Linux Audio

Check our new training course

Linux debugging, profiling, tracing and performance analysis training

Apr 14-17, 2025
Register
Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (c) 2011,2016 Samsung Electronics Co., Ltd.
   4 *		http://www.samsung.com
   5 */
   6
   7#ifdef CONFIG_EXYNOS_IOMMU_DEBUG
   8#define DEBUG
   9#endif
  10
  11#include <linux/clk.h>
  12#include <linux/dma-mapping.h>
  13#include <linux/err.h>
  14#include <linux/io.h>
  15#include <linux/iommu.h>
  16#include <linux/interrupt.h>
  17#include <linux/kmemleak.h>
  18#include <linux/list.h>
  19#include <linux/of.h>
 
  20#include <linux/of_platform.h>
  21#include <linux/platform_device.h>
  22#include <linux/pm_runtime.h>
  23#include <linux/slab.h>
  24
  25#include "iommu-pages.h"
  26
  27typedef u32 sysmmu_iova_t;
  28typedef u32 sysmmu_pte_t;
  29static struct iommu_domain exynos_identity_domain;
  30
  31/* We do not consider super section mapping (16MB) */
  32#define SECT_ORDER 20
  33#define LPAGE_ORDER 16
  34#define SPAGE_ORDER 12
  35
  36#define SECT_SIZE (1 << SECT_ORDER)
  37#define LPAGE_SIZE (1 << LPAGE_ORDER)
  38#define SPAGE_SIZE (1 << SPAGE_ORDER)
  39
  40#define SECT_MASK (~(SECT_SIZE - 1))
  41#define LPAGE_MASK (~(LPAGE_SIZE - 1))
  42#define SPAGE_MASK (~(SPAGE_SIZE - 1))
  43
  44#define lv1ent_fault(sent) ((*(sent) == ZERO_LV2LINK) || \
  45			   ((*(sent) & 3) == 0) || ((*(sent) & 3) == 3))
  46#define lv1ent_zero(sent) (*(sent) == ZERO_LV2LINK)
  47#define lv1ent_page_zero(sent) ((*(sent) & 3) == 1)
  48#define lv1ent_page(sent) ((*(sent) != ZERO_LV2LINK) && \
  49			  ((*(sent) & 3) == 1))
  50#define lv1ent_section(sent) ((*(sent) & 3) == 2)
  51
  52#define lv2ent_fault(pent) ((*(pent) & 3) == 0)
  53#define lv2ent_small(pent) ((*(pent) & 2) == 2)
  54#define lv2ent_large(pent) ((*(pent) & 3) == 1)
  55
  56/*
  57 * v1.x - v3.x SYSMMU supports 32bit physical and 32bit virtual address spaces
  58 * v5.0 introduced support for 36bit physical address space by shifting
  59 * all page entry values by 4 bits.
  60 * All SYSMMU controllers in the system support the address spaces of the same
  61 * size, so PG_ENT_SHIFT can be initialized on first SYSMMU probe to proper
  62 * value (0 or 4).
  63 */
  64static short PG_ENT_SHIFT = -1;
  65#define SYSMMU_PG_ENT_SHIFT 0
  66#define SYSMMU_V5_PG_ENT_SHIFT 4
  67
  68static const sysmmu_pte_t *LV1_PROT;
  69static const sysmmu_pte_t SYSMMU_LV1_PROT[] = {
  70	((0 << 15) | (0 << 10)), /* no access */
  71	((1 << 15) | (1 << 10)), /* IOMMU_READ only */
  72	((0 << 15) | (1 << 10)), /* IOMMU_WRITE not supported, use read/write */
  73	((0 << 15) | (1 << 10)), /* IOMMU_READ | IOMMU_WRITE */
  74};
  75static const sysmmu_pte_t SYSMMU_V5_LV1_PROT[] = {
  76	(0 << 4), /* no access */
  77	(1 << 4), /* IOMMU_READ only */
  78	(2 << 4), /* IOMMU_WRITE only */
  79	(3 << 4), /* IOMMU_READ | IOMMU_WRITE */
  80};
  81
  82static const sysmmu_pte_t *LV2_PROT;
  83static const sysmmu_pte_t SYSMMU_LV2_PROT[] = {
  84	((0 << 9) | (0 << 4)), /* no access */
  85	((1 << 9) | (1 << 4)), /* IOMMU_READ only */
  86	((0 << 9) | (1 << 4)), /* IOMMU_WRITE not supported, use read/write */
  87	((0 << 9) | (1 << 4)), /* IOMMU_READ | IOMMU_WRITE */
  88};
  89static const sysmmu_pte_t SYSMMU_V5_LV2_PROT[] = {
  90	(0 << 2), /* no access */
  91	(1 << 2), /* IOMMU_READ only */
  92	(2 << 2), /* IOMMU_WRITE only */
  93	(3 << 2), /* IOMMU_READ | IOMMU_WRITE */
  94};
  95
  96#define SYSMMU_SUPPORTED_PROT_BITS (IOMMU_READ | IOMMU_WRITE)
  97
  98#define sect_to_phys(ent) (((phys_addr_t) ent) << PG_ENT_SHIFT)
  99#define section_phys(sent) (sect_to_phys(*(sent)) & SECT_MASK)
 100#define section_offs(iova) (iova & (SECT_SIZE - 1))
 101#define lpage_phys(pent) (sect_to_phys(*(pent)) & LPAGE_MASK)
 102#define lpage_offs(iova) (iova & (LPAGE_SIZE - 1))
 103#define spage_phys(pent) (sect_to_phys(*(pent)) & SPAGE_MASK)
 104#define spage_offs(iova) (iova & (SPAGE_SIZE - 1))
 105
 106#define NUM_LV1ENTRIES 4096
 107#define NUM_LV2ENTRIES (SECT_SIZE / SPAGE_SIZE)
 108
 109static u32 lv1ent_offset(sysmmu_iova_t iova)
 110{
 111	return iova >> SECT_ORDER;
 112}
 113
 114static u32 lv2ent_offset(sysmmu_iova_t iova)
 115{
 116	return (iova >> SPAGE_ORDER) & (NUM_LV2ENTRIES - 1);
 117}
 118
 119#define LV1TABLE_SIZE (NUM_LV1ENTRIES * sizeof(sysmmu_pte_t))
 120#define LV2TABLE_SIZE (NUM_LV2ENTRIES * sizeof(sysmmu_pte_t))
 121
 122#define SPAGES_PER_LPAGE (LPAGE_SIZE / SPAGE_SIZE)
 123#define lv2table_base(sent) (sect_to_phys(*(sent) & 0xFFFFFFC0))
 124
 125#define mk_lv1ent_sect(pa, prot) ((pa >> PG_ENT_SHIFT) | LV1_PROT[prot] | 2)
 126#define mk_lv1ent_page(pa) ((pa >> PG_ENT_SHIFT) | 1)
 127#define mk_lv2ent_lpage(pa, prot) ((pa >> PG_ENT_SHIFT) | LV2_PROT[prot] | 1)
 128#define mk_lv2ent_spage(pa, prot) ((pa >> PG_ENT_SHIFT) | LV2_PROT[prot] | 2)
 129
 130#define CTRL_ENABLE	0x5
 131#define CTRL_BLOCK	0x7
 132#define CTRL_DISABLE	0x0
 133
 134#define CFG_LRU		0x1
 135#define CFG_EAP		(1 << 2)
 136#define CFG_QOS(n)	((n & 0xF) << 7)
 137#define CFG_ACGEN	(1 << 24) /* System MMU 3.3 only */
 138#define CFG_SYSSEL	(1 << 22) /* System MMU 3.2 only */
 139#define CFG_FLPDCACHE	(1 << 20) /* System MMU 3.2+ only */
 140
 141#define CTRL_VM_ENABLE			BIT(0)
 142#define CTRL_VM_FAULT_MODE_STALL	BIT(3)
 143#define CAPA0_CAPA1_EXIST		BIT(11)
 144#define CAPA1_VCR_ENABLED		BIT(14)
 145
 146/* common registers */
 147#define REG_MMU_CTRL		0x000
 148#define REG_MMU_CFG		0x004
 149#define REG_MMU_STATUS		0x008
 150#define REG_MMU_VERSION		0x034
 151
 152#define MMU_MAJ_VER(val)	((val) >> 7)
 153#define MMU_MIN_VER(val)	((val) & 0x7F)
 154#define MMU_RAW_VER(reg)	(((reg) >> 21) & ((1 << 11) - 1)) /* 11 bits */
 155
 156#define MAKE_MMU_VER(maj, min)	((((maj) & 0xF) << 7) | ((min) & 0x7F))
 157
 158/* v1.x - v3.x registers */
 
 
 
 
 
 
 159#define REG_PAGE_FAULT_ADDR	0x024
 160#define REG_AW_FAULT_ADDR	0x028
 161#define REG_AR_FAULT_ADDR	0x02C
 162#define REG_DEFAULT_SLAVE_ADDR	0x030
 163
 164/* v5.x registers */
 
 
 
 
 
 
 
 
 165#define REG_V5_FAULT_AR_VA	0x070
 166#define REG_V5_FAULT_AW_VA	0x080
 167
 168/* v7.x registers */
 169#define REG_V7_CAPA0		0x870
 170#define REG_V7_CAPA1		0x874
 171#define REG_V7_CTRL_VM		0x8000
 172
 173#define has_sysmmu(dev)		(dev_iommu_priv_get(dev) != NULL)
 174
 175static struct device *dma_dev;
 176static struct kmem_cache *lv2table_kmem_cache;
 177static sysmmu_pte_t *zero_lv2_table;
 178#define ZERO_LV2LINK mk_lv1ent_page(virt_to_phys(zero_lv2_table))
 179
 180static sysmmu_pte_t *section_entry(sysmmu_pte_t *pgtable, sysmmu_iova_t iova)
 181{
 182	return pgtable + lv1ent_offset(iova);
 183}
 184
 185static sysmmu_pte_t *page_entry(sysmmu_pte_t *sent, sysmmu_iova_t iova)
 186{
 187	return (sysmmu_pte_t *)phys_to_virt(
 188				lv2table_base(sent)) + lv2ent_offset(iova);
 189}
 190
 191struct sysmmu_fault {
 192	sysmmu_iova_t addr;	/* IOVA address that caused fault */
 193	const char *name;	/* human readable fault name */
 194	unsigned int type;	/* fault type for report_iommu_fault() */
 195};
 196
 197struct sysmmu_v1_fault_info {
 198	unsigned short addr_reg; /* register to read IOVA fault address */
 199	const char *name;	/* human readable fault name */
 200	unsigned int type;	/* fault type for report_iommu_fault */
 201};
 202
 203static const struct sysmmu_v1_fault_info sysmmu_v1_faults[] = {
 204	{ REG_PAGE_FAULT_ADDR, "PAGE", IOMMU_FAULT_READ },
 205	{ REG_AR_FAULT_ADDR, "MULTI-HIT", IOMMU_FAULT_READ },
 206	{ REG_AW_FAULT_ADDR, "MULTI-HIT", IOMMU_FAULT_WRITE },
 207	{ REG_DEFAULT_SLAVE_ADDR, "BUS ERROR", IOMMU_FAULT_READ },
 208	{ REG_AR_FAULT_ADDR, "SECURITY PROTECTION", IOMMU_FAULT_READ },
 209	{ REG_AR_FAULT_ADDR, "ACCESS PROTECTION", IOMMU_FAULT_READ },
 210	{ REG_AW_FAULT_ADDR, "SECURITY PROTECTION", IOMMU_FAULT_WRITE },
 211	{ REG_AW_FAULT_ADDR, "ACCESS PROTECTION", IOMMU_FAULT_WRITE },
 212};
 213
 214/* SysMMU v5 has the same faults for AR (0..4 bits) and AW (16..20 bits) */
 215static const char * const sysmmu_v5_fault_names[] = {
 216	"PTW",
 217	"PAGE",
 218	"MULTI-HIT",
 219	"ACCESS PROTECTION",
 220	"SECURITY PROTECTION"
 221};
 222
 223static const char * const sysmmu_v7_fault_names[] = {
 224	"PTW",
 225	"PAGE",
 226	"ACCESS PROTECTION",
 227	"RESERVED"
 228};
 229
 230/*
 231 * This structure is attached to dev->iommu->priv of the master device
 232 * on device add, contains a list of SYSMMU controllers defined by device tree,
 233 * which are bound to given master device. It is usually referenced by 'owner'
 234 * pointer.
 235*/
 236struct exynos_iommu_owner {
 237	struct list_head controllers;	/* list of sysmmu_drvdata.owner_node */
 238	struct iommu_domain *domain;	/* domain this device is attached */
 239	struct mutex rpm_lock;		/* for runtime pm of all sysmmus */
 240};
 241
 242/*
 243 * This structure exynos specific generalization of struct iommu_domain.
 244 * It contains list of SYSMMU controllers from all master devices, which has
 245 * been attached to this domain and page tables of IO address space defined by
 246 * it. It is usually referenced by 'domain' pointer.
 247 */
 248struct exynos_iommu_domain {
 249	struct list_head clients; /* list of sysmmu_drvdata.domain_node */
 250	sysmmu_pte_t *pgtable;	/* lv1 page table, 16KB */
 251	short *lv2entcnt;	/* free lv2 entry counter for each section */
 252	spinlock_t lock;	/* lock for modyfying list of clients */
 253	spinlock_t pgtablelock;	/* lock for modifying page table @ pgtable */
 254	struct iommu_domain domain; /* generic domain data structure */
 255};
 256
 257struct sysmmu_drvdata;
 258
 259/*
 260 * SysMMU version specific data. Contains offsets for the registers which can
 261 * be found in different SysMMU variants, but have different offset values.
 262 * Also contains version specific callbacks to abstract the hardware.
 263 */
 264struct sysmmu_variant {
 265	u32 pt_base;		/* page table base address (physical) */
 266	u32 flush_all;		/* invalidate all TLB entries */
 267	u32 flush_entry;	/* invalidate specific TLB entry */
 268	u32 flush_range;	/* invalidate TLB entries in specified range */
 269	u32 flush_start;	/* start address of range invalidation */
 270	u32 flush_end;		/* end address of range invalidation */
 271	u32 int_status;		/* interrupt status information */
 272	u32 int_clear;		/* clear the interrupt */
 273	u32 fault_va;		/* IOVA address that caused fault */
 274	u32 fault_info;		/* fault transaction info */
 275
 276	int (*get_fault_info)(struct sysmmu_drvdata *data, unsigned int itype,
 277			      struct sysmmu_fault *fault);
 278};
 279
 280/*
 281 * This structure hold all data of a single SYSMMU controller, this includes
 282 * hw resources like registers and clocks, pointers and list nodes to connect
 283 * it to all other structures, internal state and parameters read from device
 284 * tree. It is usually referenced by 'data' pointer.
 285 */
 286struct sysmmu_drvdata {
 287	struct device *sysmmu;		/* SYSMMU controller device */
 288	struct device *master;		/* master device (owner) */
 289	struct device_link *link;	/* runtime PM link to master */
 290	void __iomem *sfrbase;		/* our registers */
 291	struct clk *clk;		/* SYSMMU's clock */
 292	struct clk *aclk;		/* SYSMMU's aclk clock */
 293	struct clk *pclk;		/* SYSMMU's pclk clock */
 294	struct clk *clk_master;		/* master's device clock */
 295	spinlock_t lock;		/* lock for modyfying state */
 296	bool active;			/* current status */
 297	struct exynos_iommu_domain *domain; /* domain we belong to */
 298	struct list_head domain_node;	/* node for domain clients list */
 299	struct list_head owner_node;	/* node for owner controllers list */
 300	phys_addr_t pgtable;		/* assigned page table structure */
 301	unsigned int version;		/* our version */
 302
 303	struct iommu_device iommu;	/* IOMMU core handle */
 304	const struct sysmmu_variant *variant; /* version specific data */
 305
 306	/* v7 fields */
 307	bool has_vcr;			/* virtual machine control register */
 308};
 309
 310#define SYSMMU_REG(data, reg) ((data)->sfrbase + (data)->variant->reg)
 311
 312static int exynos_sysmmu_v1_get_fault_info(struct sysmmu_drvdata *data,
 313					   unsigned int itype,
 314					   struct sysmmu_fault *fault)
 315{
 316	const struct sysmmu_v1_fault_info *finfo;
 317
 318	if (itype >= ARRAY_SIZE(sysmmu_v1_faults))
 319		return -ENXIO;
 320
 321	finfo = &sysmmu_v1_faults[itype];
 322	fault->addr = readl(data->sfrbase + finfo->addr_reg);
 323	fault->name = finfo->name;
 324	fault->type = finfo->type;
 325
 326	return 0;
 327}
 328
 329static int exynos_sysmmu_v5_get_fault_info(struct sysmmu_drvdata *data,
 330					   unsigned int itype,
 331					   struct sysmmu_fault *fault)
 332{
 333	unsigned int addr_reg;
 334
 335	if (itype < ARRAY_SIZE(sysmmu_v5_fault_names)) {
 336		fault->type = IOMMU_FAULT_READ;
 337		addr_reg = REG_V5_FAULT_AR_VA;
 338	} else if (itype >= 16 && itype <= 20) {
 339		fault->type = IOMMU_FAULT_WRITE;
 340		addr_reg = REG_V5_FAULT_AW_VA;
 341		itype -= 16;
 342	} else {
 343		return -ENXIO;
 344	}
 345
 346	fault->name = sysmmu_v5_fault_names[itype];
 347	fault->addr = readl(data->sfrbase + addr_reg);
 348
 349	return 0;
 350}
 351
 352static int exynos_sysmmu_v7_get_fault_info(struct sysmmu_drvdata *data,
 353					   unsigned int itype,
 354					   struct sysmmu_fault *fault)
 355{
 356	u32 info = readl(SYSMMU_REG(data, fault_info));
 357
 358	fault->addr = readl(SYSMMU_REG(data, fault_va));
 359	fault->name = sysmmu_v7_fault_names[itype % 4];
 360	fault->type = (info & BIT(20)) ? IOMMU_FAULT_WRITE : IOMMU_FAULT_READ;
 361
 362	return 0;
 363}
 364
 365/* SysMMU v1..v3 */
 366static const struct sysmmu_variant sysmmu_v1_variant = {
 367	.flush_all	= 0x0c,
 368	.flush_entry	= 0x10,
 369	.pt_base	= 0x14,
 370	.int_status	= 0x18,
 371	.int_clear	= 0x1c,
 372
 373	.get_fault_info	= exynos_sysmmu_v1_get_fault_info,
 374};
 375
 376/* SysMMU v5 */
 377static const struct sysmmu_variant sysmmu_v5_variant = {
 378	.pt_base	= 0x0c,
 379	.flush_all	= 0x10,
 380	.flush_entry	= 0x14,
 381	.flush_range	= 0x18,
 382	.flush_start	= 0x20,
 383	.flush_end	= 0x24,
 384	.int_status	= 0x60,
 385	.int_clear	= 0x64,
 386
 387	.get_fault_info	= exynos_sysmmu_v5_get_fault_info,
 388};
 389
 390/* SysMMU v7: non-VM capable register layout */
 391static const struct sysmmu_variant sysmmu_v7_variant = {
 392	.pt_base	= 0x0c,
 393	.flush_all	= 0x10,
 394	.flush_entry	= 0x14,
 395	.flush_range	= 0x18,
 396	.flush_start	= 0x20,
 397	.flush_end	= 0x24,
 398	.int_status	= 0x60,
 399	.int_clear	= 0x64,
 400	.fault_va	= 0x70,
 401	.fault_info	= 0x78,
 402
 403	.get_fault_info	= exynos_sysmmu_v7_get_fault_info,
 404};
 405
 406/* SysMMU v7: VM capable register layout */
 407static const struct sysmmu_variant sysmmu_v7_vm_variant = {
 408	.pt_base	= 0x800c,
 409	.flush_all	= 0x8010,
 410	.flush_entry	= 0x8014,
 411	.flush_range	= 0x8018,
 412	.flush_start	= 0x8020,
 413	.flush_end	= 0x8024,
 414	.int_status	= 0x60,
 415	.int_clear	= 0x64,
 416	.fault_va	= 0x1000,
 417	.fault_info	= 0x1004,
 418
 419	.get_fault_info	= exynos_sysmmu_v7_get_fault_info,
 420};
 421
 422static struct exynos_iommu_domain *to_exynos_domain(struct iommu_domain *dom)
 423{
 424	return container_of(dom, struct exynos_iommu_domain, domain);
 425}
 426
 427static void sysmmu_unblock(struct sysmmu_drvdata *data)
 428{
 429	writel(CTRL_ENABLE, data->sfrbase + REG_MMU_CTRL);
 430}
 431
 432static bool sysmmu_block(struct sysmmu_drvdata *data)
 433{
 434	int i = 120;
 435
 436	writel(CTRL_BLOCK, data->sfrbase + REG_MMU_CTRL);
 437	while ((i > 0) && !(readl(data->sfrbase + REG_MMU_STATUS) & 1))
 438		--i;
 439
 440	if (!(readl(data->sfrbase + REG_MMU_STATUS) & 1)) {
 441		sysmmu_unblock(data);
 442		return false;
 443	}
 444
 445	return true;
 446}
 447
 448static void __sysmmu_tlb_invalidate(struct sysmmu_drvdata *data)
 449{
 450	writel(0x1, SYSMMU_REG(data, flush_all));
 
 
 
 451}
 452
 453static void __sysmmu_tlb_invalidate_entry(struct sysmmu_drvdata *data,
 454				sysmmu_iova_t iova, unsigned int num_inv)
 455{
 456	unsigned int i;
 457
 458	if (MMU_MAJ_VER(data->version) < 5 || num_inv == 1) {
 459		for (i = 0; i < num_inv; i++) {
 460			writel((iova & SPAGE_MASK) | 1,
 461			       SYSMMU_REG(data, flush_entry));
 462			iova += SPAGE_SIZE;
 463		}
 464	} else {
 465		writel(iova & SPAGE_MASK, SYSMMU_REG(data, flush_start));
 466		writel((iova & SPAGE_MASK) + (num_inv - 1) * SPAGE_SIZE,
 467		       SYSMMU_REG(data, flush_end));
 468		writel(0x1, SYSMMU_REG(data, flush_range));
 
 
 
 
 
 
 469	}
 470}
 471
 472static void __sysmmu_set_ptbase(struct sysmmu_drvdata *data, phys_addr_t pgd)
 473{
 474	u32 pt_base;
 475
 476	if (MMU_MAJ_VER(data->version) < 5)
 477		pt_base = pgd;
 478	else
 479		pt_base = pgd >> SPAGE_ORDER;
 
 480
 481	writel(pt_base, SYSMMU_REG(data, pt_base));
 482	__sysmmu_tlb_invalidate(data);
 483}
 484
 485static void __sysmmu_enable_clocks(struct sysmmu_drvdata *data)
 486{
 487	BUG_ON(clk_prepare_enable(data->clk_master));
 488	BUG_ON(clk_prepare_enable(data->clk));
 489	BUG_ON(clk_prepare_enable(data->pclk));
 490	BUG_ON(clk_prepare_enable(data->aclk));
 491}
 492
 493static void __sysmmu_disable_clocks(struct sysmmu_drvdata *data)
 494{
 495	clk_disable_unprepare(data->aclk);
 496	clk_disable_unprepare(data->pclk);
 497	clk_disable_unprepare(data->clk);
 498	clk_disable_unprepare(data->clk_master);
 499}
 500
 501static bool __sysmmu_has_capa1(struct sysmmu_drvdata *data)
 502{
 503	u32 capa0 = readl(data->sfrbase + REG_V7_CAPA0);
 504
 505	return capa0 & CAPA0_CAPA1_EXIST;
 506}
 507
 508static void __sysmmu_get_vcr(struct sysmmu_drvdata *data)
 509{
 510	u32 capa1 = readl(data->sfrbase + REG_V7_CAPA1);
 511
 512	data->has_vcr = capa1 & CAPA1_VCR_ENABLED;
 513}
 514
 515static void __sysmmu_get_version(struct sysmmu_drvdata *data)
 516{
 517	u32 ver;
 518
 519	__sysmmu_enable_clocks(data);
 520
 521	ver = readl(data->sfrbase + REG_MMU_VERSION);
 522
 523	/* controllers on some SoCs don't report proper version */
 524	if (ver == 0x80000001u)
 525		data->version = MAKE_MMU_VER(1, 0);
 526	else
 527		data->version = MMU_RAW_VER(ver);
 528
 529	dev_dbg(data->sysmmu, "hardware version: %d.%d\n",
 530		MMU_MAJ_VER(data->version), MMU_MIN_VER(data->version));
 531
 532	if (MMU_MAJ_VER(data->version) < 5) {
 533		data->variant = &sysmmu_v1_variant;
 534	} else if (MMU_MAJ_VER(data->version) < 7) {
 535		data->variant = &sysmmu_v5_variant;
 536	} else {
 537		if (__sysmmu_has_capa1(data))
 538			__sysmmu_get_vcr(data);
 539		if (data->has_vcr)
 540			data->variant = &sysmmu_v7_vm_variant;
 541		else
 542			data->variant = &sysmmu_v7_variant;
 543	}
 544
 545	__sysmmu_disable_clocks(data);
 546}
 547
 548static void show_fault_information(struct sysmmu_drvdata *data,
 549				   const struct sysmmu_fault *fault)
 
 550{
 551	sysmmu_pte_t *ent;
 552
 553	dev_err(data->sysmmu, "%s: [%s] %s FAULT occurred at %#x\n",
 554		dev_name(data->master),
 555		fault->type == IOMMU_FAULT_READ ? "READ" : "WRITE",
 556		fault->name, fault->addr);
 557	dev_dbg(data->sysmmu, "Page table base: %pa\n", &data->pgtable);
 558	ent = section_entry(phys_to_virt(data->pgtable), fault->addr);
 559	dev_dbg(data->sysmmu, "\tLv1 entry: %#x\n", *ent);
 560	if (lv1ent_page(ent)) {
 561		ent = page_entry(ent, fault->addr);
 562		dev_dbg(data->sysmmu, "\t Lv2 entry: %#x\n", *ent);
 563	}
 564}
 565
 566static irqreturn_t exynos_sysmmu_irq(int irq, void *dev_id)
 567{
 
 568	struct sysmmu_drvdata *data = dev_id;
 569	unsigned int itype;
 570	struct sysmmu_fault fault;
 
 
 571	int ret = -ENOSYS;
 572
 573	WARN_ON(!data->active);
 574
 
 
 
 
 
 
 
 
 
 
 
 
 575	spin_lock(&data->lock);
 576	clk_enable(data->clk_master);
 577
 578	itype = __ffs(readl(SYSMMU_REG(data, int_status)));
 579	ret = data->variant->get_fault_info(data, itype, &fault);
 580	if (ret) {
 581		dev_err(data->sysmmu, "Unhandled interrupt bit %u\n", itype);
 582		goto out;
 583	}
 584	show_fault_information(data, &fault);
 585
 586	if (data->domain) {
 587		ret = report_iommu_fault(&data->domain->domain, data->master,
 588					 fault.addr, fault.type);
 589	}
 590	if (ret)
 591		panic("Unrecoverable System MMU Fault!");
 
 
 
 
 
 
 
 
 
 
 592
 593out:
 594	writel(1 << itype, SYSMMU_REG(data, int_clear));
 595
 596	/* SysMMU is in blocked state when interrupt occurred */
 597	sysmmu_unblock(data);
 
 598	clk_disable(data->clk_master);
 
 599	spin_unlock(&data->lock);
 600
 601	return IRQ_HANDLED;
 602}
 603
 604static void __sysmmu_disable(struct sysmmu_drvdata *data)
 605{
 606	unsigned long flags;
 607
 608	clk_enable(data->clk_master);
 609
 610	spin_lock_irqsave(&data->lock, flags);
 611	writel(CTRL_DISABLE, data->sfrbase + REG_MMU_CTRL);
 612	writel(0, data->sfrbase + REG_MMU_CFG);
 613	data->active = false;
 614	spin_unlock_irqrestore(&data->lock, flags);
 615
 616	__sysmmu_disable_clocks(data);
 617}
 618
 619static void __sysmmu_init_config(struct sysmmu_drvdata *data)
 620{
 621	unsigned int cfg;
 622
 623	if (data->version <= MAKE_MMU_VER(3, 1))
 624		cfg = CFG_LRU | CFG_QOS(15);
 625	else if (data->version <= MAKE_MMU_VER(3, 2))
 626		cfg = CFG_LRU | CFG_QOS(15) | CFG_FLPDCACHE | CFG_SYSSEL;
 627	else
 628		cfg = CFG_QOS(15) | CFG_FLPDCACHE | CFG_ACGEN;
 629
 630	cfg |= CFG_EAP; /* enable access protection bits check */
 631
 632	writel(cfg, data->sfrbase + REG_MMU_CFG);
 633}
 634
 635static void __sysmmu_enable_vid(struct sysmmu_drvdata *data)
 636{
 637	u32 ctrl;
 638
 639	if (MMU_MAJ_VER(data->version) < 7 || !data->has_vcr)
 640		return;
 641
 642	ctrl = readl(data->sfrbase + REG_V7_CTRL_VM);
 643	ctrl |= CTRL_VM_ENABLE | CTRL_VM_FAULT_MODE_STALL;
 644	writel(ctrl, data->sfrbase + REG_V7_CTRL_VM);
 645}
 646
 647static void __sysmmu_enable(struct sysmmu_drvdata *data)
 648{
 649	unsigned long flags;
 650
 651	__sysmmu_enable_clocks(data);
 652
 653	spin_lock_irqsave(&data->lock, flags);
 654	writel(CTRL_BLOCK, data->sfrbase + REG_MMU_CTRL);
 655	__sysmmu_init_config(data);
 656	__sysmmu_set_ptbase(data, data->pgtable);
 657	__sysmmu_enable_vid(data);
 658	writel(CTRL_ENABLE, data->sfrbase + REG_MMU_CTRL);
 659	data->active = true;
 660	spin_unlock_irqrestore(&data->lock, flags);
 661
 662	/*
 663	 * SYSMMU driver keeps master's clock enabled only for the short
 664	 * time, while accessing the registers. For performing address
 665	 * translation during DMA transaction it relies on the client
 666	 * driver to enable it.
 667	 */
 668	clk_disable(data->clk_master);
 669}
 670
 671static void sysmmu_tlb_invalidate_flpdcache(struct sysmmu_drvdata *data,
 672					    sysmmu_iova_t iova)
 673{
 674	unsigned long flags;
 675
 676	spin_lock_irqsave(&data->lock, flags);
 677	if (data->active && data->version >= MAKE_MMU_VER(3, 3)) {
 678		clk_enable(data->clk_master);
 679		if (sysmmu_block(data)) {
 680			if (data->version >= MAKE_MMU_VER(5, 0))
 681				__sysmmu_tlb_invalidate(data);
 682			else
 683				__sysmmu_tlb_invalidate_entry(data, iova, 1);
 684			sysmmu_unblock(data);
 685		}
 686		clk_disable(data->clk_master);
 687	}
 688	spin_unlock_irqrestore(&data->lock, flags);
 689}
 690
 691static void sysmmu_tlb_invalidate_entry(struct sysmmu_drvdata *data,
 692					sysmmu_iova_t iova, size_t size)
 693{
 694	unsigned long flags;
 695
 696	spin_lock_irqsave(&data->lock, flags);
 697	if (data->active) {
 698		unsigned int num_inv = 1;
 699
 700		clk_enable(data->clk_master);
 701
 702		/*
 703		 * L2TLB invalidation required
 704		 * 4KB page: 1 invalidation
 705		 * 64KB page: 16 invalidations
 706		 * 1MB page: 64 invalidations
 707		 * because it is set-associative TLB
 708		 * with 8-way and 64 sets.
 709		 * 1MB page can be cached in one of all sets.
 710		 * 64KB page can be one of 16 consecutive sets.
 711		 */
 712		if (MMU_MAJ_VER(data->version) == 2)
 713			num_inv = min_t(unsigned int, size / SPAGE_SIZE, 64);
 714
 715		if (sysmmu_block(data)) {
 716			__sysmmu_tlb_invalidate_entry(data, iova, num_inv);
 717			sysmmu_unblock(data);
 718		}
 719		clk_disable(data->clk_master);
 720	}
 721	spin_unlock_irqrestore(&data->lock, flags);
 722}
 723
 724static const struct iommu_ops exynos_iommu_ops;
 725
 726static int exynos_sysmmu_probe(struct platform_device *pdev)
 727{
 728	int irq, ret;
 729	struct device *dev = &pdev->dev;
 730	struct sysmmu_drvdata *data;
 731	struct resource *res;
 732
 733	data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
 734	if (!data)
 735		return -ENOMEM;
 736
 737	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
 738	data->sfrbase = devm_ioremap_resource(dev, res);
 739	if (IS_ERR(data->sfrbase))
 740		return PTR_ERR(data->sfrbase);
 741
 742	irq = platform_get_irq(pdev, 0);
 743	if (irq <= 0)
 744		return irq;
 745
 746	ret = devm_request_irq(dev, irq, exynos_sysmmu_irq, 0,
 747				dev_name(dev), data);
 748	if (ret) {
 749		dev_err(dev, "Unabled to register handler of irq %d\n", irq);
 750		return ret;
 751	}
 752
 753	data->clk = devm_clk_get_optional(dev, "sysmmu");
 754	if (IS_ERR(data->clk))
 
 
 755		return PTR_ERR(data->clk);
 756
 757	data->aclk = devm_clk_get_optional(dev, "aclk");
 758	if (IS_ERR(data->aclk))
 
 
 759		return PTR_ERR(data->aclk);
 760
 761	data->pclk = devm_clk_get_optional(dev, "pclk");
 762	if (IS_ERR(data->pclk))
 
 
 763		return PTR_ERR(data->pclk);
 764
 765	if (!data->clk && (!data->aclk || !data->pclk)) {
 766		dev_err(dev, "Failed to get device clock(s)!\n");
 767		return -ENOSYS;
 768	}
 769
 770	data->clk_master = devm_clk_get_optional(dev, "master");
 771	if (IS_ERR(data->clk_master))
 
 
 772		return PTR_ERR(data->clk_master);
 773
 774	data->sysmmu = dev;
 775	spin_lock_init(&data->lock);
 776
 777	__sysmmu_get_version(data);
 778
 779	ret = iommu_device_sysfs_add(&data->iommu, &pdev->dev, NULL,
 780				     dev_name(data->sysmmu));
 781	if (ret)
 782		return ret;
 783
 
 
 
 
 
 
 
 784	platform_set_drvdata(pdev, data);
 785
 
 786	if (PG_ENT_SHIFT < 0) {
 787		if (MMU_MAJ_VER(data->version) < 5) {
 788			PG_ENT_SHIFT = SYSMMU_PG_ENT_SHIFT;
 789			LV1_PROT = SYSMMU_LV1_PROT;
 790			LV2_PROT = SYSMMU_LV2_PROT;
 791		} else {
 792			PG_ENT_SHIFT = SYSMMU_V5_PG_ENT_SHIFT;
 793			LV1_PROT = SYSMMU_V5_LV1_PROT;
 794			LV2_PROT = SYSMMU_V5_LV2_PROT;
 795		}
 796	}
 797
 798	if (MMU_MAJ_VER(data->version) >= 5) {
 799		ret = dma_set_mask(dev, DMA_BIT_MASK(36));
 800		if (ret) {
 801			dev_err(dev, "Unable to set DMA mask: %d\n", ret);
 802			goto err_dma_set_mask;
 803		}
 804	}
 805
 806	/*
 807	 * use the first registered sysmmu device for performing
 808	 * dma mapping operations on iommu page tables (cpu cache flush)
 809	 */
 810	if (!dma_dev)
 811		dma_dev = &pdev->dev;
 812
 813	pm_runtime_enable(dev);
 814
 815	ret = iommu_device_register(&data->iommu, &exynos_iommu_ops, dev);
 816	if (ret)
 817		goto err_dma_set_mask;
 818
 819	return 0;
 820
 821err_dma_set_mask:
 822	iommu_device_sysfs_remove(&data->iommu);
 823	return ret;
 824}
 825
 826static int __maybe_unused exynos_sysmmu_suspend(struct device *dev)
 827{
 828	struct sysmmu_drvdata *data = dev_get_drvdata(dev);
 829	struct device *master = data->master;
 830
 831	if (master) {
 832		struct exynos_iommu_owner *owner = dev_iommu_priv_get(master);
 833
 834		mutex_lock(&owner->rpm_lock);
 835		if (&data->domain->domain != &exynos_identity_domain) {
 836			dev_dbg(data->sysmmu, "saving state\n");
 837			__sysmmu_disable(data);
 838		}
 839		mutex_unlock(&owner->rpm_lock);
 840	}
 841	return 0;
 842}
 843
 844static int __maybe_unused exynos_sysmmu_resume(struct device *dev)
 845{
 846	struct sysmmu_drvdata *data = dev_get_drvdata(dev);
 847	struct device *master = data->master;
 848
 849	if (master) {
 850		struct exynos_iommu_owner *owner = dev_iommu_priv_get(master);
 851
 852		mutex_lock(&owner->rpm_lock);
 853		if (&data->domain->domain != &exynos_identity_domain) {
 854			dev_dbg(data->sysmmu, "restoring state\n");
 855			__sysmmu_enable(data);
 856		}
 857		mutex_unlock(&owner->rpm_lock);
 858	}
 859	return 0;
 860}
 861
 862static const struct dev_pm_ops sysmmu_pm_ops = {
 863	SET_RUNTIME_PM_OPS(exynos_sysmmu_suspend, exynos_sysmmu_resume, NULL)
 864	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
 865				pm_runtime_force_resume)
 866};
 867
 868static const struct of_device_id sysmmu_of_match[] = {
 869	{ .compatible	= "samsung,exynos-sysmmu", },
 870	{ },
 871};
 872
 873static struct platform_driver exynos_sysmmu_driver __refdata = {
 874	.probe	= exynos_sysmmu_probe,
 875	.driver	= {
 876		.name		= "exynos-sysmmu",
 877		.of_match_table	= sysmmu_of_match,
 878		.pm		= &sysmmu_pm_ops,
 879		.suppress_bind_attrs = true,
 880	}
 881};
 882
 883static inline void exynos_iommu_set_pte(sysmmu_pte_t *ent, sysmmu_pte_t val)
 884{
 885	dma_sync_single_for_cpu(dma_dev, virt_to_phys(ent), sizeof(*ent),
 886				DMA_TO_DEVICE);
 887	*ent = cpu_to_le32(val);
 888	dma_sync_single_for_device(dma_dev, virt_to_phys(ent), sizeof(*ent),
 889				   DMA_TO_DEVICE);
 890}
 891
 892static struct iommu_domain *exynos_iommu_domain_alloc_paging(struct device *dev)
 893{
 894	struct exynos_iommu_domain *domain;
 895	dma_addr_t handle;
 896	int i;
 897
 898	/* Check if correct PTE offsets are initialized */
 899	BUG_ON(PG_ENT_SHIFT < 0 || !dma_dev);
 900
 901	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
 902	if (!domain)
 903		return NULL;
 904
 905	domain->pgtable = iommu_alloc_pages(GFP_KERNEL, 2);
 906	if (!domain->pgtable)
 
 
 907		goto err_pgtable;
 
 
 
 
 
 908
 909	domain->lv2entcnt = iommu_alloc_pages(GFP_KERNEL, 1);
 910	if (!domain->lv2entcnt)
 911		goto err_counter;
 912
 913	/* Workaround for System MMU v3.3 to prevent caching 1MiB mapping */
 914	for (i = 0; i < NUM_LV1ENTRIES; i++)
 915		domain->pgtable[i] = ZERO_LV2LINK;
 916
 917	handle = dma_map_single(dma_dev, domain->pgtable, LV1TABLE_SIZE,
 918				DMA_TO_DEVICE);
 919	/* For mapping page table entries we rely on dma == phys */
 920	BUG_ON(handle != virt_to_phys(domain->pgtable));
 921	if (dma_mapping_error(dma_dev, handle))
 922		goto err_lv2ent;
 923
 924	spin_lock_init(&domain->lock);
 925	spin_lock_init(&domain->pgtablelock);
 926	INIT_LIST_HEAD(&domain->clients);
 927
 928	domain->domain.geometry.aperture_start = 0;
 929	domain->domain.geometry.aperture_end   = ~0UL;
 930	domain->domain.geometry.force_aperture = true;
 931
 932	return &domain->domain;
 933
 934err_lv2ent:
 935	iommu_free_pages(domain->lv2entcnt, 1);
 936err_counter:
 937	iommu_free_pages(domain->pgtable, 2);
 
 
 
 938err_pgtable:
 939	kfree(domain);
 940	return NULL;
 941}
 942
 943static void exynos_iommu_domain_free(struct iommu_domain *iommu_domain)
 944{
 945	struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
 946	struct sysmmu_drvdata *data, *next;
 947	unsigned long flags;
 948	int i;
 949
 950	WARN_ON(!list_empty(&domain->clients));
 951
 952	spin_lock_irqsave(&domain->lock, flags);
 953
 954	list_for_each_entry_safe(data, next, &domain->clients, domain_node) {
 955		spin_lock(&data->lock);
 956		__sysmmu_disable(data);
 957		data->pgtable = 0;
 958		data->domain = NULL;
 959		list_del_init(&data->domain_node);
 960		spin_unlock(&data->lock);
 961	}
 962
 963	spin_unlock_irqrestore(&domain->lock, flags);
 964
 
 
 
 965	dma_unmap_single(dma_dev, virt_to_phys(domain->pgtable), LV1TABLE_SIZE,
 966			 DMA_TO_DEVICE);
 967
 968	for (i = 0; i < NUM_LV1ENTRIES; i++)
 969		if (lv1ent_page(domain->pgtable + i)) {
 970			phys_addr_t base = lv2table_base(domain->pgtable + i);
 971
 972			dma_unmap_single(dma_dev, base, LV2TABLE_SIZE,
 973					 DMA_TO_DEVICE);
 974			kmem_cache_free(lv2table_kmem_cache,
 975					phys_to_virt(base));
 976		}
 977
 978	iommu_free_pages(domain->pgtable, 2);
 979	iommu_free_pages(domain->lv2entcnt, 1);
 980	kfree(domain);
 981}
 982
 983static int exynos_iommu_identity_attach(struct iommu_domain *identity_domain,
 984					struct device *dev)
 985{
 986	struct exynos_iommu_owner *owner = dev_iommu_priv_get(dev);
 987	struct exynos_iommu_domain *domain;
 988	phys_addr_t pagetable;
 989	struct sysmmu_drvdata *data, *next;
 990	unsigned long flags;
 991
 992	if (owner->domain == identity_domain)
 993		return 0;
 994
 995	domain = to_exynos_domain(owner->domain);
 996	pagetable = virt_to_phys(domain->pgtable);
 997
 998	mutex_lock(&owner->rpm_lock);
 999
1000	list_for_each_entry(data, &owner->controllers, owner_node) {
1001		pm_runtime_get_noresume(data->sysmmu);
1002		if (pm_runtime_active(data->sysmmu))
1003			__sysmmu_disable(data);
1004		pm_runtime_put(data->sysmmu);
1005	}
1006
1007	spin_lock_irqsave(&domain->lock, flags);
1008	list_for_each_entry_safe(data, next, &domain->clients, domain_node) {
1009		spin_lock(&data->lock);
1010		data->pgtable = 0;
1011		data->domain = NULL;
1012		list_del_init(&data->domain_node);
1013		spin_unlock(&data->lock);
1014	}
1015	owner->domain = identity_domain;
1016	spin_unlock_irqrestore(&domain->lock, flags);
1017
1018	mutex_unlock(&owner->rpm_lock);
1019
1020	dev_dbg(dev, "%s: Restored IOMMU to IDENTITY from pgtable %pa\n",
1021		__func__, &pagetable);
1022	return 0;
1023}
1024
1025static struct iommu_domain_ops exynos_identity_ops = {
1026	.attach_dev = exynos_iommu_identity_attach,
1027};
1028
1029static struct iommu_domain exynos_identity_domain = {
1030	.type = IOMMU_DOMAIN_IDENTITY,
1031	.ops = &exynos_identity_ops,
1032};
1033
1034static int exynos_iommu_attach_device(struct iommu_domain *iommu_domain,
1035				   struct device *dev)
1036{
 
1037	struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
1038	struct exynos_iommu_owner *owner = dev_iommu_priv_get(dev);
1039	struct sysmmu_drvdata *data;
1040	phys_addr_t pagetable = virt_to_phys(domain->pgtable);
1041	unsigned long flags;
1042	int err;
1043
1044	err = exynos_iommu_identity_attach(&exynos_identity_domain, dev);
1045	if (err)
1046		return err;
 
 
1047
1048	mutex_lock(&owner->rpm_lock);
1049
1050	spin_lock_irqsave(&domain->lock, flags);
1051	list_for_each_entry(data, &owner->controllers, owner_node) {
1052		spin_lock(&data->lock);
1053		data->pgtable = pagetable;
1054		data->domain = domain;
1055		list_add_tail(&data->domain_node, &domain->clients);
1056		spin_unlock(&data->lock);
1057	}
1058	owner->domain = iommu_domain;
1059	spin_unlock_irqrestore(&domain->lock, flags);
1060
1061	list_for_each_entry(data, &owner->controllers, owner_node) {
1062		pm_runtime_get_noresume(data->sysmmu);
1063		if (pm_runtime_active(data->sysmmu))
1064			__sysmmu_enable(data);
1065		pm_runtime_put(data->sysmmu);
1066	}
1067
1068	mutex_unlock(&owner->rpm_lock);
1069
1070	dev_dbg(dev, "%s: Attached IOMMU with pgtable %pa\n", __func__,
1071		&pagetable);
1072
1073	return 0;
1074}
1075
1076static sysmmu_pte_t *alloc_lv2entry(struct exynos_iommu_domain *domain,
1077		sysmmu_pte_t *sent, sysmmu_iova_t iova, short *pgcounter)
1078{
1079	if (lv1ent_section(sent)) {
1080		WARN(1, "Trying mapping on %#08x mapped with 1MiB page", iova);
1081		return ERR_PTR(-EADDRINUSE);
1082	}
1083
1084	if (lv1ent_fault(sent)) {
1085		dma_addr_t handle;
1086		sysmmu_pte_t *pent;
1087		bool need_flush_flpd_cache = lv1ent_zero(sent);
1088
1089		pent = kmem_cache_zalloc(lv2table_kmem_cache, GFP_ATOMIC);
1090		BUG_ON((uintptr_t)pent & (LV2TABLE_SIZE - 1));
1091		if (!pent)
1092			return ERR_PTR(-ENOMEM);
1093
1094		exynos_iommu_set_pte(sent, mk_lv1ent_page(virt_to_phys(pent)));
1095		kmemleak_ignore(pent);
1096		*pgcounter = NUM_LV2ENTRIES;
1097		handle = dma_map_single(dma_dev, pent, LV2TABLE_SIZE,
1098					DMA_TO_DEVICE);
1099		if (dma_mapping_error(dma_dev, handle)) {
1100			kmem_cache_free(lv2table_kmem_cache, pent);
1101			return ERR_PTR(-EADDRINUSE);
1102		}
1103
1104		/*
1105		 * If pre-fetched SLPD is a faulty SLPD in zero_l2_table,
1106		 * FLPD cache may cache the address of zero_l2_table. This
1107		 * function replaces the zero_l2_table with new L2 page table
1108		 * to write valid mappings.
1109		 * Accessing the valid area may cause page fault since FLPD
1110		 * cache may still cache zero_l2_table for the valid area
1111		 * instead of new L2 page table that has the mapping
1112		 * information of the valid area.
1113		 * Thus any replacement of zero_l2_table with other valid L2
1114		 * page table must involve FLPD cache invalidation for System
1115		 * MMU v3.3.
1116		 * FLPD cache invalidation is performed with TLB invalidation
1117		 * by VPN without blocking. It is safe to invalidate TLB without
1118		 * blocking because the target address of TLB invalidation is
1119		 * not currently mapped.
1120		 */
1121		if (need_flush_flpd_cache) {
1122			struct sysmmu_drvdata *data;
1123
1124			spin_lock(&domain->lock);
1125			list_for_each_entry(data, &domain->clients, domain_node)
1126				sysmmu_tlb_invalidate_flpdcache(data, iova);
1127			spin_unlock(&domain->lock);
1128		}
1129	}
1130
1131	return page_entry(sent, iova);
1132}
1133
1134static int lv1set_section(struct exynos_iommu_domain *domain,
1135			  sysmmu_pte_t *sent, sysmmu_iova_t iova,
1136			  phys_addr_t paddr, int prot, short *pgcnt)
1137{
1138	if (lv1ent_section(sent)) {
1139		WARN(1, "Trying mapping on 1MiB@%#08x that is mapped",
1140			iova);
1141		return -EADDRINUSE;
1142	}
1143
1144	if (lv1ent_page(sent)) {
1145		if (*pgcnt != NUM_LV2ENTRIES) {
1146			WARN(1, "Trying mapping on 1MiB@%#08x that is mapped",
1147				iova);
1148			return -EADDRINUSE;
1149		}
1150
1151		kmem_cache_free(lv2table_kmem_cache, page_entry(sent, 0));
1152		*pgcnt = 0;
1153	}
1154
1155	exynos_iommu_set_pte(sent, mk_lv1ent_sect(paddr, prot));
1156
1157	spin_lock(&domain->lock);
1158	if (lv1ent_page_zero(sent)) {
1159		struct sysmmu_drvdata *data;
1160		/*
1161		 * Flushing FLPD cache in System MMU v3.3 that may cache a FLPD
1162		 * entry by speculative prefetch of SLPD which has no mapping.
1163		 */
1164		list_for_each_entry(data, &domain->clients, domain_node)
1165			sysmmu_tlb_invalidate_flpdcache(data, iova);
1166	}
1167	spin_unlock(&domain->lock);
1168
1169	return 0;
1170}
1171
1172static int lv2set_page(sysmmu_pte_t *pent, phys_addr_t paddr, size_t size,
1173		       int prot, short *pgcnt)
1174{
1175	if (size == SPAGE_SIZE) {
1176		if (WARN_ON(!lv2ent_fault(pent)))
1177			return -EADDRINUSE;
1178
1179		exynos_iommu_set_pte(pent, mk_lv2ent_spage(paddr, prot));
1180		*pgcnt -= 1;
1181	} else { /* size == LPAGE_SIZE */
1182		int i;
1183		dma_addr_t pent_base = virt_to_phys(pent);
1184
1185		dma_sync_single_for_cpu(dma_dev, pent_base,
1186					sizeof(*pent) * SPAGES_PER_LPAGE,
1187					DMA_TO_DEVICE);
1188		for (i = 0; i < SPAGES_PER_LPAGE; i++, pent++) {
1189			if (WARN_ON(!lv2ent_fault(pent))) {
1190				if (i > 0)
1191					memset(pent - i, 0, sizeof(*pent) * i);
1192				return -EADDRINUSE;
1193			}
1194
1195			*pent = mk_lv2ent_lpage(paddr, prot);
1196		}
1197		dma_sync_single_for_device(dma_dev, pent_base,
1198					   sizeof(*pent) * SPAGES_PER_LPAGE,
1199					   DMA_TO_DEVICE);
1200		*pgcnt -= SPAGES_PER_LPAGE;
1201	}
1202
1203	return 0;
1204}
1205
1206/*
1207 * *CAUTION* to the I/O virtual memory managers that support exynos-iommu:
1208 *
1209 * System MMU v3.x has advanced logic to improve address translation
1210 * performance with caching more page table entries by a page table walk.
1211 * However, the logic has a bug that while caching faulty page table entries,
1212 * System MMU reports page fault if the cached fault entry is hit even though
1213 * the fault entry is updated to a valid entry after the entry is cached.
1214 * To prevent caching faulty page table entries which may be updated to valid
1215 * entries later, the virtual memory manager should care about the workaround
1216 * for the problem. The following describes the workaround.
1217 *
1218 * Any two consecutive I/O virtual address regions must have a hole of 128KiB
1219 * at maximum to prevent misbehavior of System MMU 3.x (workaround for h/w bug).
1220 *
1221 * Precisely, any start address of I/O virtual region must be aligned with
1222 * the following sizes for System MMU v3.1 and v3.2.
1223 * System MMU v3.1: 128KiB
1224 * System MMU v3.2: 256KiB
1225 *
1226 * Because System MMU v3.3 caches page table entries more aggressively, it needs
1227 * more workarounds.
1228 * - Any two consecutive I/O virtual regions must have a hole of size larger
1229 *   than or equal to 128KiB.
1230 * - Start address of an I/O virtual region must be aligned by 128KiB.
1231 */
1232static int exynos_iommu_map(struct iommu_domain *iommu_domain,
1233			    unsigned long l_iova, phys_addr_t paddr, size_t size,
1234			    size_t count, int prot, gfp_t gfp, size_t *mapped)
1235{
1236	struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
1237	sysmmu_pte_t *entry;
1238	sysmmu_iova_t iova = (sysmmu_iova_t)l_iova;
1239	unsigned long flags;
1240	int ret = -ENOMEM;
1241
1242	BUG_ON(domain->pgtable == NULL);
1243	prot &= SYSMMU_SUPPORTED_PROT_BITS;
1244
1245	spin_lock_irqsave(&domain->pgtablelock, flags);
1246
1247	entry = section_entry(domain->pgtable, iova);
1248
1249	if (size == SECT_SIZE) {
1250		ret = lv1set_section(domain, entry, iova, paddr, prot,
1251				     &domain->lv2entcnt[lv1ent_offset(iova)]);
1252	} else {
1253		sysmmu_pte_t *pent;
1254
1255		pent = alloc_lv2entry(domain, entry, iova,
1256				      &domain->lv2entcnt[lv1ent_offset(iova)]);
1257
1258		if (IS_ERR(pent))
1259			ret = PTR_ERR(pent);
1260		else
1261			ret = lv2set_page(pent, paddr, size, prot,
1262				       &domain->lv2entcnt[lv1ent_offset(iova)]);
1263	}
1264
1265	if (ret)
1266		pr_err("%s: Failed(%d) to map %#zx bytes @ %#x\n",
1267			__func__, ret, size, iova);
1268	else
1269		*mapped = size;
1270
1271	spin_unlock_irqrestore(&domain->pgtablelock, flags);
1272
1273	return ret;
1274}
1275
1276static void exynos_iommu_tlb_invalidate_entry(struct exynos_iommu_domain *domain,
1277					      sysmmu_iova_t iova, size_t size)
1278{
1279	struct sysmmu_drvdata *data;
1280	unsigned long flags;
1281
1282	spin_lock_irqsave(&domain->lock, flags);
1283
1284	list_for_each_entry(data, &domain->clients, domain_node)
1285		sysmmu_tlb_invalidate_entry(data, iova, size);
1286
1287	spin_unlock_irqrestore(&domain->lock, flags);
1288}
1289
1290static size_t exynos_iommu_unmap(struct iommu_domain *iommu_domain,
1291				 unsigned long l_iova, size_t size, size_t count,
1292				 struct iommu_iotlb_gather *gather)
1293{
1294	struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
1295	sysmmu_iova_t iova = (sysmmu_iova_t)l_iova;
1296	sysmmu_pte_t *ent;
1297	size_t err_pgsize;
1298	unsigned long flags;
1299
1300	BUG_ON(domain->pgtable == NULL);
1301
1302	spin_lock_irqsave(&domain->pgtablelock, flags);
1303
1304	ent = section_entry(domain->pgtable, iova);
1305
1306	if (lv1ent_section(ent)) {
1307		if (WARN_ON(size < SECT_SIZE)) {
1308			err_pgsize = SECT_SIZE;
1309			goto err;
1310		}
1311
1312		/* workaround for h/w bug in System MMU v3.3 */
1313		exynos_iommu_set_pte(ent, ZERO_LV2LINK);
1314		size = SECT_SIZE;
1315		goto done;
1316	}
1317
1318	if (unlikely(lv1ent_fault(ent))) {
1319		if (size > SECT_SIZE)
1320			size = SECT_SIZE;
1321		goto done;
1322	}
1323
1324	/* lv1ent_page(sent) == true here */
1325
1326	ent = page_entry(ent, iova);
1327
1328	if (unlikely(lv2ent_fault(ent))) {
1329		size = SPAGE_SIZE;
1330		goto done;
1331	}
1332
1333	if (lv2ent_small(ent)) {
1334		exynos_iommu_set_pte(ent, 0);
1335		size = SPAGE_SIZE;
1336		domain->lv2entcnt[lv1ent_offset(iova)] += 1;
1337		goto done;
1338	}
1339
1340	/* lv1ent_large(ent) == true here */
1341	if (WARN_ON(size < LPAGE_SIZE)) {
1342		err_pgsize = LPAGE_SIZE;
1343		goto err;
1344	}
1345
1346	dma_sync_single_for_cpu(dma_dev, virt_to_phys(ent),
1347				sizeof(*ent) * SPAGES_PER_LPAGE,
1348				DMA_TO_DEVICE);
1349	memset(ent, 0, sizeof(*ent) * SPAGES_PER_LPAGE);
1350	dma_sync_single_for_device(dma_dev, virt_to_phys(ent),
1351				   sizeof(*ent) * SPAGES_PER_LPAGE,
1352				   DMA_TO_DEVICE);
1353	size = LPAGE_SIZE;
1354	domain->lv2entcnt[lv1ent_offset(iova)] += SPAGES_PER_LPAGE;
1355done:
1356	spin_unlock_irqrestore(&domain->pgtablelock, flags);
1357
1358	exynos_iommu_tlb_invalidate_entry(domain, iova, size);
1359
1360	return size;
1361err:
1362	spin_unlock_irqrestore(&domain->pgtablelock, flags);
1363
1364	pr_err("%s: Failed: size(%#zx) @ %#x is smaller than page size %#zx\n",
1365		__func__, size, iova, err_pgsize);
1366
1367	return 0;
1368}
1369
1370static phys_addr_t exynos_iommu_iova_to_phys(struct iommu_domain *iommu_domain,
1371					  dma_addr_t iova)
1372{
1373	struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
1374	sysmmu_pte_t *entry;
1375	unsigned long flags;
1376	phys_addr_t phys = 0;
1377
1378	spin_lock_irqsave(&domain->pgtablelock, flags);
1379
1380	entry = section_entry(domain->pgtable, iova);
1381
1382	if (lv1ent_section(entry)) {
1383		phys = section_phys(entry) + section_offs(iova);
1384	} else if (lv1ent_page(entry)) {
1385		entry = page_entry(entry, iova);
1386
1387		if (lv2ent_large(entry))
1388			phys = lpage_phys(entry) + lpage_offs(iova);
1389		else if (lv2ent_small(entry))
1390			phys = spage_phys(entry) + spage_offs(iova);
1391	}
1392
1393	spin_unlock_irqrestore(&domain->pgtablelock, flags);
1394
1395	return phys;
1396}
1397
1398static struct iommu_device *exynos_iommu_probe_device(struct device *dev)
1399{
1400	struct exynos_iommu_owner *owner = dev_iommu_priv_get(dev);
1401	struct sysmmu_drvdata *data;
 
1402
1403	if (!has_sysmmu(dev))
1404		return ERR_PTR(-ENODEV);
 
 
 
 
 
1405
1406	list_for_each_entry(data, &owner->controllers, owner_node) {
1407		/*
1408		 * SYSMMU will be runtime activated via device link
1409		 * (dependency) to its master device, so there are no
1410		 * direct calls to pm_runtime_get/put in this driver.
1411		 */
1412		data->link = device_link_add(dev, data->sysmmu,
1413					     DL_FLAG_STATELESS |
1414					     DL_FLAG_PM_RUNTIME);
1415	}
 
1416
1417	/* There is always at least one entry, see exynos_iommu_of_xlate() */
1418	data = list_first_entry(&owner->controllers,
1419				struct sysmmu_drvdata, owner_node);
1420
1421	return &data->iommu;
1422}
1423
1424static void exynos_iommu_release_device(struct device *dev)
1425{
1426	struct exynos_iommu_owner *owner = dev_iommu_priv_get(dev);
1427	struct sysmmu_drvdata *data;
1428
1429	WARN_ON(exynos_iommu_identity_attach(&exynos_identity_domain, dev));
 
 
 
 
 
 
 
 
 
 
 
 
 
1430
1431	list_for_each_entry(data, &owner->controllers, owner_node)
1432		device_link_del(data->link);
1433}
1434
1435static int exynos_iommu_of_xlate(struct device *dev,
1436				 const struct of_phandle_args *spec)
1437{
 
1438	struct platform_device *sysmmu = of_find_device_by_node(spec->np);
1439	struct exynos_iommu_owner *owner = dev_iommu_priv_get(dev);
1440	struct sysmmu_drvdata *data, *entry;
1441
1442	if (!sysmmu)
1443		return -ENODEV;
1444
1445	data = platform_get_drvdata(sysmmu);
1446	if (!data) {
1447		put_device(&sysmmu->dev);
1448		return -ENODEV;
1449	}
1450
1451	if (!owner) {
1452		owner = kzalloc(sizeof(*owner), GFP_KERNEL);
1453		if (!owner) {
1454			put_device(&sysmmu->dev);
1455			return -ENOMEM;
1456		}
1457
1458		INIT_LIST_HEAD(&owner->controllers);
1459		mutex_init(&owner->rpm_lock);
1460		owner->domain = &exynos_identity_domain;
1461		dev_iommu_priv_set(dev, owner);
1462	}
1463
1464	list_for_each_entry(entry, &owner->controllers, owner_node)
1465		if (entry == data)
1466			return 0;
1467
1468	list_add_tail(&data->owner_node, &owner->controllers);
1469	data->master = dev;
1470
1471	return 0;
1472}
1473
1474static const struct iommu_ops exynos_iommu_ops = {
1475	.identity_domain = &exynos_identity_domain,
1476	.domain_alloc_paging = exynos_iommu_domain_alloc_paging,
 
 
 
 
 
1477	.device_group = generic_device_group,
1478	.probe_device = exynos_iommu_probe_device,
1479	.release_device = exynos_iommu_release_device,
1480	.pgsize_bitmap = SECT_SIZE | LPAGE_SIZE | SPAGE_SIZE,
1481	.of_xlate = exynos_iommu_of_xlate,
1482	.default_domain_ops = &(const struct iommu_domain_ops) {
1483		.attach_dev	= exynos_iommu_attach_device,
1484		.map_pages	= exynos_iommu_map,
1485		.unmap_pages	= exynos_iommu_unmap,
1486		.iova_to_phys	= exynos_iommu_iova_to_phys,
1487		.free		= exynos_iommu_domain_free,
1488	}
1489};
1490
1491static int __init exynos_iommu_init(void)
1492{
1493	struct device_node *np;
1494	int ret;
1495
1496	np = of_find_matching_node(NULL, sysmmu_of_match);
1497	if (!np)
1498		return 0;
1499
1500	of_node_put(np);
1501
1502	lv2table_kmem_cache = kmem_cache_create("exynos-iommu-lv2table",
1503				LV2TABLE_SIZE, LV2TABLE_SIZE, 0, NULL);
1504	if (!lv2table_kmem_cache) {
1505		pr_err("%s: Failed to create kmem cache\n", __func__);
1506		return -ENOMEM;
1507	}
1508
 
 
 
 
 
 
1509	zero_lv2_table = kmem_cache_zalloc(lv2table_kmem_cache, GFP_KERNEL);
1510	if (zero_lv2_table == NULL) {
1511		pr_err("%s: Failed to allocate zero level2 page table\n",
1512			__func__);
1513		ret = -ENOMEM;
1514		goto err_zero_lv2;
1515	}
1516
1517	ret = platform_driver_register(&exynos_sysmmu_driver);
1518	if (ret) {
1519		pr_err("%s: Failed to register driver\n", __func__);
1520		goto err_reg_driver;
 
1521	}
1522
1523	return 0;
1524err_reg_driver:
1525	kmem_cache_free(lv2table_kmem_cache, zero_lv2_table);
1526err_zero_lv2:
 
 
1527	kmem_cache_destroy(lv2table_kmem_cache);
1528	return ret;
1529}
1530core_initcall(exynos_iommu_init);
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (c) 2011,2016 Samsung Electronics Co., Ltd.
   4 *		http://www.samsung.com
   5 */
   6
   7#ifdef CONFIG_EXYNOS_IOMMU_DEBUG
   8#define DEBUG
   9#endif
  10
  11#include <linux/clk.h>
  12#include <linux/dma-mapping.h>
  13#include <linux/err.h>
  14#include <linux/io.h>
  15#include <linux/iommu.h>
  16#include <linux/interrupt.h>
  17#include <linux/kmemleak.h>
  18#include <linux/list.h>
  19#include <linux/of.h>
  20#include <linux/of_iommu.h>
  21#include <linux/of_platform.h>
  22#include <linux/platform_device.h>
  23#include <linux/pm_runtime.h>
  24#include <linux/slab.h>
  25#include <linux/dma-iommu.h>
 
  26
  27typedef u32 sysmmu_iova_t;
  28typedef u32 sysmmu_pte_t;
 
  29
  30/* We do not consider super section mapping (16MB) */
  31#define SECT_ORDER 20
  32#define LPAGE_ORDER 16
  33#define SPAGE_ORDER 12
  34
  35#define SECT_SIZE (1 << SECT_ORDER)
  36#define LPAGE_SIZE (1 << LPAGE_ORDER)
  37#define SPAGE_SIZE (1 << SPAGE_ORDER)
  38
  39#define SECT_MASK (~(SECT_SIZE - 1))
  40#define LPAGE_MASK (~(LPAGE_SIZE - 1))
  41#define SPAGE_MASK (~(SPAGE_SIZE - 1))
  42
  43#define lv1ent_fault(sent) ((*(sent) == ZERO_LV2LINK) || \
  44			   ((*(sent) & 3) == 0) || ((*(sent) & 3) == 3))
  45#define lv1ent_zero(sent) (*(sent) == ZERO_LV2LINK)
  46#define lv1ent_page_zero(sent) ((*(sent) & 3) == 1)
  47#define lv1ent_page(sent) ((*(sent) != ZERO_LV2LINK) && \
  48			  ((*(sent) & 3) == 1))
  49#define lv1ent_section(sent) ((*(sent) & 3) == 2)
  50
  51#define lv2ent_fault(pent) ((*(pent) & 3) == 0)
  52#define lv2ent_small(pent) ((*(pent) & 2) == 2)
  53#define lv2ent_large(pent) ((*(pent) & 3) == 1)
  54
  55/*
  56 * v1.x - v3.x SYSMMU supports 32bit physical and 32bit virtual address spaces
  57 * v5.0 introduced support for 36bit physical address space by shifting
  58 * all page entry values by 4 bits.
  59 * All SYSMMU controllers in the system support the address spaces of the same
  60 * size, so PG_ENT_SHIFT can be initialized on first SYSMMU probe to proper
  61 * value (0 or 4).
  62 */
  63static short PG_ENT_SHIFT = -1;
  64#define SYSMMU_PG_ENT_SHIFT 0
  65#define SYSMMU_V5_PG_ENT_SHIFT 4
  66
  67static const sysmmu_pte_t *LV1_PROT;
  68static const sysmmu_pte_t SYSMMU_LV1_PROT[] = {
  69	((0 << 15) | (0 << 10)), /* no access */
  70	((1 << 15) | (1 << 10)), /* IOMMU_READ only */
  71	((0 << 15) | (1 << 10)), /* IOMMU_WRITE not supported, use read/write */
  72	((0 << 15) | (1 << 10)), /* IOMMU_READ | IOMMU_WRITE */
  73};
  74static const sysmmu_pte_t SYSMMU_V5_LV1_PROT[] = {
  75	(0 << 4), /* no access */
  76	(1 << 4), /* IOMMU_READ only */
  77	(2 << 4), /* IOMMU_WRITE only */
  78	(3 << 4), /* IOMMU_READ | IOMMU_WRITE */
  79};
  80
  81static const sysmmu_pte_t *LV2_PROT;
  82static const sysmmu_pte_t SYSMMU_LV2_PROT[] = {
  83	((0 << 9) | (0 << 4)), /* no access */
  84	((1 << 9) | (1 << 4)), /* IOMMU_READ only */
  85	((0 << 9) | (1 << 4)), /* IOMMU_WRITE not supported, use read/write */
  86	((0 << 9) | (1 << 4)), /* IOMMU_READ | IOMMU_WRITE */
  87};
  88static const sysmmu_pte_t SYSMMU_V5_LV2_PROT[] = {
  89	(0 << 2), /* no access */
  90	(1 << 2), /* IOMMU_READ only */
  91	(2 << 2), /* IOMMU_WRITE only */
  92	(3 << 2), /* IOMMU_READ | IOMMU_WRITE */
  93};
  94
  95#define SYSMMU_SUPPORTED_PROT_BITS (IOMMU_READ | IOMMU_WRITE)
  96
  97#define sect_to_phys(ent) (((phys_addr_t) ent) << PG_ENT_SHIFT)
  98#define section_phys(sent) (sect_to_phys(*(sent)) & SECT_MASK)
  99#define section_offs(iova) (iova & (SECT_SIZE - 1))
 100#define lpage_phys(pent) (sect_to_phys(*(pent)) & LPAGE_MASK)
 101#define lpage_offs(iova) (iova & (LPAGE_SIZE - 1))
 102#define spage_phys(pent) (sect_to_phys(*(pent)) & SPAGE_MASK)
 103#define spage_offs(iova) (iova & (SPAGE_SIZE - 1))
 104
 105#define NUM_LV1ENTRIES 4096
 106#define NUM_LV2ENTRIES (SECT_SIZE / SPAGE_SIZE)
 107
 108static u32 lv1ent_offset(sysmmu_iova_t iova)
 109{
 110	return iova >> SECT_ORDER;
 111}
 112
 113static u32 lv2ent_offset(sysmmu_iova_t iova)
 114{
 115	return (iova >> SPAGE_ORDER) & (NUM_LV2ENTRIES - 1);
 116}
 117
 118#define LV1TABLE_SIZE (NUM_LV1ENTRIES * sizeof(sysmmu_pte_t))
 119#define LV2TABLE_SIZE (NUM_LV2ENTRIES * sizeof(sysmmu_pte_t))
 120
 121#define SPAGES_PER_LPAGE (LPAGE_SIZE / SPAGE_SIZE)
 122#define lv2table_base(sent) (sect_to_phys(*(sent) & 0xFFFFFFC0))
 123
 124#define mk_lv1ent_sect(pa, prot) ((pa >> PG_ENT_SHIFT) | LV1_PROT[prot] | 2)
 125#define mk_lv1ent_page(pa) ((pa >> PG_ENT_SHIFT) | 1)
 126#define mk_lv2ent_lpage(pa, prot) ((pa >> PG_ENT_SHIFT) | LV2_PROT[prot] | 1)
 127#define mk_lv2ent_spage(pa, prot) ((pa >> PG_ENT_SHIFT) | LV2_PROT[prot] | 2)
 128
 129#define CTRL_ENABLE	0x5
 130#define CTRL_BLOCK	0x7
 131#define CTRL_DISABLE	0x0
 132
 133#define CFG_LRU		0x1
 134#define CFG_EAP		(1 << 2)
 135#define CFG_QOS(n)	((n & 0xF) << 7)
 136#define CFG_ACGEN	(1 << 24) /* System MMU 3.3 only */
 137#define CFG_SYSSEL	(1 << 22) /* System MMU 3.2 only */
 138#define CFG_FLPDCACHE	(1 << 20) /* System MMU 3.2+ only */
 139
 
 
 
 
 
 140/* common registers */
 141#define REG_MMU_CTRL		0x000
 142#define REG_MMU_CFG		0x004
 143#define REG_MMU_STATUS		0x008
 144#define REG_MMU_VERSION		0x034
 145
 146#define MMU_MAJ_VER(val)	((val) >> 7)
 147#define MMU_MIN_VER(val)	((val) & 0x7F)
 148#define MMU_RAW_VER(reg)	(((reg) >> 21) & ((1 << 11) - 1)) /* 11 bits */
 149
 150#define MAKE_MMU_VER(maj, min)	((((maj) & 0xF) << 7) | ((min) & 0x7F))
 151
 152/* v1.x - v3.x registers */
 153#define REG_MMU_FLUSH		0x00C
 154#define REG_MMU_FLUSH_ENTRY	0x010
 155#define REG_PT_BASE_ADDR	0x014
 156#define REG_INT_STATUS		0x018
 157#define REG_INT_CLEAR		0x01C
 158
 159#define REG_PAGE_FAULT_ADDR	0x024
 160#define REG_AW_FAULT_ADDR	0x028
 161#define REG_AR_FAULT_ADDR	0x02C
 162#define REG_DEFAULT_SLAVE_ADDR	0x030
 163
 164/* v5.x registers */
 165#define REG_V5_PT_BASE_PFN	0x00C
 166#define REG_V5_MMU_FLUSH_ALL	0x010
 167#define REG_V5_MMU_FLUSH_ENTRY	0x014
 168#define REG_V5_MMU_FLUSH_RANGE	0x018
 169#define REG_V5_MMU_FLUSH_START	0x020
 170#define REG_V5_MMU_FLUSH_END	0x024
 171#define REG_V5_INT_STATUS	0x060
 172#define REG_V5_INT_CLEAR	0x064
 173#define REG_V5_FAULT_AR_VA	0x070
 174#define REG_V5_FAULT_AW_VA	0x080
 175
 176#define has_sysmmu(dev)		(dev->archdata.iommu != NULL)
 
 
 
 
 
 177
 178static struct device *dma_dev;
 179static struct kmem_cache *lv2table_kmem_cache;
 180static sysmmu_pte_t *zero_lv2_table;
 181#define ZERO_LV2LINK mk_lv1ent_page(virt_to_phys(zero_lv2_table))
 182
 183static sysmmu_pte_t *section_entry(sysmmu_pte_t *pgtable, sysmmu_iova_t iova)
 184{
 185	return pgtable + lv1ent_offset(iova);
 186}
 187
 188static sysmmu_pte_t *page_entry(sysmmu_pte_t *sent, sysmmu_iova_t iova)
 189{
 190	return (sysmmu_pte_t *)phys_to_virt(
 191				lv2table_base(sent)) + lv2ent_offset(iova);
 192}
 193
 194/*
 195 * IOMMU fault information register
 196 */
 197struct sysmmu_fault_info {
 198	unsigned int bit;	/* bit number in STATUS register */
 199	unsigned short addr_reg; /* register to read VA fault address */
 
 
 200	const char *name;	/* human readable fault name */
 201	unsigned int type;	/* fault type for report_iommu_fault */
 202};
 203
 204static const struct sysmmu_fault_info sysmmu_faults[] = {
 205	{ 0, REG_PAGE_FAULT_ADDR, "PAGE", IOMMU_FAULT_READ },
 206	{ 1, REG_AR_FAULT_ADDR, "AR MULTI-HIT", IOMMU_FAULT_READ },
 207	{ 2, REG_AW_FAULT_ADDR, "AW MULTI-HIT", IOMMU_FAULT_WRITE },
 208	{ 3, REG_DEFAULT_SLAVE_ADDR, "BUS ERROR", IOMMU_FAULT_READ },
 209	{ 4, REG_AR_FAULT_ADDR, "AR SECURITY PROTECTION", IOMMU_FAULT_READ },
 210	{ 5, REG_AR_FAULT_ADDR, "AR ACCESS PROTECTION", IOMMU_FAULT_READ },
 211	{ 6, REG_AW_FAULT_ADDR, "AW SECURITY PROTECTION", IOMMU_FAULT_WRITE },
 212	{ 7, REG_AW_FAULT_ADDR, "AW ACCESS PROTECTION", IOMMU_FAULT_WRITE },
 213};
 214
 215static const struct sysmmu_fault_info sysmmu_v5_faults[] = {
 216	{ 0, REG_V5_FAULT_AR_VA, "AR PTW", IOMMU_FAULT_READ },
 217	{ 1, REG_V5_FAULT_AR_VA, "AR PAGE", IOMMU_FAULT_READ },
 218	{ 2, REG_V5_FAULT_AR_VA, "AR MULTI-HIT", IOMMU_FAULT_READ },
 219	{ 3, REG_V5_FAULT_AR_VA, "AR ACCESS PROTECTION", IOMMU_FAULT_READ },
 220	{ 4, REG_V5_FAULT_AR_VA, "AR SECURITY PROTECTION", IOMMU_FAULT_READ },
 221	{ 16, REG_V5_FAULT_AW_VA, "AW PTW", IOMMU_FAULT_WRITE },
 222	{ 17, REG_V5_FAULT_AW_VA, "AW PAGE", IOMMU_FAULT_WRITE },
 223	{ 18, REG_V5_FAULT_AW_VA, "AW MULTI-HIT", IOMMU_FAULT_WRITE },
 224	{ 19, REG_V5_FAULT_AW_VA, "AW ACCESS PROTECTION", IOMMU_FAULT_WRITE },
 225	{ 20, REG_V5_FAULT_AW_VA, "AW SECURITY PROTECTION", IOMMU_FAULT_WRITE },
 
 
 
 226};
 227
 228/*
 229 * This structure is attached to dev.archdata.iommu of the master device
 230 * on device add, contains a list of SYSMMU controllers defined by device tree,
 231 * which are bound to given master device. It is usually referenced by 'owner'
 232 * pointer.
 233*/
 234struct exynos_iommu_owner {
 235	struct list_head controllers;	/* list of sysmmu_drvdata.owner_node */
 236	struct iommu_domain *domain;	/* domain this device is attached */
 237	struct mutex rpm_lock;		/* for runtime pm of all sysmmus */
 238};
 239
 240/*
 241 * This structure exynos specific generalization of struct iommu_domain.
 242 * It contains list of SYSMMU controllers from all master devices, which has
 243 * been attached to this domain and page tables of IO address space defined by
 244 * it. It is usually referenced by 'domain' pointer.
 245 */
 246struct exynos_iommu_domain {
 247	struct list_head clients; /* list of sysmmu_drvdata.domain_node */
 248	sysmmu_pte_t *pgtable;	/* lv1 page table, 16KB */
 249	short *lv2entcnt;	/* free lv2 entry counter for each section */
 250	spinlock_t lock;	/* lock for modyfying list of clients */
 251	spinlock_t pgtablelock;	/* lock for modifying page table @ pgtable */
 252	struct iommu_domain domain; /* generic domain data structure */
 253};
 254
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 255/*
 256 * This structure hold all data of a single SYSMMU controller, this includes
 257 * hw resources like registers and clocks, pointers and list nodes to connect
 258 * it to all other structures, internal state and parameters read from device
 259 * tree. It is usually referenced by 'data' pointer.
 260 */
 261struct sysmmu_drvdata {
 262	struct device *sysmmu;		/* SYSMMU controller device */
 263	struct device *master;		/* master device (owner) */
 264	struct device_link *link;	/* runtime PM link to master */
 265	void __iomem *sfrbase;		/* our registers */
 266	struct clk *clk;		/* SYSMMU's clock */
 267	struct clk *aclk;		/* SYSMMU's aclk clock */
 268	struct clk *pclk;		/* SYSMMU's pclk clock */
 269	struct clk *clk_master;		/* master's device clock */
 270	spinlock_t lock;		/* lock for modyfying state */
 271	bool active;			/* current status */
 272	struct exynos_iommu_domain *domain; /* domain we belong to */
 273	struct list_head domain_node;	/* node for domain clients list */
 274	struct list_head owner_node;	/* node for owner controllers list */
 275	phys_addr_t pgtable;		/* assigned page table structure */
 276	unsigned int version;		/* our version */
 277
 278	struct iommu_device iommu;	/* IOMMU core handle */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 279};
 280
 281static struct exynos_iommu_domain *to_exynos_domain(struct iommu_domain *dom)
 282{
 283	return container_of(dom, struct exynos_iommu_domain, domain);
 284}
 285
 286static void sysmmu_unblock(struct sysmmu_drvdata *data)
 287{
 288	writel(CTRL_ENABLE, data->sfrbase + REG_MMU_CTRL);
 289}
 290
 291static bool sysmmu_block(struct sysmmu_drvdata *data)
 292{
 293	int i = 120;
 294
 295	writel(CTRL_BLOCK, data->sfrbase + REG_MMU_CTRL);
 296	while ((i > 0) && !(readl(data->sfrbase + REG_MMU_STATUS) & 1))
 297		--i;
 298
 299	if (!(readl(data->sfrbase + REG_MMU_STATUS) & 1)) {
 300		sysmmu_unblock(data);
 301		return false;
 302	}
 303
 304	return true;
 305}
 306
 307static void __sysmmu_tlb_invalidate(struct sysmmu_drvdata *data)
 308{
 309	if (MMU_MAJ_VER(data->version) < 5)
 310		writel(0x1, data->sfrbase + REG_MMU_FLUSH);
 311	else
 312		writel(0x1, data->sfrbase + REG_V5_MMU_FLUSH_ALL);
 313}
 314
 315static void __sysmmu_tlb_invalidate_entry(struct sysmmu_drvdata *data,
 316				sysmmu_iova_t iova, unsigned int num_inv)
 317{
 318	unsigned int i;
 319
 320	if (MMU_MAJ_VER(data->version) < 5) {
 321		for (i = 0; i < num_inv; i++) {
 322			writel((iova & SPAGE_MASK) | 1,
 323				     data->sfrbase + REG_MMU_FLUSH_ENTRY);
 324			iova += SPAGE_SIZE;
 325		}
 326	} else {
 327		if (num_inv == 1) {
 328			writel((iova & SPAGE_MASK) | 1,
 329				     data->sfrbase + REG_V5_MMU_FLUSH_ENTRY);
 330		} else {
 331			writel((iova & SPAGE_MASK),
 332				     data->sfrbase + REG_V5_MMU_FLUSH_START);
 333			writel((iova & SPAGE_MASK) + (num_inv - 1) * SPAGE_SIZE,
 334				     data->sfrbase + REG_V5_MMU_FLUSH_END);
 335			writel(1, data->sfrbase + REG_V5_MMU_FLUSH_RANGE);
 336		}
 337	}
 338}
 339
 340static void __sysmmu_set_ptbase(struct sysmmu_drvdata *data, phys_addr_t pgd)
 341{
 
 
 342	if (MMU_MAJ_VER(data->version) < 5)
 343		writel(pgd, data->sfrbase + REG_PT_BASE_ADDR);
 344	else
 345		writel(pgd >> PAGE_SHIFT,
 346			     data->sfrbase + REG_V5_PT_BASE_PFN);
 347
 
 348	__sysmmu_tlb_invalidate(data);
 349}
 350
 351static void __sysmmu_enable_clocks(struct sysmmu_drvdata *data)
 352{
 353	BUG_ON(clk_prepare_enable(data->clk_master));
 354	BUG_ON(clk_prepare_enable(data->clk));
 355	BUG_ON(clk_prepare_enable(data->pclk));
 356	BUG_ON(clk_prepare_enable(data->aclk));
 357}
 358
 359static void __sysmmu_disable_clocks(struct sysmmu_drvdata *data)
 360{
 361	clk_disable_unprepare(data->aclk);
 362	clk_disable_unprepare(data->pclk);
 363	clk_disable_unprepare(data->clk);
 364	clk_disable_unprepare(data->clk_master);
 365}
 366
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 367static void __sysmmu_get_version(struct sysmmu_drvdata *data)
 368{
 369	u32 ver;
 370
 371	__sysmmu_enable_clocks(data);
 372
 373	ver = readl(data->sfrbase + REG_MMU_VERSION);
 374
 375	/* controllers on some SoCs don't report proper version */
 376	if (ver == 0x80000001u)
 377		data->version = MAKE_MMU_VER(1, 0);
 378	else
 379		data->version = MMU_RAW_VER(ver);
 380
 381	dev_dbg(data->sysmmu, "hardware version: %d.%d\n",
 382		MMU_MAJ_VER(data->version), MMU_MIN_VER(data->version));
 383
 
 
 
 
 
 
 
 
 
 
 
 
 
 384	__sysmmu_disable_clocks(data);
 385}
 386
 387static void show_fault_information(struct sysmmu_drvdata *data,
 388				   const struct sysmmu_fault_info *finfo,
 389				   sysmmu_iova_t fault_addr)
 390{
 391	sysmmu_pte_t *ent;
 392
 393	dev_err(data->sysmmu, "%s: %s FAULT occurred at %#x\n",
 394		dev_name(data->master), finfo->name, fault_addr);
 
 
 395	dev_dbg(data->sysmmu, "Page table base: %pa\n", &data->pgtable);
 396	ent = section_entry(phys_to_virt(data->pgtable), fault_addr);
 397	dev_dbg(data->sysmmu, "\tLv1 entry: %#x\n", *ent);
 398	if (lv1ent_page(ent)) {
 399		ent = page_entry(ent, fault_addr);
 400		dev_dbg(data->sysmmu, "\t Lv2 entry: %#x\n", *ent);
 401	}
 402}
 403
 404static irqreturn_t exynos_sysmmu_irq(int irq, void *dev_id)
 405{
 406	/* SYSMMU is in blocked state when interrupt occurred. */
 407	struct sysmmu_drvdata *data = dev_id;
 408	const struct sysmmu_fault_info *finfo;
 409	unsigned int i, n, itype;
 410	sysmmu_iova_t fault_addr = -1;
 411	unsigned short reg_status, reg_clear;
 412	int ret = -ENOSYS;
 413
 414	WARN_ON(!data->active);
 415
 416	if (MMU_MAJ_VER(data->version) < 5) {
 417		reg_status = REG_INT_STATUS;
 418		reg_clear = REG_INT_CLEAR;
 419		finfo = sysmmu_faults;
 420		n = ARRAY_SIZE(sysmmu_faults);
 421	} else {
 422		reg_status = REG_V5_INT_STATUS;
 423		reg_clear = REG_V5_INT_CLEAR;
 424		finfo = sysmmu_v5_faults;
 425		n = ARRAY_SIZE(sysmmu_v5_faults);
 426	}
 427
 428	spin_lock(&data->lock);
 
 429
 430	clk_enable(data->clk_master);
 
 
 
 
 
 
 431
 432	itype = __ffs(readl(data->sfrbase + reg_status));
 433	for (i = 0; i < n; i++, finfo++)
 434		if (finfo->bit == itype)
 435			break;
 436	/* unknown/unsupported fault */
 437	BUG_ON(i == n);
 438
 439	/* print debug message */
 440	fault_addr = readl(data->sfrbase + finfo->addr_reg);
 441	show_fault_information(data, finfo, fault_addr);
 442
 443	if (data->domain)
 444		ret = report_iommu_fault(&data->domain->domain,
 445					data->master, fault_addr, finfo->type);
 446	/* fault is not recovered by fault handler */
 447	BUG_ON(ret != 0);
 448
 449	writel(1 << itype, data->sfrbase + reg_clear);
 
 450
 
 451	sysmmu_unblock(data);
 452
 453	clk_disable(data->clk_master);
 454
 455	spin_unlock(&data->lock);
 456
 457	return IRQ_HANDLED;
 458}
 459
 460static void __sysmmu_disable(struct sysmmu_drvdata *data)
 461{
 462	unsigned long flags;
 463
 464	clk_enable(data->clk_master);
 465
 466	spin_lock_irqsave(&data->lock, flags);
 467	writel(CTRL_DISABLE, data->sfrbase + REG_MMU_CTRL);
 468	writel(0, data->sfrbase + REG_MMU_CFG);
 469	data->active = false;
 470	spin_unlock_irqrestore(&data->lock, flags);
 471
 472	__sysmmu_disable_clocks(data);
 473}
 474
 475static void __sysmmu_init_config(struct sysmmu_drvdata *data)
 476{
 477	unsigned int cfg;
 478
 479	if (data->version <= MAKE_MMU_VER(3, 1))
 480		cfg = CFG_LRU | CFG_QOS(15);
 481	else if (data->version <= MAKE_MMU_VER(3, 2))
 482		cfg = CFG_LRU | CFG_QOS(15) | CFG_FLPDCACHE | CFG_SYSSEL;
 483	else
 484		cfg = CFG_QOS(15) | CFG_FLPDCACHE | CFG_ACGEN;
 485
 486	cfg |= CFG_EAP; /* enable access protection bits check */
 487
 488	writel(cfg, data->sfrbase + REG_MMU_CFG);
 489}
 490
 
 
 
 
 
 
 
 
 
 
 
 
 491static void __sysmmu_enable(struct sysmmu_drvdata *data)
 492{
 493	unsigned long flags;
 494
 495	__sysmmu_enable_clocks(data);
 496
 497	spin_lock_irqsave(&data->lock, flags);
 498	writel(CTRL_BLOCK, data->sfrbase + REG_MMU_CTRL);
 499	__sysmmu_init_config(data);
 500	__sysmmu_set_ptbase(data, data->pgtable);
 
 501	writel(CTRL_ENABLE, data->sfrbase + REG_MMU_CTRL);
 502	data->active = true;
 503	spin_unlock_irqrestore(&data->lock, flags);
 504
 505	/*
 506	 * SYSMMU driver keeps master's clock enabled only for the short
 507	 * time, while accessing the registers. For performing address
 508	 * translation during DMA transaction it relies on the client
 509	 * driver to enable it.
 510	 */
 511	clk_disable(data->clk_master);
 512}
 513
 514static void sysmmu_tlb_invalidate_flpdcache(struct sysmmu_drvdata *data,
 515					    sysmmu_iova_t iova)
 516{
 517	unsigned long flags;
 518
 519	spin_lock_irqsave(&data->lock, flags);
 520	if (data->active && data->version >= MAKE_MMU_VER(3, 3)) {
 521		clk_enable(data->clk_master);
 522		if (sysmmu_block(data)) {
 523			if (data->version >= MAKE_MMU_VER(5, 0))
 524				__sysmmu_tlb_invalidate(data);
 525			else
 526				__sysmmu_tlb_invalidate_entry(data, iova, 1);
 527			sysmmu_unblock(data);
 528		}
 529		clk_disable(data->clk_master);
 530	}
 531	spin_unlock_irqrestore(&data->lock, flags);
 532}
 533
 534static void sysmmu_tlb_invalidate_entry(struct sysmmu_drvdata *data,
 535					sysmmu_iova_t iova, size_t size)
 536{
 537	unsigned long flags;
 538
 539	spin_lock_irqsave(&data->lock, flags);
 540	if (data->active) {
 541		unsigned int num_inv = 1;
 542
 543		clk_enable(data->clk_master);
 544
 545		/*
 546		 * L2TLB invalidation required
 547		 * 4KB page: 1 invalidation
 548		 * 64KB page: 16 invalidations
 549		 * 1MB page: 64 invalidations
 550		 * because it is set-associative TLB
 551		 * with 8-way and 64 sets.
 552		 * 1MB page can be cached in one of all sets.
 553		 * 64KB page can be one of 16 consecutive sets.
 554		 */
 555		if (MMU_MAJ_VER(data->version) == 2)
 556			num_inv = min_t(unsigned int, size / PAGE_SIZE, 64);
 557
 558		if (sysmmu_block(data)) {
 559			__sysmmu_tlb_invalidate_entry(data, iova, num_inv);
 560			sysmmu_unblock(data);
 561		}
 562		clk_disable(data->clk_master);
 563	}
 564	spin_unlock_irqrestore(&data->lock, flags);
 565}
 566
 567static const struct iommu_ops exynos_iommu_ops;
 568
 569static int exynos_sysmmu_probe(struct platform_device *pdev)
 570{
 571	int irq, ret;
 572	struct device *dev = &pdev->dev;
 573	struct sysmmu_drvdata *data;
 574	struct resource *res;
 575
 576	data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
 577	if (!data)
 578		return -ENOMEM;
 579
 580	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
 581	data->sfrbase = devm_ioremap_resource(dev, res);
 582	if (IS_ERR(data->sfrbase))
 583		return PTR_ERR(data->sfrbase);
 584
 585	irq = platform_get_irq(pdev, 0);
 586	if (irq <= 0)
 587		return irq;
 588
 589	ret = devm_request_irq(dev, irq, exynos_sysmmu_irq, 0,
 590				dev_name(dev), data);
 591	if (ret) {
 592		dev_err(dev, "Unabled to register handler of irq %d\n", irq);
 593		return ret;
 594	}
 595
 596	data->clk = devm_clk_get(dev, "sysmmu");
 597	if (PTR_ERR(data->clk) == -ENOENT)
 598		data->clk = NULL;
 599	else if (IS_ERR(data->clk))
 600		return PTR_ERR(data->clk);
 601
 602	data->aclk = devm_clk_get(dev, "aclk");
 603	if (PTR_ERR(data->aclk) == -ENOENT)
 604		data->aclk = NULL;
 605	else if (IS_ERR(data->aclk))
 606		return PTR_ERR(data->aclk);
 607
 608	data->pclk = devm_clk_get(dev, "pclk");
 609	if (PTR_ERR(data->pclk) == -ENOENT)
 610		data->pclk = NULL;
 611	else if (IS_ERR(data->pclk))
 612		return PTR_ERR(data->pclk);
 613
 614	if (!data->clk && (!data->aclk || !data->pclk)) {
 615		dev_err(dev, "Failed to get device clock(s)!\n");
 616		return -ENOSYS;
 617	}
 618
 619	data->clk_master = devm_clk_get(dev, "master");
 620	if (PTR_ERR(data->clk_master) == -ENOENT)
 621		data->clk_master = NULL;
 622	else if (IS_ERR(data->clk_master))
 623		return PTR_ERR(data->clk_master);
 624
 625	data->sysmmu = dev;
 626	spin_lock_init(&data->lock);
 627
 
 
 628	ret = iommu_device_sysfs_add(&data->iommu, &pdev->dev, NULL,
 629				     dev_name(data->sysmmu));
 630	if (ret)
 631		return ret;
 632
 633	iommu_device_set_ops(&data->iommu, &exynos_iommu_ops);
 634	iommu_device_set_fwnode(&data->iommu, &dev->of_node->fwnode);
 635
 636	ret = iommu_device_register(&data->iommu);
 637	if (ret)
 638		return ret;
 639
 640	platform_set_drvdata(pdev, data);
 641
 642	__sysmmu_get_version(data);
 643	if (PG_ENT_SHIFT < 0) {
 644		if (MMU_MAJ_VER(data->version) < 5) {
 645			PG_ENT_SHIFT = SYSMMU_PG_ENT_SHIFT;
 646			LV1_PROT = SYSMMU_LV1_PROT;
 647			LV2_PROT = SYSMMU_LV2_PROT;
 648		} else {
 649			PG_ENT_SHIFT = SYSMMU_V5_PG_ENT_SHIFT;
 650			LV1_PROT = SYSMMU_V5_LV1_PROT;
 651			LV2_PROT = SYSMMU_V5_LV2_PROT;
 652		}
 653	}
 654
 
 
 
 
 
 
 
 
 655	/*
 656	 * use the first registered sysmmu device for performing
 657	 * dma mapping operations on iommu page tables (cpu cache flush)
 658	 */
 659	if (!dma_dev)
 660		dma_dev = &pdev->dev;
 661
 662	pm_runtime_enable(dev);
 663
 
 
 
 
 664	return 0;
 
 
 
 
 665}
 666
 667static int __maybe_unused exynos_sysmmu_suspend(struct device *dev)
 668{
 669	struct sysmmu_drvdata *data = dev_get_drvdata(dev);
 670	struct device *master = data->master;
 671
 672	if (master) {
 673		struct exynos_iommu_owner *owner = master->archdata.iommu;
 674
 675		mutex_lock(&owner->rpm_lock);
 676		if (data->domain) {
 677			dev_dbg(data->sysmmu, "saving state\n");
 678			__sysmmu_disable(data);
 679		}
 680		mutex_unlock(&owner->rpm_lock);
 681	}
 682	return 0;
 683}
 684
 685static int __maybe_unused exynos_sysmmu_resume(struct device *dev)
 686{
 687	struct sysmmu_drvdata *data = dev_get_drvdata(dev);
 688	struct device *master = data->master;
 689
 690	if (master) {
 691		struct exynos_iommu_owner *owner = master->archdata.iommu;
 692
 693		mutex_lock(&owner->rpm_lock);
 694		if (data->domain) {
 695			dev_dbg(data->sysmmu, "restoring state\n");
 696			__sysmmu_enable(data);
 697		}
 698		mutex_unlock(&owner->rpm_lock);
 699	}
 700	return 0;
 701}
 702
 703static const struct dev_pm_ops sysmmu_pm_ops = {
 704	SET_RUNTIME_PM_OPS(exynos_sysmmu_suspend, exynos_sysmmu_resume, NULL)
 705	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
 706				pm_runtime_force_resume)
 707};
 708
 709static const struct of_device_id sysmmu_of_match[] = {
 710	{ .compatible	= "samsung,exynos-sysmmu", },
 711	{ },
 712};
 713
 714static struct platform_driver exynos_sysmmu_driver __refdata = {
 715	.probe	= exynos_sysmmu_probe,
 716	.driver	= {
 717		.name		= "exynos-sysmmu",
 718		.of_match_table	= sysmmu_of_match,
 719		.pm		= &sysmmu_pm_ops,
 720		.suppress_bind_attrs = true,
 721	}
 722};
 723
 724static inline void update_pte(sysmmu_pte_t *ent, sysmmu_pte_t val)
 725{
 726	dma_sync_single_for_cpu(dma_dev, virt_to_phys(ent), sizeof(*ent),
 727				DMA_TO_DEVICE);
 728	*ent = cpu_to_le32(val);
 729	dma_sync_single_for_device(dma_dev, virt_to_phys(ent), sizeof(*ent),
 730				   DMA_TO_DEVICE);
 731}
 732
 733static struct iommu_domain *exynos_iommu_domain_alloc(unsigned type)
 734{
 735	struct exynos_iommu_domain *domain;
 736	dma_addr_t handle;
 737	int i;
 738
 739	/* Check if correct PTE offsets are initialized */
 740	BUG_ON(PG_ENT_SHIFT < 0 || !dma_dev);
 741
 742	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
 743	if (!domain)
 744		return NULL;
 745
 746	if (type == IOMMU_DOMAIN_DMA) {
 747		if (iommu_get_dma_cookie(&domain->domain) != 0)
 748			goto err_pgtable;
 749	} else if (type != IOMMU_DOMAIN_UNMANAGED) {
 750		goto err_pgtable;
 751	}
 752
 753	domain->pgtable = (sysmmu_pte_t *)__get_free_pages(GFP_KERNEL, 2);
 754	if (!domain->pgtable)
 755		goto err_dma_cookie;
 756
 757	domain->lv2entcnt = (short *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, 1);
 758	if (!domain->lv2entcnt)
 759		goto err_counter;
 760
 761	/* Workaround for System MMU v3.3 to prevent caching 1MiB mapping */
 762	for (i = 0; i < NUM_LV1ENTRIES; i++)
 763		domain->pgtable[i] = ZERO_LV2LINK;
 764
 765	handle = dma_map_single(dma_dev, domain->pgtable, LV1TABLE_SIZE,
 766				DMA_TO_DEVICE);
 767	/* For mapping page table entries we rely on dma == phys */
 768	BUG_ON(handle != virt_to_phys(domain->pgtable));
 769	if (dma_mapping_error(dma_dev, handle))
 770		goto err_lv2ent;
 771
 772	spin_lock_init(&domain->lock);
 773	spin_lock_init(&domain->pgtablelock);
 774	INIT_LIST_HEAD(&domain->clients);
 775
 776	domain->domain.geometry.aperture_start = 0;
 777	domain->domain.geometry.aperture_end   = ~0UL;
 778	domain->domain.geometry.force_aperture = true;
 779
 780	return &domain->domain;
 781
 782err_lv2ent:
 783	free_pages((unsigned long)domain->lv2entcnt, 1);
 784err_counter:
 785	free_pages((unsigned long)domain->pgtable, 2);
 786err_dma_cookie:
 787	if (type == IOMMU_DOMAIN_DMA)
 788		iommu_put_dma_cookie(&domain->domain);
 789err_pgtable:
 790	kfree(domain);
 791	return NULL;
 792}
 793
 794static void exynos_iommu_domain_free(struct iommu_domain *iommu_domain)
 795{
 796	struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
 797	struct sysmmu_drvdata *data, *next;
 798	unsigned long flags;
 799	int i;
 800
 801	WARN_ON(!list_empty(&domain->clients));
 802
 803	spin_lock_irqsave(&domain->lock, flags);
 804
 805	list_for_each_entry_safe(data, next, &domain->clients, domain_node) {
 806		spin_lock(&data->lock);
 807		__sysmmu_disable(data);
 808		data->pgtable = 0;
 809		data->domain = NULL;
 810		list_del_init(&data->domain_node);
 811		spin_unlock(&data->lock);
 812	}
 813
 814	spin_unlock_irqrestore(&domain->lock, flags);
 815
 816	if (iommu_domain->type == IOMMU_DOMAIN_DMA)
 817		iommu_put_dma_cookie(iommu_domain);
 818
 819	dma_unmap_single(dma_dev, virt_to_phys(domain->pgtable), LV1TABLE_SIZE,
 820			 DMA_TO_DEVICE);
 821
 822	for (i = 0; i < NUM_LV1ENTRIES; i++)
 823		if (lv1ent_page(domain->pgtable + i)) {
 824			phys_addr_t base = lv2table_base(domain->pgtable + i);
 825
 826			dma_unmap_single(dma_dev, base, LV2TABLE_SIZE,
 827					 DMA_TO_DEVICE);
 828			kmem_cache_free(lv2table_kmem_cache,
 829					phys_to_virt(base));
 830		}
 831
 832	free_pages((unsigned long)domain->pgtable, 2);
 833	free_pages((unsigned long)domain->lv2entcnt, 1);
 834	kfree(domain);
 835}
 836
 837static void exynos_iommu_detach_device(struct iommu_domain *iommu_domain,
 838				    struct device *dev)
 839{
 840	struct exynos_iommu_owner *owner = dev->archdata.iommu;
 841	struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
 842	phys_addr_t pagetable = virt_to_phys(domain->pgtable);
 843	struct sysmmu_drvdata *data, *next;
 844	unsigned long flags;
 845
 846	if (!has_sysmmu(dev) || owner->domain != iommu_domain)
 847		return;
 
 
 
 848
 849	mutex_lock(&owner->rpm_lock);
 850
 851	list_for_each_entry(data, &owner->controllers, owner_node) {
 852		pm_runtime_get_noresume(data->sysmmu);
 853		if (pm_runtime_active(data->sysmmu))
 854			__sysmmu_disable(data);
 855		pm_runtime_put(data->sysmmu);
 856	}
 857
 858	spin_lock_irqsave(&domain->lock, flags);
 859	list_for_each_entry_safe(data, next, &domain->clients, domain_node) {
 860		spin_lock(&data->lock);
 861		data->pgtable = 0;
 862		data->domain = NULL;
 863		list_del_init(&data->domain_node);
 864		spin_unlock(&data->lock);
 865	}
 866	owner->domain = NULL;
 867	spin_unlock_irqrestore(&domain->lock, flags);
 868
 869	mutex_unlock(&owner->rpm_lock);
 870
 871	dev_dbg(dev, "%s: Detached IOMMU with pgtable %pa\n", __func__,
 872		&pagetable);
 
 873}
 874
 
 
 
 
 
 
 
 
 
 875static int exynos_iommu_attach_device(struct iommu_domain *iommu_domain,
 876				   struct device *dev)
 877{
 878	struct exynos_iommu_owner *owner = dev->archdata.iommu;
 879	struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
 
 880	struct sysmmu_drvdata *data;
 881	phys_addr_t pagetable = virt_to_phys(domain->pgtable);
 882	unsigned long flags;
 
 883
 884	if (!has_sysmmu(dev))
 885		return -ENODEV;
 886
 887	if (owner->domain)
 888		exynos_iommu_detach_device(owner->domain, dev);
 889
 890	mutex_lock(&owner->rpm_lock);
 891
 892	spin_lock_irqsave(&domain->lock, flags);
 893	list_for_each_entry(data, &owner->controllers, owner_node) {
 894		spin_lock(&data->lock);
 895		data->pgtable = pagetable;
 896		data->domain = domain;
 897		list_add_tail(&data->domain_node, &domain->clients);
 898		spin_unlock(&data->lock);
 899	}
 900	owner->domain = iommu_domain;
 901	spin_unlock_irqrestore(&domain->lock, flags);
 902
 903	list_for_each_entry(data, &owner->controllers, owner_node) {
 904		pm_runtime_get_noresume(data->sysmmu);
 905		if (pm_runtime_active(data->sysmmu))
 906			__sysmmu_enable(data);
 907		pm_runtime_put(data->sysmmu);
 908	}
 909
 910	mutex_unlock(&owner->rpm_lock);
 911
 912	dev_dbg(dev, "%s: Attached IOMMU with pgtable %pa\n", __func__,
 913		&pagetable);
 914
 915	return 0;
 916}
 917
 918static sysmmu_pte_t *alloc_lv2entry(struct exynos_iommu_domain *domain,
 919		sysmmu_pte_t *sent, sysmmu_iova_t iova, short *pgcounter)
 920{
 921	if (lv1ent_section(sent)) {
 922		WARN(1, "Trying mapping on %#08x mapped with 1MiB page", iova);
 923		return ERR_PTR(-EADDRINUSE);
 924	}
 925
 926	if (lv1ent_fault(sent)) {
 927		dma_addr_t handle;
 928		sysmmu_pte_t *pent;
 929		bool need_flush_flpd_cache = lv1ent_zero(sent);
 930
 931		pent = kmem_cache_zalloc(lv2table_kmem_cache, GFP_ATOMIC);
 932		BUG_ON((uintptr_t)pent & (LV2TABLE_SIZE - 1));
 933		if (!pent)
 934			return ERR_PTR(-ENOMEM);
 935
 936		update_pte(sent, mk_lv1ent_page(virt_to_phys(pent)));
 937		kmemleak_ignore(pent);
 938		*pgcounter = NUM_LV2ENTRIES;
 939		handle = dma_map_single(dma_dev, pent, LV2TABLE_SIZE,
 940					DMA_TO_DEVICE);
 941		if (dma_mapping_error(dma_dev, handle)) {
 942			kmem_cache_free(lv2table_kmem_cache, pent);
 943			return ERR_PTR(-EADDRINUSE);
 944		}
 945
 946		/*
 947		 * If pre-fetched SLPD is a faulty SLPD in zero_l2_table,
 948		 * FLPD cache may cache the address of zero_l2_table. This
 949		 * function replaces the zero_l2_table with new L2 page table
 950		 * to write valid mappings.
 951		 * Accessing the valid area may cause page fault since FLPD
 952		 * cache may still cache zero_l2_table for the valid area
 953		 * instead of new L2 page table that has the mapping
 954		 * information of the valid area.
 955		 * Thus any replacement of zero_l2_table with other valid L2
 956		 * page table must involve FLPD cache invalidation for System
 957		 * MMU v3.3.
 958		 * FLPD cache invalidation is performed with TLB invalidation
 959		 * by VPN without blocking. It is safe to invalidate TLB without
 960		 * blocking because the target address of TLB invalidation is
 961		 * not currently mapped.
 962		 */
 963		if (need_flush_flpd_cache) {
 964			struct sysmmu_drvdata *data;
 965
 966			spin_lock(&domain->lock);
 967			list_for_each_entry(data, &domain->clients, domain_node)
 968				sysmmu_tlb_invalidate_flpdcache(data, iova);
 969			spin_unlock(&domain->lock);
 970		}
 971	}
 972
 973	return page_entry(sent, iova);
 974}
 975
 976static int lv1set_section(struct exynos_iommu_domain *domain,
 977			  sysmmu_pte_t *sent, sysmmu_iova_t iova,
 978			  phys_addr_t paddr, int prot, short *pgcnt)
 979{
 980	if (lv1ent_section(sent)) {
 981		WARN(1, "Trying mapping on 1MiB@%#08x that is mapped",
 982			iova);
 983		return -EADDRINUSE;
 984	}
 985
 986	if (lv1ent_page(sent)) {
 987		if (*pgcnt != NUM_LV2ENTRIES) {
 988			WARN(1, "Trying mapping on 1MiB@%#08x that is mapped",
 989				iova);
 990			return -EADDRINUSE;
 991		}
 992
 993		kmem_cache_free(lv2table_kmem_cache, page_entry(sent, 0));
 994		*pgcnt = 0;
 995	}
 996
 997	update_pte(sent, mk_lv1ent_sect(paddr, prot));
 998
 999	spin_lock(&domain->lock);
1000	if (lv1ent_page_zero(sent)) {
1001		struct sysmmu_drvdata *data;
1002		/*
1003		 * Flushing FLPD cache in System MMU v3.3 that may cache a FLPD
1004		 * entry by speculative prefetch of SLPD which has no mapping.
1005		 */
1006		list_for_each_entry(data, &domain->clients, domain_node)
1007			sysmmu_tlb_invalidate_flpdcache(data, iova);
1008	}
1009	spin_unlock(&domain->lock);
1010
1011	return 0;
1012}
1013
1014static int lv2set_page(sysmmu_pte_t *pent, phys_addr_t paddr, size_t size,
1015		       int prot, short *pgcnt)
1016{
1017	if (size == SPAGE_SIZE) {
1018		if (WARN_ON(!lv2ent_fault(pent)))
1019			return -EADDRINUSE;
1020
1021		update_pte(pent, mk_lv2ent_spage(paddr, prot));
1022		*pgcnt -= 1;
1023	} else { /* size == LPAGE_SIZE */
1024		int i;
1025		dma_addr_t pent_base = virt_to_phys(pent);
1026
1027		dma_sync_single_for_cpu(dma_dev, pent_base,
1028					sizeof(*pent) * SPAGES_PER_LPAGE,
1029					DMA_TO_DEVICE);
1030		for (i = 0; i < SPAGES_PER_LPAGE; i++, pent++) {
1031			if (WARN_ON(!lv2ent_fault(pent))) {
1032				if (i > 0)
1033					memset(pent - i, 0, sizeof(*pent) * i);
1034				return -EADDRINUSE;
1035			}
1036
1037			*pent = mk_lv2ent_lpage(paddr, prot);
1038		}
1039		dma_sync_single_for_device(dma_dev, pent_base,
1040					   sizeof(*pent) * SPAGES_PER_LPAGE,
1041					   DMA_TO_DEVICE);
1042		*pgcnt -= SPAGES_PER_LPAGE;
1043	}
1044
1045	return 0;
1046}
1047
1048/*
1049 * *CAUTION* to the I/O virtual memory managers that support exynos-iommu:
1050 *
1051 * System MMU v3.x has advanced logic to improve address translation
1052 * performance with caching more page table entries by a page table walk.
1053 * However, the logic has a bug that while caching faulty page table entries,
1054 * System MMU reports page fault if the cached fault entry is hit even though
1055 * the fault entry is updated to a valid entry after the entry is cached.
1056 * To prevent caching faulty page table entries which may be updated to valid
1057 * entries later, the virtual memory manager should care about the workaround
1058 * for the problem. The following describes the workaround.
1059 *
1060 * Any two consecutive I/O virtual address regions must have a hole of 128KiB
1061 * at maximum to prevent misbehavior of System MMU 3.x (workaround for h/w bug).
1062 *
1063 * Precisely, any start address of I/O virtual region must be aligned with
1064 * the following sizes for System MMU v3.1 and v3.2.
1065 * System MMU v3.1: 128KiB
1066 * System MMU v3.2: 256KiB
1067 *
1068 * Because System MMU v3.3 caches page table entries more aggressively, it needs
1069 * more workarounds.
1070 * - Any two consecutive I/O virtual regions must have a hole of size larger
1071 *   than or equal to 128KiB.
1072 * - Start address of an I/O virtual region must be aligned by 128KiB.
1073 */
1074static int exynos_iommu_map(struct iommu_domain *iommu_domain,
1075			    unsigned long l_iova, phys_addr_t paddr, size_t size,
1076			    int prot)
1077{
1078	struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
1079	sysmmu_pte_t *entry;
1080	sysmmu_iova_t iova = (sysmmu_iova_t)l_iova;
1081	unsigned long flags;
1082	int ret = -ENOMEM;
1083
1084	BUG_ON(domain->pgtable == NULL);
1085	prot &= SYSMMU_SUPPORTED_PROT_BITS;
1086
1087	spin_lock_irqsave(&domain->pgtablelock, flags);
1088
1089	entry = section_entry(domain->pgtable, iova);
1090
1091	if (size == SECT_SIZE) {
1092		ret = lv1set_section(domain, entry, iova, paddr, prot,
1093				     &domain->lv2entcnt[lv1ent_offset(iova)]);
1094	} else {
1095		sysmmu_pte_t *pent;
1096
1097		pent = alloc_lv2entry(domain, entry, iova,
1098				      &domain->lv2entcnt[lv1ent_offset(iova)]);
1099
1100		if (IS_ERR(pent))
1101			ret = PTR_ERR(pent);
1102		else
1103			ret = lv2set_page(pent, paddr, size, prot,
1104				       &domain->lv2entcnt[lv1ent_offset(iova)]);
1105	}
1106
1107	if (ret)
1108		pr_err("%s: Failed(%d) to map %#zx bytes @ %#x\n",
1109			__func__, ret, size, iova);
 
 
1110
1111	spin_unlock_irqrestore(&domain->pgtablelock, flags);
1112
1113	return ret;
1114}
1115
1116static void exynos_iommu_tlb_invalidate_entry(struct exynos_iommu_domain *domain,
1117					      sysmmu_iova_t iova, size_t size)
1118{
1119	struct sysmmu_drvdata *data;
1120	unsigned long flags;
1121
1122	spin_lock_irqsave(&domain->lock, flags);
1123
1124	list_for_each_entry(data, &domain->clients, domain_node)
1125		sysmmu_tlb_invalidate_entry(data, iova, size);
1126
1127	spin_unlock_irqrestore(&domain->lock, flags);
1128}
1129
1130static size_t exynos_iommu_unmap(struct iommu_domain *iommu_domain,
1131				 unsigned long l_iova, size_t size,
1132				 struct iommu_iotlb_gather *gather)
1133{
1134	struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
1135	sysmmu_iova_t iova = (sysmmu_iova_t)l_iova;
1136	sysmmu_pte_t *ent;
1137	size_t err_pgsize;
1138	unsigned long flags;
1139
1140	BUG_ON(domain->pgtable == NULL);
1141
1142	spin_lock_irqsave(&domain->pgtablelock, flags);
1143
1144	ent = section_entry(domain->pgtable, iova);
1145
1146	if (lv1ent_section(ent)) {
1147		if (WARN_ON(size < SECT_SIZE)) {
1148			err_pgsize = SECT_SIZE;
1149			goto err;
1150		}
1151
1152		/* workaround for h/w bug in System MMU v3.3 */
1153		update_pte(ent, ZERO_LV2LINK);
1154		size = SECT_SIZE;
1155		goto done;
1156	}
1157
1158	if (unlikely(lv1ent_fault(ent))) {
1159		if (size > SECT_SIZE)
1160			size = SECT_SIZE;
1161		goto done;
1162	}
1163
1164	/* lv1ent_page(sent) == true here */
1165
1166	ent = page_entry(ent, iova);
1167
1168	if (unlikely(lv2ent_fault(ent))) {
1169		size = SPAGE_SIZE;
1170		goto done;
1171	}
1172
1173	if (lv2ent_small(ent)) {
1174		update_pte(ent, 0);
1175		size = SPAGE_SIZE;
1176		domain->lv2entcnt[lv1ent_offset(iova)] += 1;
1177		goto done;
1178	}
1179
1180	/* lv1ent_large(ent) == true here */
1181	if (WARN_ON(size < LPAGE_SIZE)) {
1182		err_pgsize = LPAGE_SIZE;
1183		goto err;
1184	}
1185
1186	dma_sync_single_for_cpu(dma_dev, virt_to_phys(ent),
1187				sizeof(*ent) * SPAGES_PER_LPAGE,
1188				DMA_TO_DEVICE);
1189	memset(ent, 0, sizeof(*ent) * SPAGES_PER_LPAGE);
1190	dma_sync_single_for_device(dma_dev, virt_to_phys(ent),
1191				   sizeof(*ent) * SPAGES_PER_LPAGE,
1192				   DMA_TO_DEVICE);
1193	size = LPAGE_SIZE;
1194	domain->lv2entcnt[lv1ent_offset(iova)] += SPAGES_PER_LPAGE;
1195done:
1196	spin_unlock_irqrestore(&domain->pgtablelock, flags);
1197
1198	exynos_iommu_tlb_invalidate_entry(domain, iova, size);
1199
1200	return size;
1201err:
1202	spin_unlock_irqrestore(&domain->pgtablelock, flags);
1203
1204	pr_err("%s: Failed: size(%#zx) @ %#x is smaller than page size %#zx\n",
1205		__func__, size, iova, err_pgsize);
1206
1207	return 0;
1208}
1209
1210static phys_addr_t exynos_iommu_iova_to_phys(struct iommu_domain *iommu_domain,
1211					  dma_addr_t iova)
1212{
1213	struct exynos_iommu_domain *domain = to_exynos_domain(iommu_domain);
1214	sysmmu_pte_t *entry;
1215	unsigned long flags;
1216	phys_addr_t phys = 0;
1217
1218	spin_lock_irqsave(&domain->pgtablelock, flags);
1219
1220	entry = section_entry(domain->pgtable, iova);
1221
1222	if (lv1ent_section(entry)) {
1223		phys = section_phys(entry) + section_offs(iova);
1224	} else if (lv1ent_page(entry)) {
1225		entry = page_entry(entry, iova);
1226
1227		if (lv2ent_large(entry))
1228			phys = lpage_phys(entry) + lpage_offs(iova);
1229		else if (lv2ent_small(entry))
1230			phys = spage_phys(entry) + spage_offs(iova);
1231	}
1232
1233	spin_unlock_irqrestore(&domain->pgtablelock, flags);
1234
1235	return phys;
1236}
1237
1238static int exynos_iommu_add_device(struct device *dev)
1239{
1240	struct exynos_iommu_owner *owner = dev->archdata.iommu;
1241	struct sysmmu_drvdata *data;
1242	struct iommu_group *group;
1243
1244	if (!has_sysmmu(dev))
1245		return -ENODEV;
1246
1247	group = iommu_group_get_for_dev(dev);
1248
1249	if (IS_ERR(group))
1250		return PTR_ERR(group);
1251
1252	list_for_each_entry(data, &owner->controllers, owner_node) {
1253		/*
1254		 * SYSMMU will be runtime activated via device link
1255		 * (dependency) to its master device, so there are no
1256		 * direct calls to pm_runtime_get/put in this driver.
1257		 */
1258		data->link = device_link_add(dev, data->sysmmu,
1259					     DL_FLAG_STATELESS |
1260					     DL_FLAG_PM_RUNTIME);
1261	}
1262	iommu_group_put(group);
1263
1264	return 0;
 
 
 
 
1265}
1266
1267static void exynos_iommu_remove_device(struct device *dev)
1268{
1269	struct exynos_iommu_owner *owner = dev->archdata.iommu;
1270	struct sysmmu_drvdata *data;
1271
1272	if (!has_sysmmu(dev))
1273		return;
1274
1275	if (owner->domain) {
1276		struct iommu_group *group = iommu_group_get(dev);
1277
1278		if (group) {
1279			WARN_ON(owner->domain !=
1280				iommu_group_default_domain(group));
1281			exynos_iommu_detach_device(owner->domain, dev);
1282			iommu_group_put(group);
1283		}
1284	}
1285	iommu_group_remove_device(dev);
1286
1287	list_for_each_entry(data, &owner->controllers, owner_node)
1288		device_link_del(data->link);
1289}
1290
1291static int exynos_iommu_of_xlate(struct device *dev,
1292				 struct of_phandle_args *spec)
1293{
1294	struct exynos_iommu_owner *owner = dev->archdata.iommu;
1295	struct platform_device *sysmmu = of_find_device_by_node(spec->np);
 
1296	struct sysmmu_drvdata *data, *entry;
1297
1298	if (!sysmmu)
1299		return -ENODEV;
1300
1301	data = platform_get_drvdata(sysmmu);
1302	if (!data)
 
1303		return -ENODEV;
 
1304
1305	if (!owner) {
1306		owner = kzalloc(sizeof(*owner), GFP_KERNEL);
1307		if (!owner)
 
1308			return -ENOMEM;
 
1309
1310		INIT_LIST_HEAD(&owner->controllers);
1311		mutex_init(&owner->rpm_lock);
1312		dev->archdata.iommu = owner;
 
1313	}
1314
1315	list_for_each_entry(entry, &owner->controllers, owner_node)
1316		if (entry == data)
1317			return 0;
1318
1319	list_add_tail(&data->owner_node, &owner->controllers);
1320	data->master = dev;
1321
1322	return 0;
1323}
1324
1325static const struct iommu_ops exynos_iommu_ops = {
1326	.domain_alloc = exynos_iommu_domain_alloc,
1327	.domain_free = exynos_iommu_domain_free,
1328	.attach_dev = exynos_iommu_attach_device,
1329	.detach_dev = exynos_iommu_detach_device,
1330	.map = exynos_iommu_map,
1331	.unmap = exynos_iommu_unmap,
1332	.iova_to_phys = exynos_iommu_iova_to_phys,
1333	.device_group = generic_device_group,
1334	.add_device = exynos_iommu_add_device,
1335	.remove_device = exynos_iommu_remove_device,
1336	.pgsize_bitmap = SECT_SIZE | LPAGE_SIZE | SPAGE_SIZE,
1337	.of_xlate = exynos_iommu_of_xlate,
 
 
 
 
 
 
 
1338};
1339
1340static int __init exynos_iommu_init(void)
1341{
1342	struct device_node *np;
1343	int ret;
1344
1345	np = of_find_matching_node(NULL, sysmmu_of_match);
1346	if (!np)
1347		return 0;
1348
1349	of_node_put(np);
1350
1351	lv2table_kmem_cache = kmem_cache_create("exynos-iommu-lv2table",
1352				LV2TABLE_SIZE, LV2TABLE_SIZE, 0, NULL);
1353	if (!lv2table_kmem_cache) {
1354		pr_err("%s: Failed to create kmem cache\n", __func__);
1355		return -ENOMEM;
1356	}
1357
1358	ret = platform_driver_register(&exynos_sysmmu_driver);
1359	if (ret) {
1360		pr_err("%s: Failed to register driver\n", __func__);
1361		goto err_reg_driver;
1362	}
1363
1364	zero_lv2_table = kmem_cache_zalloc(lv2table_kmem_cache, GFP_KERNEL);
1365	if (zero_lv2_table == NULL) {
1366		pr_err("%s: Failed to allocate zero level2 page table\n",
1367			__func__);
1368		ret = -ENOMEM;
1369		goto err_zero_lv2;
1370	}
1371
1372	ret = bus_set_iommu(&platform_bus_type, &exynos_iommu_ops);
1373	if (ret) {
1374		pr_err("%s: Failed to register exynos-iommu driver.\n",
1375								__func__);
1376		goto err_set_iommu;
1377	}
1378
1379	return 0;
1380err_set_iommu:
1381	kmem_cache_free(lv2table_kmem_cache, zero_lv2_table);
1382err_zero_lv2:
1383	platform_driver_unregister(&exynos_sysmmu_driver);
1384err_reg_driver:
1385	kmem_cache_destroy(lv2table_kmem_cache);
1386	return ret;
1387}
1388core_initcall(exynos_iommu_init);