Loading...
1// SPDX-License-Identifier: GPL-2.0
2// CAN bus driver for Bosch M_CAN controller
3// Copyright (C) 2014 Freescale Semiconductor, Inc.
4// Dong Aisheng <b29396@freescale.com>
5// Copyright (C) 2018-19 Texas Instruments Incorporated - http://www.ti.com/
6
7/* Bosch M_CAN user manual can be obtained from:
8 * https://github.com/linux-can/can-doc/tree/master/m_can
9 */
10
11#include <linux/bitfield.h>
12#include <linux/can/dev.h>
13#include <linux/ethtool.h>
14#include <linux/hrtimer.h>
15#include <linux/interrupt.h>
16#include <linux/io.h>
17#include <linux/iopoll.h>
18#include <linux/kernel.h>
19#include <linux/module.h>
20#include <linux/netdevice.h>
21#include <linux/of.h>
22#include <linux/phy/phy.h>
23#include <linux/pinctrl/consumer.h>
24#include <linux/platform_device.h>
25#include <linux/pm_runtime.h>
26
27#include "m_can.h"
28
29/* registers definition */
30enum m_can_reg {
31 M_CAN_CREL = 0x0,
32 M_CAN_ENDN = 0x4,
33 M_CAN_CUST = 0x8,
34 M_CAN_DBTP = 0xc,
35 M_CAN_TEST = 0x10,
36 M_CAN_RWD = 0x14,
37 M_CAN_CCCR = 0x18,
38 M_CAN_NBTP = 0x1c,
39 M_CAN_TSCC = 0x20,
40 M_CAN_TSCV = 0x24,
41 M_CAN_TOCC = 0x28,
42 M_CAN_TOCV = 0x2c,
43 M_CAN_ECR = 0x40,
44 M_CAN_PSR = 0x44,
45 /* TDCR Register only available for version >=3.1.x */
46 M_CAN_TDCR = 0x48,
47 M_CAN_IR = 0x50,
48 M_CAN_IE = 0x54,
49 M_CAN_ILS = 0x58,
50 M_CAN_ILE = 0x5c,
51 M_CAN_GFC = 0x80,
52 M_CAN_SIDFC = 0x84,
53 M_CAN_XIDFC = 0x88,
54 M_CAN_XIDAM = 0x90,
55 M_CAN_HPMS = 0x94,
56 M_CAN_NDAT1 = 0x98,
57 M_CAN_NDAT2 = 0x9c,
58 M_CAN_RXF0C = 0xa0,
59 M_CAN_RXF0S = 0xa4,
60 M_CAN_RXF0A = 0xa8,
61 M_CAN_RXBC = 0xac,
62 M_CAN_RXF1C = 0xb0,
63 M_CAN_RXF1S = 0xb4,
64 M_CAN_RXF1A = 0xb8,
65 M_CAN_RXESC = 0xbc,
66 M_CAN_TXBC = 0xc0,
67 M_CAN_TXFQS = 0xc4,
68 M_CAN_TXESC = 0xc8,
69 M_CAN_TXBRP = 0xcc,
70 M_CAN_TXBAR = 0xd0,
71 M_CAN_TXBCR = 0xd4,
72 M_CAN_TXBTO = 0xd8,
73 M_CAN_TXBCF = 0xdc,
74 M_CAN_TXBTIE = 0xe0,
75 M_CAN_TXBCIE = 0xe4,
76 M_CAN_TXEFC = 0xf0,
77 M_CAN_TXEFS = 0xf4,
78 M_CAN_TXEFA = 0xf8,
79};
80
81/* message ram configuration data length */
82#define MRAM_CFG_LEN 8
83
84/* Core Release Register (CREL) */
85#define CREL_REL_MASK GENMASK(31, 28)
86#define CREL_STEP_MASK GENMASK(27, 24)
87#define CREL_SUBSTEP_MASK GENMASK(23, 20)
88
89/* Data Bit Timing & Prescaler Register (DBTP) */
90#define DBTP_TDC BIT(23)
91#define DBTP_DBRP_MASK GENMASK(20, 16)
92#define DBTP_DTSEG1_MASK GENMASK(12, 8)
93#define DBTP_DTSEG2_MASK GENMASK(7, 4)
94#define DBTP_DSJW_MASK GENMASK(3, 0)
95
96/* Transmitter Delay Compensation Register (TDCR) */
97#define TDCR_TDCO_MASK GENMASK(14, 8)
98#define TDCR_TDCF_MASK GENMASK(6, 0)
99
100/* Test Register (TEST) */
101#define TEST_LBCK BIT(4)
102
103/* CC Control Register (CCCR) */
104#define CCCR_TXP BIT(14)
105#define CCCR_TEST BIT(7)
106#define CCCR_DAR BIT(6)
107#define CCCR_MON BIT(5)
108#define CCCR_CSR BIT(4)
109#define CCCR_CSA BIT(3)
110#define CCCR_ASM BIT(2)
111#define CCCR_CCE BIT(1)
112#define CCCR_INIT BIT(0)
113/* for version 3.0.x */
114#define CCCR_CMR_MASK GENMASK(11, 10)
115#define CCCR_CMR_CANFD 0x1
116#define CCCR_CMR_CANFD_BRS 0x2
117#define CCCR_CMR_CAN 0x3
118#define CCCR_CME_MASK GENMASK(9, 8)
119#define CCCR_CME_CAN 0
120#define CCCR_CME_CANFD 0x1
121#define CCCR_CME_CANFD_BRS 0x2
122/* for version >=3.1.x */
123#define CCCR_EFBI BIT(13)
124#define CCCR_PXHD BIT(12)
125#define CCCR_BRSE BIT(9)
126#define CCCR_FDOE BIT(8)
127/* for version >=3.2.x */
128#define CCCR_NISO BIT(15)
129/* for version >=3.3.x */
130#define CCCR_WMM BIT(11)
131#define CCCR_UTSU BIT(10)
132
133/* Nominal Bit Timing & Prescaler Register (NBTP) */
134#define NBTP_NSJW_MASK GENMASK(31, 25)
135#define NBTP_NBRP_MASK GENMASK(24, 16)
136#define NBTP_NTSEG1_MASK GENMASK(15, 8)
137#define NBTP_NTSEG2_MASK GENMASK(6, 0)
138
139/* Timestamp Counter Configuration Register (TSCC) */
140#define TSCC_TCP_MASK GENMASK(19, 16)
141#define TSCC_TSS_MASK GENMASK(1, 0)
142#define TSCC_TSS_DISABLE 0x0
143#define TSCC_TSS_INTERNAL 0x1
144#define TSCC_TSS_EXTERNAL 0x2
145
146/* Timestamp Counter Value Register (TSCV) */
147#define TSCV_TSC_MASK GENMASK(15, 0)
148
149/* Error Counter Register (ECR) */
150#define ECR_RP BIT(15)
151#define ECR_REC_MASK GENMASK(14, 8)
152#define ECR_TEC_MASK GENMASK(7, 0)
153
154/* Protocol Status Register (PSR) */
155#define PSR_BO BIT(7)
156#define PSR_EW BIT(6)
157#define PSR_EP BIT(5)
158#define PSR_LEC_MASK GENMASK(2, 0)
159#define PSR_DLEC_MASK GENMASK(10, 8)
160
161/* Interrupt Register (IR) */
162#define IR_ALL_INT 0xffffffff
163
164/* Renamed bits for versions > 3.1.x */
165#define IR_ARA BIT(29)
166#define IR_PED BIT(28)
167#define IR_PEA BIT(27)
168
169/* Bits for version 3.0.x */
170#define IR_STE BIT(31)
171#define IR_FOE BIT(30)
172#define IR_ACKE BIT(29)
173#define IR_BE BIT(28)
174#define IR_CRCE BIT(27)
175#define IR_WDI BIT(26)
176#define IR_BO BIT(25)
177#define IR_EW BIT(24)
178#define IR_EP BIT(23)
179#define IR_ELO BIT(22)
180#define IR_BEU BIT(21)
181#define IR_BEC BIT(20)
182#define IR_DRX BIT(19)
183#define IR_TOO BIT(18)
184#define IR_MRAF BIT(17)
185#define IR_TSW BIT(16)
186#define IR_TEFL BIT(15)
187#define IR_TEFF BIT(14)
188#define IR_TEFW BIT(13)
189#define IR_TEFN BIT(12)
190#define IR_TFE BIT(11)
191#define IR_TCF BIT(10)
192#define IR_TC BIT(9)
193#define IR_HPM BIT(8)
194#define IR_RF1L BIT(7)
195#define IR_RF1F BIT(6)
196#define IR_RF1W BIT(5)
197#define IR_RF1N BIT(4)
198#define IR_RF0L BIT(3)
199#define IR_RF0F BIT(2)
200#define IR_RF0W BIT(1)
201#define IR_RF0N BIT(0)
202#define IR_ERR_STATE (IR_BO | IR_EW | IR_EP)
203
204/* Interrupts for version 3.0.x */
205#define IR_ERR_LEC_30X (IR_STE | IR_FOE | IR_ACKE | IR_BE | IR_CRCE)
206#define IR_ERR_BUS_30X (IR_ERR_LEC_30X | IR_WDI | IR_BEU | IR_BEC | \
207 IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | IR_RF1L | \
208 IR_RF0L)
209#define IR_ERR_ALL_30X (IR_ERR_STATE | IR_ERR_BUS_30X)
210
211/* Interrupts for version >= 3.1.x */
212#define IR_ERR_LEC_31X (IR_PED | IR_PEA)
213#define IR_ERR_BUS_31X (IR_ERR_LEC_31X | IR_WDI | IR_BEU | IR_BEC | \
214 IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | IR_RF1L | \
215 IR_RF0L)
216#define IR_ERR_ALL_31X (IR_ERR_STATE | IR_ERR_BUS_31X)
217
218/* Interrupt Line Select (ILS) */
219#define ILS_ALL_INT0 0x0
220#define ILS_ALL_INT1 0xFFFFFFFF
221
222/* Interrupt Line Enable (ILE) */
223#define ILE_EINT1 BIT(1)
224#define ILE_EINT0 BIT(0)
225
226/* Rx FIFO 0/1 Configuration (RXF0C/RXF1C) */
227#define RXFC_FWM_MASK GENMASK(30, 24)
228#define RXFC_FS_MASK GENMASK(22, 16)
229
230/* Rx FIFO 0/1 Status (RXF0S/RXF1S) */
231#define RXFS_RFL BIT(25)
232#define RXFS_FF BIT(24)
233#define RXFS_FPI_MASK GENMASK(21, 16)
234#define RXFS_FGI_MASK GENMASK(13, 8)
235#define RXFS_FFL_MASK GENMASK(6, 0)
236
237/* Rx Buffer / FIFO Element Size Configuration (RXESC) */
238#define RXESC_RBDS_MASK GENMASK(10, 8)
239#define RXESC_F1DS_MASK GENMASK(6, 4)
240#define RXESC_F0DS_MASK GENMASK(2, 0)
241#define RXESC_64B 0x7
242
243/* Tx Buffer Configuration (TXBC) */
244#define TXBC_TFQS_MASK GENMASK(29, 24)
245#define TXBC_NDTB_MASK GENMASK(21, 16)
246
247/* Tx FIFO/Queue Status (TXFQS) */
248#define TXFQS_TFQF BIT(21)
249#define TXFQS_TFQPI_MASK GENMASK(20, 16)
250#define TXFQS_TFGI_MASK GENMASK(12, 8)
251#define TXFQS_TFFL_MASK GENMASK(5, 0)
252
253/* Tx Buffer Element Size Configuration (TXESC) */
254#define TXESC_TBDS_MASK GENMASK(2, 0)
255#define TXESC_TBDS_64B 0x7
256
257/* Tx Event FIFO Configuration (TXEFC) */
258#define TXEFC_EFWM_MASK GENMASK(29, 24)
259#define TXEFC_EFS_MASK GENMASK(21, 16)
260
261/* Tx Event FIFO Status (TXEFS) */
262#define TXEFS_TEFL BIT(25)
263#define TXEFS_EFF BIT(24)
264#define TXEFS_EFGI_MASK GENMASK(12, 8)
265#define TXEFS_EFFL_MASK GENMASK(5, 0)
266
267/* Tx Event FIFO Acknowledge (TXEFA) */
268#define TXEFA_EFAI_MASK GENMASK(4, 0)
269
270/* Message RAM Configuration (in bytes) */
271#define SIDF_ELEMENT_SIZE 4
272#define XIDF_ELEMENT_SIZE 8
273#define RXF0_ELEMENT_SIZE 72
274#define RXF1_ELEMENT_SIZE 72
275#define RXB_ELEMENT_SIZE 72
276#define TXE_ELEMENT_SIZE 8
277#define TXB_ELEMENT_SIZE 72
278
279/* Message RAM Elements */
280#define M_CAN_FIFO_ID 0x0
281#define M_CAN_FIFO_DLC 0x4
282#define M_CAN_FIFO_DATA 0x8
283
284/* Rx Buffer Element */
285/* R0 */
286#define RX_BUF_ESI BIT(31)
287#define RX_BUF_XTD BIT(30)
288#define RX_BUF_RTR BIT(29)
289/* R1 */
290#define RX_BUF_ANMF BIT(31)
291#define RX_BUF_FDF BIT(21)
292#define RX_BUF_BRS BIT(20)
293#define RX_BUF_RXTS_MASK GENMASK(15, 0)
294
295/* Tx Buffer Element */
296/* T0 */
297#define TX_BUF_ESI BIT(31)
298#define TX_BUF_XTD BIT(30)
299#define TX_BUF_RTR BIT(29)
300/* T1 */
301#define TX_BUF_EFC BIT(23)
302#define TX_BUF_FDF BIT(21)
303#define TX_BUF_BRS BIT(20)
304#define TX_BUF_MM_MASK GENMASK(31, 24)
305#define TX_BUF_DLC_MASK GENMASK(19, 16)
306
307/* Tx event FIFO Element */
308/* E1 */
309#define TX_EVENT_MM_MASK GENMASK(31, 24)
310#define TX_EVENT_TXTS_MASK GENMASK(15, 0)
311
312/* Hrtimer polling interval */
313#define HRTIMER_POLL_INTERVAL_MS 1
314
315/* The ID and DLC registers are adjacent in M_CAN FIFO memory,
316 * and we can save a (potentially slow) bus round trip by combining
317 * reads and writes to them.
318 */
319struct id_and_dlc {
320 u32 id;
321 u32 dlc;
322};
323
324struct m_can_fifo_element {
325 u32 id;
326 u32 dlc;
327 u8 data[CANFD_MAX_DLEN];
328};
329
330static inline u32 m_can_read(struct m_can_classdev *cdev, enum m_can_reg reg)
331{
332 return cdev->ops->read_reg(cdev, reg);
333}
334
335static inline void m_can_write(struct m_can_classdev *cdev, enum m_can_reg reg,
336 u32 val)
337{
338 cdev->ops->write_reg(cdev, reg, val);
339}
340
341static int
342m_can_fifo_read(struct m_can_classdev *cdev,
343 u32 fgi, unsigned int offset, void *val, size_t val_count)
344{
345 u32 addr_offset = cdev->mcfg[MRAM_RXF0].off + fgi * RXF0_ELEMENT_SIZE +
346 offset;
347
348 if (val_count == 0)
349 return 0;
350
351 return cdev->ops->read_fifo(cdev, addr_offset, val, val_count);
352}
353
354static int
355m_can_fifo_write(struct m_can_classdev *cdev,
356 u32 fpi, unsigned int offset, const void *val, size_t val_count)
357{
358 u32 addr_offset = cdev->mcfg[MRAM_TXB].off + fpi * TXB_ELEMENT_SIZE +
359 offset;
360
361 if (val_count == 0)
362 return 0;
363
364 return cdev->ops->write_fifo(cdev, addr_offset, val, val_count);
365}
366
367static inline int m_can_fifo_write_no_off(struct m_can_classdev *cdev,
368 u32 fpi, u32 val)
369{
370 return cdev->ops->write_fifo(cdev, fpi, &val, 1);
371}
372
373static int
374m_can_txe_fifo_read(struct m_can_classdev *cdev, u32 fgi, u32 offset, u32 *val)
375{
376 u32 addr_offset = cdev->mcfg[MRAM_TXE].off + fgi * TXE_ELEMENT_SIZE +
377 offset;
378
379 return cdev->ops->read_fifo(cdev, addr_offset, val, 1);
380}
381
382static int m_can_cccr_update_bits(struct m_can_classdev *cdev, u32 mask, u32 val)
383{
384 u32 val_before = m_can_read(cdev, M_CAN_CCCR);
385 u32 val_after = (val_before & ~mask) | val;
386 size_t tries = 10;
387
388 if (!(mask & CCCR_INIT) && !(val_before & CCCR_INIT)) {
389 dev_err(cdev->dev,
390 "refusing to configure device when in normal mode\n");
391 return -EBUSY;
392 }
393
394 /* The chip should be in standby mode when changing the CCCR register,
395 * and some chips set the CSR and CSA bits when in standby. Furthermore,
396 * the CSR and CSA bits should be written as zeros, even when they read
397 * ones.
398 */
399 val_after &= ~(CCCR_CSR | CCCR_CSA);
400
401 while (tries--) {
402 u32 val_read;
403
404 /* Write the desired value in each try, as setting some bits in
405 * the CCCR register require other bits to be set first. E.g.
406 * setting the NISO bit requires setting the CCE bit first.
407 */
408 m_can_write(cdev, M_CAN_CCCR, val_after);
409
410 val_read = m_can_read(cdev, M_CAN_CCCR) & ~(CCCR_CSR | CCCR_CSA);
411
412 if (val_read == val_after)
413 return 0;
414
415 usleep_range(1, 5);
416 }
417
418 return -ETIMEDOUT;
419}
420
421static int m_can_config_enable(struct m_can_classdev *cdev)
422{
423 int err;
424
425 /* CCCR_INIT must be set in order to set CCCR_CCE, but access to
426 * configuration registers should only be enabled when in standby mode,
427 * where CCCR_INIT is always set.
428 */
429 err = m_can_cccr_update_bits(cdev, CCCR_CCE, CCCR_CCE);
430 if (err)
431 netdev_err(cdev->net, "failed to enable configuration mode\n");
432
433 return err;
434}
435
436static int m_can_config_disable(struct m_can_classdev *cdev)
437{
438 int err;
439
440 /* Only clear CCCR_CCE, since CCCR_INIT cannot be cleared while in
441 * standby mode
442 */
443 err = m_can_cccr_update_bits(cdev, CCCR_CCE, 0);
444 if (err)
445 netdev_err(cdev->net, "failed to disable configuration registers\n");
446
447 return err;
448}
449
450static void m_can_interrupt_enable(struct m_can_classdev *cdev, u32 interrupts)
451{
452 if (cdev->active_interrupts == interrupts)
453 return;
454 cdev->ops->write_reg(cdev, M_CAN_IE, interrupts);
455 cdev->active_interrupts = interrupts;
456}
457
458static void m_can_coalescing_disable(struct m_can_classdev *cdev)
459{
460 u32 new_interrupts = cdev->active_interrupts | IR_RF0N | IR_TEFN;
461
462 if (!cdev->net->irq)
463 return;
464
465 hrtimer_cancel(&cdev->hrtimer);
466 m_can_interrupt_enable(cdev, new_interrupts);
467}
468
469static inline void m_can_enable_all_interrupts(struct m_can_classdev *cdev)
470{
471 if (!cdev->net->irq) {
472 dev_dbg(cdev->dev, "Start hrtimer\n");
473 hrtimer_start(&cdev->hrtimer,
474 ms_to_ktime(HRTIMER_POLL_INTERVAL_MS),
475 HRTIMER_MODE_REL_PINNED);
476 }
477
478 /* Only interrupt line 0 is used in this driver */
479 m_can_write(cdev, M_CAN_ILE, ILE_EINT0);
480}
481
482static inline void m_can_disable_all_interrupts(struct m_can_classdev *cdev)
483{
484 m_can_coalescing_disable(cdev);
485 m_can_write(cdev, M_CAN_ILE, 0x0);
486
487 if (!cdev->net->irq) {
488 dev_dbg(cdev->dev, "Stop hrtimer\n");
489 hrtimer_try_to_cancel(&cdev->hrtimer);
490 }
491}
492
493/* Retrieve internal timestamp counter from TSCV.TSC, and shift it to 32-bit
494 * width.
495 */
496static u32 m_can_get_timestamp(struct m_can_classdev *cdev)
497{
498 u32 tscv;
499 u32 tsc;
500
501 tscv = m_can_read(cdev, M_CAN_TSCV);
502 tsc = FIELD_GET(TSCV_TSC_MASK, tscv);
503
504 return (tsc << 16);
505}
506
507static void m_can_clean(struct net_device *net)
508{
509 struct m_can_classdev *cdev = netdev_priv(net);
510 unsigned long irqflags;
511
512 if (cdev->tx_ops) {
513 for (int i = 0; i != cdev->tx_fifo_size; ++i) {
514 if (!cdev->tx_ops[i].skb)
515 continue;
516
517 net->stats.tx_errors++;
518 cdev->tx_ops[i].skb = NULL;
519 }
520 }
521
522 for (int i = 0; i != cdev->can.echo_skb_max; ++i)
523 can_free_echo_skb(cdev->net, i, NULL);
524
525 netdev_reset_queue(cdev->net);
526
527 spin_lock_irqsave(&cdev->tx_handling_spinlock, irqflags);
528 cdev->tx_fifo_in_flight = 0;
529 spin_unlock_irqrestore(&cdev->tx_handling_spinlock, irqflags);
530}
531
532/* For peripherals, pass skb to rx-offload, which will push skb from
533 * napi. For non-peripherals, RX is done in napi already, so push
534 * directly. timestamp is used to ensure good skb ordering in
535 * rx-offload and is ignored for non-peripherals.
536 */
537static void m_can_receive_skb(struct m_can_classdev *cdev,
538 struct sk_buff *skb,
539 u32 timestamp)
540{
541 if (cdev->is_peripheral) {
542 struct net_device_stats *stats = &cdev->net->stats;
543 int err;
544
545 err = can_rx_offload_queue_timestamp(&cdev->offload, skb,
546 timestamp);
547 if (err)
548 stats->rx_fifo_errors++;
549 } else {
550 netif_receive_skb(skb);
551 }
552}
553
554static int m_can_read_fifo(struct net_device *dev, u32 fgi)
555{
556 struct net_device_stats *stats = &dev->stats;
557 struct m_can_classdev *cdev = netdev_priv(dev);
558 struct canfd_frame *cf;
559 struct sk_buff *skb;
560 struct id_and_dlc fifo_header;
561 u32 timestamp = 0;
562 int err;
563
564 err = m_can_fifo_read(cdev, fgi, M_CAN_FIFO_ID, &fifo_header, 2);
565 if (err)
566 goto out_fail;
567
568 if (fifo_header.dlc & RX_BUF_FDF)
569 skb = alloc_canfd_skb(dev, &cf);
570 else
571 skb = alloc_can_skb(dev, (struct can_frame **)&cf);
572 if (!skb) {
573 stats->rx_dropped++;
574 return 0;
575 }
576
577 if (fifo_header.dlc & RX_BUF_FDF)
578 cf->len = can_fd_dlc2len((fifo_header.dlc >> 16) & 0x0F);
579 else
580 cf->len = can_cc_dlc2len((fifo_header.dlc >> 16) & 0x0F);
581
582 if (fifo_header.id & RX_BUF_XTD)
583 cf->can_id = (fifo_header.id & CAN_EFF_MASK) | CAN_EFF_FLAG;
584 else
585 cf->can_id = (fifo_header.id >> 18) & CAN_SFF_MASK;
586
587 if (fifo_header.id & RX_BUF_ESI) {
588 cf->flags |= CANFD_ESI;
589 netdev_dbg(dev, "ESI Error\n");
590 }
591
592 if (!(fifo_header.dlc & RX_BUF_FDF) && (fifo_header.id & RX_BUF_RTR)) {
593 cf->can_id |= CAN_RTR_FLAG;
594 } else {
595 if (fifo_header.dlc & RX_BUF_BRS)
596 cf->flags |= CANFD_BRS;
597
598 err = m_can_fifo_read(cdev, fgi, M_CAN_FIFO_DATA,
599 cf->data, DIV_ROUND_UP(cf->len, 4));
600 if (err)
601 goto out_free_skb;
602
603 stats->rx_bytes += cf->len;
604 }
605 stats->rx_packets++;
606
607 timestamp = FIELD_GET(RX_BUF_RXTS_MASK, fifo_header.dlc) << 16;
608
609 m_can_receive_skb(cdev, skb, timestamp);
610
611 return 0;
612
613out_free_skb:
614 kfree_skb(skb);
615out_fail:
616 netdev_err(dev, "FIFO read returned %d\n", err);
617 return err;
618}
619
620static int m_can_do_rx_poll(struct net_device *dev, int quota)
621{
622 struct m_can_classdev *cdev = netdev_priv(dev);
623 u32 pkts = 0;
624 u32 rxfs;
625 u32 rx_count;
626 u32 fgi;
627 int ack_fgi = -1;
628 int i;
629 int err = 0;
630
631 rxfs = m_can_read(cdev, M_CAN_RXF0S);
632 if (!(rxfs & RXFS_FFL_MASK)) {
633 netdev_dbg(dev, "no messages in fifo0\n");
634 return 0;
635 }
636
637 rx_count = FIELD_GET(RXFS_FFL_MASK, rxfs);
638 fgi = FIELD_GET(RXFS_FGI_MASK, rxfs);
639
640 for (i = 0; i < rx_count && quota > 0; ++i) {
641 err = m_can_read_fifo(dev, fgi);
642 if (err)
643 break;
644
645 quota--;
646 pkts++;
647 ack_fgi = fgi;
648 fgi = (++fgi >= cdev->mcfg[MRAM_RXF0].num ? 0 : fgi);
649 }
650
651 if (ack_fgi != -1)
652 m_can_write(cdev, M_CAN_RXF0A, ack_fgi);
653
654 if (err)
655 return err;
656
657 return pkts;
658}
659
660static int m_can_handle_lost_msg(struct net_device *dev)
661{
662 struct m_can_classdev *cdev = netdev_priv(dev);
663 struct net_device_stats *stats = &dev->stats;
664 struct sk_buff *skb;
665 struct can_frame *frame;
666 u32 timestamp = 0;
667
668 netdev_err(dev, "msg lost in rxf0\n");
669
670 stats->rx_errors++;
671 stats->rx_over_errors++;
672
673 skb = alloc_can_err_skb(dev, &frame);
674 if (unlikely(!skb))
675 return 0;
676
677 frame->can_id |= CAN_ERR_CRTL;
678 frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
679
680 if (cdev->is_peripheral)
681 timestamp = m_can_get_timestamp(cdev);
682
683 m_can_receive_skb(cdev, skb, timestamp);
684
685 return 1;
686}
687
688static int m_can_handle_lec_err(struct net_device *dev,
689 enum m_can_lec_type lec_type)
690{
691 struct m_can_classdev *cdev = netdev_priv(dev);
692 struct net_device_stats *stats = &dev->stats;
693 struct can_frame *cf;
694 struct sk_buff *skb;
695 u32 timestamp = 0;
696
697 cdev->can.can_stats.bus_error++;
698
699 /* propagate the error condition to the CAN stack */
700 skb = alloc_can_err_skb(dev, &cf);
701
702 /* check for 'last error code' which tells us the
703 * type of the last error to occur on the CAN bus
704 */
705 if (likely(skb))
706 cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
707
708 switch (lec_type) {
709 case LEC_STUFF_ERROR:
710 netdev_dbg(dev, "stuff error\n");
711 stats->rx_errors++;
712 if (likely(skb))
713 cf->data[2] |= CAN_ERR_PROT_STUFF;
714 break;
715 case LEC_FORM_ERROR:
716 netdev_dbg(dev, "form error\n");
717 stats->rx_errors++;
718 if (likely(skb))
719 cf->data[2] |= CAN_ERR_PROT_FORM;
720 break;
721 case LEC_ACK_ERROR:
722 netdev_dbg(dev, "ack error\n");
723 stats->tx_errors++;
724 if (likely(skb))
725 cf->data[3] = CAN_ERR_PROT_LOC_ACK;
726 break;
727 case LEC_BIT1_ERROR:
728 netdev_dbg(dev, "bit1 error\n");
729 stats->tx_errors++;
730 if (likely(skb))
731 cf->data[2] |= CAN_ERR_PROT_BIT1;
732 break;
733 case LEC_BIT0_ERROR:
734 netdev_dbg(dev, "bit0 error\n");
735 stats->tx_errors++;
736 if (likely(skb))
737 cf->data[2] |= CAN_ERR_PROT_BIT0;
738 break;
739 case LEC_CRC_ERROR:
740 netdev_dbg(dev, "CRC error\n");
741 stats->rx_errors++;
742 if (likely(skb))
743 cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
744 break;
745 default:
746 break;
747 }
748
749 if (unlikely(!skb))
750 return 0;
751
752 if (cdev->is_peripheral)
753 timestamp = m_can_get_timestamp(cdev);
754
755 m_can_receive_skb(cdev, skb, timestamp);
756
757 return 1;
758}
759
760static int __m_can_get_berr_counter(const struct net_device *dev,
761 struct can_berr_counter *bec)
762{
763 struct m_can_classdev *cdev = netdev_priv(dev);
764 unsigned int ecr;
765
766 ecr = m_can_read(cdev, M_CAN_ECR);
767 bec->rxerr = FIELD_GET(ECR_REC_MASK, ecr);
768 bec->txerr = FIELD_GET(ECR_TEC_MASK, ecr);
769
770 return 0;
771}
772
773static int m_can_clk_start(struct m_can_classdev *cdev)
774{
775 if (cdev->pm_clock_support == 0)
776 return 0;
777
778 return pm_runtime_resume_and_get(cdev->dev);
779}
780
781static void m_can_clk_stop(struct m_can_classdev *cdev)
782{
783 if (cdev->pm_clock_support)
784 pm_runtime_put_sync(cdev->dev);
785}
786
787static int m_can_get_berr_counter(const struct net_device *dev,
788 struct can_berr_counter *bec)
789{
790 struct m_can_classdev *cdev = netdev_priv(dev);
791 int err;
792
793 err = m_can_clk_start(cdev);
794 if (err)
795 return err;
796
797 __m_can_get_berr_counter(dev, bec);
798
799 m_can_clk_stop(cdev);
800
801 return 0;
802}
803
804static int m_can_handle_state_change(struct net_device *dev,
805 enum can_state new_state)
806{
807 struct m_can_classdev *cdev = netdev_priv(dev);
808 struct can_frame *cf;
809 struct sk_buff *skb;
810 struct can_berr_counter bec;
811 unsigned int ecr;
812 u32 timestamp = 0;
813
814 switch (new_state) {
815 case CAN_STATE_ERROR_WARNING:
816 /* error warning state */
817 cdev->can.can_stats.error_warning++;
818 cdev->can.state = CAN_STATE_ERROR_WARNING;
819 break;
820 case CAN_STATE_ERROR_PASSIVE:
821 /* error passive state */
822 cdev->can.can_stats.error_passive++;
823 cdev->can.state = CAN_STATE_ERROR_PASSIVE;
824 break;
825 case CAN_STATE_BUS_OFF:
826 /* bus-off state */
827 cdev->can.state = CAN_STATE_BUS_OFF;
828 m_can_disable_all_interrupts(cdev);
829 cdev->can.can_stats.bus_off++;
830 can_bus_off(dev);
831 break;
832 default:
833 break;
834 }
835
836 /* propagate the error condition to the CAN stack */
837 skb = alloc_can_err_skb(dev, &cf);
838 if (unlikely(!skb))
839 return 0;
840
841 __m_can_get_berr_counter(dev, &bec);
842
843 switch (new_state) {
844 case CAN_STATE_ERROR_WARNING:
845 /* error warning state */
846 cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT;
847 cf->data[1] = (bec.txerr > bec.rxerr) ?
848 CAN_ERR_CRTL_TX_WARNING :
849 CAN_ERR_CRTL_RX_WARNING;
850 cf->data[6] = bec.txerr;
851 cf->data[7] = bec.rxerr;
852 break;
853 case CAN_STATE_ERROR_PASSIVE:
854 /* error passive state */
855 cf->can_id |= CAN_ERR_CRTL | CAN_ERR_CNT;
856 ecr = m_can_read(cdev, M_CAN_ECR);
857 if (ecr & ECR_RP)
858 cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
859 if (bec.txerr > 127)
860 cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
861 cf->data[6] = bec.txerr;
862 cf->data[7] = bec.rxerr;
863 break;
864 case CAN_STATE_BUS_OFF:
865 /* bus-off state */
866 cf->can_id |= CAN_ERR_BUSOFF;
867 break;
868 default:
869 break;
870 }
871
872 if (cdev->is_peripheral)
873 timestamp = m_can_get_timestamp(cdev);
874
875 m_can_receive_skb(cdev, skb, timestamp);
876
877 return 1;
878}
879
880static int m_can_handle_state_errors(struct net_device *dev, u32 psr)
881{
882 struct m_can_classdev *cdev = netdev_priv(dev);
883 int work_done = 0;
884
885 if (psr & PSR_EW && cdev->can.state != CAN_STATE_ERROR_WARNING) {
886 netdev_dbg(dev, "entered error warning state\n");
887 work_done += m_can_handle_state_change(dev,
888 CAN_STATE_ERROR_WARNING);
889 }
890
891 if (psr & PSR_EP && cdev->can.state != CAN_STATE_ERROR_PASSIVE) {
892 netdev_dbg(dev, "entered error passive state\n");
893 work_done += m_can_handle_state_change(dev,
894 CAN_STATE_ERROR_PASSIVE);
895 }
896
897 if (psr & PSR_BO && cdev->can.state != CAN_STATE_BUS_OFF) {
898 netdev_dbg(dev, "entered error bus off state\n");
899 work_done += m_can_handle_state_change(dev,
900 CAN_STATE_BUS_OFF);
901 }
902
903 return work_done;
904}
905
906static void m_can_handle_other_err(struct net_device *dev, u32 irqstatus)
907{
908 if (irqstatus & IR_WDI)
909 netdev_err(dev, "Message RAM Watchdog event due to missing READY\n");
910 if (irqstatus & IR_BEU)
911 netdev_err(dev, "Bit Error Uncorrected\n");
912 if (irqstatus & IR_BEC)
913 netdev_err(dev, "Bit Error Corrected\n");
914 if (irqstatus & IR_TOO)
915 netdev_err(dev, "Timeout reached\n");
916 if (irqstatus & IR_MRAF)
917 netdev_err(dev, "Message RAM access failure occurred\n");
918}
919
920static inline bool is_lec_err(u8 lec)
921{
922 return lec != LEC_NO_ERROR && lec != LEC_NO_CHANGE;
923}
924
925static inline bool m_can_is_protocol_err(u32 irqstatus)
926{
927 return irqstatus & IR_ERR_LEC_31X;
928}
929
930static int m_can_handle_protocol_error(struct net_device *dev, u32 irqstatus)
931{
932 struct net_device_stats *stats = &dev->stats;
933 struct m_can_classdev *cdev = netdev_priv(dev);
934 struct can_frame *cf;
935 struct sk_buff *skb;
936 u32 timestamp = 0;
937
938 /* propagate the error condition to the CAN stack */
939 skb = alloc_can_err_skb(dev, &cf);
940
941 /* update tx error stats since there is protocol error */
942 stats->tx_errors++;
943
944 /* update arbitration lost status */
945 if (cdev->version >= 31 && (irqstatus & IR_PEA)) {
946 netdev_dbg(dev, "Protocol error in Arbitration fail\n");
947 cdev->can.can_stats.arbitration_lost++;
948 if (skb) {
949 cf->can_id |= CAN_ERR_LOSTARB;
950 cf->data[0] |= CAN_ERR_LOSTARB_UNSPEC;
951 }
952 }
953
954 if (unlikely(!skb)) {
955 netdev_dbg(dev, "allocation of skb failed\n");
956 return 0;
957 }
958
959 if (cdev->is_peripheral)
960 timestamp = m_can_get_timestamp(cdev);
961
962 m_can_receive_skb(cdev, skb, timestamp);
963
964 return 1;
965}
966
967static int m_can_handle_bus_errors(struct net_device *dev, u32 irqstatus,
968 u32 psr)
969{
970 struct m_can_classdev *cdev = netdev_priv(dev);
971 int work_done = 0;
972
973 if (irqstatus & IR_RF0L)
974 work_done += m_can_handle_lost_msg(dev);
975
976 /* handle lec errors on the bus */
977 if (cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) {
978 u8 lec = FIELD_GET(PSR_LEC_MASK, psr);
979 u8 dlec = FIELD_GET(PSR_DLEC_MASK, psr);
980
981 if (is_lec_err(lec)) {
982 netdev_dbg(dev, "Arbitration phase error detected\n");
983 work_done += m_can_handle_lec_err(dev, lec);
984 }
985
986 if (is_lec_err(dlec)) {
987 netdev_dbg(dev, "Data phase error detected\n");
988 work_done += m_can_handle_lec_err(dev, dlec);
989 }
990 }
991
992 /* handle protocol errors in arbitration phase */
993 if ((cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) &&
994 m_can_is_protocol_err(irqstatus))
995 work_done += m_can_handle_protocol_error(dev, irqstatus);
996
997 /* other unproccessed error interrupts */
998 m_can_handle_other_err(dev, irqstatus);
999
1000 return work_done;
1001}
1002
1003static int m_can_rx_handler(struct net_device *dev, int quota, u32 irqstatus)
1004{
1005 struct m_can_classdev *cdev = netdev_priv(dev);
1006 int rx_work_or_err;
1007 int work_done = 0;
1008
1009 if (!irqstatus)
1010 goto end;
1011
1012 /* Errata workaround for issue "Needless activation of MRAF irq"
1013 * During frame reception while the MCAN is in Error Passive state
1014 * and the Receive Error Counter has the value MCAN_ECR.REC = 127,
1015 * it may happen that MCAN_IR.MRAF is set although there was no
1016 * Message RAM access failure.
1017 * If MCAN_IR.MRAF is enabled, an interrupt to the Host CPU is generated
1018 * The Message RAM Access Failure interrupt routine needs to check
1019 * whether MCAN_ECR.RP = ’1’ and MCAN_ECR.REC = 127.
1020 * In this case, reset MCAN_IR.MRAF. No further action is required.
1021 */
1022 if (cdev->version <= 31 && irqstatus & IR_MRAF &&
1023 m_can_read(cdev, M_CAN_ECR) & ECR_RP) {
1024 struct can_berr_counter bec;
1025
1026 __m_can_get_berr_counter(dev, &bec);
1027 if (bec.rxerr == 127) {
1028 m_can_write(cdev, M_CAN_IR, IR_MRAF);
1029 irqstatus &= ~IR_MRAF;
1030 }
1031 }
1032
1033 if (irqstatus & IR_ERR_STATE)
1034 work_done += m_can_handle_state_errors(dev,
1035 m_can_read(cdev, M_CAN_PSR));
1036
1037 if (irqstatus & IR_ERR_BUS_30X)
1038 work_done += m_can_handle_bus_errors(dev, irqstatus,
1039 m_can_read(cdev, M_CAN_PSR));
1040
1041 if (irqstatus & IR_RF0N) {
1042 rx_work_or_err = m_can_do_rx_poll(dev, (quota - work_done));
1043 if (rx_work_or_err < 0)
1044 return rx_work_or_err;
1045
1046 work_done += rx_work_or_err;
1047 }
1048end:
1049 return work_done;
1050}
1051
1052static int m_can_poll(struct napi_struct *napi, int quota)
1053{
1054 struct net_device *dev = napi->dev;
1055 struct m_can_classdev *cdev = netdev_priv(dev);
1056 int work_done;
1057 u32 irqstatus;
1058
1059 irqstatus = cdev->irqstatus | m_can_read(cdev, M_CAN_IR);
1060
1061 work_done = m_can_rx_handler(dev, quota, irqstatus);
1062
1063 /* Don't re-enable interrupts if the driver had a fatal error
1064 * (e.g., FIFO read failure).
1065 */
1066 if (work_done >= 0 && work_done < quota) {
1067 napi_complete_done(napi, work_done);
1068 m_can_enable_all_interrupts(cdev);
1069 }
1070
1071 return work_done;
1072}
1073
1074/* Echo tx skb and update net stats. Peripherals use rx-offload for
1075 * echo. timestamp is used for peripherals to ensure correct ordering
1076 * by rx-offload, and is ignored for non-peripherals.
1077 */
1078static unsigned int m_can_tx_update_stats(struct m_can_classdev *cdev,
1079 unsigned int msg_mark, u32 timestamp)
1080{
1081 struct net_device *dev = cdev->net;
1082 struct net_device_stats *stats = &dev->stats;
1083 unsigned int frame_len;
1084
1085 if (cdev->is_peripheral)
1086 stats->tx_bytes +=
1087 can_rx_offload_get_echo_skb_queue_timestamp(&cdev->offload,
1088 msg_mark,
1089 timestamp,
1090 &frame_len);
1091 else
1092 stats->tx_bytes += can_get_echo_skb(dev, msg_mark, &frame_len);
1093
1094 stats->tx_packets++;
1095
1096 return frame_len;
1097}
1098
1099static void m_can_finish_tx(struct m_can_classdev *cdev, int transmitted,
1100 unsigned int transmitted_frame_len)
1101{
1102 unsigned long irqflags;
1103
1104 netdev_completed_queue(cdev->net, transmitted, transmitted_frame_len);
1105
1106 spin_lock_irqsave(&cdev->tx_handling_spinlock, irqflags);
1107 if (cdev->tx_fifo_in_flight >= cdev->tx_fifo_size && transmitted > 0)
1108 netif_wake_queue(cdev->net);
1109 cdev->tx_fifo_in_flight -= transmitted;
1110 spin_unlock_irqrestore(&cdev->tx_handling_spinlock, irqflags);
1111}
1112
1113static netdev_tx_t m_can_start_tx(struct m_can_classdev *cdev)
1114{
1115 unsigned long irqflags;
1116 int tx_fifo_in_flight;
1117
1118 spin_lock_irqsave(&cdev->tx_handling_spinlock, irqflags);
1119 tx_fifo_in_flight = cdev->tx_fifo_in_flight + 1;
1120 if (tx_fifo_in_flight >= cdev->tx_fifo_size) {
1121 netif_stop_queue(cdev->net);
1122 if (tx_fifo_in_flight > cdev->tx_fifo_size) {
1123 netdev_err_once(cdev->net, "hard_xmit called while TX FIFO full\n");
1124 spin_unlock_irqrestore(&cdev->tx_handling_spinlock, irqflags);
1125 return NETDEV_TX_BUSY;
1126 }
1127 }
1128 cdev->tx_fifo_in_flight = tx_fifo_in_flight;
1129 spin_unlock_irqrestore(&cdev->tx_handling_spinlock, irqflags);
1130
1131 return NETDEV_TX_OK;
1132}
1133
1134static int m_can_echo_tx_event(struct net_device *dev)
1135{
1136 u32 txe_count = 0;
1137 u32 m_can_txefs;
1138 u32 fgi = 0;
1139 int ack_fgi = -1;
1140 int i = 0;
1141 int err = 0;
1142 unsigned int msg_mark;
1143 int processed = 0;
1144 unsigned int processed_frame_len = 0;
1145
1146 struct m_can_classdev *cdev = netdev_priv(dev);
1147
1148 /* read tx event fifo status */
1149 m_can_txefs = m_can_read(cdev, M_CAN_TXEFS);
1150
1151 /* Get Tx Event fifo element count */
1152 txe_count = FIELD_GET(TXEFS_EFFL_MASK, m_can_txefs);
1153 fgi = FIELD_GET(TXEFS_EFGI_MASK, m_can_txefs);
1154
1155 /* Get and process all sent elements */
1156 for (i = 0; i < txe_count; i++) {
1157 u32 txe, timestamp = 0;
1158
1159 /* get message marker, timestamp */
1160 err = m_can_txe_fifo_read(cdev, fgi, 4, &txe);
1161 if (err) {
1162 netdev_err(dev, "TXE FIFO read returned %d\n", err);
1163 break;
1164 }
1165
1166 msg_mark = FIELD_GET(TX_EVENT_MM_MASK, txe);
1167 timestamp = FIELD_GET(TX_EVENT_TXTS_MASK, txe) << 16;
1168
1169 ack_fgi = fgi;
1170 fgi = (++fgi >= cdev->mcfg[MRAM_TXE].num ? 0 : fgi);
1171
1172 /* update stats */
1173 processed_frame_len += m_can_tx_update_stats(cdev, msg_mark,
1174 timestamp);
1175
1176 ++processed;
1177 }
1178
1179 if (ack_fgi != -1)
1180 m_can_write(cdev, M_CAN_TXEFA, FIELD_PREP(TXEFA_EFAI_MASK,
1181 ack_fgi));
1182
1183 m_can_finish_tx(cdev, processed, processed_frame_len);
1184
1185 return err;
1186}
1187
1188static void m_can_coalescing_update(struct m_can_classdev *cdev, u32 ir)
1189{
1190 u32 new_interrupts = cdev->active_interrupts;
1191 bool enable_rx_timer = false;
1192 bool enable_tx_timer = false;
1193
1194 if (!cdev->net->irq)
1195 return;
1196
1197 if (cdev->rx_coalesce_usecs_irq > 0 && (ir & (IR_RF0N | IR_RF0W))) {
1198 enable_rx_timer = true;
1199 new_interrupts &= ~IR_RF0N;
1200 }
1201 if (cdev->tx_coalesce_usecs_irq > 0 && (ir & (IR_TEFN | IR_TEFW))) {
1202 enable_tx_timer = true;
1203 new_interrupts &= ~IR_TEFN;
1204 }
1205 if (!enable_rx_timer && !hrtimer_active(&cdev->hrtimer))
1206 new_interrupts |= IR_RF0N;
1207 if (!enable_tx_timer && !hrtimer_active(&cdev->hrtimer))
1208 new_interrupts |= IR_TEFN;
1209
1210 m_can_interrupt_enable(cdev, new_interrupts);
1211 if (enable_rx_timer | enable_tx_timer)
1212 hrtimer_start(&cdev->hrtimer, cdev->irq_timer_wait,
1213 HRTIMER_MODE_REL);
1214}
1215
1216/* This interrupt handler is called either from the interrupt thread or a
1217 * hrtimer. This has implications like cancelling a timer won't be possible
1218 * blocking.
1219 */
1220static int m_can_interrupt_handler(struct m_can_classdev *cdev)
1221{
1222 struct net_device *dev = cdev->net;
1223 u32 ir = 0, ir_read;
1224 int ret;
1225
1226 if (pm_runtime_suspended(cdev->dev))
1227 return IRQ_NONE;
1228
1229 /* The m_can controller signals its interrupt status as a level, but
1230 * depending in the integration the CPU may interpret the signal as
1231 * edge-triggered (for example with m_can_pci). For these
1232 * edge-triggered integrations, we must observe that IR is 0 at least
1233 * once to be sure that the next interrupt will generate an edge.
1234 */
1235 while ((ir_read = m_can_read(cdev, M_CAN_IR)) != 0) {
1236 ir |= ir_read;
1237
1238 /* ACK all irqs */
1239 m_can_write(cdev, M_CAN_IR, ir);
1240
1241 if (!cdev->irq_edge_triggered)
1242 break;
1243 }
1244
1245 m_can_coalescing_update(cdev, ir);
1246 if (!ir)
1247 return IRQ_NONE;
1248
1249 if (cdev->ops->clear_interrupts)
1250 cdev->ops->clear_interrupts(cdev);
1251
1252 /* schedule NAPI in case of
1253 * - rx IRQ
1254 * - state change IRQ
1255 * - bus error IRQ and bus error reporting
1256 */
1257 if (ir & (IR_RF0N | IR_RF0W | IR_ERR_ALL_30X)) {
1258 cdev->irqstatus = ir;
1259 if (!cdev->is_peripheral) {
1260 m_can_disable_all_interrupts(cdev);
1261 napi_schedule(&cdev->napi);
1262 } else {
1263 ret = m_can_rx_handler(dev, NAPI_POLL_WEIGHT, ir);
1264 if (ret < 0)
1265 return ret;
1266 }
1267 }
1268
1269 if (cdev->version == 30) {
1270 if (ir & IR_TC) {
1271 /* Transmission Complete Interrupt*/
1272 u32 timestamp = 0;
1273 unsigned int frame_len;
1274
1275 if (cdev->is_peripheral)
1276 timestamp = m_can_get_timestamp(cdev);
1277 frame_len = m_can_tx_update_stats(cdev, 0, timestamp);
1278 m_can_finish_tx(cdev, 1, frame_len);
1279 }
1280 } else {
1281 if (ir & (IR_TEFN | IR_TEFW)) {
1282 /* New TX FIFO Element arrived */
1283 ret = m_can_echo_tx_event(dev);
1284 if (ret != 0)
1285 return ret;
1286 }
1287 }
1288
1289 if (cdev->is_peripheral)
1290 can_rx_offload_threaded_irq_finish(&cdev->offload);
1291
1292 return IRQ_HANDLED;
1293}
1294
1295static irqreturn_t m_can_isr(int irq, void *dev_id)
1296{
1297 struct net_device *dev = (struct net_device *)dev_id;
1298 struct m_can_classdev *cdev = netdev_priv(dev);
1299 int ret;
1300
1301 ret = m_can_interrupt_handler(cdev);
1302 if (ret < 0) {
1303 m_can_disable_all_interrupts(cdev);
1304 return IRQ_HANDLED;
1305 }
1306
1307 return ret;
1308}
1309
1310static enum hrtimer_restart m_can_coalescing_timer(struct hrtimer *timer)
1311{
1312 struct m_can_classdev *cdev = container_of(timer, struct m_can_classdev, hrtimer);
1313
1314 if (cdev->can.state == CAN_STATE_BUS_OFF ||
1315 cdev->can.state == CAN_STATE_STOPPED)
1316 return HRTIMER_NORESTART;
1317
1318 irq_wake_thread(cdev->net->irq, cdev->net);
1319
1320 return HRTIMER_NORESTART;
1321}
1322
1323static const struct can_bittiming_const m_can_bittiming_const_30X = {
1324 .name = KBUILD_MODNAME,
1325 .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */
1326 .tseg1_max = 64,
1327 .tseg2_min = 1, /* Time segment 2 = phase_seg2 */
1328 .tseg2_max = 16,
1329 .sjw_max = 16,
1330 .brp_min = 1,
1331 .brp_max = 1024,
1332 .brp_inc = 1,
1333};
1334
1335static const struct can_bittiming_const m_can_data_bittiming_const_30X = {
1336 .name = KBUILD_MODNAME,
1337 .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */
1338 .tseg1_max = 16,
1339 .tseg2_min = 1, /* Time segment 2 = phase_seg2 */
1340 .tseg2_max = 8,
1341 .sjw_max = 4,
1342 .brp_min = 1,
1343 .brp_max = 32,
1344 .brp_inc = 1,
1345};
1346
1347static const struct can_bittiming_const m_can_bittiming_const_31X = {
1348 .name = KBUILD_MODNAME,
1349 .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */
1350 .tseg1_max = 256,
1351 .tseg2_min = 2, /* Time segment 2 = phase_seg2 */
1352 .tseg2_max = 128,
1353 .sjw_max = 128,
1354 .brp_min = 1,
1355 .brp_max = 512,
1356 .brp_inc = 1,
1357};
1358
1359static const struct can_bittiming_const m_can_data_bittiming_const_31X = {
1360 .name = KBUILD_MODNAME,
1361 .tseg1_min = 1, /* Time segment 1 = prop_seg + phase_seg1 */
1362 .tseg1_max = 32,
1363 .tseg2_min = 1, /* Time segment 2 = phase_seg2 */
1364 .tseg2_max = 16,
1365 .sjw_max = 16,
1366 .brp_min = 1,
1367 .brp_max = 32,
1368 .brp_inc = 1,
1369};
1370
1371static int m_can_set_bittiming(struct net_device *dev)
1372{
1373 struct m_can_classdev *cdev = netdev_priv(dev);
1374 const struct can_bittiming *bt = &cdev->can.bittiming;
1375 const struct can_bittiming *dbt = &cdev->can.data_bittiming;
1376 u16 brp, sjw, tseg1, tseg2;
1377 u32 reg_btp;
1378
1379 brp = bt->brp - 1;
1380 sjw = bt->sjw - 1;
1381 tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
1382 tseg2 = bt->phase_seg2 - 1;
1383 reg_btp = FIELD_PREP(NBTP_NBRP_MASK, brp) |
1384 FIELD_PREP(NBTP_NSJW_MASK, sjw) |
1385 FIELD_PREP(NBTP_NTSEG1_MASK, tseg1) |
1386 FIELD_PREP(NBTP_NTSEG2_MASK, tseg2);
1387 m_can_write(cdev, M_CAN_NBTP, reg_btp);
1388
1389 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) {
1390 reg_btp = 0;
1391 brp = dbt->brp - 1;
1392 sjw = dbt->sjw - 1;
1393 tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1;
1394 tseg2 = dbt->phase_seg2 - 1;
1395
1396 /* TDC is only needed for bitrates beyond 2.5 MBit/s.
1397 * This is mentioned in the "Bit Time Requirements for CAN FD"
1398 * paper presented at the International CAN Conference 2013
1399 */
1400 if (dbt->bitrate > 2500000) {
1401 u32 tdco, ssp;
1402
1403 /* Use the same value of secondary sampling point
1404 * as the data sampling point
1405 */
1406 ssp = dbt->sample_point;
1407
1408 /* Equation based on Bosch's M_CAN User Manual's
1409 * Transmitter Delay Compensation Section
1410 */
1411 tdco = (cdev->can.clock.freq / 1000) *
1412 ssp / dbt->bitrate;
1413
1414 /* Max valid TDCO value is 127 */
1415 if (tdco > 127) {
1416 netdev_warn(dev, "TDCO value of %u is beyond maximum. Using maximum possible value\n",
1417 tdco);
1418 tdco = 127;
1419 }
1420
1421 reg_btp |= DBTP_TDC;
1422 m_can_write(cdev, M_CAN_TDCR,
1423 FIELD_PREP(TDCR_TDCO_MASK, tdco));
1424 }
1425
1426 reg_btp |= FIELD_PREP(DBTP_DBRP_MASK, brp) |
1427 FIELD_PREP(DBTP_DSJW_MASK, sjw) |
1428 FIELD_PREP(DBTP_DTSEG1_MASK, tseg1) |
1429 FIELD_PREP(DBTP_DTSEG2_MASK, tseg2);
1430
1431 m_can_write(cdev, M_CAN_DBTP, reg_btp);
1432 }
1433
1434 return 0;
1435}
1436
1437/* Configure M_CAN chip:
1438 * - set rx buffer/fifo element size
1439 * - configure rx fifo
1440 * - accept non-matching frame into fifo 0
1441 * - configure tx buffer
1442 * - >= v3.1.x: TX FIFO is used
1443 * - configure mode
1444 * - setup bittiming
1445 * - configure timestamp generation
1446 */
1447static int m_can_chip_config(struct net_device *dev)
1448{
1449 struct m_can_classdev *cdev = netdev_priv(dev);
1450 u32 interrupts = IR_ALL_INT;
1451 u32 cccr, test;
1452 int err;
1453
1454 err = m_can_init_ram(cdev);
1455 if (err) {
1456 dev_err(cdev->dev, "Message RAM configuration failed\n");
1457 return err;
1458 }
1459
1460 /* Disable unused interrupts */
1461 interrupts &= ~(IR_ARA | IR_ELO | IR_DRX | IR_TEFF | IR_TFE | IR_TCF |
1462 IR_HPM | IR_RF1F | IR_RF1W | IR_RF1N | IR_RF0F |
1463 IR_TSW);
1464
1465 err = m_can_config_enable(cdev);
1466 if (err)
1467 return err;
1468
1469 /* RX Buffer/FIFO Element Size 64 bytes data field */
1470 m_can_write(cdev, M_CAN_RXESC,
1471 FIELD_PREP(RXESC_RBDS_MASK, RXESC_64B) |
1472 FIELD_PREP(RXESC_F1DS_MASK, RXESC_64B) |
1473 FIELD_PREP(RXESC_F0DS_MASK, RXESC_64B));
1474
1475 /* Accept Non-matching Frames Into FIFO 0 */
1476 m_can_write(cdev, M_CAN_GFC, 0x0);
1477
1478 if (cdev->version == 30) {
1479 /* only support one Tx Buffer currently */
1480 m_can_write(cdev, M_CAN_TXBC, FIELD_PREP(TXBC_NDTB_MASK, 1) |
1481 cdev->mcfg[MRAM_TXB].off);
1482 } else {
1483 /* TX FIFO is used for newer IP Core versions */
1484 m_can_write(cdev, M_CAN_TXBC,
1485 FIELD_PREP(TXBC_TFQS_MASK,
1486 cdev->mcfg[MRAM_TXB].num) |
1487 cdev->mcfg[MRAM_TXB].off);
1488 }
1489
1490 /* support 64 bytes payload */
1491 m_can_write(cdev, M_CAN_TXESC,
1492 FIELD_PREP(TXESC_TBDS_MASK, TXESC_TBDS_64B));
1493
1494 /* TX Event FIFO */
1495 if (cdev->version == 30) {
1496 m_can_write(cdev, M_CAN_TXEFC,
1497 FIELD_PREP(TXEFC_EFS_MASK, 1) |
1498 cdev->mcfg[MRAM_TXE].off);
1499 } else {
1500 /* Full TX Event FIFO is used */
1501 m_can_write(cdev, M_CAN_TXEFC,
1502 FIELD_PREP(TXEFC_EFWM_MASK,
1503 cdev->tx_max_coalesced_frames_irq) |
1504 FIELD_PREP(TXEFC_EFS_MASK,
1505 cdev->mcfg[MRAM_TXE].num) |
1506 cdev->mcfg[MRAM_TXE].off);
1507 }
1508
1509 /* rx fifo configuration, blocking mode, fifo size 1 */
1510 m_can_write(cdev, M_CAN_RXF0C,
1511 FIELD_PREP(RXFC_FWM_MASK, cdev->rx_max_coalesced_frames_irq) |
1512 FIELD_PREP(RXFC_FS_MASK, cdev->mcfg[MRAM_RXF0].num) |
1513 cdev->mcfg[MRAM_RXF0].off);
1514
1515 m_can_write(cdev, M_CAN_RXF1C,
1516 FIELD_PREP(RXFC_FS_MASK, cdev->mcfg[MRAM_RXF1].num) |
1517 cdev->mcfg[MRAM_RXF1].off);
1518
1519 cccr = m_can_read(cdev, M_CAN_CCCR);
1520 test = m_can_read(cdev, M_CAN_TEST);
1521 test &= ~TEST_LBCK;
1522 if (cdev->version == 30) {
1523 /* Version 3.0.x */
1524
1525 cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_DAR |
1526 FIELD_PREP(CCCR_CMR_MASK, FIELD_MAX(CCCR_CMR_MASK)) |
1527 FIELD_PREP(CCCR_CME_MASK, FIELD_MAX(CCCR_CME_MASK)));
1528
1529 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD)
1530 cccr |= FIELD_PREP(CCCR_CME_MASK, CCCR_CME_CANFD_BRS);
1531
1532 } else {
1533 /* Version 3.1.x or 3.2.x */
1534 cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_BRSE | CCCR_FDOE |
1535 CCCR_NISO | CCCR_DAR);
1536
1537 /* Only 3.2.x has NISO Bit implemented */
1538 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD_NON_ISO)
1539 cccr |= CCCR_NISO;
1540
1541 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD)
1542 cccr |= (CCCR_BRSE | CCCR_FDOE);
1543 }
1544
1545 /* Loopback Mode */
1546 if (cdev->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
1547 cccr |= CCCR_TEST | CCCR_MON;
1548 test |= TEST_LBCK;
1549 }
1550
1551 /* Enable Monitoring (all versions) */
1552 if (cdev->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)
1553 cccr |= CCCR_MON;
1554
1555 /* Disable Auto Retransmission (all versions) */
1556 if (cdev->can.ctrlmode & CAN_CTRLMODE_ONE_SHOT)
1557 cccr |= CCCR_DAR;
1558
1559 /* Write config */
1560 m_can_write(cdev, M_CAN_CCCR, cccr);
1561 m_can_write(cdev, M_CAN_TEST, test);
1562
1563 /* Enable interrupts */
1564 if (!(cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING)) {
1565 if (cdev->version == 30)
1566 interrupts &= ~(IR_ERR_LEC_30X);
1567 else
1568 interrupts &= ~(IR_ERR_LEC_31X);
1569 }
1570 cdev->active_interrupts = 0;
1571 m_can_interrupt_enable(cdev, interrupts);
1572
1573 /* route all interrupts to INT0 */
1574 m_can_write(cdev, M_CAN_ILS, ILS_ALL_INT0);
1575
1576 /* set bittiming params */
1577 m_can_set_bittiming(dev);
1578
1579 /* enable internal timestamp generation, with a prescaler of 16. The
1580 * prescaler is applied to the nominal bit timing
1581 */
1582 m_can_write(cdev, M_CAN_TSCC,
1583 FIELD_PREP(TSCC_TCP_MASK, 0xf) |
1584 FIELD_PREP(TSCC_TSS_MASK, TSCC_TSS_INTERNAL));
1585
1586 err = m_can_config_disable(cdev);
1587 if (err)
1588 return err;
1589
1590 if (cdev->ops->init)
1591 cdev->ops->init(cdev);
1592
1593 return 0;
1594}
1595
1596static int m_can_start(struct net_device *dev)
1597{
1598 struct m_can_classdev *cdev = netdev_priv(dev);
1599 int ret;
1600
1601 /* basic m_can configuration */
1602 ret = m_can_chip_config(dev);
1603 if (ret)
1604 return ret;
1605
1606 netdev_queue_set_dql_min_limit(netdev_get_tx_queue(cdev->net, 0),
1607 cdev->tx_max_coalesced_frames);
1608
1609 cdev->can.state = CAN_STATE_ERROR_ACTIVE;
1610
1611 m_can_enable_all_interrupts(cdev);
1612
1613 if (cdev->version > 30)
1614 cdev->tx_fifo_putidx = FIELD_GET(TXFQS_TFQPI_MASK,
1615 m_can_read(cdev, M_CAN_TXFQS));
1616
1617 ret = m_can_cccr_update_bits(cdev, CCCR_INIT, 0);
1618 if (ret)
1619 netdev_err(dev, "failed to enter normal mode\n");
1620
1621 return ret;
1622}
1623
1624static int m_can_set_mode(struct net_device *dev, enum can_mode mode)
1625{
1626 switch (mode) {
1627 case CAN_MODE_START:
1628 m_can_clean(dev);
1629 m_can_start(dev);
1630 netif_wake_queue(dev);
1631 break;
1632 default:
1633 return -EOPNOTSUPP;
1634 }
1635
1636 return 0;
1637}
1638
1639/* Checks core release number of M_CAN
1640 * returns 0 if an unsupported device is detected
1641 * else it returns the release and step coded as:
1642 * return value = 10 * <release> + 1 * <step>
1643 */
1644static int m_can_check_core_release(struct m_can_classdev *cdev)
1645{
1646 u32 crel_reg;
1647 u8 rel;
1648 u8 step;
1649 int res;
1650
1651 /* Read Core Release Version and split into version number
1652 * Example: Version 3.2.1 => rel = 3; step = 2; substep = 1;
1653 */
1654 crel_reg = m_can_read(cdev, M_CAN_CREL);
1655 rel = (u8)FIELD_GET(CREL_REL_MASK, crel_reg);
1656 step = (u8)FIELD_GET(CREL_STEP_MASK, crel_reg);
1657
1658 if (rel == 3) {
1659 /* M_CAN v3.x.y: create return value */
1660 res = 30 + step;
1661 } else {
1662 /* Unsupported M_CAN version */
1663 res = 0;
1664 }
1665
1666 return res;
1667}
1668
1669/* Selectable Non ISO support only in version 3.2.x
1670 * Return 1 if the bit is writable, 0 if it is not, or negative on error.
1671 */
1672static int m_can_niso_supported(struct m_can_classdev *cdev)
1673{
1674 int ret, niso;
1675
1676 ret = m_can_config_enable(cdev);
1677 if (ret)
1678 return ret;
1679
1680 /* First try to set the NISO bit. */
1681 niso = m_can_cccr_update_bits(cdev, CCCR_NISO, CCCR_NISO);
1682
1683 /* Then clear the it again. */
1684 ret = m_can_cccr_update_bits(cdev, CCCR_NISO, 0);
1685 if (ret) {
1686 dev_err(cdev->dev, "failed to revert the NON-ISO bit in CCCR\n");
1687 return ret;
1688 }
1689
1690 ret = m_can_config_disable(cdev);
1691 if (ret)
1692 return ret;
1693
1694 return niso == 0;
1695}
1696
1697static int m_can_dev_setup(struct m_can_classdev *cdev)
1698{
1699 struct net_device *dev = cdev->net;
1700 int m_can_version, err, niso;
1701
1702 m_can_version = m_can_check_core_release(cdev);
1703 /* return if unsupported version */
1704 if (!m_can_version) {
1705 dev_err(cdev->dev, "Unsupported version number: %2d",
1706 m_can_version);
1707 return -EINVAL;
1708 }
1709
1710 /* Write the INIT bit, in case no hardware reset has happened before
1711 * the probe (for example, it was observed that the Intel Elkhart Lake
1712 * SoCs do not properly reset the CAN controllers on reboot)
1713 */
1714 err = m_can_cccr_update_bits(cdev, CCCR_INIT, CCCR_INIT);
1715 if (err)
1716 return err;
1717
1718 if (!cdev->is_peripheral)
1719 netif_napi_add(dev, &cdev->napi, m_can_poll);
1720
1721 /* Shared properties of all M_CAN versions */
1722 cdev->version = m_can_version;
1723 cdev->can.do_set_mode = m_can_set_mode;
1724 cdev->can.do_get_berr_counter = m_can_get_berr_counter;
1725
1726 /* Set M_CAN supported operations */
1727 cdev->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1728 CAN_CTRLMODE_LISTENONLY |
1729 CAN_CTRLMODE_BERR_REPORTING |
1730 CAN_CTRLMODE_FD |
1731 CAN_CTRLMODE_ONE_SHOT;
1732
1733 /* Set properties depending on M_CAN version */
1734 switch (cdev->version) {
1735 case 30:
1736 /* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.0.x */
1737 err = can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO);
1738 if (err)
1739 return err;
1740 cdev->can.bittiming_const = &m_can_bittiming_const_30X;
1741 cdev->can.data_bittiming_const = &m_can_data_bittiming_const_30X;
1742 break;
1743 case 31:
1744 /* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.1.x */
1745 err = can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO);
1746 if (err)
1747 return err;
1748 cdev->can.bittiming_const = &m_can_bittiming_const_31X;
1749 cdev->can.data_bittiming_const = &m_can_data_bittiming_const_31X;
1750 break;
1751 case 32:
1752 case 33:
1753 /* Support both MCAN version v3.2.x and v3.3.0 */
1754 cdev->can.bittiming_const = &m_can_bittiming_const_31X;
1755 cdev->can.data_bittiming_const = &m_can_data_bittiming_const_31X;
1756
1757 niso = m_can_niso_supported(cdev);
1758 if (niso < 0)
1759 return niso;
1760 if (niso)
1761 cdev->can.ctrlmode_supported |= CAN_CTRLMODE_FD_NON_ISO;
1762 break;
1763 default:
1764 dev_err(cdev->dev, "Unsupported version number: %2d",
1765 cdev->version);
1766 return -EINVAL;
1767 }
1768
1769 return 0;
1770}
1771
1772static void m_can_stop(struct net_device *dev)
1773{
1774 struct m_can_classdev *cdev = netdev_priv(dev);
1775 int ret;
1776
1777 /* disable all interrupts */
1778 m_can_disable_all_interrupts(cdev);
1779
1780 /* Set init mode to disengage from the network */
1781 ret = m_can_cccr_update_bits(cdev, CCCR_INIT, CCCR_INIT);
1782 if (ret)
1783 netdev_err(dev, "failed to enter standby mode: %pe\n",
1784 ERR_PTR(ret));
1785
1786 /* set the state as STOPPED */
1787 cdev->can.state = CAN_STATE_STOPPED;
1788}
1789
1790static int m_can_close(struct net_device *dev)
1791{
1792 struct m_can_classdev *cdev = netdev_priv(dev);
1793
1794 netif_stop_queue(dev);
1795
1796 m_can_stop(dev);
1797 if (dev->irq)
1798 free_irq(dev->irq, dev);
1799
1800 m_can_clean(dev);
1801
1802 if (cdev->is_peripheral) {
1803 destroy_workqueue(cdev->tx_wq);
1804 cdev->tx_wq = NULL;
1805 can_rx_offload_disable(&cdev->offload);
1806 } else {
1807 napi_disable(&cdev->napi);
1808 }
1809
1810 close_candev(dev);
1811
1812 m_can_clk_stop(cdev);
1813 phy_power_off(cdev->transceiver);
1814
1815 return 0;
1816}
1817
1818static netdev_tx_t m_can_tx_handler(struct m_can_classdev *cdev,
1819 struct sk_buff *skb)
1820{
1821 struct canfd_frame *cf = (struct canfd_frame *)skb->data;
1822 u8 len_padded = DIV_ROUND_UP(cf->len, 4);
1823 struct m_can_fifo_element fifo_element;
1824 struct net_device *dev = cdev->net;
1825 u32 cccr, fdflags;
1826 int err;
1827 u32 putidx;
1828 unsigned int frame_len = can_skb_get_frame_len(skb);
1829
1830 /* Generate ID field for TX buffer Element */
1831 /* Common to all supported M_CAN versions */
1832 if (cf->can_id & CAN_EFF_FLAG) {
1833 fifo_element.id = cf->can_id & CAN_EFF_MASK;
1834 fifo_element.id |= TX_BUF_XTD;
1835 } else {
1836 fifo_element.id = ((cf->can_id & CAN_SFF_MASK) << 18);
1837 }
1838
1839 if (cf->can_id & CAN_RTR_FLAG)
1840 fifo_element.id |= TX_BUF_RTR;
1841
1842 if (cdev->version == 30) {
1843 netif_stop_queue(dev);
1844
1845 fifo_element.dlc = can_fd_len2dlc(cf->len) << 16;
1846
1847 /* Write the frame ID, DLC, and payload to the FIFO element. */
1848 err = m_can_fifo_write(cdev, 0, M_CAN_FIFO_ID, &fifo_element, 2);
1849 if (err)
1850 goto out_fail;
1851
1852 err = m_can_fifo_write(cdev, 0, M_CAN_FIFO_DATA,
1853 cf->data, len_padded);
1854 if (err)
1855 goto out_fail;
1856
1857 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) {
1858 cccr = m_can_read(cdev, M_CAN_CCCR);
1859 cccr &= ~CCCR_CMR_MASK;
1860 if (can_is_canfd_skb(skb)) {
1861 if (cf->flags & CANFD_BRS)
1862 cccr |= FIELD_PREP(CCCR_CMR_MASK,
1863 CCCR_CMR_CANFD_BRS);
1864 else
1865 cccr |= FIELD_PREP(CCCR_CMR_MASK,
1866 CCCR_CMR_CANFD);
1867 } else {
1868 cccr |= FIELD_PREP(CCCR_CMR_MASK, CCCR_CMR_CAN);
1869 }
1870 m_can_write(cdev, M_CAN_CCCR, cccr);
1871 }
1872 m_can_write(cdev, M_CAN_TXBTIE, 0x1);
1873
1874 can_put_echo_skb(skb, dev, 0, frame_len);
1875
1876 m_can_write(cdev, M_CAN_TXBAR, 0x1);
1877 /* End of xmit function for version 3.0.x */
1878 } else {
1879 /* Transmit routine for version >= v3.1.x */
1880
1881 /* get put index for frame */
1882 putidx = cdev->tx_fifo_putidx;
1883
1884 /* Construct DLC Field, with CAN-FD configuration.
1885 * Use the put index of the fifo as the message marker,
1886 * used in the TX interrupt for sending the correct echo frame.
1887 */
1888
1889 /* get CAN FD configuration of frame */
1890 fdflags = 0;
1891 if (can_is_canfd_skb(skb)) {
1892 fdflags |= TX_BUF_FDF;
1893 if (cf->flags & CANFD_BRS)
1894 fdflags |= TX_BUF_BRS;
1895 }
1896
1897 fifo_element.dlc = FIELD_PREP(TX_BUF_MM_MASK, putidx) |
1898 FIELD_PREP(TX_BUF_DLC_MASK, can_fd_len2dlc(cf->len)) |
1899 fdflags | TX_BUF_EFC;
1900
1901 memcpy_and_pad(fifo_element.data, CANFD_MAX_DLEN, &cf->data,
1902 cf->len, 0);
1903
1904 err = m_can_fifo_write(cdev, putidx, M_CAN_FIFO_ID,
1905 &fifo_element, 2 + len_padded);
1906 if (err)
1907 goto out_fail;
1908
1909 /* Push loopback echo.
1910 * Will be looped back on TX interrupt based on message marker
1911 */
1912 can_put_echo_skb(skb, dev, putidx, frame_len);
1913
1914 if (cdev->is_peripheral) {
1915 /* Delay enabling TX FIFO element */
1916 cdev->tx_peripheral_submit |= BIT(putidx);
1917 } else {
1918 /* Enable TX FIFO element to start transfer */
1919 m_can_write(cdev, M_CAN_TXBAR, BIT(putidx));
1920 }
1921 cdev->tx_fifo_putidx = (++cdev->tx_fifo_putidx >= cdev->can.echo_skb_max ?
1922 0 : cdev->tx_fifo_putidx);
1923 }
1924
1925 return NETDEV_TX_OK;
1926
1927out_fail:
1928 netdev_err(dev, "FIFO write returned %d\n", err);
1929 m_can_disable_all_interrupts(cdev);
1930 return NETDEV_TX_BUSY;
1931}
1932
1933static void m_can_tx_submit(struct m_can_classdev *cdev)
1934{
1935 if (cdev->version == 30)
1936 return;
1937 if (!cdev->is_peripheral)
1938 return;
1939
1940 m_can_write(cdev, M_CAN_TXBAR, cdev->tx_peripheral_submit);
1941 cdev->tx_peripheral_submit = 0;
1942}
1943
1944static void m_can_tx_work_queue(struct work_struct *ws)
1945{
1946 struct m_can_tx_op *op = container_of(ws, struct m_can_tx_op, work);
1947 struct m_can_classdev *cdev = op->cdev;
1948 struct sk_buff *skb = op->skb;
1949
1950 op->skb = NULL;
1951 m_can_tx_handler(cdev, skb);
1952 if (op->submit)
1953 m_can_tx_submit(cdev);
1954}
1955
1956static void m_can_tx_queue_skb(struct m_can_classdev *cdev, struct sk_buff *skb,
1957 bool submit)
1958{
1959 cdev->tx_ops[cdev->next_tx_op].skb = skb;
1960 cdev->tx_ops[cdev->next_tx_op].submit = submit;
1961 queue_work(cdev->tx_wq, &cdev->tx_ops[cdev->next_tx_op].work);
1962
1963 ++cdev->next_tx_op;
1964 if (cdev->next_tx_op >= cdev->tx_fifo_size)
1965 cdev->next_tx_op = 0;
1966}
1967
1968static netdev_tx_t m_can_start_peripheral_xmit(struct m_can_classdev *cdev,
1969 struct sk_buff *skb)
1970{
1971 bool submit;
1972
1973 ++cdev->nr_txs_without_submit;
1974 if (cdev->nr_txs_without_submit >= cdev->tx_max_coalesced_frames ||
1975 !netdev_xmit_more()) {
1976 cdev->nr_txs_without_submit = 0;
1977 submit = true;
1978 } else {
1979 submit = false;
1980 }
1981 m_can_tx_queue_skb(cdev, skb, submit);
1982
1983 return NETDEV_TX_OK;
1984}
1985
1986static netdev_tx_t m_can_start_xmit(struct sk_buff *skb,
1987 struct net_device *dev)
1988{
1989 struct m_can_classdev *cdev = netdev_priv(dev);
1990 unsigned int frame_len;
1991 netdev_tx_t ret;
1992
1993 if (can_dev_dropped_skb(dev, skb))
1994 return NETDEV_TX_OK;
1995
1996 frame_len = can_skb_get_frame_len(skb);
1997
1998 if (cdev->can.state == CAN_STATE_BUS_OFF) {
1999 m_can_clean(cdev->net);
2000 return NETDEV_TX_OK;
2001 }
2002
2003 ret = m_can_start_tx(cdev);
2004 if (ret != NETDEV_TX_OK)
2005 return ret;
2006
2007 netdev_sent_queue(dev, frame_len);
2008
2009 if (cdev->is_peripheral)
2010 ret = m_can_start_peripheral_xmit(cdev, skb);
2011 else
2012 ret = m_can_tx_handler(cdev, skb);
2013
2014 if (ret != NETDEV_TX_OK)
2015 netdev_completed_queue(dev, 1, frame_len);
2016
2017 return ret;
2018}
2019
2020static enum hrtimer_restart hrtimer_callback(struct hrtimer *timer)
2021{
2022 struct m_can_classdev *cdev = container_of(timer, struct
2023 m_can_classdev, hrtimer);
2024 int ret;
2025
2026 if (cdev->can.state == CAN_STATE_BUS_OFF ||
2027 cdev->can.state == CAN_STATE_STOPPED)
2028 return HRTIMER_NORESTART;
2029
2030 ret = m_can_interrupt_handler(cdev);
2031
2032 /* On error or if napi is scheduled to read, stop the timer */
2033 if (ret < 0 || napi_is_scheduled(&cdev->napi))
2034 return HRTIMER_NORESTART;
2035
2036 hrtimer_forward_now(timer, ms_to_ktime(HRTIMER_POLL_INTERVAL_MS));
2037
2038 return HRTIMER_RESTART;
2039}
2040
2041static int m_can_open(struct net_device *dev)
2042{
2043 struct m_can_classdev *cdev = netdev_priv(dev);
2044 int err;
2045
2046 err = phy_power_on(cdev->transceiver);
2047 if (err)
2048 return err;
2049
2050 err = m_can_clk_start(cdev);
2051 if (err)
2052 goto out_phy_power_off;
2053
2054 /* open the can device */
2055 err = open_candev(dev);
2056 if (err) {
2057 netdev_err(dev, "failed to open can device\n");
2058 goto exit_disable_clks;
2059 }
2060
2061 if (cdev->is_peripheral)
2062 can_rx_offload_enable(&cdev->offload);
2063 else
2064 napi_enable(&cdev->napi);
2065
2066 /* register interrupt handler */
2067 if (cdev->is_peripheral) {
2068 cdev->tx_wq = alloc_ordered_workqueue("mcan_wq",
2069 WQ_FREEZABLE | WQ_MEM_RECLAIM);
2070 if (!cdev->tx_wq) {
2071 err = -ENOMEM;
2072 goto out_wq_fail;
2073 }
2074
2075 for (int i = 0; i != cdev->tx_fifo_size; ++i) {
2076 cdev->tx_ops[i].cdev = cdev;
2077 INIT_WORK(&cdev->tx_ops[i].work, m_can_tx_work_queue);
2078 }
2079
2080 err = request_threaded_irq(dev->irq, NULL, m_can_isr,
2081 IRQF_ONESHOT,
2082 dev->name, dev);
2083 } else if (dev->irq) {
2084 err = request_irq(dev->irq, m_can_isr, IRQF_SHARED, dev->name,
2085 dev);
2086 }
2087
2088 if (err < 0) {
2089 netdev_err(dev, "failed to request interrupt\n");
2090 goto exit_irq_fail;
2091 }
2092
2093 /* start the m_can controller */
2094 err = m_can_start(dev);
2095 if (err)
2096 goto exit_start_fail;
2097
2098 netif_start_queue(dev);
2099
2100 return 0;
2101
2102exit_start_fail:
2103 if (cdev->is_peripheral || dev->irq)
2104 free_irq(dev->irq, dev);
2105exit_irq_fail:
2106 if (cdev->is_peripheral)
2107 destroy_workqueue(cdev->tx_wq);
2108out_wq_fail:
2109 if (cdev->is_peripheral)
2110 can_rx_offload_disable(&cdev->offload);
2111 else
2112 napi_disable(&cdev->napi);
2113 close_candev(dev);
2114exit_disable_clks:
2115 m_can_clk_stop(cdev);
2116out_phy_power_off:
2117 phy_power_off(cdev->transceiver);
2118 return err;
2119}
2120
2121static const struct net_device_ops m_can_netdev_ops = {
2122 .ndo_open = m_can_open,
2123 .ndo_stop = m_can_close,
2124 .ndo_start_xmit = m_can_start_xmit,
2125 .ndo_change_mtu = can_change_mtu,
2126};
2127
2128static int m_can_get_coalesce(struct net_device *dev,
2129 struct ethtool_coalesce *ec,
2130 struct kernel_ethtool_coalesce *kec,
2131 struct netlink_ext_ack *ext_ack)
2132{
2133 struct m_can_classdev *cdev = netdev_priv(dev);
2134
2135 ec->rx_max_coalesced_frames_irq = cdev->rx_max_coalesced_frames_irq;
2136 ec->rx_coalesce_usecs_irq = cdev->rx_coalesce_usecs_irq;
2137 ec->tx_max_coalesced_frames = cdev->tx_max_coalesced_frames;
2138 ec->tx_max_coalesced_frames_irq = cdev->tx_max_coalesced_frames_irq;
2139 ec->tx_coalesce_usecs_irq = cdev->tx_coalesce_usecs_irq;
2140
2141 return 0;
2142}
2143
2144static int m_can_set_coalesce(struct net_device *dev,
2145 struct ethtool_coalesce *ec,
2146 struct kernel_ethtool_coalesce *kec,
2147 struct netlink_ext_ack *ext_ack)
2148{
2149 struct m_can_classdev *cdev = netdev_priv(dev);
2150
2151 if (cdev->can.state != CAN_STATE_STOPPED) {
2152 netdev_err(dev, "Device is in use, please shut it down first\n");
2153 return -EBUSY;
2154 }
2155
2156 if (ec->rx_max_coalesced_frames_irq > cdev->mcfg[MRAM_RXF0].num) {
2157 netdev_err(dev, "rx-frames-irq %u greater than the RX FIFO %u\n",
2158 ec->rx_max_coalesced_frames_irq,
2159 cdev->mcfg[MRAM_RXF0].num);
2160 return -EINVAL;
2161 }
2162 if ((ec->rx_max_coalesced_frames_irq == 0) != (ec->rx_coalesce_usecs_irq == 0)) {
2163 netdev_err(dev, "rx-frames-irq and rx-usecs-irq can only be set together\n");
2164 return -EINVAL;
2165 }
2166 if (ec->tx_max_coalesced_frames_irq > cdev->mcfg[MRAM_TXE].num) {
2167 netdev_err(dev, "tx-frames-irq %u greater than the TX event FIFO %u\n",
2168 ec->tx_max_coalesced_frames_irq,
2169 cdev->mcfg[MRAM_TXE].num);
2170 return -EINVAL;
2171 }
2172 if (ec->tx_max_coalesced_frames_irq > cdev->mcfg[MRAM_TXB].num) {
2173 netdev_err(dev, "tx-frames-irq %u greater than the TX FIFO %u\n",
2174 ec->tx_max_coalesced_frames_irq,
2175 cdev->mcfg[MRAM_TXB].num);
2176 return -EINVAL;
2177 }
2178 if ((ec->tx_max_coalesced_frames_irq == 0) != (ec->tx_coalesce_usecs_irq == 0)) {
2179 netdev_err(dev, "tx-frames-irq and tx-usecs-irq can only be set together\n");
2180 return -EINVAL;
2181 }
2182 if (ec->tx_max_coalesced_frames > cdev->mcfg[MRAM_TXE].num) {
2183 netdev_err(dev, "tx-frames %u greater than the TX event FIFO %u\n",
2184 ec->tx_max_coalesced_frames,
2185 cdev->mcfg[MRAM_TXE].num);
2186 return -EINVAL;
2187 }
2188 if (ec->tx_max_coalesced_frames > cdev->mcfg[MRAM_TXB].num) {
2189 netdev_err(dev, "tx-frames %u greater than the TX FIFO %u\n",
2190 ec->tx_max_coalesced_frames,
2191 cdev->mcfg[MRAM_TXB].num);
2192 return -EINVAL;
2193 }
2194 if (ec->rx_coalesce_usecs_irq != 0 && ec->tx_coalesce_usecs_irq != 0 &&
2195 ec->rx_coalesce_usecs_irq != ec->tx_coalesce_usecs_irq) {
2196 netdev_err(dev, "rx-usecs-irq %u needs to be equal to tx-usecs-irq %u if both are enabled\n",
2197 ec->rx_coalesce_usecs_irq,
2198 ec->tx_coalesce_usecs_irq);
2199 return -EINVAL;
2200 }
2201
2202 cdev->rx_max_coalesced_frames_irq = ec->rx_max_coalesced_frames_irq;
2203 cdev->rx_coalesce_usecs_irq = ec->rx_coalesce_usecs_irq;
2204 cdev->tx_max_coalesced_frames = ec->tx_max_coalesced_frames;
2205 cdev->tx_max_coalesced_frames_irq = ec->tx_max_coalesced_frames_irq;
2206 cdev->tx_coalesce_usecs_irq = ec->tx_coalesce_usecs_irq;
2207
2208 if (cdev->rx_coalesce_usecs_irq)
2209 cdev->irq_timer_wait =
2210 ns_to_ktime(cdev->rx_coalesce_usecs_irq * NSEC_PER_USEC);
2211 else
2212 cdev->irq_timer_wait =
2213 ns_to_ktime(cdev->tx_coalesce_usecs_irq * NSEC_PER_USEC);
2214
2215 return 0;
2216}
2217
2218static const struct ethtool_ops m_can_ethtool_ops_coalescing = {
2219 .supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS_IRQ |
2220 ETHTOOL_COALESCE_RX_MAX_FRAMES_IRQ |
2221 ETHTOOL_COALESCE_TX_USECS_IRQ |
2222 ETHTOOL_COALESCE_TX_MAX_FRAMES |
2223 ETHTOOL_COALESCE_TX_MAX_FRAMES_IRQ,
2224 .get_ts_info = ethtool_op_get_ts_info,
2225 .get_coalesce = m_can_get_coalesce,
2226 .set_coalesce = m_can_set_coalesce,
2227};
2228
2229static const struct ethtool_ops m_can_ethtool_ops = {
2230 .get_ts_info = ethtool_op_get_ts_info,
2231};
2232
2233static int register_m_can_dev(struct m_can_classdev *cdev)
2234{
2235 struct net_device *dev = cdev->net;
2236
2237 dev->flags |= IFF_ECHO; /* we support local echo */
2238 dev->netdev_ops = &m_can_netdev_ops;
2239 if (dev->irq && cdev->is_peripheral)
2240 dev->ethtool_ops = &m_can_ethtool_ops_coalescing;
2241 else
2242 dev->ethtool_ops = &m_can_ethtool_ops;
2243
2244 return register_candev(dev);
2245}
2246
2247int m_can_check_mram_cfg(struct m_can_classdev *cdev, u32 mram_max_size)
2248{
2249 u32 total_size;
2250
2251 total_size = cdev->mcfg[MRAM_TXB].off - cdev->mcfg[MRAM_SIDF].off +
2252 cdev->mcfg[MRAM_TXB].num * TXB_ELEMENT_SIZE;
2253 if (total_size > mram_max_size) {
2254 dev_err(cdev->dev, "Total size of mram config(%u) exceeds mram(%u)\n",
2255 total_size, mram_max_size);
2256 return -EINVAL;
2257 }
2258
2259 return 0;
2260}
2261EXPORT_SYMBOL_GPL(m_can_check_mram_cfg);
2262
2263static void m_can_of_parse_mram(struct m_can_classdev *cdev,
2264 const u32 *mram_config_vals)
2265{
2266 cdev->mcfg[MRAM_SIDF].off = mram_config_vals[0];
2267 cdev->mcfg[MRAM_SIDF].num = mram_config_vals[1];
2268 cdev->mcfg[MRAM_XIDF].off = cdev->mcfg[MRAM_SIDF].off +
2269 cdev->mcfg[MRAM_SIDF].num * SIDF_ELEMENT_SIZE;
2270 cdev->mcfg[MRAM_XIDF].num = mram_config_vals[2];
2271 cdev->mcfg[MRAM_RXF0].off = cdev->mcfg[MRAM_XIDF].off +
2272 cdev->mcfg[MRAM_XIDF].num * XIDF_ELEMENT_SIZE;
2273 cdev->mcfg[MRAM_RXF0].num = mram_config_vals[3] &
2274 FIELD_MAX(RXFC_FS_MASK);
2275 cdev->mcfg[MRAM_RXF1].off = cdev->mcfg[MRAM_RXF0].off +
2276 cdev->mcfg[MRAM_RXF0].num * RXF0_ELEMENT_SIZE;
2277 cdev->mcfg[MRAM_RXF1].num = mram_config_vals[4] &
2278 FIELD_MAX(RXFC_FS_MASK);
2279 cdev->mcfg[MRAM_RXB].off = cdev->mcfg[MRAM_RXF1].off +
2280 cdev->mcfg[MRAM_RXF1].num * RXF1_ELEMENT_SIZE;
2281 cdev->mcfg[MRAM_RXB].num = mram_config_vals[5];
2282 cdev->mcfg[MRAM_TXE].off = cdev->mcfg[MRAM_RXB].off +
2283 cdev->mcfg[MRAM_RXB].num * RXB_ELEMENT_SIZE;
2284 cdev->mcfg[MRAM_TXE].num = mram_config_vals[6];
2285 cdev->mcfg[MRAM_TXB].off = cdev->mcfg[MRAM_TXE].off +
2286 cdev->mcfg[MRAM_TXE].num * TXE_ELEMENT_SIZE;
2287 cdev->mcfg[MRAM_TXB].num = mram_config_vals[7] &
2288 FIELD_MAX(TXBC_NDTB_MASK);
2289
2290 dev_dbg(cdev->dev,
2291 "sidf 0x%x %d xidf 0x%x %d rxf0 0x%x %d rxf1 0x%x %d rxb 0x%x %d txe 0x%x %d txb 0x%x %d\n",
2292 cdev->mcfg[MRAM_SIDF].off, cdev->mcfg[MRAM_SIDF].num,
2293 cdev->mcfg[MRAM_XIDF].off, cdev->mcfg[MRAM_XIDF].num,
2294 cdev->mcfg[MRAM_RXF0].off, cdev->mcfg[MRAM_RXF0].num,
2295 cdev->mcfg[MRAM_RXF1].off, cdev->mcfg[MRAM_RXF1].num,
2296 cdev->mcfg[MRAM_RXB].off, cdev->mcfg[MRAM_RXB].num,
2297 cdev->mcfg[MRAM_TXE].off, cdev->mcfg[MRAM_TXE].num,
2298 cdev->mcfg[MRAM_TXB].off, cdev->mcfg[MRAM_TXB].num);
2299}
2300
2301int m_can_init_ram(struct m_can_classdev *cdev)
2302{
2303 int end, i, start;
2304 int err = 0;
2305
2306 /* initialize the entire Message RAM in use to avoid possible
2307 * ECC/parity checksum errors when reading an uninitialized buffer
2308 */
2309 start = cdev->mcfg[MRAM_SIDF].off;
2310 end = cdev->mcfg[MRAM_TXB].off +
2311 cdev->mcfg[MRAM_TXB].num * TXB_ELEMENT_SIZE;
2312
2313 for (i = start; i < end; i += 4) {
2314 err = m_can_fifo_write_no_off(cdev, i, 0x0);
2315 if (err)
2316 break;
2317 }
2318
2319 return err;
2320}
2321EXPORT_SYMBOL_GPL(m_can_init_ram);
2322
2323int m_can_class_get_clocks(struct m_can_classdev *cdev)
2324{
2325 int ret = 0;
2326
2327 cdev->hclk = devm_clk_get(cdev->dev, "hclk");
2328 cdev->cclk = devm_clk_get(cdev->dev, "cclk");
2329
2330 if (IS_ERR(cdev->hclk) || IS_ERR(cdev->cclk)) {
2331 dev_err(cdev->dev, "no clock found\n");
2332 ret = -ENODEV;
2333 }
2334
2335 return ret;
2336}
2337EXPORT_SYMBOL_GPL(m_can_class_get_clocks);
2338
2339struct m_can_classdev *m_can_class_allocate_dev(struct device *dev,
2340 int sizeof_priv)
2341{
2342 struct m_can_classdev *class_dev = NULL;
2343 u32 mram_config_vals[MRAM_CFG_LEN];
2344 struct net_device *net_dev;
2345 u32 tx_fifo_size;
2346 int ret;
2347
2348 ret = fwnode_property_read_u32_array(dev_fwnode(dev),
2349 "bosch,mram-cfg",
2350 mram_config_vals,
2351 sizeof(mram_config_vals) / 4);
2352 if (ret) {
2353 dev_err(dev, "Could not get Message RAM configuration.");
2354 goto out;
2355 }
2356
2357 /* Get TX FIFO size
2358 * Defines the total amount of echo buffers for loopback
2359 */
2360 tx_fifo_size = mram_config_vals[7];
2361
2362 /* allocate the m_can device */
2363 net_dev = alloc_candev(sizeof_priv, tx_fifo_size);
2364 if (!net_dev) {
2365 dev_err(dev, "Failed to allocate CAN device");
2366 goto out;
2367 }
2368
2369 class_dev = netdev_priv(net_dev);
2370 class_dev->net = net_dev;
2371 class_dev->dev = dev;
2372 SET_NETDEV_DEV(net_dev, dev);
2373
2374 m_can_of_parse_mram(class_dev, mram_config_vals);
2375out:
2376 return class_dev;
2377}
2378EXPORT_SYMBOL_GPL(m_can_class_allocate_dev);
2379
2380void m_can_class_free_dev(struct net_device *net)
2381{
2382 free_candev(net);
2383}
2384EXPORT_SYMBOL_GPL(m_can_class_free_dev);
2385
2386int m_can_class_register(struct m_can_classdev *cdev)
2387{
2388 int ret;
2389
2390 cdev->tx_fifo_size = max(1, min(cdev->mcfg[MRAM_TXB].num,
2391 cdev->mcfg[MRAM_TXE].num));
2392 if (cdev->is_peripheral) {
2393 cdev->tx_ops =
2394 devm_kzalloc(cdev->dev,
2395 cdev->tx_fifo_size * sizeof(*cdev->tx_ops),
2396 GFP_KERNEL);
2397 if (!cdev->tx_ops) {
2398 dev_err(cdev->dev, "Failed to allocate tx_ops for workqueue\n");
2399 return -ENOMEM;
2400 }
2401 }
2402
2403 ret = m_can_clk_start(cdev);
2404 if (ret)
2405 return ret;
2406
2407 if (cdev->is_peripheral) {
2408 ret = can_rx_offload_add_manual(cdev->net, &cdev->offload,
2409 NAPI_POLL_WEIGHT);
2410 if (ret)
2411 goto clk_disable;
2412 }
2413
2414 if (!cdev->net->irq) {
2415 dev_dbg(cdev->dev, "Polling enabled, initialize hrtimer");
2416 hrtimer_init(&cdev->hrtimer, CLOCK_MONOTONIC,
2417 HRTIMER_MODE_REL_PINNED);
2418 cdev->hrtimer.function = &hrtimer_callback;
2419 } else {
2420 hrtimer_init(&cdev->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2421 cdev->hrtimer.function = m_can_coalescing_timer;
2422 }
2423
2424 ret = m_can_dev_setup(cdev);
2425 if (ret)
2426 goto rx_offload_del;
2427
2428 ret = register_m_can_dev(cdev);
2429 if (ret) {
2430 dev_err(cdev->dev, "registering %s failed (err=%d)\n",
2431 cdev->net->name, ret);
2432 goto rx_offload_del;
2433 }
2434
2435 of_can_transceiver(cdev->net);
2436
2437 dev_info(cdev->dev, "%s device registered (irq=%d, version=%d)\n",
2438 KBUILD_MODNAME, cdev->net->irq, cdev->version);
2439
2440 /* Probe finished
2441 * Stop clocks. They will be reactivated once the M_CAN device is opened
2442 */
2443 m_can_clk_stop(cdev);
2444
2445 return 0;
2446
2447rx_offload_del:
2448 if (cdev->is_peripheral)
2449 can_rx_offload_del(&cdev->offload);
2450clk_disable:
2451 m_can_clk_stop(cdev);
2452
2453 return ret;
2454}
2455EXPORT_SYMBOL_GPL(m_can_class_register);
2456
2457void m_can_class_unregister(struct m_can_classdev *cdev)
2458{
2459 if (cdev->is_peripheral)
2460 can_rx_offload_del(&cdev->offload);
2461 unregister_candev(cdev->net);
2462}
2463EXPORT_SYMBOL_GPL(m_can_class_unregister);
2464
2465int m_can_class_suspend(struct device *dev)
2466{
2467 struct m_can_classdev *cdev = dev_get_drvdata(dev);
2468 struct net_device *ndev = cdev->net;
2469
2470 if (netif_running(ndev)) {
2471 netif_stop_queue(ndev);
2472 netif_device_detach(ndev);
2473
2474 /* leave the chip running with rx interrupt enabled if it is
2475 * used as a wake-up source. Coalescing needs to be reset then,
2476 * the timer is cancelled here, interrupts are done in resume.
2477 */
2478 if (cdev->pm_wake_source) {
2479 hrtimer_cancel(&cdev->hrtimer);
2480 m_can_write(cdev, M_CAN_IE, IR_RF0N);
2481 } else {
2482 m_can_stop(ndev);
2483 }
2484
2485 m_can_clk_stop(cdev);
2486 }
2487
2488 pinctrl_pm_select_sleep_state(dev);
2489
2490 cdev->can.state = CAN_STATE_SLEEPING;
2491
2492 return 0;
2493}
2494EXPORT_SYMBOL_GPL(m_can_class_suspend);
2495
2496int m_can_class_resume(struct device *dev)
2497{
2498 struct m_can_classdev *cdev = dev_get_drvdata(dev);
2499 struct net_device *ndev = cdev->net;
2500
2501 pinctrl_pm_select_default_state(dev);
2502
2503 cdev->can.state = CAN_STATE_ERROR_ACTIVE;
2504
2505 if (netif_running(ndev)) {
2506 int ret;
2507
2508 ret = m_can_clk_start(cdev);
2509 if (ret)
2510 return ret;
2511
2512 if (cdev->pm_wake_source) {
2513 /* Restore active interrupts but disable coalescing as
2514 * we may have missed important waterlevel interrupts
2515 * between suspend and resume. Timers are already
2516 * stopped in suspend. Here we enable all interrupts
2517 * again.
2518 */
2519 cdev->active_interrupts |= IR_RF0N | IR_TEFN;
2520 m_can_write(cdev, M_CAN_IE, cdev->active_interrupts);
2521 } else {
2522 ret = m_can_start(ndev);
2523 if (ret) {
2524 m_can_clk_stop(cdev);
2525 return ret;
2526 }
2527 }
2528
2529 netif_device_attach(ndev);
2530 netif_start_queue(ndev);
2531 }
2532
2533 return 0;
2534}
2535EXPORT_SYMBOL_GPL(m_can_class_resume);
2536
2537MODULE_AUTHOR("Dong Aisheng <b29396@freescale.com>");
2538MODULE_AUTHOR("Dan Murphy <dmurphy@ti.com>");
2539MODULE_LICENSE("GPL v2");
2540MODULE_DESCRIPTION("CAN bus driver for Bosch M_CAN controller");
1// SPDX-License-Identifier: GPL-2.0
2// CAN bus driver for Bosch M_CAN controller
3// Copyright (C) 2014 Freescale Semiconductor, Inc.
4// Dong Aisheng <b29396@freescale.com>
5// Copyright (C) 2018-19 Texas Instruments Incorporated - http://www.ti.com/
6
7/* Bosch M_CAN user manual can be obtained from:
8 * http://www.bosch-semiconductors.de/media/pdf_1/ipmodules_1/m_can/
9 * mcan_users_manual_v302.pdf
10 */
11
12#include <linux/interrupt.h>
13#include <linux/io.h>
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/netdevice.h>
17#include <linux/of.h>
18#include <linux/of_device.h>
19#include <linux/platform_device.h>
20#include <linux/pm_runtime.h>
21#include <linux/iopoll.h>
22#include <linux/can/dev.h>
23#include <linux/pinctrl/consumer.h>
24
25#include "m_can.h"
26
27/* registers definition */
28enum m_can_reg {
29 M_CAN_CREL = 0x0,
30 M_CAN_ENDN = 0x4,
31 M_CAN_CUST = 0x8,
32 M_CAN_DBTP = 0xc,
33 M_CAN_TEST = 0x10,
34 M_CAN_RWD = 0x14,
35 M_CAN_CCCR = 0x18,
36 M_CAN_NBTP = 0x1c,
37 M_CAN_TSCC = 0x20,
38 M_CAN_TSCV = 0x24,
39 M_CAN_TOCC = 0x28,
40 M_CAN_TOCV = 0x2c,
41 M_CAN_ECR = 0x40,
42 M_CAN_PSR = 0x44,
43/* TDCR Register only available for version >=3.1.x */
44 M_CAN_TDCR = 0x48,
45 M_CAN_IR = 0x50,
46 M_CAN_IE = 0x54,
47 M_CAN_ILS = 0x58,
48 M_CAN_ILE = 0x5c,
49 M_CAN_GFC = 0x80,
50 M_CAN_SIDFC = 0x84,
51 M_CAN_XIDFC = 0x88,
52 M_CAN_XIDAM = 0x90,
53 M_CAN_HPMS = 0x94,
54 M_CAN_NDAT1 = 0x98,
55 M_CAN_NDAT2 = 0x9c,
56 M_CAN_RXF0C = 0xa0,
57 M_CAN_RXF0S = 0xa4,
58 M_CAN_RXF0A = 0xa8,
59 M_CAN_RXBC = 0xac,
60 M_CAN_RXF1C = 0xb0,
61 M_CAN_RXF1S = 0xb4,
62 M_CAN_RXF1A = 0xb8,
63 M_CAN_RXESC = 0xbc,
64 M_CAN_TXBC = 0xc0,
65 M_CAN_TXFQS = 0xc4,
66 M_CAN_TXESC = 0xc8,
67 M_CAN_TXBRP = 0xcc,
68 M_CAN_TXBAR = 0xd0,
69 M_CAN_TXBCR = 0xd4,
70 M_CAN_TXBTO = 0xd8,
71 M_CAN_TXBCF = 0xdc,
72 M_CAN_TXBTIE = 0xe0,
73 M_CAN_TXBCIE = 0xe4,
74 M_CAN_TXEFC = 0xf0,
75 M_CAN_TXEFS = 0xf4,
76 M_CAN_TXEFA = 0xf8,
77};
78
79/* napi related */
80#define M_CAN_NAPI_WEIGHT 64
81
82/* message ram configuration data length */
83#define MRAM_CFG_LEN 8
84
85/* Core Release Register (CREL) */
86#define CREL_REL_SHIFT 28
87#define CREL_REL_MASK (0xF << CREL_REL_SHIFT)
88#define CREL_STEP_SHIFT 24
89#define CREL_STEP_MASK (0xF << CREL_STEP_SHIFT)
90#define CREL_SUBSTEP_SHIFT 20
91#define CREL_SUBSTEP_MASK (0xF << CREL_SUBSTEP_SHIFT)
92
93/* Data Bit Timing & Prescaler Register (DBTP) */
94#define DBTP_TDC BIT(23)
95#define DBTP_DBRP_SHIFT 16
96#define DBTP_DBRP_MASK (0x1f << DBTP_DBRP_SHIFT)
97#define DBTP_DTSEG1_SHIFT 8
98#define DBTP_DTSEG1_MASK (0x1f << DBTP_DTSEG1_SHIFT)
99#define DBTP_DTSEG2_SHIFT 4
100#define DBTP_DTSEG2_MASK (0xf << DBTP_DTSEG2_SHIFT)
101#define DBTP_DSJW_SHIFT 0
102#define DBTP_DSJW_MASK (0xf << DBTP_DSJW_SHIFT)
103
104/* Transmitter Delay Compensation Register (TDCR) */
105#define TDCR_TDCO_SHIFT 8
106#define TDCR_TDCO_MASK (0x7F << TDCR_TDCO_SHIFT)
107#define TDCR_TDCF_SHIFT 0
108#define TDCR_TDCF_MASK (0x7F << TDCR_TDCF_SHIFT)
109
110/* Test Register (TEST) */
111#define TEST_LBCK BIT(4)
112
113/* CC Control Register(CCCR) */
114#define CCCR_CMR_MASK 0x3
115#define CCCR_CMR_SHIFT 10
116#define CCCR_CMR_CANFD 0x1
117#define CCCR_CMR_CANFD_BRS 0x2
118#define CCCR_CMR_CAN 0x3
119#define CCCR_CME_MASK 0x3
120#define CCCR_CME_SHIFT 8
121#define CCCR_CME_CAN 0
122#define CCCR_CME_CANFD 0x1
123#define CCCR_CME_CANFD_BRS 0x2
124#define CCCR_TXP BIT(14)
125#define CCCR_TEST BIT(7)
126#define CCCR_MON BIT(5)
127#define CCCR_CSR BIT(4)
128#define CCCR_CSA BIT(3)
129#define CCCR_ASM BIT(2)
130#define CCCR_CCE BIT(1)
131#define CCCR_INIT BIT(0)
132#define CCCR_CANFD 0x10
133/* for version >=3.1.x */
134#define CCCR_EFBI BIT(13)
135#define CCCR_PXHD BIT(12)
136#define CCCR_BRSE BIT(9)
137#define CCCR_FDOE BIT(8)
138/* only for version >=3.2.x */
139#define CCCR_NISO BIT(15)
140
141/* Nominal Bit Timing & Prescaler Register (NBTP) */
142#define NBTP_NSJW_SHIFT 25
143#define NBTP_NSJW_MASK (0x7f << NBTP_NSJW_SHIFT)
144#define NBTP_NBRP_SHIFT 16
145#define NBTP_NBRP_MASK (0x1ff << NBTP_NBRP_SHIFT)
146#define NBTP_NTSEG1_SHIFT 8
147#define NBTP_NTSEG1_MASK (0xff << NBTP_NTSEG1_SHIFT)
148#define NBTP_NTSEG2_SHIFT 0
149#define NBTP_NTSEG2_MASK (0x7f << NBTP_NTSEG2_SHIFT)
150
151/* Error Counter Register(ECR) */
152#define ECR_RP BIT(15)
153#define ECR_REC_SHIFT 8
154#define ECR_REC_MASK (0x7f << ECR_REC_SHIFT)
155#define ECR_TEC_SHIFT 0
156#define ECR_TEC_MASK 0xff
157
158/* Protocol Status Register(PSR) */
159#define PSR_BO BIT(7)
160#define PSR_EW BIT(6)
161#define PSR_EP BIT(5)
162#define PSR_LEC_MASK 0x7
163
164/* Interrupt Register(IR) */
165#define IR_ALL_INT 0xffffffff
166
167/* Renamed bits for versions > 3.1.x */
168#define IR_ARA BIT(29)
169#define IR_PED BIT(28)
170#define IR_PEA BIT(27)
171
172/* Bits for version 3.0.x */
173#define IR_STE BIT(31)
174#define IR_FOE BIT(30)
175#define IR_ACKE BIT(29)
176#define IR_BE BIT(28)
177#define IR_CRCE BIT(27)
178#define IR_WDI BIT(26)
179#define IR_BO BIT(25)
180#define IR_EW BIT(24)
181#define IR_EP BIT(23)
182#define IR_ELO BIT(22)
183#define IR_BEU BIT(21)
184#define IR_BEC BIT(20)
185#define IR_DRX BIT(19)
186#define IR_TOO BIT(18)
187#define IR_MRAF BIT(17)
188#define IR_TSW BIT(16)
189#define IR_TEFL BIT(15)
190#define IR_TEFF BIT(14)
191#define IR_TEFW BIT(13)
192#define IR_TEFN BIT(12)
193#define IR_TFE BIT(11)
194#define IR_TCF BIT(10)
195#define IR_TC BIT(9)
196#define IR_HPM BIT(8)
197#define IR_RF1L BIT(7)
198#define IR_RF1F BIT(6)
199#define IR_RF1W BIT(5)
200#define IR_RF1N BIT(4)
201#define IR_RF0L BIT(3)
202#define IR_RF0F BIT(2)
203#define IR_RF0W BIT(1)
204#define IR_RF0N BIT(0)
205#define IR_ERR_STATE (IR_BO | IR_EW | IR_EP)
206
207/* Interrupts for version 3.0.x */
208#define IR_ERR_LEC_30X (IR_STE | IR_FOE | IR_ACKE | IR_BE | IR_CRCE)
209#define IR_ERR_BUS_30X (IR_ERR_LEC_30X | IR_WDI | IR_ELO | IR_BEU | \
210 IR_BEC | IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | \
211 IR_RF1L | IR_RF0L)
212#define IR_ERR_ALL_30X (IR_ERR_STATE | IR_ERR_BUS_30X)
213/* Interrupts for version >= 3.1.x */
214#define IR_ERR_LEC_31X (IR_PED | IR_PEA)
215#define IR_ERR_BUS_31X (IR_ERR_LEC_31X | IR_WDI | IR_ELO | IR_BEU | \
216 IR_BEC | IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | \
217 IR_RF1L | IR_RF0L)
218#define IR_ERR_ALL_31X (IR_ERR_STATE | IR_ERR_BUS_31X)
219
220/* Interrupt Line Select (ILS) */
221#define ILS_ALL_INT0 0x0
222#define ILS_ALL_INT1 0xFFFFFFFF
223
224/* Interrupt Line Enable (ILE) */
225#define ILE_EINT1 BIT(1)
226#define ILE_EINT0 BIT(0)
227
228/* Rx FIFO 0/1 Configuration (RXF0C/RXF1C) */
229#define RXFC_FWM_SHIFT 24
230#define RXFC_FWM_MASK (0x7f << RXFC_FWM_SHIFT)
231#define RXFC_FS_SHIFT 16
232#define RXFC_FS_MASK (0x7f << RXFC_FS_SHIFT)
233
234/* Rx FIFO 0/1 Status (RXF0S/RXF1S) */
235#define RXFS_RFL BIT(25)
236#define RXFS_FF BIT(24)
237#define RXFS_FPI_SHIFT 16
238#define RXFS_FPI_MASK 0x3f0000
239#define RXFS_FGI_SHIFT 8
240#define RXFS_FGI_MASK 0x3f00
241#define RXFS_FFL_MASK 0x7f
242
243/* Rx Buffer / FIFO Element Size Configuration (RXESC) */
244#define M_CAN_RXESC_8BYTES 0x0
245#define M_CAN_RXESC_64BYTES 0x777
246
247/* Tx Buffer Configuration(TXBC) */
248#define TXBC_NDTB_SHIFT 16
249#define TXBC_NDTB_MASK (0x3f << TXBC_NDTB_SHIFT)
250#define TXBC_TFQS_SHIFT 24
251#define TXBC_TFQS_MASK (0x3f << TXBC_TFQS_SHIFT)
252
253/* Tx FIFO/Queue Status (TXFQS) */
254#define TXFQS_TFQF BIT(21)
255#define TXFQS_TFQPI_SHIFT 16
256#define TXFQS_TFQPI_MASK (0x1f << TXFQS_TFQPI_SHIFT)
257#define TXFQS_TFGI_SHIFT 8
258#define TXFQS_TFGI_MASK (0x1f << TXFQS_TFGI_SHIFT)
259#define TXFQS_TFFL_SHIFT 0
260#define TXFQS_TFFL_MASK (0x3f << TXFQS_TFFL_SHIFT)
261
262/* Tx Buffer Element Size Configuration(TXESC) */
263#define TXESC_TBDS_8BYTES 0x0
264#define TXESC_TBDS_64BYTES 0x7
265
266/* Tx Event FIFO Configuration (TXEFC) */
267#define TXEFC_EFS_SHIFT 16
268#define TXEFC_EFS_MASK (0x3f << TXEFC_EFS_SHIFT)
269
270/* Tx Event FIFO Status (TXEFS) */
271#define TXEFS_TEFL BIT(25)
272#define TXEFS_EFF BIT(24)
273#define TXEFS_EFGI_SHIFT 8
274#define TXEFS_EFGI_MASK (0x1f << TXEFS_EFGI_SHIFT)
275#define TXEFS_EFFL_SHIFT 0
276#define TXEFS_EFFL_MASK (0x3f << TXEFS_EFFL_SHIFT)
277
278/* Tx Event FIFO Acknowledge (TXEFA) */
279#define TXEFA_EFAI_SHIFT 0
280#define TXEFA_EFAI_MASK (0x1f << TXEFA_EFAI_SHIFT)
281
282/* Message RAM Configuration (in bytes) */
283#define SIDF_ELEMENT_SIZE 4
284#define XIDF_ELEMENT_SIZE 8
285#define RXF0_ELEMENT_SIZE 72
286#define RXF1_ELEMENT_SIZE 72
287#define RXB_ELEMENT_SIZE 72
288#define TXE_ELEMENT_SIZE 8
289#define TXB_ELEMENT_SIZE 72
290
291/* Message RAM Elements */
292#define M_CAN_FIFO_ID 0x0
293#define M_CAN_FIFO_DLC 0x4
294#define M_CAN_FIFO_DATA(n) (0x8 + ((n) << 2))
295
296/* Rx Buffer Element */
297/* R0 */
298#define RX_BUF_ESI BIT(31)
299#define RX_BUF_XTD BIT(30)
300#define RX_BUF_RTR BIT(29)
301/* R1 */
302#define RX_BUF_ANMF BIT(31)
303#define RX_BUF_FDF BIT(21)
304#define RX_BUF_BRS BIT(20)
305
306/* Tx Buffer Element */
307/* T0 */
308#define TX_BUF_ESI BIT(31)
309#define TX_BUF_XTD BIT(30)
310#define TX_BUF_RTR BIT(29)
311/* T1 */
312#define TX_BUF_EFC BIT(23)
313#define TX_BUF_FDF BIT(21)
314#define TX_BUF_BRS BIT(20)
315#define TX_BUF_MM_SHIFT 24
316#define TX_BUF_MM_MASK (0xff << TX_BUF_MM_SHIFT)
317
318/* Tx event FIFO Element */
319/* E1 */
320#define TX_EVENT_MM_SHIFT TX_BUF_MM_SHIFT
321#define TX_EVENT_MM_MASK (0xff << TX_EVENT_MM_SHIFT)
322
323static inline u32 m_can_read(struct m_can_classdev *cdev, enum m_can_reg reg)
324{
325 return cdev->ops->read_reg(cdev, reg);
326}
327
328static inline void m_can_write(struct m_can_classdev *cdev, enum m_can_reg reg,
329 u32 val)
330{
331 cdev->ops->write_reg(cdev, reg, val);
332}
333
334static u32 m_can_fifo_read(struct m_can_classdev *cdev,
335 u32 fgi, unsigned int offset)
336{
337 u32 addr_offset = cdev->mcfg[MRAM_RXF0].off + fgi * RXF0_ELEMENT_SIZE +
338 offset;
339
340 return cdev->ops->read_fifo(cdev, addr_offset);
341}
342
343static void m_can_fifo_write(struct m_can_classdev *cdev,
344 u32 fpi, unsigned int offset, u32 val)
345{
346 u32 addr_offset = cdev->mcfg[MRAM_TXB].off + fpi * TXB_ELEMENT_SIZE +
347 offset;
348
349 cdev->ops->write_fifo(cdev, addr_offset, val);
350}
351
352static inline void m_can_fifo_write_no_off(struct m_can_classdev *cdev,
353 u32 fpi, u32 val)
354{
355 cdev->ops->write_fifo(cdev, fpi, val);
356}
357
358static u32 m_can_txe_fifo_read(struct m_can_classdev *cdev, u32 fgi, u32 offset)
359{
360 u32 addr_offset = cdev->mcfg[MRAM_TXE].off + fgi * TXE_ELEMENT_SIZE +
361 offset;
362
363 return cdev->ops->read_fifo(cdev, addr_offset);
364}
365
366static inline bool m_can_tx_fifo_full(struct m_can_classdev *cdev)
367{
368 return !!(m_can_read(cdev, M_CAN_TXFQS) & TXFQS_TFQF);
369}
370
371void m_can_config_endisable(struct m_can_classdev *cdev, bool enable)
372{
373 u32 cccr = m_can_read(cdev, M_CAN_CCCR);
374 u32 timeout = 10;
375 u32 val = 0;
376
377 /* Clear the Clock stop request if it was set */
378 if (cccr & CCCR_CSR)
379 cccr &= ~CCCR_CSR;
380
381 if (enable) {
382 /* Clear the Clock stop request if it was set */
383 if (cccr & CCCR_CSR)
384 cccr &= ~CCCR_CSR;
385
386 /* enable m_can configuration */
387 m_can_write(cdev, M_CAN_CCCR, cccr | CCCR_INIT);
388 udelay(5);
389 /* CCCR.CCE can only be set/reset while CCCR.INIT = '1' */
390 m_can_write(cdev, M_CAN_CCCR, cccr | CCCR_INIT | CCCR_CCE);
391 } else {
392 m_can_write(cdev, M_CAN_CCCR, cccr & ~(CCCR_INIT | CCCR_CCE));
393 }
394
395 /* there's a delay for module initialization */
396 if (enable)
397 val = CCCR_INIT | CCCR_CCE;
398
399 while ((m_can_read(cdev, M_CAN_CCCR) & (CCCR_INIT | CCCR_CCE)) != val) {
400 if (timeout == 0) {
401 netdev_warn(cdev->net, "Failed to init module\n");
402 return;
403 }
404 timeout--;
405 udelay(1);
406 }
407}
408
409static inline void m_can_enable_all_interrupts(struct m_can_classdev *cdev)
410{
411 /* Only interrupt line 0 is used in this driver */
412 m_can_write(cdev, M_CAN_ILE, ILE_EINT0);
413}
414
415static inline void m_can_disable_all_interrupts(struct m_can_classdev *cdev)
416{
417 m_can_write(cdev, M_CAN_ILE, 0x0);
418}
419
420static void m_can_clean(struct net_device *net)
421{
422 struct m_can_classdev *cdev = netdev_priv(net);
423
424 if (cdev->tx_skb) {
425 int putidx = 0;
426
427 net->stats.tx_errors++;
428 if (cdev->version > 30)
429 putidx = ((m_can_read(cdev, M_CAN_TXFQS) &
430 TXFQS_TFQPI_MASK) >> TXFQS_TFQPI_SHIFT);
431
432 can_free_echo_skb(cdev->net, putidx);
433 cdev->tx_skb = NULL;
434 }
435}
436
437static void m_can_read_fifo(struct net_device *dev, u32 rxfs)
438{
439 struct net_device_stats *stats = &dev->stats;
440 struct m_can_classdev *cdev = netdev_priv(dev);
441 struct canfd_frame *cf;
442 struct sk_buff *skb;
443 u32 id, fgi, dlc;
444 int i;
445
446 /* calculate the fifo get index for where to read data */
447 fgi = (rxfs & RXFS_FGI_MASK) >> RXFS_FGI_SHIFT;
448 dlc = m_can_fifo_read(cdev, fgi, M_CAN_FIFO_DLC);
449 if (dlc & RX_BUF_FDF)
450 skb = alloc_canfd_skb(dev, &cf);
451 else
452 skb = alloc_can_skb(dev, (struct can_frame **)&cf);
453 if (!skb) {
454 stats->rx_dropped++;
455 return;
456 }
457
458 if (dlc & RX_BUF_FDF)
459 cf->len = can_dlc2len((dlc >> 16) & 0x0F);
460 else
461 cf->len = get_can_dlc((dlc >> 16) & 0x0F);
462
463 id = m_can_fifo_read(cdev, fgi, M_CAN_FIFO_ID);
464 if (id & RX_BUF_XTD)
465 cf->can_id = (id & CAN_EFF_MASK) | CAN_EFF_FLAG;
466 else
467 cf->can_id = (id >> 18) & CAN_SFF_MASK;
468
469 if (id & RX_BUF_ESI) {
470 cf->flags |= CANFD_ESI;
471 netdev_dbg(dev, "ESI Error\n");
472 }
473
474 if (!(dlc & RX_BUF_FDF) && (id & RX_BUF_RTR)) {
475 cf->can_id |= CAN_RTR_FLAG;
476 } else {
477 if (dlc & RX_BUF_BRS)
478 cf->flags |= CANFD_BRS;
479
480 for (i = 0; i < cf->len; i += 4)
481 *(u32 *)(cf->data + i) =
482 m_can_fifo_read(cdev, fgi,
483 M_CAN_FIFO_DATA(i / 4));
484 }
485
486 /* acknowledge rx fifo 0 */
487 m_can_write(cdev, M_CAN_RXF0A, fgi);
488
489 stats->rx_packets++;
490 stats->rx_bytes += cf->len;
491
492 netif_receive_skb(skb);
493}
494
495static int m_can_do_rx_poll(struct net_device *dev, int quota)
496{
497 struct m_can_classdev *cdev = netdev_priv(dev);
498 u32 pkts = 0;
499 u32 rxfs;
500
501 rxfs = m_can_read(cdev, M_CAN_RXF0S);
502 if (!(rxfs & RXFS_FFL_MASK)) {
503 netdev_dbg(dev, "no messages in fifo0\n");
504 return 0;
505 }
506
507 while ((rxfs & RXFS_FFL_MASK) && (quota > 0)) {
508 if (rxfs & RXFS_RFL)
509 netdev_warn(dev, "Rx FIFO 0 Message Lost\n");
510
511 m_can_read_fifo(dev, rxfs);
512
513 quota--;
514 pkts++;
515 rxfs = m_can_read(cdev, M_CAN_RXF0S);
516 }
517
518 if (pkts)
519 can_led_event(dev, CAN_LED_EVENT_RX);
520
521 return pkts;
522}
523
524static int m_can_handle_lost_msg(struct net_device *dev)
525{
526 struct net_device_stats *stats = &dev->stats;
527 struct sk_buff *skb;
528 struct can_frame *frame;
529
530 netdev_err(dev, "msg lost in rxf0\n");
531
532 stats->rx_errors++;
533 stats->rx_over_errors++;
534
535 skb = alloc_can_err_skb(dev, &frame);
536 if (unlikely(!skb))
537 return 0;
538
539 frame->can_id |= CAN_ERR_CRTL;
540 frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
541
542 netif_receive_skb(skb);
543
544 return 1;
545}
546
547static int m_can_handle_lec_err(struct net_device *dev,
548 enum m_can_lec_type lec_type)
549{
550 struct m_can_classdev *cdev = netdev_priv(dev);
551 struct net_device_stats *stats = &dev->stats;
552 struct can_frame *cf;
553 struct sk_buff *skb;
554
555 cdev->can.can_stats.bus_error++;
556 stats->rx_errors++;
557
558 /* propagate the error condition to the CAN stack */
559 skb = alloc_can_err_skb(dev, &cf);
560 if (unlikely(!skb))
561 return 0;
562
563 /* check for 'last error code' which tells us the
564 * type of the last error to occur on the CAN bus
565 */
566 cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
567
568 switch (lec_type) {
569 case LEC_STUFF_ERROR:
570 netdev_dbg(dev, "stuff error\n");
571 cf->data[2] |= CAN_ERR_PROT_STUFF;
572 break;
573 case LEC_FORM_ERROR:
574 netdev_dbg(dev, "form error\n");
575 cf->data[2] |= CAN_ERR_PROT_FORM;
576 break;
577 case LEC_ACK_ERROR:
578 netdev_dbg(dev, "ack error\n");
579 cf->data[3] = CAN_ERR_PROT_LOC_ACK;
580 break;
581 case LEC_BIT1_ERROR:
582 netdev_dbg(dev, "bit1 error\n");
583 cf->data[2] |= CAN_ERR_PROT_BIT1;
584 break;
585 case LEC_BIT0_ERROR:
586 netdev_dbg(dev, "bit0 error\n");
587 cf->data[2] |= CAN_ERR_PROT_BIT0;
588 break;
589 case LEC_CRC_ERROR:
590 netdev_dbg(dev, "CRC error\n");
591 cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
592 break;
593 default:
594 break;
595 }
596
597 stats->rx_packets++;
598 stats->rx_bytes += cf->can_dlc;
599 netif_receive_skb(skb);
600
601 return 1;
602}
603
604static int __m_can_get_berr_counter(const struct net_device *dev,
605 struct can_berr_counter *bec)
606{
607 struct m_can_classdev *cdev = netdev_priv(dev);
608 unsigned int ecr;
609
610 ecr = m_can_read(cdev, M_CAN_ECR);
611 bec->rxerr = (ecr & ECR_REC_MASK) >> ECR_REC_SHIFT;
612 bec->txerr = (ecr & ECR_TEC_MASK) >> ECR_TEC_SHIFT;
613
614 return 0;
615}
616
617static int m_can_clk_start(struct m_can_classdev *cdev)
618{
619 int err;
620
621 if (cdev->pm_clock_support == 0)
622 return 0;
623
624 err = pm_runtime_get_sync(cdev->dev);
625 if (err < 0) {
626 pm_runtime_put_noidle(cdev->dev);
627 return err;
628 }
629
630 return 0;
631}
632
633static void m_can_clk_stop(struct m_can_classdev *cdev)
634{
635 if (cdev->pm_clock_support)
636 pm_runtime_put_sync(cdev->dev);
637}
638
639static int m_can_get_berr_counter(const struct net_device *dev,
640 struct can_berr_counter *bec)
641{
642 struct m_can_classdev *cdev = netdev_priv(dev);
643 int err;
644
645 err = m_can_clk_start(cdev);
646 if (err)
647 return err;
648
649 __m_can_get_berr_counter(dev, bec);
650
651 m_can_clk_stop(cdev);
652
653 return 0;
654}
655
656static int m_can_handle_state_change(struct net_device *dev,
657 enum can_state new_state)
658{
659 struct m_can_classdev *cdev = netdev_priv(dev);
660 struct net_device_stats *stats = &dev->stats;
661 struct can_frame *cf;
662 struct sk_buff *skb;
663 struct can_berr_counter bec;
664 unsigned int ecr;
665
666 switch (new_state) {
667 case CAN_STATE_ERROR_ACTIVE:
668 /* error warning state */
669 cdev->can.can_stats.error_warning++;
670 cdev->can.state = CAN_STATE_ERROR_WARNING;
671 break;
672 case CAN_STATE_ERROR_PASSIVE:
673 /* error passive state */
674 cdev->can.can_stats.error_passive++;
675 cdev->can.state = CAN_STATE_ERROR_PASSIVE;
676 break;
677 case CAN_STATE_BUS_OFF:
678 /* bus-off state */
679 cdev->can.state = CAN_STATE_BUS_OFF;
680 m_can_disable_all_interrupts(cdev);
681 cdev->can.can_stats.bus_off++;
682 can_bus_off(dev);
683 break;
684 default:
685 break;
686 }
687
688 /* propagate the error condition to the CAN stack */
689 skb = alloc_can_err_skb(dev, &cf);
690 if (unlikely(!skb))
691 return 0;
692
693 __m_can_get_berr_counter(dev, &bec);
694
695 switch (new_state) {
696 case CAN_STATE_ERROR_ACTIVE:
697 /* error warning state */
698 cf->can_id |= CAN_ERR_CRTL;
699 cf->data[1] = (bec.txerr > bec.rxerr) ?
700 CAN_ERR_CRTL_TX_WARNING :
701 CAN_ERR_CRTL_RX_WARNING;
702 cf->data[6] = bec.txerr;
703 cf->data[7] = bec.rxerr;
704 break;
705 case CAN_STATE_ERROR_PASSIVE:
706 /* error passive state */
707 cf->can_id |= CAN_ERR_CRTL;
708 ecr = m_can_read(cdev, M_CAN_ECR);
709 if (ecr & ECR_RP)
710 cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
711 if (bec.txerr > 127)
712 cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
713 cf->data[6] = bec.txerr;
714 cf->data[7] = bec.rxerr;
715 break;
716 case CAN_STATE_BUS_OFF:
717 /* bus-off state */
718 cf->can_id |= CAN_ERR_BUSOFF;
719 break;
720 default:
721 break;
722 }
723
724 stats->rx_packets++;
725 stats->rx_bytes += cf->can_dlc;
726 netif_receive_skb(skb);
727
728 return 1;
729}
730
731static int m_can_handle_state_errors(struct net_device *dev, u32 psr)
732{
733 struct m_can_classdev *cdev = netdev_priv(dev);
734 int work_done = 0;
735
736 if (psr & PSR_EW && cdev->can.state != CAN_STATE_ERROR_WARNING) {
737 netdev_dbg(dev, "entered error warning state\n");
738 work_done += m_can_handle_state_change(dev,
739 CAN_STATE_ERROR_WARNING);
740 }
741
742 if (psr & PSR_EP && cdev->can.state != CAN_STATE_ERROR_PASSIVE) {
743 netdev_dbg(dev, "entered error passive state\n");
744 work_done += m_can_handle_state_change(dev,
745 CAN_STATE_ERROR_PASSIVE);
746 }
747
748 if (psr & PSR_BO && cdev->can.state != CAN_STATE_BUS_OFF) {
749 netdev_dbg(dev, "entered error bus off state\n");
750 work_done += m_can_handle_state_change(dev,
751 CAN_STATE_BUS_OFF);
752 }
753
754 return work_done;
755}
756
757static void m_can_handle_other_err(struct net_device *dev, u32 irqstatus)
758{
759 if (irqstatus & IR_WDI)
760 netdev_err(dev, "Message RAM Watchdog event due to missing READY\n");
761 if (irqstatus & IR_ELO)
762 netdev_err(dev, "Error Logging Overflow\n");
763 if (irqstatus & IR_BEU)
764 netdev_err(dev, "Bit Error Uncorrected\n");
765 if (irqstatus & IR_BEC)
766 netdev_err(dev, "Bit Error Corrected\n");
767 if (irqstatus & IR_TOO)
768 netdev_err(dev, "Timeout reached\n");
769 if (irqstatus & IR_MRAF)
770 netdev_err(dev, "Message RAM access failure occurred\n");
771}
772
773static inline bool is_lec_err(u32 psr)
774{
775 psr &= LEC_UNUSED;
776
777 return psr && (psr != LEC_UNUSED);
778}
779
780static int m_can_handle_bus_errors(struct net_device *dev, u32 irqstatus,
781 u32 psr)
782{
783 struct m_can_classdev *cdev = netdev_priv(dev);
784 int work_done = 0;
785
786 if (irqstatus & IR_RF0L)
787 work_done += m_can_handle_lost_msg(dev);
788
789 /* handle lec errors on the bus */
790 if ((cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) &&
791 is_lec_err(psr))
792 work_done += m_can_handle_lec_err(dev, psr & LEC_UNUSED);
793
794 /* other unproccessed error interrupts */
795 m_can_handle_other_err(dev, irqstatus);
796
797 return work_done;
798}
799
800static int m_can_rx_handler(struct net_device *dev, int quota)
801{
802 struct m_can_classdev *cdev = netdev_priv(dev);
803 int work_done = 0;
804 u32 irqstatus, psr;
805
806 irqstatus = cdev->irqstatus | m_can_read(cdev, M_CAN_IR);
807 if (!irqstatus)
808 goto end;
809
810 /* Errata workaround for issue "Needless activation of MRAF irq"
811 * During frame reception while the MCAN is in Error Passive state
812 * and the Receive Error Counter has the value MCAN_ECR.REC = 127,
813 * it may happen that MCAN_IR.MRAF is set although there was no
814 * Message RAM access failure.
815 * If MCAN_IR.MRAF is enabled, an interrupt to the Host CPU is generated
816 * The Message RAM Access Failure interrupt routine needs to check
817 * whether MCAN_ECR.RP = ’1’ and MCAN_ECR.REC = 127.
818 * In this case, reset MCAN_IR.MRAF. No further action is required.
819 */
820 if (cdev->version <= 31 && irqstatus & IR_MRAF &&
821 m_can_read(cdev, M_CAN_ECR) & ECR_RP) {
822 struct can_berr_counter bec;
823
824 __m_can_get_berr_counter(dev, &bec);
825 if (bec.rxerr == 127) {
826 m_can_write(cdev, M_CAN_IR, IR_MRAF);
827 irqstatus &= ~IR_MRAF;
828 }
829 }
830
831 psr = m_can_read(cdev, M_CAN_PSR);
832
833 if (irqstatus & IR_ERR_STATE)
834 work_done += m_can_handle_state_errors(dev, psr);
835
836 if (irqstatus & IR_ERR_BUS_30X)
837 work_done += m_can_handle_bus_errors(dev, irqstatus, psr);
838
839 if (irqstatus & IR_RF0N)
840 work_done += m_can_do_rx_poll(dev, (quota - work_done));
841end:
842 return work_done;
843}
844
845static int m_can_rx_peripheral(struct net_device *dev)
846{
847 struct m_can_classdev *cdev = netdev_priv(dev);
848
849 m_can_rx_handler(dev, 1);
850
851 m_can_enable_all_interrupts(cdev);
852
853 return 0;
854}
855
856static int m_can_poll(struct napi_struct *napi, int quota)
857{
858 struct net_device *dev = napi->dev;
859 struct m_can_classdev *cdev = netdev_priv(dev);
860 int work_done;
861
862 work_done = m_can_rx_handler(dev, quota);
863 if (work_done < quota) {
864 napi_complete_done(napi, work_done);
865 m_can_enable_all_interrupts(cdev);
866 }
867
868 return work_done;
869}
870
871static void m_can_echo_tx_event(struct net_device *dev)
872{
873 u32 txe_count = 0;
874 u32 m_can_txefs;
875 u32 fgi = 0;
876 int i = 0;
877 unsigned int msg_mark;
878
879 struct m_can_classdev *cdev = netdev_priv(dev);
880 struct net_device_stats *stats = &dev->stats;
881
882 /* read tx event fifo status */
883 m_can_txefs = m_can_read(cdev, M_CAN_TXEFS);
884
885 /* Get Tx Event fifo element count */
886 txe_count = (m_can_txefs & TXEFS_EFFL_MASK)
887 >> TXEFS_EFFL_SHIFT;
888
889 /* Get and process all sent elements */
890 for (i = 0; i < txe_count; i++) {
891 /* retrieve get index */
892 fgi = (m_can_read(cdev, M_CAN_TXEFS) & TXEFS_EFGI_MASK)
893 >> TXEFS_EFGI_SHIFT;
894
895 /* get message marker */
896 msg_mark = (m_can_txe_fifo_read(cdev, fgi, 4) &
897 TX_EVENT_MM_MASK) >> TX_EVENT_MM_SHIFT;
898
899 /* ack txe element */
900 m_can_write(cdev, M_CAN_TXEFA, (TXEFA_EFAI_MASK &
901 (fgi << TXEFA_EFAI_SHIFT)));
902
903 /* update stats */
904 stats->tx_bytes += can_get_echo_skb(dev, msg_mark);
905 stats->tx_packets++;
906 }
907}
908
909static irqreturn_t m_can_isr(int irq, void *dev_id)
910{
911 struct net_device *dev = (struct net_device *)dev_id;
912 struct m_can_classdev *cdev = netdev_priv(dev);
913 struct net_device_stats *stats = &dev->stats;
914 u32 ir;
915
916 ir = m_can_read(cdev, M_CAN_IR);
917 if (!ir)
918 return IRQ_NONE;
919
920 /* ACK all irqs */
921 if (ir & IR_ALL_INT)
922 m_can_write(cdev, M_CAN_IR, ir);
923
924 if (cdev->ops->clear_interrupts)
925 cdev->ops->clear_interrupts(cdev);
926
927 /* schedule NAPI in case of
928 * - rx IRQ
929 * - state change IRQ
930 * - bus error IRQ and bus error reporting
931 */
932 if ((ir & IR_RF0N) || (ir & IR_ERR_ALL_30X)) {
933 cdev->irqstatus = ir;
934 m_can_disable_all_interrupts(cdev);
935 if (!cdev->is_peripheral)
936 napi_schedule(&cdev->napi);
937 else
938 m_can_rx_peripheral(dev);
939 }
940
941 if (cdev->version == 30) {
942 if (ir & IR_TC) {
943 /* Transmission Complete Interrupt*/
944 stats->tx_bytes += can_get_echo_skb(dev, 0);
945 stats->tx_packets++;
946 can_led_event(dev, CAN_LED_EVENT_TX);
947 netif_wake_queue(dev);
948 }
949 } else {
950 if (ir & IR_TEFN) {
951 /* New TX FIFO Element arrived */
952 m_can_echo_tx_event(dev);
953 can_led_event(dev, CAN_LED_EVENT_TX);
954 if (netif_queue_stopped(dev) &&
955 !m_can_tx_fifo_full(cdev))
956 netif_wake_queue(dev);
957 }
958 }
959
960 return IRQ_HANDLED;
961}
962
963static const struct can_bittiming_const m_can_bittiming_const_30X = {
964 .name = KBUILD_MODNAME,
965 .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */
966 .tseg1_max = 64,
967 .tseg2_min = 1, /* Time segment 2 = phase_seg2 */
968 .tseg2_max = 16,
969 .sjw_max = 16,
970 .brp_min = 1,
971 .brp_max = 1024,
972 .brp_inc = 1,
973};
974
975static const struct can_bittiming_const m_can_data_bittiming_const_30X = {
976 .name = KBUILD_MODNAME,
977 .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */
978 .tseg1_max = 16,
979 .tseg2_min = 1, /* Time segment 2 = phase_seg2 */
980 .tseg2_max = 8,
981 .sjw_max = 4,
982 .brp_min = 1,
983 .brp_max = 32,
984 .brp_inc = 1,
985};
986
987static const struct can_bittiming_const m_can_bittiming_const_31X = {
988 .name = KBUILD_MODNAME,
989 .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */
990 .tseg1_max = 256,
991 .tseg2_min = 1, /* Time segment 2 = phase_seg2 */
992 .tseg2_max = 128,
993 .sjw_max = 128,
994 .brp_min = 1,
995 .brp_max = 512,
996 .brp_inc = 1,
997};
998
999static const struct can_bittiming_const m_can_data_bittiming_const_31X = {
1000 .name = KBUILD_MODNAME,
1001 .tseg1_min = 1, /* Time segment 1 = prop_seg + phase_seg1 */
1002 .tseg1_max = 32,
1003 .tseg2_min = 1, /* Time segment 2 = phase_seg2 */
1004 .tseg2_max = 16,
1005 .sjw_max = 16,
1006 .brp_min = 1,
1007 .brp_max = 32,
1008 .brp_inc = 1,
1009};
1010
1011static int m_can_set_bittiming(struct net_device *dev)
1012{
1013 struct m_can_classdev *cdev = netdev_priv(dev);
1014 const struct can_bittiming *bt = &cdev->can.bittiming;
1015 const struct can_bittiming *dbt = &cdev->can.data_bittiming;
1016 u16 brp, sjw, tseg1, tseg2;
1017 u32 reg_btp;
1018
1019 brp = bt->brp - 1;
1020 sjw = bt->sjw - 1;
1021 tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
1022 tseg2 = bt->phase_seg2 - 1;
1023 reg_btp = (brp << NBTP_NBRP_SHIFT) | (sjw << NBTP_NSJW_SHIFT) |
1024 (tseg1 << NBTP_NTSEG1_SHIFT) | (tseg2 << NBTP_NTSEG2_SHIFT);
1025 m_can_write(cdev, M_CAN_NBTP, reg_btp);
1026
1027 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) {
1028 reg_btp = 0;
1029 brp = dbt->brp - 1;
1030 sjw = dbt->sjw - 1;
1031 tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1;
1032 tseg2 = dbt->phase_seg2 - 1;
1033
1034 /* TDC is only needed for bitrates beyond 2.5 MBit/s.
1035 * This is mentioned in the "Bit Time Requirements for CAN FD"
1036 * paper presented at the International CAN Conference 2013
1037 */
1038 if (dbt->bitrate > 2500000) {
1039 u32 tdco, ssp;
1040
1041 /* Use the same value of secondary sampling point
1042 * as the data sampling point
1043 */
1044 ssp = dbt->sample_point;
1045
1046 /* Equation based on Bosch's M_CAN User Manual's
1047 * Transmitter Delay Compensation Section
1048 */
1049 tdco = (cdev->can.clock.freq / 1000) *
1050 ssp / dbt->bitrate;
1051
1052 /* Max valid TDCO value is 127 */
1053 if (tdco > 127) {
1054 netdev_warn(dev, "TDCO value of %u is beyond maximum. Using maximum possible value\n",
1055 tdco);
1056 tdco = 127;
1057 }
1058
1059 reg_btp |= DBTP_TDC;
1060 m_can_write(cdev, M_CAN_TDCR,
1061 tdco << TDCR_TDCO_SHIFT);
1062 }
1063
1064 reg_btp |= (brp << DBTP_DBRP_SHIFT) |
1065 (sjw << DBTP_DSJW_SHIFT) |
1066 (tseg1 << DBTP_DTSEG1_SHIFT) |
1067 (tseg2 << DBTP_DTSEG2_SHIFT);
1068
1069 m_can_write(cdev, M_CAN_DBTP, reg_btp);
1070 }
1071
1072 return 0;
1073}
1074
1075/* Configure M_CAN chip:
1076 * - set rx buffer/fifo element size
1077 * - configure rx fifo
1078 * - accept non-matching frame into fifo 0
1079 * - configure tx buffer
1080 * - >= v3.1.x: TX FIFO is used
1081 * - configure mode
1082 * - setup bittiming
1083 */
1084static void m_can_chip_config(struct net_device *dev)
1085{
1086 struct m_can_classdev *cdev = netdev_priv(dev);
1087 u32 cccr, test;
1088
1089 m_can_config_endisable(cdev, true);
1090
1091 /* RX Buffer/FIFO Element Size 64 bytes data field */
1092 m_can_write(cdev, M_CAN_RXESC, M_CAN_RXESC_64BYTES);
1093
1094 /* Accept Non-matching Frames Into FIFO 0 */
1095 m_can_write(cdev, M_CAN_GFC, 0x0);
1096
1097 if (cdev->version == 30) {
1098 /* only support one Tx Buffer currently */
1099 m_can_write(cdev, M_CAN_TXBC, (1 << TXBC_NDTB_SHIFT) |
1100 cdev->mcfg[MRAM_TXB].off);
1101 } else {
1102 /* TX FIFO is used for newer IP Core versions */
1103 m_can_write(cdev, M_CAN_TXBC,
1104 (cdev->mcfg[MRAM_TXB].num << TXBC_TFQS_SHIFT) |
1105 (cdev->mcfg[MRAM_TXB].off));
1106 }
1107
1108 /* support 64 bytes payload */
1109 m_can_write(cdev, M_CAN_TXESC, TXESC_TBDS_64BYTES);
1110
1111 /* TX Event FIFO */
1112 if (cdev->version == 30) {
1113 m_can_write(cdev, M_CAN_TXEFC, (1 << TXEFC_EFS_SHIFT) |
1114 cdev->mcfg[MRAM_TXE].off);
1115 } else {
1116 /* Full TX Event FIFO is used */
1117 m_can_write(cdev, M_CAN_TXEFC,
1118 ((cdev->mcfg[MRAM_TXE].num << TXEFC_EFS_SHIFT)
1119 & TXEFC_EFS_MASK) |
1120 cdev->mcfg[MRAM_TXE].off);
1121 }
1122
1123 /* rx fifo configuration, blocking mode, fifo size 1 */
1124 m_can_write(cdev, M_CAN_RXF0C,
1125 (cdev->mcfg[MRAM_RXF0].num << RXFC_FS_SHIFT) |
1126 cdev->mcfg[MRAM_RXF0].off);
1127
1128 m_can_write(cdev, M_CAN_RXF1C,
1129 (cdev->mcfg[MRAM_RXF1].num << RXFC_FS_SHIFT) |
1130 cdev->mcfg[MRAM_RXF1].off);
1131
1132 cccr = m_can_read(cdev, M_CAN_CCCR);
1133 test = m_can_read(cdev, M_CAN_TEST);
1134 test &= ~TEST_LBCK;
1135 if (cdev->version == 30) {
1136 /* Version 3.0.x */
1137
1138 cccr &= ~(CCCR_TEST | CCCR_MON |
1139 (CCCR_CMR_MASK << CCCR_CMR_SHIFT) |
1140 (CCCR_CME_MASK << CCCR_CME_SHIFT));
1141
1142 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD)
1143 cccr |= CCCR_CME_CANFD_BRS << CCCR_CME_SHIFT;
1144
1145 } else {
1146 /* Version 3.1.x or 3.2.x */
1147 cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_BRSE | CCCR_FDOE |
1148 CCCR_NISO);
1149
1150 /* Only 3.2.x has NISO Bit implemented */
1151 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD_NON_ISO)
1152 cccr |= CCCR_NISO;
1153
1154 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD)
1155 cccr |= (CCCR_BRSE | CCCR_FDOE);
1156 }
1157
1158 /* Loopback Mode */
1159 if (cdev->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
1160 cccr |= CCCR_TEST | CCCR_MON;
1161 test |= TEST_LBCK;
1162 }
1163
1164 /* Enable Monitoring (all versions) */
1165 if (cdev->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)
1166 cccr |= CCCR_MON;
1167
1168 /* Write config */
1169 m_can_write(cdev, M_CAN_CCCR, cccr);
1170 m_can_write(cdev, M_CAN_TEST, test);
1171
1172 /* Enable interrupts */
1173 m_can_write(cdev, M_CAN_IR, IR_ALL_INT);
1174 if (!(cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING))
1175 if (cdev->version == 30)
1176 m_can_write(cdev, M_CAN_IE, IR_ALL_INT &
1177 ~(IR_ERR_LEC_30X));
1178 else
1179 m_can_write(cdev, M_CAN_IE, IR_ALL_INT &
1180 ~(IR_ERR_LEC_31X));
1181 else
1182 m_can_write(cdev, M_CAN_IE, IR_ALL_INT);
1183
1184 /* route all interrupts to INT0 */
1185 m_can_write(cdev, M_CAN_ILS, ILS_ALL_INT0);
1186
1187 /* set bittiming params */
1188 m_can_set_bittiming(dev);
1189
1190 m_can_config_endisable(cdev, false);
1191
1192 if (cdev->ops->init)
1193 cdev->ops->init(cdev);
1194}
1195
1196static void m_can_start(struct net_device *dev)
1197{
1198 struct m_can_classdev *cdev = netdev_priv(dev);
1199
1200 /* basic m_can configuration */
1201 m_can_chip_config(dev);
1202
1203 cdev->can.state = CAN_STATE_ERROR_ACTIVE;
1204
1205 m_can_enable_all_interrupts(cdev);
1206}
1207
1208static int m_can_set_mode(struct net_device *dev, enum can_mode mode)
1209{
1210 switch (mode) {
1211 case CAN_MODE_START:
1212 m_can_clean(dev);
1213 m_can_start(dev);
1214 netif_wake_queue(dev);
1215 break;
1216 default:
1217 return -EOPNOTSUPP;
1218 }
1219
1220 return 0;
1221}
1222
1223/* Checks core release number of M_CAN
1224 * returns 0 if an unsupported device is detected
1225 * else it returns the release and step coded as:
1226 * return value = 10 * <release> + 1 * <step>
1227 */
1228static int m_can_check_core_release(struct m_can_classdev *cdev)
1229{
1230 u32 crel_reg;
1231 u8 rel;
1232 u8 step;
1233 int res;
1234
1235 /* Read Core Release Version and split into version number
1236 * Example: Version 3.2.1 => rel = 3; step = 2; substep = 1;
1237 */
1238 crel_reg = m_can_read(cdev, M_CAN_CREL);
1239 rel = (u8)((crel_reg & CREL_REL_MASK) >> CREL_REL_SHIFT);
1240 step = (u8)((crel_reg & CREL_STEP_MASK) >> CREL_STEP_SHIFT);
1241
1242 if (rel == 3) {
1243 /* M_CAN v3.x.y: create return value */
1244 res = 30 + step;
1245 } else {
1246 /* Unsupported M_CAN version */
1247 res = 0;
1248 }
1249
1250 return res;
1251}
1252
1253/* Selectable Non ISO support only in version 3.2.x
1254 * This function checks if the bit is writable.
1255 */
1256static bool m_can_niso_supported(struct m_can_classdev *cdev)
1257{
1258 u32 cccr_reg, cccr_poll = 0;
1259 int niso_timeout = -ETIMEDOUT;
1260 int i;
1261
1262 m_can_config_endisable(cdev, true);
1263 cccr_reg = m_can_read(cdev, M_CAN_CCCR);
1264 cccr_reg |= CCCR_NISO;
1265 m_can_write(cdev, M_CAN_CCCR, cccr_reg);
1266
1267 for (i = 0; i <= 10; i++) {
1268 cccr_poll = m_can_read(cdev, M_CAN_CCCR);
1269 if (cccr_poll == cccr_reg) {
1270 niso_timeout = 0;
1271 break;
1272 }
1273
1274 usleep_range(1, 5);
1275 }
1276
1277 /* Clear NISO */
1278 cccr_reg &= ~(CCCR_NISO);
1279 m_can_write(cdev, M_CAN_CCCR, cccr_reg);
1280
1281 m_can_config_endisable(cdev, false);
1282
1283 /* return false if time out (-ETIMEDOUT), else return true */
1284 return !niso_timeout;
1285}
1286
1287static int m_can_dev_setup(struct m_can_classdev *m_can_dev)
1288{
1289 struct net_device *dev = m_can_dev->net;
1290 int m_can_version;
1291
1292 m_can_version = m_can_check_core_release(m_can_dev);
1293 /* return if unsupported version */
1294 if (!m_can_version) {
1295 dev_err(m_can_dev->dev, "Unsupported version number: %2d",
1296 m_can_version);
1297 return -EINVAL;
1298 }
1299
1300 if (!m_can_dev->is_peripheral)
1301 netif_napi_add(dev, &m_can_dev->napi,
1302 m_can_poll, M_CAN_NAPI_WEIGHT);
1303
1304 /* Shared properties of all M_CAN versions */
1305 m_can_dev->version = m_can_version;
1306 m_can_dev->can.do_set_mode = m_can_set_mode;
1307 m_can_dev->can.do_get_berr_counter = m_can_get_berr_counter;
1308
1309 /* Set M_CAN supported operations */
1310 m_can_dev->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK |
1311 CAN_CTRLMODE_LISTENONLY |
1312 CAN_CTRLMODE_BERR_REPORTING |
1313 CAN_CTRLMODE_FD;
1314
1315 /* Set properties depending on M_CAN version */
1316 switch (m_can_dev->version) {
1317 case 30:
1318 /* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.0.x */
1319 can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO);
1320 m_can_dev->can.bittiming_const = m_can_dev->bit_timing ?
1321 m_can_dev->bit_timing : &m_can_bittiming_const_30X;
1322
1323 m_can_dev->can.data_bittiming_const = m_can_dev->data_timing ?
1324 m_can_dev->data_timing :
1325 &m_can_data_bittiming_const_30X;
1326 break;
1327 case 31:
1328 /* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.1.x */
1329 can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO);
1330 m_can_dev->can.bittiming_const = m_can_dev->bit_timing ?
1331 m_can_dev->bit_timing : &m_can_bittiming_const_31X;
1332
1333 m_can_dev->can.data_bittiming_const = m_can_dev->data_timing ?
1334 m_can_dev->data_timing :
1335 &m_can_data_bittiming_const_31X;
1336 break;
1337 case 32:
1338 m_can_dev->can.bittiming_const = m_can_dev->bit_timing ?
1339 m_can_dev->bit_timing : &m_can_bittiming_const_31X;
1340
1341 m_can_dev->can.data_bittiming_const = m_can_dev->data_timing ?
1342 m_can_dev->data_timing :
1343 &m_can_data_bittiming_const_31X;
1344
1345 m_can_dev->can.ctrlmode_supported |=
1346 (m_can_niso_supported(m_can_dev)
1347 ? CAN_CTRLMODE_FD_NON_ISO
1348 : 0);
1349 break;
1350 default:
1351 dev_err(m_can_dev->dev, "Unsupported version number: %2d",
1352 m_can_dev->version);
1353 return -EINVAL;
1354 }
1355
1356 if (m_can_dev->ops->init)
1357 m_can_dev->ops->init(m_can_dev);
1358
1359 return 0;
1360}
1361
1362static void m_can_stop(struct net_device *dev)
1363{
1364 struct m_can_classdev *cdev = netdev_priv(dev);
1365
1366 /* disable all interrupts */
1367 m_can_disable_all_interrupts(cdev);
1368
1369 /* set the state as STOPPED */
1370 cdev->can.state = CAN_STATE_STOPPED;
1371}
1372
1373static int m_can_close(struct net_device *dev)
1374{
1375 struct m_can_classdev *cdev = netdev_priv(dev);
1376
1377 netif_stop_queue(dev);
1378
1379 if (!cdev->is_peripheral)
1380 napi_disable(&cdev->napi);
1381
1382 m_can_stop(dev);
1383 m_can_clk_stop(cdev);
1384 free_irq(dev->irq, dev);
1385
1386 if (cdev->is_peripheral) {
1387 cdev->tx_skb = NULL;
1388 destroy_workqueue(cdev->tx_wq);
1389 cdev->tx_wq = NULL;
1390 }
1391
1392 close_candev(dev);
1393 can_led_event(dev, CAN_LED_EVENT_STOP);
1394
1395 return 0;
1396}
1397
1398static int m_can_next_echo_skb_occupied(struct net_device *dev, int putidx)
1399{
1400 struct m_can_classdev *cdev = netdev_priv(dev);
1401 /*get wrap around for loopback skb index */
1402 unsigned int wrap = cdev->can.echo_skb_max;
1403 int next_idx;
1404
1405 /* calculate next index */
1406 next_idx = (++putidx >= wrap ? 0 : putidx);
1407
1408 /* check if occupied */
1409 return !!cdev->can.echo_skb[next_idx];
1410}
1411
1412static netdev_tx_t m_can_tx_handler(struct m_can_classdev *cdev)
1413{
1414 struct canfd_frame *cf = (struct canfd_frame *)cdev->tx_skb->data;
1415 struct net_device *dev = cdev->net;
1416 struct sk_buff *skb = cdev->tx_skb;
1417 u32 id, cccr, fdflags;
1418 int i;
1419 int putidx;
1420
1421 /* Generate ID field for TX buffer Element */
1422 /* Common to all supported M_CAN versions */
1423 if (cf->can_id & CAN_EFF_FLAG) {
1424 id = cf->can_id & CAN_EFF_MASK;
1425 id |= TX_BUF_XTD;
1426 } else {
1427 id = ((cf->can_id & CAN_SFF_MASK) << 18);
1428 }
1429
1430 if (cf->can_id & CAN_RTR_FLAG)
1431 id |= TX_BUF_RTR;
1432
1433 if (cdev->version == 30) {
1434 netif_stop_queue(dev);
1435
1436 /* message ram configuration */
1437 m_can_fifo_write(cdev, 0, M_CAN_FIFO_ID, id);
1438 m_can_fifo_write(cdev, 0, M_CAN_FIFO_DLC,
1439 can_len2dlc(cf->len) << 16);
1440
1441 for (i = 0; i < cf->len; i += 4)
1442 m_can_fifo_write(cdev, 0,
1443 M_CAN_FIFO_DATA(i / 4),
1444 *(u32 *)(cf->data + i));
1445
1446 can_put_echo_skb(skb, dev, 0);
1447
1448 if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) {
1449 cccr = m_can_read(cdev, M_CAN_CCCR);
1450 cccr &= ~(CCCR_CMR_MASK << CCCR_CMR_SHIFT);
1451 if (can_is_canfd_skb(skb)) {
1452 if (cf->flags & CANFD_BRS)
1453 cccr |= CCCR_CMR_CANFD_BRS <<
1454 CCCR_CMR_SHIFT;
1455 else
1456 cccr |= CCCR_CMR_CANFD <<
1457 CCCR_CMR_SHIFT;
1458 } else {
1459 cccr |= CCCR_CMR_CAN << CCCR_CMR_SHIFT;
1460 }
1461 m_can_write(cdev, M_CAN_CCCR, cccr);
1462 }
1463 m_can_write(cdev, M_CAN_TXBTIE, 0x1);
1464 m_can_write(cdev, M_CAN_TXBAR, 0x1);
1465 /* End of xmit function for version 3.0.x */
1466 } else {
1467 /* Transmit routine for version >= v3.1.x */
1468
1469 /* Check if FIFO full */
1470 if (m_can_tx_fifo_full(cdev)) {
1471 /* This shouldn't happen */
1472 netif_stop_queue(dev);
1473 netdev_warn(dev,
1474 "TX queue active although FIFO is full.");
1475
1476 if (cdev->is_peripheral) {
1477 kfree_skb(skb);
1478 dev->stats.tx_dropped++;
1479 return NETDEV_TX_OK;
1480 } else {
1481 return NETDEV_TX_BUSY;
1482 }
1483 }
1484
1485 /* get put index for frame */
1486 putidx = ((m_can_read(cdev, M_CAN_TXFQS) & TXFQS_TFQPI_MASK)
1487 >> TXFQS_TFQPI_SHIFT);
1488 /* Write ID Field to FIFO Element */
1489 m_can_fifo_write(cdev, putidx, M_CAN_FIFO_ID, id);
1490
1491 /* get CAN FD configuration of frame */
1492 fdflags = 0;
1493 if (can_is_canfd_skb(skb)) {
1494 fdflags |= TX_BUF_FDF;
1495 if (cf->flags & CANFD_BRS)
1496 fdflags |= TX_BUF_BRS;
1497 }
1498
1499 /* Construct DLC Field. Also contains CAN-FD configuration
1500 * use put index of fifo as message marker
1501 * it is used in TX interrupt for
1502 * sending the correct echo frame
1503 */
1504 m_can_fifo_write(cdev, putidx, M_CAN_FIFO_DLC,
1505 ((putidx << TX_BUF_MM_SHIFT) &
1506 TX_BUF_MM_MASK) |
1507 (can_len2dlc(cf->len) << 16) |
1508 fdflags | TX_BUF_EFC);
1509
1510 for (i = 0; i < cf->len; i += 4)
1511 m_can_fifo_write(cdev, putidx, M_CAN_FIFO_DATA(i / 4),
1512 *(u32 *)(cf->data + i));
1513
1514 /* Push loopback echo.
1515 * Will be looped back on TX interrupt based on message marker
1516 */
1517 can_put_echo_skb(skb, dev, putidx);
1518
1519 /* Enable TX FIFO element to start transfer */
1520 m_can_write(cdev, M_CAN_TXBAR, (1 << putidx));
1521
1522 /* stop network queue if fifo full */
1523 if (m_can_tx_fifo_full(cdev) ||
1524 m_can_next_echo_skb_occupied(dev, putidx))
1525 netif_stop_queue(dev);
1526 }
1527
1528 return NETDEV_TX_OK;
1529}
1530
1531static void m_can_tx_work_queue(struct work_struct *ws)
1532{
1533 struct m_can_classdev *cdev = container_of(ws, struct m_can_classdev,
1534 tx_work);
1535
1536 m_can_tx_handler(cdev);
1537 cdev->tx_skb = NULL;
1538}
1539
1540static netdev_tx_t m_can_start_xmit(struct sk_buff *skb,
1541 struct net_device *dev)
1542{
1543 struct m_can_classdev *cdev = netdev_priv(dev);
1544
1545 if (can_dropped_invalid_skb(dev, skb))
1546 return NETDEV_TX_OK;
1547
1548 if (cdev->is_peripheral) {
1549 if (cdev->tx_skb) {
1550 netdev_err(dev, "hard_xmit called while tx busy\n");
1551 return NETDEV_TX_BUSY;
1552 }
1553
1554 if (cdev->can.state == CAN_STATE_BUS_OFF) {
1555 m_can_clean(dev);
1556 } else {
1557 /* Need to stop the queue to avoid numerous requests
1558 * from being sent. Suggested improvement is to create
1559 * a queueing mechanism that will queue the skbs and
1560 * process them in order.
1561 */
1562 cdev->tx_skb = skb;
1563 netif_stop_queue(cdev->net);
1564 queue_work(cdev->tx_wq, &cdev->tx_work);
1565 }
1566 } else {
1567 cdev->tx_skb = skb;
1568 return m_can_tx_handler(cdev);
1569 }
1570
1571 return NETDEV_TX_OK;
1572}
1573
1574static int m_can_open(struct net_device *dev)
1575{
1576 struct m_can_classdev *cdev = netdev_priv(dev);
1577 int err;
1578
1579 err = m_can_clk_start(cdev);
1580 if (err)
1581 return err;
1582
1583 /* open the can device */
1584 err = open_candev(dev);
1585 if (err) {
1586 netdev_err(dev, "failed to open can device\n");
1587 goto exit_disable_clks;
1588 }
1589
1590 /* register interrupt handler */
1591 if (cdev->is_peripheral) {
1592 cdev->tx_skb = NULL;
1593 cdev->tx_wq = alloc_workqueue("mcan_wq",
1594 WQ_FREEZABLE | WQ_MEM_RECLAIM, 0);
1595 if (!cdev->tx_wq) {
1596 err = -ENOMEM;
1597 goto out_wq_fail;
1598 }
1599
1600 INIT_WORK(&cdev->tx_work, m_can_tx_work_queue);
1601
1602 err = request_threaded_irq(dev->irq, NULL, m_can_isr,
1603 IRQF_ONESHOT | IRQF_TRIGGER_FALLING,
1604 dev->name, dev);
1605 } else {
1606 err = request_irq(dev->irq, m_can_isr, IRQF_SHARED, dev->name,
1607 dev);
1608 }
1609
1610 if (err < 0) {
1611 netdev_err(dev, "failed to request interrupt\n");
1612 goto exit_irq_fail;
1613 }
1614
1615 /* start the m_can controller */
1616 m_can_start(dev);
1617
1618 can_led_event(dev, CAN_LED_EVENT_OPEN);
1619
1620 if (!cdev->is_peripheral)
1621 napi_enable(&cdev->napi);
1622
1623 netif_start_queue(dev);
1624
1625 return 0;
1626
1627exit_irq_fail:
1628 if (cdev->is_peripheral)
1629 destroy_workqueue(cdev->tx_wq);
1630out_wq_fail:
1631 close_candev(dev);
1632exit_disable_clks:
1633 m_can_clk_stop(cdev);
1634 return err;
1635}
1636
1637static const struct net_device_ops m_can_netdev_ops = {
1638 .ndo_open = m_can_open,
1639 .ndo_stop = m_can_close,
1640 .ndo_start_xmit = m_can_start_xmit,
1641 .ndo_change_mtu = can_change_mtu,
1642};
1643
1644static int register_m_can_dev(struct net_device *dev)
1645{
1646 dev->flags |= IFF_ECHO; /* we support local echo */
1647 dev->netdev_ops = &m_can_netdev_ops;
1648
1649 return register_candev(dev);
1650}
1651
1652static void m_can_of_parse_mram(struct m_can_classdev *cdev,
1653 const u32 *mram_config_vals)
1654{
1655 cdev->mcfg[MRAM_SIDF].off = mram_config_vals[0];
1656 cdev->mcfg[MRAM_SIDF].num = mram_config_vals[1];
1657 cdev->mcfg[MRAM_XIDF].off = cdev->mcfg[MRAM_SIDF].off +
1658 cdev->mcfg[MRAM_SIDF].num * SIDF_ELEMENT_SIZE;
1659 cdev->mcfg[MRAM_XIDF].num = mram_config_vals[2];
1660 cdev->mcfg[MRAM_RXF0].off = cdev->mcfg[MRAM_XIDF].off +
1661 cdev->mcfg[MRAM_XIDF].num * XIDF_ELEMENT_SIZE;
1662 cdev->mcfg[MRAM_RXF0].num = mram_config_vals[3] &
1663 (RXFC_FS_MASK >> RXFC_FS_SHIFT);
1664 cdev->mcfg[MRAM_RXF1].off = cdev->mcfg[MRAM_RXF0].off +
1665 cdev->mcfg[MRAM_RXF0].num * RXF0_ELEMENT_SIZE;
1666 cdev->mcfg[MRAM_RXF1].num = mram_config_vals[4] &
1667 (RXFC_FS_MASK >> RXFC_FS_SHIFT);
1668 cdev->mcfg[MRAM_RXB].off = cdev->mcfg[MRAM_RXF1].off +
1669 cdev->mcfg[MRAM_RXF1].num * RXF1_ELEMENT_SIZE;
1670 cdev->mcfg[MRAM_RXB].num = mram_config_vals[5];
1671 cdev->mcfg[MRAM_TXE].off = cdev->mcfg[MRAM_RXB].off +
1672 cdev->mcfg[MRAM_RXB].num * RXB_ELEMENT_SIZE;
1673 cdev->mcfg[MRAM_TXE].num = mram_config_vals[6];
1674 cdev->mcfg[MRAM_TXB].off = cdev->mcfg[MRAM_TXE].off +
1675 cdev->mcfg[MRAM_TXE].num * TXE_ELEMENT_SIZE;
1676 cdev->mcfg[MRAM_TXB].num = mram_config_vals[7] &
1677 (TXBC_NDTB_MASK >> TXBC_NDTB_SHIFT);
1678
1679 dev_dbg(cdev->dev,
1680 "sidf 0x%x %d xidf 0x%x %d rxf0 0x%x %d rxf1 0x%x %d rxb 0x%x %d txe 0x%x %d txb 0x%x %d\n",
1681 cdev->mcfg[MRAM_SIDF].off, cdev->mcfg[MRAM_SIDF].num,
1682 cdev->mcfg[MRAM_XIDF].off, cdev->mcfg[MRAM_XIDF].num,
1683 cdev->mcfg[MRAM_RXF0].off, cdev->mcfg[MRAM_RXF0].num,
1684 cdev->mcfg[MRAM_RXF1].off, cdev->mcfg[MRAM_RXF1].num,
1685 cdev->mcfg[MRAM_RXB].off, cdev->mcfg[MRAM_RXB].num,
1686 cdev->mcfg[MRAM_TXE].off, cdev->mcfg[MRAM_TXE].num,
1687 cdev->mcfg[MRAM_TXB].off, cdev->mcfg[MRAM_TXB].num);
1688}
1689
1690void m_can_init_ram(struct m_can_classdev *cdev)
1691{
1692 int end, i, start;
1693
1694 /* initialize the entire Message RAM in use to avoid possible
1695 * ECC/parity checksum errors when reading an uninitialized buffer
1696 */
1697 start = cdev->mcfg[MRAM_SIDF].off;
1698 end = cdev->mcfg[MRAM_TXB].off +
1699 cdev->mcfg[MRAM_TXB].num * TXB_ELEMENT_SIZE;
1700
1701 for (i = start; i < end; i += 4)
1702 m_can_fifo_write_no_off(cdev, i, 0x0);
1703}
1704EXPORT_SYMBOL_GPL(m_can_init_ram);
1705
1706int m_can_class_get_clocks(struct m_can_classdev *m_can_dev)
1707{
1708 int ret = 0;
1709
1710 m_can_dev->hclk = devm_clk_get(m_can_dev->dev, "hclk");
1711 m_can_dev->cclk = devm_clk_get(m_can_dev->dev, "cclk");
1712
1713 if (IS_ERR(m_can_dev->cclk)) {
1714 dev_err(m_can_dev->dev, "no clock found\n");
1715 ret = -ENODEV;
1716 }
1717
1718 return ret;
1719}
1720EXPORT_SYMBOL_GPL(m_can_class_get_clocks);
1721
1722struct m_can_classdev *m_can_class_allocate_dev(struct device *dev)
1723{
1724 struct m_can_classdev *class_dev = NULL;
1725 u32 mram_config_vals[MRAM_CFG_LEN];
1726 struct net_device *net_dev;
1727 u32 tx_fifo_size;
1728 int ret;
1729
1730 ret = fwnode_property_read_u32_array(dev_fwnode(dev),
1731 "bosch,mram-cfg",
1732 mram_config_vals,
1733 sizeof(mram_config_vals) / 4);
1734 if (ret) {
1735 dev_err(dev, "Could not get Message RAM configuration.");
1736 goto out;
1737 }
1738
1739 /* Get TX FIFO size
1740 * Defines the total amount of echo buffers for loopback
1741 */
1742 tx_fifo_size = mram_config_vals[7];
1743
1744 /* allocate the m_can device */
1745 net_dev = alloc_candev(sizeof(*class_dev), tx_fifo_size);
1746 if (!net_dev) {
1747 dev_err(dev, "Failed to allocate CAN device");
1748 goto out;
1749 }
1750
1751 class_dev = netdev_priv(net_dev);
1752 if (!class_dev) {
1753 dev_err(dev, "Failed to init netdev cdevate");
1754 goto out;
1755 }
1756
1757 class_dev->net = net_dev;
1758 class_dev->dev = dev;
1759 SET_NETDEV_DEV(net_dev, dev);
1760
1761 m_can_of_parse_mram(class_dev, mram_config_vals);
1762out:
1763 return class_dev;
1764}
1765EXPORT_SYMBOL_GPL(m_can_class_allocate_dev);
1766
1767int m_can_class_register(struct m_can_classdev *m_can_dev)
1768{
1769 int ret;
1770
1771 if (m_can_dev->pm_clock_support) {
1772 pm_runtime_enable(m_can_dev->dev);
1773 ret = m_can_clk_start(m_can_dev);
1774 if (ret)
1775 goto pm_runtime_fail;
1776 }
1777
1778 ret = m_can_dev_setup(m_can_dev);
1779 if (ret)
1780 goto clk_disable;
1781
1782 ret = register_m_can_dev(m_can_dev->net);
1783 if (ret) {
1784 dev_err(m_can_dev->dev, "registering %s failed (err=%d)\n",
1785 m_can_dev->net->name, ret);
1786 goto clk_disable;
1787 }
1788
1789 devm_can_led_init(m_can_dev->net);
1790
1791 of_can_transceiver(m_can_dev->net);
1792
1793 dev_info(m_can_dev->dev, "%s device registered (irq=%d, version=%d)\n",
1794 KBUILD_MODNAME, m_can_dev->net->irq, m_can_dev->version);
1795
1796 /* Probe finished
1797 * Stop clocks. They will be reactivated once the M_CAN device is opened
1798 */
1799clk_disable:
1800 m_can_clk_stop(m_can_dev);
1801pm_runtime_fail:
1802 if (ret) {
1803 if (m_can_dev->pm_clock_support)
1804 pm_runtime_disable(m_can_dev->dev);
1805 free_candev(m_can_dev->net);
1806 }
1807
1808 return ret;
1809}
1810EXPORT_SYMBOL_GPL(m_can_class_register);
1811
1812int m_can_class_suspend(struct device *dev)
1813{
1814 struct net_device *ndev = dev_get_drvdata(dev);
1815 struct m_can_classdev *cdev = netdev_priv(ndev);
1816
1817 if (netif_running(ndev)) {
1818 netif_stop_queue(ndev);
1819 netif_device_detach(ndev);
1820 m_can_stop(ndev);
1821 m_can_clk_stop(cdev);
1822 }
1823
1824 pinctrl_pm_select_sleep_state(dev);
1825
1826 cdev->can.state = CAN_STATE_SLEEPING;
1827
1828 return 0;
1829}
1830EXPORT_SYMBOL_GPL(m_can_class_suspend);
1831
1832int m_can_class_resume(struct device *dev)
1833{
1834 struct net_device *ndev = dev_get_drvdata(dev);
1835 struct m_can_classdev *cdev = netdev_priv(ndev);
1836
1837 pinctrl_pm_select_default_state(dev);
1838
1839 cdev->can.state = CAN_STATE_ERROR_ACTIVE;
1840
1841 if (netif_running(ndev)) {
1842 int ret;
1843
1844 ret = m_can_clk_start(cdev);
1845 if (ret)
1846 return ret;
1847
1848 m_can_init_ram(cdev);
1849 m_can_start(ndev);
1850 netif_device_attach(ndev);
1851 netif_start_queue(ndev);
1852 }
1853
1854 return 0;
1855}
1856EXPORT_SYMBOL_GPL(m_can_class_resume);
1857
1858void m_can_class_unregister(struct m_can_classdev *m_can_dev)
1859{
1860 unregister_candev(m_can_dev->net);
1861
1862 m_can_clk_stop(m_can_dev);
1863
1864 free_candev(m_can_dev->net);
1865}
1866EXPORT_SYMBOL_GPL(m_can_class_unregister);
1867
1868MODULE_AUTHOR("Dong Aisheng <b29396@freescale.com>");
1869MODULE_AUTHOR("Dan Murphy <dmurphy@ti.com>");
1870MODULE_LICENSE("GPL v2");
1871MODULE_DESCRIPTION("CAN bus driver for Bosch M_CAN controller");