Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2// CAN bus driver for Bosch M_CAN controller
   3// Copyright (C) 2014 Freescale Semiconductor, Inc.
   4//      Dong Aisheng <b29396@freescale.com>
   5// Copyright (C) 2018-19 Texas Instruments Incorporated - http://www.ti.com/
   6
   7/* Bosch M_CAN user manual can be obtained from:
   8 * https://github.com/linux-can/can-doc/tree/master/m_can
 
   9 */
  10
  11#include <linux/bitfield.h>
  12#include <linux/can/dev.h>
  13#include <linux/ethtool.h>
  14#include <linux/hrtimer.h>
  15#include <linux/interrupt.h>
  16#include <linux/io.h>
  17#include <linux/iopoll.h>
  18#include <linux/kernel.h>
  19#include <linux/module.h>
  20#include <linux/netdevice.h>
  21#include <linux/of.h>
  22#include <linux/phy/phy.h>
  23#include <linux/pinctrl/consumer.h>
  24#include <linux/platform_device.h>
  25#include <linux/pm_runtime.h>
 
 
 
  26
  27#include "m_can.h"
  28
  29/* registers definition */
  30enum m_can_reg {
  31	M_CAN_CREL	= 0x0,
  32	M_CAN_ENDN	= 0x4,
  33	M_CAN_CUST	= 0x8,
  34	M_CAN_DBTP	= 0xc,
  35	M_CAN_TEST	= 0x10,
  36	M_CAN_RWD	= 0x14,
  37	M_CAN_CCCR	= 0x18,
  38	M_CAN_NBTP	= 0x1c,
  39	M_CAN_TSCC	= 0x20,
  40	M_CAN_TSCV	= 0x24,
  41	M_CAN_TOCC	= 0x28,
  42	M_CAN_TOCV	= 0x2c,
  43	M_CAN_ECR	= 0x40,
  44	M_CAN_PSR	= 0x44,
  45	/* TDCR Register only available for version >=3.1.x */
  46	M_CAN_TDCR	= 0x48,
  47	M_CAN_IR	= 0x50,
  48	M_CAN_IE	= 0x54,
  49	M_CAN_ILS	= 0x58,
  50	M_CAN_ILE	= 0x5c,
  51	M_CAN_GFC	= 0x80,
  52	M_CAN_SIDFC	= 0x84,
  53	M_CAN_XIDFC	= 0x88,
  54	M_CAN_XIDAM	= 0x90,
  55	M_CAN_HPMS	= 0x94,
  56	M_CAN_NDAT1	= 0x98,
  57	M_CAN_NDAT2	= 0x9c,
  58	M_CAN_RXF0C	= 0xa0,
  59	M_CAN_RXF0S	= 0xa4,
  60	M_CAN_RXF0A	= 0xa8,
  61	M_CAN_RXBC	= 0xac,
  62	M_CAN_RXF1C	= 0xb0,
  63	M_CAN_RXF1S	= 0xb4,
  64	M_CAN_RXF1A	= 0xb8,
  65	M_CAN_RXESC	= 0xbc,
  66	M_CAN_TXBC	= 0xc0,
  67	M_CAN_TXFQS	= 0xc4,
  68	M_CAN_TXESC	= 0xc8,
  69	M_CAN_TXBRP	= 0xcc,
  70	M_CAN_TXBAR	= 0xd0,
  71	M_CAN_TXBCR	= 0xd4,
  72	M_CAN_TXBTO	= 0xd8,
  73	M_CAN_TXBCF	= 0xdc,
  74	M_CAN_TXBTIE	= 0xe0,
  75	M_CAN_TXBCIE	= 0xe4,
  76	M_CAN_TXEFC	= 0xf0,
  77	M_CAN_TXEFS	= 0xf4,
  78	M_CAN_TXEFA	= 0xf8,
  79};
  80
 
 
 
  81/* message ram configuration data length */
  82#define MRAM_CFG_LEN	8
  83
  84/* Core Release Register (CREL) */
  85#define CREL_REL_MASK		GENMASK(31, 28)
  86#define CREL_STEP_MASK		GENMASK(27, 24)
  87#define CREL_SUBSTEP_MASK	GENMASK(23, 20)
 
 
 
  88
  89/* Data Bit Timing & Prescaler Register (DBTP) */
  90#define DBTP_TDC		BIT(23)
  91#define DBTP_DBRP_MASK		GENMASK(20, 16)
  92#define DBTP_DTSEG1_MASK	GENMASK(12, 8)
  93#define DBTP_DTSEG2_MASK	GENMASK(7, 4)
  94#define DBTP_DSJW_MASK		GENMASK(3, 0)
 
 
 
 
  95
  96/* Transmitter Delay Compensation Register (TDCR) */
  97#define TDCR_TDCO_MASK		GENMASK(14, 8)
  98#define TDCR_TDCF_MASK		GENMASK(6, 0)
 
 
  99
 100/* Test Register (TEST) */
 101#define TEST_LBCK		BIT(4)
 102
 103/* CC Control Register (CCCR) */
 
 
 
 
 
 
 
 
 
 
 104#define CCCR_TXP		BIT(14)
 105#define CCCR_TEST		BIT(7)
 106#define CCCR_DAR		BIT(6)
 107#define CCCR_MON		BIT(5)
 108#define CCCR_CSR		BIT(4)
 109#define CCCR_CSA		BIT(3)
 110#define CCCR_ASM		BIT(2)
 111#define CCCR_CCE		BIT(1)
 112#define CCCR_INIT		BIT(0)
 113/* for version 3.0.x */
 114#define CCCR_CMR_MASK		GENMASK(11, 10)
 115#define CCCR_CMR_CANFD		0x1
 116#define CCCR_CMR_CANFD_BRS	0x2
 117#define CCCR_CMR_CAN		0x3
 118#define CCCR_CME_MASK		GENMASK(9, 8)
 119#define CCCR_CME_CAN		0
 120#define CCCR_CME_CANFD		0x1
 121#define CCCR_CME_CANFD_BRS	0x2
 122/* for version >=3.1.x */
 123#define CCCR_EFBI		BIT(13)
 124#define CCCR_PXHD		BIT(12)
 125#define CCCR_BRSE		BIT(9)
 126#define CCCR_FDOE		BIT(8)
 127/* for version >=3.2.x */
 128#define CCCR_NISO		BIT(15)
 129/* for version >=3.3.x */
 130#define CCCR_WMM		BIT(11)
 131#define CCCR_UTSU		BIT(10)
 132
 133/* Nominal Bit Timing & Prescaler Register (NBTP) */
 134#define NBTP_NSJW_MASK		GENMASK(31, 25)
 135#define NBTP_NBRP_MASK		GENMASK(24, 16)
 136#define NBTP_NTSEG1_MASK	GENMASK(15, 8)
 137#define NBTP_NTSEG2_MASK	GENMASK(6, 0)
 138
 139/* Timestamp Counter Configuration Register (TSCC) */
 140#define TSCC_TCP_MASK		GENMASK(19, 16)
 141#define TSCC_TSS_MASK		GENMASK(1, 0)
 142#define TSCC_TSS_DISABLE	0x0
 143#define TSCC_TSS_INTERNAL	0x1
 144#define TSCC_TSS_EXTERNAL	0x2
 145
 146/* Timestamp Counter Value Register (TSCV) */
 147#define TSCV_TSC_MASK		GENMASK(15, 0)
 148
 149/* Error Counter Register (ECR) */
 150#define ECR_RP			BIT(15)
 151#define ECR_REC_MASK		GENMASK(14, 8)
 152#define ECR_TEC_MASK		GENMASK(7, 0)
 
 
 153
 154/* Protocol Status Register (PSR) */
 155#define PSR_BO		BIT(7)
 156#define PSR_EW		BIT(6)
 157#define PSR_EP		BIT(5)
 158#define PSR_LEC_MASK	GENMASK(2, 0)
 159#define PSR_DLEC_MASK	GENMASK(10, 8)
 160
 161/* Interrupt Register (IR) */
 162#define IR_ALL_INT	0xffffffff
 163
 164/* Renamed bits for versions > 3.1.x */
 165#define IR_ARA		BIT(29)
 166#define IR_PED		BIT(28)
 167#define IR_PEA		BIT(27)
 168
 169/* Bits for version 3.0.x */
 170#define IR_STE		BIT(31)
 171#define IR_FOE		BIT(30)
 172#define IR_ACKE		BIT(29)
 173#define IR_BE		BIT(28)
 174#define IR_CRCE		BIT(27)
 175#define IR_WDI		BIT(26)
 176#define IR_BO		BIT(25)
 177#define IR_EW		BIT(24)
 178#define IR_EP		BIT(23)
 179#define IR_ELO		BIT(22)
 180#define IR_BEU		BIT(21)
 181#define IR_BEC		BIT(20)
 182#define IR_DRX		BIT(19)
 183#define IR_TOO		BIT(18)
 184#define IR_MRAF		BIT(17)
 185#define IR_TSW		BIT(16)
 186#define IR_TEFL		BIT(15)
 187#define IR_TEFF		BIT(14)
 188#define IR_TEFW		BIT(13)
 189#define IR_TEFN		BIT(12)
 190#define IR_TFE		BIT(11)
 191#define IR_TCF		BIT(10)
 192#define IR_TC		BIT(9)
 193#define IR_HPM		BIT(8)
 194#define IR_RF1L		BIT(7)
 195#define IR_RF1F		BIT(6)
 196#define IR_RF1W		BIT(5)
 197#define IR_RF1N		BIT(4)
 198#define IR_RF0L		BIT(3)
 199#define IR_RF0F		BIT(2)
 200#define IR_RF0W		BIT(1)
 201#define IR_RF0N		BIT(0)
 202#define IR_ERR_STATE	(IR_BO | IR_EW | IR_EP)
 203
 204/* Interrupts for version 3.0.x */
 205#define IR_ERR_LEC_30X	(IR_STE	| IR_FOE | IR_ACKE | IR_BE | IR_CRCE)
 206#define IR_ERR_BUS_30X	(IR_ERR_LEC_30X | IR_WDI | IR_BEU | IR_BEC | \
 207			 IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | IR_RF1L | \
 208			 IR_RF0L)
 209#define IR_ERR_ALL_30X	(IR_ERR_STATE | IR_ERR_BUS_30X)
 210
 211/* Interrupts for version >= 3.1.x */
 212#define IR_ERR_LEC_31X	(IR_PED | IR_PEA)
 213#define IR_ERR_BUS_31X	(IR_ERR_LEC_31X | IR_WDI | IR_BEU | IR_BEC | \
 214			 IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | IR_RF1L | \
 215			 IR_RF0L)
 216#define IR_ERR_ALL_31X	(IR_ERR_STATE | IR_ERR_BUS_31X)
 217
 218/* Interrupt Line Select (ILS) */
 219#define ILS_ALL_INT0	0x0
 220#define ILS_ALL_INT1	0xFFFFFFFF
 221
 222/* Interrupt Line Enable (ILE) */
 223#define ILE_EINT1	BIT(1)
 224#define ILE_EINT0	BIT(0)
 225
 226/* Rx FIFO 0/1 Configuration (RXF0C/RXF1C) */
 227#define RXFC_FWM_MASK	GENMASK(30, 24)
 228#define RXFC_FS_MASK	GENMASK(22, 16)
 
 
 229
 230/* Rx FIFO 0/1 Status (RXF0S/RXF1S) */
 231#define RXFS_RFL	BIT(25)
 232#define RXFS_FF		BIT(24)
 233#define RXFS_FPI_MASK	GENMASK(21, 16)
 234#define RXFS_FGI_MASK	GENMASK(13, 8)
 235#define RXFS_FFL_MASK	GENMASK(6, 0)
 
 
 236
 237/* Rx Buffer / FIFO Element Size Configuration (RXESC) */
 238#define RXESC_RBDS_MASK		GENMASK(10, 8)
 239#define RXESC_F1DS_MASK		GENMASK(6, 4)
 240#define RXESC_F0DS_MASK		GENMASK(2, 0)
 241#define RXESC_64B		0x7
 242
 243/* Tx Buffer Configuration (TXBC) */
 244#define TXBC_TFQS_MASK		GENMASK(29, 24)
 245#define TXBC_NDTB_MASK		GENMASK(21, 16)
 246
 247/* Tx FIFO/Queue Status (TXFQS) */
 248#define TXFQS_TFQF		BIT(21)
 249#define TXFQS_TFQPI_MASK	GENMASK(20, 16)
 250#define TXFQS_TFGI_MASK		GENMASK(12, 8)
 251#define TXFQS_TFFL_MASK		GENMASK(5, 0)
 252
 253/* Tx Buffer Element Size Configuration (TXESC) */
 254#define TXESC_TBDS_MASK		GENMASK(2, 0)
 255#define TXESC_TBDS_64B		0x7
 
 
 
 256
 257/* Tx Event FIFO Configuration (TXEFC) */
 258#define TXEFC_EFWM_MASK		GENMASK(29, 24)
 259#define TXEFC_EFS_MASK		GENMASK(21, 16)
 260
 261/* Tx Event FIFO Status (TXEFS) */
 262#define TXEFS_TEFL		BIT(25)
 263#define TXEFS_EFF		BIT(24)
 264#define TXEFS_EFGI_MASK		GENMASK(12, 8)
 265#define TXEFS_EFFL_MASK		GENMASK(5, 0)
 
 
 266
 267/* Tx Event FIFO Acknowledge (TXEFA) */
 268#define TXEFA_EFAI_MASK		GENMASK(4, 0)
 
 269
 270/* Message RAM Configuration (in bytes) */
 271#define SIDF_ELEMENT_SIZE	4
 272#define XIDF_ELEMENT_SIZE	8
 273#define RXF0_ELEMENT_SIZE	72
 274#define RXF1_ELEMENT_SIZE	72
 275#define RXB_ELEMENT_SIZE	72
 276#define TXE_ELEMENT_SIZE	8
 277#define TXB_ELEMENT_SIZE	72
 278
 279/* Message RAM Elements */
 280#define M_CAN_FIFO_ID		0x0
 281#define M_CAN_FIFO_DLC		0x4
 282#define M_CAN_FIFO_DATA		0x8
 283
 284/* Rx Buffer Element */
 285/* R0 */
 286#define RX_BUF_ESI		BIT(31)
 287#define RX_BUF_XTD		BIT(30)
 288#define RX_BUF_RTR		BIT(29)
 289/* R1 */
 290#define RX_BUF_ANMF		BIT(31)
 291#define RX_BUF_FDF		BIT(21)
 292#define RX_BUF_BRS		BIT(20)
 293#define RX_BUF_RXTS_MASK	GENMASK(15, 0)
 294
 295/* Tx Buffer Element */
 296/* T0 */
 297#define TX_BUF_ESI		BIT(31)
 298#define TX_BUF_XTD		BIT(30)
 299#define TX_BUF_RTR		BIT(29)
 300/* T1 */
 301#define TX_BUF_EFC		BIT(23)
 302#define TX_BUF_FDF		BIT(21)
 303#define TX_BUF_BRS		BIT(20)
 304#define TX_BUF_MM_MASK		GENMASK(31, 24)
 305#define TX_BUF_DLC_MASK		GENMASK(19, 16)
 306
 307/* Tx event FIFO Element */
 308/* E1 */
 309#define TX_EVENT_MM_MASK	GENMASK(31, 24)
 310#define TX_EVENT_TXTS_MASK	GENMASK(15, 0)
 311
 312/* Hrtimer polling interval */
 313#define HRTIMER_POLL_INTERVAL_MS		1
 314
 315/* The ID and DLC registers are adjacent in M_CAN FIFO memory,
 316 * and we can save a (potentially slow) bus round trip by combining
 317 * reads and writes to them.
 318 */
 319struct id_and_dlc {
 320	u32 id;
 321	u32 dlc;
 322};
 323
 324struct m_can_fifo_element {
 325	u32 id;
 326	u32 dlc;
 327	u8 data[CANFD_MAX_DLEN];
 328};
 329
 330static inline u32 m_can_read(struct m_can_classdev *cdev, enum m_can_reg reg)
 331{
 332	return cdev->ops->read_reg(cdev, reg);
 333}
 334
 335static inline void m_can_write(struct m_can_classdev *cdev, enum m_can_reg reg,
 336			       u32 val)
 337{
 338	cdev->ops->write_reg(cdev, reg, val);
 339}
 340
 341static int
 342m_can_fifo_read(struct m_can_classdev *cdev,
 343		u32 fgi, unsigned int offset, void *val, size_t val_count)
 344{
 345	u32 addr_offset = cdev->mcfg[MRAM_RXF0].off + fgi * RXF0_ELEMENT_SIZE +
 346		offset;
 347
 348	if (val_count == 0)
 349		return 0;
 350
 351	return cdev->ops->read_fifo(cdev, addr_offset, val, val_count);
 352}
 353
 354static int
 355m_can_fifo_write(struct m_can_classdev *cdev,
 356		 u32 fpi, unsigned int offset, const void *val, size_t val_count)
 357{
 358	u32 addr_offset = cdev->mcfg[MRAM_TXB].off + fpi * TXB_ELEMENT_SIZE +
 359		offset;
 360
 361	if (val_count == 0)
 362		return 0;
 363
 364	return cdev->ops->write_fifo(cdev, addr_offset, val, val_count);
 365}
 366
 367static inline int m_can_fifo_write_no_off(struct m_can_classdev *cdev,
 368					  u32 fpi, u32 val)
 369{
 370	return cdev->ops->write_fifo(cdev, fpi, &val, 1);
 371}
 372
 373static int
 374m_can_txe_fifo_read(struct m_can_classdev *cdev, u32 fgi, u32 offset, u32 *val)
 375{
 376	u32 addr_offset = cdev->mcfg[MRAM_TXE].off + fgi * TXE_ELEMENT_SIZE +
 377		offset;
 378
 379	return cdev->ops->read_fifo(cdev, addr_offset, val, 1);
 380}
 381
 382static int m_can_cccr_update_bits(struct m_can_classdev *cdev, u32 mask, u32 val)
 383{
 384	u32 val_before = m_can_read(cdev, M_CAN_CCCR);
 385	u32 val_after = (val_before & ~mask) | val;
 386	size_t tries = 10;
 387
 388	if (!(mask & CCCR_INIT) && !(val_before & CCCR_INIT)) {
 389		dev_err(cdev->dev,
 390			"refusing to configure device when in normal mode\n");
 391		return -EBUSY;
 392	}
 393
 394	/* The chip should be in standby mode when changing the CCCR register,
 395	 * and some chips set the CSR and CSA bits when in standby. Furthermore,
 396	 * the CSR and CSA bits should be written as zeros, even when they read
 397	 * ones.
 398	 */
 399	val_after &= ~(CCCR_CSR | CCCR_CSA);
 400
 401	while (tries--) {
 402		u32 val_read;
 403
 404		/* Write the desired value in each try, as setting some bits in
 405		 * the CCCR register require other bits to be set first. E.g.
 406		 * setting the NISO bit requires setting the CCE bit first.
 407		 */
 408		m_can_write(cdev, M_CAN_CCCR, val_after);
 409
 410		val_read = m_can_read(cdev, M_CAN_CCCR) & ~(CCCR_CSR | CCCR_CSA);
 411
 412		if (val_read == val_after)
 413			return 0;
 414
 415		usleep_range(1, 5);
 416	}
 417
 418	return -ETIMEDOUT;
 419}
 420
 421static int m_can_config_enable(struct m_can_classdev *cdev)
 422{
 423	int err;
 
 
 424
 425	/* CCCR_INIT must be set in order to set CCCR_CCE, but access to
 426	 * configuration registers should only be enabled when in standby mode,
 427	 * where CCCR_INIT is always set.
 428	 */
 429	err = m_can_cccr_update_bits(cdev, CCCR_CCE, CCCR_CCE);
 430	if (err)
 431		netdev_err(cdev->net, "failed to enable configuration mode\n");
 432
 433	return err;
 434}
 435
 436static int m_can_config_disable(struct m_can_classdev *cdev)
 437{
 438	int err;
 439
 440	/* Only clear CCCR_CCE, since CCCR_INIT cannot be cleared while in
 441	 * standby mode
 442	 */
 443	err = m_can_cccr_update_bits(cdev, CCCR_CCE, 0);
 444	if (err)
 445		netdev_err(cdev->net, "failed to disable configuration registers\n");
 446
 447	return err;
 448}
 449
 450static void m_can_interrupt_enable(struct m_can_classdev *cdev, u32 interrupts)
 451{
 452	if (cdev->active_interrupts == interrupts)
 453		return;
 454	cdev->ops->write_reg(cdev, M_CAN_IE, interrupts);
 455	cdev->active_interrupts = interrupts;
 456}
 457
 458static void m_can_coalescing_disable(struct m_can_classdev *cdev)
 459{
 460	u32 new_interrupts = cdev->active_interrupts | IR_RF0N | IR_TEFN;
 
 
 
 
 
 461
 462	if (!cdev->net->irq)
 463		return;
 
 464
 465	hrtimer_cancel(&cdev->hrtimer);
 466	m_can_interrupt_enable(cdev, new_interrupts);
 
 
 
 
 
 
 467}
 468
 469static inline void m_can_enable_all_interrupts(struct m_can_classdev *cdev)
 470{
 471	if (!cdev->net->irq) {
 472		dev_dbg(cdev->dev, "Start hrtimer\n");
 473		hrtimer_start(&cdev->hrtimer,
 474			      ms_to_ktime(HRTIMER_POLL_INTERVAL_MS),
 475			      HRTIMER_MODE_REL_PINNED);
 476	}
 477
 478	/* Only interrupt line 0 is used in this driver */
 479	m_can_write(cdev, M_CAN_ILE, ILE_EINT0);
 480}
 481
 482static inline void m_can_disable_all_interrupts(struct m_can_classdev *cdev)
 483{
 484	m_can_coalescing_disable(cdev);
 485	m_can_write(cdev, M_CAN_ILE, 0x0);
 486
 487	if (!cdev->net->irq) {
 488		dev_dbg(cdev->dev, "Stop hrtimer\n");
 489		hrtimer_try_to_cancel(&cdev->hrtimer);
 490	}
 491}
 492
 493/* Retrieve internal timestamp counter from TSCV.TSC, and shift it to 32-bit
 494 * width.
 495 */
 496static u32 m_can_get_timestamp(struct m_can_classdev *cdev)
 497{
 498	u32 tscv;
 499	u32 tsc;
 500
 501	tscv = m_can_read(cdev, M_CAN_TSCV);
 502	tsc = FIELD_GET(TSCV_TSC_MASK, tscv);
 503
 504	return (tsc << 16);
 505}
 506
 507static void m_can_clean(struct net_device *net)
 508{
 509	struct m_can_classdev *cdev = netdev_priv(net);
 510	unsigned long irqflags;
 511
 512	if (cdev->tx_ops) {
 513		for (int i = 0; i != cdev->tx_fifo_size; ++i) {
 514			if (!cdev->tx_ops[i].skb)
 515				continue;
 516
 517			net->stats.tx_errors++;
 518			cdev->tx_ops[i].skb = NULL;
 519		}
 520	}
 521
 522	for (int i = 0; i != cdev->can.echo_skb_max; ++i)
 523		can_free_echo_skb(cdev->net, i, NULL);
 524
 525	netdev_reset_queue(cdev->net);
 526
 527	spin_lock_irqsave(&cdev->tx_handling_spinlock, irqflags);
 528	cdev->tx_fifo_in_flight = 0;
 529	spin_unlock_irqrestore(&cdev->tx_handling_spinlock, irqflags);
 530}
 531
 532/* For peripherals, pass skb to rx-offload, which will push skb from
 533 * napi. For non-peripherals, RX is done in napi already, so push
 534 * directly. timestamp is used to ensure good skb ordering in
 535 * rx-offload and is ignored for non-peripherals.
 536 */
 537static void m_can_receive_skb(struct m_can_classdev *cdev,
 538			      struct sk_buff *skb,
 539			      u32 timestamp)
 540{
 541	if (cdev->is_peripheral) {
 542		struct net_device_stats *stats = &cdev->net->stats;
 543		int err;
 544
 545		err = can_rx_offload_queue_timestamp(&cdev->offload, skb,
 546						     timestamp);
 547		if (err)
 548			stats->rx_fifo_errors++;
 549	} else {
 550		netif_receive_skb(skb);
 551	}
 552}
 553
 554static int m_can_read_fifo(struct net_device *dev, u32 fgi)
 555{
 556	struct net_device_stats *stats = &dev->stats;
 557	struct m_can_classdev *cdev = netdev_priv(dev);
 558	struct canfd_frame *cf;
 559	struct sk_buff *skb;
 560	struct id_and_dlc fifo_header;
 561	u32 timestamp = 0;
 562	int err;
 563
 564	err = m_can_fifo_read(cdev, fgi, M_CAN_FIFO_ID, &fifo_header, 2);
 565	if (err)
 566		goto out_fail;
 567
 568	if (fifo_header.dlc & RX_BUF_FDF)
 
 
 
 569		skb = alloc_canfd_skb(dev, &cf);
 570	else
 571		skb = alloc_can_skb(dev, (struct can_frame **)&cf);
 572	if (!skb) {
 573		stats->rx_dropped++;
 574		return 0;
 575	}
 576
 577	if (fifo_header.dlc & RX_BUF_FDF)
 578		cf->len = can_fd_dlc2len((fifo_header.dlc >> 16) & 0x0F);
 579	else
 580		cf->len = can_cc_dlc2len((fifo_header.dlc >> 16) & 0x0F);
 581
 582	if (fifo_header.id & RX_BUF_XTD)
 583		cf->can_id = (fifo_header.id & CAN_EFF_MASK) | CAN_EFF_FLAG;
 
 584	else
 585		cf->can_id = (fifo_header.id >> 18) & CAN_SFF_MASK;
 586
 587	if (fifo_header.id & RX_BUF_ESI) {
 588		cf->flags |= CANFD_ESI;
 589		netdev_dbg(dev, "ESI Error\n");
 590	}
 591
 592	if (!(fifo_header.dlc & RX_BUF_FDF) && (fifo_header.id & RX_BUF_RTR)) {
 593		cf->can_id |= CAN_RTR_FLAG;
 594	} else {
 595		if (fifo_header.dlc & RX_BUF_BRS)
 596			cf->flags |= CANFD_BRS;
 597
 598		err = m_can_fifo_read(cdev, fgi, M_CAN_FIFO_DATA,
 599				      cf->data, DIV_ROUND_UP(cf->len, 4));
 600		if (err)
 601			goto out_free_skb;
 602
 603		stats->rx_bytes += cf->len;
 604	}
 605	stats->rx_packets++;
 606
 607	timestamp = FIELD_GET(RX_BUF_RXTS_MASK, fifo_header.dlc) << 16;
 
 608
 609	m_can_receive_skb(cdev, skb, timestamp);
 610
 611	return 0;
 612
 613out_free_skb:
 614	kfree_skb(skb);
 615out_fail:
 616	netdev_err(dev, "FIFO read returned %d\n", err);
 617	return err;
 618}
 619
 620static int m_can_do_rx_poll(struct net_device *dev, int quota)
 621{
 622	struct m_can_classdev *cdev = netdev_priv(dev);
 623	u32 pkts = 0;
 624	u32 rxfs;
 625	u32 rx_count;
 626	u32 fgi;
 627	int ack_fgi = -1;
 628	int i;
 629	int err = 0;
 630
 631	rxfs = m_can_read(cdev, M_CAN_RXF0S);
 632	if (!(rxfs & RXFS_FFL_MASK)) {
 633		netdev_dbg(dev, "no messages in fifo0\n");
 634		return 0;
 635	}
 636
 637	rx_count = FIELD_GET(RXFS_FFL_MASK, rxfs);
 638	fgi = FIELD_GET(RXFS_FGI_MASK, rxfs);
 
 639
 640	for (i = 0; i < rx_count && quota > 0; ++i) {
 641		err = m_can_read_fifo(dev, fgi);
 642		if (err)
 643			break;
 644
 645		quota--;
 646		pkts++;
 647		ack_fgi = fgi;
 648		fgi = (++fgi >= cdev->mcfg[MRAM_RXF0].num ? 0 : fgi);
 649	}
 650
 651	if (ack_fgi != -1)
 652		m_can_write(cdev, M_CAN_RXF0A, ack_fgi);
 653
 654	if (err)
 655		return err;
 656
 657	return pkts;
 658}
 659
 660static int m_can_handle_lost_msg(struct net_device *dev)
 661{
 662	struct m_can_classdev *cdev = netdev_priv(dev);
 663	struct net_device_stats *stats = &dev->stats;
 664	struct sk_buff *skb;
 665	struct can_frame *frame;
 666	u32 timestamp = 0;
 667
 668	netdev_err(dev, "msg lost in rxf0\n");
 669
 670	stats->rx_errors++;
 671	stats->rx_over_errors++;
 672
 673	skb = alloc_can_err_skb(dev, &frame);
 674	if (unlikely(!skb))
 675		return 0;
 676
 677	frame->can_id |= CAN_ERR_CRTL;
 678	frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
 679
 680	if (cdev->is_peripheral)
 681		timestamp = m_can_get_timestamp(cdev);
 682
 683	m_can_receive_skb(cdev, skb, timestamp);
 684
 685	return 1;
 686}
 687
 688static int m_can_handle_lec_err(struct net_device *dev,
 689				enum m_can_lec_type lec_type)
 690{
 691	struct m_can_classdev *cdev = netdev_priv(dev);
 692	struct net_device_stats *stats = &dev->stats;
 693	struct can_frame *cf;
 694	struct sk_buff *skb;
 695	u32 timestamp = 0;
 696
 697	cdev->can.can_stats.bus_error++;
 
 698
 699	/* propagate the error condition to the CAN stack */
 700	skb = alloc_can_err_skb(dev, &cf);
 
 
 701
 702	/* check for 'last error code' which tells us the
 703	 * type of the last error to occur on the CAN bus
 704	 */
 705	if (likely(skb))
 706		cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
 707
 708	switch (lec_type) {
 709	case LEC_STUFF_ERROR:
 710		netdev_dbg(dev, "stuff error\n");
 711		stats->rx_errors++;
 712		if (likely(skb))
 713			cf->data[2] |= CAN_ERR_PROT_STUFF;
 714		break;
 715	case LEC_FORM_ERROR:
 716		netdev_dbg(dev, "form error\n");
 717		stats->rx_errors++;
 718		if (likely(skb))
 719			cf->data[2] |= CAN_ERR_PROT_FORM;
 720		break;
 721	case LEC_ACK_ERROR:
 722		netdev_dbg(dev, "ack error\n");
 723		stats->tx_errors++;
 724		if (likely(skb))
 725			cf->data[3] = CAN_ERR_PROT_LOC_ACK;
 726		break;
 727	case LEC_BIT1_ERROR:
 728		netdev_dbg(dev, "bit1 error\n");
 729		stats->tx_errors++;
 730		if (likely(skb))
 731			cf->data[2] |= CAN_ERR_PROT_BIT1;
 732		break;
 733	case LEC_BIT0_ERROR:
 734		netdev_dbg(dev, "bit0 error\n");
 735		stats->tx_errors++;
 736		if (likely(skb))
 737			cf->data[2] |= CAN_ERR_PROT_BIT0;
 738		break;
 739	case LEC_CRC_ERROR:
 740		netdev_dbg(dev, "CRC error\n");
 741		stats->rx_errors++;
 742		if (likely(skb))
 743			cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
 744		break;
 745	default:
 746		break;
 747	}
 748
 749	if (unlikely(!skb))
 750		return 0;
 751
 752	if (cdev->is_peripheral)
 753		timestamp = m_can_get_timestamp(cdev);
 754
 755	m_can_receive_skb(cdev, skb, timestamp);
 756
 757	return 1;
 758}
 759
 760static int __m_can_get_berr_counter(const struct net_device *dev,
 761				    struct can_berr_counter *bec)
 762{
 763	struct m_can_classdev *cdev = netdev_priv(dev);
 764	unsigned int ecr;
 765
 766	ecr = m_can_read(cdev, M_CAN_ECR);
 767	bec->rxerr = FIELD_GET(ECR_REC_MASK, ecr);
 768	bec->txerr = FIELD_GET(ECR_TEC_MASK, ecr);
 769
 770	return 0;
 771}
 772
 773static int m_can_clk_start(struct m_can_classdev *cdev)
 774{
 
 
 775	if (cdev->pm_clock_support == 0)
 776		return 0;
 777
 778	return pm_runtime_resume_and_get(cdev->dev);
 
 
 
 
 
 
 779}
 780
 781static void m_can_clk_stop(struct m_can_classdev *cdev)
 782{
 783	if (cdev->pm_clock_support)
 784		pm_runtime_put_sync(cdev->dev);
 785}
 786
 787static int m_can_get_berr_counter(const struct net_device *dev,
 788				  struct can_berr_counter *bec)
 789{
 790	struct m_can_classdev *cdev = netdev_priv(dev);
 791	int err;
 792
 793	err = m_can_clk_start(cdev);
 794	if (err)
 795		return err;
 796
 797	__m_can_get_berr_counter(dev, bec);
 798
 799	m_can_clk_stop(cdev);
 800
 801	return 0;
 802}
 803
 804static int m_can_handle_state_change(struct net_device *dev,
 805				     enum can_state new_state)
 806{
 807	struct m_can_classdev *cdev = netdev_priv(dev);
 
 808	struct can_frame *cf;
 809	struct sk_buff *skb;
 810	struct can_berr_counter bec;
 811	unsigned int ecr;
 812	u32 timestamp = 0;
 813
 814	switch (new_state) {
 815	case CAN_STATE_ERROR_WARNING:
 816		/* error warning state */
 817		cdev->can.can_stats.error_warning++;
 818		cdev->can.state = CAN_STATE_ERROR_WARNING;
 819		break;
 820	case CAN_STATE_ERROR_PASSIVE:
 821		/* error passive state */
 822		cdev->can.can_stats.error_passive++;
 823		cdev->can.state = CAN_STATE_ERROR_PASSIVE;
 824		break;
 825	case CAN_STATE_BUS_OFF:
 826		/* bus-off state */
 827		cdev->can.state = CAN_STATE_BUS_OFF;
 828		m_can_disable_all_interrupts(cdev);
 829		cdev->can.can_stats.bus_off++;
 830		can_bus_off(dev);
 831		break;
 832	default:
 833		break;
 834	}
 835
 836	/* propagate the error condition to the CAN stack */
 837	skb = alloc_can_err_skb(dev, &cf);
 838	if (unlikely(!skb))
 839		return 0;
 840
 841	__m_can_get_berr_counter(dev, &bec);
 842
 843	switch (new_state) {
 844	case CAN_STATE_ERROR_WARNING:
 845		/* error warning state */
 846		cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT;
 847		cf->data[1] = (bec.txerr > bec.rxerr) ?
 848			CAN_ERR_CRTL_TX_WARNING :
 849			CAN_ERR_CRTL_RX_WARNING;
 850		cf->data[6] = bec.txerr;
 851		cf->data[7] = bec.rxerr;
 852		break;
 853	case CAN_STATE_ERROR_PASSIVE:
 854		/* error passive state */
 855		cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT;
 856		ecr = m_can_read(cdev, M_CAN_ECR);
 857		if (ecr & ECR_RP)
 858			cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
 859		if (bec.txerr > 127)
 860			cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
 861		cf->data[6] = bec.txerr;
 862		cf->data[7] = bec.rxerr;
 863		break;
 864	case CAN_STATE_BUS_OFF:
 865		/* bus-off state */
 866		cf->can_id |= CAN_ERR_BUSOFF;
 867		break;
 868	default:
 869		break;
 870	}
 871
 872	if (cdev->is_peripheral)
 873		timestamp = m_can_get_timestamp(cdev);
 874
 875	m_can_receive_skb(cdev, skb, timestamp);
 876
 877	return 1;
 878}
 879
 880static int m_can_handle_state_errors(struct net_device *dev, u32 psr)
 881{
 882	struct m_can_classdev *cdev = netdev_priv(dev);
 883	int work_done = 0;
 884
 885	if (psr & PSR_EW && cdev->can.state != CAN_STATE_ERROR_WARNING) {
 886		netdev_dbg(dev, "entered error warning state\n");
 887		work_done += m_can_handle_state_change(dev,
 888						       CAN_STATE_ERROR_WARNING);
 889	}
 890
 891	if (psr & PSR_EP && cdev->can.state != CAN_STATE_ERROR_PASSIVE) {
 892		netdev_dbg(dev, "entered error passive state\n");
 893		work_done += m_can_handle_state_change(dev,
 894						       CAN_STATE_ERROR_PASSIVE);
 895	}
 896
 897	if (psr & PSR_BO && cdev->can.state != CAN_STATE_BUS_OFF) {
 898		netdev_dbg(dev, "entered error bus off state\n");
 899		work_done += m_can_handle_state_change(dev,
 900						       CAN_STATE_BUS_OFF);
 901	}
 902
 903	return work_done;
 904}
 905
 906static void m_can_handle_other_err(struct net_device *dev, u32 irqstatus)
 907{
 908	if (irqstatus & IR_WDI)
 909		netdev_err(dev, "Message RAM Watchdog event due to missing READY\n");
 
 
 910	if (irqstatus & IR_BEU)
 911		netdev_err(dev, "Bit Error Uncorrected\n");
 912	if (irqstatus & IR_BEC)
 913		netdev_err(dev, "Bit Error Corrected\n");
 914	if (irqstatus & IR_TOO)
 915		netdev_err(dev, "Timeout reached\n");
 916	if (irqstatus & IR_MRAF)
 917		netdev_err(dev, "Message RAM access failure occurred\n");
 918}
 919
 920static inline bool is_lec_err(u8 lec)
 921{
 922	return lec != LEC_NO_ERROR && lec != LEC_NO_CHANGE;
 923}
 924
 925static inline bool m_can_is_protocol_err(u32 irqstatus)
 926{
 927	return irqstatus & IR_ERR_LEC_31X;
 928}
 929
 930static int m_can_handle_protocol_error(struct net_device *dev, u32 irqstatus)
 931{
 932	struct net_device_stats *stats = &dev->stats;
 933	struct m_can_classdev *cdev = netdev_priv(dev);
 934	struct can_frame *cf;
 935	struct sk_buff *skb;
 936	u32 timestamp = 0;
 937
 938	/* propagate the error condition to the CAN stack */
 939	skb = alloc_can_err_skb(dev, &cf);
 940
 941	/* update tx error stats since there is protocol error */
 942	stats->tx_errors++;
 943
 944	/* update arbitration lost status */
 945	if (cdev->version >= 31 && (irqstatus & IR_PEA)) {
 946		netdev_dbg(dev, "Protocol error in Arbitration fail\n");
 947		cdev->can.can_stats.arbitration_lost++;
 948		if (skb) {
 949			cf->can_id |= CAN_ERR_LOSTARB;
 950			cf->data[0] |= CAN_ERR_LOSTARB_UNSPEC;
 951		}
 952	}
 953
 954	if (unlikely(!skb)) {
 955		netdev_dbg(dev, "allocation of skb failed\n");
 956		return 0;
 957	}
 958
 959	if (cdev->is_peripheral)
 960		timestamp = m_can_get_timestamp(cdev);
 961
 962	m_can_receive_skb(cdev, skb, timestamp);
 963
 964	return 1;
 965}
 966
 967static int m_can_handle_bus_errors(struct net_device *dev, u32 irqstatus,
 968				   u32 psr)
 969{
 970	struct m_can_classdev *cdev = netdev_priv(dev);
 971	int work_done = 0;
 972
 973	if (irqstatus & IR_RF0L)
 974		work_done += m_can_handle_lost_msg(dev);
 975
 976	/* handle lec errors on the bus */
 977	if (cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) {
 978		u8 lec = FIELD_GET(PSR_LEC_MASK, psr);
 979		u8 dlec = FIELD_GET(PSR_DLEC_MASK, psr);
 980
 981		if (is_lec_err(lec)) {
 982			netdev_dbg(dev, "Arbitration phase error detected\n");
 983			work_done += m_can_handle_lec_err(dev, lec);
 984		}
 985
 986		if (is_lec_err(dlec)) {
 987			netdev_dbg(dev, "Data phase error detected\n");
 988			work_done += m_can_handle_lec_err(dev, dlec);
 989		}
 990	}
 991
 992	/* handle protocol errors in arbitration phase */
 993	if ((cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) &&
 994	    m_can_is_protocol_err(irqstatus))
 995		work_done += m_can_handle_protocol_error(dev, irqstatus);
 996
 997	/* other unproccessed error interrupts */
 998	m_can_handle_other_err(dev, irqstatus);
 999
1000	return work_done;
1001}
1002
1003static int m_can_rx_handler(struct net_device *dev, int quota, u32 irqstatus)
1004{
1005	struct m_can_classdev *cdev = netdev_priv(dev);
1006	int rx_work_or_err;
1007	int work_done = 0;
 
1008
 
1009	if (!irqstatus)
1010		goto end;
1011
1012	/* Errata workaround for issue "Needless activation of MRAF irq"
1013	 * During frame reception while the MCAN is in Error Passive state
1014	 * and the Receive Error Counter has the value MCAN_ECR.REC = 127,
1015	 * it may happen that MCAN_IR.MRAF is set although there was no
1016	 * Message RAM access failure.
1017	 * If MCAN_IR.MRAF is enabled, an interrupt to the Host CPU is generated
1018	 * The Message RAM Access Failure interrupt routine needs to check
1019	 * whether MCAN_ECR.RP = ’1’ and MCAN_ECR.REC = 127.
1020	 * In this case, reset MCAN_IR.MRAF. No further action is required.
1021	 */
1022	if (cdev->version <= 31 && irqstatus & IR_MRAF &&
1023	    m_can_read(cdev, M_CAN_ECR) & ECR_RP) {
1024		struct can_berr_counter bec;
1025
1026		__m_can_get_berr_counter(dev, &bec);
1027		if (bec.rxerr == 127) {
1028			m_can_write(cdev, M_CAN_IR, IR_MRAF);
1029			irqstatus &= ~IR_MRAF;
1030		}
1031	}
1032
 
 
1033	if (irqstatus & IR_ERR_STATE)
1034		work_done += m_can_handle_state_errors(dev,
1035						       m_can_read(cdev, M_CAN_PSR));
1036
1037	if (irqstatus & IR_ERR_BUS_30X)
1038		work_done += m_can_handle_bus_errors(dev, irqstatus,
1039						     m_can_read(cdev, M_CAN_PSR));
1040
1041	if (irqstatus & IR_RF0N) {
1042		rx_work_or_err = m_can_do_rx_poll(dev, (quota - work_done));
1043		if (rx_work_or_err < 0)
1044			return rx_work_or_err;
1045
1046		work_done += rx_work_or_err;
1047	}
1048end:
1049	return work_done;
1050}
1051
1052static int m_can_poll(struct napi_struct *napi, int quota)
1053{
1054	struct net_device *dev = napi->dev;
1055	struct m_can_classdev *cdev = netdev_priv(dev);
1056	int work_done;
1057	u32 irqstatus;
1058
1059	irqstatus = cdev->irqstatus | m_can_read(cdev, M_CAN_IR);
1060
1061	work_done = m_can_rx_handler(dev, quota, irqstatus);
1062
1063	/* Don't re-enable interrupts if the driver had a fatal error
1064	 * (e.g., FIFO read failure).
1065	 */
1066	if (work_done >= 0 && work_done < quota) {
1067		napi_complete_done(napi, work_done);
1068		m_can_enable_all_interrupts(cdev);
1069	}
1070
1071	return work_done;
1072}
1073
1074/* Echo tx skb and update net stats. Peripherals use rx-offload for
1075 * echo. timestamp is used for peripherals to ensure correct ordering
1076 * by rx-offload, and is ignored for non-peripherals.
1077 */
1078static unsigned int m_can_tx_update_stats(struct m_can_classdev *cdev,
1079					  unsigned int msg_mark, u32 timestamp)
1080{
1081	struct net_device *dev = cdev->net;
1082	struct net_device_stats *stats = &dev->stats;
1083	unsigned int frame_len;
1084
1085	if (cdev->is_peripheral)
1086		stats->tx_bytes +=
1087			can_rx_offload_get_echo_skb_queue_timestamp(&cdev->offload,
1088								    msg_mark,
1089								    timestamp,
1090								    &frame_len);
1091	else
1092		stats->tx_bytes += can_get_echo_skb(dev, msg_mark, &frame_len);
1093
1094	stats->tx_packets++;
1095
1096	return frame_len;
1097}
1098
1099static void m_can_finish_tx(struct m_can_classdev *cdev, int transmitted,
1100			    unsigned int transmitted_frame_len)
1101{
1102	unsigned long irqflags;
1103
1104	netdev_completed_queue(cdev->net, transmitted, transmitted_frame_len);
1105
1106	spin_lock_irqsave(&cdev->tx_handling_spinlock, irqflags);
1107	if (cdev->tx_fifo_in_flight >= cdev->tx_fifo_size && transmitted > 0)
1108		netif_wake_queue(cdev->net);
1109	cdev->tx_fifo_in_flight -= transmitted;
1110	spin_unlock_irqrestore(&cdev->tx_handling_spinlock, irqflags);
1111}
1112
1113static netdev_tx_t m_can_start_tx(struct m_can_classdev *cdev)
1114{
1115	unsigned long irqflags;
1116	int tx_fifo_in_flight;
 
1117
1118	spin_lock_irqsave(&cdev->tx_handling_spinlock, irqflags);
1119	tx_fifo_in_flight = cdev->tx_fifo_in_flight + 1;
1120	if (tx_fifo_in_flight >= cdev->tx_fifo_size) {
1121		netif_stop_queue(cdev->net);
1122		if (tx_fifo_in_flight > cdev->tx_fifo_size) {
1123			netdev_err_once(cdev->net, "hard_xmit called while TX FIFO full\n");
1124			spin_unlock_irqrestore(&cdev->tx_handling_spinlock, irqflags);
1125			return NETDEV_TX_BUSY;
1126		}
1127	}
1128	cdev->tx_fifo_in_flight = tx_fifo_in_flight;
1129	spin_unlock_irqrestore(&cdev->tx_handling_spinlock, irqflags);
1130
1131	return NETDEV_TX_OK;
1132}
1133
1134static int m_can_echo_tx_event(struct net_device *dev)
1135{
1136	u32 txe_count = 0;
1137	u32 m_can_txefs;
1138	u32 fgi = 0;
1139	int ack_fgi = -1;
1140	int i = 0;
1141	int err = 0;
1142	unsigned int msg_mark;
1143	int processed = 0;
1144	unsigned int processed_frame_len = 0;
1145
1146	struct m_can_classdev *cdev = netdev_priv(dev);
 
1147
1148	/* read tx event fifo status */
1149	m_can_txefs = m_can_read(cdev, M_CAN_TXEFS);
1150
1151	/* Get Tx Event fifo element count */
1152	txe_count = FIELD_GET(TXEFS_EFFL_MASK, m_can_txefs);
1153	fgi = FIELD_GET(TXEFS_EFGI_MASK, m_can_txefs);
1154
1155	/* Get and process all sent elements */
1156	for (i = 0; i < txe_count; i++) {
1157		u32 txe, timestamp = 0;
1158
1159		/* get message marker, timestamp */
1160		err = m_can_txe_fifo_read(cdev, fgi, 4, &txe);
1161		if (err) {
1162			netdev_err(dev, "TXE FIFO read returned %d\n", err);
1163			break;
1164		}
1165
1166		msg_mark = FIELD_GET(TX_EVENT_MM_MASK, txe);
1167		timestamp = FIELD_GET(TX_EVENT_TXTS_MASK, txe) << 16;
1168
1169		ack_fgi = fgi;
1170		fgi = (++fgi >= cdev->mcfg[MRAM_TXE].num ? 0 : fgi);
1171
1172		/* update stats */
1173		processed_frame_len += m_can_tx_update_stats(cdev, msg_mark,
1174							     timestamp);
1175
1176		++processed;
1177	}
1178
1179	if (ack_fgi != -1)
1180		m_can_write(cdev, M_CAN_TXEFA, FIELD_PREP(TXEFA_EFAI_MASK,
1181							  ack_fgi));
1182
1183	m_can_finish_tx(cdev, processed, processed_frame_len);
1184
1185	return err;
1186}
1187
1188static void m_can_coalescing_update(struct m_can_classdev *cdev, u32 ir)
1189{
1190	u32 new_interrupts = cdev->active_interrupts;
1191	bool enable_rx_timer = false;
1192	bool enable_tx_timer = false;
1193
1194	if (!cdev->net->irq)
1195		return;
1196
1197	if (cdev->rx_coalesce_usecs_irq > 0 && (ir & (IR_RF0N | IR_RF0W))) {
1198		enable_rx_timer = true;
1199		new_interrupts &= ~IR_RF0N;
1200	}
1201	if (cdev->tx_coalesce_usecs_irq > 0 && (ir & (IR_TEFN | IR_TEFW))) {
1202		enable_tx_timer = true;
1203		new_interrupts &= ~IR_TEFN;
1204	}
1205	if (!enable_rx_timer && !hrtimer_active(&cdev->hrtimer))
1206		new_interrupts |= IR_RF0N;
1207	if (!enable_tx_timer && !hrtimer_active(&cdev->hrtimer))
1208		new_interrupts |= IR_TEFN;
1209
1210	m_can_interrupt_enable(cdev, new_interrupts);
1211	if (enable_rx_timer | enable_tx_timer)
1212		hrtimer_start(&cdev->hrtimer, cdev->irq_timer_wait,
1213			      HRTIMER_MODE_REL);
1214}
1215
1216/* This interrupt handler is called either from the interrupt thread or a
1217 * hrtimer. This has implications like cancelling a timer won't be possible
1218 * blocking.
1219 */
1220static int m_can_interrupt_handler(struct m_can_classdev *cdev)
1221{
1222	struct net_device *dev = cdev->net;
1223	u32 ir = 0, ir_read;
1224	int ret;
 
1225
1226	if (pm_runtime_suspended(cdev->dev))
 
1227		return IRQ_NONE;
1228
1229	/* The m_can controller signals its interrupt status as a level, but
1230	 * depending in the integration the CPU may interpret the signal as
1231	 * edge-triggered (for example with m_can_pci). For these
1232	 * edge-triggered integrations, we must observe that IR is 0 at least
1233	 * once to be sure that the next interrupt will generate an edge.
1234	 */
1235	while ((ir_read = m_can_read(cdev, M_CAN_IR)) != 0) {
1236		ir |= ir_read;
1237
1238		/* ACK all irqs */
1239		m_can_write(cdev, M_CAN_IR, ir);
1240
1241		if (!cdev->irq_edge_triggered)
1242			break;
1243	}
1244
1245	m_can_coalescing_update(cdev, ir);
1246	if (!ir)
1247		return IRQ_NONE;
1248
1249	if (cdev->ops->clear_interrupts)
1250		cdev->ops->clear_interrupts(cdev);
1251
1252	/* schedule NAPI in case of
1253	 * - rx IRQ
1254	 * - state change IRQ
1255	 * - bus error IRQ and bus error reporting
1256	 */
1257	if (ir & (IR_RF0N | IR_RF0W | IR_ERR_ALL_30X)) {
1258		cdev->irqstatus = ir;
1259		if (!cdev->is_peripheral) {
1260			m_can_disable_all_interrupts(cdev);
1261			napi_schedule(&cdev->napi);
1262		} else {
1263			ret = m_can_rx_handler(dev, NAPI_POLL_WEIGHT, ir);
1264			if (ret < 0)
1265				return ret;
1266		}
1267	}
1268
1269	if (cdev->version == 30) {
1270		if (ir & IR_TC) {
1271			/* Transmission Complete Interrupt*/
1272			u32 timestamp = 0;
1273			unsigned int frame_len;
1274
1275			if (cdev->is_peripheral)
1276				timestamp = m_can_get_timestamp(cdev);
1277			frame_len = m_can_tx_update_stats(cdev, 0, timestamp);
1278			m_can_finish_tx(cdev, 1, frame_len);
1279		}
1280	} else  {
1281		if (ir & (IR_TEFN | IR_TEFW)) {
1282			/* New TX FIFO Element arrived */
1283			ret = m_can_echo_tx_event(dev);
1284			if (ret != 0)
1285				return ret;
 
 
1286		}
1287	}
1288
1289	if (cdev->is_peripheral)
1290		can_rx_offload_threaded_irq_finish(&cdev->offload);
1291
1292	return IRQ_HANDLED;
1293}
1294
1295static irqreturn_t m_can_isr(int irq, void *dev_id)
1296{
1297	struct net_device *dev = (struct net_device *)dev_id;
1298	struct m_can_classdev *cdev = netdev_priv(dev);
1299	int ret;
1300
1301	ret =  m_can_interrupt_handler(cdev);
1302	if (ret < 0) {
1303		m_can_disable_all_interrupts(cdev);
1304		return IRQ_HANDLED;
1305	}
1306
1307	return ret;
1308}
1309
1310static enum hrtimer_restart m_can_coalescing_timer(struct hrtimer *timer)
1311{
1312	struct m_can_classdev *cdev = container_of(timer, struct m_can_classdev, hrtimer);
1313
1314	if (cdev->can.state == CAN_STATE_BUS_OFF ||
1315	    cdev->can.state == CAN_STATE_STOPPED)
1316		return HRTIMER_NORESTART;
1317
1318	irq_wake_thread(cdev->net->irq, cdev->net);
1319
1320	return HRTIMER_NORESTART;
1321}
1322
1323static const struct can_bittiming_const m_can_bittiming_const_30X = {
1324	.name = KBUILD_MODNAME,
1325	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
1326	.tseg1_max = 64,
1327	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
1328	.tseg2_max = 16,
1329	.sjw_max = 16,
1330	.brp_min = 1,
1331	.brp_max = 1024,
1332	.brp_inc = 1,
1333};
1334
1335static const struct can_bittiming_const m_can_data_bittiming_const_30X = {
1336	.name = KBUILD_MODNAME,
1337	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
1338	.tseg1_max = 16,
1339	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
1340	.tseg2_max = 8,
1341	.sjw_max = 4,
1342	.brp_min = 1,
1343	.brp_max = 32,
1344	.brp_inc = 1,
1345};
1346
1347static const struct can_bittiming_const m_can_bittiming_const_31X = {
1348	.name = KBUILD_MODNAME,
1349	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
1350	.tseg1_max = 256,
1351	.tseg2_min = 2,		/* Time segment 2 = phase_seg2 */
1352	.tseg2_max = 128,
1353	.sjw_max = 128,
1354	.brp_min = 1,
1355	.brp_max = 512,
1356	.brp_inc = 1,
1357};
1358
1359static const struct can_bittiming_const m_can_data_bittiming_const_31X = {
1360	.name = KBUILD_MODNAME,
1361	.tseg1_min = 1,		/* Time segment 1 = prop_seg + phase_seg1 */
1362	.tseg1_max = 32,
1363	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
1364	.tseg2_max = 16,
1365	.sjw_max = 16,
1366	.brp_min = 1,
1367	.brp_max = 32,
1368	.brp_inc = 1,
1369};
1370
1371static int m_can_set_bittiming(struct net_device *dev)
1372{
1373	struct m_can_classdev *cdev = netdev_priv(dev);
1374	const struct can_bittiming *bt = &cdev->can.bittiming;
1375	const struct can_bittiming *dbt = &cdev->can.data_bittiming;
1376	u16 brp, sjw, tseg1, tseg2;
1377	u32 reg_btp;
1378
1379	brp = bt->brp - 1;
1380	sjw = bt->sjw - 1;
1381	tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
1382	tseg2 = bt->phase_seg2 - 1;
1383	reg_btp = FIELD_PREP(NBTP_NBRP_MASK, brp) |
1384		  FIELD_PREP(NBTP_NSJW_MASK, sjw) |
1385		  FIELD_PREP(NBTP_NTSEG1_MASK, tseg1) |
1386		  FIELD_PREP(NBTP_NTSEG2_MASK, tseg2);
1387	m_can_write(cdev, M_CAN_NBTP, reg_btp);
1388
1389	if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) {
1390		reg_btp = 0;
1391		brp = dbt->brp - 1;
1392		sjw = dbt->sjw - 1;
1393		tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1;
1394		tseg2 = dbt->phase_seg2 - 1;
1395
1396		/* TDC is only needed for bitrates beyond 2.5 MBit/s.
1397		 * This is mentioned in the "Bit Time Requirements for CAN FD"
1398		 * paper presented at the International CAN Conference 2013
1399		 */
1400		if (dbt->bitrate > 2500000) {
1401			u32 tdco, ssp;
1402
1403			/* Use the same value of secondary sampling point
1404			 * as the data sampling point
1405			 */
1406			ssp = dbt->sample_point;
1407
1408			/* Equation based on Bosch's M_CAN User Manual's
1409			 * Transmitter Delay Compensation Section
1410			 */
1411			tdco = (cdev->can.clock.freq / 1000) *
1412				ssp / dbt->bitrate;
1413
1414			/* Max valid TDCO value is 127 */
1415			if (tdco > 127) {
1416				netdev_warn(dev, "TDCO value of %u is beyond maximum. Using maximum possible value\n",
1417					    tdco);
1418				tdco = 127;
1419			}
1420
1421			reg_btp |= DBTP_TDC;
1422			m_can_write(cdev, M_CAN_TDCR,
1423				    FIELD_PREP(TDCR_TDCO_MASK, tdco));
1424		}
1425
1426		reg_btp |= FIELD_PREP(DBTP_DBRP_MASK, brp) |
1427			FIELD_PREP(DBTP_DSJW_MASK, sjw) |
1428			FIELD_PREP(DBTP_DTSEG1_MASK, tseg1) |
1429			FIELD_PREP(DBTP_DTSEG2_MASK, tseg2);
1430
1431		m_can_write(cdev, M_CAN_DBTP, reg_btp);
1432	}
1433
1434	return 0;
1435}
1436
1437/* Configure M_CAN chip:
1438 * - set rx buffer/fifo element size
1439 * - configure rx fifo
1440 * - accept non-matching frame into fifo 0
1441 * - configure tx buffer
1442 *		- >= v3.1.x: TX FIFO is used
1443 * - configure mode
1444 * - setup bittiming
1445 * - configure timestamp generation
1446 */
1447static int m_can_chip_config(struct net_device *dev)
1448{
1449	struct m_can_classdev *cdev = netdev_priv(dev);
1450	u32 interrupts = IR_ALL_INT;
1451	u32 cccr, test;
1452	int err;
1453
1454	err = m_can_init_ram(cdev);
1455	if (err) {
1456		dev_err(cdev->dev, "Message RAM configuration failed\n");
1457		return err;
1458	}
1459
1460	/* Disable unused interrupts */
1461	interrupts &= ~(IR_ARA | IR_ELO | IR_DRX | IR_TEFF | IR_TFE | IR_TCF |
1462			IR_HPM | IR_RF1F | IR_RF1W | IR_RF1N | IR_RF0F |
1463			IR_TSW);
1464
1465	err = m_can_config_enable(cdev);
1466	if (err)
1467		return err;
1468
1469	/* RX Buffer/FIFO Element Size 64 bytes data field */
1470	m_can_write(cdev, M_CAN_RXESC,
1471		    FIELD_PREP(RXESC_RBDS_MASK, RXESC_64B) |
1472		    FIELD_PREP(RXESC_F1DS_MASK, RXESC_64B) |
1473		    FIELD_PREP(RXESC_F0DS_MASK, RXESC_64B));
1474
1475	/* Accept Non-matching Frames Into FIFO 0 */
1476	m_can_write(cdev, M_CAN_GFC, 0x0);
1477
1478	if (cdev->version == 30) {
1479		/* only support one Tx Buffer currently */
1480		m_can_write(cdev, M_CAN_TXBC, FIELD_PREP(TXBC_NDTB_MASK, 1) |
1481			    cdev->mcfg[MRAM_TXB].off);
1482	} else {
1483		/* TX FIFO is used for newer IP Core versions */
1484		m_can_write(cdev, M_CAN_TXBC,
1485			    FIELD_PREP(TXBC_TFQS_MASK,
1486				       cdev->mcfg[MRAM_TXB].num) |
1487			    cdev->mcfg[MRAM_TXB].off);
1488	}
1489
1490	/* support 64 bytes payload */
1491	m_can_write(cdev, M_CAN_TXESC,
1492		    FIELD_PREP(TXESC_TBDS_MASK, TXESC_TBDS_64B));
1493
1494	/* TX Event FIFO */
1495	if (cdev->version == 30) {
1496		m_can_write(cdev, M_CAN_TXEFC,
1497			    FIELD_PREP(TXEFC_EFS_MASK, 1) |
1498			    cdev->mcfg[MRAM_TXE].off);
1499	} else {
1500		/* Full TX Event FIFO is used */
1501		m_can_write(cdev, M_CAN_TXEFC,
1502			    FIELD_PREP(TXEFC_EFWM_MASK,
1503				       cdev->tx_max_coalesced_frames_irq) |
1504			    FIELD_PREP(TXEFC_EFS_MASK,
1505				       cdev->mcfg[MRAM_TXE].num) |
1506			    cdev->mcfg[MRAM_TXE].off);
1507	}
1508
1509	/* rx fifo configuration, blocking mode, fifo size 1 */
1510	m_can_write(cdev, M_CAN_RXF0C,
1511		    FIELD_PREP(RXFC_FWM_MASK, cdev->rx_max_coalesced_frames_irq) |
1512		    FIELD_PREP(RXFC_FS_MASK, cdev->mcfg[MRAM_RXF0].num) |
1513		    cdev->mcfg[MRAM_RXF0].off);
1514
1515	m_can_write(cdev, M_CAN_RXF1C,
1516		    FIELD_PREP(RXFC_FS_MASK, cdev->mcfg[MRAM_RXF1].num) |
1517		    cdev->mcfg[MRAM_RXF1].off);
1518
1519	cccr = m_can_read(cdev, M_CAN_CCCR);
1520	test = m_can_read(cdev, M_CAN_TEST);
1521	test &= ~TEST_LBCK;
1522	if (cdev->version == 30) {
1523		/* Version 3.0.x */
1524
1525		cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_DAR |
1526			  FIELD_PREP(CCCR_CMR_MASK, FIELD_MAX(CCCR_CMR_MASK)) |
1527			  FIELD_PREP(CCCR_CME_MASK, FIELD_MAX(CCCR_CME_MASK)));
1528
1529		if (cdev->can.ctrlmode & CAN_CTRLMODE_FD)
1530			cccr |= FIELD_PREP(CCCR_CME_MASK, CCCR_CME_CANFD_BRS);
1531
1532	} else {
1533		/* Version 3.1.x or 3.2.x */
1534		cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_BRSE | CCCR_FDOE |
1535			  CCCR_NISO | CCCR_DAR);
1536
1537		/* Only 3.2.x has NISO Bit implemented */
1538		if (cdev->can.ctrlmode & CAN_CTRLMODE_FD_NON_ISO)
1539			cccr |= CCCR_NISO;
1540
1541		if (cdev->can.ctrlmode & CAN_CTRLMODE_FD)
1542			cccr |= (CCCR_BRSE | CCCR_FDOE);
1543	}
1544
1545	/* Loopback Mode */
1546	if (cdev->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
1547		cccr |= CCCR_TEST | CCCR_MON;
1548		test |= TEST_LBCK;
1549	}
1550
1551	/* Enable Monitoring (all versions) */
1552	if (cdev->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)
1553		cccr |= CCCR_MON;
1554
1555	/* Disable Auto Retransmission (all versions) */
1556	if (cdev->can.ctrlmode & CAN_CTRLMODE_ONE_SHOT)
1557		cccr |= CCCR_DAR;
1558
1559	/* Write config */
1560	m_can_write(cdev, M_CAN_CCCR, cccr);
1561	m_can_write(cdev, M_CAN_TEST, test);
1562
1563	/* Enable interrupts */
1564	if (!(cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING)) {
 
1565		if (cdev->version == 30)
1566			interrupts &= ~(IR_ERR_LEC_30X);
 
1567		else
1568			interrupts &= ~(IR_ERR_LEC_31X);
1569	}
1570	cdev->active_interrupts = 0;
1571	m_can_interrupt_enable(cdev, interrupts);
1572
1573	/* route all interrupts to INT0 */
1574	m_can_write(cdev, M_CAN_ILS, ILS_ALL_INT0);
1575
1576	/* set bittiming params */
1577	m_can_set_bittiming(dev);
1578
1579	/* enable internal timestamp generation, with a prescaler of 16. The
1580	 * prescaler is applied to the nominal bit timing
1581	 */
1582	m_can_write(cdev, M_CAN_TSCC,
1583		    FIELD_PREP(TSCC_TCP_MASK, 0xf) |
1584		    FIELD_PREP(TSCC_TSS_MASK, TSCC_TSS_INTERNAL));
1585
1586	err = m_can_config_disable(cdev);
1587	if (err)
1588		return err;
1589
1590	if (cdev->ops->init)
1591		cdev->ops->init(cdev);
1592
1593	return 0;
1594}
1595
1596static int m_can_start(struct net_device *dev)
1597{
1598	struct m_can_classdev *cdev = netdev_priv(dev);
1599	int ret;
1600
1601	/* basic m_can configuration */
1602	ret = m_can_chip_config(dev);
1603	if (ret)
1604		return ret;
1605
1606	netdev_queue_set_dql_min_limit(netdev_get_tx_queue(cdev->net, 0),
1607				       cdev->tx_max_coalesced_frames);
1608
1609	cdev->can.state = CAN_STATE_ERROR_ACTIVE;
1610
1611	m_can_enable_all_interrupts(cdev);
1612
1613	if (cdev->version > 30)
1614		cdev->tx_fifo_putidx = FIELD_GET(TXFQS_TFQPI_MASK,
1615						 m_can_read(cdev, M_CAN_TXFQS));
1616
1617	ret = m_can_cccr_update_bits(cdev, CCCR_INIT, 0);
1618	if (ret)
1619		netdev_err(dev, "failed to enter normal mode\n");
1620
1621	return ret;
1622}
1623
1624static int m_can_set_mode(struct net_device *dev, enum can_mode mode)
1625{
1626	switch (mode) {
1627	case CAN_MODE_START:
1628		m_can_clean(dev);
1629		m_can_start(dev);
1630		netif_wake_queue(dev);
1631		break;
1632	default:
1633		return -EOPNOTSUPP;
1634	}
1635
1636	return 0;
1637}
1638
1639/* Checks core release number of M_CAN
1640 * returns 0 if an unsupported device is detected
1641 * else it returns the release and step coded as:
1642 * return value = 10 * <release> + 1 * <step>
1643 */
1644static int m_can_check_core_release(struct m_can_classdev *cdev)
1645{
1646	u32 crel_reg;
1647	u8 rel;
1648	u8 step;
1649	int res;
1650
1651	/* Read Core Release Version and split into version number
1652	 * Example: Version 3.2.1 => rel = 3; step = 2; substep = 1;
1653	 */
1654	crel_reg = m_can_read(cdev, M_CAN_CREL);
1655	rel = (u8)FIELD_GET(CREL_REL_MASK, crel_reg);
1656	step = (u8)FIELD_GET(CREL_STEP_MASK, crel_reg);
1657
1658	if (rel == 3) {
1659		/* M_CAN v3.x.y: create return value */
1660		res = 30 + step;
1661	} else {
1662		/* Unsupported M_CAN version */
1663		res = 0;
1664	}
1665
1666	return res;
1667}
1668
1669/* Selectable Non ISO support only in version 3.2.x
1670 * Return 1 if the bit is writable, 0 if it is not, or negative on error.
1671 */
1672static int m_can_niso_supported(struct m_can_classdev *cdev)
1673{
1674	int ret, niso;
1675
1676	ret = m_can_config_enable(cdev);
1677	if (ret)
1678		return ret;
1679
1680	/* First try to set the NISO bit. */
1681	niso = m_can_cccr_update_bits(cdev, CCCR_NISO, CCCR_NISO);
 
 
 
 
 
 
 
 
 
1682
1683	/* Then clear the it again. */
1684	ret = m_can_cccr_update_bits(cdev, CCCR_NISO, 0);
1685	if (ret) {
1686		dev_err(cdev->dev, "failed to revert the NON-ISO bit in CCCR\n");
1687		return ret;
1688	}
1689
1690	ret = m_can_config_disable(cdev);
1691	if (ret)
1692		return ret;
 
 
1693
1694	return niso == 0;
 
1695}
1696
1697static int m_can_dev_setup(struct m_can_classdev *cdev)
1698{
1699	struct net_device *dev = cdev->net;
1700	int m_can_version, err, niso;
1701
1702	m_can_version = m_can_check_core_release(cdev);
1703	/* return if unsupported version */
1704	if (!m_can_version) {
1705		dev_err(cdev->dev, "Unsupported version number: %2d",
1706			m_can_version);
1707		return -EINVAL;
1708	}
1709
1710	/* Write the INIT bit, in case no hardware reset has happened before
1711	 * the probe (for example, it was observed that the Intel Elkhart Lake
1712	 * SoCs do not properly reset the CAN controllers on reboot)
1713	 */
1714	err = m_can_cccr_update_bits(cdev, CCCR_INIT, CCCR_INIT);
1715	if (err)
1716		return err;
1717
1718	if (!cdev->is_peripheral)
1719		netif_napi_add(dev, &cdev->napi, m_can_poll);
1720
1721	/* Shared properties of all M_CAN versions */
1722	cdev->version = m_can_version;
1723	cdev->can.do_set_mode = m_can_set_mode;
1724	cdev->can.do_get_berr_counter = m_can_get_berr_counter;
1725
1726	/* Set M_CAN supported operations */
1727	cdev->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1728		CAN_CTRLMODE_LISTENONLY |
1729		CAN_CTRLMODE_BERR_REPORTING |
1730		CAN_CTRLMODE_FD |
1731		CAN_CTRLMODE_ONE_SHOT;
1732
1733	/* Set properties depending on M_CAN version */
1734	switch (cdev->version) {
1735	case 30:
1736		/* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.0.x */
1737		err = can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO);
1738		if (err)
1739			return err;
1740		cdev->can.bittiming_const = &m_can_bittiming_const_30X;
1741		cdev->can.data_bittiming_const = &m_can_data_bittiming_const_30X;
 
 
1742		break;
1743	case 31:
1744		/* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.1.x */
1745		err = can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO);
1746		if (err)
1747			return err;
1748		cdev->can.bittiming_const = &m_can_bittiming_const_31X;
1749		cdev->can.data_bittiming_const = &m_can_data_bittiming_const_31X;
 
 
1750		break;
1751	case 32:
1752	case 33:
1753		/* Support both MCAN version v3.2.x and v3.3.0 */
1754		cdev->can.bittiming_const = &m_can_bittiming_const_31X;
1755		cdev->can.data_bittiming_const = &m_can_data_bittiming_const_31X;
1756
1757		niso = m_can_niso_supported(cdev);
1758		if (niso < 0)
1759			return niso;
1760		if (niso)
1761			cdev->can.ctrlmode_supported |= CAN_CTRLMODE_FD_NON_ISO;
 
1762		break;
1763	default:
1764		dev_err(cdev->dev, "Unsupported version number: %2d",
1765			cdev->version);
1766		return -EINVAL;
1767	}
1768
 
 
 
1769	return 0;
1770}
1771
1772static void m_can_stop(struct net_device *dev)
1773{
1774	struct m_can_classdev *cdev = netdev_priv(dev);
1775	int ret;
1776
1777	/* disable all interrupts */
1778	m_can_disable_all_interrupts(cdev);
1779
1780	/* Set init mode to disengage from the network */
1781	ret = m_can_cccr_update_bits(cdev, CCCR_INIT, CCCR_INIT);
1782	if (ret)
1783		netdev_err(dev, "failed to enter standby mode: %pe\n",
1784			   ERR_PTR(ret));
1785
1786	/* set the state as STOPPED */
1787	cdev->can.state = CAN_STATE_STOPPED;
1788}
1789
1790static int m_can_close(struct net_device *dev)
1791{
1792	struct m_can_classdev *cdev = netdev_priv(dev);
1793
1794	netif_stop_queue(dev);
1795
1796	m_can_stop(dev);
1797	if (dev->irq)
1798		free_irq(dev->irq, dev);
1799
1800	m_can_clean(dev);
 
 
1801
1802	if (cdev->is_peripheral) {
 
1803		destroy_workqueue(cdev->tx_wq);
1804		cdev->tx_wq = NULL;
1805		can_rx_offload_disable(&cdev->offload);
1806	} else {
1807		napi_disable(&cdev->napi);
1808	}
1809
1810	close_candev(dev);
1811
1812	m_can_clk_stop(cdev);
1813	phy_power_off(cdev->transceiver);
1814
1815	return 0;
1816}
1817
1818static netdev_tx_t m_can_tx_handler(struct m_can_classdev *cdev,
1819				    struct sk_buff *skb)
 
 
 
 
 
 
 
 
 
 
 
 
 
1820{
1821	struct canfd_frame *cf = (struct canfd_frame *)skb->data;
1822	u8 len_padded = DIV_ROUND_UP(cf->len, 4);
1823	struct m_can_fifo_element fifo_element;
1824	struct net_device *dev = cdev->net;
1825	u32 cccr, fdflags;
1826	int err;
1827	u32 putidx;
1828	unsigned int frame_len = can_skb_get_frame_len(skb);
1829
1830	/* Generate ID field for TX buffer Element */
1831	/* Common to all supported M_CAN versions */
1832	if (cf->can_id & CAN_EFF_FLAG) {
1833		fifo_element.id = cf->can_id & CAN_EFF_MASK;
1834		fifo_element.id |= TX_BUF_XTD;
1835	} else {
1836		fifo_element.id = ((cf->can_id & CAN_SFF_MASK) << 18);
1837	}
1838
1839	if (cf->can_id & CAN_RTR_FLAG)
1840		fifo_element.id |= TX_BUF_RTR;
1841
1842	if (cdev->version == 30) {
1843		netif_stop_queue(dev);
1844
1845		fifo_element.dlc = can_fd_len2dlc(cf->len) << 16;
 
 
 
 
 
 
 
 
1846
1847		/* Write the frame ID, DLC, and payload to the FIFO element. */
1848		err = m_can_fifo_write(cdev, 0, M_CAN_FIFO_ID, &fifo_element, 2);
1849		if (err)
1850			goto out_fail;
1851
1852		err = m_can_fifo_write(cdev, 0, M_CAN_FIFO_DATA,
1853				       cf->data, len_padded);
1854		if (err)
1855			goto out_fail;
1856
1857		if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) {
1858			cccr = m_can_read(cdev, M_CAN_CCCR);
1859			cccr &= ~CCCR_CMR_MASK;
1860			if (can_is_canfd_skb(skb)) {
1861				if (cf->flags & CANFD_BRS)
1862					cccr |= FIELD_PREP(CCCR_CMR_MASK,
1863							   CCCR_CMR_CANFD_BRS);
1864				else
1865					cccr |= FIELD_PREP(CCCR_CMR_MASK,
1866							   CCCR_CMR_CANFD);
1867			} else {
1868				cccr |= FIELD_PREP(CCCR_CMR_MASK, CCCR_CMR_CAN);
1869			}
1870			m_can_write(cdev, M_CAN_CCCR, cccr);
1871		}
1872		m_can_write(cdev, M_CAN_TXBTIE, 0x1);
1873
1874		can_put_echo_skb(skb, dev, 0, frame_len);
1875
1876		m_can_write(cdev, M_CAN_TXBAR, 0x1);
1877		/* End of xmit function for version 3.0.x */
1878	} else {
1879		/* Transmit routine for version >= v3.1.x */
1880
1881		/* get put index for frame */
1882		putidx = cdev->tx_fifo_putidx;
 
 
 
 
 
 
 
 
 
 
 
 
 
1883
1884		/* Construct DLC Field, with CAN-FD configuration.
1885		 * Use the put index of the fifo as the message marker,
1886		 * used in the TX interrupt for sending the correct echo frame.
1887		 */
 
1888
1889		/* get CAN FD configuration of frame */
1890		fdflags = 0;
1891		if (can_is_canfd_skb(skb)) {
1892			fdflags |= TX_BUF_FDF;
1893			if (cf->flags & CANFD_BRS)
1894				fdflags |= TX_BUF_BRS;
1895		}
1896
1897		fifo_element.dlc = FIELD_PREP(TX_BUF_MM_MASK, putidx) |
1898			FIELD_PREP(TX_BUF_DLC_MASK, can_fd_len2dlc(cf->len)) |
1899			fdflags | TX_BUF_EFC;
1900
1901		memcpy_and_pad(fifo_element.data, CANFD_MAX_DLEN, &cf->data,
1902			       cf->len, 0);
1903
1904		err = m_can_fifo_write(cdev, putidx, M_CAN_FIFO_ID,
1905				       &fifo_element, 2 + len_padded);
1906		if (err)
1907			goto out_fail;
 
 
 
1908
1909		/* Push loopback echo.
1910		 * Will be looped back on TX interrupt based on message marker
1911		 */
1912		can_put_echo_skb(skb, dev, putidx, frame_len);
1913
1914		if (cdev->is_peripheral) {
1915			/* Delay enabling TX FIFO element */
1916			cdev->tx_peripheral_submit |= BIT(putidx);
1917		} else {
1918			/* Enable TX FIFO element to start transfer  */
1919			m_can_write(cdev, M_CAN_TXBAR, BIT(putidx));
1920		}
1921		cdev->tx_fifo_putidx = (++cdev->tx_fifo_putidx >= cdev->can.echo_skb_max ?
1922					0 : cdev->tx_fifo_putidx);
1923	}
1924
1925	return NETDEV_TX_OK;
1926
1927out_fail:
1928	netdev_err(dev, "FIFO write returned %d\n", err);
1929	m_can_disable_all_interrupts(cdev);
1930	return NETDEV_TX_BUSY;
1931}
1932
1933static void m_can_tx_submit(struct m_can_classdev *cdev)
1934{
1935	if (cdev->version == 30)
1936		return;
1937	if (!cdev->is_peripheral)
1938		return;
1939
1940	m_can_write(cdev, M_CAN_TXBAR, cdev->tx_peripheral_submit);
1941	cdev->tx_peripheral_submit = 0;
1942}
1943
1944static void m_can_tx_work_queue(struct work_struct *ws)
1945{
1946	struct m_can_tx_op *op = container_of(ws, struct m_can_tx_op, work);
1947	struct m_can_classdev *cdev = op->cdev;
1948	struct sk_buff *skb = op->skb;
1949
1950	op->skb = NULL;
1951	m_can_tx_handler(cdev, skb);
1952	if (op->submit)
1953		m_can_tx_submit(cdev);
1954}
1955
1956static void m_can_tx_queue_skb(struct m_can_classdev *cdev, struct sk_buff *skb,
1957			       bool submit)
1958{
1959	cdev->tx_ops[cdev->next_tx_op].skb = skb;
1960	cdev->tx_ops[cdev->next_tx_op].submit = submit;
1961	queue_work(cdev->tx_wq, &cdev->tx_ops[cdev->next_tx_op].work);
1962
1963	++cdev->next_tx_op;
1964	if (cdev->next_tx_op >= cdev->tx_fifo_size)
1965		cdev->next_tx_op = 0;
1966}
1967
1968static netdev_tx_t m_can_start_peripheral_xmit(struct m_can_classdev *cdev,
1969					       struct sk_buff *skb)
1970{
1971	bool submit;
1972
1973	++cdev->nr_txs_without_submit;
1974	if (cdev->nr_txs_without_submit >= cdev->tx_max_coalesced_frames ||
1975	    !netdev_xmit_more()) {
1976		cdev->nr_txs_without_submit = 0;
1977		submit = true;
1978	} else {
1979		submit = false;
1980	}
1981	m_can_tx_queue_skb(cdev, skb, submit);
1982
1983	return NETDEV_TX_OK;
 
1984}
1985
1986static netdev_tx_t m_can_start_xmit(struct sk_buff *skb,
1987				    struct net_device *dev)
1988{
1989	struct m_can_classdev *cdev = netdev_priv(dev);
1990	unsigned int frame_len;
1991	netdev_tx_t ret;
1992
1993	if (can_dev_dropped_skb(dev, skb))
1994		return NETDEV_TX_OK;
1995
1996	frame_len = can_skb_get_frame_len(skb);
 
 
 
 
1997
1998	if (cdev->can.state == CAN_STATE_BUS_OFF) {
1999		m_can_clean(cdev->net);
2000		return NETDEV_TX_OK;
 
 
 
 
 
 
 
 
 
 
 
 
2001	}
2002
2003	ret = m_can_start_tx(cdev);
2004	if (ret != NETDEV_TX_OK)
2005		return ret;
2006
2007	netdev_sent_queue(dev, frame_len);
2008
2009	if (cdev->is_peripheral)
2010		ret = m_can_start_peripheral_xmit(cdev, skb);
2011	else
2012		ret = m_can_tx_handler(cdev, skb);
2013
2014	if (ret != NETDEV_TX_OK)
2015		netdev_completed_queue(dev, 1, frame_len);
2016
2017	return ret;
2018}
2019
2020static enum hrtimer_restart hrtimer_callback(struct hrtimer *timer)
2021{
2022	struct m_can_classdev *cdev = container_of(timer, struct
2023						   m_can_classdev, hrtimer);
2024	int ret;
2025
2026	if (cdev->can.state == CAN_STATE_BUS_OFF ||
2027	    cdev->can.state == CAN_STATE_STOPPED)
2028		return HRTIMER_NORESTART;
2029
2030	ret = m_can_interrupt_handler(cdev);
2031
2032	/* On error or if napi is scheduled to read, stop the timer */
2033	if (ret < 0 || napi_is_scheduled(&cdev->napi))
2034		return HRTIMER_NORESTART;
2035
2036	hrtimer_forward_now(timer, ms_to_ktime(HRTIMER_POLL_INTERVAL_MS));
2037
2038	return HRTIMER_RESTART;
2039}
2040
2041static int m_can_open(struct net_device *dev)
2042{
2043	struct m_can_classdev *cdev = netdev_priv(dev);
2044	int err;
2045
2046	err = phy_power_on(cdev->transceiver);
2047	if (err)
2048		return err;
2049
2050	err = m_can_clk_start(cdev);
2051	if (err)
2052		goto out_phy_power_off;
2053
2054	/* open the can device */
2055	err = open_candev(dev);
2056	if (err) {
2057		netdev_err(dev, "failed to open can device\n");
2058		goto exit_disable_clks;
2059	}
2060
2061	if (cdev->is_peripheral)
2062		can_rx_offload_enable(&cdev->offload);
2063	else
2064		napi_enable(&cdev->napi);
2065
2066	/* register interrupt handler */
2067	if (cdev->is_peripheral) {
2068		cdev->tx_wq = alloc_ordered_workqueue("mcan_wq",
2069						      WQ_FREEZABLE | WQ_MEM_RECLAIM);
 
2070		if (!cdev->tx_wq) {
2071			err = -ENOMEM;
2072			goto out_wq_fail;
2073		}
2074
2075		for (int i = 0; i != cdev->tx_fifo_size; ++i) {
2076			cdev->tx_ops[i].cdev = cdev;
2077			INIT_WORK(&cdev->tx_ops[i].work, m_can_tx_work_queue);
2078		}
2079
2080		err = request_threaded_irq(dev->irq, NULL, m_can_isr,
2081					   IRQF_ONESHOT,
2082					   dev->name, dev);
2083	} else if (dev->irq) {
2084		err = request_irq(dev->irq, m_can_isr, IRQF_SHARED, dev->name,
2085				  dev);
2086	}
2087
2088	if (err < 0) {
2089		netdev_err(dev, "failed to request interrupt\n");
2090		goto exit_irq_fail;
2091	}
2092
2093	/* start the m_can controller */
2094	err = m_can_start(dev);
2095	if (err)
2096		goto exit_start_fail;
 
 
 
2097
2098	netif_start_queue(dev);
2099
2100	return 0;
2101
2102exit_start_fail:
2103	if (cdev->is_peripheral || dev->irq)
2104		free_irq(dev->irq, dev);
2105exit_irq_fail:
2106	if (cdev->is_peripheral)
2107		destroy_workqueue(cdev->tx_wq);
2108out_wq_fail:
2109	if (cdev->is_peripheral)
2110		can_rx_offload_disable(&cdev->offload);
2111	else
2112		napi_disable(&cdev->napi);
2113	close_candev(dev);
2114exit_disable_clks:
2115	m_can_clk_stop(cdev);
2116out_phy_power_off:
2117	phy_power_off(cdev->transceiver);
2118	return err;
2119}
2120
2121static const struct net_device_ops m_can_netdev_ops = {
2122	.ndo_open = m_can_open,
2123	.ndo_stop = m_can_close,
2124	.ndo_start_xmit = m_can_start_xmit,
2125	.ndo_change_mtu = can_change_mtu,
2126};
2127
2128static int m_can_get_coalesce(struct net_device *dev,
2129			      struct ethtool_coalesce *ec,
2130			      struct kernel_ethtool_coalesce *kec,
2131			      struct netlink_ext_ack *ext_ack)
2132{
2133	struct m_can_classdev *cdev = netdev_priv(dev);
2134
2135	ec->rx_max_coalesced_frames_irq = cdev->rx_max_coalesced_frames_irq;
2136	ec->rx_coalesce_usecs_irq = cdev->rx_coalesce_usecs_irq;
2137	ec->tx_max_coalesced_frames = cdev->tx_max_coalesced_frames;
2138	ec->tx_max_coalesced_frames_irq = cdev->tx_max_coalesced_frames_irq;
2139	ec->tx_coalesce_usecs_irq = cdev->tx_coalesce_usecs_irq;
2140
2141	return 0;
2142}
2143
2144static int m_can_set_coalesce(struct net_device *dev,
2145			      struct ethtool_coalesce *ec,
2146			      struct kernel_ethtool_coalesce *kec,
2147			      struct netlink_ext_ack *ext_ack)
2148{
2149	struct m_can_classdev *cdev = netdev_priv(dev);
2150
2151	if (cdev->can.state != CAN_STATE_STOPPED) {
2152		netdev_err(dev, "Device is in use, please shut it down first\n");
2153		return -EBUSY;
2154	}
2155
2156	if (ec->rx_max_coalesced_frames_irq > cdev->mcfg[MRAM_RXF0].num) {
2157		netdev_err(dev, "rx-frames-irq %u greater than the RX FIFO %u\n",
2158			   ec->rx_max_coalesced_frames_irq,
2159			   cdev->mcfg[MRAM_RXF0].num);
2160		return -EINVAL;
2161	}
2162	if ((ec->rx_max_coalesced_frames_irq == 0) != (ec->rx_coalesce_usecs_irq == 0)) {
2163		netdev_err(dev, "rx-frames-irq and rx-usecs-irq can only be set together\n");
2164		return -EINVAL;
2165	}
2166	if (ec->tx_max_coalesced_frames_irq > cdev->mcfg[MRAM_TXE].num) {
2167		netdev_err(dev, "tx-frames-irq %u greater than the TX event FIFO %u\n",
2168			   ec->tx_max_coalesced_frames_irq,
2169			   cdev->mcfg[MRAM_TXE].num);
2170		return -EINVAL;
2171	}
2172	if (ec->tx_max_coalesced_frames_irq > cdev->mcfg[MRAM_TXB].num) {
2173		netdev_err(dev, "tx-frames-irq %u greater than the TX FIFO %u\n",
2174			   ec->tx_max_coalesced_frames_irq,
2175			   cdev->mcfg[MRAM_TXB].num);
2176		return -EINVAL;
2177	}
2178	if ((ec->tx_max_coalesced_frames_irq == 0) != (ec->tx_coalesce_usecs_irq == 0)) {
2179		netdev_err(dev, "tx-frames-irq and tx-usecs-irq can only be set together\n");
2180		return -EINVAL;
2181	}
2182	if (ec->tx_max_coalesced_frames > cdev->mcfg[MRAM_TXE].num) {
2183		netdev_err(dev, "tx-frames %u greater than the TX event FIFO %u\n",
2184			   ec->tx_max_coalesced_frames,
2185			   cdev->mcfg[MRAM_TXE].num);
2186		return -EINVAL;
2187	}
2188	if (ec->tx_max_coalesced_frames > cdev->mcfg[MRAM_TXB].num) {
2189		netdev_err(dev, "tx-frames %u greater than the TX FIFO %u\n",
2190			   ec->tx_max_coalesced_frames,
2191			   cdev->mcfg[MRAM_TXB].num);
2192		return -EINVAL;
2193	}
2194	if (ec->rx_coalesce_usecs_irq != 0 && ec->tx_coalesce_usecs_irq != 0 &&
2195	    ec->rx_coalesce_usecs_irq != ec->tx_coalesce_usecs_irq) {
2196		netdev_err(dev, "rx-usecs-irq %u needs to be equal to tx-usecs-irq %u if both are enabled\n",
2197			   ec->rx_coalesce_usecs_irq,
2198			   ec->tx_coalesce_usecs_irq);
2199		return -EINVAL;
2200	}
2201
2202	cdev->rx_max_coalesced_frames_irq = ec->rx_max_coalesced_frames_irq;
2203	cdev->rx_coalesce_usecs_irq = ec->rx_coalesce_usecs_irq;
2204	cdev->tx_max_coalesced_frames = ec->tx_max_coalesced_frames;
2205	cdev->tx_max_coalesced_frames_irq = ec->tx_max_coalesced_frames_irq;
2206	cdev->tx_coalesce_usecs_irq = ec->tx_coalesce_usecs_irq;
2207
2208	if (cdev->rx_coalesce_usecs_irq)
2209		cdev->irq_timer_wait =
2210			ns_to_ktime(cdev->rx_coalesce_usecs_irq * NSEC_PER_USEC);
2211	else
2212		cdev->irq_timer_wait =
2213			ns_to_ktime(cdev->tx_coalesce_usecs_irq * NSEC_PER_USEC);
2214
2215	return 0;
2216}
2217
2218static const struct ethtool_ops m_can_ethtool_ops_coalescing = {
2219	.supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS_IRQ |
2220		ETHTOOL_COALESCE_RX_MAX_FRAMES_IRQ |
2221		ETHTOOL_COALESCE_TX_USECS_IRQ |
2222		ETHTOOL_COALESCE_TX_MAX_FRAMES |
2223		ETHTOOL_COALESCE_TX_MAX_FRAMES_IRQ,
2224	.get_ts_info = ethtool_op_get_ts_info,
2225	.get_coalesce = m_can_get_coalesce,
2226	.set_coalesce = m_can_set_coalesce,
2227};
2228
2229static const struct ethtool_ops m_can_ethtool_ops = {
2230	.get_ts_info = ethtool_op_get_ts_info,
2231};
2232
2233static int register_m_can_dev(struct m_can_classdev *cdev)
2234{
2235	struct net_device *dev = cdev->net;
2236
2237	dev->flags |= IFF_ECHO;	/* we support local echo */
2238	dev->netdev_ops = &m_can_netdev_ops;
2239	if (dev->irq && cdev->is_peripheral)
2240		dev->ethtool_ops = &m_can_ethtool_ops_coalescing;
2241	else
2242		dev->ethtool_ops = &m_can_ethtool_ops;
2243
2244	return register_candev(dev);
2245}
2246
2247int m_can_check_mram_cfg(struct m_can_classdev *cdev, u32 mram_max_size)
2248{
2249	u32 total_size;
2250
2251	total_size = cdev->mcfg[MRAM_TXB].off - cdev->mcfg[MRAM_SIDF].off +
2252			cdev->mcfg[MRAM_TXB].num * TXB_ELEMENT_SIZE;
2253	if (total_size > mram_max_size) {
2254		dev_err(cdev->dev, "Total size of mram config(%u) exceeds mram(%u)\n",
2255			total_size, mram_max_size);
2256		return -EINVAL;
2257	}
2258
2259	return 0;
2260}
2261EXPORT_SYMBOL_GPL(m_can_check_mram_cfg);
2262
2263static void m_can_of_parse_mram(struct m_can_classdev *cdev,
2264				const u32 *mram_config_vals)
2265{
2266	cdev->mcfg[MRAM_SIDF].off = mram_config_vals[0];
2267	cdev->mcfg[MRAM_SIDF].num = mram_config_vals[1];
2268	cdev->mcfg[MRAM_XIDF].off = cdev->mcfg[MRAM_SIDF].off +
2269		cdev->mcfg[MRAM_SIDF].num * SIDF_ELEMENT_SIZE;
2270	cdev->mcfg[MRAM_XIDF].num = mram_config_vals[2];
2271	cdev->mcfg[MRAM_RXF0].off = cdev->mcfg[MRAM_XIDF].off +
2272		cdev->mcfg[MRAM_XIDF].num * XIDF_ELEMENT_SIZE;
2273	cdev->mcfg[MRAM_RXF0].num = mram_config_vals[3] &
2274		FIELD_MAX(RXFC_FS_MASK);
2275	cdev->mcfg[MRAM_RXF1].off = cdev->mcfg[MRAM_RXF0].off +
2276		cdev->mcfg[MRAM_RXF0].num * RXF0_ELEMENT_SIZE;
2277	cdev->mcfg[MRAM_RXF1].num = mram_config_vals[4] &
2278		FIELD_MAX(RXFC_FS_MASK);
2279	cdev->mcfg[MRAM_RXB].off = cdev->mcfg[MRAM_RXF1].off +
2280		cdev->mcfg[MRAM_RXF1].num * RXF1_ELEMENT_SIZE;
2281	cdev->mcfg[MRAM_RXB].num = mram_config_vals[5];
2282	cdev->mcfg[MRAM_TXE].off = cdev->mcfg[MRAM_RXB].off +
2283		cdev->mcfg[MRAM_RXB].num * RXB_ELEMENT_SIZE;
2284	cdev->mcfg[MRAM_TXE].num = mram_config_vals[6];
2285	cdev->mcfg[MRAM_TXB].off = cdev->mcfg[MRAM_TXE].off +
2286		cdev->mcfg[MRAM_TXE].num * TXE_ELEMENT_SIZE;
2287	cdev->mcfg[MRAM_TXB].num = mram_config_vals[7] &
2288		FIELD_MAX(TXBC_NDTB_MASK);
2289
2290	dev_dbg(cdev->dev,
2291		"sidf 0x%x %d xidf 0x%x %d rxf0 0x%x %d rxf1 0x%x %d rxb 0x%x %d txe 0x%x %d txb 0x%x %d\n",
2292		cdev->mcfg[MRAM_SIDF].off, cdev->mcfg[MRAM_SIDF].num,
2293		cdev->mcfg[MRAM_XIDF].off, cdev->mcfg[MRAM_XIDF].num,
2294		cdev->mcfg[MRAM_RXF0].off, cdev->mcfg[MRAM_RXF0].num,
2295		cdev->mcfg[MRAM_RXF1].off, cdev->mcfg[MRAM_RXF1].num,
2296		cdev->mcfg[MRAM_RXB].off, cdev->mcfg[MRAM_RXB].num,
2297		cdev->mcfg[MRAM_TXE].off, cdev->mcfg[MRAM_TXE].num,
2298		cdev->mcfg[MRAM_TXB].off, cdev->mcfg[MRAM_TXB].num);
2299}
2300
2301int m_can_init_ram(struct m_can_classdev *cdev)
2302{
2303	int end, i, start;
2304	int err = 0;
2305
2306	/* initialize the entire Message RAM in use to avoid possible
2307	 * ECC/parity checksum errors when reading an uninitialized buffer
2308	 */
2309	start = cdev->mcfg[MRAM_SIDF].off;
2310	end = cdev->mcfg[MRAM_TXB].off +
2311		cdev->mcfg[MRAM_TXB].num * TXB_ELEMENT_SIZE;
2312
2313	for (i = start; i < end; i += 4) {
2314		err = m_can_fifo_write_no_off(cdev, i, 0x0);
2315		if (err)
2316			break;
2317	}
2318
2319	return err;
2320}
2321EXPORT_SYMBOL_GPL(m_can_init_ram);
2322
2323int m_can_class_get_clocks(struct m_can_classdev *cdev)
2324{
2325	int ret = 0;
2326
2327	cdev->hclk = devm_clk_get(cdev->dev, "hclk");
2328	cdev->cclk = devm_clk_get(cdev->dev, "cclk");
2329
2330	if (IS_ERR(cdev->hclk) || IS_ERR(cdev->cclk)) {
2331		dev_err(cdev->dev, "no clock found\n");
2332		ret = -ENODEV;
2333	}
2334
2335	return ret;
2336}
2337EXPORT_SYMBOL_GPL(m_can_class_get_clocks);
2338
2339struct m_can_classdev *m_can_class_allocate_dev(struct device *dev,
2340						int sizeof_priv)
2341{
2342	struct m_can_classdev *class_dev = NULL;
2343	u32 mram_config_vals[MRAM_CFG_LEN];
2344	struct net_device *net_dev;
2345	u32 tx_fifo_size;
2346	int ret;
2347
2348	ret = fwnode_property_read_u32_array(dev_fwnode(dev),
2349					     "bosch,mram-cfg",
2350					     mram_config_vals,
2351					     sizeof(mram_config_vals) / 4);
2352	if (ret) {
2353		dev_err(dev, "Could not get Message RAM configuration.");
2354		goto out;
2355	}
2356
2357	/* Get TX FIFO size
2358	 * Defines the total amount of echo buffers for loopback
2359	 */
2360	tx_fifo_size = mram_config_vals[7];
2361
2362	/* allocate the m_can device */
2363	net_dev = alloc_candev(sizeof_priv, tx_fifo_size);
2364	if (!net_dev) {
2365		dev_err(dev, "Failed to allocate CAN device");
2366		goto out;
2367	}
2368
2369	class_dev = netdev_priv(net_dev);
 
 
 
 
 
2370	class_dev->net = net_dev;
2371	class_dev->dev = dev;
2372	SET_NETDEV_DEV(net_dev, dev);
2373
2374	m_can_of_parse_mram(class_dev, mram_config_vals);
2375out:
2376	return class_dev;
2377}
2378EXPORT_SYMBOL_GPL(m_can_class_allocate_dev);
2379
2380void m_can_class_free_dev(struct net_device *net)
2381{
2382	free_candev(net);
2383}
2384EXPORT_SYMBOL_GPL(m_can_class_free_dev);
2385
2386int m_can_class_register(struct m_can_classdev *cdev)
2387{
2388	int ret;
2389
2390	cdev->tx_fifo_size = max(1, min(cdev->mcfg[MRAM_TXB].num,
2391					cdev->mcfg[MRAM_TXE].num));
2392	if (cdev->is_peripheral) {
2393		cdev->tx_ops =
2394			devm_kzalloc(cdev->dev,
2395				     cdev->tx_fifo_size * sizeof(*cdev->tx_ops),
2396				     GFP_KERNEL);
2397		if (!cdev->tx_ops) {
2398			dev_err(cdev->dev, "Failed to allocate tx_ops for workqueue\n");
2399			return -ENOMEM;
2400		}
2401	}
2402
2403	ret = m_can_clk_start(cdev);
2404	if (ret)
2405		return ret;
2406
2407	if (cdev->is_peripheral) {
2408		ret = can_rx_offload_add_manual(cdev->net, &cdev->offload,
2409						NAPI_POLL_WEIGHT);
2410		if (ret)
2411			goto clk_disable;
2412	}
2413
2414	if (!cdev->net->irq) {
2415		dev_dbg(cdev->dev, "Polling enabled, initialize hrtimer");
2416		hrtimer_init(&cdev->hrtimer, CLOCK_MONOTONIC,
2417			     HRTIMER_MODE_REL_PINNED);
2418		cdev->hrtimer.function = &hrtimer_callback;
2419	} else {
2420		hrtimer_init(&cdev->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2421		cdev->hrtimer.function = m_can_coalescing_timer;
2422	}
2423
2424	ret = m_can_dev_setup(cdev);
2425	if (ret)
2426		goto rx_offload_del;
2427
2428	ret = register_m_can_dev(cdev);
2429	if (ret) {
2430		dev_err(cdev->dev, "registering %s failed (err=%d)\n",
2431			cdev->net->name, ret);
2432		goto rx_offload_del;
2433	}
2434
2435	of_can_transceiver(cdev->net);
 
 
2436
2437	dev_info(cdev->dev, "%s device registered (irq=%d, version=%d)\n",
2438		 KBUILD_MODNAME, cdev->net->irq, cdev->version);
2439
2440	/* Probe finished
2441	 * Stop clocks. They will be reactivated once the M_CAN device is opened
2442	 */
2443	m_can_clk_stop(cdev);
2444
2445	return 0;
2446
2447rx_offload_del:
2448	if (cdev->is_peripheral)
2449		can_rx_offload_del(&cdev->offload);
2450clk_disable:
2451	m_can_clk_stop(cdev);
 
 
 
 
 
 
2452
2453	return ret;
2454}
2455EXPORT_SYMBOL_GPL(m_can_class_register);
2456
2457void m_can_class_unregister(struct m_can_classdev *cdev)
2458{
2459	if (cdev->is_peripheral)
2460		can_rx_offload_del(&cdev->offload);
2461	unregister_candev(cdev->net);
2462}
2463EXPORT_SYMBOL_GPL(m_can_class_unregister);
2464
2465int m_can_class_suspend(struct device *dev)
2466{
2467	struct m_can_classdev *cdev = dev_get_drvdata(dev);
2468	struct net_device *ndev = cdev->net;
2469
2470	if (netif_running(ndev)) {
2471		netif_stop_queue(ndev);
2472		netif_device_detach(ndev);
2473
2474		/* leave the chip running with rx interrupt enabled if it is
2475		 * used as a wake-up source. Coalescing needs to be reset then,
2476		 * the timer is cancelled here, interrupts are done in resume.
2477		 */
2478		if (cdev->pm_wake_source) {
2479			hrtimer_cancel(&cdev->hrtimer);
2480			m_can_write(cdev, M_CAN_IE, IR_RF0N);
2481		} else {
2482			m_can_stop(ndev);
2483		}
2484
2485		m_can_clk_stop(cdev);
2486	}
2487
2488	pinctrl_pm_select_sleep_state(dev);
2489
2490	cdev->can.state = CAN_STATE_SLEEPING;
2491
2492	return 0;
2493}
2494EXPORT_SYMBOL_GPL(m_can_class_suspend);
2495
2496int m_can_class_resume(struct device *dev)
2497{
2498	struct m_can_classdev *cdev = dev_get_drvdata(dev);
2499	struct net_device *ndev = cdev->net;
2500
2501	pinctrl_pm_select_default_state(dev);
2502
2503	cdev->can.state = CAN_STATE_ERROR_ACTIVE;
2504
2505	if (netif_running(ndev)) {
2506		int ret;
2507
2508		ret = m_can_clk_start(cdev);
2509		if (ret)
2510			return ret;
2511
2512		if (cdev->pm_wake_source) {
2513			/* Restore active interrupts but disable coalescing as
2514			 * we may have missed important waterlevel interrupts
2515			 * between suspend and resume. Timers are already
2516			 * stopped in suspend. Here we enable all interrupts
2517			 * again.
2518			 */
2519			cdev->active_interrupts |= IR_RF0N | IR_TEFN;
2520			m_can_write(cdev, M_CAN_IE, cdev->active_interrupts);
2521		} else {
2522			ret  = m_can_start(ndev);
2523			if (ret) {
2524				m_can_clk_stop(cdev);
2525				return ret;
2526			}
2527		}
2528
2529		netif_device_attach(ndev);
2530		netif_start_queue(ndev);
2531	}
2532
2533	return 0;
2534}
2535EXPORT_SYMBOL_GPL(m_can_class_resume);
 
 
 
 
 
 
 
 
 
 
2536
2537MODULE_AUTHOR("Dong Aisheng <b29396@freescale.com>");
2538MODULE_AUTHOR("Dan Murphy <dmurphy@ti.com>");
2539MODULE_LICENSE("GPL v2");
2540MODULE_DESCRIPTION("CAN bus driver for Bosch M_CAN controller");
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2// CAN bus driver for Bosch M_CAN controller
   3// Copyright (C) 2014 Freescale Semiconductor, Inc.
   4//      Dong Aisheng <b29396@freescale.com>
   5// Copyright (C) 2018-19 Texas Instruments Incorporated - http://www.ti.com/
   6
   7/* Bosch M_CAN user manual can be obtained from:
   8 * http://www.bosch-semiconductors.de/media/pdf_1/ipmodules_1/m_can/
   9 * mcan_users_manual_v302.pdf
  10 */
  11
 
 
 
 
  12#include <linux/interrupt.h>
  13#include <linux/io.h>
 
  14#include <linux/kernel.h>
  15#include <linux/module.h>
  16#include <linux/netdevice.h>
  17#include <linux/of.h>
  18#include <linux/of_device.h>
 
  19#include <linux/platform_device.h>
  20#include <linux/pm_runtime.h>
  21#include <linux/iopoll.h>
  22#include <linux/can/dev.h>
  23#include <linux/pinctrl/consumer.h>
  24
  25#include "m_can.h"
  26
  27/* registers definition */
  28enum m_can_reg {
  29	M_CAN_CREL	= 0x0,
  30	M_CAN_ENDN	= 0x4,
  31	M_CAN_CUST	= 0x8,
  32	M_CAN_DBTP	= 0xc,
  33	M_CAN_TEST	= 0x10,
  34	M_CAN_RWD	= 0x14,
  35	M_CAN_CCCR	= 0x18,
  36	M_CAN_NBTP	= 0x1c,
  37	M_CAN_TSCC	= 0x20,
  38	M_CAN_TSCV	= 0x24,
  39	M_CAN_TOCC	= 0x28,
  40	M_CAN_TOCV	= 0x2c,
  41	M_CAN_ECR	= 0x40,
  42	M_CAN_PSR	= 0x44,
  43/* TDCR Register only available for version >=3.1.x */
  44	M_CAN_TDCR	= 0x48,
  45	M_CAN_IR	= 0x50,
  46	M_CAN_IE	= 0x54,
  47	M_CAN_ILS	= 0x58,
  48	M_CAN_ILE	= 0x5c,
  49	M_CAN_GFC	= 0x80,
  50	M_CAN_SIDFC	= 0x84,
  51	M_CAN_XIDFC	= 0x88,
  52	M_CAN_XIDAM	= 0x90,
  53	M_CAN_HPMS	= 0x94,
  54	M_CAN_NDAT1	= 0x98,
  55	M_CAN_NDAT2	= 0x9c,
  56	M_CAN_RXF0C	= 0xa0,
  57	M_CAN_RXF0S	= 0xa4,
  58	M_CAN_RXF0A	= 0xa8,
  59	M_CAN_RXBC	= 0xac,
  60	M_CAN_RXF1C	= 0xb0,
  61	M_CAN_RXF1S	= 0xb4,
  62	M_CAN_RXF1A	= 0xb8,
  63	M_CAN_RXESC	= 0xbc,
  64	M_CAN_TXBC	= 0xc0,
  65	M_CAN_TXFQS	= 0xc4,
  66	M_CAN_TXESC	= 0xc8,
  67	M_CAN_TXBRP	= 0xcc,
  68	M_CAN_TXBAR	= 0xd0,
  69	M_CAN_TXBCR	= 0xd4,
  70	M_CAN_TXBTO	= 0xd8,
  71	M_CAN_TXBCF	= 0xdc,
  72	M_CAN_TXBTIE	= 0xe0,
  73	M_CAN_TXBCIE	= 0xe4,
  74	M_CAN_TXEFC	= 0xf0,
  75	M_CAN_TXEFS	= 0xf4,
  76	M_CAN_TXEFA	= 0xf8,
  77};
  78
  79/* napi related */
  80#define M_CAN_NAPI_WEIGHT	64
  81
  82/* message ram configuration data length */
  83#define MRAM_CFG_LEN	8
  84
  85/* Core Release Register (CREL) */
  86#define CREL_REL_SHIFT		28
  87#define CREL_REL_MASK		(0xF << CREL_REL_SHIFT)
  88#define CREL_STEP_SHIFT		24
  89#define CREL_STEP_MASK		(0xF << CREL_STEP_SHIFT)
  90#define CREL_SUBSTEP_SHIFT	20
  91#define CREL_SUBSTEP_MASK	(0xF << CREL_SUBSTEP_SHIFT)
  92
  93/* Data Bit Timing & Prescaler Register (DBTP) */
  94#define DBTP_TDC		BIT(23)
  95#define DBTP_DBRP_SHIFT		16
  96#define DBTP_DBRP_MASK		(0x1f << DBTP_DBRP_SHIFT)
  97#define DBTP_DTSEG1_SHIFT	8
  98#define DBTP_DTSEG1_MASK	(0x1f << DBTP_DTSEG1_SHIFT)
  99#define DBTP_DTSEG2_SHIFT	4
 100#define DBTP_DTSEG2_MASK	(0xf << DBTP_DTSEG2_SHIFT)
 101#define DBTP_DSJW_SHIFT		0
 102#define DBTP_DSJW_MASK		(0xf << DBTP_DSJW_SHIFT)
 103
 104/* Transmitter Delay Compensation Register (TDCR) */
 105#define TDCR_TDCO_SHIFT		8
 106#define TDCR_TDCO_MASK		(0x7F << TDCR_TDCO_SHIFT)
 107#define TDCR_TDCF_SHIFT		0
 108#define TDCR_TDCF_MASK		(0x7F << TDCR_TDCF_SHIFT)
 109
 110/* Test Register (TEST) */
 111#define TEST_LBCK		BIT(4)
 112
 113/* CC Control Register(CCCR) */
 114#define CCCR_CMR_MASK		0x3
 115#define CCCR_CMR_SHIFT		10
 116#define CCCR_CMR_CANFD		0x1
 117#define CCCR_CMR_CANFD_BRS	0x2
 118#define CCCR_CMR_CAN		0x3
 119#define CCCR_CME_MASK		0x3
 120#define CCCR_CME_SHIFT		8
 121#define CCCR_CME_CAN		0
 122#define CCCR_CME_CANFD		0x1
 123#define CCCR_CME_CANFD_BRS	0x2
 124#define CCCR_TXP		BIT(14)
 125#define CCCR_TEST		BIT(7)
 
 126#define CCCR_MON		BIT(5)
 127#define CCCR_CSR		BIT(4)
 128#define CCCR_CSA		BIT(3)
 129#define CCCR_ASM		BIT(2)
 130#define CCCR_CCE		BIT(1)
 131#define CCCR_INIT		BIT(0)
 132#define CCCR_CANFD		0x10
 
 
 
 
 
 
 
 
 133/* for version >=3.1.x */
 134#define CCCR_EFBI		BIT(13)
 135#define CCCR_PXHD		BIT(12)
 136#define CCCR_BRSE		BIT(9)
 137#define CCCR_FDOE		BIT(8)
 138/* only for version >=3.2.x */
 139#define CCCR_NISO		BIT(15)
 
 
 
 140
 141/* Nominal Bit Timing & Prescaler Register (NBTP) */
 142#define NBTP_NSJW_SHIFT		25
 143#define NBTP_NSJW_MASK		(0x7f << NBTP_NSJW_SHIFT)
 144#define NBTP_NBRP_SHIFT		16
 145#define NBTP_NBRP_MASK		(0x1ff << NBTP_NBRP_SHIFT)
 146#define NBTP_NTSEG1_SHIFT	8
 147#define NBTP_NTSEG1_MASK	(0xff << NBTP_NTSEG1_SHIFT)
 148#define NBTP_NTSEG2_SHIFT	0
 149#define NBTP_NTSEG2_MASK	(0x7f << NBTP_NTSEG2_SHIFT)
 
 
 
 
 
 
 150
 151/* Error Counter Register(ECR) */
 152#define ECR_RP			BIT(15)
 153#define ECR_REC_SHIFT		8
 154#define ECR_REC_MASK		(0x7f << ECR_REC_SHIFT)
 155#define ECR_TEC_SHIFT		0
 156#define ECR_TEC_MASK		0xff
 157
 158/* Protocol Status Register(PSR) */
 159#define PSR_BO		BIT(7)
 160#define PSR_EW		BIT(6)
 161#define PSR_EP		BIT(5)
 162#define PSR_LEC_MASK	0x7
 
 163
 164/* Interrupt Register(IR) */
 165#define IR_ALL_INT	0xffffffff
 166
 167/* Renamed bits for versions > 3.1.x */
 168#define IR_ARA		BIT(29)
 169#define IR_PED		BIT(28)
 170#define IR_PEA		BIT(27)
 171
 172/* Bits for version 3.0.x */
 173#define IR_STE		BIT(31)
 174#define IR_FOE		BIT(30)
 175#define IR_ACKE		BIT(29)
 176#define IR_BE		BIT(28)
 177#define IR_CRCE		BIT(27)
 178#define IR_WDI		BIT(26)
 179#define IR_BO		BIT(25)
 180#define IR_EW		BIT(24)
 181#define IR_EP		BIT(23)
 182#define IR_ELO		BIT(22)
 183#define IR_BEU		BIT(21)
 184#define IR_BEC		BIT(20)
 185#define IR_DRX		BIT(19)
 186#define IR_TOO		BIT(18)
 187#define IR_MRAF		BIT(17)
 188#define IR_TSW		BIT(16)
 189#define IR_TEFL		BIT(15)
 190#define IR_TEFF		BIT(14)
 191#define IR_TEFW		BIT(13)
 192#define IR_TEFN		BIT(12)
 193#define IR_TFE		BIT(11)
 194#define IR_TCF		BIT(10)
 195#define IR_TC		BIT(9)
 196#define IR_HPM		BIT(8)
 197#define IR_RF1L		BIT(7)
 198#define IR_RF1F		BIT(6)
 199#define IR_RF1W		BIT(5)
 200#define IR_RF1N		BIT(4)
 201#define IR_RF0L		BIT(3)
 202#define IR_RF0F		BIT(2)
 203#define IR_RF0W		BIT(1)
 204#define IR_RF0N		BIT(0)
 205#define IR_ERR_STATE	(IR_BO | IR_EW | IR_EP)
 206
 207/* Interrupts for version 3.0.x */
 208#define IR_ERR_LEC_30X	(IR_STE	| IR_FOE | IR_ACKE | IR_BE | IR_CRCE)
 209#define IR_ERR_BUS_30X	(IR_ERR_LEC_30X | IR_WDI | IR_ELO | IR_BEU | \
 210			 IR_BEC | IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | \
 211			 IR_RF1L | IR_RF0L)
 212#define IR_ERR_ALL_30X	(IR_ERR_STATE | IR_ERR_BUS_30X)
 
 213/* Interrupts for version >= 3.1.x */
 214#define IR_ERR_LEC_31X	(IR_PED | IR_PEA)
 215#define IR_ERR_BUS_31X      (IR_ERR_LEC_31X | IR_WDI | IR_ELO | IR_BEU | \
 216			 IR_BEC | IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | \
 217			 IR_RF1L | IR_RF0L)
 218#define IR_ERR_ALL_31X	(IR_ERR_STATE | IR_ERR_BUS_31X)
 219
 220/* Interrupt Line Select (ILS) */
 221#define ILS_ALL_INT0	0x0
 222#define ILS_ALL_INT1	0xFFFFFFFF
 223
 224/* Interrupt Line Enable (ILE) */
 225#define ILE_EINT1	BIT(1)
 226#define ILE_EINT0	BIT(0)
 227
 228/* Rx FIFO 0/1 Configuration (RXF0C/RXF1C) */
 229#define RXFC_FWM_SHIFT	24
 230#define RXFC_FWM_MASK	(0x7f << RXFC_FWM_SHIFT)
 231#define RXFC_FS_SHIFT	16
 232#define RXFC_FS_MASK	(0x7f << RXFC_FS_SHIFT)
 233
 234/* Rx FIFO 0/1 Status (RXF0S/RXF1S) */
 235#define RXFS_RFL	BIT(25)
 236#define RXFS_FF		BIT(24)
 237#define RXFS_FPI_SHIFT	16
 238#define RXFS_FPI_MASK	0x3f0000
 239#define RXFS_FGI_SHIFT	8
 240#define RXFS_FGI_MASK	0x3f00
 241#define RXFS_FFL_MASK	0x7f
 242
 243/* Rx Buffer / FIFO Element Size Configuration (RXESC) */
 244#define M_CAN_RXESC_8BYTES	0x0
 245#define M_CAN_RXESC_64BYTES	0x777
 246
 247/* Tx Buffer Configuration(TXBC) */
 248#define TXBC_NDTB_SHIFT		16
 249#define TXBC_NDTB_MASK		(0x3f << TXBC_NDTB_SHIFT)
 250#define TXBC_TFQS_SHIFT		24
 251#define TXBC_TFQS_MASK		(0x3f << TXBC_TFQS_SHIFT)
 252
 253/* Tx FIFO/Queue Status (TXFQS) */
 254#define TXFQS_TFQF		BIT(21)
 255#define TXFQS_TFQPI_SHIFT	16
 256#define TXFQS_TFQPI_MASK	(0x1f << TXFQS_TFQPI_SHIFT)
 257#define TXFQS_TFGI_SHIFT	8
 258#define TXFQS_TFGI_MASK		(0x1f << TXFQS_TFGI_SHIFT)
 259#define TXFQS_TFFL_SHIFT	0
 260#define TXFQS_TFFL_MASK		(0x3f << TXFQS_TFFL_SHIFT)
 261
 262/* Tx Buffer Element Size Configuration(TXESC) */
 263#define TXESC_TBDS_8BYTES	0x0
 264#define TXESC_TBDS_64BYTES	0x7
 265
 266/* Tx Event FIFO Configuration (TXEFC) */
 267#define TXEFC_EFS_SHIFT		16
 268#define TXEFC_EFS_MASK		(0x3f << TXEFC_EFS_SHIFT)
 269
 270/* Tx Event FIFO Status (TXEFS) */
 271#define TXEFS_TEFL		BIT(25)
 272#define TXEFS_EFF		BIT(24)
 273#define TXEFS_EFGI_SHIFT	8
 274#define	TXEFS_EFGI_MASK		(0x1f << TXEFS_EFGI_SHIFT)
 275#define TXEFS_EFFL_SHIFT	0
 276#define TXEFS_EFFL_MASK		(0x3f << TXEFS_EFFL_SHIFT)
 277
 278/* Tx Event FIFO Acknowledge (TXEFA) */
 279#define TXEFA_EFAI_SHIFT	0
 280#define TXEFA_EFAI_MASK		(0x1f << TXEFA_EFAI_SHIFT)
 281
 282/* Message RAM Configuration (in bytes) */
 283#define SIDF_ELEMENT_SIZE	4
 284#define XIDF_ELEMENT_SIZE	8
 285#define RXF0_ELEMENT_SIZE	72
 286#define RXF1_ELEMENT_SIZE	72
 287#define RXB_ELEMENT_SIZE	72
 288#define TXE_ELEMENT_SIZE	8
 289#define TXB_ELEMENT_SIZE	72
 290
 291/* Message RAM Elements */
 292#define M_CAN_FIFO_ID		0x0
 293#define M_CAN_FIFO_DLC		0x4
 294#define M_CAN_FIFO_DATA(n)	(0x8 + ((n) << 2))
 295
 296/* Rx Buffer Element */
 297/* R0 */
 298#define RX_BUF_ESI		BIT(31)
 299#define RX_BUF_XTD		BIT(30)
 300#define RX_BUF_RTR		BIT(29)
 301/* R1 */
 302#define RX_BUF_ANMF		BIT(31)
 303#define RX_BUF_FDF		BIT(21)
 304#define RX_BUF_BRS		BIT(20)
 
 305
 306/* Tx Buffer Element */
 307/* T0 */
 308#define TX_BUF_ESI		BIT(31)
 309#define TX_BUF_XTD		BIT(30)
 310#define TX_BUF_RTR		BIT(29)
 311/* T1 */
 312#define TX_BUF_EFC		BIT(23)
 313#define TX_BUF_FDF		BIT(21)
 314#define TX_BUF_BRS		BIT(20)
 315#define TX_BUF_MM_SHIFT		24
 316#define TX_BUF_MM_MASK		(0xff << TX_BUF_MM_SHIFT)
 317
 318/* Tx event FIFO Element */
 319/* E1 */
 320#define TX_EVENT_MM_SHIFT	TX_BUF_MM_SHIFT
 321#define TX_EVENT_MM_MASK	(0xff << TX_EVENT_MM_SHIFT)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 322
 323static inline u32 m_can_read(struct m_can_classdev *cdev, enum m_can_reg reg)
 324{
 325	return cdev->ops->read_reg(cdev, reg);
 326}
 327
 328static inline void m_can_write(struct m_can_classdev *cdev, enum m_can_reg reg,
 329			       u32 val)
 330{
 331	cdev->ops->write_reg(cdev, reg, val);
 332}
 333
 334static u32 m_can_fifo_read(struct m_can_classdev *cdev,
 335			   u32 fgi, unsigned int offset)
 
 336{
 337	u32 addr_offset = cdev->mcfg[MRAM_RXF0].off + fgi * RXF0_ELEMENT_SIZE +
 338			  offset;
 339
 340	return cdev->ops->read_fifo(cdev, addr_offset);
 
 
 
 341}
 342
 343static void m_can_fifo_write(struct m_can_classdev *cdev,
 344			     u32 fpi, unsigned int offset, u32 val)
 
 345{
 346	u32 addr_offset = cdev->mcfg[MRAM_TXB].off + fpi * TXB_ELEMENT_SIZE +
 347			  offset;
 
 
 
 348
 349	cdev->ops->write_fifo(cdev, addr_offset, val);
 350}
 351
 352static inline void m_can_fifo_write_no_off(struct m_can_classdev *cdev,
 353					   u32 fpi, u32 val)
 354{
 355	cdev->ops->write_fifo(cdev, fpi, val);
 356}
 357
 358static u32 m_can_txe_fifo_read(struct m_can_classdev *cdev, u32 fgi, u32 offset)
 
 359{
 360	u32 addr_offset = cdev->mcfg[MRAM_TXE].off + fgi * TXE_ELEMENT_SIZE +
 361			  offset;
 362
 363	return cdev->ops->read_fifo(cdev, addr_offset);
 364}
 365
 366static inline bool m_can_tx_fifo_full(struct m_can_classdev *cdev)
 367{
 368		return !!(m_can_read(cdev, M_CAN_TXFQS) & TXFQS_TFQF);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 369}
 370
 371void m_can_config_endisable(struct m_can_classdev *cdev, bool enable)
 372{
 373	u32 cccr = m_can_read(cdev, M_CAN_CCCR);
 374	u32 timeout = 10;
 375	u32 val = 0;
 376
 377	/* Clear the Clock stop request if it was set */
 378	if (cccr & CCCR_CSR)
 379		cccr &= ~CCCR_CSR;
 
 
 
 
 380
 381	if (enable) {
 382		/* Clear the Clock stop request if it was set */
 383		if (cccr & CCCR_CSR)
 384			cccr &= ~CCCR_CSR;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 385
 386		/* enable m_can configuration */
 387		m_can_write(cdev, M_CAN_CCCR, cccr | CCCR_INIT);
 388		udelay(5);
 389		/* CCCR.CCE can only be set/reset while CCCR.INIT = '1' */
 390		m_can_write(cdev, M_CAN_CCCR, cccr | CCCR_INIT | CCCR_CCE);
 391	} else {
 392		m_can_write(cdev, M_CAN_CCCR, cccr & ~(CCCR_INIT | CCCR_CCE));
 393	}
 394
 395	/* there's a delay for module initialization */
 396	if (enable)
 397		val = CCCR_INIT | CCCR_CCE;
 398
 399	while ((m_can_read(cdev, M_CAN_CCCR) & (CCCR_INIT | CCCR_CCE)) != val) {
 400		if (timeout == 0) {
 401			netdev_warn(cdev->net, "Failed to init module\n");
 402			return;
 403		}
 404		timeout--;
 405		udelay(1);
 406	}
 407}
 408
 409static inline void m_can_enable_all_interrupts(struct m_can_classdev *cdev)
 410{
 
 
 
 
 
 
 
 411	/* Only interrupt line 0 is used in this driver */
 412	m_can_write(cdev, M_CAN_ILE, ILE_EINT0);
 413}
 414
 415static inline void m_can_disable_all_interrupts(struct m_can_classdev *cdev)
 416{
 
 417	m_can_write(cdev, M_CAN_ILE, 0x0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 418}
 419
 420static void m_can_clean(struct net_device *net)
 421{
 422	struct m_can_classdev *cdev = netdev_priv(net);
 
 423
 424	if (cdev->tx_skb) {
 425		int putidx = 0;
 
 
 426
 427		net->stats.tx_errors++;
 428		if (cdev->version > 30)
 429			putidx = ((m_can_read(cdev, M_CAN_TXFQS) &
 430				   TXFQS_TFQPI_MASK) >> TXFQS_TFQPI_SHIFT);
 
 
 
 
 
 431
 432		can_free_echo_skb(cdev->net, putidx);
 433		cdev->tx_skb = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 434	}
 435}
 436
 437static void m_can_read_fifo(struct net_device *dev, u32 rxfs)
 438{
 439	struct net_device_stats *stats = &dev->stats;
 440	struct m_can_classdev *cdev = netdev_priv(dev);
 441	struct canfd_frame *cf;
 442	struct sk_buff *skb;
 443	u32 id, fgi, dlc;
 444	int i;
 
 
 
 
 
 445
 446	/* calculate the fifo get index for where to read data */
 447	fgi = (rxfs & RXFS_FGI_MASK) >> RXFS_FGI_SHIFT;
 448	dlc = m_can_fifo_read(cdev, fgi, M_CAN_FIFO_DLC);
 449	if (dlc & RX_BUF_FDF)
 450		skb = alloc_canfd_skb(dev, &cf);
 451	else
 452		skb = alloc_can_skb(dev, (struct can_frame **)&cf);
 453	if (!skb) {
 454		stats->rx_dropped++;
 455		return;
 456	}
 457
 458	if (dlc & RX_BUF_FDF)
 459		cf->len = can_dlc2len((dlc >> 16) & 0x0F);
 460	else
 461		cf->len = get_can_dlc((dlc >> 16) & 0x0F);
 462
 463	id = m_can_fifo_read(cdev, fgi, M_CAN_FIFO_ID);
 464	if (id & RX_BUF_XTD)
 465		cf->can_id = (id & CAN_EFF_MASK) | CAN_EFF_FLAG;
 466	else
 467		cf->can_id = (id >> 18) & CAN_SFF_MASK;
 468
 469	if (id & RX_BUF_ESI) {
 470		cf->flags |= CANFD_ESI;
 471		netdev_dbg(dev, "ESI Error\n");
 472	}
 473
 474	if (!(dlc & RX_BUF_FDF) && (id & RX_BUF_RTR)) {
 475		cf->can_id |= CAN_RTR_FLAG;
 476	} else {
 477		if (dlc & RX_BUF_BRS)
 478			cf->flags |= CANFD_BRS;
 479
 480		for (i = 0; i < cf->len; i += 4)
 481			*(u32 *)(cf->data + i) =
 482				m_can_fifo_read(cdev, fgi,
 483						M_CAN_FIFO_DATA(i / 4));
 
 
 484	}
 
 485
 486	/* acknowledge rx fifo 0 */
 487	m_can_write(cdev, M_CAN_RXF0A, fgi);
 488
 489	stats->rx_packets++;
 490	stats->rx_bytes += cf->len;
 
 491
 492	netif_receive_skb(skb);
 
 
 
 
 493}
 494
 495static int m_can_do_rx_poll(struct net_device *dev, int quota)
 496{
 497	struct m_can_classdev *cdev = netdev_priv(dev);
 498	u32 pkts = 0;
 499	u32 rxfs;
 
 
 
 
 
 500
 501	rxfs = m_can_read(cdev, M_CAN_RXF0S);
 502	if (!(rxfs & RXFS_FFL_MASK)) {
 503		netdev_dbg(dev, "no messages in fifo0\n");
 504		return 0;
 505	}
 506
 507	while ((rxfs & RXFS_FFL_MASK) && (quota > 0)) {
 508		if (rxfs & RXFS_RFL)
 509			netdev_warn(dev, "Rx FIFO 0 Message Lost\n");
 510
 511		m_can_read_fifo(dev, rxfs);
 
 
 
 512
 513		quota--;
 514		pkts++;
 515		rxfs = m_can_read(cdev, M_CAN_RXF0S);
 
 516	}
 517
 518	if (pkts)
 519		can_led_event(dev, CAN_LED_EVENT_RX);
 
 
 
 520
 521	return pkts;
 522}
 523
 524static int m_can_handle_lost_msg(struct net_device *dev)
 525{
 
 526	struct net_device_stats *stats = &dev->stats;
 527	struct sk_buff *skb;
 528	struct can_frame *frame;
 
 529
 530	netdev_err(dev, "msg lost in rxf0\n");
 531
 532	stats->rx_errors++;
 533	stats->rx_over_errors++;
 534
 535	skb = alloc_can_err_skb(dev, &frame);
 536	if (unlikely(!skb))
 537		return 0;
 538
 539	frame->can_id |= CAN_ERR_CRTL;
 540	frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
 541
 542	netif_receive_skb(skb);
 
 
 
 543
 544	return 1;
 545}
 546
 547static int m_can_handle_lec_err(struct net_device *dev,
 548				enum m_can_lec_type lec_type)
 549{
 550	struct m_can_classdev *cdev = netdev_priv(dev);
 551	struct net_device_stats *stats = &dev->stats;
 552	struct can_frame *cf;
 553	struct sk_buff *skb;
 
 554
 555	cdev->can.can_stats.bus_error++;
 556	stats->rx_errors++;
 557
 558	/* propagate the error condition to the CAN stack */
 559	skb = alloc_can_err_skb(dev, &cf);
 560	if (unlikely(!skb))
 561		return 0;
 562
 563	/* check for 'last error code' which tells us the
 564	 * type of the last error to occur on the CAN bus
 565	 */
 566	cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
 
 567
 568	switch (lec_type) {
 569	case LEC_STUFF_ERROR:
 570		netdev_dbg(dev, "stuff error\n");
 571		cf->data[2] |= CAN_ERR_PROT_STUFF;
 
 
 572		break;
 573	case LEC_FORM_ERROR:
 574		netdev_dbg(dev, "form error\n");
 575		cf->data[2] |= CAN_ERR_PROT_FORM;
 
 
 576		break;
 577	case LEC_ACK_ERROR:
 578		netdev_dbg(dev, "ack error\n");
 579		cf->data[3] = CAN_ERR_PROT_LOC_ACK;
 
 
 580		break;
 581	case LEC_BIT1_ERROR:
 582		netdev_dbg(dev, "bit1 error\n");
 583		cf->data[2] |= CAN_ERR_PROT_BIT1;
 
 
 584		break;
 585	case LEC_BIT0_ERROR:
 586		netdev_dbg(dev, "bit0 error\n");
 587		cf->data[2] |= CAN_ERR_PROT_BIT0;
 
 
 588		break;
 589	case LEC_CRC_ERROR:
 590		netdev_dbg(dev, "CRC error\n");
 591		cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
 
 
 592		break;
 593	default:
 594		break;
 595	}
 596
 597	stats->rx_packets++;
 598	stats->rx_bytes += cf->can_dlc;
 599	netif_receive_skb(skb);
 
 
 
 
 600
 601	return 1;
 602}
 603
 604static int __m_can_get_berr_counter(const struct net_device *dev,
 605				    struct can_berr_counter *bec)
 606{
 607	struct m_can_classdev *cdev = netdev_priv(dev);
 608	unsigned int ecr;
 609
 610	ecr = m_can_read(cdev, M_CAN_ECR);
 611	bec->rxerr = (ecr & ECR_REC_MASK) >> ECR_REC_SHIFT;
 612	bec->txerr = (ecr & ECR_TEC_MASK) >> ECR_TEC_SHIFT;
 613
 614	return 0;
 615}
 616
 617static int m_can_clk_start(struct m_can_classdev *cdev)
 618{
 619	int err;
 620
 621	if (cdev->pm_clock_support == 0)
 622		return 0;
 623
 624	err = pm_runtime_get_sync(cdev->dev);
 625	if (err < 0) {
 626		pm_runtime_put_noidle(cdev->dev);
 627		return err;
 628	}
 629
 630	return 0;
 631}
 632
 633static void m_can_clk_stop(struct m_can_classdev *cdev)
 634{
 635	if (cdev->pm_clock_support)
 636		pm_runtime_put_sync(cdev->dev);
 637}
 638
 639static int m_can_get_berr_counter(const struct net_device *dev,
 640				  struct can_berr_counter *bec)
 641{
 642	struct m_can_classdev *cdev = netdev_priv(dev);
 643	int err;
 644
 645	err = m_can_clk_start(cdev);
 646	if (err)
 647		return err;
 648
 649	__m_can_get_berr_counter(dev, bec);
 650
 651	m_can_clk_stop(cdev);
 652
 653	return 0;
 654}
 655
 656static int m_can_handle_state_change(struct net_device *dev,
 657				     enum can_state new_state)
 658{
 659	struct m_can_classdev *cdev = netdev_priv(dev);
 660	struct net_device_stats *stats = &dev->stats;
 661	struct can_frame *cf;
 662	struct sk_buff *skb;
 663	struct can_berr_counter bec;
 664	unsigned int ecr;
 
 665
 666	switch (new_state) {
 667	case CAN_STATE_ERROR_ACTIVE:
 668		/* error warning state */
 669		cdev->can.can_stats.error_warning++;
 670		cdev->can.state = CAN_STATE_ERROR_WARNING;
 671		break;
 672	case CAN_STATE_ERROR_PASSIVE:
 673		/* error passive state */
 674		cdev->can.can_stats.error_passive++;
 675		cdev->can.state = CAN_STATE_ERROR_PASSIVE;
 676		break;
 677	case CAN_STATE_BUS_OFF:
 678		/* bus-off state */
 679		cdev->can.state = CAN_STATE_BUS_OFF;
 680		m_can_disable_all_interrupts(cdev);
 681		cdev->can.can_stats.bus_off++;
 682		can_bus_off(dev);
 683		break;
 684	default:
 685		break;
 686	}
 687
 688	/* propagate the error condition to the CAN stack */
 689	skb = alloc_can_err_skb(dev, &cf);
 690	if (unlikely(!skb))
 691		return 0;
 692
 693	__m_can_get_berr_counter(dev, &bec);
 694
 695	switch (new_state) {
 696	case CAN_STATE_ERROR_ACTIVE:
 697		/* error warning state */
 698		cf->can_id |= CAN_ERR_CRTL;
 699		cf->data[1] = (bec.txerr > bec.rxerr) ?
 700			CAN_ERR_CRTL_TX_WARNING :
 701			CAN_ERR_CRTL_RX_WARNING;
 702		cf->data[6] = bec.txerr;
 703		cf->data[7] = bec.rxerr;
 704		break;
 705	case CAN_STATE_ERROR_PASSIVE:
 706		/* error passive state */
 707		cf->can_id |= CAN_ERR_CRTL;
 708		ecr = m_can_read(cdev, M_CAN_ECR);
 709		if (ecr & ECR_RP)
 710			cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
 711		if (bec.txerr > 127)
 712			cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
 713		cf->data[6] = bec.txerr;
 714		cf->data[7] = bec.rxerr;
 715		break;
 716	case CAN_STATE_BUS_OFF:
 717		/* bus-off state */
 718		cf->can_id |= CAN_ERR_BUSOFF;
 719		break;
 720	default:
 721		break;
 722	}
 723
 724	stats->rx_packets++;
 725	stats->rx_bytes += cf->can_dlc;
 726	netif_receive_skb(skb);
 
 727
 728	return 1;
 729}
 730
 731static int m_can_handle_state_errors(struct net_device *dev, u32 psr)
 732{
 733	struct m_can_classdev *cdev = netdev_priv(dev);
 734	int work_done = 0;
 735
 736	if (psr & PSR_EW && cdev->can.state != CAN_STATE_ERROR_WARNING) {
 737		netdev_dbg(dev, "entered error warning state\n");
 738		work_done += m_can_handle_state_change(dev,
 739						       CAN_STATE_ERROR_WARNING);
 740	}
 741
 742	if (psr & PSR_EP && cdev->can.state != CAN_STATE_ERROR_PASSIVE) {
 743		netdev_dbg(dev, "entered error passive state\n");
 744		work_done += m_can_handle_state_change(dev,
 745						       CAN_STATE_ERROR_PASSIVE);
 746	}
 747
 748	if (psr & PSR_BO && cdev->can.state != CAN_STATE_BUS_OFF) {
 749		netdev_dbg(dev, "entered error bus off state\n");
 750		work_done += m_can_handle_state_change(dev,
 751						       CAN_STATE_BUS_OFF);
 752	}
 753
 754	return work_done;
 755}
 756
 757static void m_can_handle_other_err(struct net_device *dev, u32 irqstatus)
 758{
 759	if (irqstatus & IR_WDI)
 760		netdev_err(dev, "Message RAM Watchdog event due to missing READY\n");
 761	if (irqstatus & IR_ELO)
 762		netdev_err(dev, "Error Logging Overflow\n");
 763	if (irqstatus & IR_BEU)
 764		netdev_err(dev, "Bit Error Uncorrected\n");
 765	if (irqstatus & IR_BEC)
 766		netdev_err(dev, "Bit Error Corrected\n");
 767	if (irqstatus & IR_TOO)
 768		netdev_err(dev, "Timeout reached\n");
 769	if (irqstatus & IR_MRAF)
 770		netdev_err(dev, "Message RAM access failure occurred\n");
 771}
 772
 773static inline bool is_lec_err(u32 psr)
 774{
 775	psr &= LEC_UNUSED;
 
 776
 777	return psr && (psr != LEC_UNUSED);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 778}
 779
 780static int m_can_handle_bus_errors(struct net_device *dev, u32 irqstatus,
 781				   u32 psr)
 782{
 783	struct m_can_classdev *cdev = netdev_priv(dev);
 784	int work_done = 0;
 785
 786	if (irqstatus & IR_RF0L)
 787		work_done += m_can_handle_lost_msg(dev);
 788
 789	/* handle lec errors on the bus */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 790	if ((cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) &&
 791	    is_lec_err(psr))
 792		work_done += m_can_handle_lec_err(dev, psr & LEC_UNUSED);
 793
 794	/* other unproccessed error interrupts */
 795	m_can_handle_other_err(dev, irqstatus);
 796
 797	return work_done;
 798}
 799
 800static int m_can_rx_handler(struct net_device *dev, int quota)
 801{
 802	struct m_can_classdev *cdev = netdev_priv(dev);
 
 803	int work_done = 0;
 804	u32 irqstatus, psr;
 805
 806	irqstatus = cdev->irqstatus | m_can_read(cdev, M_CAN_IR);
 807	if (!irqstatus)
 808		goto end;
 809
 810	/* Errata workaround for issue "Needless activation of MRAF irq"
 811	 * During frame reception while the MCAN is in Error Passive state
 812	 * and the Receive Error Counter has the value MCAN_ECR.REC = 127,
 813	 * it may happen that MCAN_IR.MRAF is set although there was no
 814	 * Message RAM access failure.
 815	 * If MCAN_IR.MRAF is enabled, an interrupt to the Host CPU is generated
 816	 * The Message RAM Access Failure interrupt routine needs to check
 817	 * whether MCAN_ECR.RP = ’1’ and MCAN_ECR.REC = 127.
 818	 * In this case, reset MCAN_IR.MRAF. No further action is required.
 819	 */
 820	if (cdev->version <= 31 && irqstatus & IR_MRAF &&
 821	    m_can_read(cdev, M_CAN_ECR) & ECR_RP) {
 822		struct can_berr_counter bec;
 823
 824		__m_can_get_berr_counter(dev, &bec);
 825		if (bec.rxerr == 127) {
 826			m_can_write(cdev, M_CAN_IR, IR_MRAF);
 827			irqstatus &= ~IR_MRAF;
 828		}
 829	}
 830
 831	psr = m_can_read(cdev, M_CAN_PSR);
 832
 833	if (irqstatus & IR_ERR_STATE)
 834		work_done += m_can_handle_state_errors(dev, psr);
 
 835
 836	if (irqstatus & IR_ERR_BUS_30X)
 837		work_done += m_can_handle_bus_errors(dev, irqstatus, psr);
 
 
 
 
 
 
 838
 839	if (irqstatus & IR_RF0N)
 840		work_done += m_can_do_rx_poll(dev, (quota - work_done));
 841end:
 842	return work_done;
 843}
 844
 845static int m_can_rx_peripheral(struct net_device *dev)
 846{
 
 847	struct m_can_classdev *cdev = netdev_priv(dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 848
 849	m_can_rx_handler(dev, 1);
 
 
 
 850
 851	m_can_enable_all_interrupts(cdev);
 852
 853	return 0;
 
 
 
 
 854}
 855
 856static int m_can_poll(struct napi_struct *napi, int quota)
 857{
 858	struct net_device *dev = napi->dev;
 859	struct m_can_classdev *cdev = netdev_priv(dev);
 860	int work_done;
 861
 862	work_done = m_can_rx_handler(dev, quota);
 863	if (work_done < quota) {
 864		napi_complete_done(napi, work_done);
 865		m_can_enable_all_interrupts(cdev);
 
 
 
 
 
 866	}
 
 
 867
 868	return work_done;
 869}
 870
 871static void m_can_echo_tx_event(struct net_device *dev)
 872{
 873	u32 txe_count = 0;
 874	u32 m_can_txefs;
 875	u32 fgi = 0;
 
 876	int i = 0;
 
 877	unsigned int msg_mark;
 
 
 878
 879	struct m_can_classdev *cdev = netdev_priv(dev);
 880	struct net_device_stats *stats = &dev->stats;
 881
 882	/* read tx event fifo status */
 883	m_can_txefs = m_can_read(cdev, M_CAN_TXEFS);
 884
 885	/* Get Tx Event fifo element count */
 886	txe_count = (m_can_txefs & TXEFS_EFFL_MASK)
 887			>> TXEFS_EFFL_SHIFT;
 888
 889	/* Get and process all sent elements */
 890	for (i = 0; i < txe_count; i++) {
 891		/* retrieve get index */
 892		fgi = (m_can_read(cdev, M_CAN_TXEFS) & TXEFS_EFGI_MASK)
 893			>> TXEFS_EFGI_SHIFT;
 894
 895		/* get message marker */
 896		msg_mark = (m_can_txe_fifo_read(cdev, fgi, 4) &
 897			    TX_EVENT_MM_MASK) >> TX_EVENT_MM_SHIFT;
 898
 899		/* ack txe element */
 900		m_can_write(cdev, M_CAN_TXEFA, (TXEFA_EFAI_MASK &
 901						(fgi << TXEFA_EFAI_SHIFT)));
 
 
 
 902
 903		/* update stats */
 904		stats->tx_bytes += can_get_echo_skb(dev, msg_mark);
 905		stats->tx_packets++;
 
 
 906	}
 
 
 
 
 
 
 
 
 907}
 908
 909static irqreturn_t m_can_isr(int irq, void *dev_id)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 910{
 911	struct net_device *dev = (struct net_device *)dev_id;
 912	struct m_can_classdev *cdev = netdev_priv(dev);
 913	struct net_device_stats *stats = &dev->stats;
 914	u32 ir;
 915
 916	ir = m_can_read(cdev, M_CAN_IR);
 917	if (!ir)
 918		return IRQ_NONE;
 919
 920	/* ACK all irqs */
 921	if (ir & IR_ALL_INT)
 
 
 
 
 
 
 
 
 922		m_can_write(cdev, M_CAN_IR, ir);
 923
 
 
 
 
 
 
 
 
 924	if (cdev->ops->clear_interrupts)
 925		cdev->ops->clear_interrupts(cdev);
 926
 927	/* schedule NAPI in case of
 928	 * - rx IRQ
 929	 * - state change IRQ
 930	 * - bus error IRQ and bus error reporting
 931	 */
 932	if ((ir & IR_RF0N) || (ir & IR_ERR_ALL_30X)) {
 933		cdev->irqstatus = ir;
 934		m_can_disable_all_interrupts(cdev);
 935		if (!cdev->is_peripheral)
 936			napi_schedule(&cdev->napi);
 937		else
 938			m_can_rx_peripheral(dev);
 
 
 
 939	}
 940
 941	if (cdev->version == 30) {
 942		if (ir & IR_TC) {
 943			/* Transmission Complete Interrupt*/
 944			stats->tx_bytes += can_get_echo_skb(dev, 0);
 945			stats->tx_packets++;
 946			can_led_event(dev, CAN_LED_EVENT_TX);
 947			netif_wake_queue(dev);
 
 
 
 948		}
 949	} else  {
 950		if (ir & IR_TEFN) {
 951			/* New TX FIFO Element arrived */
 952			m_can_echo_tx_event(dev);
 953			can_led_event(dev, CAN_LED_EVENT_TX);
 954			if (netif_queue_stopped(dev) &&
 955			    !m_can_tx_fifo_full(cdev))
 956				netif_wake_queue(dev);
 957		}
 958	}
 959
 
 
 
 960	return IRQ_HANDLED;
 961}
 962
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 963static const struct can_bittiming_const m_can_bittiming_const_30X = {
 964	.name = KBUILD_MODNAME,
 965	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
 966	.tseg1_max = 64,
 967	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
 968	.tseg2_max = 16,
 969	.sjw_max = 16,
 970	.brp_min = 1,
 971	.brp_max = 1024,
 972	.brp_inc = 1,
 973};
 974
 975static const struct can_bittiming_const m_can_data_bittiming_const_30X = {
 976	.name = KBUILD_MODNAME,
 977	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
 978	.tseg1_max = 16,
 979	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
 980	.tseg2_max = 8,
 981	.sjw_max = 4,
 982	.brp_min = 1,
 983	.brp_max = 32,
 984	.brp_inc = 1,
 985};
 986
 987static const struct can_bittiming_const m_can_bittiming_const_31X = {
 988	.name = KBUILD_MODNAME,
 989	.tseg1_min = 2,		/* Time segment 1 = prop_seg + phase_seg1 */
 990	.tseg1_max = 256,
 991	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
 992	.tseg2_max = 128,
 993	.sjw_max = 128,
 994	.brp_min = 1,
 995	.brp_max = 512,
 996	.brp_inc = 1,
 997};
 998
 999static const struct can_bittiming_const m_can_data_bittiming_const_31X = {
1000	.name = KBUILD_MODNAME,
1001	.tseg1_min = 1,		/* Time segment 1 = prop_seg + phase_seg1 */
1002	.tseg1_max = 32,
1003	.tseg2_min = 1,		/* Time segment 2 = phase_seg2 */
1004	.tseg2_max = 16,
1005	.sjw_max = 16,
1006	.brp_min = 1,
1007	.brp_max = 32,
1008	.brp_inc = 1,
1009};
1010
1011static int m_can_set_bittiming(struct net_device *dev)
1012{
1013	struct m_can_classdev *cdev = netdev_priv(dev);
1014	const struct can_bittiming *bt = &cdev->can.bittiming;
1015	const struct can_bittiming *dbt = &cdev->can.data_bittiming;
1016	u16 brp, sjw, tseg1, tseg2;
1017	u32 reg_btp;
1018
1019	brp = bt->brp - 1;
1020	sjw = bt->sjw - 1;
1021	tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
1022	tseg2 = bt->phase_seg2 - 1;
1023	reg_btp = (brp << NBTP_NBRP_SHIFT) | (sjw << NBTP_NSJW_SHIFT) |
1024		(tseg1 << NBTP_NTSEG1_SHIFT) | (tseg2 << NBTP_NTSEG2_SHIFT);
 
 
1025	m_can_write(cdev, M_CAN_NBTP, reg_btp);
1026
1027	if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) {
1028		reg_btp = 0;
1029		brp = dbt->brp - 1;
1030		sjw = dbt->sjw - 1;
1031		tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1;
1032		tseg2 = dbt->phase_seg2 - 1;
1033
1034		/* TDC is only needed for bitrates beyond 2.5 MBit/s.
1035		 * This is mentioned in the "Bit Time Requirements for CAN FD"
1036		 * paper presented at the International CAN Conference 2013
1037		 */
1038		if (dbt->bitrate > 2500000) {
1039			u32 tdco, ssp;
1040
1041			/* Use the same value of secondary sampling point
1042			 * as the data sampling point
1043			 */
1044			ssp = dbt->sample_point;
1045
1046			/* Equation based on Bosch's M_CAN User Manual's
1047			 * Transmitter Delay Compensation Section
1048			 */
1049			tdco = (cdev->can.clock.freq / 1000) *
1050			       ssp / dbt->bitrate;
1051
1052			/* Max valid TDCO value is 127 */
1053			if (tdco > 127) {
1054				netdev_warn(dev, "TDCO value of %u is beyond maximum. Using maximum possible value\n",
1055					    tdco);
1056				tdco = 127;
1057			}
1058
1059			reg_btp |= DBTP_TDC;
1060			m_can_write(cdev, M_CAN_TDCR,
1061				    tdco << TDCR_TDCO_SHIFT);
1062		}
1063
1064		reg_btp |= (brp << DBTP_DBRP_SHIFT) |
1065			   (sjw << DBTP_DSJW_SHIFT) |
1066			   (tseg1 << DBTP_DTSEG1_SHIFT) |
1067			   (tseg2 << DBTP_DTSEG2_SHIFT);
1068
1069		m_can_write(cdev, M_CAN_DBTP, reg_btp);
1070	}
1071
1072	return 0;
1073}
1074
1075/* Configure M_CAN chip:
1076 * - set rx buffer/fifo element size
1077 * - configure rx fifo
1078 * - accept non-matching frame into fifo 0
1079 * - configure tx buffer
1080 *		- >= v3.1.x: TX FIFO is used
1081 * - configure mode
1082 * - setup bittiming
 
1083 */
1084static void m_can_chip_config(struct net_device *dev)
1085{
1086	struct m_can_classdev *cdev = netdev_priv(dev);
 
1087	u32 cccr, test;
 
 
 
 
 
 
 
1088
1089	m_can_config_endisable(cdev, true);
 
 
 
 
 
 
 
1090
1091	/* RX Buffer/FIFO Element Size 64 bytes data field */
1092	m_can_write(cdev, M_CAN_RXESC, M_CAN_RXESC_64BYTES);
 
 
 
1093
1094	/* Accept Non-matching Frames Into FIFO 0 */
1095	m_can_write(cdev, M_CAN_GFC, 0x0);
1096
1097	if (cdev->version == 30) {
1098		/* only support one Tx Buffer currently */
1099		m_can_write(cdev, M_CAN_TXBC, (1 << TXBC_NDTB_SHIFT) |
1100				cdev->mcfg[MRAM_TXB].off);
1101	} else {
1102		/* TX FIFO is used for newer IP Core versions */
1103		m_can_write(cdev, M_CAN_TXBC,
1104			    (cdev->mcfg[MRAM_TXB].num << TXBC_TFQS_SHIFT) |
1105			    (cdev->mcfg[MRAM_TXB].off));
 
1106	}
1107
1108	/* support 64 bytes payload */
1109	m_can_write(cdev, M_CAN_TXESC, TXESC_TBDS_64BYTES);
 
1110
1111	/* TX Event FIFO */
1112	if (cdev->version == 30) {
1113		m_can_write(cdev, M_CAN_TXEFC, (1 << TXEFC_EFS_SHIFT) |
1114				cdev->mcfg[MRAM_TXE].off);
 
1115	} else {
1116		/* Full TX Event FIFO is used */
1117		m_can_write(cdev, M_CAN_TXEFC,
1118			    ((cdev->mcfg[MRAM_TXE].num << TXEFC_EFS_SHIFT)
1119			     & TXEFC_EFS_MASK) |
 
 
1120			    cdev->mcfg[MRAM_TXE].off);
1121	}
1122
1123	/* rx fifo configuration, blocking mode, fifo size 1 */
1124	m_can_write(cdev, M_CAN_RXF0C,
1125		    (cdev->mcfg[MRAM_RXF0].num << RXFC_FS_SHIFT) |
1126		     cdev->mcfg[MRAM_RXF0].off);
 
1127
1128	m_can_write(cdev, M_CAN_RXF1C,
1129		    (cdev->mcfg[MRAM_RXF1].num << RXFC_FS_SHIFT) |
1130		     cdev->mcfg[MRAM_RXF1].off);
1131
1132	cccr = m_can_read(cdev, M_CAN_CCCR);
1133	test = m_can_read(cdev, M_CAN_TEST);
1134	test &= ~TEST_LBCK;
1135	if (cdev->version == 30) {
1136	/* Version 3.0.x */
1137
1138		cccr &= ~(CCCR_TEST | CCCR_MON |
1139			(CCCR_CMR_MASK << CCCR_CMR_SHIFT) |
1140			(CCCR_CME_MASK << CCCR_CME_SHIFT));
1141
1142		if (cdev->can.ctrlmode & CAN_CTRLMODE_FD)
1143			cccr |= CCCR_CME_CANFD_BRS << CCCR_CME_SHIFT;
1144
1145	} else {
1146	/* Version 3.1.x or 3.2.x */
1147		cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_BRSE | CCCR_FDOE |
1148			  CCCR_NISO);
1149
1150		/* Only 3.2.x has NISO Bit implemented */
1151		if (cdev->can.ctrlmode & CAN_CTRLMODE_FD_NON_ISO)
1152			cccr |= CCCR_NISO;
1153
1154		if (cdev->can.ctrlmode & CAN_CTRLMODE_FD)
1155			cccr |= (CCCR_BRSE | CCCR_FDOE);
1156	}
1157
1158	/* Loopback Mode */
1159	if (cdev->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
1160		cccr |= CCCR_TEST | CCCR_MON;
1161		test |= TEST_LBCK;
1162	}
1163
1164	/* Enable Monitoring (all versions) */
1165	if (cdev->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)
1166		cccr |= CCCR_MON;
1167
 
 
 
 
1168	/* Write config */
1169	m_can_write(cdev, M_CAN_CCCR, cccr);
1170	m_can_write(cdev, M_CAN_TEST, test);
1171
1172	/* Enable interrupts */
1173	m_can_write(cdev, M_CAN_IR, IR_ALL_INT);
1174	if (!(cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING))
1175		if (cdev->version == 30)
1176			m_can_write(cdev, M_CAN_IE, IR_ALL_INT &
1177				    ~(IR_ERR_LEC_30X));
1178		else
1179			m_can_write(cdev, M_CAN_IE, IR_ALL_INT &
1180				    ~(IR_ERR_LEC_31X));
1181	else
1182		m_can_write(cdev, M_CAN_IE, IR_ALL_INT);
1183
1184	/* route all interrupts to INT0 */
1185	m_can_write(cdev, M_CAN_ILS, ILS_ALL_INT0);
1186
1187	/* set bittiming params */
1188	m_can_set_bittiming(dev);
1189
1190	m_can_config_endisable(cdev, false);
 
 
 
 
 
 
 
 
 
1191
1192	if (cdev->ops->init)
1193		cdev->ops->init(cdev);
 
 
1194}
1195
1196static void m_can_start(struct net_device *dev)
1197{
1198	struct m_can_classdev *cdev = netdev_priv(dev);
 
1199
1200	/* basic m_can configuration */
1201	m_can_chip_config(dev);
 
 
 
 
 
1202
1203	cdev->can.state = CAN_STATE_ERROR_ACTIVE;
1204
1205	m_can_enable_all_interrupts(cdev);
 
 
 
 
 
 
 
 
 
 
1206}
1207
1208static int m_can_set_mode(struct net_device *dev, enum can_mode mode)
1209{
1210	switch (mode) {
1211	case CAN_MODE_START:
1212		m_can_clean(dev);
1213		m_can_start(dev);
1214		netif_wake_queue(dev);
1215		break;
1216	default:
1217		return -EOPNOTSUPP;
1218	}
1219
1220	return 0;
1221}
1222
1223/* Checks core release number of M_CAN
1224 * returns 0 if an unsupported device is detected
1225 * else it returns the release and step coded as:
1226 * return value = 10 * <release> + 1 * <step>
1227 */
1228static int m_can_check_core_release(struct m_can_classdev *cdev)
1229{
1230	u32 crel_reg;
1231	u8 rel;
1232	u8 step;
1233	int res;
1234
1235	/* Read Core Release Version and split into version number
1236	 * Example: Version 3.2.1 => rel = 3; step = 2; substep = 1;
1237	 */
1238	crel_reg = m_can_read(cdev, M_CAN_CREL);
1239	rel = (u8)((crel_reg & CREL_REL_MASK) >> CREL_REL_SHIFT);
1240	step = (u8)((crel_reg & CREL_STEP_MASK) >> CREL_STEP_SHIFT);
1241
1242	if (rel == 3) {
1243		/* M_CAN v3.x.y: create return value */
1244		res = 30 + step;
1245	} else {
1246		/* Unsupported M_CAN version */
1247		res = 0;
1248	}
1249
1250	return res;
1251}
1252
1253/* Selectable Non ISO support only in version 3.2.x
1254 * This function checks if the bit is writable.
1255 */
1256static bool m_can_niso_supported(struct m_can_classdev *cdev)
1257{
1258	u32 cccr_reg, cccr_poll = 0;
1259	int niso_timeout = -ETIMEDOUT;
1260	int i;
 
 
1261
1262	m_can_config_endisable(cdev, true);
1263	cccr_reg = m_can_read(cdev, M_CAN_CCCR);
1264	cccr_reg |= CCCR_NISO;
1265	m_can_write(cdev, M_CAN_CCCR, cccr_reg);
1266
1267	for (i = 0; i <= 10; i++) {
1268		cccr_poll = m_can_read(cdev, M_CAN_CCCR);
1269		if (cccr_poll == cccr_reg) {
1270			niso_timeout = 0;
1271			break;
1272		}
1273
1274		usleep_range(1, 5);
 
 
 
 
1275	}
1276
1277	/* Clear NISO */
1278	cccr_reg &= ~(CCCR_NISO);
1279	m_can_write(cdev, M_CAN_CCCR, cccr_reg);
1280
1281	m_can_config_endisable(cdev, false);
1282
1283	/* return false if time out (-ETIMEDOUT), else return true */
1284	return !niso_timeout;
1285}
1286
1287static int m_can_dev_setup(struct m_can_classdev *m_can_dev)
1288{
1289	struct net_device *dev = m_can_dev->net;
1290	int m_can_version;
1291
1292	m_can_version = m_can_check_core_release(m_can_dev);
1293	/* return if unsupported version */
1294	if (!m_can_version) {
1295		dev_err(m_can_dev->dev, "Unsupported version number: %2d",
1296			m_can_version);
1297		return -EINVAL;
1298	}
1299
1300	if (!m_can_dev->is_peripheral)
1301		netif_napi_add(dev, &m_can_dev->napi,
1302			       m_can_poll, M_CAN_NAPI_WEIGHT);
 
 
 
 
 
 
 
1303
1304	/* Shared properties of all M_CAN versions */
1305	m_can_dev->version = m_can_version;
1306	m_can_dev->can.do_set_mode = m_can_set_mode;
1307	m_can_dev->can.do_get_berr_counter = m_can_get_berr_counter;
1308
1309	/* Set M_CAN supported operations */
1310	m_can_dev->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1311					CAN_CTRLMODE_LISTENONLY |
1312					CAN_CTRLMODE_BERR_REPORTING |
1313					CAN_CTRLMODE_FD;
 
1314
1315	/* Set properties depending on M_CAN version */
1316	switch (m_can_dev->version) {
1317	case 30:
1318		/* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.0.x */
1319		can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO);
1320		m_can_dev->can.bittiming_const = m_can_dev->bit_timing ?
1321			m_can_dev->bit_timing : &m_can_bittiming_const_30X;
1322
1323		m_can_dev->can.data_bittiming_const = m_can_dev->data_timing ?
1324						m_can_dev->data_timing :
1325						&m_can_data_bittiming_const_30X;
1326		break;
1327	case 31:
1328		/* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.1.x */
1329		can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO);
1330		m_can_dev->can.bittiming_const = m_can_dev->bit_timing ?
1331			m_can_dev->bit_timing : &m_can_bittiming_const_31X;
1332
1333		m_can_dev->can.data_bittiming_const = m_can_dev->data_timing ?
1334						m_can_dev->data_timing :
1335						&m_can_data_bittiming_const_31X;
1336		break;
1337	case 32:
1338		m_can_dev->can.bittiming_const = m_can_dev->bit_timing ?
1339			m_can_dev->bit_timing : &m_can_bittiming_const_31X;
1340
1341		m_can_dev->can.data_bittiming_const = m_can_dev->data_timing ?
1342						m_can_dev->data_timing :
1343						&m_can_data_bittiming_const_31X;
1344
1345		m_can_dev->can.ctrlmode_supported |=
1346						(m_can_niso_supported(m_can_dev)
1347						? CAN_CTRLMODE_FD_NON_ISO
1348						: 0);
1349		break;
1350	default:
1351		dev_err(m_can_dev->dev, "Unsupported version number: %2d",
1352			m_can_dev->version);
1353		return -EINVAL;
1354	}
1355
1356	if (m_can_dev->ops->init)
1357		m_can_dev->ops->init(m_can_dev);
1358
1359	return 0;
1360}
1361
1362static void m_can_stop(struct net_device *dev)
1363{
1364	struct m_can_classdev *cdev = netdev_priv(dev);
 
1365
1366	/* disable all interrupts */
1367	m_can_disable_all_interrupts(cdev);
1368
 
 
 
 
 
 
1369	/* set the state as STOPPED */
1370	cdev->can.state = CAN_STATE_STOPPED;
1371}
1372
1373static int m_can_close(struct net_device *dev)
1374{
1375	struct m_can_classdev *cdev = netdev_priv(dev);
1376
1377	netif_stop_queue(dev);
1378
1379	if (!cdev->is_peripheral)
1380		napi_disable(&cdev->napi);
 
1381
1382	m_can_stop(dev);
1383	m_can_clk_stop(cdev);
1384	free_irq(dev->irq, dev);
1385
1386	if (cdev->is_peripheral) {
1387		cdev->tx_skb = NULL;
1388		destroy_workqueue(cdev->tx_wq);
1389		cdev->tx_wq = NULL;
 
 
 
1390	}
1391
1392	close_candev(dev);
1393	can_led_event(dev, CAN_LED_EVENT_STOP);
 
 
1394
1395	return 0;
1396}
1397
1398static int m_can_next_echo_skb_occupied(struct net_device *dev, int putidx)
1399{
1400	struct m_can_classdev *cdev = netdev_priv(dev);
1401	/*get wrap around for loopback skb index */
1402	unsigned int wrap = cdev->can.echo_skb_max;
1403	int next_idx;
1404
1405	/* calculate next index */
1406	next_idx = (++putidx >= wrap ? 0 : putidx);
1407
1408	/* check if occupied */
1409	return !!cdev->can.echo_skb[next_idx];
1410}
1411
1412static netdev_tx_t m_can_tx_handler(struct m_can_classdev *cdev)
1413{
1414	struct canfd_frame *cf = (struct canfd_frame *)cdev->tx_skb->data;
 
 
1415	struct net_device *dev = cdev->net;
1416	struct sk_buff *skb = cdev->tx_skb;
1417	u32 id, cccr, fdflags;
1418	int i;
1419	int putidx;
1420
1421	/* Generate ID field for TX buffer Element */
1422	/* Common to all supported M_CAN versions */
1423	if (cf->can_id & CAN_EFF_FLAG) {
1424		id = cf->can_id & CAN_EFF_MASK;
1425		id |= TX_BUF_XTD;
1426	} else {
1427		id = ((cf->can_id & CAN_SFF_MASK) << 18);
1428	}
1429
1430	if (cf->can_id & CAN_RTR_FLAG)
1431		id |= TX_BUF_RTR;
1432
1433	if (cdev->version == 30) {
1434		netif_stop_queue(dev);
1435
1436		/* message ram configuration */
1437		m_can_fifo_write(cdev, 0, M_CAN_FIFO_ID, id);
1438		m_can_fifo_write(cdev, 0, M_CAN_FIFO_DLC,
1439				 can_len2dlc(cf->len) << 16);
1440
1441		for (i = 0; i < cf->len; i += 4)
1442			m_can_fifo_write(cdev, 0,
1443					 M_CAN_FIFO_DATA(i / 4),
1444					 *(u32 *)(cf->data + i));
1445
1446		can_put_echo_skb(skb, dev, 0);
 
 
 
 
 
 
 
 
1447
1448		if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) {
1449			cccr = m_can_read(cdev, M_CAN_CCCR);
1450			cccr &= ~(CCCR_CMR_MASK << CCCR_CMR_SHIFT);
1451			if (can_is_canfd_skb(skb)) {
1452				if (cf->flags & CANFD_BRS)
1453					cccr |= CCCR_CMR_CANFD_BRS <<
1454						CCCR_CMR_SHIFT;
1455				else
1456					cccr |= CCCR_CMR_CANFD <<
1457						CCCR_CMR_SHIFT;
1458			} else {
1459				cccr |= CCCR_CMR_CAN << CCCR_CMR_SHIFT;
1460			}
1461			m_can_write(cdev, M_CAN_CCCR, cccr);
1462		}
1463		m_can_write(cdev, M_CAN_TXBTIE, 0x1);
 
 
 
1464		m_can_write(cdev, M_CAN_TXBAR, 0x1);
1465		/* End of xmit function for version 3.0.x */
1466	} else {
1467		/* Transmit routine for version >= v3.1.x */
1468
1469		/* Check if FIFO full */
1470		if (m_can_tx_fifo_full(cdev)) {
1471			/* This shouldn't happen */
1472			netif_stop_queue(dev);
1473			netdev_warn(dev,
1474				    "TX queue active although FIFO is full.");
1475
1476			if (cdev->is_peripheral) {
1477				kfree_skb(skb);
1478				dev->stats.tx_dropped++;
1479				return NETDEV_TX_OK;
1480			} else {
1481				return NETDEV_TX_BUSY;
1482			}
1483		}
1484
1485		/* get put index for frame */
1486		putidx = ((m_can_read(cdev, M_CAN_TXFQS) & TXFQS_TFQPI_MASK)
1487				  >> TXFQS_TFQPI_SHIFT);
1488		/* Write ID Field to FIFO Element */
1489		m_can_fifo_write(cdev, putidx, M_CAN_FIFO_ID, id);
1490
1491		/* get CAN FD configuration of frame */
1492		fdflags = 0;
1493		if (can_is_canfd_skb(skb)) {
1494			fdflags |= TX_BUF_FDF;
1495			if (cf->flags & CANFD_BRS)
1496				fdflags |= TX_BUF_BRS;
1497		}
1498
1499		/* Construct DLC Field. Also contains CAN-FD configuration
1500		 * use put index of fifo as message marker
1501		 * it is used in TX interrupt for
1502		 * sending the correct echo frame
1503		 */
1504		m_can_fifo_write(cdev, putidx, M_CAN_FIFO_DLC,
1505				 ((putidx << TX_BUF_MM_SHIFT) &
1506				  TX_BUF_MM_MASK) |
1507				 (can_len2dlc(cf->len) << 16) |
1508				 fdflags | TX_BUF_EFC);
1509
1510		for (i = 0; i < cf->len; i += 4)
1511			m_can_fifo_write(cdev, putidx, M_CAN_FIFO_DATA(i / 4),
1512					 *(u32 *)(cf->data + i));
1513
1514		/* Push loopback echo.
1515		 * Will be looped back on TX interrupt based on message marker
1516		 */
1517		can_put_echo_skb(skb, dev, putidx);
1518
1519		/* Enable TX FIFO element to start transfer  */
1520		m_can_write(cdev, M_CAN_TXBAR, (1 << putidx));
1521
1522		/* stop network queue if fifo full */
1523		if (m_can_tx_fifo_full(cdev) ||
1524		    m_can_next_echo_skb_occupied(dev, putidx))
1525			netif_stop_queue(dev);
 
 
1526	}
1527
1528	return NETDEV_TX_OK;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1529}
1530
1531static void m_can_tx_work_queue(struct work_struct *ws)
1532{
1533	struct m_can_classdev *cdev = container_of(ws, struct m_can_classdev,
1534						tx_work);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1535
1536	m_can_tx_handler(cdev);
1537	cdev->tx_skb = NULL;
1538}
1539
1540static netdev_tx_t m_can_start_xmit(struct sk_buff *skb,
1541				    struct net_device *dev)
1542{
1543	struct m_can_classdev *cdev = netdev_priv(dev);
 
 
1544
1545	if (can_dropped_invalid_skb(dev, skb))
1546		return NETDEV_TX_OK;
1547
1548	if (cdev->is_peripheral) {
1549		if (cdev->tx_skb) {
1550			netdev_err(dev, "hard_xmit called while tx busy\n");
1551			return NETDEV_TX_BUSY;
1552		}
1553
1554		if (cdev->can.state == CAN_STATE_BUS_OFF) {
1555			m_can_clean(dev);
1556		} else {
1557			/* Need to stop the queue to avoid numerous requests
1558			 * from being sent.  Suggested improvement is to create
1559			 * a queueing mechanism that will queue the skbs and
1560			 * process them in order.
1561			 */
1562			cdev->tx_skb = skb;
1563			netif_stop_queue(cdev->net);
1564			queue_work(cdev->tx_wq, &cdev->tx_work);
1565		}
1566	} else {
1567		cdev->tx_skb = skb;
1568		return m_can_tx_handler(cdev);
1569	}
1570
1571	return NETDEV_TX_OK;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1572}
1573
1574static int m_can_open(struct net_device *dev)
1575{
1576	struct m_can_classdev *cdev = netdev_priv(dev);
1577	int err;
1578
 
 
 
 
1579	err = m_can_clk_start(cdev);
1580	if (err)
1581		return err;
1582
1583	/* open the can device */
1584	err = open_candev(dev);
1585	if (err) {
1586		netdev_err(dev, "failed to open can device\n");
1587		goto exit_disable_clks;
1588	}
1589
 
 
 
 
 
1590	/* register interrupt handler */
1591	if (cdev->is_peripheral) {
1592		cdev->tx_skb = NULL;
1593		cdev->tx_wq = alloc_workqueue("mcan_wq",
1594					      WQ_FREEZABLE | WQ_MEM_RECLAIM, 0);
1595		if (!cdev->tx_wq) {
1596			err = -ENOMEM;
1597			goto out_wq_fail;
1598		}
1599
1600		INIT_WORK(&cdev->tx_work, m_can_tx_work_queue);
 
 
 
1601
1602		err = request_threaded_irq(dev->irq, NULL, m_can_isr,
1603					   IRQF_ONESHOT | IRQF_TRIGGER_FALLING,
1604					   dev->name, dev);
1605	} else {
1606		err = request_irq(dev->irq, m_can_isr, IRQF_SHARED, dev->name,
1607				  dev);
1608	}
1609
1610	if (err < 0) {
1611		netdev_err(dev, "failed to request interrupt\n");
1612		goto exit_irq_fail;
1613	}
1614
1615	/* start the m_can controller */
1616	m_can_start(dev);
1617
1618	can_led_event(dev, CAN_LED_EVENT_OPEN);
1619
1620	if (!cdev->is_peripheral)
1621		napi_enable(&cdev->napi);
1622
1623	netif_start_queue(dev);
1624
1625	return 0;
1626
 
 
 
1627exit_irq_fail:
1628	if (cdev->is_peripheral)
1629		destroy_workqueue(cdev->tx_wq);
1630out_wq_fail:
 
 
 
 
1631	close_candev(dev);
1632exit_disable_clks:
1633	m_can_clk_stop(cdev);
 
 
1634	return err;
1635}
1636
1637static const struct net_device_ops m_can_netdev_ops = {
1638	.ndo_open = m_can_open,
1639	.ndo_stop = m_can_close,
1640	.ndo_start_xmit = m_can_start_xmit,
1641	.ndo_change_mtu = can_change_mtu,
1642};
1643
1644static int register_m_can_dev(struct net_device *dev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1645{
 
 
1646	dev->flags |= IFF_ECHO;	/* we support local echo */
1647	dev->netdev_ops = &m_can_netdev_ops;
 
 
 
 
1648
1649	return register_candev(dev);
1650}
1651
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1652static void m_can_of_parse_mram(struct m_can_classdev *cdev,
1653				const u32 *mram_config_vals)
1654{
1655	cdev->mcfg[MRAM_SIDF].off = mram_config_vals[0];
1656	cdev->mcfg[MRAM_SIDF].num = mram_config_vals[1];
1657	cdev->mcfg[MRAM_XIDF].off = cdev->mcfg[MRAM_SIDF].off +
1658			cdev->mcfg[MRAM_SIDF].num * SIDF_ELEMENT_SIZE;
1659	cdev->mcfg[MRAM_XIDF].num = mram_config_vals[2];
1660	cdev->mcfg[MRAM_RXF0].off = cdev->mcfg[MRAM_XIDF].off +
1661			cdev->mcfg[MRAM_XIDF].num * XIDF_ELEMENT_SIZE;
1662	cdev->mcfg[MRAM_RXF0].num = mram_config_vals[3] &
1663			(RXFC_FS_MASK >> RXFC_FS_SHIFT);
1664	cdev->mcfg[MRAM_RXF1].off = cdev->mcfg[MRAM_RXF0].off +
1665			cdev->mcfg[MRAM_RXF0].num * RXF0_ELEMENT_SIZE;
1666	cdev->mcfg[MRAM_RXF1].num = mram_config_vals[4] &
1667			(RXFC_FS_MASK >> RXFC_FS_SHIFT);
1668	cdev->mcfg[MRAM_RXB].off = cdev->mcfg[MRAM_RXF1].off +
1669			cdev->mcfg[MRAM_RXF1].num * RXF1_ELEMENT_SIZE;
1670	cdev->mcfg[MRAM_RXB].num = mram_config_vals[5];
1671	cdev->mcfg[MRAM_TXE].off = cdev->mcfg[MRAM_RXB].off +
1672			cdev->mcfg[MRAM_RXB].num * RXB_ELEMENT_SIZE;
1673	cdev->mcfg[MRAM_TXE].num = mram_config_vals[6];
1674	cdev->mcfg[MRAM_TXB].off = cdev->mcfg[MRAM_TXE].off +
1675			cdev->mcfg[MRAM_TXE].num * TXE_ELEMENT_SIZE;
1676	cdev->mcfg[MRAM_TXB].num = mram_config_vals[7] &
1677			(TXBC_NDTB_MASK >> TXBC_NDTB_SHIFT);
1678
1679	dev_dbg(cdev->dev,
1680		"sidf 0x%x %d xidf 0x%x %d rxf0 0x%x %d rxf1 0x%x %d rxb 0x%x %d txe 0x%x %d txb 0x%x %d\n",
1681		cdev->mcfg[MRAM_SIDF].off, cdev->mcfg[MRAM_SIDF].num,
1682		cdev->mcfg[MRAM_XIDF].off, cdev->mcfg[MRAM_XIDF].num,
1683		cdev->mcfg[MRAM_RXF0].off, cdev->mcfg[MRAM_RXF0].num,
1684		cdev->mcfg[MRAM_RXF1].off, cdev->mcfg[MRAM_RXF1].num,
1685		cdev->mcfg[MRAM_RXB].off, cdev->mcfg[MRAM_RXB].num,
1686		cdev->mcfg[MRAM_TXE].off, cdev->mcfg[MRAM_TXE].num,
1687		cdev->mcfg[MRAM_TXB].off, cdev->mcfg[MRAM_TXB].num);
1688}
1689
1690void m_can_init_ram(struct m_can_classdev *cdev)
1691{
1692	int end, i, start;
 
1693
1694	/* initialize the entire Message RAM in use to avoid possible
1695	 * ECC/parity checksum errors when reading an uninitialized buffer
1696	 */
1697	start = cdev->mcfg[MRAM_SIDF].off;
1698	end = cdev->mcfg[MRAM_TXB].off +
1699		cdev->mcfg[MRAM_TXB].num * TXB_ELEMENT_SIZE;
1700
1701	for (i = start; i < end; i += 4)
1702		m_can_fifo_write_no_off(cdev, i, 0x0);
 
 
 
 
 
1703}
1704EXPORT_SYMBOL_GPL(m_can_init_ram);
1705
1706int m_can_class_get_clocks(struct m_can_classdev *m_can_dev)
1707{
1708	int ret = 0;
1709
1710	m_can_dev->hclk = devm_clk_get(m_can_dev->dev, "hclk");
1711	m_can_dev->cclk = devm_clk_get(m_can_dev->dev, "cclk");
1712
1713	if (IS_ERR(m_can_dev->cclk)) {
1714		dev_err(m_can_dev->dev, "no clock found\n");
1715		ret = -ENODEV;
1716	}
1717
1718	return ret;
1719}
1720EXPORT_SYMBOL_GPL(m_can_class_get_clocks);
1721
1722struct m_can_classdev *m_can_class_allocate_dev(struct device *dev)
 
1723{
1724	struct m_can_classdev *class_dev = NULL;
1725	u32 mram_config_vals[MRAM_CFG_LEN];
1726	struct net_device *net_dev;
1727	u32 tx_fifo_size;
1728	int ret;
1729
1730	ret = fwnode_property_read_u32_array(dev_fwnode(dev),
1731					     "bosch,mram-cfg",
1732					     mram_config_vals,
1733					     sizeof(mram_config_vals) / 4);
1734	if (ret) {
1735		dev_err(dev, "Could not get Message RAM configuration.");
1736		goto out;
1737	}
1738
1739	/* Get TX FIFO size
1740	 * Defines the total amount of echo buffers for loopback
1741	 */
1742	tx_fifo_size = mram_config_vals[7];
1743
1744	/* allocate the m_can device */
1745	net_dev = alloc_candev(sizeof(*class_dev), tx_fifo_size);
1746	if (!net_dev) {
1747		dev_err(dev, "Failed to allocate CAN device");
1748		goto out;
1749	}
1750
1751	class_dev = netdev_priv(net_dev);
1752	if (!class_dev) {
1753		dev_err(dev, "Failed to init netdev cdevate");
1754		goto out;
1755	}
1756
1757	class_dev->net = net_dev;
1758	class_dev->dev = dev;
1759	SET_NETDEV_DEV(net_dev, dev);
1760
1761	m_can_of_parse_mram(class_dev, mram_config_vals);
1762out:
1763	return class_dev;
1764}
1765EXPORT_SYMBOL_GPL(m_can_class_allocate_dev);
1766
1767int m_can_class_register(struct m_can_classdev *m_can_dev)
 
 
 
 
 
 
1768{
1769	int ret;
1770
1771	if (m_can_dev->pm_clock_support) {
1772		pm_runtime_enable(m_can_dev->dev);
1773		ret = m_can_clk_start(m_can_dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1774		if (ret)
1775			goto pm_runtime_fail;
 
 
 
 
 
 
 
 
 
 
1776	}
1777
1778	ret = m_can_dev_setup(m_can_dev);
1779	if (ret)
1780		goto clk_disable;
1781
1782	ret = register_m_can_dev(m_can_dev->net);
1783	if (ret) {
1784		dev_err(m_can_dev->dev, "registering %s failed (err=%d)\n",
1785			m_can_dev->net->name, ret);
1786		goto clk_disable;
1787	}
1788
1789	devm_can_led_init(m_can_dev->net);
1790
1791	of_can_transceiver(m_can_dev->net);
1792
1793	dev_info(m_can_dev->dev, "%s device registered (irq=%d, version=%d)\n",
1794		 KBUILD_MODNAME, m_can_dev->net->irq, m_can_dev->version);
1795
1796	/* Probe finished
1797	 * Stop clocks. They will be reactivated once the M_CAN device is opened
1798	 */
 
 
 
 
 
 
 
1799clk_disable:
1800	m_can_clk_stop(m_can_dev);
1801pm_runtime_fail:
1802	if (ret) {
1803		if (m_can_dev->pm_clock_support)
1804			pm_runtime_disable(m_can_dev->dev);
1805		free_candev(m_can_dev->net);
1806	}
1807
1808	return ret;
1809}
1810EXPORT_SYMBOL_GPL(m_can_class_register);
1811
 
 
 
 
 
 
 
 
1812int m_can_class_suspend(struct device *dev)
1813{
1814	struct net_device *ndev = dev_get_drvdata(dev);
1815	struct m_can_classdev *cdev = netdev_priv(ndev);
1816
1817	if (netif_running(ndev)) {
1818		netif_stop_queue(ndev);
1819		netif_device_detach(ndev);
1820		m_can_stop(ndev);
 
 
 
 
 
 
 
 
 
 
 
1821		m_can_clk_stop(cdev);
1822	}
1823
1824	pinctrl_pm_select_sleep_state(dev);
1825
1826	cdev->can.state = CAN_STATE_SLEEPING;
1827
1828	return 0;
1829}
1830EXPORT_SYMBOL_GPL(m_can_class_suspend);
1831
1832int m_can_class_resume(struct device *dev)
1833{
1834	struct net_device *ndev = dev_get_drvdata(dev);
1835	struct m_can_classdev *cdev = netdev_priv(ndev);
1836
1837	pinctrl_pm_select_default_state(dev);
1838
1839	cdev->can.state = CAN_STATE_ERROR_ACTIVE;
1840
1841	if (netif_running(ndev)) {
1842		int ret;
1843
1844		ret = m_can_clk_start(cdev);
1845		if (ret)
1846			return ret;
1847
1848		m_can_init_ram(cdev);
1849		m_can_start(ndev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1850		netif_device_attach(ndev);
1851		netif_start_queue(ndev);
1852	}
1853
1854	return 0;
1855}
1856EXPORT_SYMBOL_GPL(m_can_class_resume);
1857
1858void m_can_class_unregister(struct m_can_classdev *m_can_dev)
1859{
1860	unregister_candev(m_can_dev->net);
1861
1862	m_can_clk_stop(m_can_dev);
1863
1864	free_candev(m_can_dev->net);
1865}
1866EXPORT_SYMBOL_GPL(m_can_class_unregister);
1867
1868MODULE_AUTHOR("Dong Aisheng <b29396@freescale.com>");
1869MODULE_AUTHOR("Dan Murphy <dmurphy@ti.com>");
1870MODULE_LICENSE("GPL v2");
1871MODULE_DESCRIPTION("CAN bus driver for Bosch M_CAN controller");