)
3966{
3967	struct ice_aqc_set_port_id_led *cmd;
3968	struct ice_hw *hw = pi->hw;
3969	struct ice_aq_desc desc;
3970
3971	cmd = &desc.params.set_port_id_led;
3972
3973	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_id_led);
3974
3975	if (is_orig_mode)
3976		cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_ORIG;
3977	else
3978		cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_BLINK;
3979
3980	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
3981}
3982
3983/**
3984 * ice_aq_get_port_options
3985 * @hw: pointer to the HW struct
3986 * @options: buffer for the resultant port options
3987 * @option_count: input - size of the buffer in port options structures,
3988 *                output - number of returned port options
3989 * @lport: logical port to call the command with (optional)
3990 * @lport_valid: when false, FW uses port owned by the PF instead of lport,
3991 *               when PF owns more than 1 port it must be true
3992 * @active_option_idx: index of active port option in returned buffer
3993 * @active_option_valid: active option in returned buffer is valid
3994 * @pending_option_idx: index of pending port option in returned buffer
3995 * @pending_option_valid: pending option in returned buffer is valid
3996 *
3997 * Calls Get Port Options AQC (0x06ea) and verifies result.
3998 */
3999int
4000ice_aq_get_port_options(struct ice_hw *hw,
4001			struct ice_aqc_get_port_options_elem *options,
4002			u8 *option_count, u8 lport, bool lport_valid,
4003			u8 *active_option_idx, bool *active_option_valid,
4004			u8 *pending_option_idx, bool *pending_option_valid)
4005{
4006	struct ice_aqc_get_port_options *cmd;
4007	struct ice_aq_desc desc;
4008	int status;
4009	u8 i;
4010
4011	/* options buffer shall be able to hold max returned options */
4012	if (*option_count < ICE_AQC_PORT_OPT_COUNT_M)
4013		return -EINVAL;
4014
4015	cmd = &desc.params.get_port_options;
4016	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_port_options);
4017
4018	if (lport_valid)
4019		cmd->lport_num = lport;
4020	cmd->lport_num_valid = lport_valid;
4021
4022	status = ice_aq_send_cmd(hw, &desc, options,
4023				 *option_count * sizeof(*options), NULL);
4024	if (status)
4025		return status;
4026
4027	/* verify direct FW response & set output parameters */
4028	*option_count = FIELD_GET(ICE_AQC_PORT_OPT_COUNT_M,
4029				  cmd->port_options_count);
4030	ice_debug(hw, ICE_DBG_PHY, "options: %x\n", *option_count);
4031	*active_option_valid = FIELD_GET(ICE_AQC_PORT_OPT_VALID,
4032					 cmd->port_options);
4033	if (*active_option_valid) {
4034		*active_option_idx = FIELD_GET(ICE_AQC_PORT_OPT_ACTIVE_M,
4035					       cmd->port_options);
4036		if (*active_option_idx > (*option_count - 1))
4037			return -EIO;
4038		ice_debug(hw, ICE_DBG_PHY, "active idx: %x\n",
4039			  *active_option_idx);
4040	}
4041
4042	*pending_option_valid = FIELD_GET(ICE_AQC_PENDING_PORT_OPT_VALID,
4043					  cmd->pending_port_option_status);
4044	if (*pending_option_valid) {
4045		*pending_option_idx = FIELD_GET(ICE_AQC_PENDING_PORT_OPT_IDX_M,
4046						cmd->pending_port_option_status);
4047		if (*pending_option_idx > (*option_count - 1))
4048			return -EIO;
4049		ice_debug(hw, ICE_DBG_PHY, "pending idx: %x\n",
4050			  *pending_option_idx);
4051	}
4052
4053	/* mask output options fields */
4054	for (i = 0; i < *option_count; i++) {
4055		options[i].pmd = FIELD_GET(ICE_AQC_PORT_OPT_PMD_COUNT_M,
4056					   options[i].pmd);
4057		options[i].max_lane_speed = FIELD_GET(ICE_AQC_PORT_OPT_MAX_LANE_M,
4058						      options[i].max_lane_speed);
4059		ice_debug(hw, ICE_DBG_PHY, "pmds: %x max speed: %x\n",
4060			  options[i].pmd, options[i].max_lane_speed);
4061	}
4062
4063	return 0;
4064}
4065
4066/**
4067 * ice_aq_set_port_option
4068 * @hw: pointer to the HW struct
4069 * @lport: logical port to call the command with
4070 * @lport_valid: when false, FW uses port owned by the PF instead of lport,
4071 *               when PF owns more than 1 port it must be true
4072 * @new_option: new port option to be written
4073 *
4074 * Calls Set Port Options AQC (0x06eb).
4075 */
4076int
4077ice_aq_set_port_option(struct ice_hw *hw, u8 lport, u8 lport_valid,
4078		       u8 new_option)
4079{
4080	struct ice_aqc_set_port_option *cmd;
4081	struct ice_aq_desc desc;
4082
4083	if (new_option > ICE_AQC_PORT_OPT_COUNT_M)
4084		return -EINVAL;
4085
4086	cmd = &desc.params.set_port_option;
4087	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_option);
4088
4089	if (lport_valid)
4090		cmd->lport_num = lport;
4091
4092	cmd->lport_num_valid = lport_valid;
4093	cmd->selected_port_option = new_option;
4094
4095	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
4096}
4097
4098/**
4099 * ice_get_phy_lane_number - Get PHY lane number for current adapter
4100 * @hw: pointer to the hw struct
4101 *
4102 * Return: PHY lane number on success, negative error code otherwise.
4103 */
4104int ice_get_phy_lane_number(struct ice_hw *hw)
4105{
4106	struct ice_aqc_get_port_options_elem *options;
4107	unsigned int lport = 0;
4108	unsigned int lane;
4109	int err;
4110
4111	options = kcalloc(ICE_AQC_PORT_OPT_MAX, sizeof(*options), GFP_KERNEL);
4112	if (!options)
4113		return -ENOMEM;
4114
4115	for (lane = 0; lane < ICE_MAX_PORT_PER_PCI_DEV; lane++) {
4116		u8 options_count = ICE_AQC_PORT_OPT_MAX;
4117		u8 speed, active_idx, pending_idx;
4118		bool active_valid, pending_valid;
4119
4120		err = ice_aq_get_port_options(hw, options, &options_count, lane,
4121					      true, &active_idx, &active_valid,
4122					      &pending_idx, &pending_valid);
4123		if (err)
4124			goto err;
4125
4126		if (!active_valid)
4127			continue;
4128
4129		speed = options[active_idx].max_lane_speed;
4130		/* If we don't get speed for this lane, it's unoccupied */
4131		if (speed > ICE_AQC_PORT_OPT_MAX_LANE_200G)
4132			continue;
4133
4134		if (hw->pf_id == lport) {
4135			kfree(options);
4136			return lane;
4137		}
4138
4139		lport++;
4140	}
4141
4142	/* PHY lane not found */
4143	err = -ENXIO;
4144err:
4145	kfree(options);
4146	return err;
4147}
4148
4149/**
4150 * ice_aq_sff_eeprom
4151 * @hw: pointer to the HW struct
4152 * @lport: bits [7:0] = logical port, bit [8] = logical port valid
4153 * @bus_addr: I2C bus address of the eeprom (typically 0xA0, 0=topo default)
4154 * @mem_addr: I2C offset. lower 8 bits for address, 8 upper bits zero padding.
4155 * @page: QSFP page
4156 * @set_page: set or ignore the page
4157 * @data: pointer to data buffer to be read/written to the I2C device.
4158 * @length: 1-16 for read, 1 for write.
4159 * @write: 0 read, 1 for write.
4160 * @cd: pointer to command details structure or NULL
4161 *
4162 * Read/Write SFF EEPROM (0x06EE)
4163 */
4164int
4165ice_aq_sff_eeprom(struct ice_hw *hw, u16 lport, u8 bus_addr,
4166		  u16 mem_addr, u8 page, u8 set_page, u8 *data, u8 length,
4167		  bool write, struct ice_sq_cd *cd)
4168{
4169	struct ice_aqc_sff_eeprom *cmd;
4170	struct ice_aq_desc desc;
4171	u16 i2c_bus_addr;
4172	int status;
4173
4174	if (!data || (mem_addr & 0xff00))
4175		return -EINVAL;
4176
4177	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_sff_eeprom);
4178	cmd = &desc.params.read_write_sff_param;
4179	desc.flags = cpu_to_le16(ICE_AQ_FLAG_RD);
4180	cmd->lport_num = (u8)(lport & 0xff);
4181	cmd->lport_num_valid = (u8)((lport >> 8) & 0x01);
4182	i2c_bus_addr = FIELD_PREP(ICE_AQC_SFF_I2CBUS_7BIT_M, bus_addr >> 1) |
4183		       FIELD_PREP(ICE_AQC_SFF_SET_EEPROM_PAGE_M, set_page);
4184	if (write)
4185		i2c_bus_addr |= ICE_AQC_SFF_IS_WRITE;
4186	cmd->i2c_bus_addr = cpu_to_le16(i2c_bus_addr);
4187	cmd->i2c_mem_addr = cpu_to_le16(mem_addr & 0xff);
4188	cmd->eeprom_page = le16_encode_bits(page, ICE_AQC_SFF_EEPROM_PAGE_M);
4189
4190	status = ice_aq_send_cmd(hw, &desc, data, length, cd);
4191	return status;
4192}
4193
4194static enum ice_lut_size ice_lut_type_to_size(enum ice_lut_type type)
4195{
4196	switch (type) {
4197	case ICE_LUT_VSI:
4198		return ICE_LUT_VSI_SIZE;
4199	case ICE_LUT_GLOBAL:
4200		return ICE_LUT_GLOBAL_SIZE;
4201	case ICE_LUT_PF:
4202		return ICE_LUT_PF_SIZE;
4203	}
4204	WARN_ONCE(1, "incorrect type passed");
4205	return ICE_LUT_VSI_SIZE;
4206}
4207
4208static enum ice_aqc_lut_flags ice_lut_size_to_flag(enum ice_lut_size size)
4209{
4210	switch (size) {
4211	case ICE_LUT_VSI_SIZE:
4212		return ICE_AQC_LUT_SIZE_SMALL;
4213	case ICE_LUT_GLOBAL_SIZE:
4214		return ICE_AQC_LUT_SIZE_512;
4215	case ICE_LUT_PF_SIZE:
4216		return ICE_AQC_LUT_SIZE_2K;
4217	}
4218	WARN_ONCE(1, "incorrect size passed");
4219	return 0;
4220}
4221
4222/**
4223 * __ice_aq_get_set_rss_lut
4224 * @hw: pointer to the hardware structure
4225 * @params: RSS LUT parameters
 
 
 
 
4226 * @set: set true to set the table, false to get the table
4227 *
4228 * Internal function to get (0x0B05) or set (0x0B03) RSS look up table
4229 */
4230static int
4231__ice_aq_get_set_rss_lut(struct ice_hw *hw,
4232			 struct ice_aq_get_set_rss_lut_params *params, bool set)
4233{
4234	u16 opcode, vsi_id, vsi_handle = params->vsi_handle, glob_lut_idx = 0;
4235	enum ice_lut_type lut_type = params->lut_type;
4236	struct ice_aqc_get_set_rss_lut *desc_params;
4237	enum ice_aqc_lut_flags flags;
4238	enum ice_lut_size lut_size;
4239	struct ice_aq_desc desc;
4240	u8 *lut = params->lut;
 
4241
 
4242
4243	if (!lut || !ice_is_vsi_valid(hw, vsi_handle))
4244		return -EINVAL;
 
 
 
 
4245
4246	lut_size = ice_lut_type_to_size(lut_type);
4247	if (lut_size > params->lut_size)
4248		return -EINVAL;
4249	else if (set && lut_size != params->lut_size)
4250		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
4251
4252	opcode = set ? ice_aqc_opc_set_rss_lut : ice_aqc_opc_get_rss_lut;
4253	ice_fill_dflt_direct_cmd_desc(&desc, opcode);
4254	if (set)
4255		desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
 
 
 
 
 
 
 
 
4256
4257	desc_params = &desc.params.get_set_rss_lut;
4258	vsi_id = ice_get_hw_vsi_num(hw, vsi_handle);
4259	desc_params->vsi_id = cpu_to_le16(vsi_id | ICE_AQC_RSS_VSI_VALID);
4260
4261	if (lut_type == ICE_LUT_GLOBAL)
4262		glob_lut_idx = FIELD_PREP(ICE_AQC_LUT_GLOBAL_IDX,
4263					  params->global_lut_id);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4264
4265	flags = lut_type | glob_lut_idx | ice_lut_size_to_flag(lut_size);
4266	desc_params->flags = cpu_to_le16(flags);
 
4267
4268	return ice_aq_send_cmd(hw, &desc, lut, lut_size, NULL);
 
4269}
4270
4271/**
4272 * ice_aq_get_rss_lut
4273 * @hw: pointer to the hardware structure
4274 * @get_params: RSS LUT parameters used to specify which RSS LUT to get
 
 
 
4275 *
4276 * get the RSS lookup table, PF or VSI type
4277 */
4278int
4279ice_aq_get_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *get_params)
 
4280{
4281	return __ice_aq_get_set_rss_lut(hw, get_params, false);
 
 
 
 
4282}
4283
4284/**
4285 * ice_aq_set_rss_lut
4286 * @hw: pointer to the hardware structure
4287 * @set_params: RSS LUT parameters used to specify how to set the RSS LUT
 
 
 
4288 *
4289 * set the RSS lookup table, PF or VSI type
4290 */
4291int
4292ice_aq_set_rss_lut(struct ice_hw *hw, struct ice_aq_get_set_rss_lut_params *set_params)
 
4293{
4294	return __ice_aq_get_set_rss_lut(hw, set_params, true);
 
 
 
 
4295}
4296
4297/**
4298 * __ice_aq_get_set_rss_key
4299 * @hw: pointer to the HW struct
4300 * @vsi_id: VSI FW index
4301 * @key: pointer to key info struct
4302 * @set: set true to set the key, false to get the key
4303 *
4304 * get (0x0B04) or set (0x0B02) the RSS key per VSI
4305 */
4306static int
4307__ice_aq_get_set_rss_key(struct ice_hw *hw, u16 vsi_id,
4308			 struct ice_aqc_get_set_rss_keys *key, bool set)
 
4309{
4310	struct ice_aqc_get_set_rss_key *desc_params;
4311	u16 key_size = sizeof(*key);
4312	struct ice_aq_desc desc;
4313
 
 
4314	if (set) {
4315		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_key);
4316		desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4317	} else {
4318		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_key);
4319	}
4320
4321	desc_params = &desc.params.get_set_rss_key;
4322	desc_params->vsi_id = cpu_to_le16(vsi_id | ICE_AQC_RSS_VSI_VALID);
 
 
4323
4324	return ice_aq_send_cmd(hw, &desc, key, key_size, NULL);
4325}
4326
4327/**
4328 * ice_aq_get_rss_key
4329 * @hw: pointer to the HW struct
4330 * @vsi_handle: software VSI handle
4331 * @key: pointer to key info struct
4332 *
4333 * get the RSS key per VSI
4334 */
4335int
4336ice_aq_get_rss_key(struct ice_hw *hw, u16 vsi_handle,
4337		   struct ice_aqc_get_set_rss_keys *key)
4338{
4339	if (!ice_is_vsi_valid(hw, vsi_handle) || !key)
4340		return -EINVAL;
4341
4342	return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
4343					key, false);
4344}
4345
4346/**
4347 * ice_aq_set_rss_key
4348 * @hw: pointer to the HW struct
4349 * @vsi_handle: software VSI handle
4350 * @keys: pointer to key info struct
4351 *
4352 * set the RSS key per VSI
4353 */
4354int
4355ice_aq_set_rss_key(struct ice_hw *hw, u16 vsi_handle,
4356		   struct ice_aqc_get_set_rss_keys *keys)
4357{
4358	if (!ice_is_vsi_valid(hw, vsi_handle) || !keys)
4359		return -EINVAL;
4360
4361	return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
4362					keys, true);
4363}
4364
4365/**
4366 * ice_aq_add_lan_txq
4367 * @hw: pointer to the hardware structure
4368 * @num_qgrps: Number of added queue groups
4369 * @qg_list: list of queue groups to be added
4370 * @buf_size: size of buffer for indirect command
4371 * @cd: pointer to command details structure or NULL
4372 *
4373 * Add Tx LAN queue (0x0C30)
4374 *
4375 * NOTE:
4376 * Prior to calling add Tx LAN queue:
4377 * Initialize the following as part of the Tx queue context:
4378 * Completion queue ID if the queue uses Completion queue, Quanta profile,
4379 * Cache profile and Packet shaper profile.
4380 *
4381 * After add Tx LAN queue AQ command is completed:
4382 * Interrupts should be associated with specific queues,
4383 * Association of Tx queue to Doorbell queue is not part of Add LAN Tx queue
4384 * flow.
4385 */
4386static int
4387ice_aq_add_lan_txq(struct ice_hw *hw, u8 num_qgrps,
4388		   struct ice_aqc_add_tx_qgrp *qg_list, u16 buf_size,
4389		   struct ice_sq_cd *cd)
4390{
 
4391	struct ice_aqc_add_tx_qgrp *list;
4392	struct ice_aqc_add_txqs *cmd;
4393	struct ice_aq_desc desc;
4394	u16 i, sum_size = 0;
4395
4396	cmd = &desc.params.add_txqs;
4397
4398	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_txqs);
4399
4400	if (!qg_list)
4401		return -EINVAL;
4402
4403	if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
4404		return -EINVAL;
 
 
 
 
 
 
 
4405
4406	for (i = 0, list = qg_list; i < num_qgrps; i++) {
4407		sum_size += struct_size(list, txqs, list->num_txqs);
4408		list = (struct ice_aqc_add_tx_qgrp *)(list->txqs +
4409						      list->num_txqs);
4410	}
4411
4412	if (buf_size != sum_size)
4413		return -EINVAL;
4414
4415	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4416
4417	cmd->num_qgrps = num_qgrps;
4418
4419	return ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
4420}
4421
4422/**
4423 * ice_aq_dis_lan_txq
4424 * @hw: pointer to the hardware structure
4425 * @num_qgrps: number of groups in the list
4426 * @qg_list: the list of groups to disable
4427 * @buf_size: the total size of the qg_list buffer in bytes
4428 * @rst_src: if called due to reset, specifies the reset source
4429 * @vmvf_num: the relative VM or VF number that is undergoing the reset
4430 * @cd: pointer to command details structure or NULL
4431 *
4432 * Disable LAN Tx queue (0x0C31)
4433 */
4434static int
4435ice_aq_dis_lan_txq(struct ice_hw *hw, u8 num_qgrps,
4436		   struct ice_aqc_dis_txq_item *qg_list, u16 buf_size,
4437		   enum ice_disq_rst_src rst_src, u16 vmvf_num,
4438		   struct ice_sq_cd *cd)
4439{
4440	struct ice_aqc_dis_txq_item *item;
4441	struct ice_aqc_dis_txqs *cmd;
4442	struct ice_aq_desc desc;
4443	u16 vmvf_and_timeout;
4444	u16 i, sz = 0;
4445	int status;
4446
4447	cmd = &desc.params.dis_txqs;
4448	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_dis_txqs);
4449
4450	/* qg_list can be NULL only in VM/VF reset flow */
4451	if (!qg_list && !rst_src)
4452		return -EINVAL;
4453
4454	if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
4455		return -EINVAL;
4456
4457	cmd->num_entries = num_qgrps;
4458
4459	vmvf_and_timeout = FIELD_PREP(ICE_AQC_Q_DIS_TIMEOUT_M, 5);
 
4460
4461	switch (rst_src) {
4462	case ICE_VM_RESET:
4463		cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VM_RESET;
4464		vmvf_and_timeout |= vmvf_num & ICE_AQC_Q_DIS_VMVF_NUM_M;
 
4465		break;
4466	case ICE_VF_RESET:
4467		cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VF_RESET;
4468		/* In this case, FW expects vmvf_num to be absolute VF ID */
4469		vmvf_and_timeout |= (vmvf_num + hw->func_caps.vf_base_id) &
4470				    ICE_AQC_Q_DIS_VMVF_NUM_M;
 
4471		break;
4472	case ICE_NO_RESET:
4473	default:
4474		break;
4475	}
4476
4477	cmd->vmvf_and_timeout = cpu_to_le16(vmvf_and_timeout);
4478
4479	/* flush pipe on time out */
4480	cmd->cmd_type |= ICE_AQC_Q_DIS_CMD_FLUSH_PIPE;
4481	/* If no queue group info, we are in a reset flow. Issue the AQ */
4482	if (!qg_list)
4483		goto do_aq;
4484
4485	/* set RD bit to indicate that command buffer is provided by the driver
4486	 * and it needs to be read by the firmware
4487	 */
4488	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4489
4490	for (i = 0, item = qg_list; i < num_qgrps; i++) {
4491		u16 item_size = struct_size(item, q_id, item->num_qs);
4492
4493		/* If the num of queues is even, add 2 bytes of padding */
4494		if ((item->num_qs % 2) == 0)
4495			item_size += 2;
4496
4497		sz += item_size;
 
4498
4499		item = (struct ice_aqc_dis_txq_item *)((u8 *)item + item_size);
 
 
4500	}
4501
4502	if (buf_size != sz)
4503		return -EINVAL;
4504
4505do_aq:
4506	status = ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
4507	if (status) {
4508		if (!qg_list)
4509			ice_debug(hw, ICE_DBG_SCHED, "VM%d disable failed %d\n",
4510				  vmvf_num, hw->adminq.sq_last_status);
4511		else
4512			ice_debug(hw, ICE_DBG_SCHED, "disable queue %d failed %d\n",
4513				  le16_to_cpu(qg_list[0].q_id[0]),
4514				  hw->adminq.sq_last_status);
4515	}
4516	return status;
4517}
4518
4519/**
4520 * ice_aq_cfg_lan_txq
4521 * @hw: pointer to the hardware structure
4522 * @buf: buffer for command
4523 * @buf_size: size of buffer in bytes
4524 * @num_qs: number of queues being configured
4525 * @oldport: origination lport
4526 * @newport: destination lport
4527 * @cd: pointer to command details structure or NULL
4528 *
4529 * Move/Configure LAN Tx queue (0x0C32)
4530 *
4531 * There is a better AQ command to use for moving nodes, so only coding
4532 * this one for configuring the node.
4533 */
4534int
4535ice_aq_cfg_lan_txq(struct ice_hw *hw, struct ice_aqc_cfg_txqs_buf *buf,
4536		   u16 buf_size, u16 num_qs, u8 oldport, u8 newport,
4537		   struct ice_sq_cd *cd)
4538{
4539	struct ice_aqc_cfg_txqs *cmd;
4540	struct ice_aq_desc desc;
4541	int status;
4542
4543	cmd = &desc.params.cfg_txqs;
4544	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_cfg_txqs);
4545	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4546
4547	if (!buf)
4548		return -EINVAL;
4549
4550	cmd->cmd_type = ICE_AQC_Q_CFG_TC_CHNG;
4551	cmd->num_qs = num_qs;
4552	cmd->port_num_chng = (oldport & ICE_AQC_Q_CFG_SRC_PRT_M);
4553	cmd->port_num_chng |= FIELD_PREP(ICE_AQC_Q_CFG_DST_PRT_M, newport);
4554	cmd->time_out = FIELD_PREP(ICE_AQC_Q_CFG_TIMEOUT_M, 5);
4555	cmd->blocked_cgds = 0;
4556
4557	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
4558	if (status)
4559		ice_debug(hw, ICE_DBG_SCHED, "Failed to reconfigure nodes %d\n",
4560			  hw->adminq.sq_last_status);
4561	return status;
4562}
4563
4564/**
4565 * ice_aq_add_rdma_qsets
4566 * @hw: pointer to the hardware structure
4567 * @num_qset_grps: Number of RDMA Qset groups
4568 * @qset_list: list of Qset groups to be added
4569 * @buf_size: size of buffer for indirect command
4570 * @cd: pointer to command details structure or NULL
4571 *
4572 * Add Tx RDMA Qsets (0x0C33)
4573 */
4574static int
4575ice_aq_add_rdma_qsets(struct ice_hw *hw, u8 num_qset_grps,
4576		      struct ice_aqc_add_rdma_qset_data *qset_list,
4577		      u16 buf_size, struct ice_sq_cd *cd)
4578{
4579	struct ice_aqc_add_rdma_qset_data *list;
4580	struct ice_aqc_add_rdma_qset *cmd;
4581	struct ice_aq_desc desc;
4582	u16 i, sum_size = 0;
4583
4584	cmd = &desc.params.add_rdma_qset;
4585
4586	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_rdma_qset);
4587
4588	if (num_qset_grps > ICE_LAN_TXQ_MAX_QGRPS)
4589		return -EINVAL;
4590
4591	for (i = 0, list = qset_list; i < num_qset_grps; i++) {
4592		u16 num_qsets = le16_to_cpu(list->num_qsets);
4593
4594		sum_size += struct_size(list, rdma_qsets, num_qsets);
4595		list = (struct ice_aqc_add_rdma_qset_data *)(list->rdma_qsets +
4596							     num_qsets);
4597	}
4598
4599	if (buf_size != sum_size)
4600		return -EINVAL;
4601
4602	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
4603
4604	cmd->num_qset_grps = num_qset_grps;
4605
4606	return ice_aq_send_cmd(hw, &desc, qset_list, buf_size, cd);
4607}
4608
4609/* End of FW Admin Queue command wrappers */
4610
4611/**
4612 * ice_pack_ctx_byte - write a byte to a packed context structure
4613 * @src_ctx: unpacked source context structure
4614 * @dest_ctx: packed destination context data
4615 * @ce_info: context element description
4616 */
4617static void ice_pack_ctx_byte(u8 *src_ctx, u8 *dest_ctx,
4618			      const struct ice_ctx_ele *ce_info)
4619{
4620	u8 src_byte, dest_byte, mask;
4621	u8 *from, *dest;
4622	u16 shift_width;
4623
4624	/* copy from the next struct field */
4625	from = src_ctx + ce_info->offset;
4626
4627	/* prepare the bits and mask */
4628	shift_width = ce_info->lsb % 8;
4629	mask = GENMASK(ce_info->width - 1 + shift_width, shift_width);
4630
4631	src_byte = *from;
4632	src_byte <<= shift_width;
4633	src_byte &= mask;
4634
 
 
 
 
4635	/* get the current bits from the target bit string */
4636	dest = dest_ctx + (ce_info->lsb / 8);
4637
4638	memcpy(&dest_byte, dest, sizeof(dest_byte));
4639
4640	dest_byte &= ~mask;	/* get the bits not changing */
4641	dest_byte |= src_byte;	/* add in the new bits */
4642
4643	/* put it all back */
4644	memcpy(dest, &dest_byte, sizeof(dest_byte));
4645}
4646
4647/**
4648 * ice_pack_ctx_word - write a word to a packed context structure
4649 * @src_ctx: unpacked source context structure
4650 * @dest_ctx: packed destination context data
4651 * @ce_info: context element description
4652 */
4653static void ice_pack_ctx_word(u8 *src_ctx, u8 *dest_ctx,
4654			      const struct ice_ctx_ele *ce_info)
4655{
4656	u16 src_word, mask;
4657	__le16 dest_word;
4658	u8 *from, *dest;
4659	u16 shift_width;
4660
4661	/* copy from the next struct field */
4662	from = src_ctx + ce_info->offset;
4663
4664	/* prepare the bits and mask */
4665	shift_width = ce_info->lsb % 8;
4666	mask = GENMASK(ce_info->width - 1 + shift_width, shift_width);
4667
4668	/* don't swizzle the bits until after the mask because the mask bits
4669	 * will be in a different bit position on big endian machines
4670	 */
4671	src_word = *(u16 *)from;
4672	src_word <<= shift_width;
4673	src_word &= mask;
4674
 
 
 
 
4675	/* get the current bits from the target bit string */
4676	dest = dest_ctx + (ce_info->lsb / 8);
4677
4678	memcpy(&dest_word, dest, sizeof(dest_word));
4679
4680	dest_word &= ~(cpu_to_le16(mask));	/* get the bits not changing */
4681	dest_word |= cpu_to_le16(src_word);	/* add in the new bits */
4682
4683	/* put it all back */
4684	memcpy(dest, &dest_word, sizeof(dest_word));
4685}
4686
4687/**
4688 * ice_pack_ctx_dword - write a dword to a packed context structure
4689 * @src_ctx: unpacked source context structure
4690 * @dest_ctx: packed destination context data
4691 * @ce_info: context element description
4692 */
4693static void ice_pack_ctx_dword(u8 *src_ctx, u8 *dest_ctx,
4694			       const struct ice_ctx_ele *ce_info)
4695{
4696	u32 src_dword, mask;
4697	__le32 dest_dword;
4698	u8 *from, *dest;
4699	u16 shift_width;
4700
4701	/* copy from the next struct field */
4702	from = src_ctx + ce_info->offset;
4703
4704	/* prepare the bits and mask */
4705	shift_width = ce_info->lsb % 8;
4706	mask = GENMASK(ce_info->width - 1 + shift_width, shift_width);
 
 
 
 
 
 
 
 
4707
4708	/* don't swizzle the bits until after the mask because the mask bits
4709	 * will be in a different bit position on big endian machines
4710	 */
4711	src_dword = *(u32 *)from;
4712	src_dword <<= shift_width;
4713	src_dword &= mask;
4714
 
 
 
 
4715	/* get the current bits from the target bit string */
4716	dest = dest_ctx + (ce_info->lsb / 8);
4717
4718	memcpy(&dest_dword, dest, sizeof(dest_dword));
4719
4720	dest_dword &= ~(cpu_to_le32(mask));	/* get the bits not changing */
4721	dest_dword |= cpu_to_le32(src_dword);	/* add in the new bits */
4722
4723	/* put it all back */
4724	memcpy(dest, &dest_dword, sizeof(dest_dword));
4725}
4726
4727/**
4728 * ice_pack_ctx_qword - write a qword to a packed context structure
4729 * @src_ctx: unpacked source context structure
4730 * @dest_ctx: packed destination context data
4731 * @ce_info: context element description
4732 */
4733static void ice_pack_ctx_qword(u8 *src_ctx, u8 *dest_ctx,
4734			       const struct ice_ctx_ele *ce_info)
4735{
4736	u64 src_qword, mask;
4737	__le64 dest_qword;
4738	u8 *from, *dest;
4739	u16 shift_width;
4740
4741	/* copy from the next struct field */
4742	from = src_ctx + ce_info->offset;
4743
4744	/* prepare the bits and mask */
4745	shift_width = ce_info->lsb % 8;
4746	mask = GENMASK_ULL(ce_info->width - 1 + shift_width, shift_width);
 
 
 
 
 
 
 
 
4747
4748	/* don't swizzle the bits until after the mask because the mask bits
4749	 * will be in a different bit position on big endian machines
4750	 */
4751	src_qword = *(u64 *)from;
4752	src_qword <<= shift_width;
4753	src_qword &= mask;
4754
 
 
 
 
4755	/* get the current bits from the target bit string */
4756	dest = dest_ctx + (ce_info->lsb / 8);
4757
4758	memcpy(&dest_qword, dest, sizeof(dest_qword));
4759
4760	dest_qword &= ~(cpu_to_le64(mask));	/* get the bits not changing */
4761	dest_qword |= cpu_to_le64(src_qword);	/* add in the new bits */
4762
4763	/* put it all back */
4764	memcpy(dest, &dest_qword, sizeof(dest_qword));
4765}
4766
4767/**
4768 * ice_set_ctx - set context bits in packed structure
4769 * @hw: pointer to the hardware structure
4770 * @src_ctx:  pointer to a generic non-packed context structure
4771 * @dest_ctx: pointer to memory for the packed structure
4772 * @ce_info: List of Rx context elements
4773 */
4774int ice_set_ctx(struct ice_hw *hw, u8 *src_ctx, u8 *dest_ctx,
4775		const struct ice_ctx_ele *ce_info)
4776{
4777	int f;
4778
4779	for (f = 0; ce_info[f].width; f++) {
4780		/* We have to deal with each element of the FW response
4781		 * using the correct size so that we are correct regardless
4782		 * of the endianness of the machine.
4783		 */
4784		if (ce_info[f].width > (ce_info[f].size_of * BITS_PER_BYTE)) {
4785			ice_debug(hw, ICE_DBG_QCTX, "Field %d width of %d bits larger than size of %d byte(s) ... skipping write\n",
4786				  f, ce_info[f].width, ce_info[f].size_of);
4787			continue;
4788		}
4789		switch (ce_info[f].size_of) {
4790		case sizeof(u8):
4791			ice_pack_ctx_byte(src_ctx, dest_ctx, &ce_info[f]);
4792			break;
4793		case sizeof(u16):
4794			ice_pack_ctx_word(src_ctx, dest_ctx, &ce_info[f]);
4795			break;
4796		case sizeof(u32):
4797			ice_pack_ctx_dword(src_ctx, dest_ctx, &ce_info[f]);
4798			break;
4799		case sizeof(u64):
4800			ice_pack_ctx_qword(src_ctx, dest_ctx, &ce_info[f]);
4801			break;
4802		default:
4803			return -EINVAL;
4804		}
4805	}
4806
4807	return 0;
4808}
4809
4810/**
4811 * ice_get_lan_q_ctx - get the LAN queue context for the given VSI and TC
4812 * @hw: pointer to the HW struct
4813 * @vsi_handle: software VSI handle
4814 * @tc: TC number
4815 * @q_handle: software queue handle
4816 */
4817struct ice_q_ctx *
4818ice_get_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 q_handle)
4819{
4820	struct ice_vsi_ctx *vsi;
4821	struct ice_q_ctx *q_ctx;
4822
4823	vsi = ice_get_vsi_ctx(hw, vsi_handle);
4824	if (!vsi)
4825		return NULL;
4826	if (q_handle >= vsi->num_lan_q_entries[tc])
4827		return NULL;
4828	if (!vsi->lan_q_ctx[tc])
4829		return NULL;
4830	q_ctx = vsi->lan_q_ctx[tc];
4831	return &q_ctx[q_handle];
4832}
4833
4834/**
4835 * ice_ena_vsi_txq
4836 * @pi: port information structure
4837 * @vsi_handle: software VSI handle
4838 * @tc: TC number
4839 * @q_handle: software queue handle
4840 * @num_qgrps: Number of added queue groups
4841 * @buf: list of queue groups to be added
4842 * @buf_size: size of buffer for indirect command
4843 * @cd: pointer to command details structure or NULL
4844 *
4845 * This function adds one LAN queue
4846 */
4847int
4848ice_ena_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 q_handle,
4849		u8 num_qgrps, struct ice_aqc_add_tx_qgrp *buf, u16 buf_size,
4850		struct ice_sq_cd *cd)
4851{
4852	struct ice_aqc_txsched_elem_data node = { 0 };
4853	struct ice_sched_node *parent;
4854	struct ice_q_ctx *q_ctx;
 
4855	struct ice_hw *hw;
4856	int status;
4857
4858	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4859		return -EIO;
4860
4861	if (num_qgrps > 1 || buf->num_txqs > 1)
4862		return -ENOSPC;
4863
4864	hw = pi->hw;
4865
4866	if (!ice_is_vsi_valid(hw, vsi_handle))
4867		return -EINVAL;
4868
4869	mutex_lock(&pi->sched_lock);
4870
4871	q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handle);
4872	if (!q_ctx) {
4873		ice_debug(hw, ICE_DBG_SCHED, "Enaq: invalid queue handle %d\n",
4874			  q_handle);
4875		status = -EINVAL;
4876		goto ena_txq_exit;
4877	}
4878
4879	/* find a parent node */
4880	parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
4881					    ICE_SCHED_NODE_OWNER_LAN);
4882	if (!parent) {
4883		status = -EINVAL;
4884		goto ena_txq_exit;
4885	}
4886
4887	buf->parent_teid = parent->info.node_teid;
4888	node.parent_teid = parent->info.node_teid;
4889	/* Mark that the values in the "generic" section as valid. The default
4890	 * value in the "generic" section is zero. This means that :
4891	 * - Scheduling mode is Bytes Per Second (BPS), indicated by Bit 0.
4892	 * - 0 priority among siblings, indicated by Bit 1-3.
4893	 * - WFQ, indicated by Bit 4.
4894	 * - 0 Adjustment value is used in PSM credit update flow, indicated by
4895	 * Bit 5-6.
4896	 * - Bit 7 is reserved.
4897	 * Without setting the generic section as valid in valid_sections, the
4898	 * Admin queue command will fail with error code ICE_AQ_RC_EINVAL.
4899	 */
4900	buf->txqs[0].info.valid_sections =
4901		ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
4902		ICE_AQC_ELEM_VALID_EIR;
4903	buf->txqs[0].info.generic = 0;
4904	buf->txqs[0].info.cir_bw.bw_profile_idx =
4905		cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4906	buf->txqs[0].info.cir_bw.bw_alloc =
4907		cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4908	buf->txqs[0].info.eir_bw.bw_profile_idx =
4909		cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
4910	buf->txqs[0].info.eir_bw.bw_alloc =
4911		cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
4912
4913	/* add the LAN queue */
4914	status = ice_aq_add_lan_txq(hw, num_qgrps, buf, buf_size, cd);
4915	if (status) {
4916		ice_debug(hw, ICE_DBG_SCHED, "enable queue %d failed %d\n",
4917			  le16_to_cpu(buf->txqs[0].txq_id),
4918			  hw->adminq.sq_last_status);
4919		goto ena_txq_exit;
4920	}
4921
4922	node.node_teid = buf->txqs[0].q_teid;
4923	node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
4924	q_ctx->q_handle = q_handle;
4925	q_ctx->q_teid = le32_to_cpu(node.node_teid);
4926
4927	/* add a leaf node into scheduler tree queue layer */
4928	status = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1, &node, NULL);
4929	if (!status)
4930		status = ice_sched_replay_q_bw(pi, q_ctx);
4931
4932ena_txq_exit:
4933	mutex_unlock(&pi->sched_lock);
4934	return status;
4935}
4936
4937/**
4938 * ice_dis_vsi_txq
4939 * @pi: port information structure
4940 * @vsi_handle: software VSI handle
4941 * @tc: TC number
4942 * @num_queues: number of queues
4943 * @q_handles: pointer to software queue handle array
4944 * @q_ids: pointer to the q_id array
4945 * @q_teids: pointer to queue node teids
4946 * @rst_src: if called due to reset, specifies the reset source
4947 * @vmvf_num: the relative VM or VF number that is undergoing the reset
4948 * @cd: pointer to command details structure or NULL
4949 *
4950 * This function removes queues and their corresponding nodes in SW DB
4951 */
4952int
4953ice_dis_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u8 num_queues,
4954		u16 *q_handles, u16 *q_ids, u32 *q_teids,
4955		enum ice_disq_rst_src rst_src, u16 vmvf_num,
4956		struct ice_sq_cd *cd)
4957{
4958	DEFINE_RAW_FLEX(struct ice_aqc_dis_txq_item, qg_list, q_id, 1);
4959	u16 i, buf_size = __struct_size(qg_list);
4960	struct ice_q_ctx *q_ctx;
4961	int status = -ENOENT;
4962	struct ice_hw *hw;
4963
4964	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
4965		return -EIO;
4966
4967	hw = pi->hw;
4968
4969	if (!num_queues) {
4970		/* if queue is disabled already yet the disable queue command
4971		 * has to be sent to complete the VF reset, then call
4972		 * ice_aq_dis_lan_txq without any queue information
4973		 */
4974		if (rst_src)
4975			return ice_aq_dis_lan_txq(hw, 0, NULL, 0, rst_src,
4976						  vmvf_num, NULL);
4977		return -EIO;
4978	}
4979
4980	mutex_lock(&pi->sched_lock);
4981
4982	for (i = 0; i < num_queues; i++) {
4983		struct ice_sched_node *node;
4984
4985		node = ice_sched_find_node_by_teid(pi->root, q_teids[i]);
4986		if (!node)
4987			continue;
4988		q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handles[i]);
4989		if (!q_ctx) {
4990			ice_debug(hw, ICE_DBG_SCHED, "invalid queue handle%d\n",
4991				  q_handles[i]);
4992			continue;
4993		}
4994		if (q_ctx->q_handle != q_handles[i]) {
4995			ice_debug(hw, ICE_DBG_SCHED, "Err:handles %d %d\n",
4996				  q_ctx->q_handle, q_handles[i]);
4997			continue;
4998		}
4999		qg_list->parent_teid = node->info.parent_teid;
5000		qg_list->num_qs = 1;
5001		qg_list->q_id[0] = cpu_to_le16(q_ids[i]);
5002		status = ice_aq_dis_lan_txq(hw, 1, qg_list, buf_size, rst_src,
5003					    vmvf_num, cd);
 
5004
5005		if (status)
5006			break;
5007		ice_free_sched_node(pi, node);
5008		q_ctx->q_handle = ICE_INVAL_Q_HANDLE;
5009		q_ctx->q_teid = ICE_INVAL_TEID;
5010	}
5011	mutex_unlock(&pi->sched_lock);
5012	return status;
5013}
5014
5015/**
5016 * ice_cfg_vsi_qs - configure the new/existing VSI queues
5017 * @pi: port information structure
5018 * @vsi_handle: software VSI handle
5019 * @tc_bitmap: TC bitmap
5020 * @maxqs: max queues array per TC
5021 * @owner: LAN or RDMA
5022 *
5023 * This function adds/updates the VSI queues per TC.
5024 */
5025static int
5026ice_cfg_vsi_qs(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
5027	       u16 *maxqs, u8 owner)
5028{
5029	int status = 0;
5030	u8 i;
5031
5032	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
5033		return -EIO;
5034
5035	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
5036		return -EINVAL;
5037
5038	mutex_lock(&pi->sched_lock);
5039
5040	ice_for_each_traffic_class(i) {
5041		/* configuration is possible only if TC node is present */
5042		if (!ice_sched_get_tc_node(pi, i))
5043			continue;
5044
5045		status = ice_sched_cfg_vsi(pi, vsi_handle, i, maxqs[i], owner,
5046					   ice_is_tc_ena(tc_bitmap, i));
5047		if (status)
5048			break;
5049	}
5050
5051	mutex_unlock(&pi->sched_lock);
5052	return status;
5053}
5054
5055/**
5056 * ice_cfg_vsi_lan - configure VSI LAN queues
5057 * @pi: port information structure
5058 * @vsi_handle: software VSI handle
5059 * @tc_bitmap: TC bitmap
5060 * @max_lanqs: max LAN queues array per TC
5061 *
5062 * This function adds/updates the VSI LAN queues per TC.
5063 */
5064int
5065ice_cfg_vsi_lan(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
5066		u16 *max_lanqs)
5067{
5068	return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_lanqs,
5069			      ICE_SCHED_NODE_OWNER_LAN);
5070}
5071
5072/**
5073 * ice_cfg_vsi_rdma - configure the VSI RDMA queues
5074 * @pi: port information structure
5075 * @vsi_handle: software VSI handle
5076 * @tc_bitmap: TC bitmap
5077 * @max_rdmaqs: max RDMA queues array per TC
5078 *
5079 * This function adds/updates the VSI RDMA queues per TC.
5080 */
5081int
5082ice_cfg_vsi_rdma(struct ice_port_info *pi, u16 vsi_handle, u16 tc_bitmap,
5083		 u16 *max_rdmaqs)
5084{
5085	return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_rdmaqs,
5086			      ICE_SCHED_NODE_OWNER_RDMA);
5087}
5088
5089/**
5090 * ice_ena_vsi_rdma_qset
5091 * @pi: port information structure
5092 * @vsi_handle: software VSI handle
5093 * @tc: TC number
5094 * @rdma_qset: pointer to RDMA Qset
5095 * @num_qsets: number of RDMA Qsets
5096 * @qset_teid: pointer to Qset node TEIDs
5097 *
5098 * This function adds RDMA Qset
5099 */
5100int
5101ice_ena_vsi_rdma_qset(struct ice_port_info *pi, u16 vsi_handle, u8 tc,
5102		      u16 *rdma_qset, u16 num_qsets, u32 *qset_teid)
5103{
5104	struct ice_aqc_txsched_elem_data node = { 0 };
5105	struct ice_aqc_add_rdma_qset_data *buf;
5106	struct ice_sched_node *parent;
5107	struct ice_hw *hw;
5108	u16 i, buf_size;
5109	int ret;
5110
5111	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
5112		return -EIO;
5113	hw = pi->hw;
5114
5115	if (!ice_is_vsi_valid(hw, vsi_handle))
5116		return -EINVAL;
5117
5118	buf_size = struct_size(buf, rdma_qsets, num_qsets);
5119	buf = kzalloc(buf_size, GFP_KERNEL);
5120	if (!buf)
5121		return -ENOMEM;
5122	mutex_lock(&pi->sched_lock);
5123
5124	parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
5125					    ICE_SCHED_NODE_OWNER_RDMA);
5126	if (!parent) {
5127		ret = -EINVAL;
5128		goto rdma_error_exit;
5129	}
5130	buf->parent_teid = parent->info.node_teid;
5131	node.parent_teid = parent->info.node_teid;
5132
5133	buf->num_qsets = cpu_to_le16(num_qsets);
5134	for (i = 0; i < num_qsets; i++) {
5135		buf->rdma_qsets[i].tx_qset_id = cpu_to_le16(rdma_qset[i]);
5136		buf->rdma_qsets[i].info.valid_sections =
5137			ICE_AQC_ELEM_VALID_GENERIC | ICE_AQC_ELEM_VALID_CIR |
5138			ICE_AQC_ELEM_VALID_EIR;
5139		buf->rdma_qsets[i].info.generic = 0;
5140		buf->rdma_qsets[i].info.cir_bw.bw_profile_idx =
5141			cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
5142		buf->rdma_qsets[i].info.cir_bw.bw_alloc =
5143			cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
5144		buf->rdma_qsets[i].info.eir_bw.bw_profile_idx =
5145			cpu_to_le16(ICE_SCHED_DFLT_RL_PROF_ID);
5146		buf->rdma_qsets[i].info.eir_bw.bw_alloc =
5147			cpu_to_le16(ICE_SCHED_DFLT_BW_WT);
5148	}
5149	ret = ice_aq_add_rdma_qsets(hw, 1, buf, buf_size, NULL);
5150	if (ret) {
5151		ice_debug(hw, ICE_DBG_RDMA, "add RDMA qset failed\n");
5152		goto rdma_error_exit;
5153	}
5154	node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
5155	for (i = 0; i < num_qsets; i++) {
5156		node.node_teid = buf->rdma_qsets[i].qset_teid;
5157		ret = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1,
5158					 &node, NULL);
5159		if (ret)
5160			break;
5161		qset_teid[i] = le32_to_cpu(node.node_teid);
5162	}
5163rdma_error_exit:
5164	mutex_unlock(&pi->sched_lock);
5165	kfree(buf);
5166	return ret;
5167}
5168
5169/**
5170 * ice_dis_vsi_rdma_qset - free RDMA resources
5171 * @pi: port_info struct
5172 * @count: number of RDMA Qsets to free
5173 * @qset_teid: TEID of Qset node
5174 * @q_id: list of queue IDs being disabled
5175 */
5176int
5177ice_dis_vsi_rdma_qset(struct ice_port_info *pi, u16 count, u32 *qset_teid,
5178		      u16 *q_id)
5179{
5180	DEFINE_RAW_FLEX(struct ice_aqc_dis_txq_item, qg_list, q_id, 1);
5181	u16 qg_size = __struct_size(qg_list);
5182	struct ice_hw *hw;
5183	int status = 0;
5184	int i;
5185
5186	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
5187		return -EIO;
5188
5189	hw = pi->hw;
5190
5191	mutex_lock(&pi->sched_lock);
5192
5193	for (i = 0; i < count; i++) {
5194		struct ice_sched_node *node;
5195
5196		node = ice_sched_find_node_by_teid(pi->root, qset_teid[i]);
5197		if (!node)
5198			continue;
5199
5200		qg_list->parent_teid = node->info.parent_teid;
5201		qg_list->num_qs = 1;
5202		qg_list->q_id[0] =
5203			cpu_to_le16(q_id[i] |
5204				    ICE_AQC_Q_DIS_BUF_ELEM_TYPE_RDMA_QSET);
5205
5206		status = ice_aq_dis_lan_txq(hw, 1, qg_list, qg_size,
5207					    ICE_NO_RESET, 0, NULL);
5208		if (status)
5209			break;
5210
5211		ice_free_sched_node(pi, node);
5212	}
5213
5214	mutex_unlock(&pi->sched_lock);
5215	return status;
5216}
5217
5218/**
5219 * ice_aq_get_cgu_abilities - get cgu abilities
5220 * @hw: pointer to the HW struct
5221 * @abilities: CGU abilities
5222 *
5223 * Get CGU abilities (0x0C61)
5224 * Return: 0 on success or negative value on failure.
5225 */
5226int
5227ice_aq_get_cgu_abilities(struct ice_hw *hw,
5228			 struct ice_aqc_get_cgu_abilities *abilities)
5229{
5230	struct ice_aq_desc desc;
5231
5232	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_abilities);
5233	return ice_aq_send_cmd(hw, &desc, abilities, sizeof(*abilities), NULL);
5234}
5235
5236/**
5237 * ice_aq_set_input_pin_cfg - set input pin config
5238 * @hw: pointer to the HW struct
5239 * @input_idx: Input index
5240 * @flags1: Input flags
5241 * @flags2: Input flags
5242 * @freq: Frequency in Hz
5243 * @phase_delay: Delay in ps
5244 *
5245 * Set CGU input config (0x0C62)
5246 * Return: 0 on success or negative value on failure.
5247 */
5248int
5249ice_aq_set_input_pin_cfg(struct ice_hw *hw, u8 input_idx, u8 flags1, u8 flags2,
5250			 u32 freq, s32 phase_delay)
5251{
5252	struct ice_aqc_set_cgu_input_config *cmd;
5253	struct ice_aq_desc desc;
5254
5255	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_cgu_input_config);
5256	cmd = &desc.params.set_cgu_input_config;
5257	cmd->input_idx = input_idx;
5258	cmd->flags1 = flags1;
5259	cmd->flags2 = flags2;
5260	cmd->freq = cpu_to_le32(freq);
5261	cmd->phase_delay = cpu_to_le32(phase_delay);
5262
5263	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5264}
5265
5266/**
5267 * ice_aq_get_input_pin_cfg - get input pin config
5268 * @hw: pointer to the HW struct
5269 * @input_idx: Input index
5270 * @status: Pin status
5271 * @type: Pin type
5272 * @flags1: Input flags
5273 * @flags2: Input flags
5274 * @freq: Frequency in Hz
5275 * @phase_delay: Delay in ps
5276 *
5277 * Get CGU input config (0x0C63)
5278 * Return: 0 on success or negative value on failure.
5279 */
5280int
5281ice_aq_get_input_pin_cfg(struct ice_hw *hw, u8 input_idx, u8 *status, u8 *type,
5282			 u8 *flags1, u8 *flags2, u32 *freq, s32 *phase_delay)
5283{
5284	struct ice_aqc_get_cgu_input_config *cmd;
5285	struct ice_aq_desc desc;
5286	int ret;
5287
5288	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_input_config);
5289	cmd = &desc.params.get_cgu_input_config;
5290	cmd->input_idx = input_idx;
5291
5292	ret = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5293	if (!ret) {
5294		if (status)
5295			*status = cmd->status;
5296		if (type)
5297			*type = cmd->type;
5298		if (flags1)
5299			*flags1 = cmd->flags1;
5300		if (flags2)
5301			*flags2 = cmd->flags2;
5302		if (freq)
5303			*freq = le32_to_cpu(cmd->freq);
5304		if (phase_delay)
5305			*phase_delay = le32_to_cpu(cmd->phase_delay);
5306	}
5307
5308	return ret;
5309}
5310
5311/**
5312 * ice_aq_set_output_pin_cfg - set output pin config
5313 * @hw: pointer to the HW struct
5314 * @output_idx: Output index
5315 * @flags: Output flags
5316 * @src_sel: Index of DPLL block
5317 * @freq: Output frequency
5318 * @phase_delay: Output phase compensation
5319 *
5320 * Set CGU output config (0x0C64)
5321 * Return: 0 on success or negative value on failure.
5322 */
5323int
5324ice_aq_set_output_pin_cfg(struct ice_hw *hw, u8 output_idx, u8 flags,
5325			  u8 src_sel, u32 freq, s32 phase_delay)
5326{
5327	struct ice_aqc_set_cgu_output_config *cmd;
5328	struct ice_aq_desc desc;
5329
5330	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_cgu_output_config);
5331	cmd = &desc.params.set_cgu_output_config;
5332	cmd->output_idx = output_idx;
5333	cmd->flags = flags;
5334	cmd->src_sel = src_sel;
5335	cmd->freq = cpu_to_le32(freq);
5336	cmd->phase_delay = cpu_to_le32(phase_delay);
5337
5338	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5339}
5340
5341/**
5342 * ice_aq_get_output_pin_cfg - get output pin config
5343 * @hw: pointer to the HW struct
5344 * @output_idx: Output index
5345 * @flags: Output flags
5346 * @src_sel: Internal DPLL source
5347 * @freq: Output frequency
5348 * @src_freq: Source frequency
5349 *
5350 * Get CGU output config (0x0C65)
5351 * Return: 0 on success or negative value on failure.
5352 */
5353int
5354ice_aq_get_output_pin_cfg(struct ice_hw *hw, u8 output_idx, u8 *flags,
5355			  u8 *src_sel, u32 *freq, u32 *src_freq)
5356{
5357	struct ice_aqc_get_cgu_output_config *cmd;
5358	struct ice_aq_desc desc;
5359	int ret;
5360
5361	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_output_config);
5362	cmd = &desc.params.get_cgu_output_config;
5363	cmd->output_idx = output_idx;
5364
5365	ret = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5366	if (!ret) {
5367		if (flags)
5368			*flags = cmd->flags;
5369		if (src_sel)
5370			*src_sel = cmd->src_sel;
5371		if (freq)
5372			*freq = le32_to_cpu(cmd->freq);
5373		if (src_freq)
5374			*src_freq = le32_to_cpu(cmd->src_freq);
5375	}
5376
5377	return ret;
5378}
5379
5380/**
5381 * ice_aq_get_cgu_dpll_status - get dpll status
5382 * @hw: pointer to the HW struct
5383 * @dpll_num: DPLL index
5384 * @ref_state: Reference clock state
5385 * @config: current DPLL config
5386 * @dpll_state: current DPLL state
5387 * @phase_offset: Phase offset in ns
5388 * @eec_mode: EEC_mode
5389 *
5390 * Get CGU DPLL status (0x0C66)
5391 * Return: 0 on success or negative value on failure.
5392 */
5393int
5394ice_aq_get_cgu_dpll_status(struct ice_hw *hw, u8 dpll_num, u8 *ref_state,
5395			   u8 *dpll_state, u8 *config, s64 *phase_offset,
5396			   u8 *eec_mode)
5397{
5398	struct ice_aqc_get_cgu_dpll_status *cmd;
5399	struct ice_aq_desc desc;
5400	int status;
5401
5402	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_dpll_status);
5403	cmd = &desc.params.get_cgu_dpll_status;
5404	cmd->dpll_num = dpll_num;
5405
5406	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5407	if (!status) {
5408		*ref_state = cmd->ref_state;
5409		*dpll_state = cmd->dpll_state;
5410		*config = cmd->config;
5411		*phase_offset = le32_to_cpu(cmd->phase_offset_h);
5412		*phase_offset <<= 32;
5413		*phase_offset += le32_to_cpu(cmd->phase_offset_l);
5414		*phase_offset = sign_extend64(*phase_offset, 47);
5415		*eec_mode = cmd->eec_mode;
5416	}
5417
5418	return status;
5419}
5420
5421/**
5422 * ice_aq_set_cgu_dpll_config - set dpll config
5423 * @hw: pointer to the HW struct
5424 * @dpll_num: DPLL index
5425 * @ref_state: Reference clock state
5426 * @config: DPLL config
5427 * @eec_mode: EEC mode
5428 *
5429 * Set CGU DPLL config (0x0C67)
5430 * Return: 0 on success or negative value on failure.
5431 */
5432int
5433ice_aq_set_cgu_dpll_config(struct ice_hw *hw, u8 dpll_num, u8 ref_state,
5434			   u8 config, u8 eec_mode)
5435{
5436	struct ice_aqc_set_cgu_dpll_config *cmd;
5437	struct ice_aq_desc desc;
5438
5439	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_cgu_dpll_config);
5440	cmd = &desc.params.set_cgu_dpll_config;
5441	cmd->dpll_num = dpll_num;
5442	cmd->ref_state = ref_state;
5443	cmd->config = config;
5444	cmd->eec_mode = eec_mode;
5445
5446	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5447}
5448
5449/**
5450 * ice_aq_set_cgu_ref_prio - set input reference priority
5451 * @hw: pointer to the HW struct
5452 * @dpll_num: DPLL index
5453 * @ref_idx: Reference pin index
5454 * @ref_priority: Reference input priority
5455 *
5456 * Set CGU reference priority (0x0C68)
5457 * Return: 0 on success or negative value on failure.
5458 */
5459int
5460ice_aq_set_cgu_ref_prio(struct ice_hw *hw, u8 dpll_num, u8 ref_idx,
5461			u8 ref_priority)
5462{
5463	struct ice_aqc_set_cgu_ref_prio *cmd;
5464	struct ice_aq_desc desc;
5465
5466	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_cgu_ref_prio);
5467	cmd = &desc.params.set_cgu_ref_prio;
5468	cmd->dpll_num = dpll_num;
5469	cmd->ref_idx = ref_idx;
5470	cmd->ref_priority = ref_priority;
5471
5472	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5473}
5474
5475/**
5476 * ice_aq_get_cgu_ref_prio - get input reference priority
5477 * @hw: pointer to the HW struct
5478 * @dpll_num: DPLL index
5479 * @ref_idx: Reference pin index
5480 * @ref_prio: Reference input priority
5481 *
5482 * Get CGU reference priority (0x0C69)
5483 * Return: 0 on success or negative value on failure.
5484 */
5485int
5486ice_aq_get_cgu_ref_prio(struct ice_hw *hw, u8 dpll_num, u8 ref_idx,
5487			u8 *ref_prio)
5488{
5489	struct ice_aqc_get_cgu_ref_prio *cmd;
5490	struct ice_aq_desc desc;
5491	int status;
5492
5493	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_ref_prio);
5494	cmd = &desc.params.get_cgu_ref_prio;
5495	cmd->dpll_num = dpll_num;
5496	cmd->ref_idx = ref_idx;
5497
5498	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5499	if (!status)
5500		*ref_prio = cmd->ref_priority;
5501
5502	return status;
5503}
5504
5505/**
5506 * ice_aq_get_cgu_info - get cgu info
5507 * @hw: pointer to the HW struct
5508 * @cgu_id: CGU ID
5509 * @cgu_cfg_ver: CGU config version
5510 * @cgu_fw_ver: CGU firmware version
5511 *
5512 * Get CGU info (0x0C6A)
5513 * Return: 0 on success or negative value on failure.
5514 */
5515int
5516ice_aq_get_cgu_info(struct ice_hw *hw, u32 *cgu_id, u32 *cgu_cfg_ver,
5517		    u32 *cgu_fw_ver)
5518{
5519	struct ice_aqc_get_cgu_info *cmd;
5520	struct ice_aq_desc desc;
5521	int status;
5522
5523	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_cgu_info);
5524	cmd = &desc.params.get_cgu_info;
5525
5526	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5527	if (!status) {
5528		*cgu_id = le32_to_cpu(cmd->cgu_id);
5529		*cgu_cfg_ver = le32_to_cpu(cmd->cgu_cfg_ver);
5530		*cgu_fw_ver = le32_to_cpu(cmd->cgu_fw_ver);
5531	}
5532
5533	return status;
5534}
5535
5536/**
5537 * ice_aq_set_phy_rec_clk_out - set RCLK phy out
5538 * @hw: pointer to the HW struct
5539 * @phy_output: PHY reference clock output pin
5540 * @enable: GPIO state to be applied
5541 * @freq: PHY output frequency
5542 *
5543 * Set phy recovered clock as reference (0x0630)
5544 * Return: 0 on success or negative value on failure.
5545 */
5546int
5547ice_aq_set_phy_rec_clk_out(struct ice_hw *hw, u8 phy_output, bool enable,
5548			   u32 *freq)
5549{
5550	struct ice_aqc_set_phy_rec_clk_out *cmd;
5551	struct ice_aq_desc desc;
5552	int status;
5553
5554	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_phy_rec_clk_out);
5555	cmd = &desc.params.set_phy_rec_clk_out;
5556	cmd->phy_output = phy_output;
5557	cmd->port_num = ICE_AQC_SET_PHY_REC_CLK_OUT_CURR_PORT;
5558	cmd->flags = enable & ICE_AQC_SET_PHY_REC_CLK_OUT_OUT_EN;
5559	cmd->freq = cpu_to_le32(*freq);
5560
5561	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5562	if (!status)
5563		*freq = le32_to_cpu(cmd->freq);
5564
5565	return status;
5566}
5567
5568/**
5569 * ice_aq_get_phy_rec_clk_out - get phy recovered signal info
5570 * @hw: pointer to the HW struct
5571 * @phy_output: PHY reference clock output pin
5572 * @port_num: Port number
5573 * @flags: PHY flags
5574 * @node_handle: PHY output frequency
5575 *
5576 * Get PHY recovered clock output info (0x0631)
5577 * Return: 0 on success or negative value on failure.
5578 */
5579int
5580ice_aq_get_phy_rec_clk_out(struct ice_hw *hw, u8 *phy_output, u8 *port_num,
5581			   u8 *flags, u16 *node_handle)
5582{
5583	struct ice_aqc_get_phy_rec_clk_out *cmd;
5584	struct ice_aq_desc desc;
5585	int status;
5586
5587	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_phy_rec_clk_out);
5588	cmd = &desc.params.get_phy_rec_clk_out;
5589	cmd->phy_output = *phy_output;
5590
5591	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5592	if (!status) {
5593		*phy_output = cmd->phy_output;
5594		if (port_num)
5595			*port_num = cmd->port_num;
5596		if (flags)
5597			*flags = cmd->flags;
5598		if (node_handle)
5599			*node_handle = le16_to_cpu(cmd->node_handle);
5600	}
5601
5602	return status;
5603}
5604
5605/**
5606 * ice_aq_get_sensor_reading
5607 * @hw: pointer to the HW struct
5608 * @data: pointer to data to be read from the sensor
5609 *
5610 * Get sensor reading (0x0632)
5611 */
5612int ice_aq_get_sensor_reading(struct ice_hw *hw,
5613			      struct ice_aqc_get_sensor_reading_resp *data)
5614{
5615	struct ice_aqc_get_sensor_reading *cmd;
5616	struct ice_aq_desc desc;
5617	int status;
5618
5619	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_sensor_reading);
5620	cmd = &desc.params.get_sensor_reading;
5621#define ICE_INTERNAL_TEMP_SENSOR_FORMAT	0
5622#define ICE_INTERNAL_TEMP_SENSOR	0
5623	cmd->sensor = ICE_INTERNAL_TEMP_SENSOR;
5624	cmd->format = ICE_INTERNAL_TEMP_SENSOR_FORMAT;
5625
5626	status = ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
5627	if (!status)
5628		memcpy(data, &desc.params.get_sensor_reading_resp,
5629		       sizeof(*data));
5630
5631	return status;
5632}
5633
5634/**
5635 * ice_replay_pre_init - replay pre initialization
5636 * @hw: pointer to the HW struct
5637 *
5638 * Initializes required config data for VSI, FD, ACL, and RSS before replay.
5639 */
5640static int ice_replay_pre_init(struct ice_hw *hw)
5641{
5642	struct ice_switch_info *sw = hw->switch_info;
5643	u8 i;
5644
5645	/* Delete old entries from replay filter list head if there is any */
5646	ice_rm_all_sw_replay_rule_info(hw);
5647	/* In start of replay, move entries into replay_rules list, it
5648	 * will allow adding rules entries back to filt_rules list,
5649	 * which is operational list.
5650	 */
5651	for (i = 0; i < ICE_MAX_NUM_RECIPES; i++)
5652		list_replace_init(&sw->recp_list[i].filt_rules,
5653				  &sw->recp_list[i].filt_replay_rules);
5654	ice_sched_replay_agg_vsi_preinit(hw);
5655
5656	return 0;
5657}
5658
5659/**
5660 * ice_replay_vsi - replay VSI configuration
5661 * @hw: pointer to the HW struct
5662 * @vsi_handle: driver VSI handle
5663 *
5664 * Restore all VSI configuration after reset. It is required to call this
5665 * function with main VSI first.
5666 */
5667int ice_replay_vsi(struct ice_hw *hw, u16 vsi_handle)
5668{
5669	int status;
5670
5671	if (!ice_is_vsi_valid(hw, vsi_handle))
5672		return -EINVAL;
5673
5674	/* Replay pre-initialization if there is any */
5675	if (vsi_handle == ICE_MAIN_VSI_HANDLE) {
5676		status = ice_replay_pre_init(hw);
5677		if (status)
5678			return status;
5679	}
5680	/* Replay per VSI all RSS configurations */
5681	status = ice_replay_rss_cfg(hw, vsi_handle);
5682	if (status)
5683		return status;
5684	/* Replay per VSI all filters */
5685	status = ice_replay_vsi_all_fltr(hw, vsi_handle);
5686	if (!status)
5687		status = ice_replay_vsi_agg(hw, vsi_handle);
5688	return status;
5689}
5690
5691/**
5692 * ice_replay_post - post replay configuration cleanup
5693 * @hw: pointer to the HW struct
5694 *
5695 * Post replay cleanup.
5696 */
5697void ice_replay_post(struct ice_hw *hw)
5698{
5699	/* Delete old entries from replay filter list head */
5700	ice_rm_all_sw_replay_rule_info(hw);
5701	ice_sched_replay_agg(hw);
5702}
5703
5704/**
5705 * ice_stat_update40 - read 40 bit stat from the chip and update stat values
5706 * @hw: ptr to the hardware info
5707 * @reg: offset of 64 bit HW register to read from
5708 * @prev_stat_loaded: bool to specify if previous stats are loaded
5709 * @prev_stat: ptr to previous loaded stat value
5710 * @cur_stat: ptr to current stat value
5711 */
5712void
5713ice_stat_update40(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
5714		  u64 *prev_stat, u64 *cur_stat)
5715{
5716	u64 new_data = rd64(hw, reg) & (BIT_ULL(40) - 1);
5717
5718	/* device stats are not reset at PFR, they likely will not be zeroed
5719	 * when the driver starts. Thus, save the value from the first read
5720	 * without adding to the statistic value so that we report stats which
5721	 * count up from zero.
5722	 */
5723	if (!prev_stat_loaded) {
5724		*prev_stat = new_data;
5725		return;
5726	}
5727
5728	/* Calculate the difference between the new and old values, and then
5729	 * add it to the software stat value.
5730	 */
5731	if (new_data >= *prev_stat)
5732		*cur_stat += new_data - *prev_stat;
5733	else
5734		/* to manage the potential roll-over */
5735		*cur_stat += (new_data + BIT_ULL(40)) - *prev_stat;
5736
5737	/* Update the previously stored value to prepare for next read */
5738	*prev_stat = new_data;
5739}
5740
5741/**
5742 * ice_stat_update32 - read 32 bit stat from the chip and update stat values
5743 * @hw: ptr to the hardware info
5744 * @reg: offset of HW register to read from
5745 * @prev_stat_loaded: bool to specify if previous stats are loaded
5746 * @prev_stat: ptr to previous loaded stat value
5747 * @cur_stat: ptr to current stat value
5748 */
5749void
5750ice_stat_update32(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
5751		  u64 *prev_stat, u64 *cur_stat)
5752{
5753	u32 new_data;
5754
5755	new_data = rd32(hw, reg);
5756
5757	/* device stats are not reset at PFR, they likely will not be zeroed
5758	 * when the driver starts. Thus, save the value from the first read
5759	 * without adding to the statistic value so that we report stats which
5760	 * count up from zero.
5761	 */
5762	if (!prev_stat_loaded) {
5763		*prev_stat = new_data;
5764		return;
5765	}
5766
5767	/* Calculate the difference between the new and old values, and then
5768	 * add it to the software stat value.
5769	 */
5770	if (new_data >= *prev_stat)
5771		*cur_stat += new_data - *prev_stat;
5772	else
5773		/* to manage the potential roll-over */
5774		*cur_stat += (new_data + BIT_ULL(32)) - *prev_stat;
5775
5776	/* Update the previously stored value to prepare for next read */
5777	*prev_stat = new_data;
5778}
5779
5780/**
5781 * ice_sched_query_elem - query element information from HW
5782 * @hw: pointer to the HW struct
5783 * @node_teid: node TEID to be queried
5784 * @buf: buffer to element information
5785 *
5786 * This function queries HW element information
5787 */
5788int
5789ice_sched_query_elem(struct ice_hw *hw, u32 node_teid,
5790		     struct ice_aqc_txsched_elem_data *buf)
5791{
5792	u16 buf_size, num_elem_ret = 0;
5793	int status;
5794
5795	buf_size = sizeof(*buf);
5796	memset(buf, 0, buf_size);
5797	buf->node_teid = cpu_to_le32(node_teid);
5798	status = ice_aq_query_sched_elems(hw, 1, buf, buf_size, &num_elem_ret,
5799					  NULL);
5800	if (status || num_elem_ret != 1)
5801		ice_debug(hw, ICE_DBG_SCHED, "query element failed\n");
5802	return status;
5803}
5804
5805/**
5806 * ice_aq_read_i2c
5807 * @hw: pointer to the hw struct
5808 * @topo_addr: topology address for a device to communicate with
5809 * @bus_addr: 7-bit I2C bus address
5810 * @addr: I2C memory address (I2C offset) with up to 16 bits
5811 * @params: I2C parameters: bit [7] - Repeated start,
5812 *			    bits [6:5] data offset size,
5813 *			    bit [4] - I2C address type,
5814 *			    bits [3:0] - data size to read (0-16 bytes)
5815 * @data: pointer to data (0 to 16 bytes) to be read from the I2C device
5816 * @cd: pointer to command details structure or NULL
5817 *
5818 * Read I2C (0x06E2)
5819 */
5820int
5821ice_aq_read_i2c(struct ice_hw *hw, struct ice_aqc_link_topo_addr topo_addr,
5822		u16 bus_addr, __le16 addr, u8 params, u8 *data,
5823		struct ice_sq_cd *cd)
5824{
5825	struct ice_aq_desc desc = { 0 };
5826	struct ice_aqc_i2c *cmd;
5827	u8 data_size;
5828	int status;
5829
5830	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_read_i2c);
5831	cmd = &desc.params.read_write_i2c;
5832
5833	if (!data)
5834		return -EINVAL;
5835
5836	data_size = FIELD_GET(ICE_AQC_I2C_DATA_SIZE_M, params);
5837
5838	cmd->i2c_bus_addr = cpu_to_le16(bus_addr);
5839	cmd->topo_addr = topo_addr;
5840	cmd->i2c_params = params;
5841	cmd->i2c_addr = addr;
5842
5843	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5844	if (!status) {
5845		struct ice_aqc_read_i2c_resp *resp;
5846		u8 i;
5847
5848		resp = &desc.params.read_i2c_resp;
5849		for (i = 0; i < data_size; i++) {
5850			*data = resp->i2c_data[i];
5851			data++;
5852		}
5853	}
5854
5855	return status;
5856}
5857
5858/**
5859 * ice_aq_write_i2c
5860 * @hw: pointer to the hw struct
5861 * @topo_addr: topology address for a device to communicate with
5862 * @bus_addr: 7-bit I2C bus address
5863 * @addr: I2C memory address (I2C offset) with up to 16 bits
5864 * @params: I2C parameters: bit [4] - I2C address type, bits [3:0] - data size to write (0-7 bytes)
5865 * @data: pointer to data (0 to 4 bytes) to be written to the I2C device
5866 * @cd: pointer to command details structure or NULL
5867 *
5868 * Write I2C (0x06E3)
5869 *
5870 * * Return:
5871 * * 0             - Successful write to the i2c device
5872 * * -EINVAL       - Data size greater than 4 bytes
5873 * * -EIO          - FW error
5874 */
5875int
5876ice_aq_write_i2c(struct ice_hw *hw, struct ice_aqc_link_topo_addr topo_addr,
5877		 u16 bus_addr, __le16 addr, u8 params, const u8 *data,
5878		 struct ice_sq_cd *cd)
5879{
5880	struct ice_aq_desc desc = { 0 };
5881	struct ice_aqc_i2c *cmd;
5882	u8 data_size;
5883
5884	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_write_i2c);
5885	cmd = &desc.params.read_write_i2c;
5886
5887	data_size = FIELD_GET(ICE_AQC_I2C_DATA_SIZE_M, params);
5888
5889	/* data_size limited to 4 */
5890	if (data_size > 4)
5891		return -EINVAL;
5892
5893	cmd->i2c_bus_addr = cpu_to_le16(bus_addr);
5894	cmd->topo_addr = topo_addr;
5895	cmd->i2c_params = params;
5896	cmd->i2c_addr = addr;
5897
5898	memcpy(cmd->i2c_data, data, data_size);
5899
5900	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5901}
5902
5903/**
5904 * ice_aq_set_gpio
5905 * @hw: pointer to the hw struct
5906 * @gpio_ctrl_handle: GPIO controller node handle
5907 * @pin_idx: IO Number of the GPIO that needs to be set
5908 * @value: SW provide IO value to set in the LSB
5909 * @cd: pointer to command details structure or NULL
5910 *
5911 * Sends 0x06EC AQ command to set the GPIO pin state that's part of the topology
5912 */
5913int
5914ice_aq_set_gpio(struct ice_hw *hw, u16 gpio_ctrl_handle, u8 pin_idx, bool value,
5915		struct ice_sq_cd *cd)
5916{
5917	struct ice_aqc_gpio *cmd;
5918	struct ice_aq_desc desc;
5919
5920	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_gpio);
5921	cmd = &desc.params.read_write_gpio;
5922	cmd->gpio_ctrl_handle = cpu_to_le16(gpio_ctrl_handle);
5923	cmd->gpio_num = pin_idx;
5924	cmd->gpio_val = value ? 1 : 0;
5925
5926	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5927}
5928
5929/**
5930 * ice_aq_get_gpio
5931 * @hw: pointer to the hw struct
5932 * @gpio_ctrl_handle: GPIO controller node handle
5933 * @pin_idx: IO Number of the GPIO that needs to be set
5934 * @value: IO value read
5935 * @cd: pointer to command details structure or NULL
5936 *
5937 * Sends 0x06ED AQ command to get the value of a GPIO signal which is part of
5938 * the topology
5939 */
5940int
5941ice_aq_get_gpio(struct ice_hw *hw, u16 gpio_ctrl_handle, u8 pin_idx,
5942		bool *value, struct ice_sq_cd *cd)
5943{
5944	struct ice_aqc_gpio *cmd;
5945	struct ice_aq_desc desc;
5946	int status;
5947
5948	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_gpio);
5949	cmd = &desc.params.read_write_gpio;
5950	cmd->gpio_ctrl_handle = cpu_to_le16(gpio_ctrl_handle);
5951	cmd->gpio_num = pin_idx;
5952
5953	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
5954	if (status)
5955		return status;
5956
5957	*value = !!cmd->gpio_val;
5958	return 0;
5959}
5960
5961/**
5962 * ice_is_fw_api_min_ver
5963 * @hw: pointer to the hardware structure
5964 * @maj: major version
5965 * @min: minor version
5966 * @patch: patch version
5967 *
5968 * Checks if the firmware API is minimum version
5969 */
5970static bool ice_is_fw_api_min_ver(struct ice_hw *hw, u8 maj, u8 min, u8 patch)
5971{
5972	if (hw->api_maj_ver == maj) {
5973		if (hw->api_min_ver > min)
5974			return true;
5975		if (hw->api_min_ver == min && hw->api_patch >= patch)
5976			return true;
5977	} else if (hw->api_maj_ver > maj) {
5978		return true;
5979	}
5980
5981	return false;
5982}
5983
5984/**
5985 * ice_fw_supports_link_override
5986 * @hw: pointer to the hardware structure
5987 *
5988 * Checks if the firmware supports link override
5989 */
5990bool ice_fw_supports_link_override(struct ice_hw *hw)
5991{
5992	return ice_is_fw_api_min_ver(hw, ICE_FW_API_LINK_OVERRIDE_MAJ,
5993				     ICE_FW_API_LINK_OVERRIDE_MIN,
5994				     ICE_FW_API_LINK_OVERRIDE_PATCH);
5995}
5996
5997/**
5998 * ice_get_link_default_override
5999 * @ldo: pointer to the link default override struct
6000 * @pi: pointer to the port info struct
6001 *
6002 * Gets the link default override for a port
6003 */
6004int
6005ice_get_link_default_override(struct ice_link_default_override_tlv *ldo,
6006			      struct ice_port_info *pi)
6007{
6008	u16 i, tlv, tlv_len, tlv_start, buf, offset;
6009	struct ice_hw *hw = pi->hw;
6010	int status;
6011
6012	status = ice_get_pfa_module_tlv(hw, &tlv, &tlv_len,
6013					ICE_SR_LINK_DEFAULT_OVERRIDE_PTR);
6014	if (status) {
6015		ice_debug(hw, ICE_DBG_INIT, "Failed to read link override TLV.\n");
6016		return status;
6017	}
6018
6019	/* Each port has its own config; calculate for our port */
6020	tlv_start = tlv + pi->lport * ICE_SR_PFA_LINK_OVERRIDE_WORDS +
6021		ICE_SR_PFA_LINK_OVERRIDE_OFFSET;
6022
6023	/* link options first */
6024	status = ice_read_sr_word(hw, tlv_start, &buf);
6025	if (status) {
6026		ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
6027		return status;
6028	}
6029	ldo->options = FIELD_GET(ICE_LINK_OVERRIDE_OPT_M, buf);
6030	ldo->phy_config = (buf & ICE_LINK_OVERRIDE_PHY_CFG_M) >>
6031		ICE_LINK_OVERRIDE_PHY_CFG_S;
6032
6033	/* link PHY config */
6034	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_FEC_OFFSET;
6035	status = ice_read_sr_word(hw, offset, &buf);
6036	if (status) {
6037		ice_debug(hw, ICE_DBG_INIT, "Failed to read override phy config.\n");
6038		return status;
6039	}
6040	ldo->fec_options = buf & ICE_LINK_OVERRIDE_FEC_OPT_M;
6041
6042	/* PHY types low */
6043	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET;
6044	for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
6045		status = ice_read_sr_word(hw, (offset + i), &buf);
6046		if (status) {
6047			ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
6048			return status;
6049		}
6050		/* shift 16 bits at a time to fill 64 bits */
6051		ldo->phy_type_low |= ((u64)buf << (i * 16));
6052	}
6053
6054	/* PHY types high */
6055	offset = tlv_start + ICE_SR_PFA_LINK_OVERRIDE_PHY_OFFSET +
6056		ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS;
6057	for (i = 0; i < ICE_SR_PFA_LINK_OVERRIDE_PHY_WORDS; i++) {
6058		status = ice_read_sr_word(hw, (offset + i), &buf);
6059		if (status) {
6060			ice_debug(hw, ICE_DBG_INIT, "Failed to read override link options.\n");
6061			return status;
6062		}
6063		/* shift 16 bits at a time to fill 64 bits */
6064		ldo->phy_type_high |= ((u64)buf << (i * 16));
6065	}
6066
6067	return status;
6068}
6069
6070/**
6071 * ice_is_phy_caps_an_enabled - check if PHY capabilities autoneg is enabled
6072 * @caps: get PHY capability data
6073 */
6074bool ice_is_phy_caps_an_enabled(struct ice_aqc_get_phy_caps_data *caps)
6075{
6076	if (caps->caps & ICE_AQC_PHY_AN_MODE ||
6077	    caps->low_power_ctrl_an & (ICE_AQC_PHY_AN_EN_CLAUSE28 |
6078				       ICE_AQC_PHY_AN_EN_CLAUSE73 |
6079				       ICE_AQC_PHY_AN_EN_CLAUSE37))
6080		return true;
6081
6082	return false;
6083}
6084
6085/**
6086 * ice_aq_set_lldp_mib - Set the LLDP MIB
6087 * @hw: pointer to the HW struct
6088 * @mib_type: Local, Remote or both Local and Remote MIBs
6089 * @buf: pointer to the caller-supplied buffer to store the MIB block
6090 * @buf_size: size of the buffer (in bytes)
6091 * @cd: pointer to command details structure or NULL
6092 *
6093 * Set the LLDP MIB. (0x0A08)
6094 */
6095int
6096ice_aq_set_lldp_mib(struct ice_hw *hw, u8 mib_type, void *buf, u16 buf_size,
6097		    struct ice_sq_cd *cd)
6098{
6099	struct ice_aqc_lldp_set_local_mib *cmd;
6100	struct ice_aq_desc desc;
6101
6102	cmd = &desc.params.lldp_set_mib;
6103
6104	if (buf_size == 0 || !buf)
6105		return -EINVAL;
6106
6107	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_set_local_mib);
6108
6109	desc.flags |= cpu_to_le16((u16)ICE_AQ_FLAG_RD);
6110	desc.datalen = cpu_to_le16(buf_size);
6111
6112	cmd->type = mib_type;
6113	cmd->length = cpu_to_le16(buf_size);
6114
6115	return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
6116}
6117
6118/**
6119 * ice_fw_supports_lldp_fltr_ctrl - check NVM version supports lldp_fltr_ctrl
6120 * @hw: pointer to HW struct
6121 */
6122bool ice_fw_supports_lldp_fltr_ctrl(struct ice_hw *hw)
6123{
6124	if (hw->mac_type != ICE_MAC_E810)
6125		return false;
6126
6127	return ice_is_fw_api_min_ver(hw, ICE_FW_API_LLDP_FLTR_MAJ,
6128				     ICE_FW_API_LLDP_FLTR_MIN,
6129				     ICE_FW_API_LLDP_FLTR_PATCH);
6130}
6131
6132/**
6133 * ice_lldp_fltr_add_remove - add or remove a LLDP Rx switch filter
6134 * @hw: pointer to HW struct
6135 * @vsi_num: absolute HW index for VSI
6136 * @add: boolean for if adding or removing a filter
6137 */
6138int
6139ice_lldp_fltr_add_remove(struct ice_hw *hw, u16 vsi_num, bool add)
6140{
6141	struct ice_aqc_lldp_filter_ctrl *cmd;
6142	struct ice_aq_desc desc;
6143
6144	cmd = &desc.params.lldp_filter_ctrl;
6145
6146	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_filter_ctrl);
6147
6148	if (add)
6149		cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_ADD;
6150	else
6151		cmd->cmd_flags = ICE_AQC_LLDP_FILTER_ACTION_DELETE;
6152
6153	cmd->vsi_num = cpu_to_le16(vsi_num);
6154
6155	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
6156}
6157
6158/**
6159 * ice_lldp_execute_pending_mib - execute LLDP pending MIB request
6160 * @hw: pointer to HW struct
6161 */
6162int ice_lldp_execute_pending_mib(struct ice_hw *hw)
6163{
6164	struct ice_aq_desc desc;
6165
6166	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_lldp_execute_pending_mib);
6167
6168	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
6169}
6170
6171/**
6172 * ice_fw_supports_report_dflt_cfg
6173 * @hw: pointer to the hardware structure
6174 *
6175 * Checks if the firmware supports report default configuration
6176 */
6177bool ice_fw_supports_report_dflt_cfg(struct ice_hw *hw)
6178{
6179	return ice_is_fw_api_min_ver(hw, ICE_FW_API_REPORT_DFLT_CFG_MAJ,
6180				     ICE_FW_API_REPORT_DFLT_CFG_MIN,
6181				     ICE_FW_API_REPORT_DFLT_CFG_PATCH);
6182}
6183
6184/* each of the indexes into the following array match the speed of a return
6185 * value from the list of AQ returned speeds like the range:
6186 * ICE_AQ_LINK_SPEED_10MB .. ICE_AQ_LINK_SPEED_100GB excluding
6187 * ICE_AQ_LINK_SPEED_UNKNOWN which is BIT(15) and maps to BIT(14) in this
6188 * array. The array is defined as 15 elements long because the link_speed
6189 * returned by the firmware is a 16 bit * value, but is indexed
6190 * by [fls(speed) - 1]
6191 */
6192static const u32 ice_aq_to_link_speed[] = {
6193	SPEED_10,	/* BIT(0) */
6194	SPEED_100,
6195	SPEED_1000,
6196	SPEED_2500,
6197	SPEED_5000,
6198	SPEED_10000,
6199	SPEED_20000,
6200	SPEED_25000,
6201	SPEED_40000,
6202	SPEED_50000,
6203	SPEED_100000,	/* BIT(10) */
6204	SPEED_200000,
6205};
6206
6207/**
6208 * ice_get_link_speed - get integer speed from table
6209 * @index: array index from fls(aq speed) - 1
6210 *
6211 * Returns: u32 value containing integer speed
6212 */
6213u32 ice_get_link_speed(u16 index)
6214{
6215	if (index >= ARRAY_SIZE(ice_aq_to_link_speed))
6216		return 0;
6217
6218	return ice_aq_to_link_speed[index];
6219}
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright (c) 2018, Intel Corporation. */
   3
   4#include "ice_common.h"
   5#include "ice_sched.h"
   6#include "ice_adminq_cmd.h"
 
 
   7
   8#define ICE_PF_RESET_WAIT_COUNT	200
 
   9
  10#define ICE_PROG_FLEX_ENTRY(hw, rxdid, mdid, idx) \
  11	wr32((hw), GLFLXP_RXDID_FLX_WRD_##idx(rxdid), \
  12	     ((ICE_RX_OPC_MDID << \
  13	       GLFLXP_RXDID_FLX_WRD_##idx##_RXDID_OPCODE_S) & \
  14	      GLFLXP_RXDID_FLX_WRD_##idx##_RXDID_OPCODE_M) | \
  15	     (((mdid) << GLFLXP_RXDID_FLX_WRD_##idx##_PROT_MDID_S) & \
  16	      GLFLXP_RXDID_FLX_WRD_##idx##_PROT_MDID_M))
  17
  18#define ICE_PROG_FLG_ENTRY(hw, rxdid, flg_0, flg_1, flg_2, flg_3, idx) \
  19	wr32((hw), GLFLXP_RXDID_FLAGS(rxdid, idx), \
  20	     (((flg_0) << GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_S) & \
  21	      GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_M) | \
  22	     (((flg_1) << GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_1_S) & \
  23	      GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_1_M) | \
  24	     (((flg_2) << GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_2_S) & \
  25	      GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_2_M) | \
  26	     (((flg_3) << GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_3_S) & \
  27	      GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_3_M))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  28
  29/**
  30 * ice_set_mac_type - Sets MAC type
  31 * @hw: pointer to the HW structure
  32 *
  33 * This function sets the MAC type of the adapter based on the
  34 * vendor ID and device ID stored in the HW structure.
  35 */
  36static enum ice_status ice_set_mac_type(struct ice_hw *hw)
  37{
  38	if (hw->vendor_id != PCI_VENDOR_ID_INTEL)
  39		return ICE_ERR_DEVICE_NOT_SUPPORTED;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  40
  41	hw->mac_type = ICE_MAC_GENERIC;
  42	return 0;
  43}
  44
  45/**
  46 * ice_dev_onetime_setup - Temporary HW/FW workarounds
  47 * @hw: pointer to the HW structure
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  48 *
  49 * This function provides temporary workarounds for certain issues
  50 * that are expected to be fixed in the HW/FW.
  51 */
  52void ice_dev_onetime_setup(struct ice_hw *hw)
  53{
  54#define MBX_PF_VT_PFALLOC	0x00231E80
  55	/* set VFs per PF */
  56	wr32(hw, MBX_PF_VT_PFALLOC, rd32(hw, PF_VT_PFALLOC_HIF));
 
 
 
 
 
 
  57}
  58
  59/**
  60 * ice_clear_pf_cfg - Clear PF configuration
  61 * @hw: pointer to the hardware structure
  62 *
  63 * Clears any existing PF configuration (VSIs, VSI lists, switch rules, port
  64 * configuration, flow director filters, etc.).
  65 */
  66enum ice_status ice_clear_pf_cfg(struct ice_hw *hw)
  67{
  68	struct ice_aq_desc desc;
  69
  70	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pf_cfg);
  71
  72	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
  73}
  74
  75/**
  76 * ice_aq_manage_mac_read - manage MAC address read command
  77 * @hw: pointer to the HW struct
  78 * @buf: a virtual buffer to hold the manage MAC read response
  79 * @buf_size: Size of the virtual buffer
  80 * @cd: pointer to command details structure or NULL
  81 *
  82 * This function is used to return per PF station MAC address (0x0107).
  83 * NOTE: Upon successful completion of this command, MAC address information
  84 * is returned in user specified buffer. Please interpret user specified
  85 * buffer as "manage_mac_read" response.
  86 * Response such as various MAC addresses are stored in HW struct (port.mac)
  87 * ice_aq_discover_caps is expected to be called before this function is called.
 
  88 */
  89static enum ice_status
  90ice_aq_manage_mac_read(struct ice_hw *hw, void *buf, u16 buf_size,
  91		       struct ice_sq_cd *cd)
  92{
  93	struct ice_aqc_manage_mac_read_resp *resp;
  94	struct ice_aqc_manage_mac_read *cmd;
  95	struct ice_aq_desc desc;
  96	enum ice_status status;
  97	u16 flags;
  98	u8 i;
  99
 100	cmd = &desc.params.mac_read;
 101
 102	if (buf_size < sizeof(*resp))
 103		return ICE_ERR_BUF_TOO_SHORT;
 104
 105	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_read);
 106
 107	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
 108	if (status)
 109		return status;
 110
 111	resp = (struct ice_aqc_manage_mac_read_resp *)buf;
 112	flags = le16_to_cpu(cmd->flags) & ICE_AQC_MAN_MAC_READ_M;
 113
 114	if (!(flags & ICE_AQC_MAN_MAC_LAN_ADDR_VALID)) {
 115		ice_debug(hw, ICE_DBG_LAN, "got invalid MAC address\n");
 116		return ICE_ERR_CFG;
 117	}
 118
 119	/* A single port can report up to two (LAN and WoL) addresses */
 120	for (i = 0; i < cmd->num_addr; i++)
 121		if (resp[i].addr_type == ICE_AQC_MAN_MAC_ADDR_TYPE_LAN) {
 122			ether_addr_copy(hw->port_info->mac.lan_addr,
 123					resp[i].mac_addr);
 124			ether_addr_copy(hw->port_info->mac.perm_addr,
 125					resp[i].mac_addr);
 126			break;
 127		}
 128
 129	return 0;
 130}
 131
 132/**
 133 * ice_aq_get_phy_caps - returns PHY capabilities
 134 * @pi: port information structure
 135 * @qual_mods: report qualified modules
 136 * @report_mode: report mode capabilities
 137 * @pcaps: structure for PHY capabilities to be filled
 138 * @cd: pointer to command details structure or NULL
 139 *
 140 * Returns the various PHY capabilities supported on the Port (0x0600)
 141 */
 142enum ice_status
 143ice_aq_get_phy_caps(struct ice_port_info *pi, bool qual_mods, u8 report_mode,
 144		    struct ice_aqc_get_phy_caps_data *pcaps,
 145		    struct ice_sq_cd *cd)
 146{
 147	struct ice_aqc_get_phy_caps *cmd;
 148	u16 pcaps_size = sizeof(*pcaps);
 149	struct ice_aq_desc desc;
 150	enum ice_status status;
 
 
 151
 152	cmd = &desc.params.get_phy;
 153
 154	if (!pcaps || (report_mode & ~ICE_AQC_REPORT_MODE_M) || !pi)
 155		return ICE_ERR_PARAM;
 
 
 
 
 
 156
 157	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_phy_caps);
 158
 159	if (qual_mods)
 160		cmd->param0 |= cpu_to_le16(ICE_AQC_GET_PHY_RQM);
 161
 162	cmd->param0 |= cpu_to_le16(report_mode);
 163	status = ice_aq_send_cmd(pi->hw, &desc, pcaps, pcaps_size, cd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 164
 165	if (!status && report_mode == ICE_AQC_REPORT_TOPO_CAP) {
 166		pi->phy.phy_type_low = le64_to_cpu(pcaps->phy_type_low);
 167		pi->phy.phy_type_high = le64_to_cpu(pcaps->phy_type_high);
 
 
 168	}
 169
 170	return status;
 171}
 172
 173/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 174 * ice_get_media_type - Gets media type
 175 * @pi: port information structure
 176 */
 177static enum ice_media_type ice_get_media_type(struct ice_port_info *pi)
 178{
 179	struct ice_link_status *hw_link_info;
 180
 181	if (!pi)
 182		return ICE_MEDIA_UNKNOWN;
 183
 184	hw_link_info = &pi->phy.link_info;
 185	if (hw_link_info->phy_type_low && hw_link_info->phy_type_high)
 186		/* If more than one media type is selected, report unknown */
 187		return ICE_MEDIA_UNKNOWN;
 188
 189	if (hw_link_info->phy_type_low) {
 
 
 
 
 
 
 
 
 
 
 
 
 190		switch (hw_link_info->phy_type_low) {
 191		case ICE_PHY_TYPE_LOW_1000BASE_SX:
 192		case ICE_PHY_TYPE_LOW_1000BASE_LX:
 193		case ICE_PHY_TYPE_LOW_10GBASE_SR:
 194		case ICE_PHY_TYPE_LOW_10GBASE_LR:
 195		case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
 196		case ICE_PHY_TYPE_LOW_25GBASE_SR:
 197		case ICE_PHY_TYPE_LOW_25GBASE_LR:
 198		case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
 199		case ICE_PHY_TYPE_LOW_40GBASE_SR4:
 200		case ICE_PHY_TYPE_LOW_40GBASE_LR4:
 201		case ICE_PHY_TYPE_LOW_50GBASE_SR2:
 202		case ICE_PHY_TYPE_LOW_50GBASE_LR2:
 203		case ICE_PHY_TYPE_LOW_50GBASE_SR:
 204		case ICE_PHY_TYPE_LOW_50GBASE_FR:
 205		case ICE_PHY_TYPE_LOW_50GBASE_LR:
 206		case ICE_PHY_TYPE_LOW_100GBASE_SR4:
 207		case ICE_PHY_TYPE_LOW_100GBASE_LR4:
 208		case ICE_PHY_TYPE_LOW_100GBASE_SR2:
 209		case ICE_PHY_TYPE_LOW_100GBASE_DR:
 
 
 
 
 
 
 
 
 210			return ICE_MEDIA_FIBER;
 211		case ICE_PHY_TYPE_LOW_100BASE_TX:
 212		case ICE_PHY_TYPE_LOW_1000BASE_T:
 213		case ICE_PHY_TYPE_LOW_2500BASE_T:
 214		case ICE_PHY_TYPE_LOW_5GBASE_T:
 215		case ICE_PHY_TYPE_LOW_10GBASE_T:
 216		case ICE_PHY_TYPE_LOW_25GBASE_T:
 217			return ICE_MEDIA_BASET;
 218		case ICE_PHY_TYPE_LOW_10G_SFI_DA:
 219		case ICE_PHY_TYPE_LOW_25GBASE_CR:
 220		case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
 221		case ICE_PHY_TYPE_LOW_25GBASE_CR1:
 222		case ICE_PHY_TYPE_LOW_40GBASE_CR4:
 223		case ICE_PHY_TYPE_LOW_50GBASE_CR2:
 224		case ICE_PHY_TYPE_LOW_50GBASE_CP:
 225		case ICE_PHY_TYPE_LOW_100GBASE_CR4:
 226		case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
 227		case ICE_PHY_TYPE_LOW_100GBASE_CP2:
 228			return ICE_MEDIA_DA;
 
 
 
 
 
 
 
 
 
 
 229		case ICE_PHY_TYPE_LOW_1000BASE_KX:
 230		case ICE_PHY_TYPE_LOW_2500BASE_KX:
 231		case ICE_PHY_TYPE_LOW_2500BASE_X:
 232		case ICE_PHY_TYPE_LOW_5GBASE_KR:
 233		case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
 234		case ICE_PHY_TYPE_LOW_25GBASE_KR:
 235		case ICE_PHY_TYPE_LOW_25GBASE_KR1:
 236		case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
 237		case ICE_PHY_TYPE_LOW_40GBASE_KR4:
 238		case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
 239		case ICE_PHY_TYPE_LOW_50GBASE_KR2:
 240		case ICE_PHY_TYPE_LOW_100GBASE_KR4:
 241		case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
 242			return ICE_MEDIA_BACKPLANE;
 243		}
 244	} else {
 245		switch (hw_link_info->phy_type_high) {
 
 
 
 
 
 246		case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
 247			return ICE_MEDIA_BACKPLANE;
 
 
 
 248		}
 249	}
 250	return ICE_MEDIA_UNKNOWN;
 251}
 252
 253/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 254 * ice_aq_get_link_info
 255 * @pi: port information structure
 256 * @ena_lse: enable/disable LinkStatusEvent reporting
 257 * @link: pointer to link status structure - optional
 258 * @cd: pointer to command details structure or NULL
 259 *
 260 * Get Link Status (0x607). Returns the link status of the adapter.
 261 */
 262enum ice_status
 263ice_aq_get_link_info(struct ice_port_info *pi, bool ena_lse,
 264		     struct ice_link_status *link, struct ice_sq_cd *cd)
 265{
 266	struct ice_aqc_get_link_status_data link_data = { 0 };
 267	struct ice_aqc_get_link_status *resp;
 268	struct ice_link_status *li_old, *li;
 269	enum ice_media_type *hw_media_type;
 270	struct ice_fc_info *hw_fc_info;
 271	bool tx_pause, rx_pause;
 272	struct ice_aq_desc desc;
 273	enum ice_status status;
 274	struct ice_hw *hw;
 275	u16 cmd_flags;
 
 276
 277	if (!pi)
 278		return ICE_ERR_PARAM;
 279	hw = pi->hw;
 280	li_old = &pi->phy.link_info_old;
 281	hw_media_type = &pi->phy.media_type;
 282	li = &pi->phy.link_info;
 283	hw_fc_info = &pi->fc;
 284
 285	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_status);
 286	cmd_flags = (ena_lse) ? ICE_AQ_LSE_ENA : ICE_AQ_LSE_DIS;
 287	resp = &desc.params.get_link_status;
 288	resp->cmd_flags = cpu_to_le16(cmd_flags);
 289	resp->lport_num = pi->lport;
 290
 291	status = ice_aq_send_cmd(hw, &desc, &link_data, sizeof(link_data), cd);
 292
 293	if (status)
 294		return status;
 295
 296	/* save off old link status information */
 297	*li_old = *li;
 298
 299	/* update current link status information */
 300	li->link_speed = le16_to_cpu(link_data.link_speed);
 301	li->phy_type_low = le64_to_cpu(link_data.phy_type_low);
 302	li->phy_type_high = le64_to_cpu(link_data.phy_type_high);
 303	*hw_media_type = ice_get_media_type(pi);
 304	li->link_info = link_data.link_info;
 
 305	li->an_info = link_data.an_info;
 306	li->ext_info = link_data.ext_info;
 307	li->max_frame_size = le16_to_cpu(link_data.max_frame_size);
 308	li->fec_info = link_data.cfg & ICE_AQ_FEC_MASK;
 309	li->topo_media_conflict = link_data.topo_media_conflict;
 310	li->pacing = link_data.cfg & (ICE_AQ_CFG_PACING_M |
 311				      ICE_AQ_CFG_PACING_TYPE_M);
 312
 313	/* update fc info */
 314	tx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_TX);
 315	rx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_RX);
 316	if (tx_pause && rx_pause)
 317		hw_fc_info->current_mode = ICE_FC_FULL;
 318	else if (tx_pause)
 319		hw_fc_info->current_mode = ICE_FC_TX_PAUSE;
 320	else if (rx_pause)
 321		hw_fc_info->current_mode = ICE_FC_RX_PAUSE;
 322	else
 323		hw_fc_info->current_mode = ICE_FC_NONE;
 324
 325	li->lse_ena = !!(resp->cmd_flags & cpu_to_le16(ICE_AQ_LSE_IS_ENABLED));
 326
 327	ice_debug(hw, ICE_DBG_LINK, "link_speed = 0x%x\n", li->link_speed);
 328	ice_debug(hw, ICE_DBG_LINK, "phy_type_low = 0x%llx\n",
 
 329		  (unsigned long long)li->phy_type_low);
 330	ice_debug(hw, ICE_DBG_LINK, "phy_type_high = 0x%llx\n",
 331		  (unsigned long long)li->phy_type_high);
 332	ice_debug(hw, ICE_DBG_LINK, "media_type = 0x%x\n", *hw_media_type);
 333	ice_debug(hw, ICE_DBG_LINK, "link_info = 0x%x\n", li->link_info);
 334	ice_debug(hw, ICE_DBG_LINK, "an_info = 0x%x\n", li->an_info);
 335	ice_debug(hw, ICE_DBG_LINK, "ext_info = 0x%x\n", li->ext_info);
 336	ice_debug(hw, ICE_DBG_LINK, "lse_ena = 0x%x\n", li->lse_ena);
 337	ice_debug(hw, ICE_DBG_LINK, "max_frame = 0x%x\n", li->max_frame_size);
 338	ice_debug(hw, ICE_DBG_LINK, "pacing = 0x%x\n", li->pacing);
 
 
 
 339
 340	/* save link status information */
 341	if (link)
 342		*link = *li;
 343
 344	/* flag cleared so calling functions don't call AQ again */
 345	pi->phy.get_link_info = false;
 346
 347	return 0;
 348}
 349
 350/**
 351 * ice_init_flex_flags
 352 * @hw: pointer to the hardware structure
 353 * @prof_id: Rx Descriptor Builder profile ID
 354 *
 355 * Function to initialize Rx flex flags
 
 356 */
 357static void ice_init_flex_flags(struct ice_hw *hw, enum ice_rxdid prof_id)
 
 
 358{
 359	u8 idx = 0;
 
 
 
 
 
 
 
 
 
 
 360
 361	/* Flex-flag fields (0-2) are programmed with FLG64 bits with layout:
 362	 * flexiflags0[5:0] - TCP flags, is_packet_fragmented, is_packet_UDP_GRE
 363	 * flexiflags1[3:0] - Not used for flag programming
 364	 * flexiflags2[7:0] - Tunnel and VLAN types
 365	 * 2 invalid fields in last index
 366	 */
 367	switch (prof_id) {
 368	/* Rx flex flags are currently programmed for the NIC profiles only.
 369	 * Different flag bit programming configurations can be added per
 370	 * profile as needed.
 371	 */
 372	case ICE_RXDID_FLEX_NIC:
 373	case ICE_RXDID_FLEX_NIC_2:
 374		ICE_PROG_FLG_ENTRY(hw, prof_id, ICE_FLG_PKT_FRG,
 375				   ICE_FLG_UDP_GRE, ICE_FLG_PKT_DSI,
 376				   ICE_FLG_FIN, idx++);
 377		/* flex flag 1 is not used for flexi-flag programming, skipping
 378		 * these four FLG64 bits.
 379		 */
 380		ICE_PROG_FLG_ENTRY(hw, prof_id, ICE_FLG_SYN, ICE_FLG_RST,
 381				   ICE_FLG_PKT_DSI, ICE_FLG_PKT_DSI, idx++);
 382		ICE_PROG_FLG_ENTRY(hw, prof_id, ICE_FLG_PKT_DSI,
 383				   ICE_FLG_PKT_DSI, ICE_FLG_EVLAN_x8100,
 384				   ICE_FLG_EVLAN_x9100, idx++);
 385		ICE_PROG_FLG_ENTRY(hw, prof_id, ICE_FLG_VLAN_x8100,
 386				   ICE_FLG_TNL_VLAN, ICE_FLG_TNL_MAC,
 387				   ICE_FLG_TNL0, idx++);
 388		ICE_PROG_FLG_ENTRY(hw, prof_id, ICE_FLG_TNL1, ICE_FLG_TNL2,
 389				   ICE_FLG_PKT_DSI, ICE_FLG_PKT_DSI, idx);
 390		break;
 391
 392	default:
 393		ice_debug(hw, ICE_DBG_INIT,
 394			  "Flag programming for profile ID %d not supported\n",
 395			  prof_id);
 396	}
 
 397}
 398
 399/**
 400 * ice_init_flex_flds
 401 * @hw: pointer to the hardware structure
 402 * @prof_id: Rx Descriptor Builder profile ID
 
 403 *
 404 * Function to initialize flex descriptors
 405 */
 406static void ice_init_flex_flds(struct ice_hw *hw, enum ice_rxdid prof_id)
 
 407{
 408	enum ice_flex_rx_mdid mdid;
 
 
 
 409
 410	switch (prof_id) {
 411	case ICE_RXDID_FLEX_NIC:
 412	case ICE_RXDID_FLEX_NIC_2:
 413		ICE_PROG_FLEX_ENTRY(hw, prof_id, ICE_RX_MDID_HASH_LOW, 0);
 414		ICE_PROG_FLEX_ENTRY(hw, prof_id, ICE_RX_MDID_HASH_HIGH, 1);
 415		ICE_PROG_FLEX_ENTRY(hw, prof_id, ICE_RX_MDID_FLOW_ID_LOWER, 2);
 416
 417		mdid = (prof_id == ICE_RXDID_FLEX_NIC_2) ?
 418			ICE_RX_MDID_SRC_VSI : ICE_RX_MDID_FLOW_ID_HIGH;
 419
 420		ICE_PROG_FLEX_ENTRY(hw, prof_id, mdid, 3);
 421
 422		ice_init_flex_flags(hw, prof_id);
 423		break;
 424
 425	default:
 426		ice_debug(hw, ICE_DBG_INIT,
 427			  "Field init for profile ID %d not supported\n",
 428			  prof_id);
 429	}
 430}
 431
 432/**
 433 * ice_init_fltr_mgmt_struct - initializes filter management list and locks
 434 * @hw: pointer to the HW struct
 435 */
 436static enum ice_status ice_init_fltr_mgmt_struct(struct ice_hw *hw)
 437{
 438	struct ice_switch_info *sw;
 
 439
 440	hw->switch_info = devm_kzalloc(ice_hw_to_dev(hw),
 441				       sizeof(*hw->switch_info), GFP_KERNEL);
 442	sw = hw->switch_info;
 443
 444	if (!sw)
 445		return ICE_ERR_NO_MEMORY;
 446
 447	INIT_LIST_HEAD(&sw->vsi_list_map_head);
 
 448
 449	return ice_init_def_sw_recp(hw);
 
 
 
 
 
 
 
 
 450}
 451
 452/**
 453 * ice_cleanup_fltr_mgmt_struct - cleanup filter management list and locks
 454 * @hw: pointer to the HW struct
 455 */
 456static void ice_cleanup_fltr_mgmt_struct(struct ice_hw *hw)
 457{
 458	struct ice_switch_info *sw = hw->switch_info;
 459	struct ice_vsi_list_map_info *v_pos_map;
 460	struct ice_vsi_list_map_info *v_tmp_map;
 461	struct ice_sw_recipe *recps;
 462	u8 i;
 463
 464	list_for_each_entry_safe(v_pos_map, v_tmp_map, &sw->vsi_list_map_head,
 465				 list_entry) {
 466		list_del(&v_pos_map->list_entry);
 467		devm_kfree(ice_hw_to_dev(hw), v_pos_map);
 468	}
 469	recps = hw->switch_info->recp_list;
 470	for (i = 0; i < ICE_SW_LKUP_LAST; i++) {
 471		struct ice_fltr_mgmt_list_entry *lst_itr, *tmp_entry;
 472
 473		recps[i].root_rid = i;
 474		mutex_destroy(&recps[i].filt_rule_lock);
 475		list_for_each_entry_safe(lst_itr, tmp_entry,
 476					 &recps[i].filt_rules, list_entry) {
 477			list_del(&lst_itr->list_entry);
 478			devm_kfree(ice_hw_to_dev(hw), lst_itr);
 479		}
 480	}
 481	ice_rm_all_sw_replay_rule_info(hw);
 482	devm_kfree(ice_hw_to_dev(hw), sw->recp_list);
 483	devm_kfree(ice_hw_to_dev(hw), sw);
 484}
 485
 486#define ICE_FW_LOG_DESC_SIZE(n)	(sizeof(struct ice_aqc_fw_logging_data) + \
 487	(((n) - 1) * sizeof(((struct ice_aqc_fw_logging_data *)0)->entry)))
 488#define ICE_FW_LOG_DESC_SIZE_MAX	\
 489	ICE_FW_LOG_DESC_SIZE(ICE_AQC_FW_LOG_ID_MAX)
 490
 491/**
 492 * ice_get_fw_log_cfg - get FW logging configuration
 493 * @hw: pointer to the HW struct
 494 */
 495static enum ice_status ice_get_fw_log_cfg(struct ice_hw *hw)
 496{
 497	struct ice_aqc_fw_logging_data *config;
 498	struct ice_aq_desc desc;
 499	enum ice_status status;
 500	u16 size;
 501
 502	size = ICE_FW_LOG_DESC_SIZE_MAX;
 503	config = devm_kzalloc(ice_hw_to_dev(hw), size, GFP_KERNEL);
 504	if (!config)
 505		return ICE_ERR_NO_MEMORY;
 506
 507	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_fw_logging_info);
 508
 509	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_BUF);
 510	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
 511
 512	status = ice_aq_send_cmd(hw, &desc, config, size, NULL);
 513	if (!status) {
 514		u16 i;
 515
 516		/* Save FW logging information into the HW structure */
 517		for (i = 0; i < ICE_AQC_FW_LOG_ID_MAX; i++) {
 518			u16 v, m, flgs;
 519
 520			v = le16_to_cpu(config->entry[i]);
 521			m = (v & ICE_AQC_FW_LOG_ID_M) >> ICE_AQC_FW_LOG_ID_S;
 522			flgs = (v & ICE_AQC_FW_LOG_EN_M) >> ICE_AQC_FW_LOG_EN_S;
 523
 524			if (m < ICE_AQC_FW_LOG_ID_MAX)
 525				hw->fw_log.evnts[m].cur = flgs;
 526		}
 527	}
 528
 529	devm_kfree(ice_hw_to_dev(hw), config);
 530
 531	return status;
 532}
 533
 534/**
 535 * ice_cfg_fw_log - configure FW logging
 536 * @hw: pointer to the HW struct
 537 * @enable: enable certain FW logging events if true, disable all if false
 538 *
 539 * This function enables/disables the FW logging via Rx CQ events and a UART
 540 * port based on predetermined configurations. FW logging via the Rx CQ can be
 541 * enabled/disabled for individual PF's. However, FW logging via the UART can
 542 * only be enabled/disabled for all PFs on the same device.
 543 *
 544 * To enable overall FW logging, the "cq_en" and "uart_en" enable bits in
 545 * hw->fw_log need to be set accordingly, e.g. based on user-provided input,
 546 * before initializing the device.
 547 *
 548 * When re/configuring FW logging, callers need to update the "cfg" elements of
 549 * the hw->fw_log.evnts array with the desired logging event configurations for
 550 * modules of interest. When disabling FW logging completely, the callers can
 551 * just pass false in the "enable" parameter. On completion, the function will
 552 * update the "cur" element of the hw->fw_log.evnts array with the resulting
 553 * logging event configurations of the modules that are being re/configured. FW
 554 * logging modules that are not part of a reconfiguration operation retain their
 555 * previous states.
 556 *
 557 * Before resetting the device, it is recommended that the driver disables FW
 558 * logging before shutting down the control queue. When disabling FW logging
 559 * ("enable" = false), the latest configurations of FW logging events stored in
 560 * hw->fw_log.evnts[] are not overridden to allow them to be reconfigured after
 561 * a device reset.
 562 *
 563 * When enabling FW logging to emit log messages via the Rx CQ during the
 564 * device's initialization phase, a mechanism alternative to interrupt handlers
 565 * needs to be used to extract FW log messages from the Rx CQ periodically and
 566 * to prevent the Rx CQ from being full and stalling other types of control
 567 * messages from FW to SW. Interrupts are typically disabled during the device's
 568 * initialization phase.
 569 */
 570static enum ice_status ice_cfg_fw_log(struct ice_hw *hw, bool enable)
 571{
 572	struct ice_aqc_fw_logging_data *data = NULL;
 573	struct ice_aqc_fw_logging *cmd;
 574	enum ice_status status = 0;
 575	u16 i, chgs = 0, len = 0;
 576	struct ice_aq_desc desc;
 577	u8 actv_evnts = 0;
 578	void *buf = NULL;
 579
 580	if (!hw->fw_log.cq_en && !hw->fw_log.uart_en)
 581		return 0;
 582
 583	/* Disable FW logging only when the control queue is still responsive */
 584	if (!enable &&
 585	    (!hw->fw_log.actv_evnts || !ice_check_sq_alive(hw, &hw->adminq)))
 586		return 0;
 587
 588	/* Get current FW log settings */
 589	status = ice_get_fw_log_cfg(hw);
 590	if (status)
 591		return status;
 592
 593	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_fw_logging);
 594	cmd = &desc.params.fw_logging;
 595
 596	/* Indicate which controls are valid */
 597	if (hw->fw_log.cq_en)
 598		cmd->log_ctrl_valid |= ICE_AQC_FW_LOG_AQ_VALID;
 599
 600	if (hw->fw_log.uart_en)
 601		cmd->log_ctrl_valid |= ICE_AQC_FW_LOG_UART_VALID;
 602
 603	if (enable) {
 604		/* Fill in an array of entries with FW logging modules and
 605		 * logging events being reconfigured.
 606		 */
 607		for (i = 0; i < ICE_AQC_FW_LOG_ID_MAX; i++) {
 608			u16 val;
 609
 610			/* Keep track of enabled event types */
 611			actv_evnts |= hw->fw_log.evnts[i].cfg;
 612
 613			if (hw->fw_log.evnts[i].cfg == hw->fw_log.evnts[i].cur)
 614				continue;
 615
 616			if (!data) {
 617				data = devm_kzalloc(ice_hw_to_dev(hw),
 618						    ICE_FW_LOG_DESC_SIZE_MAX,
 619						    GFP_KERNEL);
 620				if (!data)
 621					return ICE_ERR_NO_MEMORY;
 622			}
 
 
 623
 624			val = i << ICE_AQC_FW_LOG_ID_S;
 625			val |= hw->fw_log.evnts[i].cfg << ICE_AQC_FW_LOG_EN_S;
 626			data->entry[chgs++] = cpu_to_le16(val);
 627		}
 628
 629		/* Only enable FW logging if at least one module is specified.
 630		 * If FW logging is currently enabled but all modules are not
 631		 * enabled to emit log messages, disable FW logging altogether.
 632		 */
 633		if (actv_evnts) {
 634			/* Leave if there is effectively no change */
 635			if (!chgs)
 636				goto out;
 637
 638			if (hw->fw_log.cq_en)
 639				cmd->log_ctrl |= ICE_AQC_FW_LOG_AQ_EN;
 640
 641			if (hw->fw_log.uart_en)
 642				cmd->log_ctrl |= ICE_AQC_FW_LOG_UART_EN;
 643
 644			buf = data;
 645			len = ICE_FW_LOG_DESC_SIZE(chgs);
 646			desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
 647		}
 648	}
 649
 650	status = ice_aq_send_cmd(hw, &desc, buf, len, NULL);
 651	if (!status) {
 652		/* Update the current configuration to reflect events enabled.
 653		 * hw->fw_log.cq_en and hw->fw_log.uart_en indicate if the FW
 654		 * logging mode is enabled for the device. They do not reflect
 655		 * actual modules being enabled to emit log messages. So, their
 656		 * values remain unchanged even when all modules are disabled.
 657		 */
 658		u16 cnt = enable ? chgs : (u16)ICE_AQC_FW_LOG_ID_MAX;
 659
 660		hw->fw_log.actv_evnts = actv_evnts;
 661		for (i = 0; i < cnt; i++) {
 662			u16 v, m;
 663
 664			if (!enable) {
 665				/* When disabling all FW logging events as part
 666				 * of device's de-initialization, the original
 667				 * configurations are retained, and can be used
 668				 * to reconfigure FW logging later if the device
 669				 * is re-initialized.
 670				 */
 671				hw->fw_log.evnts[i].cur = 0;
 672				continue;
 673			}
 674
 675			v = le16_to_cpu(data->entry[i]);
 676			m = (v & ICE_AQC_FW_LOG_ID_M) >> ICE_AQC_FW_LOG_ID_S;
 677			hw->fw_log.evnts[m].cur = hw->fw_log.evnts[m].cfg;
 678		}
 679	}
 680
 681out:
 682	if (data)
 683		devm_kfree(ice_hw_to_dev(hw), data);
 684
 685	return status;
 686}
 687
 688/**
 689 * ice_output_fw_log
 690 * @hw: pointer to the HW struct
 691 * @desc: pointer to the AQ message descriptor
 692 * @buf: pointer to the buffer accompanying the AQ message
 693 *
 694 * Formats a FW Log message and outputs it via the standard driver logs.
 695 */
 696void ice_output_fw_log(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf)
 697{
 698	ice_debug(hw, ICE_DBG_FW_LOG, "[ FW Log Msg Start ]\n");
 699	ice_debug_array(hw, ICE_DBG_FW_LOG, 16, 1, (u8 *)buf,
 700			le16_to_cpu(desc->datalen));
 701	ice_debug(hw, ICE_DBG_FW_LOG, "[ FW Log Msg End ]\n");
 702}
 703
 704/**
 705 * ice_get_itr_intrl_gran - determine int/intrl granularity
 706 * @hw: pointer to the HW struct
 707 *
 708 * Determines the ITR/intrl granularities based on the maximum aggregate
 709 * bandwidth according to the device's configuration during power-on.
 710 */
 711static void ice_get_itr_intrl_gran(struct ice_hw *hw)
 712{
 713	u8 max_agg_bw = (rd32(hw, GL_PWR_MODE_CTL) &
 714			 GL_PWR_MODE_CTL_CAR_MAX_BW_M) >>
 715			GL_PWR_MODE_CTL_CAR_MAX_BW_S;
 716
 717	switch (max_agg_bw) {
 718	case ICE_MAX_AGG_BW_200G:
 719	case ICE_MAX_AGG_BW_100G:
 720	case ICE_MAX_AGG_BW_50G:
 721		hw->itr_gran = ICE_ITR_GRAN_ABOVE_25;
 722		hw->intrl_gran = ICE_INTRL_GRAN_ABOVE_25;
 723		break;
 724	case ICE_MAX_AGG_BW_25G:
 725		hw->itr_gran = ICE_ITR_GRAN_MAX_25;
 726		hw->intrl_gran = ICE_INTRL_GRAN_MAX_25;
 727		break;
 728	}
 729}
 730
 731/**
 732 * ice_get_nvm_version - get cached NVM version data
 733 * @hw: pointer to the hardware structure
 734 * @oem_ver: 8 bit NVM version
 735 * @oem_build: 16 bit NVM build number
 736 * @oem_patch: 8 NVM patch number
 737 * @ver_hi: high 16 bits of the NVM version
 738 * @ver_lo: low 16 bits of the NVM version
 739 */
 740void
 741ice_get_nvm_version(struct ice_hw *hw, u8 *oem_ver, u16 *oem_build,
 742		    u8 *oem_patch, u8 *ver_hi, u8 *ver_lo)
 743{
 744	struct ice_nvm_info *nvm = &hw->nvm;
 745
 746	*oem_ver = (u8)((nvm->oem_ver & ICE_OEM_VER_MASK) >> ICE_OEM_VER_SHIFT);
 747	*oem_patch = (u8)(nvm->oem_ver & ICE_OEM_VER_PATCH_MASK);
 748	*oem_build = (u16)((nvm->oem_ver & ICE_OEM_VER_BUILD_MASK) >>
 749			   ICE_OEM_VER_BUILD_SHIFT);
 750	*ver_hi = (nvm->ver & ICE_NVM_VER_HI_MASK) >> ICE_NVM_VER_HI_SHIFT;
 751	*ver_lo = (nvm->ver & ICE_NVM_VER_LO_MASK) >> ICE_NVM_VER_LO_SHIFT;
 752}
 753
 754/**
 755 * ice_init_hw - main hardware initialization routine
 756 * @hw: pointer to the hardware structure
 757 */
 758enum ice_status ice_init_hw(struct ice_hw *hw)
 759{
 760	struct ice_aqc_get_phy_caps_data *pcaps;
 761	enum ice_status status;
 762	u16 mac_buf_len;
 763	void *mac_buf;
 764
 765	/* Set MAC type based on DeviceID */
 766	status = ice_set_mac_type(hw);
 767	if (status)
 768		return status;
 769
 770	hw->pf_id = (u8)(rd32(hw, PF_FUNC_RID) &
 771			 PF_FUNC_RID_FUNC_NUM_M) >>
 772		PF_FUNC_RID_FUNC_NUM_S;
 773
 774	status = ice_reset(hw, ICE_RESET_PFR);
 775	if (status)
 776		return status;
 777
 778	ice_get_itr_intrl_gran(hw);
 779
 780	status = ice_create_all_ctrlq(hw);
 781	if (status)
 782		goto err_unroll_cqinit;
 783
 784	/* Enable FW logging. Not fatal if this fails. */
 785	status = ice_cfg_fw_log(hw, true);
 786	if (status)
 787		ice_debug(hw, ICE_DBG_INIT, "Failed to enable FW logging.\n");
 
 788
 789	status = ice_clear_pf_cfg(hw);
 790	if (status)
 791		goto err_unroll_cqinit;
 792
 
 
 
 
 793	ice_clear_pxe_mode(hw);
 794
 795	status = ice_init_nvm(hw);
 796	if (status)
 797		goto err_unroll_cqinit;
 798
 799	status = ice_get_caps(hw);
 800	if (status)
 801		goto err_unroll_cqinit;
 802
 803	hw->port_info = devm_kzalloc(ice_hw_to_dev(hw),
 804				     sizeof(*hw->port_info), GFP_KERNEL);
 
 
 805	if (!hw->port_info) {
 806		status = ICE_ERR_NO_MEMORY;
 807		goto err_unroll_cqinit;
 808	}
 809
 
 810	/* set the back pointer to HW */
 811	hw->port_info->hw = hw;
 812
 813	/* Initialize port_info struct with switch configuration data */
 814	status = ice_get_initial_sw_cfg(hw);
 815	if (status)
 816		goto err_unroll_alloc;
 817
 818	hw->evb_veb = true;
 819
 
 
 
 820	/* Query the allocated resources for Tx scheduler */
 821	status = ice_sched_query_res_alloc(hw);
 822	if (status) {
 823		ice_debug(hw, ICE_DBG_SCHED,
 824			  "Failed to get scheduler allocated resources\n");
 825		goto err_unroll_alloc;
 826	}
 
 827
 828	/* Initialize port_info struct with scheduler data */
 829	status = ice_sched_init_port(hw->port_info);
 830	if (status)
 831		goto err_unroll_sched;
 832
 833	pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), GFP_KERNEL);
 834	if (!pcaps) {
 835		status = ICE_ERR_NO_MEMORY;
 836		goto err_unroll_sched;
 837	}
 838
 839	/* Initialize port_info struct with PHY capabilities */
 840	status = ice_aq_get_phy_caps(hw->port_info, false,
 841				     ICE_AQC_REPORT_TOPO_CAP, pcaps, NULL);
 842	devm_kfree(ice_hw_to_dev(hw), pcaps);
 843	if (status)
 844		goto err_unroll_sched;
 
 845
 846	/* Initialize port_info struct with link information */
 847	status = ice_aq_get_link_info(hw->port_info, false, NULL, NULL);
 848	if (status)
 849		goto err_unroll_sched;
 850
 851	/* need a valid SW entry point to build a Tx tree */
 852	if (!hw->sw_entry_point_layer) {
 853		ice_debug(hw, ICE_DBG_SCHED, "invalid sw entry point\n");
 854		status = ICE_ERR_CFG;
 855		goto err_unroll_sched;
 856	}
 857	INIT_LIST_HEAD(&hw->agg_list);
 
 
 
 858
 859	status = ice_init_fltr_mgmt_struct(hw);
 860	if (status)
 861		goto err_unroll_sched;
 862
 863	ice_dev_onetime_setup(hw);
 864
 865	/* Get MAC information */
 866	/* A single port can report up to two (LAN and WoL) addresses */
 867	mac_buf = devm_kcalloc(ice_hw_to_dev(hw), 2,
 868			       sizeof(struct ice_aqc_manage_mac_read_resp),
 869			       GFP_KERNEL);
 870	mac_buf_len = 2 * sizeof(struct ice_aqc_manage_mac_read_resp);
 871
 872	if (!mac_buf) {
 873		status = ICE_ERR_NO_MEMORY;
 874		goto err_unroll_fltr_mgmt_struct;
 875	}
 876
 
 877	status = ice_aq_manage_mac_read(hw, mac_buf, mac_buf_len, NULL);
 878	devm_kfree(ice_hw_to_dev(hw), mac_buf);
 879
 880	if (status)
 881		goto err_unroll_fltr_mgmt_struct;
 882
 883	ice_init_flex_flds(hw, ICE_RXDID_FLEX_NIC);
 884	ice_init_flex_flds(hw, ICE_RXDID_FLEX_NIC_2);
 
 
 
 
 
 885	status = ice_init_hw_tbls(hw);
 886	if (status)
 887		goto err_unroll_fltr_mgmt_struct;
 
 
 
 888	return 0;
 889
 890err_unroll_fltr_mgmt_struct:
 891	ice_cleanup_fltr_mgmt_struct(hw);
 892err_unroll_sched:
 893	ice_sched_cleanup_all(hw);
 894err_unroll_alloc:
 895	devm_kfree(ice_hw_to_dev(hw), hw->port_info);
 896err_unroll_cqinit:
 897	ice_destroy_all_ctrlq(hw);
 898	return status;
 899}
 900
 901/**
 902 * ice_deinit_hw - unroll initialization operations done by ice_init_hw
 903 * @hw: pointer to the hardware structure
 904 *
 905 * This should be called only during nominal operation, not as a result of
 906 * ice_init_hw() failing since ice_init_hw() will take care of unrolling
 907 * applicable initializations if it fails for any reason.
 908 */
 909void ice_deinit_hw(struct ice_hw *hw)
 910{
 
 911	ice_cleanup_fltr_mgmt_struct(hw);
 912
 913	ice_sched_cleanup_all(hw);
 914	ice_sched_clear_agg(hw);
 915	ice_free_seg(hw);
 916	ice_free_hw_tbls(hw);
 
 917
 918	if (hw->port_info) {
 919		devm_kfree(ice_hw_to_dev(hw), hw->port_info);
 920		hw->port_info = NULL;
 921	}
 922
 923	/* Attempt to disable FW logging before shutting down control queues */
 924	ice_cfg_fw_log(hw, false);
 925	ice_destroy_all_ctrlq(hw);
 926
 927	/* Clear VSI contexts if not already cleared */
 928	ice_clear_all_vsi_ctx(hw);
 929}
 930
 931/**
 932 * ice_check_reset - Check to see if a global reset is complete
 933 * @hw: pointer to the hardware structure
 934 */
 935enum ice_status ice_check_reset(struct ice_hw *hw)
 936{
 937	u32 cnt, reg = 0, grst_delay;
 938
 939	/* Poll for Device Active state in case a recent CORER, GLOBR,
 940	 * or EMPR has occurred. The grst delay value is in 100ms units.
 941	 * Add 1sec for outstanding AQ commands that can take a long time.
 942	 */
 943	grst_delay = ((rd32(hw, GLGEN_RSTCTL) & GLGEN_RSTCTL_GRSTDEL_M) >>
 944		      GLGEN_RSTCTL_GRSTDEL_S) + 10;
 945
 946	for (cnt = 0; cnt < grst_delay; cnt++) {
 947		mdelay(100);
 948		reg = rd32(hw, GLGEN_RSTAT);
 949		if (!(reg & GLGEN_RSTAT_DEVSTATE_M))
 950			break;
 951	}
 952
 953	if (cnt == grst_delay) {
 954		ice_debug(hw, ICE_DBG_INIT,
 955			  "Global reset polling failed to complete.\n");
 956		return ICE_ERR_RESET_FAILED;
 957	}
 958
 959#define ICE_RESET_DONE_MASK	(GLNVM_ULD_CORER_DONE_M | \
 960				 GLNVM_ULD_GLOBR_DONE_M)
 
 
 
 
 
 
 
 
 961
 962	/* Device is Active; check Global Reset processes are done */
 963	for (cnt = 0; cnt < ICE_PF_RESET_WAIT_COUNT; cnt++) {
 964		reg = rd32(hw, GLNVM_ULD) & ICE_RESET_DONE_MASK;
 965		if (reg == ICE_RESET_DONE_MASK) {
 966			ice_debug(hw, ICE_DBG_INIT,
 967				  "Global reset processes done. %d\n", cnt);
 968			break;
 969		}
 970		mdelay(10);
 971	}
 972
 973	if (cnt == ICE_PF_RESET_WAIT_COUNT) {
 974		ice_debug(hw, ICE_DBG_INIT,
 975			  "Wait for Reset Done timed out. GLNVM_ULD = 0x%x\n",
 976			  reg);
 977		return ICE_ERR_RESET_FAILED;
 978	}
 979
 980	return 0;
 981}
 982
 983/**
 984 * ice_pf_reset - Reset the PF
 985 * @hw: pointer to the hardware structure
 986 *
 987 * If a global reset has been triggered, this function checks
 988 * for its completion and then issues the PF reset
 989 */
 990static enum ice_status ice_pf_reset(struct ice_hw *hw)
 991{
 992	u32 cnt, reg;
 993
 994	/* If at function entry a global reset was already in progress, i.e.
 995	 * state is not 'device active' or any of the reset done bits are not
 996	 * set in GLNVM_ULD, there is no need for a PF Reset; poll until the
 997	 * global reset is done.
 998	 */
 999	if ((rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_DEVSTATE_M) ||
1000	    (rd32(hw, GLNVM_ULD) & ICE_RESET_DONE_MASK) ^ ICE_RESET_DONE_MASK) {
1001		/* poll on global reset currently in progress until done */
1002		if (ice_check_reset(hw))
1003			return ICE_ERR_RESET_FAILED;
1004
1005		return 0;
1006	}
1007
1008	/* Reset the PF */
1009	reg = rd32(hw, PFGEN_CTRL);
1010
1011	wr32(hw, PFGEN_CTRL, (reg | PFGEN_CTRL_PFSWR_M));
1012
1013	for (cnt = 0; cnt < ICE_PF_RESET_WAIT_COUNT; cnt++) {
 
 
 
 
 
1014		reg = rd32(hw, PFGEN_CTRL);
1015		if (!(reg & PFGEN_CTRL_PFSWR_M))
1016			break;
1017
1018		mdelay(1);
1019	}
1020
1021	if (cnt == ICE_PF_RESET_WAIT_COUNT) {
1022		ice_debug(hw, ICE_DBG_INIT,
1023			  "PF reset polling failed to complete.\n");
1024		return ICE_ERR_RESET_FAILED;
1025	}
1026
1027	return 0;
1028}
1029
1030/**
1031 * ice_reset - Perform different types of reset
1032 * @hw: pointer to the hardware structure
1033 * @req: reset request
1034 *
1035 * This function triggers a reset as specified by the req parameter.
1036 *
1037 * Note:
1038 * If anything other than a PF reset is triggered, PXE mode is restored.
1039 * This has to be cleared using ice_clear_pxe_mode again, once the AQ
1040 * interface has been restored in the rebuild flow.
1041 */
1042enum ice_status ice_reset(struct ice_hw *hw, enum ice_reset_req req)
1043{
1044	u32 val = 0;
1045
1046	switch (req) {
1047	case ICE_RESET_PFR:
1048		return ice_pf_reset(hw);
1049	case ICE_RESET_CORER:
1050		ice_debug(hw, ICE_DBG_INIT, "CoreR requested\n");
1051		val = GLGEN_RTRIG_CORER_M;
1052		break;
1053	case ICE_RESET_GLOBR:
1054		ice_debug(hw, ICE_DBG_INIT, "GlobalR requested\n");
1055		val = GLGEN_RTRIG_GLOBR_M;
1056		break;
1057	default:
1058		return ICE_ERR_PARAM;
1059	}
1060
1061	val |= rd32(hw, GLGEN_RTRIG);
1062	wr32(hw, GLGEN_RTRIG, val);
1063	ice_flush(hw);
1064
1065	/* wait for the FW to be ready */
1066	return ice_check_reset(hw);
1067}
1068
1069/**
1070 * ice_copy_rxq_ctx_to_hw
1071 * @hw: pointer to the hardware structure
1072 * @ice_rxq_ctx: pointer to the rxq context
1073 * @rxq_index: the index of the Rx queue
1074 *
1075 * Copies rxq context from dense structure to HW register space
1076 */
1077static enum ice_status
1078ice_copy_rxq_ctx_to_hw(struct ice_hw *hw, u8 *ice_rxq_ctx, u32 rxq_index)
1079{
1080	u8 i;
1081
1082	if (!ice_rxq_ctx)
1083		return ICE_ERR_BAD_PTR;
1084
1085	if (rxq_index > QRX_CTRL_MAX_INDEX)
1086		return ICE_ERR_PARAM;
1087
1088	/* Copy each dword separately to HW */
1089	for (i = 0; i < ICE_RXQ_CTX_SIZE_DWORDS; i++) {
1090		wr32(hw, QRX_CONTEXT(i, rxq_index),
1091		     *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
1092
1093		ice_debug(hw, ICE_DBG_QCTX, "qrxdata[%d]: %08X\n", i,
1094			  *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
1095	}
1096
1097	return 0;
1098}
1099
1100/* LAN Rx Queue Context */
1101static const struct ice_ctx_ele ice_rlan_ctx_info[] = {
1102	/* Field		Width	LSB */
1103	ICE_CTX_STORE(ice_rlan_ctx, head,		13,	0),
1104	ICE_CTX_STORE(ice_rlan_ctx, cpuid,		8,	13),
1105	ICE_CTX_STORE(ice_rlan_ctx, base,		57,	32),
1106	ICE_CTX_STORE(ice_rlan_ctx, qlen,		13,	89),
1107	ICE_CTX_STORE(ice_rlan_ctx, dbuf,		7,	102),
1108	ICE_CTX_STORE(ice_rlan_ctx, hbuf,		5,	109),
1109	ICE_CTX_STORE(ice_rlan_ctx, dtype,		2,	114),
1110	ICE_CTX_STORE(ice_rlan_ctx, dsize,		1,	116),
1111	ICE_CTX_STORE(ice_rlan_ctx, crcstrip,		1,	117),
1112	ICE_CTX_STORE(ice_rlan_ctx, l2tsel,		1,	119),
1113	ICE_CTX_STORE(ice_rlan_ctx, hsplit_0,		4,	120),
1114	ICE_CTX_STORE(ice_rlan_ctx, hsplit_1,		2,	124),
1115	ICE_CTX_STORE(ice_rlan_ctx, showiv,		1,	127),
1116	ICE_CTX_STORE(ice_rlan_ctx, rxmax,		14,	174),
1117	ICE_CTX_STORE(ice_rlan_ctx, tphrdesc_ena,	1,	193),
1118	ICE_CTX_STORE(ice_rlan_ctx, tphwdesc_ena,	1,	194),
1119	ICE_CTX_STORE(ice_rlan_ctx, tphdata_ena,	1,	195),
1120	ICE_CTX_STORE(ice_rlan_ctx, tphhead_ena,	1,	196),
1121	ICE_CTX_STORE(ice_rlan_ctx, lrxqthresh,		3,	198),
1122	ICE_CTX_STORE(ice_rlan_ctx, prefena,		1,	201),
1123	{ 0 }
1124};
1125
1126/**
1127 * ice_write_rxq_ctx
1128 * @hw: pointer to the hardware structure
1129 * @rlan_ctx: pointer to the rxq context
1130 * @rxq_index: the index of the Rx queue
1131 *
1132 * Converts rxq context from sparse to dense structure and then writes
1133 * it to HW register space and enables the hardware to prefetch descriptors
1134 * instead of only fetching them on demand
1135 */
1136enum ice_status
1137ice_write_rxq_ctx(struct ice_hw *hw, struct ice_rlan_ctx *rlan_ctx,
1138		  u32 rxq_index)
1139{
1140	u8 ctx_buf[ICE_RXQ_CTX_SZ] = { 0 };
1141
1142	if (!rlan_ctx)
1143		return ICE_ERR_BAD_PTR;
1144
1145	rlan_ctx->prefena = 1;
1146
1147	ice_set_ctx((u8 *)rlan_ctx, ctx_buf, ice_rlan_ctx_info);
1148	return ice_copy_rxq_ctx_to_hw(hw, ctx_buf, rxq_index);
1149}
1150
1151/* LAN Tx Queue Context */
1152const struct ice_ctx_ele ice_tlan_ctx_info[] = {
1153				    /* Field			Width	LSB */
1154	ICE_CTX_STORE(ice_tlan_ctx, base,			57,	0),
1155	ICE_CTX_STORE(ice_tlan_ctx, port_num,			3,	57),
1156	ICE_CTX_STORE(ice_tlan_ctx, cgd_num,			5,	60),
1157	ICE_CTX_STORE(ice_tlan_ctx, pf_num,			3,	65),
1158	ICE_CTX_STORE(ice_tlan_ctx, vmvf_num,			10,	68),
1159	ICE_CTX_STORE(ice_tlan_ctx, vmvf_type,			2,	78),
1160	ICE_CTX_STORE(ice_tlan_ctx, src_vsi,			10,	80),
1161	ICE_CTX_STORE(ice_tlan_ctx, tsyn_ena,			1,	90),
1162	ICE_CTX_STORE(ice_tlan_ctx, internal_usage_flag,	1,	91),
1163	ICE_CTX_STORE(ice_tlan_ctx, alt_vlan,			1,	92),
1164	ICE_CTX_STORE(ice_tlan_ctx, cpuid,			8,	93),
1165	ICE_CTX_STORE(ice_tlan_ctx, wb_mode,			1,	101),
1166	ICE_CTX_STORE(ice_tlan_ctx, tphrd_desc,			1,	102),
1167	ICE_CTX_STORE(ice_tlan_ctx, tphrd,			1,	103),
1168	ICE_CTX_STORE(ice_tlan_ctx, tphwr_desc,			1,	104),
1169	ICE_CTX_STORE(ice_tlan_ctx, cmpq_id,			9,	105),
1170	ICE_CTX_STORE(ice_tlan_ctx, qnum_in_func,		14,	114),
1171	ICE_CTX_STORE(ice_tlan_ctx, itr_notification_mode,	1,	128),
1172	ICE_CTX_STORE(ice_tlan_ctx, adjust_prof_id,		6,	129),
1173	ICE_CTX_STORE(ice_tlan_ctx, qlen,			13,	135),
1174	ICE_CTX_STORE(ice_tlan_ctx, quanta_prof_idx,		4,	148),
1175	ICE_CTX_STORE(ice_tlan_ctx, tso_ena,			1,	152),
1176	ICE_CTX_STORE(ice_tlan_ctx, tso_qnum,			11,	153),
1177	ICE_CTX_STORE(ice_tlan_ctx, legacy_int,			1,	164),
1178	ICE_CTX_STORE(ice_tlan_ctx, drop_ena,			1,	165),
1179	ICE_CTX_STORE(ice_tlan_ctx, cache_prof_idx,		2,	166),
1180	ICE_CTX_STORE(ice_tlan_ctx, pkt_shaper_prof_idx,	3,	168),
1181	ICE_CTX_STORE(ice_tlan_ctx, int_q_state,		122,	171),
1182	{ 0 }
1183};
1184
 
 
1185/**
1186 * ice_debug_cq
1187 * @hw: pointer to the hardware structure
1188 * @mask: debug mask
1189 * @desc: pointer to control queue descriptor
1190 * @buf: pointer to command buffer
1191 * @buf_len: max length of buf
1192 *
1193 * Dumps debug log about control command with descriptor contents.
1194 */
1195void
1196ice_debug_cq(struct ice_hw *hw, u32 __maybe_unused mask, void *desc, void *buf,
1197	     u16 buf_len)
1198{
1199	struct ice_aq_desc *cq_desc = (struct ice_aq_desc *)desc;
1200	u16 len;
 
1201
1202#ifndef CONFIG_DYNAMIC_DEBUG
1203	if (!(mask & hw->debug_mask))
1204		return;
1205#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1206
1207	if (!desc)
1208		return;
 
 
 
 
 
1209
1210	len = le16_to_cpu(cq_desc->datalen);
1211
1212	ice_debug(hw, mask,
1213		  "CQ CMD: opcode 0x%04X, flags 0x%04X, datalen 0x%04X, retval 0x%04X\n",
1214		  le16_to_cpu(cq_desc->opcode),
1215		  le16_to_cpu(cq_desc->flags),
1216		  le16_to_cpu(cq_desc->datalen), le16_to_cpu(cq_desc->retval));
1217	ice_debug(hw, mask, "\tcookie (h,l) 0x%08X 0x%08X\n",
1218		  le32_to_cpu(cq_desc->cookie_high),
1219		  le32_to_cpu(cq_desc->cookie_low));
1220	ice_debug(hw, mask, "\tparam (0,1)  0x%08X 0x%08X\n",
1221		  le32_to_cpu(cq_desc->params.generic.param0),
1222		  le32_to_cpu(cq_desc->params.generic.param1));
1223	ice_debug(hw, mask, "\taddr (h,l)   0x%08X 0x%08X\n",
1224		  le32_to_cpu(cq_desc->params.generic.addr_high),
1225		  le32_to_cpu(cq_desc->params.generic.addr_low));
1226	if (buf && cq_desc->datalen != 0) {
1227		ice_debug(hw, mask, "Buffer:\n");
1228		if (buf_len < len)
1229			len = buf_len;
1230
1231		ice_debug_array(hw, mask, 16, 1, (u8 *)buf, len);
1232	}
1233}
1234
1235/* FW Admin Queue command wrappers */
1236
1237/* Software lock/mutex that is meant to be held while the Global Config Lock
1238 * in firmware is acquired by the software to prevent most (but not all) types
1239 * of AQ commands from being sent to FW
1240 */
1241DEFINE_MUTEX(ice_global_cfg_lock_sw);
1242
1243/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1244 * ice_aq_send_cmd - send FW Admin Queue command to FW Admin Queue
1245 * @hw: pointer to the HW struct
1246 * @desc: descriptor describing the command
1247 * @buf: buffer to use for indirect commands (NULL for direct commands)
1248 * @buf_size: size of buffer for indirect commands (0 for direct commands)
1249 * @cd: pointer to command details structure
1250 *
1251 * Helper function to send FW Admin Queue commands to the FW Admin Queue.
1252 */
1253enum ice_status
1254ice_aq_send_cmd(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf,
1255		u16 buf_size, struct ice_sq_cd *cd)
1256{
1257	struct ice_aqc_req_res *cmd = &desc->params.res_owner;
1258	bool lock_acquired = false;
1259	enum ice_status status;
1260
1261	/* When a package download is in process (i.e. when the firmware's
1262	 * Global Configuration Lock resource is held), only the Download
1263	 * Package, Get Version, Get Package Info List and Release Resource
1264	 * (with resource ID set to Global Config Lock) AdminQ commands are
1265	 * allowed; all others must block until the package download completes
1266	 * and the Global Config Lock is released.  See also
1267	 * ice_acquire_global_cfg_lock().
 
 
1268	 */
1269	switch (le16_to_cpu(desc->opcode)) {
1270	case ice_aqc_opc_download_pkg:
1271	case ice_aqc_opc_get_pkg_info_list:
1272	case ice_aqc_opc_get_ver:
 
 
 
 
 
 
 
 
 
 
 
1273		break;
1274	case ice_aqc_opc_release_res:
1275		if (le16_to_cpu(cmd->res_id) == ICE_AQC_RES_ID_GLBL_LOCK)
1276			break;
1277		/* fall-through */
1278	default:
1279		mutex_lock(&ice_global_cfg_lock_sw);
1280		lock_acquired = true;
1281		break;
1282	}
1283
1284	status = ice_sq_send_cmd(hw, &hw->adminq, desc, buf, buf_size, cd);
1285	if (lock_acquired)
1286		mutex_unlock(&ice_global_cfg_lock_sw);
1287
1288	return status;
1289}
1290
1291/**
1292 * ice_aq_get_fw_ver
1293 * @hw: pointer to the HW struct
1294 * @cd: pointer to command details structure or NULL
1295 *
1296 * Get the firmware version (0x0001) from the admin queue commands
1297 */
1298enum ice_status ice_aq_get_fw_ver(struct ice_hw *hw, struct ice_sq_cd *cd)
1299{
1300	struct ice_aqc_get_ver *resp;
1301	struct ice_aq_desc desc;
1302	enum ice_status status;
1303
1304	resp = &desc.params.get_ver;
1305
1306	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_ver);
1307
1308	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1309
1310	if (!status) {
1311		hw->fw_branch = resp->fw_branch;
1312		hw->fw_maj_ver = resp->fw_major;
1313		hw->fw_min_ver = resp->fw_minor;
1314		hw->fw_patch = resp->fw_patch;
1315		hw->fw_build = le32_to_cpu(resp->fw_build);
1316		hw->api_branch = resp->api_branch;
1317		hw->api_maj_ver = resp->api_major;
1318		hw->api_min_ver = resp->api_minor;
1319		hw->api_patch = resp->api_patch;
1320	}
1321
1322	return status;
1323}
1324
1325/**
1326 * ice_aq_send_driver_ver
1327 * @hw: pointer to the HW struct
1328 * @dv: driver's major, minor version
1329 * @cd: pointer to command details structure or NULL
1330 *
1331 * Send the driver version (0x0002) to the firmware
1332 */
1333enum ice_status
1334ice_aq_send_driver_ver(struct ice_hw *hw, struct ice_driver_ver *dv,
1335		       struct ice_sq_cd *cd)
1336{
1337	struct ice_aqc_driver_ver *cmd;
1338	struct ice_aq_desc desc;
1339	u16 len;
1340
1341	cmd = &desc.params.driver_ver;
1342
1343	if (!dv)
1344		return ICE_ERR_PARAM;
1345
1346	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_driver_ver);
1347
1348	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1349	cmd->major_ver = dv->major_ver;
1350	cmd->minor_ver = dv->minor_ver;
1351	cmd->build_ver = dv->build_ver;
1352	cmd->subbuild_ver = dv->subbuild_ver;
1353
1354	len = 0;
1355	while (len < sizeof(dv->driver_string) &&
1356	       isascii(dv->driver_string[len]) && dv->driver_string[len])
1357		len++;
1358
1359	return ice_aq_send_cmd(hw, &desc, dv->driver_string, len, cd);
1360}
1361
1362/**
1363 * ice_aq_q_shutdown
1364 * @hw: pointer to the HW struct
1365 * @unloading: is the driver unloading itself
1366 *
1367 * Tell the Firmware that we're shutting down the AdminQ and whether
1368 * or not the driver is unloading as well (0x0003).
1369 */
1370enum ice_status ice_aq_q_shutdown(struct ice_hw *hw, bool unloading)
1371{
1372	struct ice_aqc_q_shutdown *cmd;
1373	struct ice_aq_desc desc;
1374
1375	cmd = &desc.params.q_shutdown;
1376
1377	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_q_shutdown);
1378
1379	if (unloading)
1380		cmd->driver_unloading = ICE_AQC_DRIVER_UNLOADING;
1381
1382	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
1383}
1384
1385/**
1386 * ice_aq_req_res
1387 * @hw: pointer to the HW struct
1388 * @res: resource ID
1389 * @access: access type
1390 * @sdp_number: resource number
1391 * @timeout: the maximum time in ms that the driver may hold the resource
1392 * @cd: pointer to command details structure or NULL
1393 *
1394 * Requests common resource using the admin queue commands (0x0008).
1395 * When attempting to acquire the Global Config Lock, the driver can
1396 * learn of three states:
1397 *  1) ICE_SUCCESS -        acquired lock, and can perform download package
1398 *  2) ICE_ERR_AQ_ERROR -   did not get lock, driver should fail to load
1399 *  3) ICE_ERR_AQ_NO_WORK - did not get lock, but another driver has
1400 *                          successfully downloaded the package; the driver does
1401 *                          not have to download the package and can continue
1402 *                          loading
1403 *
1404 * Note that if the caller is in an acquire lock, perform action, release lock
1405 * phase of operation, it is possible that the FW may detect a timeout and issue
1406 * a CORER. In this case, the driver will receive a CORER interrupt and will
1407 * have to determine its cause. The calling thread that is handling this flow
1408 * will likely get an error propagated back to it indicating the Download
1409 * Package, Update Package or the Release Resource AQ commands timed out.
1410 */
1411static enum ice_status
1412ice_aq_req_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1413	       enum ice_aq_res_access_type access, u8 sdp_number, u32 *timeout,
1414	       struct ice_sq_cd *cd)
1415{
1416	struct ice_aqc_req_res *cmd_resp;
1417	struct ice_aq_desc desc;
1418	enum ice_status status;
1419
1420	cmd_resp = &desc.params.res_owner;
1421
1422	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_req_res);
1423
1424	cmd_resp->res_id = cpu_to_le16(res);
1425	cmd_resp->access_type = cpu_to_le16(access);
1426	cmd_resp->res_number = cpu_to_le32(sdp_number);
1427	cmd_resp->timeout = cpu_to_le32(*timeout);
1428	*timeout = 0;
1429
1430	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1431
1432	/* The completion specifies the maximum time in ms that the driver
1433	 * may hold the resource in the Timeout field.
1434	 */
1435
1436	/* Global config lock response utilizes an additional status field.
1437	 *
1438	 * If the Global config lock resource is held by some other driver, the
1439	 * command completes with ICE_AQ_RES_GLBL_IN_PROG in the status field
1440	 * and the timeout field indicates the maximum time the current owner
1441	 * of the resource has to free it.
1442	 */
1443	if (res == ICE_GLOBAL_CFG_LOCK_RES_ID) {
1444		if (le16_to_cpu(cmd_resp->status) == ICE_AQ_RES_GLBL_SUCCESS) {
1445			*timeout = le32_to_cpu(cmd_resp->timeout);
1446			return 0;
1447		} else if (le16_to_cpu(cmd_resp->status) ==
1448			   ICE_AQ_RES_GLBL_IN_PROG) {
1449			*timeout = le32_to_cpu(cmd_resp->timeout);
1450			return ICE_ERR_AQ_ERROR;
1451		} else if (le16_to_cpu(cmd_resp->status) ==
1452			   ICE_AQ_RES_GLBL_DONE) {
1453			return ICE_ERR_AQ_NO_WORK;
1454		}
1455
1456		/* invalid FW response, force a timeout immediately */
1457		*timeout = 0;
1458		return ICE_ERR_AQ_ERROR;
1459	}
1460
1461	/* If the resource is held by some other driver, the command completes
1462	 * with a busy return value and the timeout field indicates the maximum
1463	 * time the current owner of the resource has to free it.
1464	 */
1465	if (!status || hw->adminq.sq_last_status == ICE_AQ_RC_EBUSY)
1466		*timeout = le32_to_cpu(cmd_resp->timeout);
1467
1468	return status;
1469}
1470
1471/**
1472 * ice_aq_release_res
1473 * @hw: pointer to the HW struct
1474 * @res: resource ID
1475 * @sdp_number: resource number
1476 * @cd: pointer to command details structure or NULL
1477 *
1478 * release common resource using the admin queue commands (0x0009)
1479 */
1480static enum ice_status
1481ice_aq_release_res(struct ice_hw *hw, enum ice_aq_res_ids res, u8 sdp_number,
1482		   struct ice_sq_cd *cd)
1483{
1484	struct ice_aqc_req_res *cmd;
1485	struct ice_aq_desc desc;
1486
1487	cmd = &desc.params.res_owner;
1488
1489	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_release_res);
1490
1491	cmd->res_id = cpu_to_le16(res);
1492	cmd->res_number = cpu_to_le32(sdp_number);
1493
1494	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1495}
1496
1497/**
1498 * ice_acquire_res
1499 * @hw: pointer to the HW structure
1500 * @res: resource ID
1501 * @access: access type (read or write)
1502 * @timeout: timeout in milliseconds
1503 *
1504 * This function will attempt to acquire the ownership of a resource.
1505 */
1506enum ice_status
1507ice_acquire_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1508		enum ice_aq_res_access_type access, u32 timeout)
1509{
1510#define ICE_RES_POLLING_DELAY_MS	10
1511	u32 delay = ICE_RES_POLLING_DELAY_MS;
1512	u32 time_left = timeout;
1513	enum ice_status status;
1514
1515	status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
1516
1517	/* A return code of ICE_ERR_AQ_NO_WORK means that another driver has
1518	 * previously acquired the resource and performed any necessary updates;
1519	 * in this case the caller does not obtain the resource and has no
1520	 * further work to do.
1521	 */
1522	if (status == ICE_ERR_AQ_NO_WORK)
1523		goto ice_acquire_res_exit;
1524
1525	if (status)
1526		ice_debug(hw, ICE_DBG_RES,
1527			  "resource %d acquire type %d failed.\n", res, access);
1528
1529	/* If necessary, poll until the current lock owner timeouts */
1530	timeout = time_left;
1531	while (status && timeout && time_left) {
1532		mdelay(delay);
1533		timeout = (timeout > delay) ? timeout - delay : 0;
1534		status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
1535
1536		if (status == ICE_ERR_AQ_NO_WORK)
1537			/* lock free, but no work to do */
1538			break;
1539
1540		if (!status)
1541			/* lock acquired */
1542			break;
1543	}
1544	if (status && status != ICE_ERR_AQ_NO_WORK)
1545		ice_debug(hw, ICE_DBG_RES, "resource acquire timed out.\n");
1546
1547ice_acquire_res_exit:
1548	if (status == ICE_ERR_AQ_NO_WORK) {
1549		if (access == ICE_RES_WRITE)
1550			ice_debug(hw, ICE_DBG_RES,
1551				  "resource indicates no work to do.\n");
1552		else
1553			ice_debug(hw, ICE_DBG_RES,
1554				  "Warning: ICE_ERR_AQ_NO_WORK not expected\n");
1555	}
1556	return status;
1557}
1558
1559/**
1560 * ice_release_res
1561 * @hw: pointer to the HW structure
1562 * @res: resource ID
1563 *
1564 * This function will release a resource using the proper Admin Command.
1565 */
1566void ice_release_res(struct ice_hw *hw, enum ice_aq_res_ids res)
1567{
1568	enum ice_status status;
1569	u32 total_delay = 0;
1570
1571	status = ice_aq_release_res(hw, res, 0, NULL);
1572
1573	/* there are some rare cases when trying to release the resource
1574	 * results in an admin queue timeout, so handle them correctly
1575	 */
1576	while ((status == ICE_ERR_AQ_TIMEOUT) &&
1577	       (total_delay < hw->adminq.sq_cmd_timeout)) {
1578		mdelay(1);
1579		status = ice_aq_release_res(hw, res, 0, NULL);
1580		total_delay++;
1581	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1582}
1583
1584/**
1585 * ice_get_num_per_func - determine number of resources per PF
1586 * @hw: pointer to the HW structure
1587 * @max: value to be evenly split between each PF
1588 *
1589 * Determine the number of valid functions by going through the bitmap returned
1590 * from parsing capabilities and use this to calculate the number of resources
1591 * per PF based on the max value passed in.
1592 */
1593static u32 ice_get_num_per_func(struct ice_hw *hw, u32 max)
1594{
1595	u8 funcs;
1596
1597#define ICE_CAPS_VALID_FUNCS_M	0xFF
1598	funcs = hweight8(hw->dev_caps.common_cap.valid_functions &
1599			 ICE_CAPS_VALID_FUNCS_M);
1600
1601	if (!funcs)
1602		return 0;
1603
1604	return max / funcs;
1605}
1606
1607/**
1608 * ice_parse_caps - parse function/device capabilities
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1609 * @hw: pointer to the HW struct
1610 * @buf: pointer to a buffer containing function/device capability records
1611 * @cap_count: number of capability records in the list
1612 * @opc: type of capabilities list to parse
 
 
 
 
1613 *
1614 * Helper function to parse function(0x000a)/device(0x000b) capabilities list.
 
1615 */
1616static void
1617ice_parse_caps(struct ice_hw *hw, void *buf, u32 cap_count,
1618	       enum ice_adminq_opc opc)
1619{
1620	struct ice_aqc_list_caps_elem *cap_resp;
1621	struct ice_hw_func_caps *func_p = NULL;
1622	struct ice_hw_dev_caps *dev_p = NULL;
1623	struct ice_hw_common_caps *caps;
1624	char const *prefix;
1625	u32 i;
1626
1627	if (!buf)
1628		return;
 
 
 
 
 
1629
1630	cap_resp = (struct ice_aqc_list_caps_elem *)buf;
 
1631
1632	if (opc == ice_aqc_opc_list_dev_caps) {
1633		dev_p = &hw->dev_caps;
1634		caps = &dev_p->common_cap;
1635		prefix = "dev cap";
1636	} else if (opc == ice_aqc_opc_list_func_caps) {
1637		func_p = &hw->func_caps;
1638		caps = &func_p->common_cap;
1639		prefix = "func cap";
1640	} else {
1641		ice_debug(hw, ICE_DBG_INIT, "wrong opcode\n");
1642		return;
 
 
 
 
 
 
 
 
 
1643	}
1644
1645	for (i = 0; caps && i < cap_count; i++, cap_resp++) {
1646		u32 logical_id = le32_to_cpu(cap_resp->logical_id);
1647		u32 phys_id = le32_to_cpu(cap_resp->phys_id);
1648		u32 number = le32_to_cpu(cap_resp->number);
1649		u16 cap = le16_to_cpu(cap_resp->cap);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1650
1651		switch (cap) {
1652		case ICE_AQC_CAPS_VALID_FUNCTIONS:
1653			caps->valid_functions = number;
1654			ice_debug(hw, ICE_DBG_INIT,
1655				  "%s: valid_functions (bitmap) = %d\n", prefix,
1656				  caps->valid_functions);
1657			break;
1658		case ICE_AQC_CAPS_SRIOV:
1659			caps->sr_iov_1_1 = (number == 1);
1660			ice_debug(hw, ICE_DBG_INIT,
1661				  "%s: sr_iov_1_1 = %d\n", prefix,
1662				  caps->sr_iov_1_1);
1663			break;
1664		case ICE_AQC_CAPS_VF:
1665			if (dev_p) {
1666				dev_p->num_vfs_exposed = number;
1667				ice_debug(hw, ICE_DBG_INIT,
1668					  "%s: num_vfs_exposed = %d\n", prefix,
1669					  dev_p->num_vfs_exposed);
1670			} else if (func_p) {
1671				func_p->num_allocd_vfs = number;
1672				func_p->vf_base_id = logical_id;
1673				ice_debug(hw, ICE_DBG_INIT,
1674					  "%s: num_allocd_vfs = %d\n", prefix,
1675					  func_p->num_allocd_vfs);
1676				ice_debug(hw, ICE_DBG_INIT,
1677					  "%s: vf_base_id = %d\n", prefix,
1678					  func_p->vf_base_id);
1679			}
1680			break;
1681		case ICE_AQC_CAPS_VSI:
1682			if (dev_p) {
1683				dev_p->num_vsi_allocd_to_host = number;
1684				ice_debug(hw, ICE_DBG_INIT,
1685					  "%s: num_vsi_allocd_to_host = %d\n",
1686					  prefix,
1687					  dev_p->num_vsi_allocd_to_host);
1688			} else if (func_p) {
1689				func_p->guar_num_vsi =
1690					ice_get_num_per_func(hw, ICE_MAX_VSI);
1691				ice_debug(hw, ICE_DBG_INIT,
1692					  "%s: guar_num_vsi (fw) = %d\n",
1693					  prefix, number);
1694				ice_debug(hw, ICE_DBG_INIT,
1695					  "%s: guar_num_vsi = %d\n",
1696					  prefix, func_p->guar_num_vsi);
1697			}
1698			break;
1699		case ICE_AQC_CAPS_DCB:
1700			caps->dcb = (number == 1);
1701			caps->active_tc_bitmap = logical_id;
1702			caps->maxtc = phys_id;
1703			ice_debug(hw, ICE_DBG_INIT,
1704				  "%s: dcb = %d\n", prefix, caps->dcb);
1705			ice_debug(hw, ICE_DBG_INIT,
1706				  "%s: active_tc_bitmap = %d\n", prefix,
1707				  caps->active_tc_bitmap);
1708			ice_debug(hw, ICE_DBG_INIT,
1709				  "%s: maxtc = %d\n", prefix, caps->maxtc);
1710			break;
1711		case ICE_AQC_CAPS_RSS:
1712			caps->rss_table_size = number;
1713			caps->rss_table_entry_width = logical_id;
1714			ice_debug(hw, ICE_DBG_INIT,
1715				  "%s: rss_table_size = %d\n", prefix,
1716				  caps->rss_table_size);
1717			ice_debug(hw, ICE_DBG_INIT,
1718				  "%s: rss_table_entry_width = %d\n", prefix,
1719				  caps->rss_table_entry_width);
1720			break;
1721		case ICE_AQC_CAPS_RXQS:
1722			caps->num_rxq = number;
1723			caps->rxq_first_id = phys_id;
1724			ice_debug(hw, ICE_DBG_INIT,
1725				  "%s: num_rxq = %d\n", prefix,
1726				  caps->num_rxq);
1727			ice_debug(hw, ICE_DBG_INIT,
1728				  "%s: rxq_first_id = %d\n", prefix,
1729				  caps->rxq_first_id);
1730			break;
1731		case ICE_AQC_CAPS_TXQS:
1732			caps->num_txq = number;
1733			caps->txq_first_id = phys_id;
1734			ice_debug(hw, ICE_DBG_INIT,
1735				  "%s: num_txq = %d\n", prefix,
1736				  caps->num_txq);
1737			ice_debug(hw, ICE_DBG_INIT,
1738				  "%s: txq_first_id = %d\n", prefix,
1739				  caps->txq_first_id);
1740			break;
1741		case ICE_AQC_CAPS_MSIX:
1742			caps->num_msix_vectors = number;
1743			caps->msix_vector_first_id = phys_id;
1744			ice_debug(hw, ICE_DBG_INIT,
1745				  "%s: num_msix_vectors = %d\n", prefix,
1746				  caps->num_msix_vectors);
1747			ice_debug(hw, ICE_DBG_INIT,
1748				  "%s: msix_vector_first_id = %d\n", prefix,
1749				  caps->msix_vector_first_id);
1750			break;
1751		case ICE_AQC_CAPS_MAX_MTU:
1752			caps->max_mtu = number;
1753			ice_debug(hw, ICE_DBG_INIT, "%s: max_mtu = %d\n",
1754				  prefix, caps->max_mtu);
1755			break;
1756		default:
1757			ice_debug(hw, ICE_DBG_INIT,
1758				  "%s: unknown capability[%d]: 0x%x\n", prefix,
1759				  i, cap);
 
1760			break;
1761		}
1762	}
 
 
1763}
1764
1765/**
1766 * ice_aq_discover_caps - query function/device capabilities
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1767 * @hw: pointer to the HW struct
1768 * @buf: a virtual buffer to hold the capabilities
1769 * @buf_size: Size of the virtual buffer
1770 * @cap_count: cap count needed if AQ err==ENOMEM
1771 * @opc: capabilities type to discover - pass in the command opcode
1772 * @cd: pointer to command details structure or NULL
1773 *
1774 * Get the function(0x000a)/device(0x000b) capabilities description from
1775 * the firmware.
1776 */
1777static enum ice_status
1778ice_aq_discover_caps(struct ice_hw *hw, void *buf, u16 buf_size, u32 *cap_count,
1779		     enum ice_adminq_opc opc, struct ice_sq_cd *cd)
 
 
 
 
 
 
 
1780{
1781	struct ice_aqc_list_caps *cmd;
1782	struct ice_aq_desc desc;
1783	enum ice_status status;
1784
1785	cmd = &desc.params.get_cap;
1786
1787	if (opc != ice_aqc_opc_list_func_caps &&
1788	    opc != ice_aqc_opc_list_dev_caps)
1789		return ICE_ERR_PARAM;
1790
1791	ice_fill_dflt_direct_cmd_desc(&desc, opc);
 
1792
1793	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
1794	if (!status)
1795		ice_parse_caps(hw, buf, le32_to_cpu(cmd->count), opc);
1796	else if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOMEM)
1797		*cap_count = le32_to_cpu(cmd->count);
 
1798	return status;
1799}
1800
1801/**
1802 * ice_discover_caps - get info about the HW
1803 * @hw: pointer to the hardware structure
1804 * @opc: capabilities type to discover - pass in the command opcode
 
 
 
1805 */
1806static enum ice_status
1807ice_discover_caps(struct ice_hw *hw, enum ice_adminq_opc opc)
1808{
1809	enum ice_status status;
1810	u32 cap_count;
1811	u16 cbuf_len;
1812	u8 retries;
1813
1814	/* The driver doesn't know how many capabilities the device will return
1815	 * so the buffer size required isn't known ahead of time. The driver
1816	 * starts with cbuf_len and if this turns out to be insufficient, the
1817	 * device returns ICE_AQ_RC_ENOMEM and also the cap_count it needs.
1818	 * The driver then allocates the buffer based on the count and retries
1819	 * the operation. So it follows that the retry count is 2.
1820	 */
1821#define ICE_GET_CAP_BUF_COUNT	40
1822#define ICE_GET_CAP_RETRY_COUNT	2
1823
1824	cap_count = ICE_GET_CAP_BUF_COUNT;
1825	retries = ICE_GET_CAP_RETRY_COUNT;
 
 
 
1826
1827	do {
1828		void *cbuf;
1829
1830		cbuf_len = (u16)(cap_count *
1831				 sizeof(struct ice_aqc_list_caps_elem));
1832		cbuf = devm_kzalloc(ice_hw_to_dev(hw), cbuf_len, GFP_KERNEL);
1833		if (!cbuf)
1834			return ICE_ERR_NO_MEMORY;
 
 
 
 
 
 
 
 
 
1835
1836		status = ice_aq_discover_caps(hw, cbuf, cbuf_len, &cap_count,
1837					      opc, NULL);
1838		devm_kfree(ice_hw_to_dev(hw), cbuf);
1839
1840		if (!status || hw->adminq.sq_last_status != ICE_AQ_RC_ENOMEM)
1841			break;
 
 
 
1842
1843		/* If ENOMEM is returned, try again with bigger buffer */
1844	} while (--retries);
 
 
 
1845
1846	return status;
1847}
1848
1849/**
1850 * ice_set_safe_mode_caps - Override dev/func capabilities when in safe mode
1851 * @hw: pointer to the hardware structure
1852 */
1853void ice_set_safe_mode_caps(struct ice_hw *hw)
1854{
1855	struct ice_hw_func_caps *func_caps = &hw->func_caps;
1856	struct ice_hw_dev_caps *dev_caps = &hw->dev_caps;
1857	u32 valid_func, rxq_first_id, txq_first_id;
1858	u32 msix_vector_first_id, max_mtu;
1859	u32 num_func = 0;
1860	u8 i;
1861
1862	/* cache some func_caps values that should be restored after memset */
1863	valid_func = func_caps->common_cap.valid_functions;
1864	txq_first_id = func_caps->common_cap.txq_first_id;
1865	rxq_first_id = func_caps->common_cap.rxq_first_id;
1866	msix_vector_first_id = func_caps->common_cap.msix_vector_first_id;
1867	max_mtu = func_caps->common_cap.max_mtu;
1868
1869	/* unset func capabilities */
1870	memset(func_caps, 0, sizeof(*func_caps));
1871
 
 
 
1872	/* restore cached values */
1873	func_caps->common_cap.valid_functions = valid_func;
1874	func_caps->common_cap.txq_first_id = txq_first_id;
1875	func_caps->common_cap.rxq_first_id = rxq_first_id;
1876	func_caps->common_cap.msix_vector_first_id = msix_vector_first_id;
1877	func_caps->common_cap.max_mtu = max_mtu;
 
 
 
 
1878
1879	/* one Tx and one Rx queue in safe mode */
1880	func_caps->common_cap.num_rxq = 1;
1881	func_caps->common_cap.num_txq = 1;
1882
1883	/* two MSIX vectors, one for traffic and one for misc causes */
1884	func_caps->common_cap.num_msix_vectors = 2;
1885	func_caps->guar_num_vsi = 1;
1886
1887	/* cache some dev_caps values that should be restored after memset */
1888	valid_func = dev_caps->common_cap.valid_functions;
1889	txq_first_id = dev_caps->common_cap.txq_first_id;
1890	rxq_first_id = dev_caps->common_cap.rxq_first_id;
1891	msix_vector_first_id = dev_caps->common_cap.msix_vector_first_id;
1892	max_mtu = dev_caps->common_cap.max_mtu;
1893
1894	/* unset dev capabilities */
1895	memset(dev_caps, 0, sizeof(*dev_caps));
1896
 
 
 
1897	/* restore cached values */
1898	dev_caps->common_cap.valid_functions = valid_func;
1899	dev_caps->common_cap.txq_first_id = txq_first_id;
1900	dev_caps->common_cap.rxq_first_id = rxq_first_id;
1901	dev_caps->common_cap.msix_vector_first_id = msix_vector_first_id;
1902	dev_caps->common_cap.max_mtu = max_mtu;
1903
1904	/* valid_func is a bitmap. get number of functions */
1905#define ICE_MAX_FUNCS 8
1906	for (i = 0; i < ICE_MAX_FUNCS; i++)
1907		if (valid_func & BIT(i))
1908			num_func++;
1909
1910	/* one Tx and one Rx queue per function in safe mode */
1911	dev_caps->common_cap.num_rxq = num_func;
1912	dev_caps->common_cap.num_txq = num_func;
1913
1914	/* two MSIX vectors per function */
1915	dev_caps->common_cap.num_msix_vectors = 2 * num_func;
1916}
1917
1918/**
1919 * ice_get_caps - get info about the HW
1920 * @hw: pointer to the hardware structure
1921 */
1922enum ice_status ice_get_caps(struct ice_hw *hw)
1923{
1924	enum ice_status status;
1925
1926	status = ice_discover_caps(hw, ice_aqc_opc_list_dev_caps);
1927	if (!status)
1928		status = ice_discover_caps(hw, ice_aqc_opc_list_func_caps);
1929
1930	return status;
1931}
1932
1933/**
1934 * ice_aq_manage_mac_write - manage MAC address write command
1935 * @hw: pointer to the HW struct
1936 * @mac_addr: MAC address to be written as LAA/LAA+WoL/Port address
1937 * @flags: flags to control write behavior
1938 * @cd: pointer to command details structure or NULL
1939 *
1940 * This function is used to write MAC address to the NVM (0x0108).
1941 */
1942enum ice_status
1943ice_aq_manage_mac_write(struct ice_hw *hw, const u8 *mac_addr, u8 flags,
1944			struct ice_sq_cd *cd)
1945{
1946	struct ice_aqc_manage_mac_write *cmd;
1947	struct ice_aq_desc desc;
1948
1949	cmd = &desc.params.mac_write;
1950	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_write);
1951
1952	cmd->flags = flags;
1953
1954	/* Prep values for flags, sah, sal */
1955	cmd->sah = htons(*((const u16 *)mac_addr));
1956	cmd->sal = htonl(*((const u32 *)(mac_addr + 2)));
1957
1958	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1959}
1960
1961/**
1962 * ice_aq_clear_pxe_mode
1963 * @hw: pointer to the HW struct
1964 *
1965 * Tell the firmware that the driver is taking over from PXE (0x0110).
1966 */
1967static enum ice_status ice_aq_clear_pxe_mode(struct ice_hw *hw)
1968{
1969	struct ice_aq_desc desc;
1970
1971	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pxe_mode);
1972	desc.params.clear_pxe.rx_cnt = ICE_AQC_CLEAR_PXE_RX_CNT;
1973
1974	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
1975}
1976
1977/**
1978 * ice_clear_pxe_mode - clear pxe operations mode
1979 * @hw: pointer to the HW struct
1980 *
1981 * Make sure all PXE mode settings are cleared, including things
1982 * like descriptor fetch/write-back mode.
1983 */
1984void ice_clear_pxe_mode(struct ice_hw *hw)
1985{
1986	if (ice_check_sq_alive(hw, &hw->adminq))
1987		ice_aq_clear_pxe_mode(hw);
1988}
1989
1990/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1991 * ice_get_link_speed_based_on_phy_type - returns link speed
1992 * @phy_type_low: lower part of phy_type
1993 * @phy_type_high: higher part of phy_type
1994 *
1995 * This helper function will convert an entry in PHY type structure
1996 * [phy_type_low, phy_type_high] to its corresponding link speed.
1997 * Note: In the structure of [phy_type_low, phy_type_high], there should
1998 * be one bit set, as this function will convert one PHY type to its
1999 * speed.
2000 * If no bit gets set, ICE_LINK_SPEED_UNKNOWN will be returned
2001 * If more than one bit gets set, ICE_LINK_SPEED_UNKNOWN will be returned
 
 
 
2002 */
2003static u16
2004ice_get_link_speed_based_on_phy_type(u64 phy_type_low, u64 phy_type_high)
2005{
2006	u16 speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
2007	u16 speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
2008
2009	switch (phy_type_low) {
2010	case ICE_PHY_TYPE_LOW_100BASE_TX:
2011	case ICE_PHY_TYPE_LOW_100M_SGMII:
2012		speed_phy_type_low = ICE_AQ_LINK_SPEED_100MB;
2013		break;
2014	case ICE_PHY_TYPE_LOW_1000BASE_T:
2015	case ICE_PHY_TYPE_LOW_1000BASE_SX:
2016	case ICE_PHY_TYPE_LOW_1000BASE_LX:
2017	case ICE_PHY_TYPE_LOW_1000BASE_KX:
2018	case ICE_PHY_TYPE_LOW_1G_SGMII:
2019		speed_phy_type_low = ICE_AQ_LINK_SPEED_1000MB;
2020		break;
2021	case ICE_PHY_TYPE_LOW_2500BASE_T:
2022	case ICE_PHY_TYPE_LOW_2500BASE_X:
2023	case ICE_PHY_TYPE_LOW_2500BASE_KX:
2024		speed_phy_type_low = ICE_AQ_LINK_SPEED_2500MB;
2025		break;
2026	case ICE_PHY_TYPE_LOW_5GBASE_T:
2027	case ICE_PHY_TYPE_LOW_5GBASE_KR:
2028		speed_phy_type_low = ICE_AQ_LINK_SPEED_5GB;
2029		break;
2030	case ICE_PHY_TYPE_LOW_10GBASE_T:
2031	case ICE_PHY_TYPE_LOW_10G_SFI_DA:
2032	case ICE_PHY_TYPE_LOW_10GBASE_SR:
2033	case ICE_PHY_TYPE_LOW_10GBASE_LR:
2034	case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
2035	case ICE_PHY_TYPE_LOW_10G_SFI_AOC_ACC:
2036	case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
2037		speed_phy_type_low = ICE_AQ_LINK_SPEED_10GB;
2038		break;
2039	case ICE_PHY_TYPE_LOW_25GBASE_T:
2040	case ICE_PHY_TYPE_LOW_25GBASE_CR:
2041	case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
2042	case ICE_PHY_TYPE_LOW_25GBASE_CR1:
2043	case ICE_PHY_TYPE_LOW_25GBASE_SR:
2044	case ICE_PHY_TYPE_LOW_25GBASE_LR:
2045	case ICE_PHY_TYPE_LOW_25GBASE_KR:
2046	case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
2047	case ICE_PHY_TYPE_LOW_25GBASE_KR1:
2048	case ICE_PHY_TYPE_LOW_25G_AUI_AOC_ACC:
2049	case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
2050		speed_phy_type_low = ICE_AQ_LINK_SPEED_25GB;
2051		break;
2052	case ICE_PHY_TYPE_LOW_40GBASE_CR4:
2053	case ICE_PHY_TYPE_LOW_40GBASE_SR4:
2054	case ICE_PHY_TYPE_LOW_40GBASE_LR4:
2055	case ICE_PHY_TYPE_LOW_40GBASE_KR4:
2056	case ICE_PHY_TYPE_LOW_40G_XLAUI_AOC_ACC:
2057	case ICE_PHY_TYPE_LOW_40G_XLAUI:
2058		speed_phy_type_low = ICE_AQ_LINK_SPEED_40GB;
2059		break;
2060	case ICE_PHY_TYPE_LOW_50GBASE_CR2:
2061	case ICE_PHY_TYPE_LOW_50GBASE_SR2:
2062	case ICE_PHY_TYPE_LOW_50GBASE_LR2:
2063	case ICE_PHY_TYPE_LOW_50GBASE_KR2:
2064	case ICE_PHY_TYPE_LOW_50G_LAUI2_AOC_ACC:
2065	case ICE_PHY_TYPE_LOW_50G_LAUI2:
2066	case ICE_PHY_TYPE_LOW_50G_AUI2_AOC_ACC:
2067	case ICE_PHY_TYPE_LOW_50G_AUI2:
2068	case ICE_PHY_TYPE_LOW_50GBASE_CP:
2069	case ICE_PHY_TYPE_LOW_50GBASE_SR:
2070	case ICE_PHY_TYPE_LOW_50GBASE_FR:
2071	case ICE_PHY_TYPE_LOW_50GBASE_LR:
2072	case ICE_PHY_TYPE_LOW_50GBASE_KR_PAM4:
2073	case ICE_PHY_TYPE_LOW_50G_AUI1_AOC_ACC:
2074	case ICE_PHY_TYPE_LOW_50G_AUI1:
2075		speed_phy_type_low = ICE_AQ_LINK_SPEED_50GB;
2076		break;
2077	case ICE_PHY_TYPE_LOW_100GBASE_CR4:
2078	case ICE_PHY_TYPE_LOW_100GBASE_SR4:
2079	case ICE_PHY_TYPE_LOW_100GBASE_LR4:
2080	case ICE_PHY_TYPE_LOW_100GBASE_KR4:
2081	case ICE_PHY_TYPE_LOW_100G_CAUI4_AOC_ACC:
2082	case ICE_PHY_TYPE_LOW_100G_CAUI4:
2083	case ICE_PHY_TYPE_LOW_100G_AUI4_AOC_ACC:
2084	case ICE_PHY_TYPE_LOW_100G_AUI4:
2085	case ICE_PHY_TYPE_LOW_100GBASE_CR_PAM4:
2086	case ICE_PHY_TYPE_LOW_100GBASE_KR_PAM4:
2087	case ICE_PHY_TYPE_LOW_100GBASE_CP2:
2088	case ICE_PHY_TYPE_LOW_100GBASE_SR2:
2089	case ICE_PHY_TYPE_LOW_100GBASE_DR:
2090		speed_phy_type_low = ICE_AQ_LINK_SPEED_100GB;
2091		break;
2092	default:
2093		speed_phy_type_low = ICE_AQ_LINK_SPEED_UNKNOWN;
2094		break;
2095	}
2096
2097	switch (phy_type_high) {
2098	case ICE_PHY_TYPE_HIGH_100GBASE_KR2_PAM4:
2099	case ICE_PHY_TYPE_HIGH_100G_CAUI2_AOC_ACC:
2100	case ICE_PHY_TYPE_HIGH_100G_CAUI2:
2101	case ICE_PHY_TYPE_HIGH_100G_AUI2_AOC_ACC:
2102	case ICE_PHY_TYPE_HIGH_100G_AUI2:
2103		speed_phy_type_high = ICE_AQ_LINK_SPEED_100GB;
2104		break;
 
 
 
 
 
 
 
 
 
 
2105	default:
2106		speed_phy_type_high = ICE_AQ_LINK_SPEED_UNKNOWN;
2107		break;
2108	}
2109
2110	if (speed_phy_type_low == ICE_AQ_LINK_SPEED_UNKNOWN &&
2111	    speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
2112		return ICE_AQ_LINK_SPEED_UNKNOWN;
2113	else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
2114		 speed_phy_type_high != ICE_AQ_LINK_SPEED_UNKNOWN)
2115		return ICE_AQ_LINK_SPEED_UNKNOWN;
2116	else if (speed_phy_type_low != ICE_AQ_LINK_SPEED_UNKNOWN &&
2117		 speed_phy_type_high == ICE_AQ_LINK_SPEED_UNKNOWN)
2118		return speed_phy_type_low;
2119	else
2120		return speed_phy_type_high;
2121}
2122
2123/**
2124 * ice_update_phy_type
2125 * @phy_type_low: pointer to the lower part of phy_type
2126 * @phy_type_high: pointer to the higher part of phy_type
2127 * @link_speeds_bitmap: targeted link speeds bitmap
2128 *
2129 * Note: For the link_speeds_bitmap structure, you can check it at
2130 * [ice_aqc_get_link_status->link_speed]. Caller can pass in
2131 * link_speeds_bitmap include multiple speeds.
2132 *
2133 * Each entry in this [phy_type_low, phy_type_high] structure will
2134 * present a certain link speed. This helper function will turn on bits
2135 * in [phy_type_low, phy_type_high] structure based on the value of
2136 * link_speeds_bitmap input parameter.
2137 */
2138void
2139ice_update_phy_type(u64 *phy_type_low, u64 *phy_type_high,
2140		    u16 link_speeds_bitmap)
2141{
2142	u64 pt_high;
2143	u64 pt_low;
2144	int index;
2145	u16 speed;
2146
2147	/* We first check with low part of phy_type */
2148	for (index = 0; index <= ICE_PHY_TYPE_LOW_MAX_INDEX; index++) {
2149		pt_low = BIT_ULL(index);
2150		speed = ice_get_link_speed_based_on_phy_type(pt_low, 0);
2151
2152		if (link_speeds_bitmap & speed)
2153			*phy_type_low |= BIT_ULL(index);
2154	}
2155
2156	/* We then check with high part of phy_type */
2157	for (index = 0; index <= ICE_PHY_TYPE_HIGH_MAX_INDEX; index++) {
2158		pt_high = BIT_ULL(index);
2159		speed = ice_get_link_speed_based_on_phy_type(0, pt_high);
2160
2161		if (link_speeds_bitmap & speed)
2162			*phy_type_high |= BIT_ULL(index);
2163	}
2164}
2165
2166/**
2167 * ice_aq_set_phy_cfg
2168 * @hw: pointer to the HW struct
2169 * @lport: logical port number
2170 * @cfg: structure with PHY configuration data to be set
2171 * @cd: pointer to command details structure or NULL
2172 *
2173 * Set the various PHY configuration parameters supported on the Port.
2174 * One or more of the Set PHY config parameters may be ignored in an MFP
2175 * mode as the PF may not have the privilege to set some of the PHY Config
2176 * parameters. This status will be indicated by the command response (0x0601).
2177 */
2178enum ice_status
2179ice_aq_set_phy_cfg(struct ice_hw *hw, u8 lport,
2180		   struct ice_aqc_set_phy_cfg_data *cfg, struct ice_sq_cd *cd)
2181{
2182	struct ice_aq_desc desc;
 
2183
2184	if (!cfg)
2185		return ICE_ERR_PARAM;
2186
2187	/* Ensure that only valid bits of cfg->caps can be turned on. */
2188	if (cfg->caps & ~ICE_AQ_PHY_ENA_VALID_MASK) {
2189		ice_debug(hw, ICE_DBG_PHY,
2190			  "Invalid bit is set in ice_aqc_set_phy_cfg_data->caps : 0x%x\n",
2191			  cfg->caps);
2192
2193		cfg->caps &= ICE_AQ_PHY_ENA_VALID_MASK;
2194	}
2195
2196	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_phy_cfg);
2197	desc.params.set_phy.lport_num = lport;
2198	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
2199
2200	ice_debug(hw, ICE_DBG_LINK, "phy_type_low = 0x%llx\n",
 
2201		  (unsigned long long)le64_to_cpu(cfg->phy_type_low));
2202	ice_debug(hw, ICE_DBG_LINK, "phy_type_high = 0x%llx\n",
2203		  (unsigned long long)le64_to_cpu(cfg->phy_type_high));
2204	ice_debug(hw, ICE_DBG_LINK, "caps = 0x%x\n", cfg->caps);
2205	ice_debug(hw, ICE_DBG_LINK, "low_power_ctrl = 0x%x\n",
2206		  cfg->low_power_ctrl);
2207	ice_debug(hw, ICE_DBG_LINK, "eee_cap = 0x%x\n", cfg->eee_cap);
2208	ice_debug(hw, ICE_DBG_LINK, "eeer_value = 0x%x\n", cfg->eeer_value);
2209	ice_debug(hw, ICE_DBG_LINK, "link_fec_opt = 0x%x\n", cfg->link_fec_opt);
 
 
 
 
 
2210
2211	return ice_aq_send_cmd(hw, &desc, cfg, sizeof(*cfg), cd);
 
 
 
2212}
2213
2214/**
2215 * ice_update_link_info - update status of the HW network link
2216 * @pi: port info structure of the interested logical port
2217 */
2218enum ice_status ice_update_link_info(struct ice_port_info *pi)
2219{
2220	struct ice_link_status *li;
2221	enum ice_status status;
2222
2223	if (!pi)
2224		return ICE_ERR_PARAM;
2225
2226	li = &pi->phy.link_info;
2227
2228	status = ice_aq_get_link_info(pi, true, NULL, NULL);
2229	if (status)
2230		return status;
2231
2232	if (li->link_info & ICE_AQ_MEDIA_AVAILABLE) {
2233		struct ice_aqc_get_phy_caps_data *pcaps;
2234		struct ice_hw *hw;
2235
2236		hw = pi->hw;
2237		pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps),
2238				     GFP_KERNEL);
2239		if (!pcaps)
2240			return ICE_ERR_NO_MEMORY;
2241
2242		status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP,
2243					     pcaps, NULL);
2244		if (!status)
2245			memcpy(li->module_type, &pcaps->module_type,
2246			       sizeof(li->module_type));
2247
2248		devm_kfree(ice_hw_to_dev(hw), pcaps);
2249	}
2250
2251	return status;
2252}
2253
2254/**
2255 * ice_set_fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2256 * @pi: port information structure
2257 * @aq_failures: pointer to status code, specific to ice_set_fc routine
2258 * @ena_auto_link_update: enable automatic link update
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2259 *
2260 * Set the requested flow control mode.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2261 */
2262enum ice_status
2263ice_set_fc(struct ice_port_info *pi, u8 *aq_failures, bool ena_auto_link_update)
 
2264{
2265	struct ice_aqc_set_phy_cfg_data cfg = { 0 };
2266	struct ice_aqc_get_phy_caps_data *pcaps;
2267	enum ice_status status;
2268	u8 pause_mask = 0x0;
2269	struct ice_hw *hw;
2270
2271	if (!pi)
2272		return ICE_ERR_PARAM;
2273	hw = pi->hw;
2274	*aq_failures = ICE_SET_FC_AQ_FAIL_NONE;
2275
2276	switch (pi->fc.req_mode) {
2277	case ICE_FC_FULL:
2278		pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
2279		pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
2280		break;
2281	case ICE_FC_RX_PAUSE:
2282		pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
2283		break;
2284	case ICE_FC_TX_PAUSE:
2285		pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
2286		break;
2287	default:
2288		break;
2289	}
2290
2291	pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), GFP_KERNEL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2292	if (!pcaps)
2293		return ICE_ERR_NO_MEMORY;
2294
2295	/* Get the current PHY config */
2296	status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_SW_CFG, pcaps,
2297				     NULL);
2298	if (status) {
2299		*aq_failures = ICE_SET_FC_AQ_FAIL_GET;
2300		goto out;
2301	}
2302
2303	/* clear the old pause settings */
2304	cfg.caps = pcaps->caps & ~(ICE_AQC_PHY_EN_TX_LINK_PAUSE |
2305				   ICE_AQC_PHY_EN_RX_LINK_PAUSE);
2306
2307	/* set the new capabilities */
2308	cfg.caps |= pause_mask;
 
 
2309
2310	/* If the capabilities have changed, then set the new config */
2311	if (cfg.caps != pcaps->caps) {
2312		int retry_count, retry_max = 10;
2313
2314		/* Auto restart link so settings take effect */
2315		if (ena_auto_link_update)
2316			cfg.caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
2317		/* Copy over all the old settings */
2318		cfg.phy_type_high = pcaps->phy_type_high;
2319		cfg.phy_type_low = pcaps->phy_type_low;
2320		cfg.low_power_ctrl = pcaps->low_power_ctrl;
2321		cfg.eee_cap = pcaps->eee_cap;
2322		cfg.eeer_value = pcaps->eeer_value;
2323		cfg.link_fec_opt = pcaps->link_fec_options;
2324
2325		status = ice_aq_set_phy_cfg(hw, pi->lport, &cfg, NULL);
2326		if (status) {
2327			*aq_failures = ICE_SET_FC_AQ_FAIL_SET;
2328			goto out;
2329		}
2330
2331		/* Update the link info
2332		 * It sometimes takes a really long time for link to
2333		 * come back from the atomic reset. Thus, we wait a
2334		 * little bit.
2335		 */
2336		for (retry_count = 0; retry_count < retry_max; retry_count++) {
2337			status = ice_update_link_info(pi);
2338
2339			if (!status)
2340				break;
2341
2342			mdelay(100);
2343		}
2344
2345		if (status)
2346			*aq_failures = ICE_SET_FC_AQ_FAIL_UPDATE;
2347	}
2348
2349out:
2350	devm_kfree(ice_hw_to_dev(hw), pcaps);
2351	return status;
2352}
2353
2354/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2355 * ice_copy_phy_caps_to_cfg - Copy PHY ability data to configuration data
 
2356 * @caps: PHY ability structure to copy date from
2357 * @cfg: PHY configuration structure to copy data to
2358 *
2359 * Helper function to copy AQC PHY get ability data to PHY set configuration
2360 * data structure
2361 */
2362void
2363ice_copy_phy_caps_to_cfg(struct ice_aqc_get_phy_caps_data *caps,
 
2364			 struct ice_aqc_set_phy_cfg_data *cfg)
2365{
2366	if (!caps || !cfg)
2367		return;
2368
 
2369	cfg->phy_type_low = caps->phy_type_low;
2370	cfg->phy_type_high = caps->phy_type_high;
2371	cfg->caps = caps->caps;
2372	cfg->low_power_ctrl = caps->low_power_ctrl;
2373	cfg->eee_cap = caps->eee_cap;
2374	cfg->eeer_value = caps->eeer_value;
2375	cfg->link_fec_opt = caps->link_fec_options;
 
 
2376}
2377
2378/**
2379 * ice_cfg_phy_fec - Configure PHY FEC data based on FEC mode
 
2380 * @cfg: PHY configuration data to set FEC mode
2381 * @fec: FEC mode to configure
2382 *
2383 * Caller should copy ice_aqc_get_phy_caps_data.caps ICE_AQC_PHY_EN_AUTO_FEC
2384 * (bit 7) and ice_aqc_get_phy_caps_data.link_fec_options to cfg.caps
2385 * ICE_AQ_PHY_ENA_AUTO_FEC (bit 7) and cfg.link_fec_options before calling.
2386 */
2387void
2388ice_cfg_phy_fec(struct ice_aqc_set_phy_cfg_data *cfg, enum ice_fec_mode fec)
 
2389{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2390	switch (fec) {
2391	case ICE_FEC_BASER:
2392		/* Clear RS bits, and AND BASE-R ability
2393		 * bits and OR request bits.
2394		 */
2395		cfg->link_fec_opt &= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_EN |
2396				     ICE_AQC_PHY_FEC_25G_KR_CLAUSE74_EN;
2397		cfg->link_fec_opt |= ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ |
2398				     ICE_AQC_PHY_FEC_25G_KR_REQ;
2399		break;
2400	case ICE_FEC_RS:
2401		/* Clear BASE-R bits, and AND RS ability
2402		 * bits and OR request bits.
2403		 */
2404		cfg->link_fec_opt &= ICE_AQC_PHY_FEC_25G_RS_CLAUSE91_EN;
2405		cfg->link_fec_opt |= ICE_AQC_PHY_FEC_25G_RS_528_REQ |
2406				     ICE_AQC_PHY_FEC_25G_RS_544_REQ;
2407		break;
2408	case ICE_FEC_NONE:
2409		/* Clear all FEC option bits. */
2410		cfg->link_fec_opt &= ~ICE_AQC_PHY_FEC_MASK;
2411		break;
2412	case ICE_FEC_AUTO:
2413		/* AND auto FEC bit, and all caps bits. */
2414		cfg->caps &= ICE_AQC_PHY_CAPS_MASK;
 
 
 
 
2415		break;
2416	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2417}
2418
2419/**
2420 * ice_get_link_status - get status of the HW network link
2421 * @pi: port information structure
2422 * @link_up: pointer to bool (true/false = linkup/linkdown)
2423 *
2424 * Variable link_up is true if link is up, false if link is down.
2425 * The variable link_up is invalid if status is non zero. As a
2426 * result of this call, link status reporting becomes enabled
2427 */
2428enum ice_status ice_get_link_status(struct ice_port_info *pi, bool *link_up)
2429{
2430	struct ice_phy_info *phy_info;
2431	enum ice_status status = 0;
2432
2433	if (!pi || !link_up)
2434		return ICE_ERR_PARAM;
2435
2436	phy_info = &pi->phy;
2437
2438	if (phy_info->get_link_info) {
2439		status = ice_update_link_info(pi);
2440
2441		if (status)
2442			ice_debug(pi->hw, ICE_DBG_LINK,
2443				  "get link status error, status = %d\n",
2444				  status);
2445	}
2446
2447	*link_up = phy_info->link_info.link_info & ICE_AQ_LINK_UP;
2448
2449	return status;
2450}
2451
2452/**
2453 * ice_aq_set_link_restart_an
2454 * @pi: pointer to the port information structure
2455 * @ena_link: if true: enable link, if false: disable link
2456 * @cd: pointer to command details structure or NULL
2457 *
2458 * Sets up the link and restarts the Auto-Negotiation over the link.
2459 */
2460enum ice_status
2461ice_aq_set_link_restart_an(struct ice_port_info *pi, bool ena_link,
2462			   struct ice_sq_cd *cd)
2463{
2464	struct ice_aqc_restart_an *cmd;
2465	struct ice_aq_desc desc;
2466
2467	cmd = &desc.params.restart_an;
2468
2469	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_restart_an);
2470
2471	cmd->cmd_flags = ICE_AQC_RESTART_AN_LINK_RESTART;
2472	cmd->lport_num = pi->lport;
2473	if (ena_link)
2474		cmd->cmd_flags |= ICE_AQC_RESTART_AN_LINK_ENABLE;
2475	else
2476		cmd->cmd_flags &= ~ICE_AQC_RESTART_AN_LINK_ENABLE;
2477
2478	return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
2479}
2480
2481/**
2482 * ice_aq_set_event_mask
2483 * @hw: pointer to the HW struct
2484 * @port_num: port number of the physical function
2485 * @mask: event mask to be set
2486 * @cd: pointer to command details structure or NULL
2487 *
2488 * Set event mask (0x0613)
2489 */
2490enum ice_status
2491ice_aq_set_event_mask(struct ice_hw *hw, u8 port_num, u16 mask,
2492		      struct ice_sq_cd *cd)
2493{
2494	struct ice_aqc_set_event_mask *cmd;
2495	struct ice_aq_desc desc;
2496
2497	cmd = &desc.params.set_event_mask;
2498
2499	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_event_mask);
2500
2501	cmd->lport_num = port_num;
2502
2503	cmd->event_mask = cpu_to_le16(mask);
2504	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2505}
2506
2507/**
2508 * ice_aq_set_mac_loopback
2509 * @hw: pointer to the HW struct
2510 * @ena_lpbk: Enable or Disable loopback
2511 * @cd: pointer to command details structure or NULL
2512 *
2513 * Enable/disable loopback on a given port
2514 */
2515enum ice_status
2516ice_aq_set_mac_loopback(struct ice_hw *hw, bool ena_lpbk, struct ice_sq_cd *cd)
2517{
2518	struct ice_aqc_set_mac_lb *cmd;
2519	struct ice_aq_desc desc;
2520
2521	cmd = &desc.params.set_mac_lb;
2522
2523	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_mac_lb);
2524	if (ena_lpbk)
2525		cmd->lb_mode = ICE_AQ_MAC_LB_EN;
2526
2527	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2528}
2529
2530/**
2531 * ice_aq_set_port_id_led
2532 * @pi: pointer to the port information
2533 * @is_orig_mode: is this LED set to original mode (by the net-list)
2534 * @cd: pointer to command details structure or NULL
2535 *
2536 * Set LED value for the given port (0x06e9)
2537 */
2538enum ice_status
2539ice_aq_set_port_id_led(struct ice_port_info *pi, bool is_orig_mode,
2540		       struct ice_sq_cd *cd)
2541{
2542	struct ice_aqc_set_port_id_led *cmd;
2543	struct ice_hw *hw = pi->hw;
2544	struct ice_aq_desc desc;
2545
2546	cmd = &desc.params.set_port_id_led;
2547
2548	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_port_id_led);
2549
2550	if (is_orig_mode)
2551		cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_ORIG;
2552	else
2553		cmd->ident_mode = ICE_AQC_PORT_IDENT_LED_BLINK;
2554
2555	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
2556}
2557
2558/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2559 * __ice_aq_get_set_rss_lut
2560 * @hw: pointer to the hardware structure
2561 * @vsi_id: VSI FW index
2562 * @lut_type: LUT table type
2563 * @lut: pointer to the LUT buffer provided by the caller
2564 * @lut_size: size of the LUT buffer
2565 * @glob_lut_idx: global LUT index
2566 * @set: set true to set the table, false to get the table
2567 *
2568 * Internal function to get (0x0B05) or set (0x0B03) RSS look up table
2569 */
2570static enum ice_status
2571__ice_aq_get_set_rss_lut(struct ice_hw *hw, u16 vsi_id, u8 lut_type, u8 *lut,
2572			 u16 lut_size, u8 glob_lut_idx, bool set)
2573{
2574	struct ice_aqc_get_set_rss_lut *cmd_resp;
 
 
 
 
2575	struct ice_aq_desc desc;
2576	enum ice_status status;
2577	u16 flags = 0;
2578
2579	cmd_resp = &desc.params.get_set_rss_lut;
2580
2581	if (set) {
2582		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_lut);
2583		desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
2584	} else {
2585		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_lut);
2586	}
2587
2588	cmd_resp->vsi_id = cpu_to_le16(((vsi_id <<
2589					 ICE_AQC_GSET_RSS_LUT_VSI_ID_S) &
2590					ICE_AQC_GSET_RSS_LUT_VSI_ID_M) |
2591				       ICE_AQC_GSET_RSS_LUT_VSI_VALID);
2592
2593	switch (lut_type) {
2594	case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI:
2595	case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF:
2596	case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_GLOBAL:
2597		flags |= ((lut_type << ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_S) &
2598			  ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_M);
2599		break;
2600	default:
2601		status = ICE_ERR_PARAM;
2602		goto ice_aq_get_set_rss_lut_exit;
2603	}
2604
2605	if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_GLOBAL) {
2606		flags |= ((glob_lut_idx << ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_S) &
2607			  ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_M);
2608
2609		if (!set)
2610			goto ice_aq_get_set_rss_lut_send;
2611	} else if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF) {
2612		if (!set)
2613			goto ice_aq_get_set_rss_lut_send;
2614	} else {
2615		goto ice_aq_get_set_rss_lut_send;
2616	}
2617
2618	/* LUT size is only valid for Global and PF table types */
2619	switch (lut_size) {
2620	case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_128:
2621		break;
2622	case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_512:
2623		flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_512_FLAG <<
2624			  ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) &
2625			 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M;
2626		break;
2627	case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_2K:
2628		if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF) {
2629			flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_2K_FLAG <<
2630				  ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) &
2631				 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M;
2632			break;
2633		}
2634		/* fall-through */
2635	default:
2636		status = ICE_ERR_PARAM;
2637		goto ice_aq_get_set_rss_lut_exit;
2638	}
2639
2640ice_aq_get_set_rss_lut_send:
2641	cmd_resp->flags = cpu_to_le16(flags);
2642	status = ice_aq_send_cmd(hw, &desc, lut, lut_size, NULL);
2643
2644ice_aq_get_set_rss_lut_exit:
2645	return status;
2646}
2647
2648/**
2649 * ice_aq_get_rss_lut
2650 * @hw: pointer to the hardware structure
2651 * @vsi_handle: software VSI handle
2652 * @lut_type: LUT table type
2653 * @lut: pointer to the LUT buffer provided by the caller
2654 * @lut_size: size of the LUT buffer
2655 *
2656 * get the RSS lookup table, PF or VSI type
2657 */
2658enum ice_status
2659ice_aq_get_rss_lut(struct ice_hw *hw, u16 vsi_handle, u8 lut_type,
2660		   u8 *lut, u16 lut_size)
2661{
2662	if (!ice_is_vsi_valid(hw, vsi_handle) || !lut)
2663		return ICE_ERR_PARAM;
2664
2665	return __ice_aq_get_set_rss_lut(hw, ice_get_hw_vsi_num(hw, vsi_handle),
2666					lut_type, lut, lut_size, 0, false);
2667}
2668
2669/**
2670 * ice_aq_set_rss_lut
2671 * @hw: pointer to the hardware structure
2672 * @vsi_handle: software VSI handle
2673 * @lut_type: LUT table type
2674 * @lut: pointer to the LUT buffer provided by the caller
2675 * @lut_size: size of the LUT buffer
2676 *
2677 * set the RSS lookup table, PF or VSI type
2678 */
2679enum ice_status
2680ice_aq_set_rss_lut(struct ice_hw *hw, u16 vsi_handle, u8 lut_type,
2681		   u8 *lut, u16 lut_size)
2682{
2683	if (!ice_is_vsi_valid(hw, vsi_handle) || !lut)
2684		return ICE_ERR_PARAM;
2685
2686	return __ice_aq_get_set_rss_lut(hw, ice_get_hw_vsi_num(hw, vsi_handle),
2687					lut_type, lut, lut_size, 0, true);
2688}
2689
2690/**
2691 * __ice_aq_get_set_rss_key
2692 * @hw: pointer to the HW struct
2693 * @vsi_id: VSI FW index
2694 * @key: pointer to key info struct
2695 * @set: set true to set the key, false to get the key
2696 *
2697 * get (0x0B04) or set (0x0B02) the RSS key per VSI
2698 */
2699static enum
2700ice_status __ice_aq_get_set_rss_key(struct ice_hw *hw, u16 vsi_id,
2701				    struct ice_aqc_get_set_rss_keys *key,
2702				    bool set)
2703{
2704	struct ice_aqc_get_set_rss_key *cmd_resp;
2705	u16 key_size = sizeof(*key);
2706	struct ice_aq_desc desc;
2707
2708	cmd_resp = &desc.params.get_set_rss_key;
2709
2710	if (set) {
2711		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_key);
2712		desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
2713	} else {
2714		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_key);
2715	}
2716
2717	cmd_resp->vsi_id = cpu_to_le16(((vsi_id <<
2718					 ICE_AQC_GSET_RSS_KEY_VSI_ID_S) &
2719					ICE_AQC_GSET_RSS_KEY_VSI_ID_M) |
2720				       ICE_AQC_GSET_RSS_KEY_VSI_VALID);
2721
2722	return ice_aq_send_cmd(hw, &desc, key, key_size, NULL);
2723}
2724
2725/**
2726 * ice_aq_get_rss_key
2727 * @hw: pointer to the HW struct
2728 * @vsi_handle: software VSI handle
2729 * @key: pointer to key info struct
2730 *
2731 * get the RSS key per VSI
2732 */
2733enum ice_status
2734ice_aq_get_rss_key(struct ice_hw *hw, u16 vsi_handle,
2735		   struct ice_aqc_get_set_rss_keys *key)
2736{
2737	if (!ice_is_vsi_valid(hw, vsi_handle) || !key)
2738		return ICE_ERR_PARAM;
2739
2740	return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
2741					key, false);
2742}
2743
2744/**
2745 * ice_aq_set_rss_key
2746 * @hw: pointer to the HW struct
2747 * @vsi_handle: software VSI handle
2748 * @keys: pointer to key info struct
2749 *
2750 * set the RSS key per VSI
2751 */
2752enum ice_status
2753ice_aq_set_rss_key(struct ice_hw *hw, u16 vsi_handle,
2754		   struct ice_aqc_get_set_rss_keys *keys)
2755{
2756	if (!ice_is_vsi_valid(hw, vsi_handle) || !keys)
2757		return ICE_ERR_PARAM;
2758
2759	return __ice_aq_get_set_rss_key(hw, ice_get_hw_vsi_num(hw, vsi_handle),
2760					keys, true);
2761}
2762
2763/**
2764 * ice_aq_add_lan_txq
2765 * @hw: pointer to the hardware structure
2766 * @num_qgrps: Number of added queue groups
2767 * @qg_list: list of queue groups to be added
2768 * @buf_size: size of buffer for indirect command
2769 * @cd: pointer to command details structure or NULL
2770 *
2771 * Add Tx LAN queue (0x0C30)
2772 *
2773 * NOTE:
2774 * Prior to calling add Tx LAN queue:
2775 * Initialize the following as part of the Tx queue context:
2776 * Completion queue ID if the queue uses Completion queue, Quanta profile,
2777 * Cache profile and Packet shaper profile.
2778 *
2779 * After add Tx LAN queue AQ command is completed:
2780 * Interrupts should be associated with specific queues,
2781 * Association of Tx queue to Doorbell queue is not part of Add LAN Tx queue
2782 * flow.
2783 */
2784static enum ice_status
2785ice_aq_add_lan_txq(struct ice_hw *hw, u8 num_qgrps,
2786		   struct ice_aqc_add_tx_qgrp *qg_list, u16 buf_size,
2787		   struct ice_sq_cd *cd)
2788{
2789	u16 i, sum_header_size, sum_q_size = 0;
2790	struct ice_aqc_add_tx_qgrp *list;
2791	struct ice_aqc_add_txqs *cmd;
2792	struct ice_aq_desc desc;
 
2793
2794	cmd = &desc.params.add_txqs;
2795
2796	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_txqs);
2797
2798	if (!qg_list)
2799		return ICE_ERR_PARAM;
2800
2801	if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
2802		return ICE_ERR_PARAM;
2803
2804	sum_header_size = num_qgrps *
2805		(sizeof(*qg_list) - sizeof(*qg_list->txqs));
2806
2807	list = qg_list;
2808	for (i = 0; i < num_qgrps; i++) {
2809		struct ice_aqc_add_txqs_perq *q = list->txqs;
2810
2811		sum_q_size += list->num_txqs * sizeof(*q);
2812		list = (struct ice_aqc_add_tx_qgrp *)(q + list->num_txqs);
 
 
2813	}
2814
2815	if (buf_size != (sum_header_size + sum_q_size))
2816		return ICE_ERR_PARAM;
2817
2818	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
2819
2820	cmd->num_qgrps = num_qgrps;
2821
2822	return ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
2823}
2824
2825/**
2826 * ice_aq_dis_lan_txq
2827 * @hw: pointer to the hardware structure
2828 * @num_qgrps: number of groups in the list
2829 * @qg_list: the list of groups to disable
2830 * @buf_size: the total size of the qg_list buffer in bytes
2831 * @rst_src: if called due to reset, specifies the reset source
2832 * @vmvf_num: the relative VM or VF number that is undergoing the reset
2833 * @cd: pointer to command details structure or NULL
2834 *
2835 * Disable LAN Tx queue (0x0C31)
2836 */
2837static enum ice_status
2838ice_aq_dis_lan_txq(struct ice_hw *hw, u8 num_qgrps,
2839		   struct ice_aqc_dis_txq_item *qg_list, u16 buf_size,
2840		   enum ice_disq_rst_src rst_src, u16 vmvf_num,
2841		   struct ice_sq_cd *cd)
2842{
 
2843	struct ice_aqc_dis_txqs *cmd;
2844	struct ice_aq_desc desc;
2845	enum ice_status status;
2846	u16 i, sz = 0;
 
2847
2848	cmd = &desc.params.dis_txqs;
2849	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_dis_txqs);
2850
2851	/* qg_list can be NULL only in VM/VF reset flow */
2852	if (!qg_list && !rst_src)
2853		return ICE_ERR_PARAM;
2854
2855	if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
2856		return ICE_ERR_PARAM;
2857
2858	cmd->num_entries = num_qgrps;
2859
2860	cmd->vmvf_and_timeout = cpu_to_le16((5 << ICE_AQC_Q_DIS_TIMEOUT_S) &
2861					    ICE_AQC_Q_DIS_TIMEOUT_M);
2862
2863	switch (rst_src) {
2864	case ICE_VM_RESET:
2865		cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VM_RESET;
2866		cmd->vmvf_and_timeout |=
2867			cpu_to_le16(vmvf_num & ICE_AQC_Q_DIS_VMVF_NUM_M);
2868		break;
2869	case ICE_VF_RESET:
2870		cmd->cmd_type = ICE_AQC_Q_DIS_CMD_VF_RESET;
2871		/* In this case, FW expects vmvf_num to be absolute VF ID */
2872		cmd->vmvf_and_timeout |=
2873			cpu_to_le16((vmvf_num + hw->func_caps.vf_base_id) &
2874				    ICE_AQC_Q_DIS_VMVF_NUM_M);
2875		break;
2876	case ICE_NO_RESET:
2877	default:
2878		break;
2879	}
2880
 
 
2881	/* flush pipe on time out */
2882	cmd->cmd_type |= ICE_AQC_Q_DIS_CMD_FLUSH_PIPE;
2883	/* If no queue group info, we are in a reset flow. Issue the AQ */
2884	if (!qg_list)
2885		goto do_aq;
2886
2887	/* set RD bit to indicate that command buffer is provided by the driver
2888	 * and it needs to be read by the firmware
2889	 */
2890	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
2891
2892	for (i = 0; i < num_qgrps; ++i) {
2893		/* Calculate the size taken up by the queue IDs in this group */
2894		sz += qg_list[i].num_qs * sizeof(qg_list[i].q_id);
 
 
 
2895
2896		/* Add the size of the group header */
2897		sz += sizeof(qg_list[i]) - sizeof(qg_list[i].q_id);
2898
2899		/* If the num of queues is even, add 2 bytes of padding */
2900		if ((qg_list[i].num_qs % 2) == 0)
2901			sz += 2;
2902	}
2903
2904	if (buf_size != sz)
2905		return ICE_ERR_PARAM;
2906
2907do_aq:
2908	status = ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
2909	if (status) {
2910		if (!qg_list)
2911			ice_debug(hw, ICE_DBG_SCHED, "VM%d disable failed %d\n",
2912				  vmvf_num, hw->adminq.sq_last_status);
2913		else
2914			ice_debug(hw, ICE_DBG_SCHED, "disable queue %d failed %d\n",
2915				  le16_to_cpu(qg_list[0].q_id[0]),
2916				  hw->adminq.sq_last_status);
2917	}
2918	return status;
2919}
2920
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2921/* End of FW Admin Queue command wrappers */
2922
2923/**
2924 * ice_write_byte - write a byte to a packed context structure
2925 * @src_ctx:  the context structure to read from
2926 * @dest_ctx: the context to be written to
2927 * @ce_info:  a description of the struct to be filled
2928 */
2929static void
2930ice_write_byte(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
2931{
2932	u8 src_byte, dest_byte, mask;
2933	u8 *from, *dest;
2934	u16 shift_width;
2935
2936	/* copy from the next struct field */
2937	from = src_ctx + ce_info->offset;
2938
2939	/* prepare the bits and mask */
2940	shift_width = ce_info->lsb % 8;
2941	mask = (u8)(BIT(ce_info->width) - 1);
2942
2943	src_byte = *from;
 
2944	src_byte &= mask;
2945
2946	/* shift to correct alignment */
2947	mask <<= shift_width;
2948	src_byte <<= shift_width;
2949
2950	/* get the current bits from the target bit string */
2951	dest = dest_ctx + (ce_info->lsb / 8);
2952
2953	memcpy(&dest_byte, dest, sizeof(dest_byte));
2954
2955	dest_byte &= ~mask;	/* get the bits not changing */
2956	dest_byte |= src_byte;	/* add in the new bits */
2957
2958	/* put it all back */
2959	memcpy(dest, &dest_byte, sizeof(dest_byte));
2960}
2961
2962/**
2963 * ice_write_word - write a word to a packed context structure
2964 * @src_ctx:  the context structure to read from
2965 * @dest_ctx: the context to be written to
2966 * @ce_info:  a description of the struct to be filled
2967 */
2968static void
2969ice_write_word(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
2970{
2971	u16 src_word, mask;
2972	__le16 dest_word;
2973	u8 *from, *dest;
2974	u16 shift_width;
2975
2976	/* copy from the next struct field */
2977	from = src_ctx + ce_info->offset;
2978
2979	/* prepare the bits and mask */
2980	shift_width = ce_info->lsb % 8;
2981	mask = BIT(ce_info->width) - 1;
2982
2983	/* don't swizzle the bits until after the mask because the mask bits
2984	 * will be in a different bit position on big endian machines
2985	 */
2986	src_word = *(u16 *)from;
 
2987	src_word &= mask;
2988
2989	/* shift to correct alignment */
2990	mask <<= shift_width;
2991	src_word <<= shift_width;
2992
2993	/* get the current bits from the target bit string */
2994	dest = dest_ctx + (ce_info->lsb / 8);
2995
2996	memcpy(&dest_word, dest, sizeof(dest_word));
2997
2998	dest_word &= ~(cpu_to_le16(mask));	/* get the bits not changing */
2999	dest_word |= cpu_to_le16(src_word);	/* add in the new bits */
3000
3001	/* put it all back */
3002	memcpy(dest, &dest_word, sizeof(dest_word));
3003}
3004
3005/**
3006 * ice_write_dword - write a dword to a packed context structure
3007 * @src_ctx:  the context structure to read from
3008 * @dest_ctx: the context to be written to
3009 * @ce_info:  a description of the struct to be filled
3010 */
3011static void
3012ice_write_dword(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
3013{
3014	u32 src_dword, mask;
3015	__le32 dest_dword;
3016	u8 *from, *dest;
3017	u16 shift_width;
3018
3019	/* copy from the next struct field */
3020	from = src_ctx + ce_info->offset;
3021
3022	/* prepare the bits and mask */
3023	shift_width = ce_info->lsb % 8;
3024
3025	/* if the field width is exactly 32 on an x86 machine, then the shift
3026	 * operation will not work because the SHL instructions count is masked
3027	 * to 5 bits so the shift will do nothing
3028	 */
3029	if (ce_info->width < 32)
3030		mask = BIT(ce_info->width) - 1;
3031	else
3032		mask = (u32)~0;
3033
3034	/* don't swizzle the bits until after the mask because the mask bits
3035	 * will be in a different bit position on big endian machines
3036	 */
3037	src_dword = *(u32 *)from;
 
3038	src_dword &= mask;
3039
3040	/* shift to correct alignment */
3041	mask <<= shift_width;
3042	src_dword <<= shift_width;
3043
3044	/* get the current bits from the target bit string */
3045	dest = dest_ctx + (ce_info->lsb / 8);
3046
3047	memcpy(&dest_dword, dest, sizeof(dest_dword));
3048
3049	dest_dword &= ~(cpu_to_le32(mask));	/* get the bits not changing */
3050	dest_dword |= cpu_to_le32(src_dword);	/* add in the new bits */
3051
3052	/* put it all back */
3053	memcpy(dest, &dest_dword, sizeof(dest_dword));
3054}
3055
3056/**
3057 * ice_write_qword - write a qword to a packed context structure
3058 * @src_ctx:  the context structure to read from
3059 * @dest_ctx: the context to be written to
3060 * @ce_info:  a description of the struct to be filled
3061 */
3062static void
3063ice_write_qword(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
3064{
3065	u64 src_qword, mask;
3066	__le64 dest_qword;
3067	u8 *from, *dest;
3068	u16 shift_width;
3069
3070	/* copy from the next struct field */
3071	from = src_ctx + ce_info->offset;
3072
3073	/* prepare the bits and mask */
3074	shift_width = ce_info->lsb % 8;
3075
3076	/* if the field width is exactly 64 on an x86 machine, then the shift
3077	 * operation will not work because the SHL instructions count is masked
3078	 * to 6 bits so the shift will do nothing
3079	 */
3080	if (ce_info->width < 64)
3081		mask = BIT_ULL(ce_info->width) - 1;
3082	else
3083		mask = (u64)~0;
3084
3085	/* don't swizzle the bits until after the mask because the mask bits
3086	 * will be in a different bit position on big endian machines
3087	 */
3088	src_qword = *(u64 *)from;
 
3089	src_qword &= mask;
3090
3091	/* shift to correct alignment */
3092	mask <<= shift_width;
3093	src_qword <<= shift_width;
3094
3095	/* get the current bits from the target bit string */
3096	dest = dest_ctx + (ce_info->lsb / 8);
3097
3098	memcpy(&dest_qword, dest, sizeof(dest_qword));
3099
3100	dest_qword &= ~(cpu_to_le64(mask));	/* get the bits not changing */
3101	dest_qword |= cpu_to_le64(src_qword);	/* add in the new bits */
3102
3103	/* put it all back */
3104	memcpy(dest, &dest_qword, sizeof(dest_qword));
3105}
3106
3107/**
3108 * ice_set_ctx - set context bits in packed structure
 
3109 * @src_ctx:  pointer to a generic non-packed context structure
3110 * @dest_ctx: pointer to memory for the packed structure
3111 * @ce_info:  a description of the structure to be transformed
3112 */
3113enum ice_status
3114ice_set_ctx(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
3115{
3116	int f;
3117
3118	for (f = 0; ce_info[f].width; f++) {
3119		/* We have to deal with each element of the FW response
3120		 * using the correct size so that we are correct regardless
3121		 * of the endianness of the machine.
3122		 */
 
 
 
 
 
3123		switch (ce_info[f].size_of) {
3124		case sizeof(u8):
3125			ice_write_byte(src_ctx, dest_ctx, &ce_info[f]);
3126			break;
3127		case sizeof(u16):
3128			ice_write_word(src_ctx, dest_ctx, &ce_info[f]);
3129			break;
3130		case sizeof(u32):
3131			ice_write_dword(src_ctx, dest_ctx, &ce_info[f]);
3132			break;
3133		case sizeof(u64):
3134			ice_write_qword(src_ctx, dest_ctx, &ce_info[f]);
3135			break;
3136		default:
3137			return ICE_ERR_INVAL_SIZE;
3138		}
3139	}
3140
3141	return 0;
3142}
3143
3144/**
3145 * ice_get_lan_q_ctx - get the LAN queue context for the given VSI and TC
3146 * @hw: pointer to the HW struct
3147 * @vsi_handle: software VSI handle
3148 * @tc: TC number
3149 * @q_handle: software queue handle
3150 */
3151static struct ice_q_ctx *
3152ice_get_lan_q_ctx(struct ice_hw *hw, u16 vsi_handle, u8 tc, u16 q_handle)
3153{
3154	struct ice_vsi_ctx *vsi;
3155	struct ice_q_ctx *q_ctx;
3156
3157	vsi = ice_get_vsi_ctx(hw, vsi_handle);
3158	if (!vsi)
3159		return NULL;
3160	if (q_handle >= vsi->num_lan_q_entries[tc])
3161		return NULL;
3162	if (!vsi->lan_q_ctx[tc])
3163		return NULL;
3164	q_ctx = vsi->lan_q_ctx[tc];
3165	return &q_ctx[q_handle];
3166}
3167
3168/**
3169 * ice_ena_vsi_txq
3170 * @pi: port information structure
3171 * @vsi_handle: software VSI handle
3172 * @tc: TC number
3173 * @q_handle: software queue handle
3174 * @num_qgrps: Number of added queue groups
3175 * @buf: list of queue groups to be added
3176 * @buf_size: size of buffer for indirect command
3177 * @cd: pointer to command details structure or NULL
3178 *
3179 * This function adds one LAN queue
3180 */
3181enum ice_status
3182ice_ena_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u16 q_handle,
3183		u8 num_qgrps, struct ice_aqc_add_tx_qgrp *buf, u16 buf_size,
3184		struct ice_sq_cd *cd)
3185{
3186	struct ice_aqc_txsched_elem_data node = { 0 };
3187	struct ice_sched_node *parent;
3188	struct ice_q_ctx *q_ctx;
3189	enum ice_status status;
3190	struct ice_hw *hw;
 
3191
3192	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
3193		return ICE_ERR_CFG;
3194
3195	if (num_qgrps > 1 || buf->num_txqs > 1)
3196		return ICE_ERR_MAX_LIMIT;
3197
3198	hw = pi->hw;
3199
3200	if (!ice_is_vsi_valid(hw, vsi_handle))
3201		return ICE_ERR_PARAM;
3202
3203	mutex_lock(&pi->sched_lock);
3204
3205	q_ctx = ice_get_lan_q_ctx(hw, vsi_handle, tc, q_handle);
3206	if (!q_ctx) {
3207		ice_debug(hw, ICE_DBG_SCHED, "Enaq: invalid queue handle %d\n",
3208			  q_handle);
3209		status = ICE_ERR_PARAM;
3210		goto ena_txq_exit;
3211	}
3212
3213	/* find a parent node */
3214	parent = ice_sched_get_free_qparent(pi, vsi_handle, tc,
3215					    ICE_SCHED_NODE_OWNER_LAN);
3216	if (!parent) {
3217		status = ICE_ERR_PARAM;
3218		goto ena_txq_exit;
3219	}
3220
3221	buf->parent_teid = parent->info.node_teid;
3222	node.parent_teid = parent->info.node_teid;
3223	/* Mark that the values in the "generic" section as valid. The default
3224	 * value in the "generic" section is zero. This means that :
3225	 * - Scheduling mode is Bytes Per Second (BPS), indicated by Bit 0.
3226	 * - 0 priority among siblings, indicated by Bit 1-3.
3227	 * - WFQ, indicated by Bit 4.
3228	 * - 0 Adjustment value is used in PSM credit update flow, indicated by
3229	 * Bit 5-6.
3230	 * - Bit 7 is reserved.
3231	 * Without setting the generic section as valid in valid_sections, the
3232	 * Admin queue command will fail with error code ICE_AQ_RC_EINVAL.
3233	 */
3234	buf->txqs[0].info.valid_sections = ICE_AQC_ELEM_VALID_GENERIC;
 
 
 
 
 
 
 
 
 
 
 
3235
3236	/* add the LAN queue */
3237	status = ice_aq_add_lan_txq(hw, num_qgrps, buf, buf_size, cd);
3238	if (status) {
3239		ice_debug(hw, ICE_DBG_SCHED, "enable queue %d failed %d\n",
3240			  le16_to_cpu(buf->txqs[0].txq_id),
3241			  hw->adminq.sq_last_status);
3242		goto ena_txq_exit;
3243	}
3244
3245	node.node_teid = buf->txqs[0].q_teid;
3246	node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
3247	q_ctx->q_handle = q_handle;
 
3248
3249	/* add a leaf node into schduler tree queue layer */
3250	status = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1, &node);
 
 
3251
3252ena_txq_exit:
3253	mutex_unlock(&pi->sched_lock);
3254	return status;
3255}
3256
3257/**
3258 * ice_dis_vsi_txq
3259 * @pi: port information structure
3260 * @vsi_handle: software VSI handle
3261 * @tc: TC number
3262 * @num_queues: number of queues
3263 * @q_handles: pointer to software queue handle array
3264 * @q_ids: pointer to the q_id array
3265 * @q_teids: pointer to queue node teids
3266 * @rst_src: if called due to reset, specifies the reset source
3267 * @vmvf_num: the relative VM or VF number that is undergoing the reset
3268 * @cd: pointer to command details structure or NULL
3269 *
3270 * This function removes queues and their corresponding nodes in SW DB
3271 */
3272enum ice_status
3273ice_dis_vsi_txq(struct ice_port_info *pi, u16 vsi_handle, u8 tc, u8 num_queues,
3274		u16 *q_handles, u16 *q_ids, u32 *q_teids,
3275		enum ice_disq_rst_src rst_src, u16 vmvf_num,
3276		struct ice_sq_cd *cd)
3277{
3278	enum ice_status status = ICE_ERR_DOES_NOT_EXIST;
3279	struct ice_aqc_dis_txq_item qg_list;
3280	struct ice_q_ctx *q_ctx;
3281	u16 i;
 
3282
3283	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
3284		return ICE_ERR_CFG;
 
 
3285
3286	if (!num_queues) {
3287		/* if queue is disabled already yet the disable queue command
3288		 * has to be sent to complete the VF reset, then call
3289		 * ice_aq_dis_lan_txq without any queue information
3290		 */
3291		if (rst_src)
3292			return ice_aq_dis_lan_txq(pi->hw, 0, NULL, 0, rst_src,
3293						  vmvf_num, NULL);
3294		return ICE_ERR_CFG;
3295	}
3296
3297	mutex_lock(&pi->sched_lock);
3298
3299	for (i = 0; i < num_queues; i++) {
3300		struct ice_sched_node *node;
3301
3302		node = ice_sched_find_node_by_teid(pi->root, q_teids[i]);
3303		if (!node)
3304			continue;
3305		q_ctx = ice_get_lan_q_ctx(pi->hw, vsi_handle, tc, q_handles[i]);
3306		if (!q_ctx) {
3307			ice_debug(pi->hw, ICE_DBG_SCHED, "invalid queue handle%d\n",
3308				  q_handles[i]);
3309			continue;
3310		}
3311		if (q_ctx->q_handle != q_handles[i]) {
3312			ice_debug(pi->hw, ICE_DBG_SCHED, "Err:handles %d %d\n",
3313				  q_ctx->q_handle, q_handles[i]);
3314			continue;
3315		}
3316		qg_list.parent_teid = node->info.parent_teid;
3317		qg_list.num_qs = 1;
3318		qg_list.q_id[0] = cpu_to_le16(q_ids[i]);
3319		status = ice_aq_dis_lan_txq(pi->hw, 1, &qg_list,
3320					    sizeof(qg_list), rst_src, vmvf_num,
3321					    cd);
3322
3323		if (status)
3324			break;
3325		ice_free_sched_node(pi, node);
3326		q_ctx->q_handle = ICE_INVAL_Q_HANDLE;
 
3327	}
3328	mutex_unlock(&pi->sched_lock);
3329	return status;
3330}
3331
3332/**
3333 * ice_cfg_vsi_qs - configure the new/existing VSI queues
3334 * @pi: port information structure
3335 * @vsi_handle: software VSI handle
3336 * @tc_bitmap: TC bitmap
3337 * @maxqs: max queues array per TC
3338 * @owner: LAN or RDMA
3339 *
3340 * This function adds/updates the VSI queues per TC.
3341 */
3342static enum ice_status
3343ice_cfg_vsi_qs(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
3344	       u16 *maxqs, u8 owner)
3345{
3346	enum ice_status status = 0;
3347	u8 i;
3348
3349	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
3350		return ICE_ERR_CFG;
3351
3352	if (!ice_is_vsi_valid(pi->hw, vsi_handle))
3353		return ICE_ERR_PARAM;
3354
3355	mutex_lock(&pi->sched_lock);
3356
3357	ice_for_each_traffic_class(i) {
3358		/* configuration is possible only if TC node is present */
3359		if (!ice_sched_get_tc_node(pi, i))
3360			continue;
3361
3362		status = ice_sched_cfg_vsi(pi, vsi_handle, i, maxqs[i], owner,
3363					   ice_is_tc_ena(tc_bitmap, i));
3364		if (status)
3365			break;
3366	}
3367
3368	mutex_unlock(&pi->sched_lock);
3369	return status;
3370}
3371
3372/**
3373 * ice_cfg_vsi_lan - configure VSI LAN queues
3374 * @pi: port information structure
3375 * @vsi_handle: software VSI handle
3376 * @tc_bitmap: TC bitmap
3377 * @max_lanqs: max LAN queues array per TC
3378 *
3379 * This function adds/updates the VSI LAN queues per TC.
3380 */
3381enum ice_status
3382ice_cfg_vsi_lan(struct ice_port_info *pi, u16 vsi_handle, u8 tc_bitmap,
3383		u16 *max_lanqs)
3384{
3385	return ice_cfg_vsi_qs(pi, vsi_handle, tc_bitmap, max_lanqs,
3386			      ICE_SCHED_NODE_OWNER_LAN);
3387}
3388
3389/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3390 * ice_replay_pre_init - replay pre initialization
3391 * @hw: pointer to the HW struct
3392 *
3393 * Initializes required config data for VSI, FD, ACL, and RSS before replay.
3394 */
3395static enum ice_status ice_replay_pre_init(struct ice_hw *hw)
3396{
3397	struct ice_switch_info *sw = hw->switch_info;
3398	u8 i;
3399
3400	/* Delete old entries from replay filter list head if there is any */
3401	ice_rm_all_sw_replay_rule_info(hw);
3402	/* In start of replay, move entries into replay_rules list, it
3403	 * will allow adding rules entries back to filt_rules list,
3404	 * which is operational list.
3405	 */
3406	for (i = 0; i < ICE_SW_LKUP_LAST; i++)
3407		list_replace_init(&sw->recp_list[i].filt_rules,
3408				  &sw->recp_list[i].filt_replay_rules);
 
3409
3410	return 0;
3411}
3412
3413/**
3414 * ice_replay_vsi - replay VSI configuration
3415 * @hw: pointer to the HW struct
3416 * @vsi_handle: driver VSI handle
3417 *
3418 * Restore all VSI configuration after reset. It is required to call this
3419 * function with main VSI first.
3420 */
3421enum ice_status ice_replay_vsi(struct ice_hw *hw, u16 vsi_handle)
3422{
3423	enum ice_status status;
3424
3425	if (!ice_is_vsi_valid(hw, vsi_handle))
3426		return ICE_ERR_PARAM;
3427
3428	/* Replay pre-initialization if there is any */
3429	if (vsi_handle == ICE_MAIN_VSI_HANDLE) {
3430		status = ice_replay_pre_init(hw);
3431		if (status)
3432			return status;
3433	}
3434
 
 
 
3435	/* Replay per VSI all filters */
3436	status = ice_replay_vsi_all_fltr(hw, vsi_handle);
 
 
3437	return status;
3438}
3439
3440/**
3441 * ice_replay_post - post replay configuration cleanup
3442 * @hw: pointer to the HW struct
3443 *
3444 * Post replay cleanup.
3445 */
3446void ice_replay_post(struct ice_hw *hw)
3447{
3448	/* Delete old entries from replay filter list head */
3449	ice_rm_all_sw_replay_rule_info(hw);
 
3450}
3451
3452/**
3453 * ice_stat_update40 - read 40 bit stat from the chip and update stat values
3454 * @hw: ptr to the hardware info
3455 * @reg: offset of 64 bit HW register to read from
3456 * @prev_stat_loaded: bool to specify if previous stats are loaded
3457 * @prev_stat: ptr to previous loaded stat value
3458 * @cur_stat: ptr to current stat value
3459 */
3460void
3461ice_stat_update40(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
3462		  u64 *prev_stat, u64 *cur_stat)
3463{
3464	u64 new_data = rd64(hw, reg) & (BIT_ULL(40) - 1);
3465
3466	/* device stats are not reset at PFR, they likely will not be zeroed
3467	 * when the driver starts. Thus, save the value from the first read
3468	 * without adding to the statistic value so that we report stats which
3469	 * count up from zero.
3470	 */
3471	if (!prev_stat_loaded) {
3472		*prev_stat = new_data;
3473		return;
3474	}
3475
3476	/* Calculate the difference between the new and old values, and then
3477	 * add it to the software stat value.
3478	 */
3479	if (new_data >= *prev_stat)
3480		*cur_stat += new_data - *prev_stat;
3481	else
3482		/* to manage the potential roll-over */
3483		*cur_stat += (new_data + BIT_ULL(40)) - *prev_stat;
3484
3485	/* Update the previously stored value to prepare for next read */
3486	*prev_stat = new_data;
3487}
3488
3489/**
3490 * ice_stat_update32 - read 32 bit stat from the chip and update stat values
3491 * @hw: ptr to the hardware info
3492 * @reg: offset of HW register to read from
3493 * @prev_stat_loaded: bool to specify if previous stats are loaded
3494 * @prev_stat: ptr to previous loaded stat value
3495 * @cur_stat: ptr to current stat value
3496 */
3497void
3498ice_stat_update32(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
3499		  u64 *prev_stat, u64 *cur_stat)
3500{
3501	u32 new_data;
3502
3503	new_data = rd32(hw, reg);
3504
3505	/* device stats are not reset at PFR, they likely will not be zeroed
3506	 * when the driver starts. Thus, save the value from the first read
3507	 * without adding to the statistic value so that we report stats which
3508	 * count up from zero.
3509	 */
3510	if (!prev_stat_loaded) {
3511		*prev_stat = new_data;
3512		return;
3513	}
3514
3515	/* Calculate the difference between the new and old values, and then
3516	 * add it to the software stat value.
3517	 */
3518	if (new_data >= *prev_stat)
3519		*cur_stat += new_data - *prev_stat;
3520	else
3521		/* to manage the potential roll-over */
3522		*cur_stat += (new_data + BIT_ULL(32)) - *prev_stat;
3523
3524	/* Update the previously stored value to prepare for next read */
3525	*prev_stat = new_data;
3526}
3527
3528/**
3529 * ice_sched_query_elem - query element information from HW
3530 * @hw: pointer to the HW struct
3531 * @node_teid: node TEID to be queried
3532 * @buf: buffer to element information
3533 *
3534 * This function queries HW element information
3535 */
3536enum ice_status
3537ice_sched_query_elem(struct ice_hw *hw, u32 node_teid,
3538		     struct ice_aqc_get_elem *buf)
3539{
3540	u16 buf_size, num_elem_ret = 0;
3541	enum ice_status status;
3542
3543	buf_size = sizeof(*buf);
3544	memset(buf, 0, buf_size);
3545	buf->generic[0].node_teid = cpu_to_le32(node_teid);
3546	status = ice_aq_query_sched_elems(hw, 1, buf, buf_size, &num_elem_ret,
3547					  NULL);
3548	if (status || num_elem_ret != 1)
3549		ice_debug(hw, ICE_DBG_SCHED, "query element failed\n");
3550	return status;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3551}