Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * The input core
4 *
5 * Copyright (c) 1999-2002 Vojtech Pavlik
6 */
7
8
9#define pr_fmt(fmt) KBUILD_BASENAME ": " fmt
10
11#include <linux/init.h>
12#include <linux/types.h>
13#include <linux/idr.h>
14#include <linux/input/mt.h>
15#include <linux/module.h>
16#include <linux/slab.h>
17#include <linux/random.h>
18#include <linux/major.h>
19#include <linux/proc_fs.h>
20#include <linux/sched.h>
21#include <linux/seq_file.h>
22#include <linux/pm.h>
23#include <linux/poll.h>
24#include <linux/device.h>
25#include <linux/kstrtox.h>
26#include <linux/mutex.h>
27#include <linux/rcupdate.h>
28#include "input-compat.h"
29#include "input-core-private.h"
30#include "input-poller.h"
31
32MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
33MODULE_DESCRIPTION("Input core");
34MODULE_LICENSE("GPL");
35
36#define INPUT_MAX_CHAR_DEVICES 1024
37#define INPUT_FIRST_DYNAMIC_DEV 256
38static DEFINE_IDA(input_ida);
39
40static LIST_HEAD(input_dev_list);
41static LIST_HEAD(input_handler_list);
42
43/*
44 * input_mutex protects access to both input_dev_list and input_handler_list.
45 * This also causes input_[un]register_device and input_[un]register_handler
46 * be mutually exclusive which simplifies locking in drivers implementing
47 * input handlers.
48 */
49static DEFINE_MUTEX(input_mutex);
50
51static const struct input_value input_value_sync = { EV_SYN, SYN_REPORT, 1 };
52
53static const unsigned int input_max_code[EV_CNT] = {
54 [EV_KEY] = KEY_MAX,
55 [EV_REL] = REL_MAX,
56 [EV_ABS] = ABS_MAX,
57 [EV_MSC] = MSC_MAX,
58 [EV_SW] = SW_MAX,
59 [EV_LED] = LED_MAX,
60 [EV_SND] = SND_MAX,
61 [EV_FF] = FF_MAX,
62};
63
64static inline int is_event_supported(unsigned int code,
65 unsigned long *bm, unsigned int max)
66{
67 return code <= max && test_bit(code, bm);
68}
69
70static int input_defuzz_abs_event(int value, int old_val, int fuzz)
71{
72 if (fuzz) {
73 if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
74 return old_val;
75
76 if (value > old_val - fuzz && value < old_val + fuzz)
77 return (old_val * 3 + value) / 4;
78
79 if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
80 return (old_val + value) / 2;
81 }
82
83 return value;
84}
85
86static void input_start_autorepeat(struct input_dev *dev, int code)
87{
88 if (test_bit(EV_REP, dev->evbit) &&
89 dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
90 dev->timer.function) {
91 dev->repeat_key = code;
92 mod_timer(&dev->timer,
93 jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
94 }
95}
96
97static void input_stop_autorepeat(struct input_dev *dev)
98{
99 del_timer(&dev->timer);
100}
101
102/*
103 * Pass values first through all filters and then, if event has not been
104 * filtered out, through all open handles. This order is achieved by placing
105 * filters at the head of the list of handles attached to the device, and
106 * placing regular handles at the tail of the list.
107 *
108 * This function is called with dev->event_lock held and interrupts disabled.
109 */
110static void input_pass_values(struct input_dev *dev,
111 struct input_value *vals, unsigned int count)
112{
113 struct input_handle *handle;
114 struct input_value *v;
115
116 lockdep_assert_held(&dev->event_lock);
117
118 rcu_read_lock();
119
120 handle = rcu_dereference(dev->grab);
121 if (handle) {
122 count = handle->handle_events(handle, vals, count);
123 } else {
124 list_for_each_entry_rcu(handle, &dev->h_list, d_node)
125 if (handle->open) {
126 count = handle->handle_events(handle, vals,
127 count);
128 if (!count)
129 break;
130 }
131 }
132
133 rcu_read_unlock();
134
135 /* trigger auto repeat for key events */
136 if (test_bit(EV_REP, dev->evbit) && test_bit(EV_KEY, dev->evbit)) {
137 for (v = vals; v != vals + count; v++) {
138 if (v->type == EV_KEY && v->value != 2) {
139 if (v->value)
140 input_start_autorepeat(dev, v->code);
141 else
142 input_stop_autorepeat(dev);
143 }
144 }
145 }
146}
147
148#define INPUT_IGNORE_EVENT 0
149#define INPUT_PASS_TO_HANDLERS 1
150#define INPUT_PASS_TO_DEVICE 2
151#define INPUT_SLOT 4
152#define INPUT_FLUSH 8
153#define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
154
155static int input_handle_abs_event(struct input_dev *dev,
156 unsigned int code, int *pval)
157{
158 struct input_mt *mt = dev->mt;
159 bool is_new_slot = false;
160 bool is_mt_event;
161 int *pold;
162
163 if (code == ABS_MT_SLOT) {
164 /*
165 * "Stage" the event; we'll flush it later, when we
166 * get actual touch data.
167 */
168 if (mt && *pval >= 0 && *pval < mt->num_slots)
169 mt->slot = *pval;
170
171 return INPUT_IGNORE_EVENT;
172 }
173
174 is_mt_event = input_is_mt_value(code);
175
176 if (!is_mt_event) {
177 pold = &dev->absinfo[code].value;
178 } else if (mt) {
179 pold = &mt->slots[mt->slot].abs[code - ABS_MT_FIRST];
180 is_new_slot = mt->slot != dev->absinfo[ABS_MT_SLOT].value;
181 } else {
182 /*
183 * Bypass filtering for multi-touch events when
184 * not employing slots.
185 */
186 pold = NULL;
187 }
188
189 if (pold) {
190 *pval = input_defuzz_abs_event(*pval, *pold,
191 dev->absinfo[code].fuzz);
192 if (*pold == *pval)
193 return INPUT_IGNORE_EVENT;
194
195 *pold = *pval;
196 }
197
198 /* Flush pending "slot" event */
199 if (is_new_slot) {
200 dev->absinfo[ABS_MT_SLOT].value = mt->slot;
201 return INPUT_PASS_TO_HANDLERS | INPUT_SLOT;
202 }
203
204 return INPUT_PASS_TO_HANDLERS;
205}
206
207static int input_get_disposition(struct input_dev *dev,
208 unsigned int type, unsigned int code, int *pval)
209{
210 int disposition = INPUT_IGNORE_EVENT;
211 int value = *pval;
212
213 /* filter-out events from inhibited devices */
214 if (dev->inhibited)
215 return INPUT_IGNORE_EVENT;
216
217 switch (type) {
218
219 case EV_SYN:
220 switch (code) {
221 case SYN_CONFIG:
222 disposition = INPUT_PASS_TO_ALL;
223 break;
224
225 case SYN_REPORT:
226 disposition = INPUT_PASS_TO_HANDLERS | INPUT_FLUSH;
227 break;
228 case SYN_MT_REPORT:
229 disposition = INPUT_PASS_TO_HANDLERS;
230 break;
231 }
232 break;
233
234 case EV_KEY:
235 if (is_event_supported(code, dev->keybit, KEY_MAX)) {
236
237 /* auto-repeat bypasses state updates */
238 if (value == 2) {
239 disposition = INPUT_PASS_TO_HANDLERS;
240 break;
241 }
242
243 if (!!test_bit(code, dev->key) != !!value) {
244
245 __change_bit(code, dev->key);
246 disposition = INPUT_PASS_TO_HANDLERS;
247 }
248 }
249 break;
250
251 case EV_SW:
252 if (is_event_supported(code, dev->swbit, SW_MAX) &&
253 !!test_bit(code, dev->sw) != !!value) {
254
255 __change_bit(code, dev->sw);
256 disposition = INPUT_PASS_TO_HANDLERS;
257 }
258 break;
259
260 case EV_ABS:
261 if (is_event_supported(code, dev->absbit, ABS_MAX))
262 disposition = input_handle_abs_event(dev, code, &value);
263
264 break;
265
266 case EV_REL:
267 if (is_event_supported(code, dev->relbit, REL_MAX) && value)
268 disposition = INPUT_PASS_TO_HANDLERS;
269
270 break;
271
272 case EV_MSC:
273 if (is_event_supported(code, dev->mscbit, MSC_MAX))
274 disposition = INPUT_PASS_TO_ALL;
275
276 break;
277
278 case EV_LED:
279 if (is_event_supported(code, dev->ledbit, LED_MAX) &&
280 !!test_bit(code, dev->led) != !!value) {
281
282 __change_bit(code, dev->led);
283 disposition = INPUT_PASS_TO_ALL;
284 }
285 break;
286
287 case EV_SND:
288 if (is_event_supported(code, dev->sndbit, SND_MAX)) {
289
290 if (!!test_bit(code, dev->snd) != !!value)
291 __change_bit(code, dev->snd);
292 disposition = INPUT_PASS_TO_ALL;
293 }
294 break;
295
296 case EV_REP:
297 if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
298 dev->rep[code] = value;
299 disposition = INPUT_PASS_TO_ALL;
300 }
301 break;
302
303 case EV_FF:
304 if (value >= 0)
305 disposition = INPUT_PASS_TO_ALL;
306 break;
307
308 case EV_PWR:
309 disposition = INPUT_PASS_TO_ALL;
310 break;
311 }
312
313 *pval = value;
314 return disposition;
315}
316
317static void input_event_dispose(struct input_dev *dev, int disposition,
318 unsigned int type, unsigned int code, int value)
319{
320 if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
321 dev->event(dev, type, code, value);
322
323 if (disposition & INPUT_PASS_TO_HANDLERS) {
324 struct input_value *v;
325
326 if (disposition & INPUT_SLOT) {
327 v = &dev->vals[dev->num_vals++];
328 v->type = EV_ABS;
329 v->code = ABS_MT_SLOT;
330 v->value = dev->mt->slot;
331 }
332
333 v = &dev->vals[dev->num_vals++];
334 v->type = type;
335 v->code = code;
336 v->value = value;
337 }
338
339 if (disposition & INPUT_FLUSH) {
340 if (dev->num_vals >= 2)
341 input_pass_values(dev, dev->vals, dev->num_vals);
342 dev->num_vals = 0;
343 /*
344 * Reset the timestamp on flush so we won't end up
345 * with a stale one. Note we only need to reset the
346 * monolithic one as we use its presence when deciding
347 * whether to generate a synthetic timestamp.
348 */
349 dev->timestamp[INPUT_CLK_MONO] = ktime_set(0, 0);
350 } else if (dev->num_vals >= dev->max_vals - 2) {
351 dev->vals[dev->num_vals++] = input_value_sync;
352 input_pass_values(dev, dev->vals, dev->num_vals);
353 dev->num_vals = 0;
354 }
355}
356
357void input_handle_event(struct input_dev *dev,
358 unsigned int type, unsigned int code, int value)
359{
360 int disposition;
361
362 lockdep_assert_held(&dev->event_lock);
363
364 disposition = input_get_disposition(dev, type, code, &value);
365 if (disposition != INPUT_IGNORE_EVENT) {
366 if (type != EV_SYN)
367 add_input_randomness(type, code, value);
368
369 input_event_dispose(dev, disposition, type, code, value);
370 }
371}
372
373/**
374 * input_event() - report new input event
375 * @dev: device that generated the event
376 * @type: type of the event
377 * @code: event code
378 * @value: value of the event
379 *
380 * This function should be used by drivers implementing various input
381 * devices to report input events. See also input_inject_event().
382 *
383 * NOTE: input_event() may be safely used right after input device was
384 * allocated with input_allocate_device(), even before it is registered
385 * with input_register_device(), but the event will not reach any of the
386 * input handlers. Such early invocation of input_event() may be used
387 * to 'seed' initial state of a switch or initial position of absolute
388 * axis, etc.
389 */
390void input_event(struct input_dev *dev,
391 unsigned int type, unsigned int code, int value)
392{
393 unsigned long flags;
394
395 if (is_event_supported(type, dev->evbit, EV_MAX)) {
396
397 spin_lock_irqsave(&dev->event_lock, flags);
398 input_handle_event(dev, type, code, value);
399 spin_unlock_irqrestore(&dev->event_lock, flags);
400 }
401}
402EXPORT_SYMBOL(input_event);
403
404/**
405 * input_inject_event() - send input event from input handler
406 * @handle: input handle to send event through
407 * @type: type of the event
408 * @code: event code
409 * @value: value of the event
410 *
411 * Similar to input_event() but will ignore event if device is
412 * "grabbed" and handle injecting event is not the one that owns
413 * the device.
414 */
415void input_inject_event(struct input_handle *handle,
416 unsigned int type, unsigned int code, int value)
417{
418 struct input_dev *dev = handle->dev;
419 struct input_handle *grab;
420 unsigned long flags;
421
422 if (is_event_supported(type, dev->evbit, EV_MAX)) {
423 spin_lock_irqsave(&dev->event_lock, flags);
424
425 rcu_read_lock();
426 grab = rcu_dereference(dev->grab);
427 if (!grab || grab == handle)
428 input_handle_event(dev, type, code, value);
429 rcu_read_unlock();
430
431 spin_unlock_irqrestore(&dev->event_lock, flags);
432 }
433}
434EXPORT_SYMBOL(input_inject_event);
435
436/**
437 * input_alloc_absinfo - allocates array of input_absinfo structs
438 * @dev: the input device emitting absolute events
439 *
440 * If the absinfo struct the caller asked for is already allocated, this
441 * functions will not do anything.
442 */
443void input_alloc_absinfo(struct input_dev *dev)
444{
445 if (dev->absinfo)
446 return;
447
448 dev->absinfo = kcalloc(ABS_CNT, sizeof(*dev->absinfo), GFP_KERNEL);
449 if (!dev->absinfo) {
450 dev_err(dev->dev.parent ?: &dev->dev,
451 "%s: unable to allocate memory\n", __func__);
452 /*
453 * We will handle this allocation failure in
454 * input_register_device() when we refuse to register input
455 * device with ABS bits but without absinfo.
456 */
457 }
458}
459EXPORT_SYMBOL(input_alloc_absinfo);
460
461void input_set_abs_params(struct input_dev *dev, unsigned int axis,
462 int min, int max, int fuzz, int flat)
463{
464 struct input_absinfo *absinfo;
465
466 __set_bit(EV_ABS, dev->evbit);
467 __set_bit(axis, dev->absbit);
468
469 input_alloc_absinfo(dev);
470 if (!dev->absinfo)
471 return;
472
473 absinfo = &dev->absinfo[axis];
474 absinfo->minimum = min;
475 absinfo->maximum = max;
476 absinfo->fuzz = fuzz;
477 absinfo->flat = flat;
478}
479EXPORT_SYMBOL(input_set_abs_params);
480
481/**
482 * input_copy_abs - Copy absinfo from one input_dev to another
483 * @dst: Destination input device to copy the abs settings to
484 * @dst_axis: ABS_* value selecting the destination axis
485 * @src: Source input device to copy the abs settings from
486 * @src_axis: ABS_* value selecting the source axis
487 *
488 * Set absinfo for the selected destination axis by copying it from
489 * the specified source input device's source axis.
490 * This is useful to e.g. setup a pen/stylus input-device for combined
491 * touchscreen/pen hardware where the pen uses the same coordinates as
492 * the touchscreen.
493 */
494void input_copy_abs(struct input_dev *dst, unsigned int dst_axis,
495 const struct input_dev *src, unsigned int src_axis)
496{
497 /* src must have EV_ABS and src_axis set */
498 if (WARN_ON(!(test_bit(EV_ABS, src->evbit) &&
499 test_bit(src_axis, src->absbit))))
500 return;
501
502 /*
503 * input_alloc_absinfo() may have failed for the source. Our caller is
504 * expected to catch this when registering the input devices, which may
505 * happen after the input_copy_abs() call.
506 */
507 if (!src->absinfo)
508 return;
509
510 input_set_capability(dst, EV_ABS, dst_axis);
511 if (!dst->absinfo)
512 return;
513
514 dst->absinfo[dst_axis] = src->absinfo[src_axis];
515}
516EXPORT_SYMBOL(input_copy_abs);
517
518/**
519 * input_grab_device - grabs device for exclusive use
520 * @handle: input handle that wants to own the device
521 *
522 * When a device is grabbed by an input handle all events generated by
523 * the device are delivered only to this handle. Also events injected
524 * by other input handles are ignored while device is grabbed.
525 */
526int input_grab_device(struct input_handle *handle)
527{
528 struct input_dev *dev = handle->dev;
529 int retval;
530
531 retval = mutex_lock_interruptible(&dev->mutex);
532 if (retval)
533 return retval;
534
535 if (dev->grab) {
536 retval = -EBUSY;
537 goto out;
538 }
539
540 rcu_assign_pointer(dev->grab, handle);
541
542 out:
543 mutex_unlock(&dev->mutex);
544 return retval;
545}
546EXPORT_SYMBOL(input_grab_device);
547
548static void __input_release_device(struct input_handle *handle)
549{
550 struct input_dev *dev = handle->dev;
551 struct input_handle *grabber;
552
553 grabber = rcu_dereference_protected(dev->grab,
554 lockdep_is_held(&dev->mutex));
555 if (grabber == handle) {
556 rcu_assign_pointer(dev->grab, NULL);
557 /* Make sure input_pass_values() notices that grab is gone */
558 synchronize_rcu();
559
560 list_for_each_entry(handle, &dev->h_list, d_node)
561 if (handle->open && handle->handler->start)
562 handle->handler->start(handle);
563 }
564}
565
566/**
567 * input_release_device - release previously grabbed device
568 * @handle: input handle that owns the device
569 *
570 * Releases previously grabbed device so that other input handles can
571 * start receiving input events. Upon release all handlers attached
572 * to the device have their start() method called so they have a change
573 * to synchronize device state with the rest of the system.
574 */
575void input_release_device(struct input_handle *handle)
576{
577 struct input_dev *dev = handle->dev;
578
579 mutex_lock(&dev->mutex);
580 __input_release_device(handle);
581 mutex_unlock(&dev->mutex);
582}
583EXPORT_SYMBOL(input_release_device);
584
585/**
586 * input_open_device - open input device
587 * @handle: handle through which device is being accessed
588 *
589 * This function should be called by input handlers when they
590 * want to start receive events from given input device.
591 */
592int input_open_device(struct input_handle *handle)
593{
594 struct input_dev *dev = handle->dev;
595 int retval;
596
597 retval = mutex_lock_interruptible(&dev->mutex);
598 if (retval)
599 return retval;
600
601 if (dev->going_away) {
602 retval = -ENODEV;
603 goto out;
604 }
605
606 handle->open++;
607
608 if (handle->handler->passive_observer)
609 goto out;
610
611 if (dev->users++ || dev->inhibited) {
612 /*
613 * Device is already opened and/or inhibited,
614 * so we can exit immediately and report success.
615 */
616 goto out;
617 }
618
619 if (dev->open) {
620 retval = dev->open(dev);
621 if (retval) {
622 dev->users--;
623 handle->open--;
624 /*
625 * Make sure we are not delivering any more events
626 * through this handle
627 */
628 synchronize_rcu();
629 goto out;
630 }
631 }
632
633 if (dev->poller)
634 input_dev_poller_start(dev->poller);
635
636 out:
637 mutex_unlock(&dev->mutex);
638 return retval;
639}
640EXPORT_SYMBOL(input_open_device);
641
642int input_flush_device(struct input_handle *handle, struct file *file)
643{
644 struct input_dev *dev = handle->dev;
645 int retval;
646
647 retval = mutex_lock_interruptible(&dev->mutex);
648 if (retval)
649 return retval;
650
651 if (dev->flush)
652 retval = dev->flush(dev, file);
653
654 mutex_unlock(&dev->mutex);
655 return retval;
656}
657EXPORT_SYMBOL(input_flush_device);
658
659/**
660 * input_close_device - close input device
661 * @handle: handle through which device is being accessed
662 *
663 * This function should be called by input handlers when they
664 * want to stop receive events from given input device.
665 */
666void input_close_device(struct input_handle *handle)
667{
668 struct input_dev *dev = handle->dev;
669
670 mutex_lock(&dev->mutex);
671
672 __input_release_device(handle);
673
674 if (!handle->handler->passive_observer) {
675 if (!--dev->users && !dev->inhibited) {
676 if (dev->poller)
677 input_dev_poller_stop(dev->poller);
678 if (dev->close)
679 dev->close(dev);
680 }
681 }
682
683 if (!--handle->open) {
684 /*
685 * synchronize_rcu() makes sure that input_pass_values()
686 * completed and that no more input events are delivered
687 * through this handle
688 */
689 synchronize_rcu();
690 }
691
692 mutex_unlock(&dev->mutex);
693}
694EXPORT_SYMBOL(input_close_device);
695
696/*
697 * Simulate keyup events for all keys that are marked as pressed.
698 * The function must be called with dev->event_lock held.
699 */
700static bool input_dev_release_keys(struct input_dev *dev)
701{
702 bool need_sync = false;
703 int code;
704
705 lockdep_assert_held(&dev->event_lock);
706
707 if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
708 for_each_set_bit(code, dev->key, KEY_CNT) {
709 input_handle_event(dev, EV_KEY, code, 0);
710 need_sync = true;
711 }
712 }
713
714 return need_sync;
715}
716
717/*
718 * Prepare device for unregistering
719 */
720static void input_disconnect_device(struct input_dev *dev)
721{
722 struct input_handle *handle;
723
724 /*
725 * Mark device as going away. Note that we take dev->mutex here
726 * not to protect access to dev->going_away but rather to ensure
727 * that there are no threads in the middle of input_open_device()
728 */
729 mutex_lock(&dev->mutex);
730 dev->going_away = true;
731 mutex_unlock(&dev->mutex);
732
733 spin_lock_irq(&dev->event_lock);
734
735 /*
736 * Simulate keyup events for all pressed keys so that handlers
737 * are not left with "stuck" keys. The driver may continue
738 * generate events even after we done here but they will not
739 * reach any handlers.
740 */
741 if (input_dev_release_keys(dev))
742 input_handle_event(dev, EV_SYN, SYN_REPORT, 1);
743
744 list_for_each_entry(handle, &dev->h_list, d_node)
745 handle->open = 0;
746
747 spin_unlock_irq(&dev->event_lock);
748}
749
750/**
751 * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry
752 * @ke: keymap entry containing scancode to be converted.
753 * @scancode: pointer to the location where converted scancode should
754 * be stored.
755 *
756 * This function is used to convert scancode stored in &struct keymap_entry
757 * into scalar form understood by legacy keymap handling methods. These
758 * methods expect scancodes to be represented as 'unsigned int'.
759 */
760int input_scancode_to_scalar(const struct input_keymap_entry *ke,
761 unsigned int *scancode)
762{
763 switch (ke->len) {
764 case 1:
765 *scancode = *((u8 *)ke->scancode);
766 break;
767
768 case 2:
769 *scancode = *((u16 *)ke->scancode);
770 break;
771
772 case 4:
773 *scancode = *((u32 *)ke->scancode);
774 break;
775
776 default:
777 return -EINVAL;
778 }
779
780 return 0;
781}
782EXPORT_SYMBOL(input_scancode_to_scalar);
783
784/*
785 * Those routines handle the default case where no [gs]etkeycode() is
786 * defined. In this case, an array indexed by the scancode is used.
787 */
788
789static unsigned int input_fetch_keycode(struct input_dev *dev,
790 unsigned int index)
791{
792 switch (dev->keycodesize) {
793 case 1:
794 return ((u8 *)dev->keycode)[index];
795
796 case 2:
797 return ((u16 *)dev->keycode)[index];
798
799 default:
800 return ((u32 *)dev->keycode)[index];
801 }
802}
803
804static int input_default_getkeycode(struct input_dev *dev,
805 struct input_keymap_entry *ke)
806{
807 unsigned int index;
808 int error;
809
810 if (!dev->keycodesize)
811 return -EINVAL;
812
813 if (ke->flags & INPUT_KEYMAP_BY_INDEX)
814 index = ke->index;
815 else {
816 error = input_scancode_to_scalar(ke, &index);
817 if (error)
818 return error;
819 }
820
821 if (index >= dev->keycodemax)
822 return -EINVAL;
823
824 ke->keycode = input_fetch_keycode(dev, index);
825 ke->index = index;
826 ke->len = sizeof(index);
827 memcpy(ke->scancode, &index, sizeof(index));
828
829 return 0;
830}
831
832static int input_default_setkeycode(struct input_dev *dev,
833 const struct input_keymap_entry *ke,
834 unsigned int *old_keycode)
835{
836 unsigned int index;
837 int error;
838 int i;
839
840 if (!dev->keycodesize)
841 return -EINVAL;
842
843 if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
844 index = ke->index;
845 } else {
846 error = input_scancode_to_scalar(ke, &index);
847 if (error)
848 return error;
849 }
850
851 if (index >= dev->keycodemax)
852 return -EINVAL;
853
854 if (dev->keycodesize < sizeof(ke->keycode) &&
855 (ke->keycode >> (dev->keycodesize * 8)))
856 return -EINVAL;
857
858 switch (dev->keycodesize) {
859 case 1: {
860 u8 *k = (u8 *)dev->keycode;
861 *old_keycode = k[index];
862 k[index] = ke->keycode;
863 break;
864 }
865 case 2: {
866 u16 *k = (u16 *)dev->keycode;
867 *old_keycode = k[index];
868 k[index] = ke->keycode;
869 break;
870 }
871 default: {
872 u32 *k = (u32 *)dev->keycode;
873 *old_keycode = k[index];
874 k[index] = ke->keycode;
875 break;
876 }
877 }
878
879 if (*old_keycode <= KEY_MAX) {
880 __clear_bit(*old_keycode, dev->keybit);
881 for (i = 0; i < dev->keycodemax; i++) {
882 if (input_fetch_keycode(dev, i) == *old_keycode) {
883 __set_bit(*old_keycode, dev->keybit);
884 /* Setting the bit twice is useless, so break */
885 break;
886 }
887 }
888 }
889
890 __set_bit(ke->keycode, dev->keybit);
891 return 0;
892}
893
894/**
895 * input_get_keycode - retrieve keycode currently mapped to a given scancode
896 * @dev: input device which keymap is being queried
897 * @ke: keymap entry
898 *
899 * This function should be called by anyone interested in retrieving current
900 * keymap. Presently evdev handlers use it.
901 */
902int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke)
903{
904 unsigned long flags;
905 int retval;
906
907 spin_lock_irqsave(&dev->event_lock, flags);
908 retval = dev->getkeycode(dev, ke);
909 spin_unlock_irqrestore(&dev->event_lock, flags);
910
911 return retval;
912}
913EXPORT_SYMBOL(input_get_keycode);
914
915/**
916 * input_set_keycode - attribute a keycode to a given scancode
917 * @dev: input device which keymap is being updated
918 * @ke: new keymap entry
919 *
920 * This function should be called by anyone needing to update current
921 * keymap. Presently keyboard and evdev handlers use it.
922 */
923int input_set_keycode(struct input_dev *dev,
924 const struct input_keymap_entry *ke)
925{
926 unsigned long flags;
927 unsigned int old_keycode;
928 int retval;
929
930 if (ke->keycode > KEY_MAX)
931 return -EINVAL;
932
933 spin_lock_irqsave(&dev->event_lock, flags);
934
935 retval = dev->setkeycode(dev, ke, &old_keycode);
936 if (retval)
937 goto out;
938
939 /* Make sure KEY_RESERVED did not get enabled. */
940 __clear_bit(KEY_RESERVED, dev->keybit);
941
942 /*
943 * Simulate keyup event if keycode is not present
944 * in the keymap anymore
945 */
946 if (old_keycode > KEY_MAX) {
947 dev_warn(dev->dev.parent ?: &dev->dev,
948 "%s: got too big old keycode %#x\n",
949 __func__, old_keycode);
950 } else if (test_bit(EV_KEY, dev->evbit) &&
951 !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
952 __test_and_clear_bit(old_keycode, dev->key)) {
953 /*
954 * We have to use input_event_dispose() here directly instead
955 * of input_handle_event() because the key we want to release
956 * here is considered no longer supported by the device and
957 * input_handle_event() will ignore it.
958 */
959 input_event_dispose(dev, INPUT_PASS_TO_HANDLERS,
960 EV_KEY, old_keycode, 0);
961 input_event_dispose(dev, INPUT_PASS_TO_HANDLERS | INPUT_FLUSH,
962 EV_SYN, SYN_REPORT, 1);
963 }
964
965 out:
966 spin_unlock_irqrestore(&dev->event_lock, flags);
967
968 return retval;
969}
970EXPORT_SYMBOL(input_set_keycode);
971
972bool input_match_device_id(const struct input_dev *dev,
973 const struct input_device_id *id)
974{
975 if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
976 if (id->bustype != dev->id.bustype)
977 return false;
978
979 if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
980 if (id->vendor != dev->id.vendor)
981 return false;
982
983 if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
984 if (id->product != dev->id.product)
985 return false;
986
987 if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
988 if (id->version != dev->id.version)
989 return false;
990
991 if (!bitmap_subset(id->evbit, dev->evbit, EV_MAX) ||
992 !bitmap_subset(id->keybit, dev->keybit, KEY_MAX) ||
993 !bitmap_subset(id->relbit, dev->relbit, REL_MAX) ||
994 !bitmap_subset(id->absbit, dev->absbit, ABS_MAX) ||
995 !bitmap_subset(id->mscbit, dev->mscbit, MSC_MAX) ||
996 !bitmap_subset(id->ledbit, dev->ledbit, LED_MAX) ||
997 !bitmap_subset(id->sndbit, dev->sndbit, SND_MAX) ||
998 !bitmap_subset(id->ffbit, dev->ffbit, FF_MAX) ||
999 !bitmap_subset(id->swbit, dev->swbit, SW_MAX) ||
1000 !bitmap_subset(id->propbit, dev->propbit, INPUT_PROP_MAX)) {
1001 return false;
1002 }
1003
1004 return true;
1005}
1006EXPORT_SYMBOL(input_match_device_id);
1007
1008static const struct input_device_id *input_match_device(struct input_handler *handler,
1009 struct input_dev *dev)
1010{
1011 const struct input_device_id *id;
1012
1013 for (id = handler->id_table; id->flags || id->driver_info; id++) {
1014 if (input_match_device_id(dev, id) &&
1015 (!handler->match || handler->match(handler, dev))) {
1016 return id;
1017 }
1018 }
1019
1020 return NULL;
1021}
1022
1023static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
1024{
1025 const struct input_device_id *id;
1026 int error;
1027
1028 id = input_match_device(handler, dev);
1029 if (!id)
1030 return -ENODEV;
1031
1032 error = handler->connect(handler, dev, id);
1033 if (error && error != -ENODEV)
1034 pr_err("failed to attach handler %s to device %s, error: %d\n",
1035 handler->name, kobject_name(&dev->dev.kobj), error);
1036
1037 return error;
1038}
1039
1040#ifdef CONFIG_COMPAT
1041
1042static int input_bits_to_string(char *buf, int buf_size,
1043 unsigned long bits, bool skip_empty)
1044{
1045 int len = 0;
1046
1047 if (in_compat_syscall()) {
1048 u32 dword = bits >> 32;
1049 if (dword || !skip_empty)
1050 len += snprintf(buf, buf_size, "%x ", dword);
1051
1052 dword = bits & 0xffffffffUL;
1053 if (dword || !skip_empty || len)
1054 len += snprintf(buf + len, max(buf_size - len, 0),
1055 "%x", dword);
1056 } else {
1057 if (bits || !skip_empty)
1058 len += snprintf(buf, buf_size, "%lx", bits);
1059 }
1060
1061 return len;
1062}
1063
1064#else /* !CONFIG_COMPAT */
1065
1066static int input_bits_to_string(char *buf, int buf_size,
1067 unsigned long bits, bool skip_empty)
1068{
1069 return bits || !skip_empty ?
1070 snprintf(buf, buf_size, "%lx", bits) : 0;
1071}
1072
1073#endif
1074
1075#ifdef CONFIG_PROC_FS
1076
1077static struct proc_dir_entry *proc_bus_input_dir;
1078static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
1079static int input_devices_state;
1080
1081static inline void input_wakeup_procfs_readers(void)
1082{
1083 input_devices_state++;
1084 wake_up(&input_devices_poll_wait);
1085}
1086
1087struct input_seq_state {
1088 unsigned short pos;
1089 bool mutex_acquired;
1090 int input_devices_state;
1091};
1092
1093static __poll_t input_proc_devices_poll(struct file *file, poll_table *wait)
1094{
1095 struct seq_file *seq = file->private_data;
1096 struct input_seq_state *state = seq->private;
1097
1098 poll_wait(file, &input_devices_poll_wait, wait);
1099 if (state->input_devices_state != input_devices_state) {
1100 state->input_devices_state = input_devices_state;
1101 return EPOLLIN | EPOLLRDNORM;
1102 }
1103
1104 return 0;
1105}
1106
1107static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
1108{
1109 struct input_seq_state *state = seq->private;
1110 int error;
1111
1112 error = mutex_lock_interruptible(&input_mutex);
1113 if (error) {
1114 state->mutex_acquired = false;
1115 return ERR_PTR(error);
1116 }
1117
1118 state->mutex_acquired = true;
1119
1120 return seq_list_start(&input_dev_list, *pos);
1121}
1122
1123static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1124{
1125 return seq_list_next(v, &input_dev_list, pos);
1126}
1127
1128static void input_seq_stop(struct seq_file *seq, void *v)
1129{
1130 struct input_seq_state *state = seq->private;
1131
1132 if (state->mutex_acquired)
1133 mutex_unlock(&input_mutex);
1134}
1135
1136static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
1137 unsigned long *bitmap, int max)
1138{
1139 int i;
1140 bool skip_empty = true;
1141 char buf[18];
1142
1143 seq_printf(seq, "B: %s=", name);
1144
1145 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1146 if (input_bits_to_string(buf, sizeof(buf),
1147 bitmap[i], skip_empty)) {
1148 skip_empty = false;
1149 seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
1150 }
1151 }
1152
1153 /*
1154 * If no output was produced print a single 0.
1155 */
1156 if (skip_empty)
1157 seq_putc(seq, '0');
1158
1159 seq_putc(seq, '\n');
1160}
1161
1162static int input_devices_seq_show(struct seq_file *seq, void *v)
1163{
1164 struct input_dev *dev = container_of(v, struct input_dev, node);
1165 const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1166 struct input_handle *handle;
1167
1168 seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
1169 dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
1170
1171 seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
1172 seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
1173 seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
1174 seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
1175 seq_puts(seq, "H: Handlers=");
1176
1177 list_for_each_entry(handle, &dev->h_list, d_node)
1178 seq_printf(seq, "%s ", handle->name);
1179 seq_putc(seq, '\n');
1180
1181 input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX);
1182
1183 input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
1184 if (test_bit(EV_KEY, dev->evbit))
1185 input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
1186 if (test_bit(EV_REL, dev->evbit))
1187 input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
1188 if (test_bit(EV_ABS, dev->evbit))
1189 input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
1190 if (test_bit(EV_MSC, dev->evbit))
1191 input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
1192 if (test_bit(EV_LED, dev->evbit))
1193 input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
1194 if (test_bit(EV_SND, dev->evbit))
1195 input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
1196 if (test_bit(EV_FF, dev->evbit))
1197 input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
1198 if (test_bit(EV_SW, dev->evbit))
1199 input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
1200
1201 seq_putc(seq, '\n');
1202
1203 kfree(path);
1204 return 0;
1205}
1206
1207static const struct seq_operations input_devices_seq_ops = {
1208 .start = input_devices_seq_start,
1209 .next = input_devices_seq_next,
1210 .stop = input_seq_stop,
1211 .show = input_devices_seq_show,
1212};
1213
1214static int input_proc_devices_open(struct inode *inode, struct file *file)
1215{
1216 return seq_open_private(file, &input_devices_seq_ops,
1217 sizeof(struct input_seq_state));
1218}
1219
1220static const struct proc_ops input_devices_proc_ops = {
1221 .proc_open = input_proc_devices_open,
1222 .proc_poll = input_proc_devices_poll,
1223 .proc_read = seq_read,
1224 .proc_lseek = seq_lseek,
1225 .proc_release = seq_release_private,
1226};
1227
1228static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
1229{
1230 struct input_seq_state *state = seq->private;
1231 int error;
1232
1233 error = mutex_lock_interruptible(&input_mutex);
1234 if (error) {
1235 state->mutex_acquired = false;
1236 return ERR_PTR(error);
1237 }
1238
1239 state->mutex_acquired = true;
1240 state->pos = *pos;
1241
1242 return seq_list_start(&input_handler_list, *pos);
1243}
1244
1245static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1246{
1247 struct input_seq_state *state = seq->private;
1248
1249 state->pos = *pos + 1;
1250 return seq_list_next(v, &input_handler_list, pos);
1251}
1252
1253static int input_handlers_seq_show(struct seq_file *seq, void *v)
1254{
1255 struct input_handler *handler = container_of(v, struct input_handler, node);
1256 struct input_seq_state *state = seq->private;
1257
1258 seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
1259 if (handler->filter)
1260 seq_puts(seq, " (filter)");
1261 if (handler->legacy_minors)
1262 seq_printf(seq, " Minor=%d", handler->minor);
1263 seq_putc(seq, '\n');
1264
1265 return 0;
1266}
1267
1268static const struct seq_operations input_handlers_seq_ops = {
1269 .start = input_handlers_seq_start,
1270 .next = input_handlers_seq_next,
1271 .stop = input_seq_stop,
1272 .show = input_handlers_seq_show,
1273};
1274
1275static int input_proc_handlers_open(struct inode *inode, struct file *file)
1276{
1277 return seq_open_private(file, &input_handlers_seq_ops,
1278 sizeof(struct input_seq_state));
1279}
1280
1281static const struct proc_ops input_handlers_proc_ops = {
1282 .proc_open = input_proc_handlers_open,
1283 .proc_read = seq_read,
1284 .proc_lseek = seq_lseek,
1285 .proc_release = seq_release_private,
1286};
1287
1288static int __init input_proc_init(void)
1289{
1290 struct proc_dir_entry *entry;
1291
1292 proc_bus_input_dir = proc_mkdir("bus/input", NULL);
1293 if (!proc_bus_input_dir)
1294 return -ENOMEM;
1295
1296 entry = proc_create("devices", 0, proc_bus_input_dir,
1297 &input_devices_proc_ops);
1298 if (!entry)
1299 goto fail1;
1300
1301 entry = proc_create("handlers", 0, proc_bus_input_dir,
1302 &input_handlers_proc_ops);
1303 if (!entry)
1304 goto fail2;
1305
1306 return 0;
1307
1308 fail2: remove_proc_entry("devices", proc_bus_input_dir);
1309 fail1: remove_proc_entry("bus/input", NULL);
1310 return -ENOMEM;
1311}
1312
1313static void input_proc_exit(void)
1314{
1315 remove_proc_entry("devices", proc_bus_input_dir);
1316 remove_proc_entry("handlers", proc_bus_input_dir);
1317 remove_proc_entry("bus/input", NULL);
1318}
1319
1320#else /* !CONFIG_PROC_FS */
1321static inline void input_wakeup_procfs_readers(void) { }
1322static inline int input_proc_init(void) { return 0; }
1323static inline void input_proc_exit(void) { }
1324#endif
1325
1326#define INPUT_DEV_STRING_ATTR_SHOW(name) \
1327static ssize_t input_dev_show_##name(struct device *dev, \
1328 struct device_attribute *attr, \
1329 char *buf) \
1330{ \
1331 struct input_dev *input_dev = to_input_dev(dev); \
1332 \
1333 return sysfs_emit(buf, "%s\n", \
1334 input_dev->name ? input_dev->name : ""); \
1335} \
1336static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1337
1338INPUT_DEV_STRING_ATTR_SHOW(name);
1339INPUT_DEV_STRING_ATTR_SHOW(phys);
1340INPUT_DEV_STRING_ATTR_SHOW(uniq);
1341
1342static int input_print_modalias_bits(char *buf, int size,
1343 char name, const unsigned long *bm,
1344 unsigned int min_bit, unsigned int max_bit)
1345{
1346 int bit = min_bit;
1347 int len = 0;
1348
1349 len += snprintf(buf, max(size, 0), "%c", name);
1350 for_each_set_bit_from(bit, bm, max_bit)
1351 len += snprintf(buf + len, max(size - len, 0), "%X,", bit);
1352 return len;
1353}
1354
1355static int input_print_modalias_parts(char *buf, int size, int full_len,
1356 const struct input_dev *id)
1357{
1358 int len, klen, remainder, space;
1359
1360 len = snprintf(buf, max(size, 0),
1361 "input:b%04Xv%04Xp%04Xe%04X-",
1362 id->id.bustype, id->id.vendor,
1363 id->id.product, id->id.version);
1364
1365 len += input_print_modalias_bits(buf + len, size - len,
1366 'e', id->evbit, 0, EV_MAX);
1367
1368 /*
1369 * Calculate the remaining space in the buffer making sure we
1370 * have place for the terminating 0.
1371 */
1372 space = max(size - (len + 1), 0);
1373
1374 klen = input_print_modalias_bits(buf + len, size - len,
1375 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1376 len += klen;
1377
1378 /*
1379 * If we have more data than we can fit in the buffer, check
1380 * if we can trim key data to fit in the rest. We will indicate
1381 * that key data is incomplete by adding "+" sign at the end, like
1382 * this: * "k1,2,3,45,+,".
1383 *
1384 * Note that we shortest key info (if present) is "k+," so we
1385 * can only try to trim if key data is longer than that.
1386 */
1387 if (full_len && size < full_len + 1 && klen > 3) {
1388 remainder = full_len - len;
1389 /*
1390 * We can only trim if we have space for the remainder
1391 * and also for at least "k+," which is 3 more characters.
1392 */
1393 if (remainder <= space - 3) {
1394 /*
1395 * We are guaranteed to have 'k' in the buffer, so
1396 * we need at least 3 additional bytes for storing
1397 * "+," in addition to the remainder.
1398 */
1399 for (int i = size - 1 - remainder - 3; i >= 0; i--) {
1400 if (buf[i] == 'k' || buf[i] == ',') {
1401 strcpy(buf + i + 1, "+,");
1402 len = i + 3; /* Not counting '\0' */
1403 break;
1404 }
1405 }
1406 }
1407 }
1408
1409 len += input_print_modalias_bits(buf + len, size - len,
1410 'r', id->relbit, 0, REL_MAX);
1411 len += input_print_modalias_bits(buf + len, size - len,
1412 'a', id->absbit, 0, ABS_MAX);
1413 len += input_print_modalias_bits(buf + len, size - len,
1414 'm', id->mscbit, 0, MSC_MAX);
1415 len += input_print_modalias_bits(buf + len, size - len,
1416 'l', id->ledbit, 0, LED_MAX);
1417 len += input_print_modalias_bits(buf + len, size - len,
1418 's', id->sndbit, 0, SND_MAX);
1419 len += input_print_modalias_bits(buf + len, size - len,
1420 'f', id->ffbit, 0, FF_MAX);
1421 len += input_print_modalias_bits(buf + len, size - len,
1422 'w', id->swbit, 0, SW_MAX);
1423
1424 return len;
1425}
1426
1427static int input_print_modalias(char *buf, int size, const struct input_dev *id)
1428{
1429 int full_len;
1430
1431 /*
1432 * Printing is done in 2 passes: first one figures out total length
1433 * needed for the modalias string, second one will try to trim key
1434 * data in case when buffer is too small for the entire modalias.
1435 * If the buffer is too small regardless, it will fill as much as it
1436 * can (without trimming key data) into the buffer and leave it to
1437 * the caller to figure out what to do with the result.
1438 */
1439 full_len = input_print_modalias_parts(NULL, 0, 0, id);
1440 return input_print_modalias_parts(buf, size, full_len, id);
1441}
1442
1443static ssize_t input_dev_show_modalias(struct device *dev,
1444 struct device_attribute *attr,
1445 char *buf)
1446{
1447 struct input_dev *id = to_input_dev(dev);
1448 ssize_t len;
1449
1450 len = input_print_modalias(buf, PAGE_SIZE, id);
1451 if (len < PAGE_SIZE - 2)
1452 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1453
1454 return min_t(int, len, PAGE_SIZE);
1455}
1456static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1457
1458static int input_print_bitmap(char *buf, int buf_size, const unsigned long *bitmap,
1459 int max, int add_cr);
1460
1461static ssize_t input_dev_show_properties(struct device *dev,
1462 struct device_attribute *attr,
1463 char *buf)
1464{
1465 struct input_dev *input_dev = to_input_dev(dev);
1466 int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit,
1467 INPUT_PROP_MAX, true);
1468 return min_t(int, len, PAGE_SIZE);
1469}
1470static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL);
1471
1472static int input_inhibit_device(struct input_dev *dev);
1473static int input_uninhibit_device(struct input_dev *dev);
1474
1475static ssize_t inhibited_show(struct device *dev,
1476 struct device_attribute *attr,
1477 char *buf)
1478{
1479 struct input_dev *input_dev = to_input_dev(dev);
1480
1481 return sysfs_emit(buf, "%d\n", input_dev->inhibited);
1482}
1483
1484static ssize_t inhibited_store(struct device *dev,
1485 struct device_attribute *attr, const char *buf,
1486 size_t len)
1487{
1488 struct input_dev *input_dev = to_input_dev(dev);
1489 ssize_t rv;
1490 bool inhibited;
1491
1492 if (kstrtobool(buf, &inhibited))
1493 return -EINVAL;
1494
1495 if (inhibited)
1496 rv = input_inhibit_device(input_dev);
1497 else
1498 rv = input_uninhibit_device(input_dev);
1499
1500 if (rv != 0)
1501 return rv;
1502
1503 return len;
1504}
1505
1506static DEVICE_ATTR_RW(inhibited);
1507
1508static struct attribute *input_dev_attrs[] = {
1509 &dev_attr_name.attr,
1510 &dev_attr_phys.attr,
1511 &dev_attr_uniq.attr,
1512 &dev_attr_modalias.attr,
1513 &dev_attr_properties.attr,
1514 &dev_attr_inhibited.attr,
1515 NULL
1516};
1517
1518static const struct attribute_group input_dev_attr_group = {
1519 .attrs = input_dev_attrs,
1520};
1521
1522#define INPUT_DEV_ID_ATTR(name) \
1523static ssize_t input_dev_show_id_##name(struct device *dev, \
1524 struct device_attribute *attr, \
1525 char *buf) \
1526{ \
1527 struct input_dev *input_dev = to_input_dev(dev); \
1528 return sysfs_emit(buf, "%04x\n", input_dev->id.name); \
1529} \
1530static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1531
1532INPUT_DEV_ID_ATTR(bustype);
1533INPUT_DEV_ID_ATTR(vendor);
1534INPUT_DEV_ID_ATTR(product);
1535INPUT_DEV_ID_ATTR(version);
1536
1537static struct attribute *input_dev_id_attrs[] = {
1538 &dev_attr_bustype.attr,
1539 &dev_attr_vendor.attr,
1540 &dev_attr_product.attr,
1541 &dev_attr_version.attr,
1542 NULL
1543};
1544
1545static const struct attribute_group input_dev_id_attr_group = {
1546 .name = "id",
1547 .attrs = input_dev_id_attrs,
1548};
1549
1550static int input_print_bitmap(char *buf, int buf_size, const unsigned long *bitmap,
1551 int max, int add_cr)
1552{
1553 int i;
1554 int len = 0;
1555 bool skip_empty = true;
1556
1557 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1558 len += input_bits_to_string(buf + len, max(buf_size - len, 0),
1559 bitmap[i], skip_empty);
1560 if (len) {
1561 skip_empty = false;
1562 if (i > 0)
1563 len += snprintf(buf + len, max(buf_size - len, 0), " ");
1564 }
1565 }
1566
1567 /*
1568 * If no output was produced print a single 0.
1569 */
1570 if (len == 0)
1571 len = snprintf(buf, buf_size, "%d", 0);
1572
1573 if (add_cr)
1574 len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1575
1576 return len;
1577}
1578
1579#define INPUT_DEV_CAP_ATTR(ev, bm) \
1580static ssize_t input_dev_show_cap_##bm(struct device *dev, \
1581 struct device_attribute *attr, \
1582 char *buf) \
1583{ \
1584 struct input_dev *input_dev = to_input_dev(dev); \
1585 int len = input_print_bitmap(buf, PAGE_SIZE, \
1586 input_dev->bm##bit, ev##_MAX, \
1587 true); \
1588 return min_t(int, len, PAGE_SIZE); \
1589} \
1590static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1591
1592INPUT_DEV_CAP_ATTR(EV, ev);
1593INPUT_DEV_CAP_ATTR(KEY, key);
1594INPUT_DEV_CAP_ATTR(REL, rel);
1595INPUT_DEV_CAP_ATTR(ABS, abs);
1596INPUT_DEV_CAP_ATTR(MSC, msc);
1597INPUT_DEV_CAP_ATTR(LED, led);
1598INPUT_DEV_CAP_ATTR(SND, snd);
1599INPUT_DEV_CAP_ATTR(FF, ff);
1600INPUT_DEV_CAP_ATTR(SW, sw);
1601
1602static struct attribute *input_dev_caps_attrs[] = {
1603 &dev_attr_ev.attr,
1604 &dev_attr_key.attr,
1605 &dev_attr_rel.attr,
1606 &dev_attr_abs.attr,
1607 &dev_attr_msc.attr,
1608 &dev_attr_led.attr,
1609 &dev_attr_snd.attr,
1610 &dev_attr_ff.attr,
1611 &dev_attr_sw.attr,
1612 NULL
1613};
1614
1615static const struct attribute_group input_dev_caps_attr_group = {
1616 .name = "capabilities",
1617 .attrs = input_dev_caps_attrs,
1618};
1619
1620static const struct attribute_group *input_dev_attr_groups[] = {
1621 &input_dev_attr_group,
1622 &input_dev_id_attr_group,
1623 &input_dev_caps_attr_group,
1624 &input_poller_attribute_group,
1625 NULL
1626};
1627
1628static void input_dev_release(struct device *device)
1629{
1630 struct input_dev *dev = to_input_dev(device);
1631
1632 input_ff_destroy(dev);
1633 input_mt_destroy_slots(dev);
1634 kfree(dev->poller);
1635 kfree(dev->absinfo);
1636 kfree(dev->vals);
1637 kfree(dev);
1638
1639 module_put(THIS_MODULE);
1640}
1641
1642/*
1643 * Input uevent interface - loading event handlers based on
1644 * device bitfields.
1645 */
1646static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1647 const char *name, const unsigned long *bitmap, int max)
1648{
1649 int len;
1650
1651 if (add_uevent_var(env, "%s", name))
1652 return -ENOMEM;
1653
1654 len = input_print_bitmap(&env->buf[env->buflen - 1],
1655 sizeof(env->buf) - env->buflen,
1656 bitmap, max, false);
1657 if (len >= (sizeof(env->buf) - env->buflen))
1658 return -ENOMEM;
1659
1660 env->buflen += len;
1661 return 0;
1662}
1663
1664/*
1665 * This is a pretty gross hack. When building uevent data the driver core
1666 * may try adding more environment variables to kobj_uevent_env without
1667 * telling us, so we have no idea how much of the buffer we can use to
1668 * avoid overflows/-ENOMEM elsewhere. To work around this let's artificially
1669 * reduce amount of memory we will use for the modalias environment variable.
1670 *
1671 * The potential additions are:
1672 *
1673 * SEQNUM=18446744073709551615 - (%llu - 28 bytes)
1674 * HOME=/ (6 bytes)
1675 * PATH=/sbin:/bin:/usr/sbin:/usr/bin (34 bytes)
1676 *
1677 * 68 bytes total. Allow extra buffer - 96 bytes
1678 */
1679#define UEVENT_ENV_EXTRA_LEN 96
1680
1681static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1682 const struct input_dev *dev)
1683{
1684 int len;
1685
1686 if (add_uevent_var(env, "MODALIAS="))
1687 return -ENOMEM;
1688
1689 len = input_print_modalias(&env->buf[env->buflen - 1],
1690 (int)sizeof(env->buf) - env->buflen -
1691 UEVENT_ENV_EXTRA_LEN,
1692 dev);
1693 if (len >= ((int)sizeof(env->buf) - env->buflen -
1694 UEVENT_ENV_EXTRA_LEN))
1695 return -ENOMEM;
1696
1697 env->buflen += len;
1698 return 0;
1699}
1700
1701#define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \
1702 do { \
1703 int err = add_uevent_var(env, fmt, val); \
1704 if (err) \
1705 return err; \
1706 } while (0)
1707
1708#define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \
1709 do { \
1710 int err = input_add_uevent_bm_var(env, name, bm, max); \
1711 if (err) \
1712 return err; \
1713 } while (0)
1714
1715#define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \
1716 do { \
1717 int err = input_add_uevent_modalias_var(env, dev); \
1718 if (err) \
1719 return err; \
1720 } while (0)
1721
1722static int input_dev_uevent(const struct device *device, struct kobj_uevent_env *env)
1723{
1724 const struct input_dev *dev = to_input_dev(device);
1725
1726 INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1727 dev->id.bustype, dev->id.vendor,
1728 dev->id.product, dev->id.version);
1729 if (dev->name)
1730 INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1731 if (dev->phys)
1732 INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1733 if (dev->uniq)
1734 INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1735
1736 INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX);
1737
1738 INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1739 if (test_bit(EV_KEY, dev->evbit))
1740 INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1741 if (test_bit(EV_REL, dev->evbit))
1742 INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1743 if (test_bit(EV_ABS, dev->evbit))
1744 INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1745 if (test_bit(EV_MSC, dev->evbit))
1746 INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1747 if (test_bit(EV_LED, dev->evbit))
1748 INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1749 if (test_bit(EV_SND, dev->evbit))
1750 INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1751 if (test_bit(EV_FF, dev->evbit))
1752 INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1753 if (test_bit(EV_SW, dev->evbit))
1754 INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1755
1756 INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1757
1758 return 0;
1759}
1760
1761#define INPUT_DO_TOGGLE(dev, type, bits, on) \
1762 do { \
1763 int i; \
1764 bool active; \
1765 \
1766 if (!test_bit(EV_##type, dev->evbit)) \
1767 break; \
1768 \
1769 for_each_set_bit(i, dev->bits##bit, type##_CNT) { \
1770 active = test_bit(i, dev->bits); \
1771 if (!active && !on) \
1772 continue; \
1773 \
1774 dev->event(dev, EV_##type, i, on ? active : 0); \
1775 } \
1776 } while (0)
1777
1778static void input_dev_toggle(struct input_dev *dev, bool activate)
1779{
1780 if (!dev->event)
1781 return;
1782
1783 INPUT_DO_TOGGLE(dev, LED, led, activate);
1784 INPUT_DO_TOGGLE(dev, SND, snd, activate);
1785
1786 if (activate && test_bit(EV_REP, dev->evbit)) {
1787 dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
1788 dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
1789 }
1790}
1791
1792/**
1793 * input_reset_device() - reset/restore the state of input device
1794 * @dev: input device whose state needs to be reset
1795 *
1796 * This function tries to reset the state of an opened input device and
1797 * bring internal state and state if the hardware in sync with each other.
1798 * We mark all keys as released, restore LED state, repeat rate, etc.
1799 */
1800void input_reset_device(struct input_dev *dev)
1801{
1802 unsigned long flags;
1803
1804 mutex_lock(&dev->mutex);
1805 spin_lock_irqsave(&dev->event_lock, flags);
1806
1807 input_dev_toggle(dev, true);
1808 if (input_dev_release_keys(dev))
1809 input_handle_event(dev, EV_SYN, SYN_REPORT, 1);
1810
1811 spin_unlock_irqrestore(&dev->event_lock, flags);
1812 mutex_unlock(&dev->mutex);
1813}
1814EXPORT_SYMBOL(input_reset_device);
1815
1816static int input_inhibit_device(struct input_dev *dev)
1817{
1818 mutex_lock(&dev->mutex);
1819
1820 if (dev->inhibited)
1821 goto out;
1822
1823 if (dev->users) {
1824 if (dev->close)
1825 dev->close(dev);
1826 if (dev->poller)
1827 input_dev_poller_stop(dev->poller);
1828 }
1829
1830 spin_lock_irq(&dev->event_lock);
1831 input_mt_release_slots(dev);
1832 input_dev_release_keys(dev);
1833 input_handle_event(dev, EV_SYN, SYN_REPORT, 1);
1834 input_dev_toggle(dev, false);
1835 spin_unlock_irq(&dev->event_lock);
1836
1837 dev->inhibited = true;
1838
1839out:
1840 mutex_unlock(&dev->mutex);
1841 return 0;
1842}
1843
1844static int input_uninhibit_device(struct input_dev *dev)
1845{
1846 int ret = 0;
1847
1848 mutex_lock(&dev->mutex);
1849
1850 if (!dev->inhibited)
1851 goto out;
1852
1853 if (dev->users) {
1854 if (dev->open) {
1855 ret = dev->open(dev);
1856 if (ret)
1857 goto out;
1858 }
1859 if (dev->poller)
1860 input_dev_poller_start(dev->poller);
1861 }
1862
1863 dev->inhibited = false;
1864 spin_lock_irq(&dev->event_lock);
1865 input_dev_toggle(dev, true);
1866 spin_unlock_irq(&dev->event_lock);
1867
1868out:
1869 mutex_unlock(&dev->mutex);
1870 return ret;
1871}
1872
1873static int input_dev_suspend(struct device *dev)
1874{
1875 struct input_dev *input_dev = to_input_dev(dev);
1876
1877 spin_lock_irq(&input_dev->event_lock);
1878
1879 /*
1880 * Keys that are pressed now are unlikely to be
1881 * still pressed when we resume.
1882 */
1883 if (input_dev_release_keys(input_dev))
1884 input_handle_event(input_dev, EV_SYN, SYN_REPORT, 1);
1885
1886 /* Turn off LEDs and sounds, if any are active. */
1887 input_dev_toggle(input_dev, false);
1888
1889 spin_unlock_irq(&input_dev->event_lock);
1890
1891 return 0;
1892}
1893
1894static int input_dev_resume(struct device *dev)
1895{
1896 struct input_dev *input_dev = to_input_dev(dev);
1897
1898 spin_lock_irq(&input_dev->event_lock);
1899
1900 /* Restore state of LEDs and sounds, if any were active. */
1901 input_dev_toggle(input_dev, true);
1902
1903 spin_unlock_irq(&input_dev->event_lock);
1904
1905 return 0;
1906}
1907
1908static int input_dev_freeze(struct device *dev)
1909{
1910 struct input_dev *input_dev = to_input_dev(dev);
1911
1912 spin_lock_irq(&input_dev->event_lock);
1913
1914 /*
1915 * Keys that are pressed now are unlikely to be
1916 * still pressed when we resume.
1917 */
1918 if (input_dev_release_keys(input_dev))
1919 input_handle_event(input_dev, EV_SYN, SYN_REPORT, 1);
1920
1921 spin_unlock_irq(&input_dev->event_lock);
1922
1923 return 0;
1924}
1925
1926static int input_dev_poweroff(struct device *dev)
1927{
1928 struct input_dev *input_dev = to_input_dev(dev);
1929
1930 spin_lock_irq(&input_dev->event_lock);
1931
1932 /* Turn off LEDs and sounds, if any are active. */
1933 input_dev_toggle(input_dev, false);
1934
1935 spin_unlock_irq(&input_dev->event_lock);
1936
1937 return 0;
1938}
1939
1940static const struct dev_pm_ops input_dev_pm_ops = {
1941 .suspend = input_dev_suspend,
1942 .resume = input_dev_resume,
1943 .freeze = input_dev_freeze,
1944 .poweroff = input_dev_poweroff,
1945 .restore = input_dev_resume,
1946};
1947
1948static const struct device_type input_dev_type = {
1949 .groups = input_dev_attr_groups,
1950 .release = input_dev_release,
1951 .uevent = input_dev_uevent,
1952 .pm = pm_sleep_ptr(&input_dev_pm_ops),
1953};
1954
1955static char *input_devnode(const struct device *dev, umode_t *mode)
1956{
1957 return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
1958}
1959
1960const struct class input_class = {
1961 .name = "input",
1962 .devnode = input_devnode,
1963};
1964EXPORT_SYMBOL_GPL(input_class);
1965
1966/**
1967 * input_allocate_device - allocate memory for new input device
1968 *
1969 * Returns prepared struct input_dev or %NULL.
1970 *
1971 * NOTE: Use input_free_device() to free devices that have not been
1972 * registered; input_unregister_device() should be used for already
1973 * registered devices.
1974 */
1975struct input_dev *input_allocate_device(void)
1976{
1977 static atomic_t input_no = ATOMIC_INIT(-1);
1978 struct input_dev *dev;
1979
1980 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1981 if (!dev)
1982 return NULL;
1983
1984 /*
1985 * Start with space for SYN_REPORT + 7 EV_KEY/EV_MSC events + 2 spare,
1986 * see input_estimate_events_per_packet(). We will tune the number
1987 * when we register the device.
1988 */
1989 dev->max_vals = 10;
1990 dev->vals = kcalloc(dev->max_vals, sizeof(*dev->vals), GFP_KERNEL);
1991 if (!dev->vals) {
1992 kfree(dev);
1993 return NULL;
1994 }
1995
1996 mutex_init(&dev->mutex);
1997 spin_lock_init(&dev->event_lock);
1998 timer_setup(&dev->timer, NULL, 0);
1999 INIT_LIST_HEAD(&dev->h_list);
2000 INIT_LIST_HEAD(&dev->node);
2001
2002 dev->dev.type = &input_dev_type;
2003 dev->dev.class = &input_class;
2004 device_initialize(&dev->dev);
2005 /*
2006 * From this point on we can no longer simply "kfree(dev)", we need
2007 * to use input_free_device() so that device core properly frees its
2008 * resources associated with the input device.
2009 */
2010
2011 dev_set_name(&dev->dev, "input%lu",
2012 (unsigned long)atomic_inc_return(&input_no));
2013
2014 __module_get(THIS_MODULE);
2015
2016 return dev;
2017}
2018EXPORT_SYMBOL(input_allocate_device);
2019
2020struct input_devres {
2021 struct input_dev *input;
2022};
2023
2024static int devm_input_device_match(struct device *dev, void *res, void *data)
2025{
2026 struct input_devres *devres = res;
2027
2028 return devres->input == data;
2029}
2030
2031static void devm_input_device_release(struct device *dev, void *res)
2032{
2033 struct input_devres *devres = res;
2034 struct input_dev *input = devres->input;
2035
2036 dev_dbg(dev, "%s: dropping reference to %s\n",
2037 __func__, dev_name(&input->dev));
2038 input_put_device(input);
2039}
2040
2041/**
2042 * devm_input_allocate_device - allocate managed input device
2043 * @dev: device owning the input device being created
2044 *
2045 * Returns prepared struct input_dev or %NULL.
2046 *
2047 * Managed input devices do not need to be explicitly unregistered or
2048 * freed as it will be done automatically when owner device unbinds from
2049 * its driver (or binding fails). Once managed input device is allocated,
2050 * it is ready to be set up and registered in the same fashion as regular
2051 * input device. There are no special devm_input_device_[un]register()
2052 * variants, regular ones work with both managed and unmanaged devices,
2053 * should you need them. In most cases however, managed input device need
2054 * not be explicitly unregistered or freed.
2055 *
2056 * NOTE: the owner device is set up as parent of input device and users
2057 * should not override it.
2058 */
2059struct input_dev *devm_input_allocate_device(struct device *dev)
2060{
2061 struct input_dev *input;
2062 struct input_devres *devres;
2063
2064 devres = devres_alloc(devm_input_device_release,
2065 sizeof(*devres), GFP_KERNEL);
2066 if (!devres)
2067 return NULL;
2068
2069 input = input_allocate_device();
2070 if (!input) {
2071 devres_free(devres);
2072 return NULL;
2073 }
2074
2075 input->dev.parent = dev;
2076 input->devres_managed = true;
2077
2078 devres->input = input;
2079 devres_add(dev, devres);
2080
2081 return input;
2082}
2083EXPORT_SYMBOL(devm_input_allocate_device);
2084
2085/**
2086 * input_free_device - free memory occupied by input_dev structure
2087 * @dev: input device to free
2088 *
2089 * This function should only be used if input_register_device()
2090 * was not called yet or if it failed. Once device was registered
2091 * use input_unregister_device() and memory will be freed once last
2092 * reference to the device is dropped.
2093 *
2094 * Device should be allocated by input_allocate_device().
2095 *
2096 * NOTE: If there are references to the input device then memory
2097 * will not be freed until last reference is dropped.
2098 */
2099void input_free_device(struct input_dev *dev)
2100{
2101 if (dev) {
2102 if (dev->devres_managed)
2103 WARN_ON(devres_destroy(dev->dev.parent,
2104 devm_input_device_release,
2105 devm_input_device_match,
2106 dev));
2107 input_put_device(dev);
2108 }
2109}
2110EXPORT_SYMBOL(input_free_device);
2111
2112/**
2113 * input_set_timestamp - set timestamp for input events
2114 * @dev: input device to set timestamp for
2115 * @timestamp: the time at which the event has occurred
2116 * in CLOCK_MONOTONIC
2117 *
2118 * This function is intended to provide to the input system a more
2119 * accurate time of when an event actually occurred. The driver should
2120 * call this function as soon as a timestamp is acquired ensuring
2121 * clock conversions in input_set_timestamp are done correctly.
2122 *
2123 * The system entering suspend state between timestamp acquisition and
2124 * calling input_set_timestamp can result in inaccurate conversions.
2125 */
2126void input_set_timestamp(struct input_dev *dev, ktime_t timestamp)
2127{
2128 dev->timestamp[INPUT_CLK_MONO] = timestamp;
2129 dev->timestamp[INPUT_CLK_REAL] = ktime_mono_to_real(timestamp);
2130 dev->timestamp[INPUT_CLK_BOOT] = ktime_mono_to_any(timestamp,
2131 TK_OFFS_BOOT);
2132}
2133EXPORT_SYMBOL(input_set_timestamp);
2134
2135/**
2136 * input_get_timestamp - get timestamp for input events
2137 * @dev: input device to get timestamp from
2138 *
2139 * A valid timestamp is a timestamp of non-zero value.
2140 */
2141ktime_t *input_get_timestamp(struct input_dev *dev)
2142{
2143 const ktime_t invalid_timestamp = ktime_set(0, 0);
2144
2145 if (!ktime_compare(dev->timestamp[INPUT_CLK_MONO], invalid_timestamp))
2146 input_set_timestamp(dev, ktime_get());
2147
2148 return dev->timestamp;
2149}
2150EXPORT_SYMBOL(input_get_timestamp);
2151
2152/**
2153 * input_set_capability - mark device as capable of a certain event
2154 * @dev: device that is capable of emitting or accepting event
2155 * @type: type of the event (EV_KEY, EV_REL, etc...)
2156 * @code: event code
2157 *
2158 * In addition to setting up corresponding bit in appropriate capability
2159 * bitmap the function also adjusts dev->evbit.
2160 */
2161void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
2162{
2163 if (type < EV_CNT && input_max_code[type] &&
2164 code > input_max_code[type]) {
2165 pr_err("%s: invalid code %u for type %u\n", __func__, code,
2166 type);
2167 dump_stack();
2168 return;
2169 }
2170
2171 switch (type) {
2172 case EV_KEY:
2173 __set_bit(code, dev->keybit);
2174 break;
2175
2176 case EV_REL:
2177 __set_bit(code, dev->relbit);
2178 break;
2179
2180 case EV_ABS:
2181 input_alloc_absinfo(dev);
2182 __set_bit(code, dev->absbit);
2183 break;
2184
2185 case EV_MSC:
2186 __set_bit(code, dev->mscbit);
2187 break;
2188
2189 case EV_SW:
2190 __set_bit(code, dev->swbit);
2191 break;
2192
2193 case EV_LED:
2194 __set_bit(code, dev->ledbit);
2195 break;
2196
2197 case EV_SND:
2198 __set_bit(code, dev->sndbit);
2199 break;
2200
2201 case EV_FF:
2202 __set_bit(code, dev->ffbit);
2203 break;
2204
2205 case EV_PWR:
2206 /* do nothing */
2207 break;
2208
2209 default:
2210 pr_err("%s: unknown type %u (code %u)\n", __func__, type, code);
2211 dump_stack();
2212 return;
2213 }
2214
2215 __set_bit(type, dev->evbit);
2216}
2217EXPORT_SYMBOL(input_set_capability);
2218
2219static unsigned int input_estimate_events_per_packet(struct input_dev *dev)
2220{
2221 int mt_slots;
2222 int i;
2223 unsigned int events;
2224
2225 if (dev->mt) {
2226 mt_slots = dev->mt->num_slots;
2227 } else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) {
2228 mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum -
2229 dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1;
2230 mt_slots = clamp(mt_slots, 2, 32);
2231 } else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) {
2232 mt_slots = 2;
2233 } else {
2234 mt_slots = 0;
2235 }
2236
2237 events = mt_slots + 1; /* count SYN_MT_REPORT and SYN_REPORT */
2238
2239 if (test_bit(EV_ABS, dev->evbit))
2240 for_each_set_bit(i, dev->absbit, ABS_CNT)
2241 events += input_is_mt_axis(i) ? mt_slots : 1;
2242
2243 if (test_bit(EV_REL, dev->evbit))
2244 events += bitmap_weight(dev->relbit, REL_CNT);
2245
2246 /* Make room for KEY and MSC events */
2247 events += 7;
2248
2249 return events;
2250}
2251
2252#define INPUT_CLEANSE_BITMASK(dev, type, bits) \
2253 do { \
2254 if (!test_bit(EV_##type, dev->evbit)) \
2255 memset(dev->bits##bit, 0, \
2256 sizeof(dev->bits##bit)); \
2257 } while (0)
2258
2259static void input_cleanse_bitmasks(struct input_dev *dev)
2260{
2261 INPUT_CLEANSE_BITMASK(dev, KEY, key);
2262 INPUT_CLEANSE_BITMASK(dev, REL, rel);
2263 INPUT_CLEANSE_BITMASK(dev, ABS, abs);
2264 INPUT_CLEANSE_BITMASK(dev, MSC, msc);
2265 INPUT_CLEANSE_BITMASK(dev, LED, led);
2266 INPUT_CLEANSE_BITMASK(dev, SND, snd);
2267 INPUT_CLEANSE_BITMASK(dev, FF, ff);
2268 INPUT_CLEANSE_BITMASK(dev, SW, sw);
2269}
2270
2271static void __input_unregister_device(struct input_dev *dev)
2272{
2273 struct input_handle *handle, *next;
2274
2275 input_disconnect_device(dev);
2276
2277 mutex_lock(&input_mutex);
2278
2279 list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
2280 handle->handler->disconnect(handle);
2281 WARN_ON(!list_empty(&dev->h_list));
2282
2283 del_timer_sync(&dev->timer);
2284 list_del_init(&dev->node);
2285
2286 input_wakeup_procfs_readers();
2287
2288 mutex_unlock(&input_mutex);
2289
2290 device_del(&dev->dev);
2291}
2292
2293static void devm_input_device_unregister(struct device *dev, void *res)
2294{
2295 struct input_devres *devres = res;
2296 struct input_dev *input = devres->input;
2297
2298 dev_dbg(dev, "%s: unregistering device %s\n",
2299 __func__, dev_name(&input->dev));
2300 __input_unregister_device(input);
2301}
2302
2303/*
2304 * Generate software autorepeat event. Note that we take
2305 * dev->event_lock here to avoid racing with input_event
2306 * which may cause keys get "stuck".
2307 */
2308static void input_repeat_key(struct timer_list *t)
2309{
2310 struct input_dev *dev = from_timer(dev, t, timer);
2311 unsigned long flags;
2312
2313 spin_lock_irqsave(&dev->event_lock, flags);
2314
2315 if (!dev->inhibited &&
2316 test_bit(dev->repeat_key, dev->key) &&
2317 is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
2318
2319 input_set_timestamp(dev, ktime_get());
2320 input_handle_event(dev, EV_KEY, dev->repeat_key, 2);
2321 input_handle_event(dev, EV_SYN, SYN_REPORT, 1);
2322
2323 if (dev->rep[REP_PERIOD])
2324 mod_timer(&dev->timer, jiffies +
2325 msecs_to_jiffies(dev->rep[REP_PERIOD]));
2326 }
2327
2328 spin_unlock_irqrestore(&dev->event_lock, flags);
2329}
2330
2331/**
2332 * input_enable_softrepeat - enable software autorepeat
2333 * @dev: input device
2334 * @delay: repeat delay
2335 * @period: repeat period
2336 *
2337 * Enable software autorepeat on the input device.
2338 */
2339void input_enable_softrepeat(struct input_dev *dev, int delay, int period)
2340{
2341 dev->timer.function = input_repeat_key;
2342 dev->rep[REP_DELAY] = delay;
2343 dev->rep[REP_PERIOD] = period;
2344}
2345EXPORT_SYMBOL(input_enable_softrepeat);
2346
2347bool input_device_enabled(struct input_dev *dev)
2348{
2349 lockdep_assert_held(&dev->mutex);
2350
2351 return !dev->inhibited && dev->users > 0;
2352}
2353EXPORT_SYMBOL_GPL(input_device_enabled);
2354
2355static int input_device_tune_vals(struct input_dev *dev)
2356{
2357 struct input_value *vals;
2358 unsigned int packet_size;
2359 unsigned int max_vals;
2360
2361 packet_size = input_estimate_events_per_packet(dev);
2362 if (dev->hint_events_per_packet < packet_size)
2363 dev->hint_events_per_packet = packet_size;
2364
2365 max_vals = dev->hint_events_per_packet + 2;
2366 if (dev->max_vals >= max_vals)
2367 return 0;
2368
2369 vals = kcalloc(max_vals, sizeof(*vals), GFP_KERNEL);
2370 if (!vals)
2371 return -ENOMEM;
2372
2373 spin_lock_irq(&dev->event_lock);
2374 dev->max_vals = max_vals;
2375 swap(dev->vals, vals);
2376 spin_unlock_irq(&dev->event_lock);
2377
2378 /* Because of swap() above, this frees the old vals memory */
2379 kfree(vals);
2380
2381 return 0;
2382}
2383
2384/**
2385 * input_register_device - register device with input core
2386 * @dev: device to be registered
2387 *
2388 * This function registers device with input core. The device must be
2389 * allocated with input_allocate_device() and all it's capabilities
2390 * set up before registering.
2391 * If function fails the device must be freed with input_free_device().
2392 * Once device has been successfully registered it can be unregistered
2393 * with input_unregister_device(); input_free_device() should not be
2394 * called in this case.
2395 *
2396 * Note that this function is also used to register managed input devices
2397 * (ones allocated with devm_input_allocate_device()). Such managed input
2398 * devices need not be explicitly unregistered or freed, their tear down
2399 * is controlled by the devres infrastructure. It is also worth noting
2400 * that tear down of managed input devices is internally a 2-step process:
2401 * registered managed input device is first unregistered, but stays in
2402 * memory and can still handle input_event() calls (although events will
2403 * not be delivered anywhere). The freeing of managed input device will
2404 * happen later, when devres stack is unwound to the point where device
2405 * allocation was made.
2406 */
2407int input_register_device(struct input_dev *dev)
2408{
2409 struct input_devres *devres = NULL;
2410 struct input_handler *handler;
2411 const char *path;
2412 int error;
2413
2414 if (test_bit(EV_ABS, dev->evbit) && !dev->absinfo) {
2415 dev_err(&dev->dev,
2416 "Absolute device without dev->absinfo, refusing to register\n");
2417 return -EINVAL;
2418 }
2419
2420 if (dev->devres_managed) {
2421 devres = devres_alloc(devm_input_device_unregister,
2422 sizeof(*devres), GFP_KERNEL);
2423 if (!devres)
2424 return -ENOMEM;
2425
2426 devres->input = dev;
2427 }
2428
2429 /* Every input device generates EV_SYN/SYN_REPORT events. */
2430 __set_bit(EV_SYN, dev->evbit);
2431
2432 /* KEY_RESERVED is not supposed to be transmitted to userspace. */
2433 __clear_bit(KEY_RESERVED, dev->keybit);
2434
2435 /* Make sure that bitmasks not mentioned in dev->evbit are clean. */
2436 input_cleanse_bitmasks(dev);
2437
2438 error = input_device_tune_vals(dev);
2439 if (error)
2440 goto err_devres_free;
2441
2442 /*
2443 * If delay and period are pre-set by the driver, then autorepeating
2444 * is handled by the driver itself and we don't do it in input.c.
2445 */
2446 if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD])
2447 input_enable_softrepeat(dev, 250, 33);
2448
2449 if (!dev->getkeycode)
2450 dev->getkeycode = input_default_getkeycode;
2451
2452 if (!dev->setkeycode)
2453 dev->setkeycode = input_default_setkeycode;
2454
2455 if (dev->poller)
2456 input_dev_poller_finalize(dev->poller);
2457
2458 error = device_add(&dev->dev);
2459 if (error)
2460 goto err_devres_free;
2461
2462 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
2463 pr_info("%s as %s\n",
2464 dev->name ? dev->name : "Unspecified device",
2465 path ? path : "N/A");
2466 kfree(path);
2467
2468 error = mutex_lock_interruptible(&input_mutex);
2469 if (error)
2470 goto err_device_del;
2471
2472 list_add_tail(&dev->node, &input_dev_list);
2473
2474 list_for_each_entry(handler, &input_handler_list, node)
2475 input_attach_handler(dev, handler);
2476
2477 input_wakeup_procfs_readers();
2478
2479 mutex_unlock(&input_mutex);
2480
2481 if (dev->devres_managed) {
2482 dev_dbg(dev->dev.parent, "%s: registering %s with devres.\n",
2483 __func__, dev_name(&dev->dev));
2484 devres_add(dev->dev.parent, devres);
2485 }
2486 return 0;
2487
2488err_device_del:
2489 device_del(&dev->dev);
2490err_devres_free:
2491 devres_free(devres);
2492 return error;
2493}
2494EXPORT_SYMBOL(input_register_device);
2495
2496/**
2497 * input_unregister_device - unregister previously registered device
2498 * @dev: device to be unregistered
2499 *
2500 * This function unregisters an input device. Once device is unregistered
2501 * the caller should not try to access it as it may get freed at any moment.
2502 */
2503void input_unregister_device(struct input_dev *dev)
2504{
2505 if (dev->devres_managed) {
2506 WARN_ON(devres_destroy(dev->dev.parent,
2507 devm_input_device_unregister,
2508 devm_input_device_match,
2509 dev));
2510 __input_unregister_device(dev);
2511 /*
2512 * We do not do input_put_device() here because it will be done
2513 * when 2nd devres fires up.
2514 */
2515 } else {
2516 __input_unregister_device(dev);
2517 input_put_device(dev);
2518 }
2519}
2520EXPORT_SYMBOL(input_unregister_device);
2521
2522static int input_handler_check_methods(const struct input_handler *handler)
2523{
2524 int count = 0;
2525
2526 if (handler->filter)
2527 count++;
2528 if (handler->events)
2529 count++;
2530 if (handler->event)
2531 count++;
2532
2533 if (count > 1) {
2534 pr_err("%s: only one event processing method can be defined (%s)\n",
2535 __func__, handler->name);
2536 return -EINVAL;
2537 }
2538
2539 return 0;
2540}
2541
2542/**
2543 * input_register_handler - register a new input handler
2544 * @handler: handler to be registered
2545 *
2546 * This function registers a new input handler (interface) for input
2547 * devices in the system and attaches it to all input devices that
2548 * are compatible with the handler.
2549 */
2550int input_register_handler(struct input_handler *handler)
2551{
2552 struct input_dev *dev;
2553 int error;
2554
2555 error = input_handler_check_methods(handler);
2556 if (error)
2557 return error;
2558
2559 INIT_LIST_HEAD(&handler->h_list);
2560
2561 error = mutex_lock_interruptible(&input_mutex);
2562 if (error)
2563 return error;
2564
2565 list_add_tail(&handler->node, &input_handler_list);
2566
2567 list_for_each_entry(dev, &input_dev_list, node)
2568 input_attach_handler(dev, handler);
2569
2570 input_wakeup_procfs_readers();
2571
2572 mutex_unlock(&input_mutex);
2573 return 0;
2574}
2575EXPORT_SYMBOL(input_register_handler);
2576
2577/**
2578 * input_unregister_handler - unregisters an input handler
2579 * @handler: handler to be unregistered
2580 *
2581 * This function disconnects a handler from its input devices and
2582 * removes it from lists of known handlers.
2583 */
2584void input_unregister_handler(struct input_handler *handler)
2585{
2586 struct input_handle *handle, *next;
2587
2588 mutex_lock(&input_mutex);
2589
2590 list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
2591 handler->disconnect(handle);
2592 WARN_ON(!list_empty(&handler->h_list));
2593
2594 list_del_init(&handler->node);
2595
2596 input_wakeup_procfs_readers();
2597
2598 mutex_unlock(&input_mutex);
2599}
2600EXPORT_SYMBOL(input_unregister_handler);
2601
2602/**
2603 * input_handler_for_each_handle - handle iterator
2604 * @handler: input handler to iterate
2605 * @data: data for the callback
2606 * @fn: function to be called for each handle
2607 *
2608 * Iterate over @bus's list of devices, and call @fn for each, passing
2609 * it @data and stop when @fn returns a non-zero value. The function is
2610 * using RCU to traverse the list and therefore may be using in atomic
2611 * contexts. The @fn callback is invoked from RCU critical section and
2612 * thus must not sleep.
2613 */
2614int input_handler_for_each_handle(struct input_handler *handler, void *data,
2615 int (*fn)(struct input_handle *, void *))
2616{
2617 struct input_handle *handle;
2618 int retval = 0;
2619
2620 rcu_read_lock();
2621
2622 list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
2623 retval = fn(handle, data);
2624 if (retval)
2625 break;
2626 }
2627
2628 rcu_read_unlock();
2629
2630 return retval;
2631}
2632EXPORT_SYMBOL(input_handler_for_each_handle);
2633
2634/*
2635 * An implementation of input_handle's handle_events() method that simply
2636 * invokes handler->event() method for each event one by one.
2637 */
2638static unsigned int input_handle_events_default(struct input_handle *handle,
2639 struct input_value *vals,
2640 unsigned int count)
2641{
2642 struct input_handler *handler = handle->handler;
2643 struct input_value *v;
2644
2645 for (v = vals; v != vals + count; v++)
2646 handler->event(handle, v->type, v->code, v->value);
2647
2648 return count;
2649}
2650
2651/*
2652 * An implementation of input_handle's handle_events() method that invokes
2653 * handler->filter() method for each event one by one and removes events
2654 * that were filtered out from the "vals" array.
2655 */
2656static unsigned int input_handle_events_filter(struct input_handle *handle,
2657 struct input_value *vals,
2658 unsigned int count)
2659{
2660 struct input_handler *handler = handle->handler;
2661 struct input_value *end = vals;
2662 struct input_value *v;
2663
2664 for (v = vals; v != vals + count; v++) {
2665 if (handler->filter(handle, v->type, v->code, v->value))
2666 continue;
2667 if (end != v)
2668 *end = *v;
2669 end++;
2670 }
2671
2672 return end - vals;
2673}
2674
2675/*
2676 * An implementation of input_handle's handle_events() method that does nothing.
2677 */
2678static unsigned int input_handle_events_null(struct input_handle *handle,
2679 struct input_value *vals,
2680 unsigned int count)
2681{
2682 return count;
2683}
2684
2685/*
2686 * Sets up appropriate handle->event_handler based on the input_handler
2687 * associated with the handle.
2688 */
2689static void input_handle_setup_event_handler(struct input_handle *handle)
2690{
2691 struct input_handler *handler = handle->handler;
2692
2693 if (handler->filter)
2694 handle->handle_events = input_handle_events_filter;
2695 else if (handler->event)
2696 handle->handle_events = input_handle_events_default;
2697 else if (handler->events)
2698 handle->handle_events = handler->events;
2699 else
2700 handle->handle_events = input_handle_events_null;
2701}
2702
2703/**
2704 * input_register_handle - register a new input handle
2705 * @handle: handle to register
2706 *
2707 * This function puts a new input handle onto device's
2708 * and handler's lists so that events can flow through
2709 * it once it is opened using input_open_device().
2710 *
2711 * This function is supposed to be called from handler's
2712 * connect() method.
2713 */
2714int input_register_handle(struct input_handle *handle)
2715{
2716 struct input_handler *handler = handle->handler;
2717 struct input_dev *dev = handle->dev;
2718 int error;
2719
2720 input_handle_setup_event_handler(handle);
2721 /*
2722 * We take dev->mutex here to prevent race with
2723 * input_release_device().
2724 */
2725 error = mutex_lock_interruptible(&dev->mutex);
2726 if (error)
2727 return error;
2728
2729 /*
2730 * Filters go to the head of the list, normal handlers
2731 * to the tail.
2732 */
2733 if (handler->filter)
2734 list_add_rcu(&handle->d_node, &dev->h_list);
2735 else
2736 list_add_tail_rcu(&handle->d_node, &dev->h_list);
2737
2738 mutex_unlock(&dev->mutex);
2739
2740 /*
2741 * Since we are supposed to be called from ->connect()
2742 * which is mutually exclusive with ->disconnect()
2743 * we can't be racing with input_unregister_handle()
2744 * and so separate lock is not needed here.
2745 */
2746 list_add_tail_rcu(&handle->h_node, &handler->h_list);
2747
2748 if (handler->start)
2749 handler->start(handle);
2750
2751 return 0;
2752}
2753EXPORT_SYMBOL(input_register_handle);
2754
2755/**
2756 * input_unregister_handle - unregister an input handle
2757 * @handle: handle to unregister
2758 *
2759 * This function removes input handle from device's
2760 * and handler's lists.
2761 *
2762 * This function is supposed to be called from handler's
2763 * disconnect() method.
2764 */
2765void input_unregister_handle(struct input_handle *handle)
2766{
2767 struct input_dev *dev = handle->dev;
2768
2769 list_del_rcu(&handle->h_node);
2770
2771 /*
2772 * Take dev->mutex to prevent race with input_release_device().
2773 */
2774 mutex_lock(&dev->mutex);
2775 list_del_rcu(&handle->d_node);
2776 mutex_unlock(&dev->mutex);
2777
2778 synchronize_rcu();
2779}
2780EXPORT_SYMBOL(input_unregister_handle);
2781
2782/**
2783 * input_get_new_minor - allocates a new input minor number
2784 * @legacy_base: beginning or the legacy range to be searched
2785 * @legacy_num: size of legacy range
2786 * @allow_dynamic: whether we can also take ID from the dynamic range
2787 *
2788 * This function allocates a new device minor for from input major namespace.
2789 * Caller can request legacy minor by specifying @legacy_base and @legacy_num
2790 * parameters and whether ID can be allocated from dynamic range if there are
2791 * no free IDs in legacy range.
2792 */
2793int input_get_new_minor(int legacy_base, unsigned int legacy_num,
2794 bool allow_dynamic)
2795{
2796 /*
2797 * This function should be called from input handler's ->connect()
2798 * methods, which are serialized with input_mutex, so no additional
2799 * locking is needed here.
2800 */
2801 if (legacy_base >= 0) {
2802 int minor = ida_alloc_range(&input_ida, legacy_base,
2803 legacy_base + legacy_num - 1,
2804 GFP_KERNEL);
2805 if (minor >= 0 || !allow_dynamic)
2806 return minor;
2807 }
2808
2809 return ida_alloc_range(&input_ida, INPUT_FIRST_DYNAMIC_DEV,
2810 INPUT_MAX_CHAR_DEVICES - 1, GFP_KERNEL);
2811}
2812EXPORT_SYMBOL(input_get_new_minor);
2813
2814/**
2815 * input_free_minor - release previously allocated minor
2816 * @minor: minor to be released
2817 *
2818 * This function releases previously allocated input minor so that it can be
2819 * reused later.
2820 */
2821void input_free_minor(unsigned int minor)
2822{
2823 ida_free(&input_ida, minor);
2824}
2825EXPORT_SYMBOL(input_free_minor);
2826
2827static int __init input_init(void)
2828{
2829 int err;
2830
2831 err = class_register(&input_class);
2832 if (err) {
2833 pr_err("unable to register input_dev class\n");
2834 return err;
2835 }
2836
2837 err = input_proc_init();
2838 if (err)
2839 goto fail1;
2840
2841 err = register_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2842 INPUT_MAX_CHAR_DEVICES, "input");
2843 if (err) {
2844 pr_err("unable to register char major %d", INPUT_MAJOR);
2845 goto fail2;
2846 }
2847
2848 return 0;
2849
2850 fail2: input_proc_exit();
2851 fail1: class_unregister(&input_class);
2852 return err;
2853}
2854
2855static void __exit input_exit(void)
2856{
2857 input_proc_exit();
2858 unregister_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2859 INPUT_MAX_CHAR_DEVICES);
2860 class_unregister(&input_class);
2861}
2862
2863subsys_initcall(input_init);
2864module_exit(input_exit);
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * The input core
4 *
5 * Copyright (c) 1999-2002 Vojtech Pavlik
6 */
7
8
9#define pr_fmt(fmt) KBUILD_BASENAME ": " fmt
10
11#include <linux/init.h>
12#include <linux/types.h>
13#include <linux/idr.h>
14#include <linux/input/mt.h>
15#include <linux/module.h>
16#include <linux/slab.h>
17#include <linux/random.h>
18#include <linux/major.h>
19#include <linux/proc_fs.h>
20#include <linux/sched.h>
21#include <linux/seq_file.h>
22#include <linux/poll.h>
23#include <linux/device.h>
24#include <linux/mutex.h>
25#include <linux/rcupdate.h>
26#include "input-compat.h"
27#include "input-poller.h"
28
29MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
30MODULE_DESCRIPTION("Input core");
31MODULE_LICENSE("GPL");
32
33#define INPUT_MAX_CHAR_DEVICES 1024
34#define INPUT_FIRST_DYNAMIC_DEV 256
35static DEFINE_IDA(input_ida);
36
37static LIST_HEAD(input_dev_list);
38static LIST_HEAD(input_handler_list);
39
40/*
41 * input_mutex protects access to both input_dev_list and input_handler_list.
42 * This also causes input_[un]register_device and input_[un]register_handler
43 * be mutually exclusive which simplifies locking in drivers implementing
44 * input handlers.
45 */
46static DEFINE_MUTEX(input_mutex);
47
48static const struct input_value input_value_sync = { EV_SYN, SYN_REPORT, 1 };
49
50static inline int is_event_supported(unsigned int code,
51 unsigned long *bm, unsigned int max)
52{
53 return code <= max && test_bit(code, bm);
54}
55
56static int input_defuzz_abs_event(int value, int old_val, int fuzz)
57{
58 if (fuzz) {
59 if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
60 return old_val;
61
62 if (value > old_val - fuzz && value < old_val + fuzz)
63 return (old_val * 3 + value) / 4;
64
65 if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
66 return (old_val + value) / 2;
67 }
68
69 return value;
70}
71
72static void input_start_autorepeat(struct input_dev *dev, int code)
73{
74 if (test_bit(EV_REP, dev->evbit) &&
75 dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
76 dev->timer.function) {
77 dev->repeat_key = code;
78 mod_timer(&dev->timer,
79 jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
80 }
81}
82
83static void input_stop_autorepeat(struct input_dev *dev)
84{
85 del_timer(&dev->timer);
86}
87
88/*
89 * Pass event first through all filters and then, if event has not been
90 * filtered out, through all open handles. This function is called with
91 * dev->event_lock held and interrupts disabled.
92 */
93static unsigned int input_to_handler(struct input_handle *handle,
94 struct input_value *vals, unsigned int count)
95{
96 struct input_handler *handler = handle->handler;
97 struct input_value *end = vals;
98 struct input_value *v;
99
100 if (handler->filter) {
101 for (v = vals; v != vals + count; v++) {
102 if (handler->filter(handle, v->type, v->code, v->value))
103 continue;
104 if (end != v)
105 *end = *v;
106 end++;
107 }
108 count = end - vals;
109 }
110
111 if (!count)
112 return 0;
113
114 if (handler->events)
115 handler->events(handle, vals, count);
116 else if (handler->event)
117 for (v = vals; v != vals + count; v++)
118 handler->event(handle, v->type, v->code, v->value);
119
120 return count;
121}
122
123/*
124 * Pass values first through all filters and then, if event has not been
125 * filtered out, through all open handles. This function is called with
126 * dev->event_lock held and interrupts disabled.
127 */
128static void input_pass_values(struct input_dev *dev,
129 struct input_value *vals, unsigned int count)
130{
131 struct input_handle *handle;
132 struct input_value *v;
133
134 if (!count)
135 return;
136
137 rcu_read_lock();
138
139 handle = rcu_dereference(dev->grab);
140 if (handle) {
141 count = input_to_handler(handle, vals, count);
142 } else {
143 list_for_each_entry_rcu(handle, &dev->h_list, d_node)
144 if (handle->open) {
145 count = input_to_handler(handle, vals, count);
146 if (!count)
147 break;
148 }
149 }
150
151 rcu_read_unlock();
152
153 /* trigger auto repeat for key events */
154 if (test_bit(EV_REP, dev->evbit) && test_bit(EV_KEY, dev->evbit)) {
155 for (v = vals; v != vals + count; v++) {
156 if (v->type == EV_KEY && v->value != 2) {
157 if (v->value)
158 input_start_autorepeat(dev, v->code);
159 else
160 input_stop_autorepeat(dev);
161 }
162 }
163 }
164}
165
166static void input_pass_event(struct input_dev *dev,
167 unsigned int type, unsigned int code, int value)
168{
169 struct input_value vals[] = { { type, code, value } };
170
171 input_pass_values(dev, vals, ARRAY_SIZE(vals));
172}
173
174/*
175 * Generate software autorepeat event. Note that we take
176 * dev->event_lock here to avoid racing with input_event
177 * which may cause keys get "stuck".
178 */
179static void input_repeat_key(struct timer_list *t)
180{
181 struct input_dev *dev = from_timer(dev, t, timer);
182 unsigned long flags;
183
184 spin_lock_irqsave(&dev->event_lock, flags);
185
186 if (test_bit(dev->repeat_key, dev->key) &&
187 is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
188 struct input_value vals[] = {
189 { EV_KEY, dev->repeat_key, 2 },
190 input_value_sync
191 };
192
193 input_pass_values(dev, vals, ARRAY_SIZE(vals));
194
195 if (dev->rep[REP_PERIOD])
196 mod_timer(&dev->timer, jiffies +
197 msecs_to_jiffies(dev->rep[REP_PERIOD]));
198 }
199
200 spin_unlock_irqrestore(&dev->event_lock, flags);
201}
202
203#define INPUT_IGNORE_EVENT 0
204#define INPUT_PASS_TO_HANDLERS 1
205#define INPUT_PASS_TO_DEVICE 2
206#define INPUT_SLOT 4
207#define INPUT_FLUSH 8
208#define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
209
210static int input_handle_abs_event(struct input_dev *dev,
211 unsigned int code, int *pval)
212{
213 struct input_mt *mt = dev->mt;
214 bool is_mt_event;
215 int *pold;
216
217 if (code == ABS_MT_SLOT) {
218 /*
219 * "Stage" the event; we'll flush it later, when we
220 * get actual touch data.
221 */
222 if (mt && *pval >= 0 && *pval < mt->num_slots)
223 mt->slot = *pval;
224
225 return INPUT_IGNORE_EVENT;
226 }
227
228 is_mt_event = input_is_mt_value(code);
229
230 if (!is_mt_event) {
231 pold = &dev->absinfo[code].value;
232 } else if (mt) {
233 pold = &mt->slots[mt->slot].abs[code - ABS_MT_FIRST];
234 } else {
235 /*
236 * Bypass filtering for multi-touch events when
237 * not employing slots.
238 */
239 pold = NULL;
240 }
241
242 if (pold) {
243 *pval = input_defuzz_abs_event(*pval, *pold,
244 dev->absinfo[code].fuzz);
245 if (*pold == *pval)
246 return INPUT_IGNORE_EVENT;
247
248 *pold = *pval;
249 }
250
251 /* Flush pending "slot" event */
252 if (is_mt_event && mt && mt->slot != input_abs_get_val(dev, ABS_MT_SLOT)) {
253 input_abs_set_val(dev, ABS_MT_SLOT, mt->slot);
254 return INPUT_PASS_TO_HANDLERS | INPUT_SLOT;
255 }
256
257 return INPUT_PASS_TO_HANDLERS;
258}
259
260static int input_get_disposition(struct input_dev *dev,
261 unsigned int type, unsigned int code, int *pval)
262{
263 int disposition = INPUT_IGNORE_EVENT;
264 int value = *pval;
265
266 switch (type) {
267
268 case EV_SYN:
269 switch (code) {
270 case SYN_CONFIG:
271 disposition = INPUT_PASS_TO_ALL;
272 break;
273
274 case SYN_REPORT:
275 disposition = INPUT_PASS_TO_HANDLERS | INPUT_FLUSH;
276 break;
277 case SYN_MT_REPORT:
278 disposition = INPUT_PASS_TO_HANDLERS;
279 break;
280 }
281 break;
282
283 case EV_KEY:
284 if (is_event_supported(code, dev->keybit, KEY_MAX)) {
285
286 /* auto-repeat bypasses state updates */
287 if (value == 2) {
288 disposition = INPUT_PASS_TO_HANDLERS;
289 break;
290 }
291
292 if (!!test_bit(code, dev->key) != !!value) {
293
294 __change_bit(code, dev->key);
295 disposition = INPUT_PASS_TO_HANDLERS;
296 }
297 }
298 break;
299
300 case EV_SW:
301 if (is_event_supported(code, dev->swbit, SW_MAX) &&
302 !!test_bit(code, dev->sw) != !!value) {
303
304 __change_bit(code, dev->sw);
305 disposition = INPUT_PASS_TO_HANDLERS;
306 }
307 break;
308
309 case EV_ABS:
310 if (is_event_supported(code, dev->absbit, ABS_MAX))
311 disposition = input_handle_abs_event(dev, code, &value);
312
313 break;
314
315 case EV_REL:
316 if (is_event_supported(code, dev->relbit, REL_MAX) && value)
317 disposition = INPUT_PASS_TO_HANDLERS;
318
319 break;
320
321 case EV_MSC:
322 if (is_event_supported(code, dev->mscbit, MSC_MAX))
323 disposition = INPUT_PASS_TO_ALL;
324
325 break;
326
327 case EV_LED:
328 if (is_event_supported(code, dev->ledbit, LED_MAX) &&
329 !!test_bit(code, dev->led) != !!value) {
330
331 __change_bit(code, dev->led);
332 disposition = INPUT_PASS_TO_ALL;
333 }
334 break;
335
336 case EV_SND:
337 if (is_event_supported(code, dev->sndbit, SND_MAX)) {
338
339 if (!!test_bit(code, dev->snd) != !!value)
340 __change_bit(code, dev->snd);
341 disposition = INPUT_PASS_TO_ALL;
342 }
343 break;
344
345 case EV_REP:
346 if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
347 dev->rep[code] = value;
348 disposition = INPUT_PASS_TO_ALL;
349 }
350 break;
351
352 case EV_FF:
353 if (value >= 0)
354 disposition = INPUT_PASS_TO_ALL;
355 break;
356
357 case EV_PWR:
358 disposition = INPUT_PASS_TO_ALL;
359 break;
360 }
361
362 *pval = value;
363 return disposition;
364}
365
366static void input_handle_event(struct input_dev *dev,
367 unsigned int type, unsigned int code, int value)
368{
369 int disposition = input_get_disposition(dev, type, code, &value);
370
371 if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN)
372 add_input_randomness(type, code, value);
373
374 if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
375 dev->event(dev, type, code, value);
376
377 if (!dev->vals)
378 return;
379
380 if (disposition & INPUT_PASS_TO_HANDLERS) {
381 struct input_value *v;
382
383 if (disposition & INPUT_SLOT) {
384 v = &dev->vals[dev->num_vals++];
385 v->type = EV_ABS;
386 v->code = ABS_MT_SLOT;
387 v->value = dev->mt->slot;
388 }
389
390 v = &dev->vals[dev->num_vals++];
391 v->type = type;
392 v->code = code;
393 v->value = value;
394 }
395
396 if (disposition & INPUT_FLUSH) {
397 if (dev->num_vals >= 2)
398 input_pass_values(dev, dev->vals, dev->num_vals);
399 dev->num_vals = 0;
400 /*
401 * Reset the timestamp on flush so we won't end up
402 * with a stale one. Note we only need to reset the
403 * monolithic one as we use its presence when deciding
404 * whether to generate a synthetic timestamp.
405 */
406 dev->timestamp[INPUT_CLK_MONO] = ktime_set(0, 0);
407 } else if (dev->num_vals >= dev->max_vals - 2) {
408 dev->vals[dev->num_vals++] = input_value_sync;
409 input_pass_values(dev, dev->vals, dev->num_vals);
410 dev->num_vals = 0;
411 }
412
413}
414
415/**
416 * input_event() - report new input event
417 * @dev: device that generated the event
418 * @type: type of the event
419 * @code: event code
420 * @value: value of the event
421 *
422 * This function should be used by drivers implementing various input
423 * devices to report input events. See also input_inject_event().
424 *
425 * NOTE: input_event() may be safely used right after input device was
426 * allocated with input_allocate_device(), even before it is registered
427 * with input_register_device(), but the event will not reach any of the
428 * input handlers. Such early invocation of input_event() may be used
429 * to 'seed' initial state of a switch or initial position of absolute
430 * axis, etc.
431 */
432void input_event(struct input_dev *dev,
433 unsigned int type, unsigned int code, int value)
434{
435 unsigned long flags;
436
437 if (is_event_supported(type, dev->evbit, EV_MAX)) {
438
439 spin_lock_irqsave(&dev->event_lock, flags);
440 input_handle_event(dev, type, code, value);
441 spin_unlock_irqrestore(&dev->event_lock, flags);
442 }
443}
444EXPORT_SYMBOL(input_event);
445
446/**
447 * input_inject_event() - send input event from input handler
448 * @handle: input handle to send event through
449 * @type: type of the event
450 * @code: event code
451 * @value: value of the event
452 *
453 * Similar to input_event() but will ignore event if device is
454 * "grabbed" and handle injecting event is not the one that owns
455 * the device.
456 */
457void input_inject_event(struct input_handle *handle,
458 unsigned int type, unsigned int code, int value)
459{
460 struct input_dev *dev = handle->dev;
461 struct input_handle *grab;
462 unsigned long flags;
463
464 if (is_event_supported(type, dev->evbit, EV_MAX)) {
465 spin_lock_irqsave(&dev->event_lock, flags);
466
467 rcu_read_lock();
468 grab = rcu_dereference(dev->grab);
469 if (!grab || grab == handle)
470 input_handle_event(dev, type, code, value);
471 rcu_read_unlock();
472
473 spin_unlock_irqrestore(&dev->event_lock, flags);
474 }
475}
476EXPORT_SYMBOL(input_inject_event);
477
478/**
479 * input_alloc_absinfo - allocates array of input_absinfo structs
480 * @dev: the input device emitting absolute events
481 *
482 * If the absinfo struct the caller asked for is already allocated, this
483 * functions will not do anything.
484 */
485void input_alloc_absinfo(struct input_dev *dev)
486{
487 if (dev->absinfo)
488 return;
489
490 dev->absinfo = kcalloc(ABS_CNT, sizeof(*dev->absinfo), GFP_KERNEL);
491 if (!dev->absinfo) {
492 dev_err(dev->dev.parent ?: &dev->dev,
493 "%s: unable to allocate memory\n", __func__);
494 /*
495 * We will handle this allocation failure in
496 * input_register_device() when we refuse to register input
497 * device with ABS bits but without absinfo.
498 */
499 }
500}
501EXPORT_SYMBOL(input_alloc_absinfo);
502
503void input_set_abs_params(struct input_dev *dev, unsigned int axis,
504 int min, int max, int fuzz, int flat)
505{
506 struct input_absinfo *absinfo;
507
508 input_alloc_absinfo(dev);
509 if (!dev->absinfo)
510 return;
511
512 absinfo = &dev->absinfo[axis];
513 absinfo->minimum = min;
514 absinfo->maximum = max;
515 absinfo->fuzz = fuzz;
516 absinfo->flat = flat;
517
518 __set_bit(EV_ABS, dev->evbit);
519 __set_bit(axis, dev->absbit);
520}
521EXPORT_SYMBOL(input_set_abs_params);
522
523
524/**
525 * input_grab_device - grabs device for exclusive use
526 * @handle: input handle that wants to own the device
527 *
528 * When a device is grabbed by an input handle all events generated by
529 * the device are delivered only to this handle. Also events injected
530 * by other input handles are ignored while device is grabbed.
531 */
532int input_grab_device(struct input_handle *handle)
533{
534 struct input_dev *dev = handle->dev;
535 int retval;
536
537 retval = mutex_lock_interruptible(&dev->mutex);
538 if (retval)
539 return retval;
540
541 if (dev->grab) {
542 retval = -EBUSY;
543 goto out;
544 }
545
546 rcu_assign_pointer(dev->grab, handle);
547
548 out:
549 mutex_unlock(&dev->mutex);
550 return retval;
551}
552EXPORT_SYMBOL(input_grab_device);
553
554static void __input_release_device(struct input_handle *handle)
555{
556 struct input_dev *dev = handle->dev;
557 struct input_handle *grabber;
558
559 grabber = rcu_dereference_protected(dev->grab,
560 lockdep_is_held(&dev->mutex));
561 if (grabber == handle) {
562 rcu_assign_pointer(dev->grab, NULL);
563 /* Make sure input_pass_event() notices that grab is gone */
564 synchronize_rcu();
565
566 list_for_each_entry(handle, &dev->h_list, d_node)
567 if (handle->open && handle->handler->start)
568 handle->handler->start(handle);
569 }
570}
571
572/**
573 * input_release_device - release previously grabbed device
574 * @handle: input handle that owns the device
575 *
576 * Releases previously grabbed device so that other input handles can
577 * start receiving input events. Upon release all handlers attached
578 * to the device have their start() method called so they have a change
579 * to synchronize device state with the rest of the system.
580 */
581void input_release_device(struct input_handle *handle)
582{
583 struct input_dev *dev = handle->dev;
584
585 mutex_lock(&dev->mutex);
586 __input_release_device(handle);
587 mutex_unlock(&dev->mutex);
588}
589EXPORT_SYMBOL(input_release_device);
590
591/**
592 * input_open_device - open input device
593 * @handle: handle through which device is being accessed
594 *
595 * This function should be called by input handlers when they
596 * want to start receive events from given input device.
597 */
598int input_open_device(struct input_handle *handle)
599{
600 struct input_dev *dev = handle->dev;
601 int retval;
602
603 retval = mutex_lock_interruptible(&dev->mutex);
604 if (retval)
605 return retval;
606
607 if (dev->going_away) {
608 retval = -ENODEV;
609 goto out;
610 }
611
612 handle->open++;
613
614 if (dev->users++) {
615 /*
616 * Device is already opened, so we can exit immediately and
617 * report success.
618 */
619 goto out;
620 }
621
622 if (dev->open) {
623 retval = dev->open(dev);
624 if (retval) {
625 dev->users--;
626 handle->open--;
627 /*
628 * Make sure we are not delivering any more events
629 * through this handle
630 */
631 synchronize_rcu();
632 goto out;
633 }
634 }
635
636 if (dev->poller)
637 input_dev_poller_start(dev->poller);
638
639 out:
640 mutex_unlock(&dev->mutex);
641 return retval;
642}
643EXPORT_SYMBOL(input_open_device);
644
645int input_flush_device(struct input_handle *handle, struct file *file)
646{
647 struct input_dev *dev = handle->dev;
648 int retval;
649
650 retval = mutex_lock_interruptible(&dev->mutex);
651 if (retval)
652 return retval;
653
654 if (dev->flush)
655 retval = dev->flush(dev, file);
656
657 mutex_unlock(&dev->mutex);
658 return retval;
659}
660EXPORT_SYMBOL(input_flush_device);
661
662/**
663 * input_close_device - close input device
664 * @handle: handle through which device is being accessed
665 *
666 * This function should be called by input handlers when they
667 * want to stop receive events from given input device.
668 */
669void input_close_device(struct input_handle *handle)
670{
671 struct input_dev *dev = handle->dev;
672
673 mutex_lock(&dev->mutex);
674
675 __input_release_device(handle);
676
677 if (!--dev->users) {
678 if (dev->poller)
679 input_dev_poller_stop(dev->poller);
680
681 if (dev->close)
682 dev->close(dev);
683 }
684
685 if (!--handle->open) {
686 /*
687 * synchronize_rcu() makes sure that input_pass_event()
688 * completed and that no more input events are delivered
689 * through this handle
690 */
691 synchronize_rcu();
692 }
693
694 mutex_unlock(&dev->mutex);
695}
696EXPORT_SYMBOL(input_close_device);
697
698/*
699 * Simulate keyup events for all keys that are marked as pressed.
700 * The function must be called with dev->event_lock held.
701 */
702static void input_dev_release_keys(struct input_dev *dev)
703{
704 bool need_sync = false;
705 int code;
706
707 if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
708 for_each_set_bit(code, dev->key, KEY_CNT) {
709 input_pass_event(dev, EV_KEY, code, 0);
710 need_sync = true;
711 }
712
713 if (need_sync)
714 input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
715
716 memset(dev->key, 0, sizeof(dev->key));
717 }
718}
719
720/*
721 * Prepare device for unregistering
722 */
723static void input_disconnect_device(struct input_dev *dev)
724{
725 struct input_handle *handle;
726
727 /*
728 * Mark device as going away. Note that we take dev->mutex here
729 * not to protect access to dev->going_away but rather to ensure
730 * that there are no threads in the middle of input_open_device()
731 */
732 mutex_lock(&dev->mutex);
733 dev->going_away = true;
734 mutex_unlock(&dev->mutex);
735
736 spin_lock_irq(&dev->event_lock);
737
738 /*
739 * Simulate keyup events for all pressed keys so that handlers
740 * are not left with "stuck" keys. The driver may continue
741 * generate events even after we done here but they will not
742 * reach any handlers.
743 */
744 input_dev_release_keys(dev);
745
746 list_for_each_entry(handle, &dev->h_list, d_node)
747 handle->open = 0;
748
749 spin_unlock_irq(&dev->event_lock);
750}
751
752/**
753 * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry
754 * @ke: keymap entry containing scancode to be converted.
755 * @scancode: pointer to the location where converted scancode should
756 * be stored.
757 *
758 * This function is used to convert scancode stored in &struct keymap_entry
759 * into scalar form understood by legacy keymap handling methods. These
760 * methods expect scancodes to be represented as 'unsigned int'.
761 */
762int input_scancode_to_scalar(const struct input_keymap_entry *ke,
763 unsigned int *scancode)
764{
765 switch (ke->len) {
766 case 1:
767 *scancode = *((u8 *)ke->scancode);
768 break;
769
770 case 2:
771 *scancode = *((u16 *)ke->scancode);
772 break;
773
774 case 4:
775 *scancode = *((u32 *)ke->scancode);
776 break;
777
778 default:
779 return -EINVAL;
780 }
781
782 return 0;
783}
784EXPORT_SYMBOL(input_scancode_to_scalar);
785
786/*
787 * Those routines handle the default case where no [gs]etkeycode() is
788 * defined. In this case, an array indexed by the scancode is used.
789 */
790
791static unsigned int input_fetch_keycode(struct input_dev *dev,
792 unsigned int index)
793{
794 switch (dev->keycodesize) {
795 case 1:
796 return ((u8 *)dev->keycode)[index];
797
798 case 2:
799 return ((u16 *)dev->keycode)[index];
800
801 default:
802 return ((u32 *)dev->keycode)[index];
803 }
804}
805
806static int input_default_getkeycode(struct input_dev *dev,
807 struct input_keymap_entry *ke)
808{
809 unsigned int index;
810 int error;
811
812 if (!dev->keycodesize)
813 return -EINVAL;
814
815 if (ke->flags & INPUT_KEYMAP_BY_INDEX)
816 index = ke->index;
817 else {
818 error = input_scancode_to_scalar(ke, &index);
819 if (error)
820 return error;
821 }
822
823 if (index >= dev->keycodemax)
824 return -EINVAL;
825
826 ke->keycode = input_fetch_keycode(dev, index);
827 ke->index = index;
828 ke->len = sizeof(index);
829 memcpy(ke->scancode, &index, sizeof(index));
830
831 return 0;
832}
833
834static int input_default_setkeycode(struct input_dev *dev,
835 const struct input_keymap_entry *ke,
836 unsigned int *old_keycode)
837{
838 unsigned int index;
839 int error;
840 int i;
841
842 if (!dev->keycodesize)
843 return -EINVAL;
844
845 if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
846 index = ke->index;
847 } else {
848 error = input_scancode_to_scalar(ke, &index);
849 if (error)
850 return error;
851 }
852
853 if (index >= dev->keycodemax)
854 return -EINVAL;
855
856 if (dev->keycodesize < sizeof(ke->keycode) &&
857 (ke->keycode >> (dev->keycodesize * 8)))
858 return -EINVAL;
859
860 switch (dev->keycodesize) {
861 case 1: {
862 u8 *k = (u8 *)dev->keycode;
863 *old_keycode = k[index];
864 k[index] = ke->keycode;
865 break;
866 }
867 case 2: {
868 u16 *k = (u16 *)dev->keycode;
869 *old_keycode = k[index];
870 k[index] = ke->keycode;
871 break;
872 }
873 default: {
874 u32 *k = (u32 *)dev->keycode;
875 *old_keycode = k[index];
876 k[index] = ke->keycode;
877 break;
878 }
879 }
880
881 __clear_bit(*old_keycode, dev->keybit);
882 __set_bit(ke->keycode, dev->keybit);
883
884 for (i = 0; i < dev->keycodemax; i++) {
885 if (input_fetch_keycode(dev, i) == *old_keycode) {
886 __set_bit(*old_keycode, dev->keybit);
887 break; /* Setting the bit twice is useless, so break */
888 }
889 }
890
891 return 0;
892}
893
894/**
895 * input_get_keycode - retrieve keycode currently mapped to a given scancode
896 * @dev: input device which keymap is being queried
897 * @ke: keymap entry
898 *
899 * This function should be called by anyone interested in retrieving current
900 * keymap. Presently evdev handlers use it.
901 */
902int input_get_keycode(struct input_dev *dev, struct input_keymap_entry *ke)
903{
904 unsigned long flags;
905 int retval;
906
907 spin_lock_irqsave(&dev->event_lock, flags);
908 retval = dev->getkeycode(dev, ke);
909 spin_unlock_irqrestore(&dev->event_lock, flags);
910
911 return retval;
912}
913EXPORT_SYMBOL(input_get_keycode);
914
915/**
916 * input_set_keycode - attribute a keycode to a given scancode
917 * @dev: input device which keymap is being updated
918 * @ke: new keymap entry
919 *
920 * This function should be called by anyone needing to update current
921 * keymap. Presently keyboard and evdev handlers use it.
922 */
923int input_set_keycode(struct input_dev *dev,
924 const struct input_keymap_entry *ke)
925{
926 unsigned long flags;
927 unsigned int old_keycode;
928 int retval;
929
930 if (ke->keycode > KEY_MAX)
931 return -EINVAL;
932
933 spin_lock_irqsave(&dev->event_lock, flags);
934
935 retval = dev->setkeycode(dev, ke, &old_keycode);
936 if (retval)
937 goto out;
938
939 /* Make sure KEY_RESERVED did not get enabled. */
940 __clear_bit(KEY_RESERVED, dev->keybit);
941
942 /*
943 * Simulate keyup event if keycode is not present
944 * in the keymap anymore
945 */
946 if (test_bit(EV_KEY, dev->evbit) &&
947 !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
948 __test_and_clear_bit(old_keycode, dev->key)) {
949 struct input_value vals[] = {
950 { EV_KEY, old_keycode, 0 },
951 input_value_sync
952 };
953
954 input_pass_values(dev, vals, ARRAY_SIZE(vals));
955 }
956
957 out:
958 spin_unlock_irqrestore(&dev->event_lock, flags);
959
960 return retval;
961}
962EXPORT_SYMBOL(input_set_keycode);
963
964bool input_match_device_id(const struct input_dev *dev,
965 const struct input_device_id *id)
966{
967 if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
968 if (id->bustype != dev->id.bustype)
969 return false;
970
971 if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
972 if (id->vendor != dev->id.vendor)
973 return false;
974
975 if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
976 if (id->product != dev->id.product)
977 return false;
978
979 if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
980 if (id->version != dev->id.version)
981 return false;
982
983 if (!bitmap_subset(id->evbit, dev->evbit, EV_MAX) ||
984 !bitmap_subset(id->keybit, dev->keybit, KEY_MAX) ||
985 !bitmap_subset(id->relbit, dev->relbit, REL_MAX) ||
986 !bitmap_subset(id->absbit, dev->absbit, ABS_MAX) ||
987 !bitmap_subset(id->mscbit, dev->mscbit, MSC_MAX) ||
988 !bitmap_subset(id->ledbit, dev->ledbit, LED_MAX) ||
989 !bitmap_subset(id->sndbit, dev->sndbit, SND_MAX) ||
990 !bitmap_subset(id->ffbit, dev->ffbit, FF_MAX) ||
991 !bitmap_subset(id->swbit, dev->swbit, SW_MAX) ||
992 !bitmap_subset(id->propbit, dev->propbit, INPUT_PROP_MAX)) {
993 return false;
994 }
995
996 return true;
997}
998EXPORT_SYMBOL(input_match_device_id);
999
1000static const struct input_device_id *input_match_device(struct input_handler *handler,
1001 struct input_dev *dev)
1002{
1003 const struct input_device_id *id;
1004
1005 for (id = handler->id_table; id->flags || id->driver_info; id++) {
1006 if (input_match_device_id(dev, id) &&
1007 (!handler->match || handler->match(handler, dev))) {
1008 return id;
1009 }
1010 }
1011
1012 return NULL;
1013}
1014
1015static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
1016{
1017 const struct input_device_id *id;
1018 int error;
1019
1020 id = input_match_device(handler, dev);
1021 if (!id)
1022 return -ENODEV;
1023
1024 error = handler->connect(handler, dev, id);
1025 if (error && error != -ENODEV)
1026 pr_err("failed to attach handler %s to device %s, error: %d\n",
1027 handler->name, kobject_name(&dev->dev.kobj), error);
1028
1029 return error;
1030}
1031
1032#ifdef CONFIG_COMPAT
1033
1034static int input_bits_to_string(char *buf, int buf_size,
1035 unsigned long bits, bool skip_empty)
1036{
1037 int len = 0;
1038
1039 if (in_compat_syscall()) {
1040 u32 dword = bits >> 32;
1041 if (dword || !skip_empty)
1042 len += snprintf(buf, buf_size, "%x ", dword);
1043
1044 dword = bits & 0xffffffffUL;
1045 if (dword || !skip_empty || len)
1046 len += snprintf(buf + len, max(buf_size - len, 0),
1047 "%x", dword);
1048 } else {
1049 if (bits || !skip_empty)
1050 len += snprintf(buf, buf_size, "%lx", bits);
1051 }
1052
1053 return len;
1054}
1055
1056#else /* !CONFIG_COMPAT */
1057
1058static int input_bits_to_string(char *buf, int buf_size,
1059 unsigned long bits, bool skip_empty)
1060{
1061 return bits || !skip_empty ?
1062 snprintf(buf, buf_size, "%lx", bits) : 0;
1063}
1064
1065#endif
1066
1067#ifdef CONFIG_PROC_FS
1068
1069static struct proc_dir_entry *proc_bus_input_dir;
1070static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
1071static int input_devices_state;
1072
1073static inline void input_wakeup_procfs_readers(void)
1074{
1075 input_devices_state++;
1076 wake_up(&input_devices_poll_wait);
1077}
1078
1079static __poll_t input_proc_devices_poll(struct file *file, poll_table *wait)
1080{
1081 poll_wait(file, &input_devices_poll_wait, wait);
1082 if (file->f_version != input_devices_state) {
1083 file->f_version = input_devices_state;
1084 return EPOLLIN | EPOLLRDNORM;
1085 }
1086
1087 return 0;
1088}
1089
1090union input_seq_state {
1091 struct {
1092 unsigned short pos;
1093 bool mutex_acquired;
1094 };
1095 void *p;
1096};
1097
1098static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
1099{
1100 union input_seq_state *state = (union input_seq_state *)&seq->private;
1101 int error;
1102
1103 /* We need to fit into seq->private pointer */
1104 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1105
1106 error = mutex_lock_interruptible(&input_mutex);
1107 if (error) {
1108 state->mutex_acquired = false;
1109 return ERR_PTR(error);
1110 }
1111
1112 state->mutex_acquired = true;
1113
1114 return seq_list_start(&input_dev_list, *pos);
1115}
1116
1117static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1118{
1119 return seq_list_next(v, &input_dev_list, pos);
1120}
1121
1122static void input_seq_stop(struct seq_file *seq, void *v)
1123{
1124 union input_seq_state *state = (union input_seq_state *)&seq->private;
1125
1126 if (state->mutex_acquired)
1127 mutex_unlock(&input_mutex);
1128}
1129
1130static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
1131 unsigned long *bitmap, int max)
1132{
1133 int i;
1134 bool skip_empty = true;
1135 char buf[18];
1136
1137 seq_printf(seq, "B: %s=", name);
1138
1139 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1140 if (input_bits_to_string(buf, sizeof(buf),
1141 bitmap[i], skip_empty)) {
1142 skip_empty = false;
1143 seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
1144 }
1145 }
1146
1147 /*
1148 * If no output was produced print a single 0.
1149 */
1150 if (skip_empty)
1151 seq_putc(seq, '0');
1152
1153 seq_putc(seq, '\n');
1154}
1155
1156static int input_devices_seq_show(struct seq_file *seq, void *v)
1157{
1158 struct input_dev *dev = container_of(v, struct input_dev, node);
1159 const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1160 struct input_handle *handle;
1161
1162 seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
1163 dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
1164
1165 seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
1166 seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
1167 seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
1168 seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
1169 seq_puts(seq, "H: Handlers=");
1170
1171 list_for_each_entry(handle, &dev->h_list, d_node)
1172 seq_printf(seq, "%s ", handle->name);
1173 seq_putc(seq, '\n');
1174
1175 input_seq_print_bitmap(seq, "PROP", dev->propbit, INPUT_PROP_MAX);
1176
1177 input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
1178 if (test_bit(EV_KEY, dev->evbit))
1179 input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
1180 if (test_bit(EV_REL, dev->evbit))
1181 input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
1182 if (test_bit(EV_ABS, dev->evbit))
1183 input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
1184 if (test_bit(EV_MSC, dev->evbit))
1185 input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
1186 if (test_bit(EV_LED, dev->evbit))
1187 input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
1188 if (test_bit(EV_SND, dev->evbit))
1189 input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
1190 if (test_bit(EV_FF, dev->evbit))
1191 input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
1192 if (test_bit(EV_SW, dev->evbit))
1193 input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
1194
1195 seq_putc(seq, '\n');
1196
1197 kfree(path);
1198 return 0;
1199}
1200
1201static const struct seq_operations input_devices_seq_ops = {
1202 .start = input_devices_seq_start,
1203 .next = input_devices_seq_next,
1204 .stop = input_seq_stop,
1205 .show = input_devices_seq_show,
1206};
1207
1208static int input_proc_devices_open(struct inode *inode, struct file *file)
1209{
1210 return seq_open(file, &input_devices_seq_ops);
1211}
1212
1213static const struct file_operations input_devices_fileops = {
1214 .owner = THIS_MODULE,
1215 .open = input_proc_devices_open,
1216 .poll = input_proc_devices_poll,
1217 .read = seq_read,
1218 .llseek = seq_lseek,
1219 .release = seq_release,
1220};
1221
1222static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
1223{
1224 union input_seq_state *state = (union input_seq_state *)&seq->private;
1225 int error;
1226
1227 /* We need to fit into seq->private pointer */
1228 BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1229
1230 error = mutex_lock_interruptible(&input_mutex);
1231 if (error) {
1232 state->mutex_acquired = false;
1233 return ERR_PTR(error);
1234 }
1235
1236 state->mutex_acquired = true;
1237 state->pos = *pos;
1238
1239 return seq_list_start(&input_handler_list, *pos);
1240}
1241
1242static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1243{
1244 union input_seq_state *state = (union input_seq_state *)&seq->private;
1245
1246 state->pos = *pos + 1;
1247 return seq_list_next(v, &input_handler_list, pos);
1248}
1249
1250static int input_handlers_seq_show(struct seq_file *seq, void *v)
1251{
1252 struct input_handler *handler = container_of(v, struct input_handler, node);
1253 union input_seq_state *state = (union input_seq_state *)&seq->private;
1254
1255 seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
1256 if (handler->filter)
1257 seq_puts(seq, " (filter)");
1258 if (handler->legacy_minors)
1259 seq_printf(seq, " Minor=%d", handler->minor);
1260 seq_putc(seq, '\n');
1261
1262 return 0;
1263}
1264
1265static const struct seq_operations input_handlers_seq_ops = {
1266 .start = input_handlers_seq_start,
1267 .next = input_handlers_seq_next,
1268 .stop = input_seq_stop,
1269 .show = input_handlers_seq_show,
1270};
1271
1272static int input_proc_handlers_open(struct inode *inode, struct file *file)
1273{
1274 return seq_open(file, &input_handlers_seq_ops);
1275}
1276
1277static const struct file_operations input_handlers_fileops = {
1278 .owner = THIS_MODULE,
1279 .open = input_proc_handlers_open,
1280 .read = seq_read,
1281 .llseek = seq_lseek,
1282 .release = seq_release,
1283};
1284
1285static int __init input_proc_init(void)
1286{
1287 struct proc_dir_entry *entry;
1288
1289 proc_bus_input_dir = proc_mkdir("bus/input", NULL);
1290 if (!proc_bus_input_dir)
1291 return -ENOMEM;
1292
1293 entry = proc_create("devices", 0, proc_bus_input_dir,
1294 &input_devices_fileops);
1295 if (!entry)
1296 goto fail1;
1297
1298 entry = proc_create("handlers", 0, proc_bus_input_dir,
1299 &input_handlers_fileops);
1300 if (!entry)
1301 goto fail2;
1302
1303 return 0;
1304
1305 fail2: remove_proc_entry("devices", proc_bus_input_dir);
1306 fail1: remove_proc_entry("bus/input", NULL);
1307 return -ENOMEM;
1308}
1309
1310static void input_proc_exit(void)
1311{
1312 remove_proc_entry("devices", proc_bus_input_dir);
1313 remove_proc_entry("handlers", proc_bus_input_dir);
1314 remove_proc_entry("bus/input", NULL);
1315}
1316
1317#else /* !CONFIG_PROC_FS */
1318static inline void input_wakeup_procfs_readers(void) { }
1319static inline int input_proc_init(void) { return 0; }
1320static inline void input_proc_exit(void) { }
1321#endif
1322
1323#define INPUT_DEV_STRING_ATTR_SHOW(name) \
1324static ssize_t input_dev_show_##name(struct device *dev, \
1325 struct device_attribute *attr, \
1326 char *buf) \
1327{ \
1328 struct input_dev *input_dev = to_input_dev(dev); \
1329 \
1330 return scnprintf(buf, PAGE_SIZE, "%s\n", \
1331 input_dev->name ? input_dev->name : ""); \
1332} \
1333static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1334
1335INPUT_DEV_STRING_ATTR_SHOW(name);
1336INPUT_DEV_STRING_ATTR_SHOW(phys);
1337INPUT_DEV_STRING_ATTR_SHOW(uniq);
1338
1339static int input_print_modalias_bits(char *buf, int size,
1340 char name, unsigned long *bm,
1341 unsigned int min_bit, unsigned int max_bit)
1342{
1343 int len = 0, i;
1344
1345 len += snprintf(buf, max(size, 0), "%c", name);
1346 for (i = min_bit; i < max_bit; i++)
1347 if (bm[BIT_WORD(i)] & BIT_MASK(i))
1348 len += snprintf(buf + len, max(size - len, 0), "%X,", i);
1349 return len;
1350}
1351
1352static int input_print_modalias(char *buf, int size, struct input_dev *id,
1353 int add_cr)
1354{
1355 int len;
1356
1357 len = snprintf(buf, max(size, 0),
1358 "input:b%04Xv%04Xp%04Xe%04X-",
1359 id->id.bustype, id->id.vendor,
1360 id->id.product, id->id.version);
1361
1362 len += input_print_modalias_bits(buf + len, size - len,
1363 'e', id->evbit, 0, EV_MAX);
1364 len += input_print_modalias_bits(buf + len, size - len,
1365 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1366 len += input_print_modalias_bits(buf + len, size - len,
1367 'r', id->relbit, 0, REL_MAX);
1368 len += input_print_modalias_bits(buf + len, size - len,
1369 'a', id->absbit, 0, ABS_MAX);
1370 len += input_print_modalias_bits(buf + len, size - len,
1371 'm', id->mscbit, 0, MSC_MAX);
1372 len += input_print_modalias_bits(buf + len, size - len,
1373 'l', id->ledbit, 0, LED_MAX);
1374 len += input_print_modalias_bits(buf + len, size - len,
1375 's', id->sndbit, 0, SND_MAX);
1376 len += input_print_modalias_bits(buf + len, size - len,
1377 'f', id->ffbit, 0, FF_MAX);
1378 len += input_print_modalias_bits(buf + len, size - len,
1379 'w', id->swbit, 0, SW_MAX);
1380
1381 if (add_cr)
1382 len += snprintf(buf + len, max(size - len, 0), "\n");
1383
1384 return len;
1385}
1386
1387static ssize_t input_dev_show_modalias(struct device *dev,
1388 struct device_attribute *attr,
1389 char *buf)
1390{
1391 struct input_dev *id = to_input_dev(dev);
1392 ssize_t len;
1393
1394 len = input_print_modalias(buf, PAGE_SIZE, id, 1);
1395
1396 return min_t(int, len, PAGE_SIZE);
1397}
1398static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1399
1400static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1401 int max, int add_cr);
1402
1403static ssize_t input_dev_show_properties(struct device *dev,
1404 struct device_attribute *attr,
1405 char *buf)
1406{
1407 struct input_dev *input_dev = to_input_dev(dev);
1408 int len = input_print_bitmap(buf, PAGE_SIZE, input_dev->propbit,
1409 INPUT_PROP_MAX, true);
1410 return min_t(int, len, PAGE_SIZE);
1411}
1412static DEVICE_ATTR(properties, S_IRUGO, input_dev_show_properties, NULL);
1413
1414static struct attribute *input_dev_attrs[] = {
1415 &dev_attr_name.attr,
1416 &dev_attr_phys.attr,
1417 &dev_attr_uniq.attr,
1418 &dev_attr_modalias.attr,
1419 &dev_attr_properties.attr,
1420 NULL
1421};
1422
1423static const struct attribute_group input_dev_attr_group = {
1424 .attrs = input_dev_attrs,
1425};
1426
1427#define INPUT_DEV_ID_ATTR(name) \
1428static ssize_t input_dev_show_id_##name(struct device *dev, \
1429 struct device_attribute *attr, \
1430 char *buf) \
1431{ \
1432 struct input_dev *input_dev = to_input_dev(dev); \
1433 return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \
1434} \
1435static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1436
1437INPUT_DEV_ID_ATTR(bustype);
1438INPUT_DEV_ID_ATTR(vendor);
1439INPUT_DEV_ID_ATTR(product);
1440INPUT_DEV_ID_ATTR(version);
1441
1442static struct attribute *input_dev_id_attrs[] = {
1443 &dev_attr_bustype.attr,
1444 &dev_attr_vendor.attr,
1445 &dev_attr_product.attr,
1446 &dev_attr_version.attr,
1447 NULL
1448};
1449
1450static const struct attribute_group input_dev_id_attr_group = {
1451 .name = "id",
1452 .attrs = input_dev_id_attrs,
1453};
1454
1455static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1456 int max, int add_cr)
1457{
1458 int i;
1459 int len = 0;
1460 bool skip_empty = true;
1461
1462 for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1463 len += input_bits_to_string(buf + len, max(buf_size - len, 0),
1464 bitmap[i], skip_empty);
1465 if (len) {
1466 skip_empty = false;
1467 if (i > 0)
1468 len += snprintf(buf + len, max(buf_size - len, 0), " ");
1469 }
1470 }
1471
1472 /*
1473 * If no output was produced print a single 0.
1474 */
1475 if (len == 0)
1476 len = snprintf(buf, buf_size, "%d", 0);
1477
1478 if (add_cr)
1479 len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1480
1481 return len;
1482}
1483
1484#define INPUT_DEV_CAP_ATTR(ev, bm) \
1485static ssize_t input_dev_show_cap_##bm(struct device *dev, \
1486 struct device_attribute *attr, \
1487 char *buf) \
1488{ \
1489 struct input_dev *input_dev = to_input_dev(dev); \
1490 int len = input_print_bitmap(buf, PAGE_SIZE, \
1491 input_dev->bm##bit, ev##_MAX, \
1492 true); \
1493 return min_t(int, len, PAGE_SIZE); \
1494} \
1495static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1496
1497INPUT_DEV_CAP_ATTR(EV, ev);
1498INPUT_DEV_CAP_ATTR(KEY, key);
1499INPUT_DEV_CAP_ATTR(REL, rel);
1500INPUT_DEV_CAP_ATTR(ABS, abs);
1501INPUT_DEV_CAP_ATTR(MSC, msc);
1502INPUT_DEV_CAP_ATTR(LED, led);
1503INPUT_DEV_CAP_ATTR(SND, snd);
1504INPUT_DEV_CAP_ATTR(FF, ff);
1505INPUT_DEV_CAP_ATTR(SW, sw);
1506
1507static struct attribute *input_dev_caps_attrs[] = {
1508 &dev_attr_ev.attr,
1509 &dev_attr_key.attr,
1510 &dev_attr_rel.attr,
1511 &dev_attr_abs.attr,
1512 &dev_attr_msc.attr,
1513 &dev_attr_led.attr,
1514 &dev_attr_snd.attr,
1515 &dev_attr_ff.attr,
1516 &dev_attr_sw.attr,
1517 NULL
1518};
1519
1520static const struct attribute_group input_dev_caps_attr_group = {
1521 .name = "capabilities",
1522 .attrs = input_dev_caps_attrs,
1523};
1524
1525static const struct attribute_group *input_dev_attr_groups[] = {
1526 &input_dev_attr_group,
1527 &input_dev_id_attr_group,
1528 &input_dev_caps_attr_group,
1529 &input_poller_attribute_group,
1530 NULL
1531};
1532
1533static void input_dev_release(struct device *device)
1534{
1535 struct input_dev *dev = to_input_dev(device);
1536
1537 input_ff_destroy(dev);
1538 input_mt_destroy_slots(dev);
1539 kfree(dev->poller);
1540 kfree(dev->absinfo);
1541 kfree(dev->vals);
1542 kfree(dev);
1543
1544 module_put(THIS_MODULE);
1545}
1546
1547/*
1548 * Input uevent interface - loading event handlers based on
1549 * device bitfields.
1550 */
1551static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1552 const char *name, unsigned long *bitmap, int max)
1553{
1554 int len;
1555
1556 if (add_uevent_var(env, "%s", name))
1557 return -ENOMEM;
1558
1559 len = input_print_bitmap(&env->buf[env->buflen - 1],
1560 sizeof(env->buf) - env->buflen,
1561 bitmap, max, false);
1562 if (len >= (sizeof(env->buf) - env->buflen))
1563 return -ENOMEM;
1564
1565 env->buflen += len;
1566 return 0;
1567}
1568
1569static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1570 struct input_dev *dev)
1571{
1572 int len;
1573
1574 if (add_uevent_var(env, "MODALIAS="))
1575 return -ENOMEM;
1576
1577 len = input_print_modalias(&env->buf[env->buflen - 1],
1578 sizeof(env->buf) - env->buflen,
1579 dev, 0);
1580 if (len >= (sizeof(env->buf) - env->buflen))
1581 return -ENOMEM;
1582
1583 env->buflen += len;
1584 return 0;
1585}
1586
1587#define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \
1588 do { \
1589 int err = add_uevent_var(env, fmt, val); \
1590 if (err) \
1591 return err; \
1592 } while (0)
1593
1594#define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \
1595 do { \
1596 int err = input_add_uevent_bm_var(env, name, bm, max); \
1597 if (err) \
1598 return err; \
1599 } while (0)
1600
1601#define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \
1602 do { \
1603 int err = input_add_uevent_modalias_var(env, dev); \
1604 if (err) \
1605 return err; \
1606 } while (0)
1607
1608static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1609{
1610 struct input_dev *dev = to_input_dev(device);
1611
1612 INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1613 dev->id.bustype, dev->id.vendor,
1614 dev->id.product, dev->id.version);
1615 if (dev->name)
1616 INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1617 if (dev->phys)
1618 INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1619 if (dev->uniq)
1620 INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1621
1622 INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev->propbit, INPUT_PROP_MAX);
1623
1624 INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1625 if (test_bit(EV_KEY, dev->evbit))
1626 INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1627 if (test_bit(EV_REL, dev->evbit))
1628 INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1629 if (test_bit(EV_ABS, dev->evbit))
1630 INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1631 if (test_bit(EV_MSC, dev->evbit))
1632 INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1633 if (test_bit(EV_LED, dev->evbit))
1634 INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1635 if (test_bit(EV_SND, dev->evbit))
1636 INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1637 if (test_bit(EV_FF, dev->evbit))
1638 INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1639 if (test_bit(EV_SW, dev->evbit))
1640 INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1641
1642 INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1643
1644 return 0;
1645}
1646
1647#define INPUT_DO_TOGGLE(dev, type, bits, on) \
1648 do { \
1649 int i; \
1650 bool active; \
1651 \
1652 if (!test_bit(EV_##type, dev->evbit)) \
1653 break; \
1654 \
1655 for_each_set_bit(i, dev->bits##bit, type##_CNT) { \
1656 active = test_bit(i, dev->bits); \
1657 if (!active && !on) \
1658 continue; \
1659 \
1660 dev->event(dev, EV_##type, i, on ? active : 0); \
1661 } \
1662 } while (0)
1663
1664static void input_dev_toggle(struct input_dev *dev, bool activate)
1665{
1666 if (!dev->event)
1667 return;
1668
1669 INPUT_DO_TOGGLE(dev, LED, led, activate);
1670 INPUT_DO_TOGGLE(dev, SND, snd, activate);
1671
1672 if (activate && test_bit(EV_REP, dev->evbit)) {
1673 dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
1674 dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
1675 }
1676}
1677
1678/**
1679 * input_reset_device() - reset/restore the state of input device
1680 * @dev: input device whose state needs to be reset
1681 *
1682 * This function tries to reset the state of an opened input device and
1683 * bring internal state and state if the hardware in sync with each other.
1684 * We mark all keys as released, restore LED state, repeat rate, etc.
1685 */
1686void input_reset_device(struct input_dev *dev)
1687{
1688 unsigned long flags;
1689
1690 mutex_lock(&dev->mutex);
1691 spin_lock_irqsave(&dev->event_lock, flags);
1692
1693 input_dev_toggle(dev, true);
1694 input_dev_release_keys(dev);
1695
1696 spin_unlock_irqrestore(&dev->event_lock, flags);
1697 mutex_unlock(&dev->mutex);
1698}
1699EXPORT_SYMBOL(input_reset_device);
1700
1701#ifdef CONFIG_PM_SLEEP
1702static int input_dev_suspend(struct device *dev)
1703{
1704 struct input_dev *input_dev = to_input_dev(dev);
1705
1706 spin_lock_irq(&input_dev->event_lock);
1707
1708 /*
1709 * Keys that are pressed now are unlikely to be
1710 * still pressed when we resume.
1711 */
1712 input_dev_release_keys(input_dev);
1713
1714 /* Turn off LEDs and sounds, if any are active. */
1715 input_dev_toggle(input_dev, false);
1716
1717 spin_unlock_irq(&input_dev->event_lock);
1718
1719 return 0;
1720}
1721
1722static int input_dev_resume(struct device *dev)
1723{
1724 struct input_dev *input_dev = to_input_dev(dev);
1725
1726 spin_lock_irq(&input_dev->event_lock);
1727
1728 /* Restore state of LEDs and sounds, if any were active. */
1729 input_dev_toggle(input_dev, true);
1730
1731 spin_unlock_irq(&input_dev->event_lock);
1732
1733 return 0;
1734}
1735
1736static int input_dev_freeze(struct device *dev)
1737{
1738 struct input_dev *input_dev = to_input_dev(dev);
1739
1740 spin_lock_irq(&input_dev->event_lock);
1741
1742 /*
1743 * Keys that are pressed now are unlikely to be
1744 * still pressed when we resume.
1745 */
1746 input_dev_release_keys(input_dev);
1747
1748 spin_unlock_irq(&input_dev->event_lock);
1749
1750 return 0;
1751}
1752
1753static int input_dev_poweroff(struct device *dev)
1754{
1755 struct input_dev *input_dev = to_input_dev(dev);
1756
1757 spin_lock_irq(&input_dev->event_lock);
1758
1759 /* Turn off LEDs and sounds, if any are active. */
1760 input_dev_toggle(input_dev, false);
1761
1762 spin_unlock_irq(&input_dev->event_lock);
1763
1764 return 0;
1765}
1766
1767static const struct dev_pm_ops input_dev_pm_ops = {
1768 .suspend = input_dev_suspend,
1769 .resume = input_dev_resume,
1770 .freeze = input_dev_freeze,
1771 .poweroff = input_dev_poweroff,
1772 .restore = input_dev_resume,
1773};
1774#endif /* CONFIG_PM */
1775
1776static const struct device_type input_dev_type = {
1777 .groups = input_dev_attr_groups,
1778 .release = input_dev_release,
1779 .uevent = input_dev_uevent,
1780#ifdef CONFIG_PM_SLEEP
1781 .pm = &input_dev_pm_ops,
1782#endif
1783};
1784
1785static char *input_devnode(struct device *dev, umode_t *mode)
1786{
1787 return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
1788}
1789
1790struct class input_class = {
1791 .name = "input",
1792 .devnode = input_devnode,
1793};
1794EXPORT_SYMBOL_GPL(input_class);
1795
1796/**
1797 * input_allocate_device - allocate memory for new input device
1798 *
1799 * Returns prepared struct input_dev or %NULL.
1800 *
1801 * NOTE: Use input_free_device() to free devices that have not been
1802 * registered; input_unregister_device() should be used for already
1803 * registered devices.
1804 */
1805struct input_dev *input_allocate_device(void)
1806{
1807 static atomic_t input_no = ATOMIC_INIT(-1);
1808 struct input_dev *dev;
1809
1810 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1811 if (dev) {
1812 dev->dev.type = &input_dev_type;
1813 dev->dev.class = &input_class;
1814 device_initialize(&dev->dev);
1815 mutex_init(&dev->mutex);
1816 spin_lock_init(&dev->event_lock);
1817 timer_setup(&dev->timer, NULL, 0);
1818 INIT_LIST_HEAD(&dev->h_list);
1819 INIT_LIST_HEAD(&dev->node);
1820
1821 dev_set_name(&dev->dev, "input%lu",
1822 (unsigned long)atomic_inc_return(&input_no));
1823
1824 __module_get(THIS_MODULE);
1825 }
1826
1827 return dev;
1828}
1829EXPORT_SYMBOL(input_allocate_device);
1830
1831struct input_devres {
1832 struct input_dev *input;
1833};
1834
1835static int devm_input_device_match(struct device *dev, void *res, void *data)
1836{
1837 struct input_devres *devres = res;
1838
1839 return devres->input == data;
1840}
1841
1842static void devm_input_device_release(struct device *dev, void *res)
1843{
1844 struct input_devres *devres = res;
1845 struct input_dev *input = devres->input;
1846
1847 dev_dbg(dev, "%s: dropping reference to %s\n",
1848 __func__, dev_name(&input->dev));
1849 input_put_device(input);
1850}
1851
1852/**
1853 * devm_input_allocate_device - allocate managed input device
1854 * @dev: device owning the input device being created
1855 *
1856 * Returns prepared struct input_dev or %NULL.
1857 *
1858 * Managed input devices do not need to be explicitly unregistered or
1859 * freed as it will be done automatically when owner device unbinds from
1860 * its driver (or binding fails). Once managed input device is allocated,
1861 * it is ready to be set up and registered in the same fashion as regular
1862 * input device. There are no special devm_input_device_[un]register()
1863 * variants, regular ones work with both managed and unmanaged devices,
1864 * should you need them. In most cases however, managed input device need
1865 * not be explicitly unregistered or freed.
1866 *
1867 * NOTE: the owner device is set up as parent of input device and users
1868 * should not override it.
1869 */
1870struct input_dev *devm_input_allocate_device(struct device *dev)
1871{
1872 struct input_dev *input;
1873 struct input_devres *devres;
1874
1875 devres = devres_alloc(devm_input_device_release,
1876 sizeof(*devres), GFP_KERNEL);
1877 if (!devres)
1878 return NULL;
1879
1880 input = input_allocate_device();
1881 if (!input) {
1882 devres_free(devres);
1883 return NULL;
1884 }
1885
1886 input->dev.parent = dev;
1887 input->devres_managed = true;
1888
1889 devres->input = input;
1890 devres_add(dev, devres);
1891
1892 return input;
1893}
1894EXPORT_SYMBOL(devm_input_allocate_device);
1895
1896/**
1897 * input_free_device - free memory occupied by input_dev structure
1898 * @dev: input device to free
1899 *
1900 * This function should only be used if input_register_device()
1901 * was not called yet or if it failed. Once device was registered
1902 * use input_unregister_device() and memory will be freed once last
1903 * reference to the device is dropped.
1904 *
1905 * Device should be allocated by input_allocate_device().
1906 *
1907 * NOTE: If there are references to the input device then memory
1908 * will not be freed until last reference is dropped.
1909 */
1910void input_free_device(struct input_dev *dev)
1911{
1912 if (dev) {
1913 if (dev->devres_managed)
1914 WARN_ON(devres_destroy(dev->dev.parent,
1915 devm_input_device_release,
1916 devm_input_device_match,
1917 dev));
1918 input_put_device(dev);
1919 }
1920}
1921EXPORT_SYMBOL(input_free_device);
1922
1923/**
1924 * input_set_timestamp - set timestamp for input events
1925 * @dev: input device to set timestamp for
1926 * @timestamp: the time at which the event has occurred
1927 * in CLOCK_MONOTONIC
1928 *
1929 * This function is intended to provide to the input system a more
1930 * accurate time of when an event actually occurred. The driver should
1931 * call this function as soon as a timestamp is acquired ensuring
1932 * clock conversions in input_set_timestamp are done correctly.
1933 *
1934 * The system entering suspend state between timestamp acquisition and
1935 * calling input_set_timestamp can result in inaccurate conversions.
1936 */
1937void input_set_timestamp(struct input_dev *dev, ktime_t timestamp)
1938{
1939 dev->timestamp[INPUT_CLK_MONO] = timestamp;
1940 dev->timestamp[INPUT_CLK_REAL] = ktime_mono_to_real(timestamp);
1941 dev->timestamp[INPUT_CLK_BOOT] = ktime_mono_to_any(timestamp,
1942 TK_OFFS_BOOT);
1943}
1944EXPORT_SYMBOL(input_set_timestamp);
1945
1946/**
1947 * input_get_timestamp - get timestamp for input events
1948 * @dev: input device to get timestamp from
1949 *
1950 * A valid timestamp is a timestamp of non-zero value.
1951 */
1952ktime_t *input_get_timestamp(struct input_dev *dev)
1953{
1954 const ktime_t invalid_timestamp = ktime_set(0, 0);
1955
1956 if (!ktime_compare(dev->timestamp[INPUT_CLK_MONO], invalid_timestamp))
1957 input_set_timestamp(dev, ktime_get());
1958
1959 return dev->timestamp;
1960}
1961EXPORT_SYMBOL(input_get_timestamp);
1962
1963/**
1964 * input_set_capability - mark device as capable of a certain event
1965 * @dev: device that is capable of emitting or accepting event
1966 * @type: type of the event (EV_KEY, EV_REL, etc...)
1967 * @code: event code
1968 *
1969 * In addition to setting up corresponding bit in appropriate capability
1970 * bitmap the function also adjusts dev->evbit.
1971 */
1972void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
1973{
1974 switch (type) {
1975 case EV_KEY:
1976 __set_bit(code, dev->keybit);
1977 break;
1978
1979 case EV_REL:
1980 __set_bit(code, dev->relbit);
1981 break;
1982
1983 case EV_ABS:
1984 input_alloc_absinfo(dev);
1985 if (!dev->absinfo)
1986 return;
1987
1988 __set_bit(code, dev->absbit);
1989 break;
1990
1991 case EV_MSC:
1992 __set_bit(code, dev->mscbit);
1993 break;
1994
1995 case EV_SW:
1996 __set_bit(code, dev->swbit);
1997 break;
1998
1999 case EV_LED:
2000 __set_bit(code, dev->ledbit);
2001 break;
2002
2003 case EV_SND:
2004 __set_bit(code, dev->sndbit);
2005 break;
2006
2007 case EV_FF:
2008 __set_bit(code, dev->ffbit);
2009 break;
2010
2011 case EV_PWR:
2012 /* do nothing */
2013 break;
2014
2015 default:
2016 pr_err("%s: unknown type %u (code %u)\n", __func__, type, code);
2017 dump_stack();
2018 return;
2019 }
2020
2021 __set_bit(type, dev->evbit);
2022}
2023EXPORT_SYMBOL(input_set_capability);
2024
2025static unsigned int input_estimate_events_per_packet(struct input_dev *dev)
2026{
2027 int mt_slots;
2028 int i;
2029 unsigned int events;
2030
2031 if (dev->mt) {
2032 mt_slots = dev->mt->num_slots;
2033 } else if (test_bit(ABS_MT_TRACKING_ID, dev->absbit)) {
2034 mt_slots = dev->absinfo[ABS_MT_TRACKING_ID].maximum -
2035 dev->absinfo[ABS_MT_TRACKING_ID].minimum + 1,
2036 mt_slots = clamp(mt_slots, 2, 32);
2037 } else if (test_bit(ABS_MT_POSITION_X, dev->absbit)) {
2038 mt_slots = 2;
2039 } else {
2040 mt_slots = 0;
2041 }
2042
2043 events = mt_slots + 1; /* count SYN_MT_REPORT and SYN_REPORT */
2044
2045 if (test_bit(EV_ABS, dev->evbit))
2046 for_each_set_bit(i, dev->absbit, ABS_CNT)
2047 events += input_is_mt_axis(i) ? mt_slots : 1;
2048
2049 if (test_bit(EV_REL, dev->evbit))
2050 events += bitmap_weight(dev->relbit, REL_CNT);
2051
2052 /* Make room for KEY and MSC events */
2053 events += 7;
2054
2055 return events;
2056}
2057
2058#define INPUT_CLEANSE_BITMASK(dev, type, bits) \
2059 do { \
2060 if (!test_bit(EV_##type, dev->evbit)) \
2061 memset(dev->bits##bit, 0, \
2062 sizeof(dev->bits##bit)); \
2063 } while (0)
2064
2065static void input_cleanse_bitmasks(struct input_dev *dev)
2066{
2067 INPUT_CLEANSE_BITMASK(dev, KEY, key);
2068 INPUT_CLEANSE_BITMASK(dev, REL, rel);
2069 INPUT_CLEANSE_BITMASK(dev, ABS, abs);
2070 INPUT_CLEANSE_BITMASK(dev, MSC, msc);
2071 INPUT_CLEANSE_BITMASK(dev, LED, led);
2072 INPUT_CLEANSE_BITMASK(dev, SND, snd);
2073 INPUT_CLEANSE_BITMASK(dev, FF, ff);
2074 INPUT_CLEANSE_BITMASK(dev, SW, sw);
2075}
2076
2077static void __input_unregister_device(struct input_dev *dev)
2078{
2079 struct input_handle *handle, *next;
2080
2081 input_disconnect_device(dev);
2082
2083 mutex_lock(&input_mutex);
2084
2085 list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
2086 handle->handler->disconnect(handle);
2087 WARN_ON(!list_empty(&dev->h_list));
2088
2089 del_timer_sync(&dev->timer);
2090 list_del_init(&dev->node);
2091
2092 input_wakeup_procfs_readers();
2093
2094 mutex_unlock(&input_mutex);
2095
2096 device_del(&dev->dev);
2097}
2098
2099static void devm_input_device_unregister(struct device *dev, void *res)
2100{
2101 struct input_devres *devres = res;
2102 struct input_dev *input = devres->input;
2103
2104 dev_dbg(dev, "%s: unregistering device %s\n",
2105 __func__, dev_name(&input->dev));
2106 __input_unregister_device(input);
2107}
2108
2109/**
2110 * input_enable_softrepeat - enable software autorepeat
2111 * @dev: input device
2112 * @delay: repeat delay
2113 * @period: repeat period
2114 *
2115 * Enable software autorepeat on the input device.
2116 */
2117void input_enable_softrepeat(struct input_dev *dev, int delay, int period)
2118{
2119 dev->timer.function = input_repeat_key;
2120 dev->rep[REP_DELAY] = delay;
2121 dev->rep[REP_PERIOD] = period;
2122}
2123EXPORT_SYMBOL(input_enable_softrepeat);
2124
2125/**
2126 * input_register_device - register device with input core
2127 * @dev: device to be registered
2128 *
2129 * This function registers device with input core. The device must be
2130 * allocated with input_allocate_device() and all it's capabilities
2131 * set up before registering.
2132 * If function fails the device must be freed with input_free_device().
2133 * Once device has been successfully registered it can be unregistered
2134 * with input_unregister_device(); input_free_device() should not be
2135 * called in this case.
2136 *
2137 * Note that this function is also used to register managed input devices
2138 * (ones allocated with devm_input_allocate_device()). Such managed input
2139 * devices need not be explicitly unregistered or freed, their tear down
2140 * is controlled by the devres infrastructure. It is also worth noting
2141 * that tear down of managed input devices is internally a 2-step process:
2142 * registered managed input device is first unregistered, but stays in
2143 * memory and can still handle input_event() calls (although events will
2144 * not be delivered anywhere). The freeing of managed input device will
2145 * happen later, when devres stack is unwound to the point where device
2146 * allocation was made.
2147 */
2148int input_register_device(struct input_dev *dev)
2149{
2150 struct input_devres *devres = NULL;
2151 struct input_handler *handler;
2152 unsigned int packet_size;
2153 const char *path;
2154 int error;
2155
2156 if (test_bit(EV_ABS, dev->evbit) && !dev->absinfo) {
2157 dev_err(&dev->dev,
2158 "Absolute device without dev->absinfo, refusing to register\n");
2159 return -EINVAL;
2160 }
2161
2162 if (dev->devres_managed) {
2163 devres = devres_alloc(devm_input_device_unregister,
2164 sizeof(*devres), GFP_KERNEL);
2165 if (!devres)
2166 return -ENOMEM;
2167
2168 devres->input = dev;
2169 }
2170
2171 /* Every input device generates EV_SYN/SYN_REPORT events. */
2172 __set_bit(EV_SYN, dev->evbit);
2173
2174 /* KEY_RESERVED is not supposed to be transmitted to userspace. */
2175 __clear_bit(KEY_RESERVED, dev->keybit);
2176
2177 /* Make sure that bitmasks not mentioned in dev->evbit are clean. */
2178 input_cleanse_bitmasks(dev);
2179
2180 packet_size = input_estimate_events_per_packet(dev);
2181 if (dev->hint_events_per_packet < packet_size)
2182 dev->hint_events_per_packet = packet_size;
2183
2184 dev->max_vals = dev->hint_events_per_packet + 2;
2185 dev->vals = kcalloc(dev->max_vals, sizeof(*dev->vals), GFP_KERNEL);
2186 if (!dev->vals) {
2187 error = -ENOMEM;
2188 goto err_devres_free;
2189 }
2190
2191 /*
2192 * If delay and period are pre-set by the driver, then autorepeating
2193 * is handled by the driver itself and we don't do it in input.c.
2194 */
2195 if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD])
2196 input_enable_softrepeat(dev, 250, 33);
2197
2198 if (!dev->getkeycode)
2199 dev->getkeycode = input_default_getkeycode;
2200
2201 if (!dev->setkeycode)
2202 dev->setkeycode = input_default_setkeycode;
2203
2204 if (dev->poller)
2205 input_dev_poller_finalize(dev->poller);
2206
2207 error = device_add(&dev->dev);
2208 if (error)
2209 goto err_free_vals;
2210
2211 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
2212 pr_info("%s as %s\n",
2213 dev->name ? dev->name : "Unspecified device",
2214 path ? path : "N/A");
2215 kfree(path);
2216
2217 error = mutex_lock_interruptible(&input_mutex);
2218 if (error)
2219 goto err_device_del;
2220
2221 list_add_tail(&dev->node, &input_dev_list);
2222
2223 list_for_each_entry(handler, &input_handler_list, node)
2224 input_attach_handler(dev, handler);
2225
2226 input_wakeup_procfs_readers();
2227
2228 mutex_unlock(&input_mutex);
2229
2230 if (dev->devres_managed) {
2231 dev_dbg(dev->dev.parent, "%s: registering %s with devres.\n",
2232 __func__, dev_name(&dev->dev));
2233 devres_add(dev->dev.parent, devres);
2234 }
2235 return 0;
2236
2237err_device_del:
2238 device_del(&dev->dev);
2239err_free_vals:
2240 kfree(dev->vals);
2241 dev->vals = NULL;
2242err_devres_free:
2243 devres_free(devres);
2244 return error;
2245}
2246EXPORT_SYMBOL(input_register_device);
2247
2248/**
2249 * input_unregister_device - unregister previously registered device
2250 * @dev: device to be unregistered
2251 *
2252 * This function unregisters an input device. Once device is unregistered
2253 * the caller should not try to access it as it may get freed at any moment.
2254 */
2255void input_unregister_device(struct input_dev *dev)
2256{
2257 if (dev->devres_managed) {
2258 WARN_ON(devres_destroy(dev->dev.parent,
2259 devm_input_device_unregister,
2260 devm_input_device_match,
2261 dev));
2262 __input_unregister_device(dev);
2263 /*
2264 * We do not do input_put_device() here because it will be done
2265 * when 2nd devres fires up.
2266 */
2267 } else {
2268 __input_unregister_device(dev);
2269 input_put_device(dev);
2270 }
2271}
2272EXPORT_SYMBOL(input_unregister_device);
2273
2274/**
2275 * input_register_handler - register a new input handler
2276 * @handler: handler to be registered
2277 *
2278 * This function registers a new input handler (interface) for input
2279 * devices in the system and attaches it to all input devices that
2280 * are compatible with the handler.
2281 */
2282int input_register_handler(struct input_handler *handler)
2283{
2284 struct input_dev *dev;
2285 int error;
2286
2287 error = mutex_lock_interruptible(&input_mutex);
2288 if (error)
2289 return error;
2290
2291 INIT_LIST_HEAD(&handler->h_list);
2292
2293 list_add_tail(&handler->node, &input_handler_list);
2294
2295 list_for_each_entry(dev, &input_dev_list, node)
2296 input_attach_handler(dev, handler);
2297
2298 input_wakeup_procfs_readers();
2299
2300 mutex_unlock(&input_mutex);
2301 return 0;
2302}
2303EXPORT_SYMBOL(input_register_handler);
2304
2305/**
2306 * input_unregister_handler - unregisters an input handler
2307 * @handler: handler to be unregistered
2308 *
2309 * This function disconnects a handler from its input devices and
2310 * removes it from lists of known handlers.
2311 */
2312void input_unregister_handler(struct input_handler *handler)
2313{
2314 struct input_handle *handle, *next;
2315
2316 mutex_lock(&input_mutex);
2317
2318 list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
2319 handler->disconnect(handle);
2320 WARN_ON(!list_empty(&handler->h_list));
2321
2322 list_del_init(&handler->node);
2323
2324 input_wakeup_procfs_readers();
2325
2326 mutex_unlock(&input_mutex);
2327}
2328EXPORT_SYMBOL(input_unregister_handler);
2329
2330/**
2331 * input_handler_for_each_handle - handle iterator
2332 * @handler: input handler to iterate
2333 * @data: data for the callback
2334 * @fn: function to be called for each handle
2335 *
2336 * Iterate over @bus's list of devices, and call @fn for each, passing
2337 * it @data and stop when @fn returns a non-zero value. The function is
2338 * using RCU to traverse the list and therefore may be using in atomic
2339 * contexts. The @fn callback is invoked from RCU critical section and
2340 * thus must not sleep.
2341 */
2342int input_handler_for_each_handle(struct input_handler *handler, void *data,
2343 int (*fn)(struct input_handle *, void *))
2344{
2345 struct input_handle *handle;
2346 int retval = 0;
2347
2348 rcu_read_lock();
2349
2350 list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
2351 retval = fn(handle, data);
2352 if (retval)
2353 break;
2354 }
2355
2356 rcu_read_unlock();
2357
2358 return retval;
2359}
2360EXPORT_SYMBOL(input_handler_for_each_handle);
2361
2362/**
2363 * input_register_handle - register a new input handle
2364 * @handle: handle to register
2365 *
2366 * This function puts a new input handle onto device's
2367 * and handler's lists so that events can flow through
2368 * it once it is opened using input_open_device().
2369 *
2370 * This function is supposed to be called from handler's
2371 * connect() method.
2372 */
2373int input_register_handle(struct input_handle *handle)
2374{
2375 struct input_handler *handler = handle->handler;
2376 struct input_dev *dev = handle->dev;
2377 int error;
2378
2379 /*
2380 * We take dev->mutex here to prevent race with
2381 * input_release_device().
2382 */
2383 error = mutex_lock_interruptible(&dev->mutex);
2384 if (error)
2385 return error;
2386
2387 /*
2388 * Filters go to the head of the list, normal handlers
2389 * to the tail.
2390 */
2391 if (handler->filter)
2392 list_add_rcu(&handle->d_node, &dev->h_list);
2393 else
2394 list_add_tail_rcu(&handle->d_node, &dev->h_list);
2395
2396 mutex_unlock(&dev->mutex);
2397
2398 /*
2399 * Since we are supposed to be called from ->connect()
2400 * which is mutually exclusive with ->disconnect()
2401 * we can't be racing with input_unregister_handle()
2402 * and so separate lock is not needed here.
2403 */
2404 list_add_tail_rcu(&handle->h_node, &handler->h_list);
2405
2406 if (handler->start)
2407 handler->start(handle);
2408
2409 return 0;
2410}
2411EXPORT_SYMBOL(input_register_handle);
2412
2413/**
2414 * input_unregister_handle - unregister an input handle
2415 * @handle: handle to unregister
2416 *
2417 * This function removes input handle from device's
2418 * and handler's lists.
2419 *
2420 * This function is supposed to be called from handler's
2421 * disconnect() method.
2422 */
2423void input_unregister_handle(struct input_handle *handle)
2424{
2425 struct input_dev *dev = handle->dev;
2426
2427 list_del_rcu(&handle->h_node);
2428
2429 /*
2430 * Take dev->mutex to prevent race with input_release_device().
2431 */
2432 mutex_lock(&dev->mutex);
2433 list_del_rcu(&handle->d_node);
2434 mutex_unlock(&dev->mutex);
2435
2436 synchronize_rcu();
2437}
2438EXPORT_SYMBOL(input_unregister_handle);
2439
2440/**
2441 * input_get_new_minor - allocates a new input minor number
2442 * @legacy_base: beginning or the legacy range to be searched
2443 * @legacy_num: size of legacy range
2444 * @allow_dynamic: whether we can also take ID from the dynamic range
2445 *
2446 * This function allocates a new device minor for from input major namespace.
2447 * Caller can request legacy minor by specifying @legacy_base and @legacy_num
2448 * parameters and whether ID can be allocated from dynamic range if there are
2449 * no free IDs in legacy range.
2450 */
2451int input_get_new_minor(int legacy_base, unsigned int legacy_num,
2452 bool allow_dynamic)
2453{
2454 /*
2455 * This function should be called from input handler's ->connect()
2456 * methods, which are serialized with input_mutex, so no additional
2457 * locking is needed here.
2458 */
2459 if (legacy_base >= 0) {
2460 int minor = ida_simple_get(&input_ida,
2461 legacy_base,
2462 legacy_base + legacy_num,
2463 GFP_KERNEL);
2464 if (minor >= 0 || !allow_dynamic)
2465 return minor;
2466 }
2467
2468 return ida_simple_get(&input_ida,
2469 INPUT_FIRST_DYNAMIC_DEV, INPUT_MAX_CHAR_DEVICES,
2470 GFP_KERNEL);
2471}
2472EXPORT_SYMBOL(input_get_new_minor);
2473
2474/**
2475 * input_free_minor - release previously allocated minor
2476 * @minor: minor to be released
2477 *
2478 * This function releases previously allocated input minor so that it can be
2479 * reused later.
2480 */
2481void input_free_minor(unsigned int minor)
2482{
2483 ida_simple_remove(&input_ida, minor);
2484}
2485EXPORT_SYMBOL(input_free_minor);
2486
2487static int __init input_init(void)
2488{
2489 int err;
2490
2491 err = class_register(&input_class);
2492 if (err) {
2493 pr_err("unable to register input_dev class\n");
2494 return err;
2495 }
2496
2497 err = input_proc_init();
2498 if (err)
2499 goto fail1;
2500
2501 err = register_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2502 INPUT_MAX_CHAR_DEVICES, "input");
2503 if (err) {
2504 pr_err("unable to register char major %d", INPUT_MAJOR);
2505 goto fail2;
2506 }
2507
2508 return 0;
2509
2510 fail2: input_proc_exit();
2511 fail1: class_unregister(&input_class);
2512 return err;
2513}
2514
2515static void __exit input_exit(void)
2516{
2517 input_proc_exit();
2518 unregister_chrdev_region(MKDEV(INPUT_MAJOR, 0),
2519 INPUT_MAX_CHAR_DEVICES);
2520 class_unregister(&input_class);
2521}
2522
2523subsys_initcall(input_init);
2524module_exit(input_exit);