Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 2013 - 2019 Intel Corporation. */
   3
   4#include <linux/types.h>
   5#include <linux/module.h>
   6#include <net/ipv6.h>
   7#include <net/ip.h>
   8#include <net/tcp.h>
   9#include <linux/if_macvlan.h>
  10#include <linux/prefetch.h>
  11
  12#include "fm10k.h"
  13
 
  14#define DRV_SUMMARY	"Intel(R) Ethernet Switch Host Interface Driver"
 
  15char fm10k_driver_name[] = "fm10k";
  16static const char fm10k_driver_string[] = DRV_SUMMARY;
  17static const char fm10k_copyright[] =
  18	"Copyright(c) 2013 - 2019 Intel Corporation.";
  19
 
  20MODULE_DESCRIPTION(DRV_SUMMARY);
  21MODULE_LICENSE("GPL v2");
 
  22
  23/* single workqueue for entire fm10k driver */
  24struct workqueue_struct *fm10k_workqueue;
  25
  26/**
  27 * fm10k_init_module - Driver Registration Routine
  28 *
  29 * fm10k_init_module is the first routine called when the driver is
  30 * loaded.  All it does is register with the PCI subsystem.
  31 **/
  32static int __init fm10k_init_module(void)
  33{
  34	int ret;
  35
  36	pr_info("%s\n", fm10k_driver_string);
  37	pr_info("%s\n", fm10k_copyright);
  38
  39	/* create driver workqueue */
  40	fm10k_workqueue = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0,
  41					  fm10k_driver_name);
  42	if (!fm10k_workqueue)
  43		return -ENOMEM;
  44
  45	fm10k_dbg_init();
  46
  47	ret = fm10k_register_pci_driver();
  48	if (ret) {
  49		fm10k_dbg_exit();
  50		destroy_workqueue(fm10k_workqueue);
  51	}
  52
  53	return ret;
  54}
  55module_init(fm10k_init_module);
  56
  57/**
  58 * fm10k_exit_module - Driver Exit Cleanup Routine
  59 *
  60 * fm10k_exit_module is called just before the driver is removed
  61 * from memory.
  62 **/
  63static void __exit fm10k_exit_module(void)
  64{
  65	fm10k_unregister_pci_driver();
  66
  67	fm10k_dbg_exit();
  68
  69	/* destroy driver workqueue */
  70	destroy_workqueue(fm10k_workqueue);
  71}
  72module_exit(fm10k_exit_module);
  73
  74static bool fm10k_alloc_mapped_page(struct fm10k_ring *rx_ring,
  75				    struct fm10k_rx_buffer *bi)
  76{
  77	struct page *page = bi->page;
  78	dma_addr_t dma;
  79
  80	/* Only page will be NULL if buffer was consumed */
  81	if (likely(page))
  82		return true;
  83
  84	/* alloc new page for storage */
  85	page = dev_alloc_page();
  86	if (unlikely(!page)) {
  87		rx_ring->rx_stats.alloc_failed++;
  88		return false;
  89	}
  90
  91	/* map page for use */
  92	dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
  93
  94	/* if mapping failed free memory back to system since
  95	 * there isn't much point in holding memory we can't use
  96	 */
  97	if (dma_mapping_error(rx_ring->dev, dma)) {
  98		__free_page(page);
  99
 100		rx_ring->rx_stats.alloc_failed++;
 101		return false;
 102	}
 103
 104	bi->dma = dma;
 105	bi->page = page;
 106	bi->page_offset = 0;
 107
 108	return true;
 109}
 110
 111/**
 112 * fm10k_alloc_rx_buffers - Replace used receive buffers
 113 * @rx_ring: ring to place buffers on
 114 * @cleaned_count: number of buffers to replace
 115 **/
 116void fm10k_alloc_rx_buffers(struct fm10k_ring *rx_ring, u16 cleaned_count)
 117{
 118	union fm10k_rx_desc *rx_desc;
 119	struct fm10k_rx_buffer *bi;
 120	u16 i = rx_ring->next_to_use;
 121
 122	/* nothing to do */
 123	if (!cleaned_count)
 124		return;
 125
 126	rx_desc = FM10K_RX_DESC(rx_ring, i);
 127	bi = &rx_ring->rx_buffer[i];
 128	i -= rx_ring->count;
 129
 130	do {
 131		if (!fm10k_alloc_mapped_page(rx_ring, bi))
 132			break;
 133
 134		/* Refresh the desc even if buffer_addrs didn't change
 135		 * because each write-back erases this info.
 136		 */
 137		rx_desc->q.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
 138
 139		rx_desc++;
 140		bi++;
 141		i++;
 142		if (unlikely(!i)) {
 143			rx_desc = FM10K_RX_DESC(rx_ring, 0);
 144			bi = rx_ring->rx_buffer;
 145			i -= rx_ring->count;
 146		}
 147
 148		/* clear the status bits for the next_to_use descriptor */
 149		rx_desc->d.staterr = 0;
 150
 151		cleaned_count--;
 152	} while (cleaned_count);
 153
 154	i += rx_ring->count;
 155
 156	if (rx_ring->next_to_use != i) {
 157		/* record the next descriptor to use */
 158		rx_ring->next_to_use = i;
 159
 160		/* update next to alloc since we have filled the ring */
 161		rx_ring->next_to_alloc = i;
 162
 163		/* Force memory writes to complete before letting h/w
 164		 * know there are new descriptors to fetch.  (Only
 165		 * applicable for weak-ordered memory model archs,
 166		 * such as IA-64).
 167		 */
 168		wmb();
 169
 170		/* notify hardware of new descriptors */
 171		writel(i, rx_ring->tail);
 172	}
 173}
 174
 175/**
 176 * fm10k_reuse_rx_page - page flip buffer and store it back on the ring
 177 * @rx_ring: rx descriptor ring to store buffers on
 178 * @old_buff: donor buffer to have page reused
 179 *
 180 * Synchronizes page for reuse by the interface
 181 **/
 182static void fm10k_reuse_rx_page(struct fm10k_ring *rx_ring,
 183				struct fm10k_rx_buffer *old_buff)
 184{
 185	struct fm10k_rx_buffer *new_buff;
 186	u16 nta = rx_ring->next_to_alloc;
 187
 188	new_buff = &rx_ring->rx_buffer[nta];
 189
 190	/* update, and store next to alloc */
 191	nta++;
 192	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
 193
 194	/* transfer page from old buffer to new buffer */
 195	*new_buff = *old_buff;
 196
 197	/* sync the buffer for use by the device */
 198	dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
 199					 old_buff->page_offset,
 200					 FM10K_RX_BUFSZ,
 201					 DMA_FROM_DEVICE);
 202}
 203
 
 
 
 
 
 204static bool fm10k_can_reuse_rx_page(struct fm10k_rx_buffer *rx_buffer,
 205				    struct page *page,
 206				    unsigned int __maybe_unused truesize)
 207{
 208	/* avoid re-using remote and pfmemalloc pages */
 209	if (!dev_page_is_reusable(page))
 210		return false;
 211
 212#if (PAGE_SIZE < 8192)
 213	/* if we are only owner of page we can reuse it */
 214	if (unlikely(page_count(page) != 1))
 215		return false;
 216
 217	/* flip page offset to other buffer */
 218	rx_buffer->page_offset ^= FM10K_RX_BUFSZ;
 219#else
 220	/* move offset up to the next cache line */
 221	rx_buffer->page_offset += truesize;
 222
 223	if (rx_buffer->page_offset > (PAGE_SIZE - FM10K_RX_BUFSZ))
 224		return false;
 225#endif
 226
 227	/* Even if we own the page, we are not allowed to use atomic_set()
 228	 * This would break get_page_unless_zero() users.
 229	 */
 230	page_ref_inc(page);
 231
 232	return true;
 233}
 234
 235/**
 236 * fm10k_add_rx_frag - Add contents of Rx buffer to sk_buff
 237 * @rx_buffer: buffer containing page to add
 238 * @size: packet size from rx_desc
 239 * @rx_desc: descriptor containing length of buffer written by hardware
 240 * @skb: sk_buff to place the data into
 241 *
 242 * This function will add the data contained in rx_buffer->page to the skb.
 243 * This is done either through a direct copy if the data in the buffer is
 244 * less than the skb header size, otherwise it will just attach the page as
 245 * a frag to the skb.
 246 *
 247 * The function will then update the page offset if necessary and return
 248 * true if the buffer can be reused by the interface.
 249 **/
 250static bool fm10k_add_rx_frag(struct fm10k_rx_buffer *rx_buffer,
 251			      unsigned int size,
 252			      union fm10k_rx_desc *rx_desc,
 253			      struct sk_buff *skb)
 254{
 255	struct page *page = rx_buffer->page;
 256	unsigned char *va = page_address(page) + rx_buffer->page_offset;
 257#if (PAGE_SIZE < 8192)
 258	unsigned int truesize = FM10K_RX_BUFSZ;
 259#else
 260	unsigned int truesize = ALIGN(size, 512);
 261#endif
 262	unsigned int pull_len;
 263
 264	if (unlikely(skb_is_nonlinear(skb)))
 265		goto add_tail_frag;
 266
 267	if (likely(size <= FM10K_RX_HDR_LEN)) {
 268		memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
 269
 270		/* page is reusable, we can reuse buffer as-is */
 271		if (dev_page_is_reusable(page))
 272			return true;
 273
 274		/* this page cannot be reused so discard it */
 275		__free_page(page);
 276		return false;
 277	}
 278
 279	/* we need the header to contain the greater of either ETH_HLEN or
 280	 * 60 bytes if the skb->len is less than 60 for skb_pad.
 281	 */
 282	pull_len = eth_get_headlen(skb->dev, va, FM10K_RX_HDR_LEN);
 283
 284	/* align pull length to size of long to optimize memcpy performance */
 285	memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long)));
 286
 287	/* update all of the pointers */
 288	va += pull_len;
 289	size -= pull_len;
 290
 291add_tail_frag:
 292	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
 293			(unsigned long)va & ~PAGE_MASK, size, truesize);
 294
 295	return fm10k_can_reuse_rx_page(rx_buffer, page, truesize);
 296}
 297
 298static struct sk_buff *fm10k_fetch_rx_buffer(struct fm10k_ring *rx_ring,
 299					     union fm10k_rx_desc *rx_desc,
 300					     struct sk_buff *skb)
 301{
 302	unsigned int size = le16_to_cpu(rx_desc->w.length);
 303	struct fm10k_rx_buffer *rx_buffer;
 304	struct page *page;
 305
 306	rx_buffer = &rx_ring->rx_buffer[rx_ring->next_to_clean];
 307	page = rx_buffer->page;
 308	prefetchw(page);
 309
 310	if (likely(!skb)) {
 311		void *page_addr = page_address(page) +
 312				  rx_buffer->page_offset;
 313
 314		/* prefetch first cache line of first page */
 315		net_prefetch(page_addr);
 
 
 
 316
 317		/* allocate a skb to store the frags */
 318		skb = napi_alloc_skb(&rx_ring->q_vector->napi,
 319				     FM10K_RX_HDR_LEN);
 320		if (unlikely(!skb)) {
 321			rx_ring->rx_stats.alloc_failed++;
 322			return NULL;
 323		}
 324
 325		/* we will be copying header into skb->data in
 326		 * pskb_may_pull so it is in our interest to prefetch
 327		 * it now to avoid a possible cache miss
 328		 */
 329		prefetchw(skb->data);
 330	}
 331
 332	/* we are reusing so sync this buffer for CPU use */
 333	dma_sync_single_range_for_cpu(rx_ring->dev,
 334				      rx_buffer->dma,
 335				      rx_buffer->page_offset,
 336				      size,
 337				      DMA_FROM_DEVICE);
 338
 339	/* pull page into skb */
 340	if (fm10k_add_rx_frag(rx_buffer, size, rx_desc, skb)) {
 341		/* hand second half of page back to the ring */
 342		fm10k_reuse_rx_page(rx_ring, rx_buffer);
 343	} else {
 344		/* we are not reusing the buffer so unmap it */
 345		dma_unmap_page(rx_ring->dev, rx_buffer->dma,
 346			       PAGE_SIZE, DMA_FROM_DEVICE);
 347	}
 348
 349	/* clear contents of rx_buffer */
 350	rx_buffer->page = NULL;
 351
 352	return skb;
 353}
 354
 355static inline void fm10k_rx_checksum(struct fm10k_ring *ring,
 356				     union fm10k_rx_desc *rx_desc,
 357				     struct sk_buff *skb)
 358{
 359	skb_checksum_none_assert(skb);
 360
 361	/* Rx checksum disabled via ethtool */
 362	if (!(ring->netdev->features & NETIF_F_RXCSUM))
 363		return;
 364
 365	/* TCP/UDP checksum error bit is set */
 366	if (fm10k_test_staterr(rx_desc,
 367			       FM10K_RXD_STATUS_L4E |
 368			       FM10K_RXD_STATUS_L4E2 |
 369			       FM10K_RXD_STATUS_IPE |
 370			       FM10K_RXD_STATUS_IPE2)) {
 371		ring->rx_stats.csum_err++;
 372		return;
 373	}
 374
 375	/* It must be a TCP or UDP packet with a valid checksum */
 376	if (fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS2))
 377		skb->encapsulation = true;
 378	else if (!fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS))
 379		return;
 380
 381	skb->ip_summed = CHECKSUM_UNNECESSARY;
 382
 383	ring->rx_stats.csum_good++;
 384}
 385
 386#define FM10K_RSS_L4_TYPES_MASK \
 387	(BIT(FM10K_RSSTYPE_IPV4_TCP) | \
 388	 BIT(FM10K_RSSTYPE_IPV4_UDP) | \
 389	 BIT(FM10K_RSSTYPE_IPV6_TCP) | \
 390	 BIT(FM10K_RSSTYPE_IPV6_UDP))
 391
 392static inline void fm10k_rx_hash(struct fm10k_ring *ring,
 393				 union fm10k_rx_desc *rx_desc,
 394				 struct sk_buff *skb)
 395{
 396	u16 rss_type;
 397
 398	if (!(ring->netdev->features & NETIF_F_RXHASH))
 399		return;
 400
 401	rss_type = le16_to_cpu(rx_desc->w.pkt_info) & FM10K_RXD_RSSTYPE_MASK;
 402	if (!rss_type)
 403		return;
 404
 405	skb_set_hash(skb, le32_to_cpu(rx_desc->d.rss),
 406		     (BIT(rss_type) & FM10K_RSS_L4_TYPES_MASK) ?
 407		     PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3);
 408}
 409
 410static void fm10k_type_trans(struct fm10k_ring *rx_ring,
 411			     union fm10k_rx_desc __maybe_unused *rx_desc,
 412			     struct sk_buff *skb)
 413{
 414	struct net_device *dev = rx_ring->netdev;
 415	struct fm10k_l2_accel *l2_accel = rcu_dereference_bh(rx_ring->l2_accel);
 416
 417	/* check to see if DGLORT belongs to a MACVLAN */
 418	if (l2_accel) {
 419		u16 idx = le16_to_cpu(FM10K_CB(skb)->fi.w.dglort) - 1;
 420
 421		idx -= l2_accel->dglort;
 422		if (idx < l2_accel->size && l2_accel->macvlan[idx])
 423			dev = l2_accel->macvlan[idx];
 424		else
 425			l2_accel = NULL;
 426	}
 427
 428	/* Record Rx queue, or update macvlan statistics */
 429	if (!l2_accel)
 430		skb_record_rx_queue(skb, rx_ring->queue_index);
 431	else
 432		macvlan_count_rx(netdev_priv(dev), skb->len + ETH_HLEN, true,
 433				 false);
 434
 435	skb->protocol = eth_type_trans(skb, dev);
 436}
 437
 438/**
 439 * fm10k_process_skb_fields - Populate skb header fields from Rx descriptor
 440 * @rx_ring: rx descriptor ring packet is being transacted on
 441 * @rx_desc: pointer to the EOP Rx descriptor
 442 * @skb: pointer to current skb being populated
 443 *
 444 * This function checks the ring, descriptor, and packet information in
 445 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
 446 * other fields within the skb.
 447 **/
 448static unsigned int fm10k_process_skb_fields(struct fm10k_ring *rx_ring,
 449					     union fm10k_rx_desc *rx_desc,
 450					     struct sk_buff *skb)
 451{
 452	unsigned int len = skb->len;
 453
 454	fm10k_rx_hash(rx_ring, rx_desc, skb);
 455
 456	fm10k_rx_checksum(rx_ring, rx_desc, skb);
 457
 458	FM10K_CB(skb)->tstamp = rx_desc->q.timestamp;
 459
 460	FM10K_CB(skb)->fi.w.vlan = rx_desc->w.vlan;
 461
 462	FM10K_CB(skb)->fi.d.glort = rx_desc->d.glort;
 463
 464	if (rx_desc->w.vlan) {
 465		u16 vid = le16_to_cpu(rx_desc->w.vlan);
 466
 467		if ((vid & VLAN_VID_MASK) != rx_ring->vid)
 468			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
 469		else if (vid & VLAN_PRIO_MASK)
 470			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
 471					       vid & VLAN_PRIO_MASK);
 472	}
 473
 474	fm10k_type_trans(rx_ring, rx_desc, skb);
 475
 476	return len;
 477}
 478
 479/**
 480 * fm10k_is_non_eop - process handling of non-EOP buffers
 481 * @rx_ring: Rx ring being processed
 482 * @rx_desc: Rx descriptor for current buffer
 483 *
 484 * This function updates next to clean.  If the buffer is an EOP buffer
 485 * this function exits returning false, otherwise it will place the
 486 * sk_buff in the next buffer to be chained and return true indicating
 487 * that this is in fact a non-EOP buffer.
 488 **/
 489static bool fm10k_is_non_eop(struct fm10k_ring *rx_ring,
 490			     union fm10k_rx_desc *rx_desc)
 491{
 492	u32 ntc = rx_ring->next_to_clean + 1;
 493
 494	/* fetch, update, and store next to clean */
 495	ntc = (ntc < rx_ring->count) ? ntc : 0;
 496	rx_ring->next_to_clean = ntc;
 497
 498	prefetch(FM10K_RX_DESC(rx_ring, ntc));
 499
 500	if (likely(fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_EOP)))
 501		return false;
 502
 503	return true;
 504}
 505
 506/**
 507 * fm10k_cleanup_headers - Correct corrupted or empty headers
 508 * @rx_ring: rx descriptor ring packet is being transacted on
 509 * @rx_desc: pointer to the EOP Rx descriptor
 510 * @skb: pointer to current skb being fixed
 511 *
 512 * Address the case where we are pulling data in on pages only
 513 * and as such no data is present in the skb header.
 514 *
 515 * In addition if skb is not at least 60 bytes we need to pad it so that
 516 * it is large enough to qualify as a valid Ethernet frame.
 517 *
 518 * Returns true if an error was encountered and skb was freed.
 519 **/
 520static bool fm10k_cleanup_headers(struct fm10k_ring *rx_ring,
 521				  union fm10k_rx_desc *rx_desc,
 522				  struct sk_buff *skb)
 523{
 524	if (unlikely((fm10k_test_staterr(rx_desc,
 525					 FM10K_RXD_STATUS_RXE)))) {
 526#define FM10K_TEST_RXD_BIT(rxd, bit) \
 527	((rxd)->w.csum_err & cpu_to_le16(bit))
 528		if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_SWITCH_ERROR))
 529			rx_ring->rx_stats.switch_errors++;
 530		if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_NO_DESCRIPTOR))
 531			rx_ring->rx_stats.drops++;
 532		if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_PP_ERROR))
 533			rx_ring->rx_stats.pp_errors++;
 534		if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_SWITCH_READY))
 535			rx_ring->rx_stats.link_errors++;
 536		if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_TOO_BIG))
 537			rx_ring->rx_stats.length_errors++;
 538		dev_kfree_skb_any(skb);
 539		rx_ring->rx_stats.errors++;
 540		return true;
 541	}
 542
 543	/* if eth_skb_pad returns an error the skb was freed */
 544	if (eth_skb_pad(skb))
 545		return true;
 546
 547	return false;
 548}
 549
 550/**
 551 * fm10k_receive_skb - helper function to handle rx indications
 552 * @q_vector: structure containing interrupt and ring information
 553 * @skb: packet to send up
 554 **/
 555static void fm10k_receive_skb(struct fm10k_q_vector *q_vector,
 556			      struct sk_buff *skb)
 557{
 558	napi_gro_receive(&q_vector->napi, skb);
 559}
 560
 561static int fm10k_clean_rx_irq(struct fm10k_q_vector *q_vector,
 562			      struct fm10k_ring *rx_ring,
 563			      int budget)
 564{
 565	struct sk_buff *skb = rx_ring->skb;
 566	unsigned int total_bytes = 0, total_packets = 0;
 567	u16 cleaned_count = fm10k_desc_unused(rx_ring);
 568
 569	while (likely(total_packets < budget)) {
 570		union fm10k_rx_desc *rx_desc;
 571
 572		/* return some buffers to hardware, one at a time is too slow */
 573		if (cleaned_count >= FM10K_RX_BUFFER_WRITE) {
 574			fm10k_alloc_rx_buffers(rx_ring, cleaned_count);
 575			cleaned_count = 0;
 576		}
 577
 578		rx_desc = FM10K_RX_DESC(rx_ring, rx_ring->next_to_clean);
 579
 580		if (!rx_desc->d.staterr)
 581			break;
 582
 583		/* This memory barrier is needed to keep us from reading
 584		 * any other fields out of the rx_desc until we know the
 585		 * descriptor has been written back
 586		 */
 587		dma_rmb();
 588
 589		/* retrieve a buffer from the ring */
 590		skb = fm10k_fetch_rx_buffer(rx_ring, rx_desc, skb);
 591
 592		/* exit if we failed to retrieve a buffer */
 593		if (!skb)
 594			break;
 595
 596		cleaned_count++;
 597
 598		/* fetch next buffer in frame if non-eop */
 599		if (fm10k_is_non_eop(rx_ring, rx_desc))
 600			continue;
 601
 602		/* verify the packet layout is correct */
 603		if (fm10k_cleanup_headers(rx_ring, rx_desc, skb)) {
 604			skb = NULL;
 605			continue;
 606		}
 607
 608		/* populate checksum, timestamp, VLAN, and protocol */
 609		total_bytes += fm10k_process_skb_fields(rx_ring, rx_desc, skb);
 610
 611		fm10k_receive_skb(q_vector, skb);
 612
 613		/* reset skb pointer */
 614		skb = NULL;
 615
 616		/* update budget accounting */
 617		total_packets++;
 618	}
 619
 620	/* place incomplete frames back on ring for completion */
 621	rx_ring->skb = skb;
 622
 623	u64_stats_update_begin(&rx_ring->syncp);
 624	rx_ring->stats.packets += total_packets;
 625	rx_ring->stats.bytes += total_bytes;
 626	u64_stats_update_end(&rx_ring->syncp);
 627	q_vector->rx.total_packets += total_packets;
 628	q_vector->rx.total_bytes += total_bytes;
 629
 630	return total_packets;
 631}
 632
 633#define VXLAN_HLEN (sizeof(struct udphdr) + 8)
 634static struct ethhdr *fm10k_port_is_vxlan(struct sk_buff *skb)
 635{
 636	struct fm10k_intfc *interface = netdev_priv(skb->dev);
 
 637
 638	if (interface->vxlan_port != udp_hdr(skb)->dest)
 
 
 
 
 
 
 639		return NULL;
 640
 641	/* return offset of udp_hdr plus 8 bytes for VXLAN header */
 642	return (struct ethhdr *)(skb_transport_header(skb) + VXLAN_HLEN);
 643}
 644
 645#define FM10K_NVGRE_RESERVED0_FLAGS htons(0x9FFF)
 646#define NVGRE_TNI htons(0x2000)
 647struct fm10k_nvgre_hdr {
 648	__be16 flags;
 649	__be16 proto;
 650	__be32 tni;
 651};
 652
 653static struct ethhdr *fm10k_gre_is_nvgre(struct sk_buff *skb)
 654{
 655	struct fm10k_nvgre_hdr *nvgre_hdr;
 656	int hlen = ip_hdrlen(skb);
 657
 658	/* currently only IPv4 is supported due to hlen above */
 659	if (vlan_get_protocol(skb) != htons(ETH_P_IP))
 660		return NULL;
 661
 662	/* our transport header should be NVGRE */
 663	nvgre_hdr = (struct fm10k_nvgre_hdr *)(skb_network_header(skb) + hlen);
 664
 665	/* verify all reserved flags are 0 */
 666	if (nvgre_hdr->flags & FM10K_NVGRE_RESERVED0_FLAGS)
 667		return NULL;
 668
 669	/* report start of ethernet header */
 670	if (nvgre_hdr->flags & NVGRE_TNI)
 671		return (struct ethhdr *)(nvgre_hdr + 1);
 672
 673	return (struct ethhdr *)(&nvgre_hdr->tni);
 674}
 675
 676__be16 fm10k_tx_encap_offload(struct sk_buff *skb)
 677{
 678	u8 l4_hdr = 0, inner_l4_hdr = 0, inner_l4_hlen;
 679	struct ethhdr *eth_hdr;
 680
 681	if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
 682	    skb->inner_protocol != htons(ETH_P_TEB))
 683		return 0;
 684
 685	switch (vlan_get_protocol(skb)) {
 686	case htons(ETH_P_IP):
 687		l4_hdr = ip_hdr(skb)->protocol;
 688		break;
 689	case htons(ETH_P_IPV6):
 690		l4_hdr = ipv6_hdr(skb)->nexthdr;
 691		break;
 692	default:
 693		return 0;
 694	}
 695
 696	switch (l4_hdr) {
 697	case IPPROTO_UDP:
 698		eth_hdr = fm10k_port_is_vxlan(skb);
 699		break;
 700	case IPPROTO_GRE:
 701		eth_hdr = fm10k_gre_is_nvgre(skb);
 702		break;
 703	default:
 704		return 0;
 705	}
 706
 707	if (!eth_hdr)
 708		return 0;
 709
 710	switch (eth_hdr->h_proto) {
 711	case htons(ETH_P_IP):
 712		inner_l4_hdr = inner_ip_hdr(skb)->protocol;
 713		break;
 714	case htons(ETH_P_IPV6):
 715		inner_l4_hdr = inner_ipv6_hdr(skb)->nexthdr;
 716		break;
 717	default:
 718		return 0;
 719	}
 720
 721	switch (inner_l4_hdr) {
 722	case IPPROTO_TCP:
 723		inner_l4_hlen = inner_tcp_hdrlen(skb);
 724		break;
 725	case IPPROTO_UDP:
 726		inner_l4_hlen = 8;
 727		break;
 728	default:
 729		return 0;
 730	}
 731
 732	/* The hardware allows tunnel offloads only if the combined inner and
 733	 * outer header is 184 bytes or less
 734	 */
 735	if (skb_inner_transport_header(skb) + inner_l4_hlen -
 736	    skb_mac_header(skb) > FM10K_TUNNEL_HEADER_LENGTH)
 737		return 0;
 738
 739	return eth_hdr->h_proto;
 740}
 741
 742static int fm10k_tso(struct fm10k_ring *tx_ring,
 743		     struct fm10k_tx_buffer *first)
 744{
 745	struct sk_buff *skb = first->skb;
 746	struct fm10k_tx_desc *tx_desc;
 747	unsigned char *th;
 748	u8 hdrlen;
 749
 750	if (skb->ip_summed != CHECKSUM_PARTIAL)
 751		return 0;
 752
 753	if (!skb_is_gso(skb))
 754		return 0;
 755
 756	/* compute header lengths */
 757	if (skb->encapsulation) {
 758		if (!fm10k_tx_encap_offload(skb))
 759			goto err_vxlan;
 760		th = skb_inner_transport_header(skb);
 761	} else {
 762		th = skb_transport_header(skb);
 763	}
 764
 765	/* compute offset from SOF to transport header and add header len */
 766	hdrlen = (th - skb->data) + (((struct tcphdr *)th)->doff << 2);
 767
 768	first->tx_flags |= FM10K_TX_FLAGS_CSUM;
 769
 770	/* update gso size and bytecount with header size */
 771	first->gso_segs = skb_shinfo(skb)->gso_segs;
 772	first->bytecount += (first->gso_segs - 1) * hdrlen;
 773
 774	/* populate Tx descriptor header size and mss */
 775	tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use);
 776	tx_desc->hdrlen = hdrlen;
 777	tx_desc->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
 778
 779	return 1;
 780
 781err_vxlan:
 782	tx_ring->netdev->features &= ~NETIF_F_GSO_UDP_TUNNEL;
 783	if (net_ratelimit())
 784		netdev_err(tx_ring->netdev,
 785			   "TSO requested for unsupported tunnel, disabling offload\n");
 786	return -1;
 787}
 788
 789static void fm10k_tx_csum(struct fm10k_ring *tx_ring,
 790			  struct fm10k_tx_buffer *first)
 791{
 792	struct sk_buff *skb = first->skb;
 793	struct fm10k_tx_desc *tx_desc;
 794	union {
 795		struct iphdr *ipv4;
 796		struct ipv6hdr *ipv6;
 797		u8 *raw;
 798	} network_hdr;
 799	u8 *transport_hdr;
 800	__be16 frag_off;
 801	__be16 protocol;
 802	u8 l4_hdr = 0;
 803
 804	if (skb->ip_summed != CHECKSUM_PARTIAL)
 805		goto no_csum;
 806
 807	if (skb->encapsulation) {
 808		protocol = fm10k_tx_encap_offload(skb);
 809		if (!protocol) {
 810			if (skb_checksum_help(skb)) {
 811				dev_warn(tx_ring->dev,
 812					 "failed to offload encap csum!\n");
 813				tx_ring->tx_stats.csum_err++;
 814			}
 815			goto no_csum;
 816		}
 817		network_hdr.raw = skb_inner_network_header(skb);
 818		transport_hdr = skb_inner_transport_header(skb);
 819	} else {
 820		protocol = vlan_get_protocol(skb);
 821		network_hdr.raw = skb_network_header(skb);
 822		transport_hdr = skb_transport_header(skb);
 823	}
 824
 825	switch (protocol) {
 826	case htons(ETH_P_IP):
 827		l4_hdr = network_hdr.ipv4->protocol;
 828		break;
 829	case htons(ETH_P_IPV6):
 830		l4_hdr = network_hdr.ipv6->nexthdr;
 831		if (likely((transport_hdr - network_hdr.raw) ==
 832			   sizeof(struct ipv6hdr)))
 833			break;
 834		ipv6_skip_exthdr(skb, network_hdr.raw - skb->data +
 835				      sizeof(struct ipv6hdr),
 836				 &l4_hdr, &frag_off);
 837		if (unlikely(frag_off))
 838			l4_hdr = NEXTHDR_FRAGMENT;
 839		break;
 840	default:
 841		break;
 842	}
 843
 844	switch (l4_hdr) {
 845	case IPPROTO_TCP:
 846	case IPPROTO_UDP:
 847		break;
 848	case IPPROTO_GRE:
 849		if (skb->encapsulation)
 850			break;
 851		fallthrough;
 852	default:
 853		if (unlikely(net_ratelimit())) {
 854			dev_warn(tx_ring->dev,
 855				 "partial checksum, version=%d l4 proto=%x\n",
 856				 protocol, l4_hdr);
 857		}
 858		skb_checksum_help(skb);
 859		tx_ring->tx_stats.csum_err++;
 860		goto no_csum;
 861	}
 862
 863	/* update TX checksum flag */
 864	first->tx_flags |= FM10K_TX_FLAGS_CSUM;
 865	tx_ring->tx_stats.csum_good++;
 866
 867no_csum:
 868	/* populate Tx descriptor header size and mss */
 869	tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use);
 870	tx_desc->hdrlen = 0;
 871	tx_desc->mss = 0;
 872}
 873
 874#define FM10K_SET_FLAG(_input, _flag, _result) \
 875	((_flag <= _result) ? \
 876	 ((u32)(_input & _flag) * (_result / _flag)) : \
 877	 ((u32)(_input & _flag) / (_flag / _result)))
 878
 879static u8 fm10k_tx_desc_flags(struct sk_buff *skb, u32 tx_flags)
 880{
 881	/* set type for advanced descriptor with frame checksum insertion */
 882	u32 desc_flags = 0;
 883
 884	/* set checksum offload bits */
 885	desc_flags |= FM10K_SET_FLAG(tx_flags, FM10K_TX_FLAGS_CSUM,
 886				     FM10K_TXD_FLAG_CSUM);
 887
 888	return desc_flags;
 889}
 890
 891static bool fm10k_tx_desc_push(struct fm10k_ring *tx_ring,
 892			       struct fm10k_tx_desc *tx_desc, u16 i,
 893			       dma_addr_t dma, unsigned int size, u8 desc_flags)
 894{
 895	/* set RS and INT for last frame in a cache line */
 896	if ((++i & (FM10K_TXD_WB_FIFO_SIZE - 1)) == 0)
 897		desc_flags |= FM10K_TXD_FLAG_RS | FM10K_TXD_FLAG_INT;
 898
 899	/* record values to descriptor */
 900	tx_desc->buffer_addr = cpu_to_le64(dma);
 901	tx_desc->flags = desc_flags;
 902	tx_desc->buflen = cpu_to_le16(size);
 903
 904	/* return true if we just wrapped the ring */
 905	return i == tx_ring->count;
 906}
 907
 908static int __fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size)
 909{
 910	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
 911
 912	/* Memory barrier before checking head and tail */
 913	smp_mb();
 914
 915	/* Check again in a case another CPU has just made room available */
 916	if (likely(fm10k_desc_unused(tx_ring) < size))
 917		return -EBUSY;
 918
 919	/* A reprieve! - use start_queue because it doesn't call schedule */
 920	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
 921	++tx_ring->tx_stats.restart_queue;
 922	return 0;
 923}
 924
 925static inline int fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size)
 926{
 927	if (likely(fm10k_desc_unused(tx_ring) >= size))
 928		return 0;
 929	return __fm10k_maybe_stop_tx(tx_ring, size);
 930}
 931
 932static void fm10k_tx_map(struct fm10k_ring *tx_ring,
 933			 struct fm10k_tx_buffer *first)
 934{
 935	struct sk_buff *skb = first->skb;
 936	struct fm10k_tx_buffer *tx_buffer;
 937	struct fm10k_tx_desc *tx_desc;
 938	skb_frag_t *frag;
 939	unsigned char *data;
 940	dma_addr_t dma;
 941	unsigned int data_len, size;
 942	u32 tx_flags = first->tx_flags;
 943	u16 i = tx_ring->next_to_use;
 944	u8 flags = fm10k_tx_desc_flags(skb, tx_flags);
 945
 946	tx_desc = FM10K_TX_DESC(tx_ring, i);
 947
 948	/* add HW VLAN tag */
 949	if (skb_vlan_tag_present(skb))
 950		tx_desc->vlan = cpu_to_le16(skb_vlan_tag_get(skb));
 951	else
 952		tx_desc->vlan = 0;
 953
 954	size = skb_headlen(skb);
 955	data = skb->data;
 956
 957	dma = dma_map_single(tx_ring->dev, data, size, DMA_TO_DEVICE);
 958
 959	data_len = skb->data_len;
 960	tx_buffer = first;
 961
 962	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
 963		if (dma_mapping_error(tx_ring->dev, dma))
 964			goto dma_error;
 965
 966		/* record length, and DMA address */
 967		dma_unmap_len_set(tx_buffer, len, size);
 968		dma_unmap_addr_set(tx_buffer, dma, dma);
 969
 970		while (unlikely(size > FM10K_MAX_DATA_PER_TXD)) {
 971			if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++, dma,
 972					       FM10K_MAX_DATA_PER_TXD, flags)) {
 973				tx_desc = FM10K_TX_DESC(tx_ring, 0);
 974				i = 0;
 975			}
 976
 977			dma += FM10K_MAX_DATA_PER_TXD;
 978			size -= FM10K_MAX_DATA_PER_TXD;
 979		}
 980
 981		if (likely(!data_len))
 982			break;
 983
 984		if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++,
 985				       dma, size, flags)) {
 986			tx_desc = FM10K_TX_DESC(tx_ring, 0);
 987			i = 0;
 988		}
 989
 990		size = skb_frag_size(frag);
 991		data_len -= size;
 992
 993		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
 994				       DMA_TO_DEVICE);
 995
 996		tx_buffer = &tx_ring->tx_buffer[i];
 997	}
 998
 999	/* write last descriptor with LAST bit set */
1000	flags |= FM10K_TXD_FLAG_LAST;
1001
1002	if (fm10k_tx_desc_push(tx_ring, tx_desc, i++, dma, size, flags))
1003		i = 0;
1004
1005	/* record bytecount for BQL */
1006	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1007
1008	/* record SW timestamp if HW timestamp is not available */
1009	skb_tx_timestamp(first->skb);
1010
1011	/* Force memory writes to complete before letting h/w know there
1012	 * are new descriptors to fetch.  (Only applicable for weak-ordered
1013	 * memory model archs, such as IA-64).
1014	 *
1015	 * We also need this memory barrier to make certain all of the
1016	 * status bits have been updated before next_to_watch is written.
1017	 */
1018	wmb();
1019
1020	/* set next_to_watch value indicating a packet is present */
1021	first->next_to_watch = tx_desc;
1022
1023	tx_ring->next_to_use = i;
1024
1025	/* Make sure there is space in the ring for the next send. */
1026	fm10k_maybe_stop_tx(tx_ring, DESC_NEEDED);
1027
1028	/* notify HW of packet */
1029	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
1030		writel(i, tx_ring->tail);
1031	}
1032
1033	return;
1034dma_error:
1035	dev_err(tx_ring->dev, "TX DMA map failed\n");
1036
1037	/* clear dma mappings for failed tx_buffer map */
1038	for (;;) {
1039		tx_buffer = &tx_ring->tx_buffer[i];
1040		fm10k_unmap_and_free_tx_resource(tx_ring, tx_buffer);
1041		if (tx_buffer == first)
1042			break;
1043		if (i == 0)
1044			i = tx_ring->count;
1045		i--;
1046	}
1047
1048	tx_ring->next_to_use = i;
1049}
1050
1051netdev_tx_t fm10k_xmit_frame_ring(struct sk_buff *skb,
1052				  struct fm10k_ring *tx_ring)
1053{
1054	u16 count = TXD_USE_COUNT(skb_headlen(skb));
1055	struct fm10k_tx_buffer *first;
1056	unsigned short f;
1057	u32 tx_flags = 0;
1058	int tso;
1059
1060	/* need: 1 descriptor per page * PAGE_SIZE/FM10K_MAX_DATA_PER_TXD,
1061	 *       + 1 desc for skb_headlen/FM10K_MAX_DATA_PER_TXD,
1062	 *       + 2 desc gap to keep tail from touching head
1063	 * otherwise try next time
1064	 */
1065	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
1066		skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
1067
1068		count += TXD_USE_COUNT(skb_frag_size(frag));
1069	}
1070
1071	if (fm10k_maybe_stop_tx(tx_ring, count + 3)) {
1072		tx_ring->tx_stats.tx_busy++;
1073		return NETDEV_TX_BUSY;
1074	}
1075
1076	/* record the location of the first descriptor for this packet */
1077	first = &tx_ring->tx_buffer[tx_ring->next_to_use];
1078	first->skb = skb;
1079	first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN);
1080	first->gso_segs = 1;
1081
1082	/* record initial flags and protocol */
1083	first->tx_flags = tx_flags;
1084
1085	tso = fm10k_tso(tx_ring, first);
1086	if (tso < 0)
1087		goto out_drop;
1088	else if (!tso)
1089		fm10k_tx_csum(tx_ring, first);
1090
1091	fm10k_tx_map(tx_ring, first);
1092
1093	return NETDEV_TX_OK;
1094
1095out_drop:
1096	dev_kfree_skb_any(first->skb);
1097	first->skb = NULL;
1098
1099	return NETDEV_TX_OK;
1100}
1101
1102static u64 fm10k_get_tx_completed(struct fm10k_ring *ring)
1103{
1104	return ring->stats.packets;
1105}
1106
1107/**
1108 * fm10k_get_tx_pending - how many Tx descriptors not processed
1109 * @ring: the ring structure
1110 * @in_sw: is tx_pending being checked in SW or in HW?
1111 */
1112u64 fm10k_get_tx_pending(struct fm10k_ring *ring, bool in_sw)
1113{
1114	struct fm10k_intfc *interface = ring->q_vector->interface;
1115	struct fm10k_hw *hw = &interface->hw;
1116	u32 head, tail;
1117
1118	if (likely(in_sw)) {
1119		head = ring->next_to_clean;
1120		tail = ring->next_to_use;
1121	} else {
1122		head = fm10k_read_reg(hw, FM10K_TDH(ring->reg_idx));
1123		tail = fm10k_read_reg(hw, FM10K_TDT(ring->reg_idx));
1124	}
1125
1126	return ((head <= tail) ? tail : tail + ring->count) - head;
1127}
1128
1129bool fm10k_check_tx_hang(struct fm10k_ring *tx_ring)
1130{
1131	u32 tx_done = fm10k_get_tx_completed(tx_ring);
1132	u32 tx_done_old = tx_ring->tx_stats.tx_done_old;
1133	u32 tx_pending = fm10k_get_tx_pending(tx_ring, true);
1134
1135	clear_check_for_tx_hang(tx_ring);
1136
1137	/* Check for a hung queue, but be thorough. This verifies
1138	 * that a transmit has been completed since the previous
1139	 * check AND there is at least one packet pending. By
1140	 * requiring this to fail twice we avoid races with
1141	 * clearing the ARMED bit and conditions where we
1142	 * run the check_tx_hang logic with a transmit completion
1143	 * pending but without time to complete it yet.
1144	 */
1145	if (!tx_pending || (tx_done_old != tx_done)) {
1146		/* update completed stats and continue */
1147		tx_ring->tx_stats.tx_done_old = tx_done;
1148		/* reset the countdown */
1149		clear_bit(__FM10K_HANG_CHECK_ARMED, tx_ring->state);
1150
1151		return false;
1152	}
1153
1154	/* make sure it is true for two checks in a row */
1155	return test_and_set_bit(__FM10K_HANG_CHECK_ARMED, tx_ring->state);
1156}
1157
1158/**
1159 * fm10k_tx_timeout_reset - initiate reset due to Tx timeout
1160 * @interface: driver private struct
1161 **/
1162void fm10k_tx_timeout_reset(struct fm10k_intfc *interface)
1163{
1164	/* Do the reset outside of interrupt context */
1165	if (!test_bit(__FM10K_DOWN, interface->state)) {
1166		interface->tx_timeout_count++;
1167		set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags);
1168		fm10k_service_event_schedule(interface);
1169	}
1170}
1171
1172/**
1173 * fm10k_clean_tx_irq - Reclaim resources after transmit completes
1174 * @q_vector: structure containing interrupt and ring information
1175 * @tx_ring: tx ring to clean
1176 * @napi_budget: Used to determine if we are in netpoll
1177 **/
1178static bool fm10k_clean_tx_irq(struct fm10k_q_vector *q_vector,
1179			       struct fm10k_ring *tx_ring, int napi_budget)
1180{
1181	struct fm10k_intfc *interface = q_vector->interface;
1182	struct fm10k_tx_buffer *tx_buffer;
1183	struct fm10k_tx_desc *tx_desc;
1184	unsigned int total_bytes = 0, total_packets = 0;
1185	unsigned int budget = q_vector->tx.work_limit;
1186	unsigned int i = tx_ring->next_to_clean;
1187
1188	if (test_bit(__FM10K_DOWN, interface->state))
1189		return true;
1190
1191	tx_buffer = &tx_ring->tx_buffer[i];
1192	tx_desc = FM10K_TX_DESC(tx_ring, i);
1193	i -= tx_ring->count;
1194
1195	do {
1196		struct fm10k_tx_desc *eop_desc = tx_buffer->next_to_watch;
1197
1198		/* if next_to_watch is not set then there is no work pending */
1199		if (!eop_desc)
1200			break;
1201
1202		/* prevent any other reads prior to eop_desc */
1203		smp_rmb();
1204
1205		/* if DD is not set pending work has not been completed */
1206		if (!(eop_desc->flags & FM10K_TXD_FLAG_DONE))
1207			break;
1208
1209		/* clear next_to_watch to prevent false hangs */
1210		tx_buffer->next_to_watch = NULL;
1211
1212		/* update the statistics for this packet */
1213		total_bytes += tx_buffer->bytecount;
1214		total_packets += tx_buffer->gso_segs;
1215
1216		/* free the skb */
1217		napi_consume_skb(tx_buffer->skb, napi_budget);
1218
1219		/* unmap skb header data */
1220		dma_unmap_single(tx_ring->dev,
1221				 dma_unmap_addr(tx_buffer, dma),
1222				 dma_unmap_len(tx_buffer, len),
1223				 DMA_TO_DEVICE);
1224
1225		/* clear tx_buffer data */
1226		tx_buffer->skb = NULL;
1227		dma_unmap_len_set(tx_buffer, len, 0);
1228
1229		/* unmap remaining buffers */
1230		while (tx_desc != eop_desc) {
1231			tx_buffer++;
1232			tx_desc++;
1233			i++;
1234			if (unlikely(!i)) {
1235				i -= tx_ring->count;
1236				tx_buffer = tx_ring->tx_buffer;
1237				tx_desc = FM10K_TX_DESC(tx_ring, 0);
1238			}
1239
1240			/* unmap any remaining paged data */
1241			if (dma_unmap_len(tx_buffer, len)) {
1242				dma_unmap_page(tx_ring->dev,
1243					       dma_unmap_addr(tx_buffer, dma),
1244					       dma_unmap_len(tx_buffer, len),
1245					       DMA_TO_DEVICE);
1246				dma_unmap_len_set(tx_buffer, len, 0);
1247			}
1248		}
1249
1250		/* move us one more past the eop_desc for start of next pkt */
1251		tx_buffer++;
1252		tx_desc++;
1253		i++;
1254		if (unlikely(!i)) {
1255			i -= tx_ring->count;
1256			tx_buffer = tx_ring->tx_buffer;
1257			tx_desc = FM10K_TX_DESC(tx_ring, 0);
1258		}
1259
1260		/* issue prefetch for next Tx descriptor */
1261		prefetch(tx_desc);
1262
1263		/* update budget accounting */
1264		budget--;
1265	} while (likely(budget));
1266
1267	i += tx_ring->count;
1268	tx_ring->next_to_clean = i;
1269	u64_stats_update_begin(&tx_ring->syncp);
1270	tx_ring->stats.bytes += total_bytes;
1271	tx_ring->stats.packets += total_packets;
1272	u64_stats_update_end(&tx_ring->syncp);
1273	q_vector->tx.total_bytes += total_bytes;
1274	q_vector->tx.total_packets += total_packets;
1275
1276	if (check_for_tx_hang(tx_ring) && fm10k_check_tx_hang(tx_ring)) {
1277		/* schedule immediate reset if we believe we hung */
1278		struct fm10k_hw *hw = &interface->hw;
1279
1280		netif_err(interface, drv, tx_ring->netdev,
1281			  "Detected Tx Unit Hang\n"
1282			  "  Tx Queue             <%d>\n"
1283			  "  TDH, TDT             <%x>, <%x>\n"
1284			  "  next_to_use          <%x>\n"
1285			  "  next_to_clean        <%x>\n",
1286			  tx_ring->queue_index,
1287			  fm10k_read_reg(hw, FM10K_TDH(tx_ring->reg_idx)),
1288			  fm10k_read_reg(hw, FM10K_TDT(tx_ring->reg_idx)),
1289			  tx_ring->next_to_use, i);
1290
1291		netif_stop_subqueue(tx_ring->netdev,
1292				    tx_ring->queue_index);
1293
1294		netif_info(interface, probe, tx_ring->netdev,
1295			   "tx hang %d detected on queue %d, resetting interface\n",
1296			   interface->tx_timeout_count + 1,
1297			   tx_ring->queue_index);
1298
1299		fm10k_tx_timeout_reset(interface);
1300
1301		/* the netdev is about to reset, no point in enabling stuff */
1302		return true;
1303	}
1304
1305	/* notify netdev of completed buffers */
1306	netdev_tx_completed_queue(txring_txq(tx_ring),
1307				  total_packets, total_bytes);
1308
1309#define TX_WAKE_THRESHOLD min_t(u16, FM10K_MIN_TXD - 1, DESC_NEEDED * 2)
1310	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
1311		     (fm10k_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) {
1312		/* Make sure that anybody stopping the queue after this
1313		 * sees the new next_to_clean.
1314		 */
1315		smp_mb();
1316		if (__netif_subqueue_stopped(tx_ring->netdev,
1317					     tx_ring->queue_index) &&
1318		    !test_bit(__FM10K_DOWN, interface->state)) {
1319			netif_wake_subqueue(tx_ring->netdev,
1320					    tx_ring->queue_index);
1321			++tx_ring->tx_stats.restart_queue;
1322		}
1323	}
1324
1325	return !!budget;
1326}
1327
1328/**
1329 * fm10k_update_itr - update the dynamic ITR value based on packet size
1330 *
1331 *      Stores a new ITR value based on strictly on packet size.  The
1332 *      divisors and thresholds used by this function were determined based
1333 *      on theoretical maximum wire speed and testing data, in order to
1334 *      minimize response time while increasing bulk throughput.
1335 *
1336 * @ring_container: Container for rings to have ITR updated
1337 **/
1338static void fm10k_update_itr(struct fm10k_ring_container *ring_container)
1339{
1340	unsigned int avg_wire_size, packets, itr_round;
1341
1342	/* Only update ITR if we are using adaptive setting */
1343	if (!ITR_IS_ADAPTIVE(ring_container->itr))
1344		goto clear_counts;
1345
1346	packets = ring_container->total_packets;
1347	if (!packets)
1348		goto clear_counts;
1349
1350	avg_wire_size = ring_container->total_bytes / packets;
1351
1352	/* The following is a crude approximation of:
1353	 *  wmem_default / (size + overhead) = desired_pkts_per_int
1354	 *  rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
1355	 *  (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1356	 *
1357	 * Assuming wmem_default is 212992 and overhead is 640 bytes per
1358	 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1359	 * formula down to
1360	 *
1361	 *  (34 * (size + 24)) / (size + 640) = ITR
1362	 *
1363	 * We first do some math on the packet size and then finally bitshift
1364	 * by 8 after rounding up. We also have to account for PCIe link speed
1365	 * difference as ITR scales based on this.
1366	 */
1367	if (avg_wire_size <= 360) {
1368		/* Start at 250K ints/sec and gradually drop to 77K ints/sec */
1369		avg_wire_size *= 8;
1370		avg_wire_size += 376;
1371	} else if (avg_wire_size <= 1152) {
1372		/* 77K ints/sec to 45K ints/sec */
1373		avg_wire_size *= 3;
1374		avg_wire_size += 2176;
1375	} else if (avg_wire_size <= 1920) {
1376		/* 45K ints/sec to 38K ints/sec */
1377		avg_wire_size += 4480;
1378	} else {
1379		/* plateau at a limit of 38K ints/sec */
1380		avg_wire_size = 6656;
1381	}
1382
1383	/* Perform final bitshift for division after rounding up to ensure
1384	 * that the calculation will never get below a 1. The bit shift
1385	 * accounts for changes in the ITR due to PCIe link speed.
1386	 */
1387	itr_round = READ_ONCE(ring_container->itr_scale) + 8;
1388	avg_wire_size += BIT(itr_round) - 1;
1389	avg_wire_size >>= itr_round;
1390
1391	/* write back value and retain adaptive flag */
1392	ring_container->itr = avg_wire_size | FM10K_ITR_ADAPTIVE;
1393
1394clear_counts:
1395	ring_container->total_bytes = 0;
1396	ring_container->total_packets = 0;
1397}
1398
1399static void fm10k_qv_enable(struct fm10k_q_vector *q_vector)
1400{
1401	/* Enable auto-mask and clear the current mask */
1402	u32 itr = FM10K_ITR_ENABLE;
1403
1404	/* Update Tx ITR */
1405	fm10k_update_itr(&q_vector->tx);
1406
1407	/* Update Rx ITR */
1408	fm10k_update_itr(&q_vector->rx);
1409
1410	/* Store Tx itr in timer slot 0 */
1411	itr |= (q_vector->tx.itr & FM10K_ITR_MAX);
1412
1413	/* Shift Rx itr to timer slot 1 */
1414	itr |= (q_vector->rx.itr & FM10K_ITR_MAX) << FM10K_ITR_INTERVAL1_SHIFT;
1415
1416	/* Write the final value to the ITR register */
1417	writel(itr, q_vector->itr);
1418}
1419
1420static int fm10k_poll(struct napi_struct *napi, int budget)
1421{
1422	struct fm10k_q_vector *q_vector =
1423			       container_of(napi, struct fm10k_q_vector, napi);
1424	struct fm10k_ring *ring;
1425	int per_ring_budget, work_done = 0;
1426	bool clean_complete = true;
1427
1428	fm10k_for_each_ring(ring, q_vector->tx) {
1429		if (!fm10k_clean_tx_irq(q_vector, ring, budget))
1430			clean_complete = false;
1431	}
1432
1433	/* Handle case where we are called by netpoll with a budget of 0 */
1434	if (budget <= 0)
1435		return budget;
1436
1437	/* attempt to distribute budget to each queue fairly, but don't
1438	 * allow the budget to go below 1 because we'll exit polling
1439	 */
1440	if (q_vector->rx.count > 1)
1441		per_ring_budget = max(budget / q_vector->rx.count, 1);
1442	else
1443		per_ring_budget = budget;
1444
1445	fm10k_for_each_ring(ring, q_vector->rx) {
1446		int work = fm10k_clean_rx_irq(q_vector, ring, per_ring_budget);
1447
1448		work_done += work;
1449		if (work >= per_ring_budget)
1450			clean_complete = false;
1451	}
1452
1453	/* If all work not completed, return budget and keep polling */
1454	if (!clean_complete)
1455		return budget;
1456
1457	/* Exit the polling mode, but don't re-enable interrupts if stack might
1458	 * poll us due to busy-polling
1459	 */
1460	if (likely(napi_complete_done(napi, work_done)))
1461		fm10k_qv_enable(q_vector);
1462
1463	return min(work_done, budget - 1);
1464}
1465
1466/**
1467 * fm10k_set_qos_queues: Allocate queues for a QOS-enabled device
1468 * @interface: board private structure to initialize
1469 *
1470 * When QoS (Quality of Service) is enabled, allocate queues for
1471 * each traffic class.  If multiqueue isn't available,then abort QoS
1472 * initialization.
1473 *
1474 * This function handles all combinations of Qos and RSS.
1475 *
1476 **/
1477static bool fm10k_set_qos_queues(struct fm10k_intfc *interface)
1478{
1479	struct net_device *dev = interface->netdev;
1480	struct fm10k_ring_feature *f;
1481	int rss_i, i;
1482	int pcs;
1483
1484	/* Map queue offset and counts onto allocated tx queues */
1485	pcs = netdev_get_num_tc(dev);
1486
1487	if (pcs <= 1)
1488		return false;
1489
1490	/* set QoS mask and indices */
1491	f = &interface->ring_feature[RING_F_QOS];
1492	f->indices = pcs;
1493	f->mask = BIT(fls(pcs - 1)) - 1;
1494
1495	/* determine the upper limit for our current DCB mode */
1496	rss_i = interface->hw.mac.max_queues / pcs;
1497	rss_i = BIT(fls(rss_i) - 1);
1498
1499	/* set RSS mask and indices */
1500	f = &interface->ring_feature[RING_F_RSS];
1501	rss_i = min_t(u16, rss_i, f->limit);
1502	f->indices = rss_i;
1503	f->mask = BIT(fls(rss_i - 1)) - 1;
1504
1505	/* configure pause class to queue mapping */
1506	for (i = 0; i < pcs; i++)
1507		netdev_set_tc_queue(dev, i, rss_i, rss_i * i);
1508
1509	interface->num_rx_queues = rss_i * pcs;
1510	interface->num_tx_queues = rss_i * pcs;
1511
1512	return true;
1513}
1514
1515/**
1516 * fm10k_set_rss_queues: Allocate queues for RSS
1517 * @interface: board private structure to initialize
1518 *
1519 * This is our "base" multiqueue mode.  RSS (Receive Side Scaling) will try
1520 * to allocate one Rx queue per CPU, and if available, one Tx queue per CPU.
1521 *
1522 **/
1523static bool fm10k_set_rss_queues(struct fm10k_intfc *interface)
1524{
1525	struct fm10k_ring_feature *f;
1526	u16 rss_i;
1527
1528	f = &interface->ring_feature[RING_F_RSS];
1529	rss_i = min_t(u16, interface->hw.mac.max_queues, f->limit);
1530
1531	/* record indices and power of 2 mask for RSS */
1532	f->indices = rss_i;
1533	f->mask = BIT(fls(rss_i - 1)) - 1;
1534
1535	interface->num_rx_queues = rss_i;
1536	interface->num_tx_queues = rss_i;
1537
1538	return true;
1539}
1540
1541/**
1542 * fm10k_set_num_queues: Allocate queues for device, feature dependent
1543 * @interface: board private structure to initialize
1544 *
1545 * This is the top level queue allocation routine.  The order here is very
1546 * important, starting with the "most" number of features turned on at once,
1547 * and ending with the smallest set of features.  This way large combinations
1548 * can be allocated if they're turned on, and smaller combinations are the
1549 * fall through conditions.
1550 *
1551 **/
1552static void fm10k_set_num_queues(struct fm10k_intfc *interface)
1553{
1554	/* Attempt to setup QoS and RSS first */
1555	if (fm10k_set_qos_queues(interface))
1556		return;
1557
1558	/* If we don't have QoS, just fallback to only RSS. */
1559	fm10k_set_rss_queues(interface);
1560}
1561
1562/**
1563 * fm10k_reset_num_queues - Reset the number of queues to zero
1564 * @interface: board private structure
1565 *
1566 * This function should be called whenever we need to reset the number of
1567 * queues after an error condition.
1568 */
1569static void fm10k_reset_num_queues(struct fm10k_intfc *interface)
1570{
1571	interface->num_tx_queues = 0;
1572	interface->num_rx_queues = 0;
1573	interface->num_q_vectors = 0;
1574}
1575
1576/**
1577 * fm10k_alloc_q_vector - Allocate memory for a single interrupt vector
1578 * @interface: board private structure to initialize
1579 * @v_count: q_vectors allocated on interface, used for ring interleaving
1580 * @v_idx: index of vector in interface struct
1581 * @txr_count: total number of Tx rings to allocate
1582 * @txr_idx: index of first Tx ring to allocate
1583 * @rxr_count: total number of Rx rings to allocate
1584 * @rxr_idx: index of first Rx ring to allocate
1585 *
1586 * We allocate one q_vector.  If allocation fails we return -ENOMEM.
1587 **/
1588static int fm10k_alloc_q_vector(struct fm10k_intfc *interface,
1589				unsigned int v_count, unsigned int v_idx,
1590				unsigned int txr_count, unsigned int txr_idx,
1591				unsigned int rxr_count, unsigned int rxr_idx)
1592{
1593	struct fm10k_q_vector *q_vector;
1594	struct fm10k_ring *ring;
1595	int ring_count;
1596
1597	ring_count = txr_count + rxr_count;
1598
1599	/* allocate q_vector and rings */
1600	q_vector = kzalloc(struct_size(q_vector, ring, ring_count), GFP_KERNEL);
1601	if (!q_vector)
1602		return -ENOMEM;
1603
1604	/* initialize NAPI */
1605	netif_napi_add(interface->netdev, &q_vector->napi, fm10k_poll);
 
1606
1607	/* tie q_vector and interface together */
1608	interface->q_vector[v_idx] = q_vector;
1609	q_vector->interface = interface;
1610	q_vector->v_idx = v_idx;
1611
1612	/* initialize pointer to rings */
1613	ring = q_vector->ring;
1614
1615	/* save Tx ring container info */
1616	q_vector->tx.ring = ring;
1617	q_vector->tx.work_limit = FM10K_DEFAULT_TX_WORK;
1618	q_vector->tx.itr = interface->tx_itr;
1619	q_vector->tx.itr_scale = interface->hw.mac.itr_scale;
1620	q_vector->tx.count = txr_count;
1621
1622	while (txr_count) {
1623		/* assign generic ring traits */
1624		ring->dev = &interface->pdev->dev;
1625		ring->netdev = interface->netdev;
1626
1627		/* configure backlink on ring */
1628		ring->q_vector = q_vector;
1629
1630		/* apply Tx specific ring traits */
1631		ring->count = interface->tx_ring_count;
1632		ring->queue_index = txr_idx;
1633
1634		/* assign ring to interface */
1635		interface->tx_ring[txr_idx] = ring;
1636
1637		/* update count and index */
1638		txr_count--;
1639		txr_idx += v_count;
1640
1641		/* push pointer to next ring */
1642		ring++;
1643	}
1644
1645	/* save Rx ring container info */
1646	q_vector->rx.ring = ring;
1647	q_vector->rx.itr = interface->rx_itr;
1648	q_vector->rx.itr_scale = interface->hw.mac.itr_scale;
1649	q_vector->rx.count = rxr_count;
1650
1651	while (rxr_count) {
1652		/* assign generic ring traits */
1653		ring->dev = &interface->pdev->dev;
1654		ring->netdev = interface->netdev;
1655		rcu_assign_pointer(ring->l2_accel, interface->l2_accel);
1656
1657		/* configure backlink on ring */
1658		ring->q_vector = q_vector;
1659
1660		/* apply Rx specific ring traits */
1661		ring->count = interface->rx_ring_count;
1662		ring->queue_index = rxr_idx;
1663
1664		/* assign ring to interface */
1665		interface->rx_ring[rxr_idx] = ring;
1666
1667		/* update count and index */
1668		rxr_count--;
1669		rxr_idx += v_count;
1670
1671		/* push pointer to next ring */
1672		ring++;
1673	}
1674
1675	fm10k_dbg_q_vector_init(q_vector);
1676
1677	return 0;
1678}
1679
1680/**
1681 * fm10k_free_q_vector - Free memory allocated for specific interrupt vector
1682 * @interface: board private structure to initialize
1683 * @v_idx: Index of vector to be freed
1684 *
1685 * This function frees the memory allocated to the q_vector.  In addition if
1686 * NAPI is enabled it will delete any references to the NAPI struct prior
1687 * to freeing the q_vector.
1688 **/
1689static void fm10k_free_q_vector(struct fm10k_intfc *interface, int v_idx)
1690{
1691	struct fm10k_q_vector *q_vector = interface->q_vector[v_idx];
1692	struct fm10k_ring *ring;
1693
1694	fm10k_dbg_q_vector_exit(q_vector);
1695
1696	fm10k_for_each_ring(ring, q_vector->tx)
1697		interface->tx_ring[ring->queue_index] = NULL;
1698
1699	fm10k_for_each_ring(ring, q_vector->rx)
1700		interface->rx_ring[ring->queue_index] = NULL;
1701
1702	interface->q_vector[v_idx] = NULL;
1703	netif_napi_del(&q_vector->napi);
1704	kfree_rcu(q_vector, rcu);
1705}
1706
1707/**
1708 * fm10k_alloc_q_vectors - Allocate memory for interrupt vectors
1709 * @interface: board private structure to initialize
1710 *
1711 * We allocate one q_vector per queue interrupt.  If allocation fails we
1712 * return -ENOMEM.
1713 **/
1714static int fm10k_alloc_q_vectors(struct fm10k_intfc *interface)
1715{
1716	unsigned int q_vectors = interface->num_q_vectors;
1717	unsigned int rxr_remaining = interface->num_rx_queues;
1718	unsigned int txr_remaining = interface->num_tx_queues;
1719	unsigned int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1720	int err;
1721
1722	if (q_vectors >= (rxr_remaining + txr_remaining)) {
1723		for (; rxr_remaining; v_idx++) {
1724			err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
1725						   0, 0, 1, rxr_idx);
1726			if (err)
1727				goto err_out;
1728
1729			/* update counts and index */
1730			rxr_remaining--;
1731			rxr_idx++;
1732		}
1733	}
1734
1735	for (; v_idx < q_vectors; v_idx++) {
1736		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1737		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1738
1739		err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
1740					   tqpv, txr_idx,
1741					   rqpv, rxr_idx);
1742
1743		if (err)
1744			goto err_out;
1745
1746		/* update counts and index */
1747		rxr_remaining -= rqpv;
1748		txr_remaining -= tqpv;
1749		rxr_idx++;
1750		txr_idx++;
1751	}
1752
1753	return 0;
1754
1755err_out:
1756	fm10k_reset_num_queues(interface);
1757
1758	while (v_idx--)
1759		fm10k_free_q_vector(interface, v_idx);
1760
1761	return -ENOMEM;
1762}
1763
1764/**
1765 * fm10k_free_q_vectors - Free memory allocated for interrupt vectors
1766 * @interface: board private structure to initialize
1767 *
1768 * This function frees the memory allocated to the q_vectors.  In addition if
1769 * NAPI is enabled it will delete any references to the NAPI struct prior
1770 * to freeing the q_vector.
1771 **/
1772static void fm10k_free_q_vectors(struct fm10k_intfc *interface)
1773{
1774	int v_idx = interface->num_q_vectors;
1775
1776	fm10k_reset_num_queues(interface);
1777
1778	while (v_idx--)
1779		fm10k_free_q_vector(interface, v_idx);
1780}
1781
1782/**
1783 * fm10k_reset_msix_capability - reset MSI-X capability
1784 * @interface: board private structure to initialize
1785 *
1786 * Reset the MSI-X capability back to its starting state
1787 **/
1788static void fm10k_reset_msix_capability(struct fm10k_intfc *interface)
1789{
1790	pci_disable_msix(interface->pdev);
1791	kfree(interface->msix_entries);
1792	interface->msix_entries = NULL;
1793}
1794
1795/**
1796 * fm10k_init_msix_capability - configure MSI-X capability
1797 * @interface: board private structure to initialize
1798 *
1799 * Attempt to configure the interrupts using the best available
1800 * capabilities of the hardware and the kernel.
1801 **/
1802static int fm10k_init_msix_capability(struct fm10k_intfc *interface)
1803{
1804	struct fm10k_hw *hw = &interface->hw;
1805	int v_budget, vector;
1806
1807	/* It's easy to be greedy for MSI-X vectors, but it really
1808	 * doesn't do us much good if we have a lot more vectors
1809	 * than CPU's.  So let's be conservative and only ask for
1810	 * (roughly) the same number of vectors as there are CPU's.
1811	 * the default is to use pairs of vectors
1812	 */
1813	v_budget = max(interface->num_rx_queues, interface->num_tx_queues);
1814	v_budget = min_t(u16, v_budget, num_online_cpus());
1815
1816	/* account for vectors not related to queues */
1817	v_budget += NON_Q_VECTORS;
1818
1819	/* At the same time, hardware can only support a maximum of
1820	 * hw.mac->max_msix_vectors vectors.  With features
1821	 * such as RSS and VMDq, we can easily surpass the number of Rx and Tx
1822	 * descriptor queues supported by our device.  Thus, we cap it off in
1823	 * those rare cases where the cpu count also exceeds our vector limit.
1824	 */
1825	v_budget = min_t(int, v_budget, hw->mac.max_msix_vectors);
1826
1827	/* A failure in MSI-X entry allocation is fatal. */
1828	interface->msix_entries = kcalloc(v_budget, sizeof(struct msix_entry),
1829					  GFP_KERNEL);
1830	if (!interface->msix_entries)
1831		return -ENOMEM;
1832
1833	/* populate entry values */
1834	for (vector = 0; vector < v_budget; vector++)
1835		interface->msix_entries[vector].entry = vector;
1836
1837	/* Attempt to enable MSI-X with requested value */
1838	v_budget = pci_enable_msix_range(interface->pdev,
1839					 interface->msix_entries,
1840					 MIN_MSIX_COUNT(hw),
1841					 v_budget);
1842	if (v_budget < 0) {
1843		kfree(interface->msix_entries);
1844		interface->msix_entries = NULL;
1845		return v_budget;
1846	}
1847
1848	/* record the number of queues available for q_vectors */
1849	interface->num_q_vectors = v_budget - NON_Q_VECTORS;
1850
1851	return 0;
1852}
1853
1854/**
1855 * fm10k_cache_ring_qos - Descriptor ring to register mapping for QoS
1856 * @interface: Interface structure continaining rings and devices
1857 *
1858 * Cache the descriptor ring offsets for Qos
1859 **/
1860static bool fm10k_cache_ring_qos(struct fm10k_intfc *interface)
1861{
1862	struct net_device *dev = interface->netdev;
1863	int pc, offset, rss_i, i;
1864	u16 pc_stride = interface->ring_feature[RING_F_QOS].mask + 1;
1865	u8 num_pcs = netdev_get_num_tc(dev);
1866
1867	if (num_pcs <= 1)
1868		return false;
1869
1870	rss_i = interface->ring_feature[RING_F_RSS].indices;
1871
1872	for (pc = 0, offset = 0; pc < num_pcs; pc++, offset += rss_i) {
1873		int q_idx = pc;
1874
1875		for (i = 0; i < rss_i; i++) {
1876			interface->tx_ring[offset + i]->reg_idx = q_idx;
1877			interface->tx_ring[offset + i]->qos_pc = pc;
1878			interface->rx_ring[offset + i]->reg_idx = q_idx;
1879			interface->rx_ring[offset + i]->qos_pc = pc;
1880			q_idx += pc_stride;
1881		}
1882	}
1883
1884	return true;
1885}
1886
1887/**
1888 * fm10k_cache_ring_rss - Descriptor ring to register mapping for RSS
1889 * @interface: Interface structure continaining rings and devices
1890 *
1891 * Cache the descriptor ring offsets for RSS
1892 **/
1893static void fm10k_cache_ring_rss(struct fm10k_intfc *interface)
1894{
1895	int i;
1896
1897	for (i = 0; i < interface->num_rx_queues; i++)
1898		interface->rx_ring[i]->reg_idx = i;
1899
1900	for (i = 0; i < interface->num_tx_queues; i++)
1901		interface->tx_ring[i]->reg_idx = i;
1902}
1903
1904/**
1905 * fm10k_assign_rings - Map rings to network devices
1906 * @interface: Interface structure containing rings and devices
1907 *
1908 * This function is meant to go though and configure both the network
1909 * devices so that they contain rings, and configure the rings so that
1910 * they function with their network devices.
1911 **/
1912static void fm10k_assign_rings(struct fm10k_intfc *interface)
1913{
1914	if (fm10k_cache_ring_qos(interface))
1915		return;
1916
1917	fm10k_cache_ring_rss(interface);
1918}
1919
1920static void fm10k_init_reta(struct fm10k_intfc *interface)
1921{
1922	u16 i, rss_i = interface->ring_feature[RING_F_RSS].indices;
1923	u32 reta;
1924
1925	/* If the Rx flow indirection table has been configured manually, we
1926	 * need to maintain it when possible.
1927	 */
1928	if (netif_is_rxfh_configured(interface->netdev)) {
1929		for (i = FM10K_RETA_SIZE; i--;) {
1930			reta = interface->reta[i];
1931			if ((((reta << 24) >> 24) < rss_i) &&
1932			    (((reta << 16) >> 24) < rss_i) &&
1933			    (((reta <<  8) >> 24) < rss_i) &&
1934			    (((reta)       >> 24) < rss_i))
1935				continue;
1936
1937			/* this should never happen */
1938			dev_err(&interface->pdev->dev,
1939				"RSS indirection table assigned flows out of queue bounds. Reconfiguring.\n");
1940			goto repopulate_reta;
1941		}
1942
1943		/* do nothing if all of the elements are in bounds */
1944		return;
1945	}
1946
1947repopulate_reta:
1948	fm10k_write_reta(interface, NULL);
1949}
1950
1951/**
1952 * fm10k_init_queueing_scheme - Determine proper queueing scheme
1953 * @interface: board private structure to initialize
1954 *
1955 * We determine which queueing scheme to use based on...
1956 * - Hardware queue count (num_*_queues)
1957 *   - defined by miscellaneous hardware support/features (RSS, etc.)
1958 **/
1959int fm10k_init_queueing_scheme(struct fm10k_intfc *interface)
1960{
1961	int err;
1962
1963	/* Number of supported queues */
1964	fm10k_set_num_queues(interface);
1965
1966	/* Configure MSI-X capability */
1967	err = fm10k_init_msix_capability(interface);
1968	if (err) {
1969		dev_err(&interface->pdev->dev,
1970			"Unable to initialize MSI-X capability\n");
1971		goto err_init_msix;
1972	}
1973
1974	/* Allocate memory for queues */
1975	err = fm10k_alloc_q_vectors(interface);
1976	if (err) {
1977		dev_err(&interface->pdev->dev,
1978			"Unable to allocate queue vectors\n");
1979		goto err_alloc_q_vectors;
1980	}
1981
1982	/* Map rings to devices, and map devices to physical queues */
1983	fm10k_assign_rings(interface);
1984
1985	/* Initialize RSS redirection table */
1986	fm10k_init_reta(interface);
1987
1988	return 0;
1989
1990err_alloc_q_vectors:
1991	fm10k_reset_msix_capability(interface);
1992err_init_msix:
1993	fm10k_reset_num_queues(interface);
1994	return err;
1995}
1996
1997/**
1998 * fm10k_clear_queueing_scheme - Clear the current queueing scheme settings
1999 * @interface: board private structure to clear queueing scheme on
2000 *
2001 * We go through and clear queueing specific resources and reset the structure
2002 * to pre-load conditions
2003 **/
2004void fm10k_clear_queueing_scheme(struct fm10k_intfc *interface)
2005{
2006	fm10k_free_q_vectors(interface);
2007	fm10k_reset_msix_capability(interface);
2008}
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 2013 - 2019 Intel Corporation. */
   3
   4#include <linux/types.h>
   5#include <linux/module.h>
   6#include <net/ipv6.h>
   7#include <net/ip.h>
   8#include <net/tcp.h>
   9#include <linux/if_macvlan.h>
  10#include <linux/prefetch.h>
  11
  12#include "fm10k.h"
  13
  14#define DRV_VERSION	"0.26.1-k"
  15#define DRV_SUMMARY	"Intel(R) Ethernet Switch Host Interface Driver"
  16const char fm10k_driver_version[] = DRV_VERSION;
  17char fm10k_driver_name[] = "fm10k";
  18static const char fm10k_driver_string[] = DRV_SUMMARY;
  19static const char fm10k_copyright[] =
  20	"Copyright(c) 2013 - 2019 Intel Corporation.";
  21
  22MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
  23MODULE_DESCRIPTION(DRV_SUMMARY);
  24MODULE_LICENSE("GPL v2");
  25MODULE_VERSION(DRV_VERSION);
  26
  27/* single workqueue for entire fm10k driver */
  28struct workqueue_struct *fm10k_workqueue;
  29
  30/**
  31 * fm10k_init_module - Driver Registration Routine
  32 *
  33 * fm10k_init_module is the first routine called when the driver is
  34 * loaded.  All it does is register with the PCI subsystem.
  35 **/
  36static int __init fm10k_init_module(void)
  37{
  38	pr_info("%s - version %s\n", fm10k_driver_string, fm10k_driver_version);
 
 
  39	pr_info("%s\n", fm10k_copyright);
  40
  41	/* create driver workqueue */
  42	fm10k_workqueue = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0,
  43					  fm10k_driver_name);
  44	if (!fm10k_workqueue)
  45		return -ENOMEM;
  46
  47	fm10k_dbg_init();
  48
  49	return fm10k_register_pci_driver();
 
 
 
 
 
 
  50}
  51module_init(fm10k_init_module);
  52
  53/**
  54 * fm10k_exit_module - Driver Exit Cleanup Routine
  55 *
  56 * fm10k_exit_module is called just before the driver is removed
  57 * from memory.
  58 **/
  59static void __exit fm10k_exit_module(void)
  60{
  61	fm10k_unregister_pci_driver();
  62
  63	fm10k_dbg_exit();
  64
  65	/* destroy driver workqueue */
  66	destroy_workqueue(fm10k_workqueue);
  67}
  68module_exit(fm10k_exit_module);
  69
  70static bool fm10k_alloc_mapped_page(struct fm10k_ring *rx_ring,
  71				    struct fm10k_rx_buffer *bi)
  72{
  73	struct page *page = bi->page;
  74	dma_addr_t dma;
  75
  76	/* Only page will be NULL if buffer was consumed */
  77	if (likely(page))
  78		return true;
  79
  80	/* alloc new page for storage */
  81	page = dev_alloc_page();
  82	if (unlikely(!page)) {
  83		rx_ring->rx_stats.alloc_failed++;
  84		return false;
  85	}
  86
  87	/* map page for use */
  88	dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
  89
  90	/* if mapping failed free memory back to system since
  91	 * there isn't much point in holding memory we can't use
  92	 */
  93	if (dma_mapping_error(rx_ring->dev, dma)) {
  94		__free_page(page);
  95
  96		rx_ring->rx_stats.alloc_failed++;
  97		return false;
  98	}
  99
 100	bi->dma = dma;
 101	bi->page = page;
 102	bi->page_offset = 0;
 103
 104	return true;
 105}
 106
 107/**
 108 * fm10k_alloc_rx_buffers - Replace used receive buffers
 109 * @rx_ring: ring to place buffers on
 110 * @cleaned_count: number of buffers to replace
 111 **/
 112void fm10k_alloc_rx_buffers(struct fm10k_ring *rx_ring, u16 cleaned_count)
 113{
 114	union fm10k_rx_desc *rx_desc;
 115	struct fm10k_rx_buffer *bi;
 116	u16 i = rx_ring->next_to_use;
 117
 118	/* nothing to do */
 119	if (!cleaned_count)
 120		return;
 121
 122	rx_desc = FM10K_RX_DESC(rx_ring, i);
 123	bi = &rx_ring->rx_buffer[i];
 124	i -= rx_ring->count;
 125
 126	do {
 127		if (!fm10k_alloc_mapped_page(rx_ring, bi))
 128			break;
 129
 130		/* Refresh the desc even if buffer_addrs didn't change
 131		 * because each write-back erases this info.
 132		 */
 133		rx_desc->q.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
 134
 135		rx_desc++;
 136		bi++;
 137		i++;
 138		if (unlikely(!i)) {
 139			rx_desc = FM10K_RX_DESC(rx_ring, 0);
 140			bi = rx_ring->rx_buffer;
 141			i -= rx_ring->count;
 142		}
 143
 144		/* clear the status bits for the next_to_use descriptor */
 145		rx_desc->d.staterr = 0;
 146
 147		cleaned_count--;
 148	} while (cleaned_count);
 149
 150	i += rx_ring->count;
 151
 152	if (rx_ring->next_to_use != i) {
 153		/* record the next descriptor to use */
 154		rx_ring->next_to_use = i;
 155
 156		/* update next to alloc since we have filled the ring */
 157		rx_ring->next_to_alloc = i;
 158
 159		/* Force memory writes to complete before letting h/w
 160		 * know there are new descriptors to fetch.  (Only
 161		 * applicable for weak-ordered memory model archs,
 162		 * such as IA-64).
 163		 */
 164		wmb();
 165
 166		/* notify hardware of new descriptors */
 167		writel(i, rx_ring->tail);
 168	}
 169}
 170
 171/**
 172 * fm10k_reuse_rx_page - page flip buffer and store it back on the ring
 173 * @rx_ring: rx descriptor ring to store buffers on
 174 * @old_buff: donor buffer to have page reused
 175 *
 176 * Synchronizes page for reuse by the interface
 177 **/
 178static void fm10k_reuse_rx_page(struct fm10k_ring *rx_ring,
 179				struct fm10k_rx_buffer *old_buff)
 180{
 181	struct fm10k_rx_buffer *new_buff;
 182	u16 nta = rx_ring->next_to_alloc;
 183
 184	new_buff = &rx_ring->rx_buffer[nta];
 185
 186	/* update, and store next to alloc */
 187	nta++;
 188	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
 189
 190	/* transfer page from old buffer to new buffer */
 191	*new_buff = *old_buff;
 192
 193	/* sync the buffer for use by the device */
 194	dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
 195					 old_buff->page_offset,
 196					 FM10K_RX_BUFSZ,
 197					 DMA_FROM_DEVICE);
 198}
 199
 200static inline bool fm10k_page_is_reserved(struct page *page)
 201{
 202	return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
 203}
 204
 205static bool fm10k_can_reuse_rx_page(struct fm10k_rx_buffer *rx_buffer,
 206				    struct page *page,
 207				    unsigned int __maybe_unused truesize)
 208{
 209	/* avoid re-using remote pages */
 210	if (unlikely(fm10k_page_is_reserved(page)))
 211		return false;
 212
 213#if (PAGE_SIZE < 8192)
 214	/* if we are only owner of page we can reuse it */
 215	if (unlikely(page_count(page) != 1))
 216		return false;
 217
 218	/* flip page offset to other buffer */
 219	rx_buffer->page_offset ^= FM10K_RX_BUFSZ;
 220#else
 221	/* move offset up to the next cache line */
 222	rx_buffer->page_offset += truesize;
 223
 224	if (rx_buffer->page_offset > (PAGE_SIZE - FM10K_RX_BUFSZ))
 225		return false;
 226#endif
 227
 228	/* Even if we own the page, we are not allowed to use atomic_set()
 229	 * This would break get_page_unless_zero() users.
 230	 */
 231	page_ref_inc(page);
 232
 233	return true;
 234}
 235
 236/**
 237 * fm10k_add_rx_frag - Add contents of Rx buffer to sk_buff
 238 * @rx_buffer: buffer containing page to add
 239 * @size: packet size from rx_desc
 240 * @rx_desc: descriptor containing length of buffer written by hardware
 241 * @skb: sk_buff to place the data into
 242 *
 243 * This function will add the data contained in rx_buffer->page to the skb.
 244 * This is done either through a direct copy if the data in the buffer is
 245 * less than the skb header size, otherwise it will just attach the page as
 246 * a frag to the skb.
 247 *
 248 * The function will then update the page offset if necessary and return
 249 * true if the buffer can be reused by the interface.
 250 **/
 251static bool fm10k_add_rx_frag(struct fm10k_rx_buffer *rx_buffer,
 252			      unsigned int size,
 253			      union fm10k_rx_desc *rx_desc,
 254			      struct sk_buff *skb)
 255{
 256	struct page *page = rx_buffer->page;
 257	unsigned char *va = page_address(page) + rx_buffer->page_offset;
 258#if (PAGE_SIZE < 8192)
 259	unsigned int truesize = FM10K_RX_BUFSZ;
 260#else
 261	unsigned int truesize = ALIGN(size, 512);
 262#endif
 263	unsigned int pull_len;
 264
 265	if (unlikely(skb_is_nonlinear(skb)))
 266		goto add_tail_frag;
 267
 268	if (likely(size <= FM10K_RX_HDR_LEN)) {
 269		memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
 270
 271		/* page is not reserved, we can reuse buffer as-is */
 272		if (likely(!fm10k_page_is_reserved(page)))
 273			return true;
 274
 275		/* this page cannot be reused so discard it */
 276		__free_page(page);
 277		return false;
 278	}
 279
 280	/* we need the header to contain the greater of either ETH_HLEN or
 281	 * 60 bytes if the skb->len is less than 60 for skb_pad.
 282	 */
 283	pull_len = eth_get_headlen(skb->dev, va, FM10K_RX_HDR_LEN);
 284
 285	/* align pull length to size of long to optimize memcpy performance */
 286	memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long)));
 287
 288	/* update all of the pointers */
 289	va += pull_len;
 290	size -= pull_len;
 291
 292add_tail_frag:
 293	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
 294			(unsigned long)va & ~PAGE_MASK, size, truesize);
 295
 296	return fm10k_can_reuse_rx_page(rx_buffer, page, truesize);
 297}
 298
 299static struct sk_buff *fm10k_fetch_rx_buffer(struct fm10k_ring *rx_ring,
 300					     union fm10k_rx_desc *rx_desc,
 301					     struct sk_buff *skb)
 302{
 303	unsigned int size = le16_to_cpu(rx_desc->w.length);
 304	struct fm10k_rx_buffer *rx_buffer;
 305	struct page *page;
 306
 307	rx_buffer = &rx_ring->rx_buffer[rx_ring->next_to_clean];
 308	page = rx_buffer->page;
 309	prefetchw(page);
 310
 311	if (likely(!skb)) {
 312		void *page_addr = page_address(page) +
 313				  rx_buffer->page_offset;
 314
 315		/* prefetch first cache line of first page */
 316		prefetch(page_addr);
 317#if L1_CACHE_BYTES < 128
 318		prefetch((void *)((u8 *)page_addr + L1_CACHE_BYTES));
 319#endif
 320
 321		/* allocate a skb to store the frags */
 322		skb = napi_alloc_skb(&rx_ring->q_vector->napi,
 323				     FM10K_RX_HDR_LEN);
 324		if (unlikely(!skb)) {
 325			rx_ring->rx_stats.alloc_failed++;
 326			return NULL;
 327		}
 328
 329		/* we will be copying header into skb->data in
 330		 * pskb_may_pull so it is in our interest to prefetch
 331		 * it now to avoid a possible cache miss
 332		 */
 333		prefetchw(skb->data);
 334	}
 335
 336	/* we are reusing so sync this buffer for CPU use */
 337	dma_sync_single_range_for_cpu(rx_ring->dev,
 338				      rx_buffer->dma,
 339				      rx_buffer->page_offset,
 340				      size,
 341				      DMA_FROM_DEVICE);
 342
 343	/* pull page into skb */
 344	if (fm10k_add_rx_frag(rx_buffer, size, rx_desc, skb)) {
 345		/* hand second half of page back to the ring */
 346		fm10k_reuse_rx_page(rx_ring, rx_buffer);
 347	} else {
 348		/* we are not reusing the buffer so unmap it */
 349		dma_unmap_page(rx_ring->dev, rx_buffer->dma,
 350			       PAGE_SIZE, DMA_FROM_DEVICE);
 351	}
 352
 353	/* clear contents of rx_buffer */
 354	rx_buffer->page = NULL;
 355
 356	return skb;
 357}
 358
 359static inline void fm10k_rx_checksum(struct fm10k_ring *ring,
 360				     union fm10k_rx_desc *rx_desc,
 361				     struct sk_buff *skb)
 362{
 363	skb_checksum_none_assert(skb);
 364
 365	/* Rx checksum disabled via ethtool */
 366	if (!(ring->netdev->features & NETIF_F_RXCSUM))
 367		return;
 368
 369	/* TCP/UDP checksum error bit is set */
 370	if (fm10k_test_staterr(rx_desc,
 371			       FM10K_RXD_STATUS_L4E |
 372			       FM10K_RXD_STATUS_L4E2 |
 373			       FM10K_RXD_STATUS_IPE |
 374			       FM10K_RXD_STATUS_IPE2)) {
 375		ring->rx_stats.csum_err++;
 376		return;
 377	}
 378
 379	/* It must be a TCP or UDP packet with a valid checksum */
 380	if (fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS2))
 381		skb->encapsulation = true;
 382	else if (!fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS))
 383		return;
 384
 385	skb->ip_summed = CHECKSUM_UNNECESSARY;
 386
 387	ring->rx_stats.csum_good++;
 388}
 389
 390#define FM10K_RSS_L4_TYPES_MASK \
 391	(BIT(FM10K_RSSTYPE_IPV4_TCP) | \
 392	 BIT(FM10K_RSSTYPE_IPV4_UDP) | \
 393	 BIT(FM10K_RSSTYPE_IPV6_TCP) | \
 394	 BIT(FM10K_RSSTYPE_IPV6_UDP))
 395
 396static inline void fm10k_rx_hash(struct fm10k_ring *ring,
 397				 union fm10k_rx_desc *rx_desc,
 398				 struct sk_buff *skb)
 399{
 400	u16 rss_type;
 401
 402	if (!(ring->netdev->features & NETIF_F_RXHASH))
 403		return;
 404
 405	rss_type = le16_to_cpu(rx_desc->w.pkt_info) & FM10K_RXD_RSSTYPE_MASK;
 406	if (!rss_type)
 407		return;
 408
 409	skb_set_hash(skb, le32_to_cpu(rx_desc->d.rss),
 410		     (BIT(rss_type) & FM10K_RSS_L4_TYPES_MASK) ?
 411		     PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3);
 412}
 413
 414static void fm10k_type_trans(struct fm10k_ring *rx_ring,
 415			     union fm10k_rx_desc __maybe_unused *rx_desc,
 416			     struct sk_buff *skb)
 417{
 418	struct net_device *dev = rx_ring->netdev;
 419	struct fm10k_l2_accel *l2_accel = rcu_dereference_bh(rx_ring->l2_accel);
 420
 421	/* check to see if DGLORT belongs to a MACVLAN */
 422	if (l2_accel) {
 423		u16 idx = le16_to_cpu(FM10K_CB(skb)->fi.w.dglort) - 1;
 424
 425		idx -= l2_accel->dglort;
 426		if (idx < l2_accel->size && l2_accel->macvlan[idx])
 427			dev = l2_accel->macvlan[idx];
 428		else
 429			l2_accel = NULL;
 430	}
 431
 432	/* Record Rx queue, or update macvlan statistics */
 433	if (!l2_accel)
 434		skb_record_rx_queue(skb, rx_ring->queue_index);
 435	else
 436		macvlan_count_rx(netdev_priv(dev), skb->len + ETH_HLEN, true,
 437				 false);
 438
 439	skb->protocol = eth_type_trans(skb, dev);
 440}
 441
 442/**
 443 * fm10k_process_skb_fields - Populate skb header fields from Rx descriptor
 444 * @rx_ring: rx descriptor ring packet is being transacted on
 445 * @rx_desc: pointer to the EOP Rx descriptor
 446 * @skb: pointer to current skb being populated
 447 *
 448 * This function checks the ring, descriptor, and packet information in
 449 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
 450 * other fields within the skb.
 451 **/
 452static unsigned int fm10k_process_skb_fields(struct fm10k_ring *rx_ring,
 453					     union fm10k_rx_desc *rx_desc,
 454					     struct sk_buff *skb)
 455{
 456	unsigned int len = skb->len;
 457
 458	fm10k_rx_hash(rx_ring, rx_desc, skb);
 459
 460	fm10k_rx_checksum(rx_ring, rx_desc, skb);
 461
 462	FM10K_CB(skb)->tstamp = rx_desc->q.timestamp;
 463
 464	FM10K_CB(skb)->fi.w.vlan = rx_desc->w.vlan;
 465
 466	FM10K_CB(skb)->fi.d.glort = rx_desc->d.glort;
 467
 468	if (rx_desc->w.vlan) {
 469		u16 vid = le16_to_cpu(rx_desc->w.vlan);
 470
 471		if ((vid & VLAN_VID_MASK) != rx_ring->vid)
 472			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
 473		else if (vid & VLAN_PRIO_MASK)
 474			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
 475					       vid & VLAN_PRIO_MASK);
 476	}
 477
 478	fm10k_type_trans(rx_ring, rx_desc, skb);
 479
 480	return len;
 481}
 482
 483/**
 484 * fm10k_is_non_eop - process handling of non-EOP buffers
 485 * @rx_ring: Rx ring being processed
 486 * @rx_desc: Rx descriptor for current buffer
 487 *
 488 * This function updates next to clean.  If the buffer is an EOP buffer
 489 * this function exits returning false, otherwise it will place the
 490 * sk_buff in the next buffer to be chained and return true indicating
 491 * that this is in fact a non-EOP buffer.
 492 **/
 493static bool fm10k_is_non_eop(struct fm10k_ring *rx_ring,
 494			     union fm10k_rx_desc *rx_desc)
 495{
 496	u32 ntc = rx_ring->next_to_clean + 1;
 497
 498	/* fetch, update, and store next to clean */
 499	ntc = (ntc < rx_ring->count) ? ntc : 0;
 500	rx_ring->next_to_clean = ntc;
 501
 502	prefetch(FM10K_RX_DESC(rx_ring, ntc));
 503
 504	if (likely(fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_EOP)))
 505		return false;
 506
 507	return true;
 508}
 509
 510/**
 511 * fm10k_cleanup_headers - Correct corrupted or empty headers
 512 * @rx_ring: rx descriptor ring packet is being transacted on
 513 * @rx_desc: pointer to the EOP Rx descriptor
 514 * @skb: pointer to current skb being fixed
 515 *
 516 * Address the case where we are pulling data in on pages only
 517 * and as such no data is present in the skb header.
 518 *
 519 * In addition if skb is not at least 60 bytes we need to pad it so that
 520 * it is large enough to qualify as a valid Ethernet frame.
 521 *
 522 * Returns true if an error was encountered and skb was freed.
 523 **/
 524static bool fm10k_cleanup_headers(struct fm10k_ring *rx_ring,
 525				  union fm10k_rx_desc *rx_desc,
 526				  struct sk_buff *skb)
 527{
 528	if (unlikely((fm10k_test_staterr(rx_desc,
 529					 FM10K_RXD_STATUS_RXE)))) {
 530#define FM10K_TEST_RXD_BIT(rxd, bit) \
 531	((rxd)->w.csum_err & cpu_to_le16(bit))
 532		if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_SWITCH_ERROR))
 533			rx_ring->rx_stats.switch_errors++;
 534		if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_NO_DESCRIPTOR))
 535			rx_ring->rx_stats.drops++;
 536		if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_PP_ERROR))
 537			rx_ring->rx_stats.pp_errors++;
 538		if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_SWITCH_READY))
 539			rx_ring->rx_stats.link_errors++;
 540		if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_TOO_BIG))
 541			rx_ring->rx_stats.length_errors++;
 542		dev_kfree_skb_any(skb);
 543		rx_ring->rx_stats.errors++;
 544		return true;
 545	}
 546
 547	/* if eth_skb_pad returns an error the skb was freed */
 548	if (eth_skb_pad(skb))
 549		return true;
 550
 551	return false;
 552}
 553
 554/**
 555 * fm10k_receive_skb - helper function to handle rx indications
 556 * @q_vector: structure containing interrupt and ring information
 557 * @skb: packet to send up
 558 **/
 559static void fm10k_receive_skb(struct fm10k_q_vector *q_vector,
 560			      struct sk_buff *skb)
 561{
 562	napi_gro_receive(&q_vector->napi, skb);
 563}
 564
 565static int fm10k_clean_rx_irq(struct fm10k_q_vector *q_vector,
 566			      struct fm10k_ring *rx_ring,
 567			      int budget)
 568{
 569	struct sk_buff *skb = rx_ring->skb;
 570	unsigned int total_bytes = 0, total_packets = 0;
 571	u16 cleaned_count = fm10k_desc_unused(rx_ring);
 572
 573	while (likely(total_packets < budget)) {
 574		union fm10k_rx_desc *rx_desc;
 575
 576		/* return some buffers to hardware, one at a time is too slow */
 577		if (cleaned_count >= FM10K_RX_BUFFER_WRITE) {
 578			fm10k_alloc_rx_buffers(rx_ring, cleaned_count);
 579			cleaned_count = 0;
 580		}
 581
 582		rx_desc = FM10K_RX_DESC(rx_ring, rx_ring->next_to_clean);
 583
 584		if (!rx_desc->d.staterr)
 585			break;
 586
 587		/* This memory barrier is needed to keep us from reading
 588		 * any other fields out of the rx_desc until we know the
 589		 * descriptor has been written back
 590		 */
 591		dma_rmb();
 592
 593		/* retrieve a buffer from the ring */
 594		skb = fm10k_fetch_rx_buffer(rx_ring, rx_desc, skb);
 595
 596		/* exit if we failed to retrieve a buffer */
 597		if (!skb)
 598			break;
 599
 600		cleaned_count++;
 601
 602		/* fetch next buffer in frame if non-eop */
 603		if (fm10k_is_non_eop(rx_ring, rx_desc))
 604			continue;
 605
 606		/* verify the packet layout is correct */
 607		if (fm10k_cleanup_headers(rx_ring, rx_desc, skb)) {
 608			skb = NULL;
 609			continue;
 610		}
 611
 612		/* populate checksum, timestamp, VLAN, and protocol */
 613		total_bytes += fm10k_process_skb_fields(rx_ring, rx_desc, skb);
 614
 615		fm10k_receive_skb(q_vector, skb);
 616
 617		/* reset skb pointer */
 618		skb = NULL;
 619
 620		/* update budget accounting */
 621		total_packets++;
 622	}
 623
 624	/* place incomplete frames back on ring for completion */
 625	rx_ring->skb = skb;
 626
 627	u64_stats_update_begin(&rx_ring->syncp);
 628	rx_ring->stats.packets += total_packets;
 629	rx_ring->stats.bytes += total_bytes;
 630	u64_stats_update_end(&rx_ring->syncp);
 631	q_vector->rx.total_packets += total_packets;
 632	q_vector->rx.total_bytes += total_bytes;
 633
 634	return total_packets;
 635}
 636
 637#define VXLAN_HLEN (sizeof(struct udphdr) + 8)
 638static struct ethhdr *fm10k_port_is_vxlan(struct sk_buff *skb)
 639{
 640	struct fm10k_intfc *interface = netdev_priv(skb->dev);
 641	struct fm10k_udp_port *vxlan_port;
 642
 643	/* we can only offload a vxlan if we recognize it as such */
 644	vxlan_port = list_first_entry_or_null(&interface->vxlan_port,
 645					      struct fm10k_udp_port, list);
 646
 647	if (!vxlan_port)
 648		return NULL;
 649	if (vxlan_port->port != udp_hdr(skb)->dest)
 650		return NULL;
 651
 652	/* return offset of udp_hdr plus 8 bytes for VXLAN header */
 653	return (struct ethhdr *)(skb_transport_header(skb) + VXLAN_HLEN);
 654}
 655
 656#define FM10K_NVGRE_RESERVED0_FLAGS htons(0x9FFF)
 657#define NVGRE_TNI htons(0x2000)
 658struct fm10k_nvgre_hdr {
 659	__be16 flags;
 660	__be16 proto;
 661	__be32 tni;
 662};
 663
 664static struct ethhdr *fm10k_gre_is_nvgre(struct sk_buff *skb)
 665{
 666	struct fm10k_nvgre_hdr *nvgre_hdr;
 667	int hlen = ip_hdrlen(skb);
 668
 669	/* currently only IPv4 is supported due to hlen above */
 670	if (vlan_get_protocol(skb) != htons(ETH_P_IP))
 671		return NULL;
 672
 673	/* our transport header should be NVGRE */
 674	nvgre_hdr = (struct fm10k_nvgre_hdr *)(skb_network_header(skb) + hlen);
 675
 676	/* verify all reserved flags are 0 */
 677	if (nvgre_hdr->flags & FM10K_NVGRE_RESERVED0_FLAGS)
 678		return NULL;
 679
 680	/* report start of ethernet header */
 681	if (nvgre_hdr->flags & NVGRE_TNI)
 682		return (struct ethhdr *)(nvgre_hdr + 1);
 683
 684	return (struct ethhdr *)(&nvgre_hdr->tni);
 685}
 686
 687__be16 fm10k_tx_encap_offload(struct sk_buff *skb)
 688{
 689	u8 l4_hdr = 0, inner_l4_hdr = 0, inner_l4_hlen;
 690	struct ethhdr *eth_hdr;
 691
 692	if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
 693	    skb->inner_protocol != htons(ETH_P_TEB))
 694		return 0;
 695
 696	switch (vlan_get_protocol(skb)) {
 697	case htons(ETH_P_IP):
 698		l4_hdr = ip_hdr(skb)->protocol;
 699		break;
 700	case htons(ETH_P_IPV6):
 701		l4_hdr = ipv6_hdr(skb)->nexthdr;
 702		break;
 703	default:
 704		return 0;
 705	}
 706
 707	switch (l4_hdr) {
 708	case IPPROTO_UDP:
 709		eth_hdr = fm10k_port_is_vxlan(skb);
 710		break;
 711	case IPPROTO_GRE:
 712		eth_hdr = fm10k_gre_is_nvgre(skb);
 713		break;
 714	default:
 715		return 0;
 716	}
 717
 718	if (!eth_hdr)
 719		return 0;
 720
 721	switch (eth_hdr->h_proto) {
 722	case htons(ETH_P_IP):
 723		inner_l4_hdr = inner_ip_hdr(skb)->protocol;
 724		break;
 725	case htons(ETH_P_IPV6):
 726		inner_l4_hdr = inner_ipv6_hdr(skb)->nexthdr;
 727		break;
 728	default:
 729		return 0;
 730	}
 731
 732	switch (inner_l4_hdr) {
 733	case IPPROTO_TCP:
 734		inner_l4_hlen = inner_tcp_hdrlen(skb);
 735		break;
 736	case IPPROTO_UDP:
 737		inner_l4_hlen = 8;
 738		break;
 739	default:
 740		return 0;
 741	}
 742
 743	/* The hardware allows tunnel offloads only if the combined inner and
 744	 * outer header is 184 bytes or less
 745	 */
 746	if (skb_inner_transport_header(skb) + inner_l4_hlen -
 747	    skb_mac_header(skb) > FM10K_TUNNEL_HEADER_LENGTH)
 748		return 0;
 749
 750	return eth_hdr->h_proto;
 751}
 752
 753static int fm10k_tso(struct fm10k_ring *tx_ring,
 754		     struct fm10k_tx_buffer *first)
 755{
 756	struct sk_buff *skb = first->skb;
 757	struct fm10k_tx_desc *tx_desc;
 758	unsigned char *th;
 759	u8 hdrlen;
 760
 761	if (skb->ip_summed != CHECKSUM_PARTIAL)
 762		return 0;
 763
 764	if (!skb_is_gso(skb))
 765		return 0;
 766
 767	/* compute header lengths */
 768	if (skb->encapsulation) {
 769		if (!fm10k_tx_encap_offload(skb))
 770			goto err_vxlan;
 771		th = skb_inner_transport_header(skb);
 772	} else {
 773		th = skb_transport_header(skb);
 774	}
 775
 776	/* compute offset from SOF to transport header and add header len */
 777	hdrlen = (th - skb->data) + (((struct tcphdr *)th)->doff << 2);
 778
 779	first->tx_flags |= FM10K_TX_FLAGS_CSUM;
 780
 781	/* update gso size and bytecount with header size */
 782	first->gso_segs = skb_shinfo(skb)->gso_segs;
 783	first->bytecount += (first->gso_segs - 1) * hdrlen;
 784
 785	/* populate Tx descriptor header size and mss */
 786	tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use);
 787	tx_desc->hdrlen = hdrlen;
 788	tx_desc->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
 789
 790	return 1;
 791
 792err_vxlan:
 793	tx_ring->netdev->features &= ~NETIF_F_GSO_UDP_TUNNEL;
 794	if (net_ratelimit())
 795		netdev_err(tx_ring->netdev,
 796			   "TSO requested for unsupported tunnel, disabling offload\n");
 797	return -1;
 798}
 799
 800static void fm10k_tx_csum(struct fm10k_ring *tx_ring,
 801			  struct fm10k_tx_buffer *first)
 802{
 803	struct sk_buff *skb = first->skb;
 804	struct fm10k_tx_desc *tx_desc;
 805	union {
 806		struct iphdr *ipv4;
 807		struct ipv6hdr *ipv6;
 808		u8 *raw;
 809	} network_hdr;
 810	u8 *transport_hdr;
 811	__be16 frag_off;
 812	__be16 protocol;
 813	u8 l4_hdr = 0;
 814
 815	if (skb->ip_summed != CHECKSUM_PARTIAL)
 816		goto no_csum;
 817
 818	if (skb->encapsulation) {
 819		protocol = fm10k_tx_encap_offload(skb);
 820		if (!protocol) {
 821			if (skb_checksum_help(skb)) {
 822				dev_warn(tx_ring->dev,
 823					 "failed to offload encap csum!\n");
 824				tx_ring->tx_stats.csum_err++;
 825			}
 826			goto no_csum;
 827		}
 828		network_hdr.raw = skb_inner_network_header(skb);
 829		transport_hdr = skb_inner_transport_header(skb);
 830	} else {
 831		protocol = vlan_get_protocol(skb);
 832		network_hdr.raw = skb_network_header(skb);
 833		transport_hdr = skb_transport_header(skb);
 834	}
 835
 836	switch (protocol) {
 837	case htons(ETH_P_IP):
 838		l4_hdr = network_hdr.ipv4->protocol;
 839		break;
 840	case htons(ETH_P_IPV6):
 841		l4_hdr = network_hdr.ipv6->nexthdr;
 842		if (likely((transport_hdr - network_hdr.raw) ==
 843			   sizeof(struct ipv6hdr)))
 844			break;
 845		ipv6_skip_exthdr(skb, network_hdr.raw - skb->data +
 846				      sizeof(struct ipv6hdr),
 847				 &l4_hdr, &frag_off);
 848		if (unlikely(frag_off))
 849			l4_hdr = NEXTHDR_FRAGMENT;
 850		break;
 851	default:
 852		break;
 853	}
 854
 855	switch (l4_hdr) {
 856	case IPPROTO_TCP:
 857	case IPPROTO_UDP:
 858		break;
 859	case IPPROTO_GRE:
 860		if (skb->encapsulation)
 861			break;
 862		/* fall through */
 863	default:
 864		if (unlikely(net_ratelimit())) {
 865			dev_warn(tx_ring->dev,
 866				 "partial checksum, version=%d l4 proto=%x\n",
 867				 protocol, l4_hdr);
 868		}
 869		skb_checksum_help(skb);
 870		tx_ring->tx_stats.csum_err++;
 871		goto no_csum;
 872	}
 873
 874	/* update TX checksum flag */
 875	first->tx_flags |= FM10K_TX_FLAGS_CSUM;
 876	tx_ring->tx_stats.csum_good++;
 877
 878no_csum:
 879	/* populate Tx descriptor header size and mss */
 880	tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use);
 881	tx_desc->hdrlen = 0;
 882	tx_desc->mss = 0;
 883}
 884
 885#define FM10K_SET_FLAG(_input, _flag, _result) \
 886	((_flag <= _result) ? \
 887	 ((u32)(_input & _flag) * (_result / _flag)) : \
 888	 ((u32)(_input & _flag) / (_flag / _result)))
 889
 890static u8 fm10k_tx_desc_flags(struct sk_buff *skb, u32 tx_flags)
 891{
 892	/* set type for advanced descriptor with frame checksum insertion */
 893	u32 desc_flags = 0;
 894
 895	/* set checksum offload bits */
 896	desc_flags |= FM10K_SET_FLAG(tx_flags, FM10K_TX_FLAGS_CSUM,
 897				     FM10K_TXD_FLAG_CSUM);
 898
 899	return desc_flags;
 900}
 901
 902static bool fm10k_tx_desc_push(struct fm10k_ring *tx_ring,
 903			       struct fm10k_tx_desc *tx_desc, u16 i,
 904			       dma_addr_t dma, unsigned int size, u8 desc_flags)
 905{
 906	/* set RS and INT for last frame in a cache line */
 907	if ((++i & (FM10K_TXD_WB_FIFO_SIZE - 1)) == 0)
 908		desc_flags |= FM10K_TXD_FLAG_RS | FM10K_TXD_FLAG_INT;
 909
 910	/* record values to descriptor */
 911	tx_desc->buffer_addr = cpu_to_le64(dma);
 912	tx_desc->flags = desc_flags;
 913	tx_desc->buflen = cpu_to_le16(size);
 914
 915	/* return true if we just wrapped the ring */
 916	return i == tx_ring->count;
 917}
 918
 919static int __fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size)
 920{
 921	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
 922
 923	/* Memory barrier before checking head and tail */
 924	smp_mb();
 925
 926	/* Check again in a case another CPU has just made room available */
 927	if (likely(fm10k_desc_unused(tx_ring) < size))
 928		return -EBUSY;
 929
 930	/* A reprieve! - use start_queue because it doesn't call schedule */
 931	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
 932	++tx_ring->tx_stats.restart_queue;
 933	return 0;
 934}
 935
 936static inline int fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size)
 937{
 938	if (likely(fm10k_desc_unused(tx_ring) >= size))
 939		return 0;
 940	return __fm10k_maybe_stop_tx(tx_ring, size);
 941}
 942
 943static void fm10k_tx_map(struct fm10k_ring *tx_ring,
 944			 struct fm10k_tx_buffer *first)
 945{
 946	struct sk_buff *skb = first->skb;
 947	struct fm10k_tx_buffer *tx_buffer;
 948	struct fm10k_tx_desc *tx_desc;
 949	skb_frag_t *frag;
 950	unsigned char *data;
 951	dma_addr_t dma;
 952	unsigned int data_len, size;
 953	u32 tx_flags = first->tx_flags;
 954	u16 i = tx_ring->next_to_use;
 955	u8 flags = fm10k_tx_desc_flags(skb, tx_flags);
 956
 957	tx_desc = FM10K_TX_DESC(tx_ring, i);
 958
 959	/* add HW VLAN tag */
 960	if (skb_vlan_tag_present(skb))
 961		tx_desc->vlan = cpu_to_le16(skb_vlan_tag_get(skb));
 962	else
 963		tx_desc->vlan = 0;
 964
 965	size = skb_headlen(skb);
 966	data = skb->data;
 967
 968	dma = dma_map_single(tx_ring->dev, data, size, DMA_TO_DEVICE);
 969
 970	data_len = skb->data_len;
 971	tx_buffer = first;
 972
 973	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
 974		if (dma_mapping_error(tx_ring->dev, dma))
 975			goto dma_error;
 976
 977		/* record length, and DMA address */
 978		dma_unmap_len_set(tx_buffer, len, size);
 979		dma_unmap_addr_set(tx_buffer, dma, dma);
 980
 981		while (unlikely(size > FM10K_MAX_DATA_PER_TXD)) {
 982			if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++, dma,
 983					       FM10K_MAX_DATA_PER_TXD, flags)) {
 984				tx_desc = FM10K_TX_DESC(tx_ring, 0);
 985				i = 0;
 986			}
 987
 988			dma += FM10K_MAX_DATA_PER_TXD;
 989			size -= FM10K_MAX_DATA_PER_TXD;
 990		}
 991
 992		if (likely(!data_len))
 993			break;
 994
 995		if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++,
 996				       dma, size, flags)) {
 997			tx_desc = FM10K_TX_DESC(tx_ring, 0);
 998			i = 0;
 999		}
1000
1001		size = skb_frag_size(frag);
1002		data_len -= size;
1003
1004		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1005				       DMA_TO_DEVICE);
1006
1007		tx_buffer = &tx_ring->tx_buffer[i];
1008	}
1009
1010	/* write last descriptor with LAST bit set */
1011	flags |= FM10K_TXD_FLAG_LAST;
1012
1013	if (fm10k_tx_desc_push(tx_ring, tx_desc, i++, dma, size, flags))
1014		i = 0;
1015
1016	/* record bytecount for BQL */
1017	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1018
1019	/* record SW timestamp if HW timestamp is not available */
1020	skb_tx_timestamp(first->skb);
1021
1022	/* Force memory writes to complete before letting h/w know there
1023	 * are new descriptors to fetch.  (Only applicable for weak-ordered
1024	 * memory model archs, such as IA-64).
1025	 *
1026	 * We also need this memory barrier to make certain all of the
1027	 * status bits have been updated before next_to_watch is written.
1028	 */
1029	wmb();
1030
1031	/* set next_to_watch value indicating a packet is present */
1032	first->next_to_watch = tx_desc;
1033
1034	tx_ring->next_to_use = i;
1035
1036	/* Make sure there is space in the ring for the next send. */
1037	fm10k_maybe_stop_tx(tx_ring, DESC_NEEDED);
1038
1039	/* notify HW of packet */
1040	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
1041		writel(i, tx_ring->tail);
1042	}
1043
1044	return;
1045dma_error:
1046	dev_err(tx_ring->dev, "TX DMA map failed\n");
1047
1048	/* clear dma mappings for failed tx_buffer map */
1049	for (;;) {
1050		tx_buffer = &tx_ring->tx_buffer[i];
1051		fm10k_unmap_and_free_tx_resource(tx_ring, tx_buffer);
1052		if (tx_buffer == first)
1053			break;
1054		if (i == 0)
1055			i = tx_ring->count;
1056		i--;
1057	}
1058
1059	tx_ring->next_to_use = i;
1060}
1061
1062netdev_tx_t fm10k_xmit_frame_ring(struct sk_buff *skb,
1063				  struct fm10k_ring *tx_ring)
1064{
1065	u16 count = TXD_USE_COUNT(skb_headlen(skb));
1066	struct fm10k_tx_buffer *first;
1067	unsigned short f;
1068	u32 tx_flags = 0;
1069	int tso;
1070
1071	/* need: 1 descriptor per page * PAGE_SIZE/FM10K_MAX_DATA_PER_TXD,
1072	 *       + 1 desc for skb_headlen/FM10K_MAX_DATA_PER_TXD,
1073	 *       + 2 desc gap to keep tail from touching head
1074	 * otherwise try next time
1075	 */
1076	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
1077		skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
1078
1079		count += TXD_USE_COUNT(skb_frag_size(frag));
1080	}
1081
1082	if (fm10k_maybe_stop_tx(tx_ring, count + 3)) {
1083		tx_ring->tx_stats.tx_busy++;
1084		return NETDEV_TX_BUSY;
1085	}
1086
1087	/* record the location of the first descriptor for this packet */
1088	first = &tx_ring->tx_buffer[tx_ring->next_to_use];
1089	first->skb = skb;
1090	first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN);
1091	first->gso_segs = 1;
1092
1093	/* record initial flags and protocol */
1094	first->tx_flags = tx_flags;
1095
1096	tso = fm10k_tso(tx_ring, first);
1097	if (tso < 0)
1098		goto out_drop;
1099	else if (!tso)
1100		fm10k_tx_csum(tx_ring, first);
1101
1102	fm10k_tx_map(tx_ring, first);
1103
1104	return NETDEV_TX_OK;
1105
1106out_drop:
1107	dev_kfree_skb_any(first->skb);
1108	first->skb = NULL;
1109
1110	return NETDEV_TX_OK;
1111}
1112
1113static u64 fm10k_get_tx_completed(struct fm10k_ring *ring)
1114{
1115	return ring->stats.packets;
1116}
1117
1118/**
1119 * fm10k_get_tx_pending - how many Tx descriptors not processed
1120 * @ring: the ring structure
1121 * @in_sw: is tx_pending being checked in SW or in HW?
1122 */
1123u64 fm10k_get_tx_pending(struct fm10k_ring *ring, bool in_sw)
1124{
1125	struct fm10k_intfc *interface = ring->q_vector->interface;
1126	struct fm10k_hw *hw = &interface->hw;
1127	u32 head, tail;
1128
1129	if (likely(in_sw)) {
1130		head = ring->next_to_clean;
1131		tail = ring->next_to_use;
1132	} else {
1133		head = fm10k_read_reg(hw, FM10K_TDH(ring->reg_idx));
1134		tail = fm10k_read_reg(hw, FM10K_TDT(ring->reg_idx));
1135	}
1136
1137	return ((head <= tail) ? tail : tail + ring->count) - head;
1138}
1139
1140bool fm10k_check_tx_hang(struct fm10k_ring *tx_ring)
1141{
1142	u32 tx_done = fm10k_get_tx_completed(tx_ring);
1143	u32 tx_done_old = tx_ring->tx_stats.tx_done_old;
1144	u32 tx_pending = fm10k_get_tx_pending(tx_ring, true);
1145
1146	clear_check_for_tx_hang(tx_ring);
1147
1148	/* Check for a hung queue, but be thorough. This verifies
1149	 * that a transmit has been completed since the previous
1150	 * check AND there is at least one packet pending. By
1151	 * requiring this to fail twice we avoid races with
1152	 * clearing the ARMED bit and conditions where we
1153	 * run the check_tx_hang logic with a transmit completion
1154	 * pending but without time to complete it yet.
1155	 */
1156	if (!tx_pending || (tx_done_old != tx_done)) {
1157		/* update completed stats and continue */
1158		tx_ring->tx_stats.tx_done_old = tx_done;
1159		/* reset the countdown */
1160		clear_bit(__FM10K_HANG_CHECK_ARMED, tx_ring->state);
1161
1162		return false;
1163	}
1164
1165	/* make sure it is true for two checks in a row */
1166	return test_and_set_bit(__FM10K_HANG_CHECK_ARMED, tx_ring->state);
1167}
1168
1169/**
1170 * fm10k_tx_timeout_reset - initiate reset due to Tx timeout
1171 * @interface: driver private struct
1172 **/
1173void fm10k_tx_timeout_reset(struct fm10k_intfc *interface)
1174{
1175	/* Do the reset outside of interrupt context */
1176	if (!test_bit(__FM10K_DOWN, interface->state)) {
1177		interface->tx_timeout_count++;
1178		set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags);
1179		fm10k_service_event_schedule(interface);
1180	}
1181}
1182
1183/**
1184 * fm10k_clean_tx_irq - Reclaim resources after transmit completes
1185 * @q_vector: structure containing interrupt and ring information
1186 * @tx_ring: tx ring to clean
1187 * @napi_budget: Used to determine if we are in netpoll
1188 **/
1189static bool fm10k_clean_tx_irq(struct fm10k_q_vector *q_vector,
1190			       struct fm10k_ring *tx_ring, int napi_budget)
1191{
1192	struct fm10k_intfc *interface = q_vector->interface;
1193	struct fm10k_tx_buffer *tx_buffer;
1194	struct fm10k_tx_desc *tx_desc;
1195	unsigned int total_bytes = 0, total_packets = 0;
1196	unsigned int budget = q_vector->tx.work_limit;
1197	unsigned int i = tx_ring->next_to_clean;
1198
1199	if (test_bit(__FM10K_DOWN, interface->state))
1200		return true;
1201
1202	tx_buffer = &tx_ring->tx_buffer[i];
1203	tx_desc = FM10K_TX_DESC(tx_ring, i);
1204	i -= tx_ring->count;
1205
1206	do {
1207		struct fm10k_tx_desc *eop_desc = tx_buffer->next_to_watch;
1208
1209		/* if next_to_watch is not set then there is no work pending */
1210		if (!eop_desc)
1211			break;
1212
1213		/* prevent any other reads prior to eop_desc */
1214		smp_rmb();
1215
1216		/* if DD is not set pending work has not been completed */
1217		if (!(eop_desc->flags & FM10K_TXD_FLAG_DONE))
1218			break;
1219
1220		/* clear next_to_watch to prevent false hangs */
1221		tx_buffer->next_to_watch = NULL;
1222
1223		/* update the statistics for this packet */
1224		total_bytes += tx_buffer->bytecount;
1225		total_packets += tx_buffer->gso_segs;
1226
1227		/* free the skb */
1228		napi_consume_skb(tx_buffer->skb, napi_budget);
1229
1230		/* unmap skb header data */
1231		dma_unmap_single(tx_ring->dev,
1232				 dma_unmap_addr(tx_buffer, dma),
1233				 dma_unmap_len(tx_buffer, len),
1234				 DMA_TO_DEVICE);
1235
1236		/* clear tx_buffer data */
1237		tx_buffer->skb = NULL;
1238		dma_unmap_len_set(tx_buffer, len, 0);
1239
1240		/* unmap remaining buffers */
1241		while (tx_desc != eop_desc) {
1242			tx_buffer++;
1243			tx_desc++;
1244			i++;
1245			if (unlikely(!i)) {
1246				i -= tx_ring->count;
1247				tx_buffer = tx_ring->tx_buffer;
1248				tx_desc = FM10K_TX_DESC(tx_ring, 0);
1249			}
1250
1251			/* unmap any remaining paged data */
1252			if (dma_unmap_len(tx_buffer, len)) {
1253				dma_unmap_page(tx_ring->dev,
1254					       dma_unmap_addr(tx_buffer, dma),
1255					       dma_unmap_len(tx_buffer, len),
1256					       DMA_TO_DEVICE);
1257				dma_unmap_len_set(tx_buffer, len, 0);
1258			}
1259		}
1260
1261		/* move us one more past the eop_desc for start of next pkt */
1262		tx_buffer++;
1263		tx_desc++;
1264		i++;
1265		if (unlikely(!i)) {
1266			i -= tx_ring->count;
1267			tx_buffer = tx_ring->tx_buffer;
1268			tx_desc = FM10K_TX_DESC(tx_ring, 0);
1269		}
1270
1271		/* issue prefetch for next Tx descriptor */
1272		prefetch(tx_desc);
1273
1274		/* update budget accounting */
1275		budget--;
1276	} while (likely(budget));
1277
1278	i += tx_ring->count;
1279	tx_ring->next_to_clean = i;
1280	u64_stats_update_begin(&tx_ring->syncp);
1281	tx_ring->stats.bytes += total_bytes;
1282	tx_ring->stats.packets += total_packets;
1283	u64_stats_update_end(&tx_ring->syncp);
1284	q_vector->tx.total_bytes += total_bytes;
1285	q_vector->tx.total_packets += total_packets;
1286
1287	if (check_for_tx_hang(tx_ring) && fm10k_check_tx_hang(tx_ring)) {
1288		/* schedule immediate reset if we believe we hung */
1289		struct fm10k_hw *hw = &interface->hw;
1290
1291		netif_err(interface, drv, tx_ring->netdev,
1292			  "Detected Tx Unit Hang\n"
1293			  "  Tx Queue             <%d>\n"
1294			  "  TDH, TDT             <%x>, <%x>\n"
1295			  "  next_to_use          <%x>\n"
1296			  "  next_to_clean        <%x>\n",
1297			  tx_ring->queue_index,
1298			  fm10k_read_reg(hw, FM10K_TDH(tx_ring->reg_idx)),
1299			  fm10k_read_reg(hw, FM10K_TDT(tx_ring->reg_idx)),
1300			  tx_ring->next_to_use, i);
1301
1302		netif_stop_subqueue(tx_ring->netdev,
1303				    tx_ring->queue_index);
1304
1305		netif_info(interface, probe, tx_ring->netdev,
1306			   "tx hang %d detected on queue %d, resetting interface\n",
1307			   interface->tx_timeout_count + 1,
1308			   tx_ring->queue_index);
1309
1310		fm10k_tx_timeout_reset(interface);
1311
1312		/* the netdev is about to reset, no point in enabling stuff */
1313		return true;
1314	}
1315
1316	/* notify netdev of completed buffers */
1317	netdev_tx_completed_queue(txring_txq(tx_ring),
1318				  total_packets, total_bytes);
1319
1320#define TX_WAKE_THRESHOLD min_t(u16, FM10K_MIN_TXD - 1, DESC_NEEDED * 2)
1321	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
1322		     (fm10k_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) {
1323		/* Make sure that anybody stopping the queue after this
1324		 * sees the new next_to_clean.
1325		 */
1326		smp_mb();
1327		if (__netif_subqueue_stopped(tx_ring->netdev,
1328					     tx_ring->queue_index) &&
1329		    !test_bit(__FM10K_DOWN, interface->state)) {
1330			netif_wake_subqueue(tx_ring->netdev,
1331					    tx_ring->queue_index);
1332			++tx_ring->tx_stats.restart_queue;
1333		}
1334	}
1335
1336	return !!budget;
1337}
1338
1339/**
1340 * fm10k_update_itr - update the dynamic ITR value based on packet size
1341 *
1342 *      Stores a new ITR value based on strictly on packet size.  The
1343 *      divisors and thresholds used by this function were determined based
1344 *      on theoretical maximum wire speed and testing data, in order to
1345 *      minimize response time while increasing bulk throughput.
1346 *
1347 * @ring_container: Container for rings to have ITR updated
1348 **/
1349static void fm10k_update_itr(struct fm10k_ring_container *ring_container)
1350{
1351	unsigned int avg_wire_size, packets, itr_round;
1352
1353	/* Only update ITR if we are using adaptive setting */
1354	if (!ITR_IS_ADAPTIVE(ring_container->itr))
1355		goto clear_counts;
1356
1357	packets = ring_container->total_packets;
1358	if (!packets)
1359		goto clear_counts;
1360
1361	avg_wire_size = ring_container->total_bytes / packets;
1362
1363	/* The following is a crude approximation of:
1364	 *  wmem_default / (size + overhead) = desired_pkts_per_int
1365	 *  rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
1366	 *  (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1367	 *
1368	 * Assuming wmem_default is 212992 and overhead is 640 bytes per
1369	 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1370	 * formula down to
1371	 *
1372	 *  (34 * (size + 24)) / (size + 640) = ITR
1373	 *
1374	 * We first do some math on the packet size and then finally bitshift
1375	 * by 8 after rounding up. We also have to account for PCIe link speed
1376	 * difference as ITR scales based on this.
1377	 */
1378	if (avg_wire_size <= 360) {
1379		/* Start at 250K ints/sec and gradually drop to 77K ints/sec */
1380		avg_wire_size *= 8;
1381		avg_wire_size += 376;
1382	} else if (avg_wire_size <= 1152) {
1383		/* 77K ints/sec to 45K ints/sec */
1384		avg_wire_size *= 3;
1385		avg_wire_size += 2176;
1386	} else if (avg_wire_size <= 1920) {
1387		/* 45K ints/sec to 38K ints/sec */
1388		avg_wire_size += 4480;
1389	} else {
1390		/* plateau at a limit of 38K ints/sec */
1391		avg_wire_size = 6656;
1392	}
1393
1394	/* Perform final bitshift for division after rounding up to ensure
1395	 * that the calculation will never get below a 1. The bit shift
1396	 * accounts for changes in the ITR due to PCIe link speed.
1397	 */
1398	itr_round = READ_ONCE(ring_container->itr_scale) + 8;
1399	avg_wire_size += BIT(itr_round) - 1;
1400	avg_wire_size >>= itr_round;
1401
1402	/* write back value and retain adaptive flag */
1403	ring_container->itr = avg_wire_size | FM10K_ITR_ADAPTIVE;
1404
1405clear_counts:
1406	ring_container->total_bytes = 0;
1407	ring_container->total_packets = 0;
1408}
1409
1410static void fm10k_qv_enable(struct fm10k_q_vector *q_vector)
1411{
1412	/* Enable auto-mask and clear the current mask */
1413	u32 itr = FM10K_ITR_ENABLE;
1414
1415	/* Update Tx ITR */
1416	fm10k_update_itr(&q_vector->tx);
1417
1418	/* Update Rx ITR */
1419	fm10k_update_itr(&q_vector->rx);
1420
1421	/* Store Tx itr in timer slot 0 */
1422	itr |= (q_vector->tx.itr & FM10K_ITR_MAX);
1423
1424	/* Shift Rx itr to timer slot 1 */
1425	itr |= (q_vector->rx.itr & FM10K_ITR_MAX) << FM10K_ITR_INTERVAL1_SHIFT;
1426
1427	/* Write the final value to the ITR register */
1428	writel(itr, q_vector->itr);
1429}
1430
1431static int fm10k_poll(struct napi_struct *napi, int budget)
1432{
1433	struct fm10k_q_vector *q_vector =
1434			       container_of(napi, struct fm10k_q_vector, napi);
1435	struct fm10k_ring *ring;
1436	int per_ring_budget, work_done = 0;
1437	bool clean_complete = true;
1438
1439	fm10k_for_each_ring(ring, q_vector->tx) {
1440		if (!fm10k_clean_tx_irq(q_vector, ring, budget))
1441			clean_complete = false;
1442	}
1443
1444	/* Handle case where we are called by netpoll with a budget of 0 */
1445	if (budget <= 0)
1446		return budget;
1447
1448	/* attempt to distribute budget to each queue fairly, but don't
1449	 * allow the budget to go below 1 because we'll exit polling
1450	 */
1451	if (q_vector->rx.count > 1)
1452		per_ring_budget = max(budget / q_vector->rx.count, 1);
1453	else
1454		per_ring_budget = budget;
1455
1456	fm10k_for_each_ring(ring, q_vector->rx) {
1457		int work = fm10k_clean_rx_irq(q_vector, ring, per_ring_budget);
1458
1459		work_done += work;
1460		if (work >= per_ring_budget)
1461			clean_complete = false;
1462	}
1463
1464	/* If all work not completed, return budget and keep polling */
1465	if (!clean_complete)
1466		return budget;
1467
1468	/* Exit the polling mode, but don't re-enable interrupts if stack might
1469	 * poll us due to busy-polling
1470	 */
1471	if (likely(napi_complete_done(napi, work_done)))
1472		fm10k_qv_enable(q_vector);
1473
1474	return min(work_done, budget - 1);
1475}
1476
1477/**
1478 * fm10k_set_qos_queues: Allocate queues for a QOS-enabled device
1479 * @interface: board private structure to initialize
1480 *
1481 * When QoS (Quality of Service) is enabled, allocate queues for
1482 * each traffic class.  If multiqueue isn't available,then abort QoS
1483 * initialization.
1484 *
1485 * This function handles all combinations of Qos and RSS.
1486 *
1487 **/
1488static bool fm10k_set_qos_queues(struct fm10k_intfc *interface)
1489{
1490	struct net_device *dev = interface->netdev;
1491	struct fm10k_ring_feature *f;
1492	int rss_i, i;
1493	int pcs;
1494
1495	/* Map queue offset and counts onto allocated tx queues */
1496	pcs = netdev_get_num_tc(dev);
1497
1498	if (pcs <= 1)
1499		return false;
1500
1501	/* set QoS mask and indices */
1502	f = &interface->ring_feature[RING_F_QOS];
1503	f->indices = pcs;
1504	f->mask = BIT(fls(pcs - 1)) - 1;
1505
1506	/* determine the upper limit for our current DCB mode */
1507	rss_i = interface->hw.mac.max_queues / pcs;
1508	rss_i = BIT(fls(rss_i) - 1);
1509
1510	/* set RSS mask and indices */
1511	f = &interface->ring_feature[RING_F_RSS];
1512	rss_i = min_t(u16, rss_i, f->limit);
1513	f->indices = rss_i;
1514	f->mask = BIT(fls(rss_i - 1)) - 1;
1515
1516	/* configure pause class to queue mapping */
1517	for (i = 0; i < pcs; i++)
1518		netdev_set_tc_queue(dev, i, rss_i, rss_i * i);
1519
1520	interface->num_rx_queues = rss_i * pcs;
1521	interface->num_tx_queues = rss_i * pcs;
1522
1523	return true;
1524}
1525
1526/**
1527 * fm10k_set_rss_queues: Allocate queues for RSS
1528 * @interface: board private structure to initialize
1529 *
1530 * This is our "base" multiqueue mode.  RSS (Receive Side Scaling) will try
1531 * to allocate one Rx queue per CPU, and if available, one Tx queue per CPU.
1532 *
1533 **/
1534static bool fm10k_set_rss_queues(struct fm10k_intfc *interface)
1535{
1536	struct fm10k_ring_feature *f;
1537	u16 rss_i;
1538
1539	f = &interface->ring_feature[RING_F_RSS];
1540	rss_i = min_t(u16, interface->hw.mac.max_queues, f->limit);
1541
1542	/* record indices and power of 2 mask for RSS */
1543	f->indices = rss_i;
1544	f->mask = BIT(fls(rss_i - 1)) - 1;
1545
1546	interface->num_rx_queues = rss_i;
1547	interface->num_tx_queues = rss_i;
1548
1549	return true;
1550}
1551
1552/**
1553 * fm10k_set_num_queues: Allocate queues for device, feature dependent
1554 * @interface: board private structure to initialize
1555 *
1556 * This is the top level queue allocation routine.  The order here is very
1557 * important, starting with the "most" number of features turned on at once,
1558 * and ending with the smallest set of features.  This way large combinations
1559 * can be allocated if they're turned on, and smaller combinations are the
1560 * fallthrough conditions.
1561 *
1562 **/
1563static void fm10k_set_num_queues(struct fm10k_intfc *interface)
1564{
1565	/* Attempt to setup QoS and RSS first */
1566	if (fm10k_set_qos_queues(interface))
1567		return;
1568
1569	/* If we don't have QoS, just fallback to only RSS. */
1570	fm10k_set_rss_queues(interface);
1571}
1572
1573/**
1574 * fm10k_reset_num_queues - Reset the number of queues to zero
1575 * @interface: board private structure
1576 *
1577 * This function should be called whenever we need to reset the number of
1578 * queues after an error condition.
1579 */
1580static void fm10k_reset_num_queues(struct fm10k_intfc *interface)
1581{
1582	interface->num_tx_queues = 0;
1583	interface->num_rx_queues = 0;
1584	interface->num_q_vectors = 0;
1585}
1586
1587/**
1588 * fm10k_alloc_q_vector - Allocate memory for a single interrupt vector
1589 * @interface: board private structure to initialize
1590 * @v_count: q_vectors allocated on interface, used for ring interleaving
1591 * @v_idx: index of vector in interface struct
1592 * @txr_count: total number of Tx rings to allocate
1593 * @txr_idx: index of first Tx ring to allocate
1594 * @rxr_count: total number of Rx rings to allocate
1595 * @rxr_idx: index of first Rx ring to allocate
1596 *
1597 * We allocate one q_vector.  If allocation fails we return -ENOMEM.
1598 **/
1599static int fm10k_alloc_q_vector(struct fm10k_intfc *interface,
1600				unsigned int v_count, unsigned int v_idx,
1601				unsigned int txr_count, unsigned int txr_idx,
1602				unsigned int rxr_count, unsigned int rxr_idx)
1603{
1604	struct fm10k_q_vector *q_vector;
1605	struct fm10k_ring *ring;
1606	int ring_count;
1607
1608	ring_count = txr_count + rxr_count;
1609
1610	/* allocate q_vector and rings */
1611	q_vector = kzalloc(struct_size(q_vector, ring, ring_count), GFP_KERNEL);
1612	if (!q_vector)
1613		return -ENOMEM;
1614
1615	/* initialize NAPI */
1616	netif_napi_add(interface->netdev, &q_vector->napi,
1617		       fm10k_poll, NAPI_POLL_WEIGHT);
1618
1619	/* tie q_vector and interface together */
1620	interface->q_vector[v_idx] = q_vector;
1621	q_vector->interface = interface;
1622	q_vector->v_idx = v_idx;
1623
1624	/* initialize pointer to rings */
1625	ring = q_vector->ring;
1626
1627	/* save Tx ring container info */
1628	q_vector->tx.ring = ring;
1629	q_vector->tx.work_limit = FM10K_DEFAULT_TX_WORK;
1630	q_vector->tx.itr = interface->tx_itr;
1631	q_vector->tx.itr_scale = interface->hw.mac.itr_scale;
1632	q_vector->tx.count = txr_count;
1633
1634	while (txr_count) {
1635		/* assign generic ring traits */
1636		ring->dev = &interface->pdev->dev;
1637		ring->netdev = interface->netdev;
1638
1639		/* configure backlink on ring */
1640		ring->q_vector = q_vector;
1641
1642		/* apply Tx specific ring traits */
1643		ring->count = interface->tx_ring_count;
1644		ring->queue_index = txr_idx;
1645
1646		/* assign ring to interface */
1647		interface->tx_ring[txr_idx] = ring;
1648
1649		/* update count and index */
1650		txr_count--;
1651		txr_idx += v_count;
1652
1653		/* push pointer to next ring */
1654		ring++;
1655	}
1656
1657	/* save Rx ring container info */
1658	q_vector->rx.ring = ring;
1659	q_vector->rx.itr = interface->rx_itr;
1660	q_vector->rx.itr_scale = interface->hw.mac.itr_scale;
1661	q_vector->rx.count = rxr_count;
1662
1663	while (rxr_count) {
1664		/* assign generic ring traits */
1665		ring->dev = &interface->pdev->dev;
1666		ring->netdev = interface->netdev;
1667		rcu_assign_pointer(ring->l2_accel, interface->l2_accel);
1668
1669		/* configure backlink on ring */
1670		ring->q_vector = q_vector;
1671
1672		/* apply Rx specific ring traits */
1673		ring->count = interface->rx_ring_count;
1674		ring->queue_index = rxr_idx;
1675
1676		/* assign ring to interface */
1677		interface->rx_ring[rxr_idx] = ring;
1678
1679		/* update count and index */
1680		rxr_count--;
1681		rxr_idx += v_count;
1682
1683		/* push pointer to next ring */
1684		ring++;
1685	}
1686
1687	fm10k_dbg_q_vector_init(q_vector);
1688
1689	return 0;
1690}
1691
1692/**
1693 * fm10k_free_q_vector - Free memory allocated for specific interrupt vector
1694 * @interface: board private structure to initialize
1695 * @v_idx: Index of vector to be freed
1696 *
1697 * This function frees the memory allocated to the q_vector.  In addition if
1698 * NAPI is enabled it will delete any references to the NAPI struct prior
1699 * to freeing the q_vector.
1700 **/
1701static void fm10k_free_q_vector(struct fm10k_intfc *interface, int v_idx)
1702{
1703	struct fm10k_q_vector *q_vector = interface->q_vector[v_idx];
1704	struct fm10k_ring *ring;
1705
1706	fm10k_dbg_q_vector_exit(q_vector);
1707
1708	fm10k_for_each_ring(ring, q_vector->tx)
1709		interface->tx_ring[ring->queue_index] = NULL;
1710
1711	fm10k_for_each_ring(ring, q_vector->rx)
1712		interface->rx_ring[ring->queue_index] = NULL;
1713
1714	interface->q_vector[v_idx] = NULL;
1715	netif_napi_del(&q_vector->napi);
1716	kfree_rcu(q_vector, rcu);
1717}
1718
1719/**
1720 * fm10k_alloc_q_vectors - Allocate memory for interrupt vectors
1721 * @interface: board private structure to initialize
1722 *
1723 * We allocate one q_vector per queue interrupt.  If allocation fails we
1724 * return -ENOMEM.
1725 **/
1726static int fm10k_alloc_q_vectors(struct fm10k_intfc *interface)
1727{
1728	unsigned int q_vectors = interface->num_q_vectors;
1729	unsigned int rxr_remaining = interface->num_rx_queues;
1730	unsigned int txr_remaining = interface->num_tx_queues;
1731	unsigned int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1732	int err;
1733
1734	if (q_vectors >= (rxr_remaining + txr_remaining)) {
1735		for (; rxr_remaining; v_idx++) {
1736			err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
1737						   0, 0, 1, rxr_idx);
1738			if (err)
1739				goto err_out;
1740
1741			/* update counts and index */
1742			rxr_remaining--;
1743			rxr_idx++;
1744		}
1745	}
1746
1747	for (; v_idx < q_vectors; v_idx++) {
1748		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1749		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1750
1751		err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
1752					   tqpv, txr_idx,
1753					   rqpv, rxr_idx);
1754
1755		if (err)
1756			goto err_out;
1757
1758		/* update counts and index */
1759		rxr_remaining -= rqpv;
1760		txr_remaining -= tqpv;
1761		rxr_idx++;
1762		txr_idx++;
1763	}
1764
1765	return 0;
1766
1767err_out:
1768	fm10k_reset_num_queues(interface);
1769
1770	while (v_idx--)
1771		fm10k_free_q_vector(interface, v_idx);
1772
1773	return -ENOMEM;
1774}
1775
1776/**
1777 * fm10k_free_q_vectors - Free memory allocated for interrupt vectors
1778 * @interface: board private structure to initialize
1779 *
1780 * This function frees the memory allocated to the q_vectors.  In addition if
1781 * NAPI is enabled it will delete any references to the NAPI struct prior
1782 * to freeing the q_vector.
1783 **/
1784static void fm10k_free_q_vectors(struct fm10k_intfc *interface)
1785{
1786	int v_idx = interface->num_q_vectors;
1787
1788	fm10k_reset_num_queues(interface);
1789
1790	while (v_idx--)
1791		fm10k_free_q_vector(interface, v_idx);
1792}
1793
1794/**
1795 * f10k_reset_msix_capability - reset MSI-X capability
1796 * @interface: board private structure to initialize
1797 *
1798 * Reset the MSI-X capability back to its starting state
1799 **/
1800static void fm10k_reset_msix_capability(struct fm10k_intfc *interface)
1801{
1802	pci_disable_msix(interface->pdev);
1803	kfree(interface->msix_entries);
1804	interface->msix_entries = NULL;
1805}
1806
1807/**
1808 * f10k_init_msix_capability - configure MSI-X capability
1809 * @interface: board private structure to initialize
1810 *
1811 * Attempt to configure the interrupts using the best available
1812 * capabilities of the hardware and the kernel.
1813 **/
1814static int fm10k_init_msix_capability(struct fm10k_intfc *interface)
1815{
1816	struct fm10k_hw *hw = &interface->hw;
1817	int v_budget, vector;
1818
1819	/* It's easy to be greedy for MSI-X vectors, but it really
1820	 * doesn't do us much good if we have a lot more vectors
1821	 * than CPU's.  So let's be conservative and only ask for
1822	 * (roughly) the same number of vectors as there are CPU's.
1823	 * the default is to use pairs of vectors
1824	 */
1825	v_budget = max(interface->num_rx_queues, interface->num_tx_queues);
1826	v_budget = min_t(u16, v_budget, num_online_cpus());
1827
1828	/* account for vectors not related to queues */
1829	v_budget += NON_Q_VECTORS;
1830
1831	/* At the same time, hardware can only support a maximum of
1832	 * hw.mac->max_msix_vectors vectors.  With features
1833	 * such as RSS and VMDq, we can easily surpass the number of Rx and Tx
1834	 * descriptor queues supported by our device.  Thus, we cap it off in
1835	 * those rare cases where the cpu count also exceeds our vector limit.
1836	 */
1837	v_budget = min_t(int, v_budget, hw->mac.max_msix_vectors);
1838
1839	/* A failure in MSI-X entry allocation is fatal. */
1840	interface->msix_entries = kcalloc(v_budget, sizeof(struct msix_entry),
1841					  GFP_KERNEL);
1842	if (!interface->msix_entries)
1843		return -ENOMEM;
1844
1845	/* populate entry values */
1846	for (vector = 0; vector < v_budget; vector++)
1847		interface->msix_entries[vector].entry = vector;
1848
1849	/* Attempt to enable MSI-X with requested value */
1850	v_budget = pci_enable_msix_range(interface->pdev,
1851					 interface->msix_entries,
1852					 MIN_MSIX_COUNT(hw),
1853					 v_budget);
1854	if (v_budget < 0) {
1855		kfree(interface->msix_entries);
1856		interface->msix_entries = NULL;
1857		return v_budget;
1858	}
1859
1860	/* record the number of queues available for q_vectors */
1861	interface->num_q_vectors = v_budget - NON_Q_VECTORS;
1862
1863	return 0;
1864}
1865
1866/**
1867 * fm10k_cache_ring_qos - Descriptor ring to register mapping for QoS
1868 * @interface: Interface structure continaining rings and devices
1869 *
1870 * Cache the descriptor ring offsets for Qos
1871 **/
1872static bool fm10k_cache_ring_qos(struct fm10k_intfc *interface)
1873{
1874	struct net_device *dev = interface->netdev;
1875	int pc, offset, rss_i, i;
1876	u16 pc_stride = interface->ring_feature[RING_F_QOS].mask + 1;
1877	u8 num_pcs = netdev_get_num_tc(dev);
1878
1879	if (num_pcs <= 1)
1880		return false;
1881
1882	rss_i = interface->ring_feature[RING_F_RSS].indices;
1883
1884	for (pc = 0, offset = 0; pc < num_pcs; pc++, offset += rss_i) {
1885		int q_idx = pc;
1886
1887		for (i = 0; i < rss_i; i++) {
1888			interface->tx_ring[offset + i]->reg_idx = q_idx;
1889			interface->tx_ring[offset + i]->qos_pc = pc;
1890			interface->rx_ring[offset + i]->reg_idx = q_idx;
1891			interface->rx_ring[offset + i]->qos_pc = pc;
1892			q_idx += pc_stride;
1893		}
1894	}
1895
1896	return true;
1897}
1898
1899/**
1900 * fm10k_cache_ring_rss - Descriptor ring to register mapping for RSS
1901 * @interface: Interface structure continaining rings and devices
1902 *
1903 * Cache the descriptor ring offsets for RSS
1904 **/
1905static void fm10k_cache_ring_rss(struct fm10k_intfc *interface)
1906{
1907	int i;
1908
1909	for (i = 0; i < interface->num_rx_queues; i++)
1910		interface->rx_ring[i]->reg_idx = i;
1911
1912	for (i = 0; i < interface->num_tx_queues; i++)
1913		interface->tx_ring[i]->reg_idx = i;
1914}
1915
1916/**
1917 * fm10k_assign_rings - Map rings to network devices
1918 * @interface: Interface structure containing rings and devices
1919 *
1920 * This function is meant to go though and configure both the network
1921 * devices so that they contain rings, and configure the rings so that
1922 * they function with their network devices.
1923 **/
1924static void fm10k_assign_rings(struct fm10k_intfc *interface)
1925{
1926	if (fm10k_cache_ring_qos(interface))
1927		return;
1928
1929	fm10k_cache_ring_rss(interface);
1930}
1931
1932static void fm10k_init_reta(struct fm10k_intfc *interface)
1933{
1934	u16 i, rss_i = interface->ring_feature[RING_F_RSS].indices;
1935	u32 reta;
1936
1937	/* If the Rx flow indirection table has been configured manually, we
1938	 * need to maintain it when possible.
1939	 */
1940	if (netif_is_rxfh_configured(interface->netdev)) {
1941		for (i = FM10K_RETA_SIZE; i--;) {
1942			reta = interface->reta[i];
1943			if ((((reta << 24) >> 24) < rss_i) &&
1944			    (((reta << 16) >> 24) < rss_i) &&
1945			    (((reta <<  8) >> 24) < rss_i) &&
1946			    (((reta)       >> 24) < rss_i))
1947				continue;
1948
1949			/* this should never happen */
1950			dev_err(&interface->pdev->dev,
1951				"RSS indirection table assigned flows out of queue bounds. Reconfiguring.\n");
1952			goto repopulate_reta;
1953		}
1954
1955		/* do nothing if all of the elements are in bounds */
1956		return;
1957	}
1958
1959repopulate_reta:
1960	fm10k_write_reta(interface, NULL);
1961}
1962
1963/**
1964 * fm10k_init_queueing_scheme - Determine proper queueing scheme
1965 * @interface: board private structure to initialize
1966 *
1967 * We determine which queueing scheme to use based on...
1968 * - Hardware queue count (num_*_queues)
1969 *   - defined by miscellaneous hardware support/features (RSS, etc.)
1970 **/
1971int fm10k_init_queueing_scheme(struct fm10k_intfc *interface)
1972{
1973	int err;
1974
1975	/* Number of supported queues */
1976	fm10k_set_num_queues(interface);
1977
1978	/* Configure MSI-X capability */
1979	err = fm10k_init_msix_capability(interface);
1980	if (err) {
1981		dev_err(&interface->pdev->dev,
1982			"Unable to initialize MSI-X capability\n");
1983		goto err_init_msix;
1984	}
1985
1986	/* Allocate memory for queues */
1987	err = fm10k_alloc_q_vectors(interface);
1988	if (err) {
1989		dev_err(&interface->pdev->dev,
1990			"Unable to allocate queue vectors\n");
1991		goto err_alloc_q_vectors;
1992	}
1993
1994	/* Map rings to devices, and map devices to physical queues */
1995	fm10k_assign_rings(interface);
1996
1997	/* Initialize RSS redirection table */
1998	fm10k_init_reta(interface);
1999
2000	return 0;
2001
2002err_alloc_q_vectors:
2003	fm10k_reset_msix_capability(interface);
2004err_init_msix:
2005	fm10k_reset_num_queues(interface);
2006	return err;
2007}
2008
2009/**
2010 * fm10k_clear_queueing_scheme - Clear the current queueing scheme settings
2011 * @interface: board private structure to clear queueing scheme on
2012 *
2013 * We go through and clear queueing specific resources and reset the structure
2014 * to pre-load conditions
2015 **/
2016void fm10k_clear_queueing_scheme(struct fm10k_intfc *interface)
2017{
2018	fm10k_free_q_vectors(interface);
2019	fm10k_reset_msix_capability(interface);
2020}