Linux Audio

Check our new training course

Loading...
Note: File does not exist in v5.4.
  1// SPDX-License-Identifier: MIT
  2/*
  3 * Copyright © 2021 Intel Corporation
  4 */
  5
  6#include "xe_exec_queue.h"
  7
  8#include <linux/nospec.h>
  9
 10#include <drm/drm_device.h>
 11#include <drm/drm_drv.h>
 12#include <drm/drm_file.h>
 13#include <uapi/drm/xe_drm.h>
 14
 15#include "xe_device.h"
 16#include "xe_gt.h"
 17#include "xe_hw_engine_class_sysfs.h"
 18#include "xe_hw_engine_group.h"
 19#include "xe_hw_fence.h"
 20#include "xe_lrc.h"
 21#include "xe_macros.h"
 22#include "xe_migrate.h"
 23#include "xe_pm.h"
 24#include "xe_ring_ops_types.h"
 25#include "xe_trace.h"
 26#include "xe_vm.h"
 27
 28enum xe_exec_queue_sched_prop {
 29	XE_EXEC_QUEUE_JOB_TIMEOUT = 0,
 30	XE_EXEC_QUEUE_TIMESLICE = 1,
 31	XE_EXEC_QUEUE_PREEMPT_TIMEOUT = 2,
 32	XE_EXEC_QUEUE_SCHED_PROP_MAX = 3,
 33};
 34
 35static int exec_queue_user_extensions(struct xe_device *xe, struct xe_exec_queue *q,
 36				      u64 extensions, int ext_number);
 37
 38static void __xe_exec_queue_free(struct xe_exec_queue *q)
 39{
 40	if (q->vm)
 41		xe_vm_put(q->vm);
 42
 43	if (q->xef)
 44		xe_file_put(q->xef);
 45
 46	kfree(q);
 47}
 48
 49static struct xe_exec_queue *__xe_exec_queue_alloc(struct xe_device *xe,
 50						   struct xe_vm *vm,
 51						   u32 logical_mask,
 52						   u16 width, struct xe_hw_engine *hwe,
 53						   u32 flags, u64 extensions)
 54{
 55	struct xe_exec_queue *q;
 56	struct xe_gt *gt = hwe->gt;
 57	int err;
 58
 59	/* only kernel queues can be permanent */
 60	XE_WARN_ON((flags & EXEC_QUEUE_FLAG_PERMANENT) && !(flags & EXEC_QUEUE_FLAG_KERNEL));
 61
 62	q = kzalloc(struct_size(q, lrc, width), GFP_KERNEL);
 63	if (!q)
 64		return ERR_PTR(-ENOMEM);
 65
 66	kref_init(&q->refcount);
 67	q->flags = flags;
 68	q->hwe = hwe;
 69	q->gt = gt;
 70	q->class = hwe->class;
 71	q->width = width;
 72	q->logical_mask = logical_mask;
 73	q->fence_irq = &gt->fence_irq[hwe->class];
 74	q->ring_ops = gt->ring_ops[hwe->class];
 75	q->ops = gt->exec_queue_ops;
 76	INIT_LIST_HEAD(&q->lr.link);
 77	INIT_LIST_HEAD(&q->multi_gt_link);
 78	INIT_LIST_HEAD(&q->hw_engine_group_link);
 79
 80	q->sched_props.timeslice_us = hwe->eclass->sched_props.timeslice_us;
 81	q->sched_props.preempt_timeout_us =
 82				hwe->eclass->sched_props.preempt_timeout_us;
 83	q->sched_props.job_timeout_ms =
 84				hwe->eclass->sched_props.job_timeout_ms;
 85	if (q->flags & EXEC_QUEUE_FLAG_KERNEL &&
 86	    q->flags & EXEC_QUEUE_FLAG_HIGH_PRIORITY)
 87		q->sched_props.priority = XE_EXEC_QUEUE_PRIORITY_KERNEL;
 88	else
 89		q->sched_props.priority = XE_EXEC_QUEUE_PRIORITY_NORMAL;
 90
 91	if (vm)
 92		q->vm = xe_vm_get(vm);
 93
 94	if (extensions) {
 95		/*
 96		 * may set q->usm, must come before xe_lrc_create(),
 97		 * may overwrite q->sched_props, must come before q->ops->init()
 98		 */
 99		err = exec_queue_user_extensions(xe, q, extensions, 0);
100		if (err) {
101			__xe_exec_queue_free(q);
102			return ERR_PTR(err);
103		}
104	}
105
106	return q;
107}
108
109static int __xe_exec_queue_init(struct xe_exec_queue *q)
110{
111	struct xe_vm *vm = q->vm;
112	int i, err;
113
114	if (vm) {
115		err = xe_vm_lock(vm, true);
116		if (err)
117			return err;
118	}
119
120	for (i = 0; i < q->width; ++i) {
121		q->lrc[i] = xe_lrc_create(q->hwe, q->vm, SZ_16K);
122		if (IS_ERR(q->lrc[i])) {
123			err = PTR_ERR(q->lrc[i]);
124			goto err_unlock;
125		}
126	}
127
128	if (vm)
129		xe_vm_unlock(vm);
130
131	err = q->ops->init(q);
132	if (err)
133		goto err_lrc;
134
135	return 0;
136
137err_unlock:
138	if (vm)
139		xe_vm_unlock(vm);
140err_lrc:
141	for (i = i - 1; i >= 0; --i)
142		xe_lrc_put(q->lrc[i]);
143	return err;
144}
145
146struct xe_exec_queue *xe_exec_queue_create(struct xe_device *xe, struct xe_vm *vm,
147					   u32 logical_mask, u16 width,
148					   struct xe_hw_engine *hwe, u32 flags,
149					   u64 extensions)
150{
151	struct xe_exec_queue *q;
152	int err;
153
154	q = __xe_exec_queue_alloc(xe, vm, logical_mask, width, hwe, flags,
155				  extensions);
156	if (IS_ERR(q))
157		return q;
158
159	err = __xe_exec_queue_init(q);
160	if (err)
161		goto err_post_alloc;
162
163	return q;
164
165err_post_alloc:
166	__xe_exec_queue_free(q);
167	return ERR_PTR(err);
168}
169
170struct xe_exec_queue *xe_exec_queue_create_class(struct xe_device *xe, struct xe_gt *gt,
171						 struct xe_vm *vm,
172						 enum xe_engine_class class,
173						 u32 flags, u64 extensions)
174{
175	struct xe_hw_engine *hwe, *hwe0 = NULL;
176	enum xe_hw_engine_id id;
177	u32 logical_mask = 0;
178
179	for_each_hw_engine(hwe, gt, id) {
180		if (xe_hw_engine_is_reserved(hwe))
181			continue;
182
183		if (hwe->class == class) {
184			logical_mask |= BIT(hwe->logical_instance);
185			if (!hwe0)
186				hwe0 = hwe;
187		}
188	}
189
190	if (!logical_mask)
191		return ERR_PTR(-ENODEV);
192
193	return xe_exec_queue_create(xe, vm, logical_mask, 1, hwe0, flags, extensions);
194}
195
196/**
197 * xe_exec_queue_create_bind() - Create bind exec queue.
198 * @xe: Xe device.
199 * @tile: tile which bind exec queue belongs to.
200 * @flags: exec queue creation flags
201 * @extensions: exec queue creation extensions
202 *
203 * Normalize bind exec queue creation. Bind exec queue is tied to migration VM
204 * for access to physical memory required for page table programming. On a
205 * faulting devices the reserved copy engine instance must be used to avoid
206 * deadlocking (user binds cannot get stuck behind faults as kernel binds which
207 * resolve faults depend on user binds). On non-faulting devices any copy engine
208 * can be used.
209 *
210 * Returns exec queue on success, ERR_PTR on failure
211 */
212struct xe_exec_queue *xe_exec_queue_create_bind(struct xe_device *xe,
213						struct xe_tile *tile,
214						u32 flags, u64 extensions)
215{
216	struct xe_gt *gt = tile->primary_gt;
217	struct xe_exec_queue *q;
218	struct xe_vm *migrate_vm;
219
220	migrate_vm = xe_migrate_get_vm(tile->migrate);
221	if (xe->info.has_usm) {
222		struct xe_hw_engine *hwe = xe_gt_hw_engine(gt,
223							   XE_ENGINE_CLASS_COPY,
224							   gt->usm.reserved_bcs_instance,
225							   false);
226
227		if (!hwe) {
228			xe_vm_put(migrate_vm);
229			return ERR_PTR(-EINVAL);
230		}
231
232		q = xe_exec_queue_create(xe, migrate_vm,
233					 BIT(hwe->logical_instance), 1, hwe,
234					 flags, extensions);
235	} else {
236		q = xe_exec_queue_create_class(xe, gt, migrate_vm,
237					       XE_ENGINE_CLASS_COPY, flags,
238					       extensions);
239	}
240	xe_vm_put(migrate_vm);
241
242	return q;
243}
244
245void xe_exec_queue_destroy(struct kref *ref)
246{
247	struct xe_exec_queue *q = container_of(ref, struct xe_exec_queue, refcount);
248	struct xe_exec_queue *eq, *next;
249
250	xe_exec_queue_last_fence_put_unlocked(q);
251	if (!(q->flags & EXEC_QUEUE_FLAG_BIND_ENGINE_CHILD)) {
252		list_for_each_entry_safe(eq, next, &q->multi_gt_list,
253					 multi_gt_link)
254			xe_exec_queue_put(eq);
255	}
256
257	q->ops->fini(q);
258}
259
260void xe_exec_queue_fini(struct xe_exec_queue *q)
261{
262	int i;
263
264	/*
265	 * Before releasing our ref to lrc and xef, accumulate our run ticks
266	 */
267	xe_exec_queue_update_run_ticks(q);
268
269	for (i = 0; i < q->width; ++i)
270		xe_lrc_put(q->lrc[i]);
271
272	__xe_exec_queue_free(q);
273}
274
275void xe_exec_queue_assign_name(struct xe_exec_queue *q, u32 instance)
276{
277	switch (q->class) {
278	case XE_ENGINE_CLASS_RENDER:
279		snprintf(q->name, sizeof(q->name), "rcs%d", instance);
280		break;
281	case XE_ENGINE_CLASS_VIDEO_DECODE:
282		snprintf(q->name, sizeof(q->name), "vcs%d", instance);
283		break;
284	case XE_ENGINE_CLASS_VIDEO_ENHANCE:
285		snprintf(q->name, sizeof(q->name), "vecs%d", instance);
286		break;
287	case XE_ENGINE_CLASS_COPY:
288		snprintf(q->name, sizeof(q->name), "bcs%d", instance);
289		break;
290	case XE_ENGINE_CLASS_COMPUTE:
291		snprintf(q->name, sizeof(q->name), "ccs%d", instance);
292		break;
293	case XE_ENGINE_CLASS_OTHER:
294		snprintf(q->name, sizeof(q->name), "gsccs%d", instance);
295		break;
296	default:
297		XE_WARN_ON(q->class);
298	}
299}
300
301struct xe_exec_queue *xe_exec_queue_lookup(struct xe_file *xef, u32 id)
302{
303	struct xe_exec_queue *q;
304
305	mutex_lock(&xef->exec_queue.lock);
306	q = xa_load(&xef->exec_queue.xa, id);
307	if (q)
308		xe_exec_queue_get(q);
309	mutex_unlock(&xef->exec_queue.lock);
310
311	return q;
312}
313
314enum xe_exec_queue_priority
315xe_exec_queue_device_get_max_priority(struct xe_device *xe)
316{
317	return capable(CAP_SYS_NICE) ? XE_EXEC_QUEUE_PRIORITY_HIGH :
318				       XE_EXEC_QUEUE_PRIORITY_NORMAL;
319}
320
321static int exec_queue_set_priority(struct xe_device *xe, struct xe_exec_queue *q,
322				   u64 value)
323{
324	if (XE_IOCTL_DBG(xe, value > XE_EXEC_QUEUE_PRIORITY_HIGH))
325		return -EINVAL;
326
327	if (XE_IOCTL_DBG(xe, value > xe_exec_queue_device_get_max_priority(xe)))
328		return -EPERM;
329
330	q->sched_props.priority = value;
331	return 0;
332}
333
334static bool xe_exec_queue_enforce_schedule_limit(void)
335{
336#if IS_ENABLED(CONFIG_DRM_XE_ENABLE_SCHEDTIMEOUT_LIMIT)
337	return true;
338#else
339	return !capable(CAP_SYS_NICE);
340#endif
341}
342
343static void
344xe_exec_queue_get_prop_minmax(struct xe_hw_engine_class_intf *eclass,
345			      enum xe_exec_queue_sched_prop prop,
346			      u32 *min, u32 *max)
347{
348	switch (prop) {
349	case XE_EXEC_QUEUE_JOB_TIMEOUT:
350		*min = eclass->sched_props.job_timeout_min;
351		*max = eclass->sched_props.job_timeout_max;
352		break;
353	case XE_EXEC_QUEUE_TIMESLICE:
354		*min = eclass->sched_props.timeslice_min;
355		*max = eclass->sched_props.timeslice_max;
356		break;
357	case XE_EXEC_QUEUE_PREEMPT_TIMEOUT:
358		*min = eclass->sched_props.preempt_timeout_min;
359		*max = eclass->sched_props.preempt_timeout_max;
360		break;
361	default:
362		break;
363	}
364#if IS_ENABLED(CONFIG_DRM_XE_ENABLE_SCHEDTIMEOUT_LIMIT)
365	if (capable(CAP_SYS_NICE)) {
366		switch (prop) {
367		case XE_EXEC_QUEUE_JOB_TIMEOUT:
368			*min = XE_HW_ENGINE_JOB_TIMEOUT_MIN;
369			*max = XE_HW_ENGINE_JOB_TIMEOUT_MAX;
370			break;
371		case XE_EXEC_QUEUE_TIMESLICE:
372			*min = XE_HW_ENGINE_TIMESLICE_MIN;
373			*max = XE_HW_ENGINE_TIMESLICE_MAX;
374			break;
375		case XE_EXEC_QUEUE_PREEMPT_TIMEOUT:
376			*min = XE_HW_ENGINE_PREEMPT_TIMEOUT_MIN;
377			*max = XE_HW_ENGINE_PREEMPT_TIMEOUT_MAX;
378			break;
379		default:
380			break;
381		}
382	}
383#endif
384}
385
386static int exec_queue_set_timeslice(struct xe_device *xe, struct xe_exec_queue *q,
387				    u64 value)
388{
389	u32 min = 0, max = 0;
390
391	xe_exec_queue_get_prop_minmax(q->hwe->eclass,
392				      XE_EXEC_QUEUE_TIMESLICE, &min, &max);
393
394	if (xe_exec_queue_enforce_schedule_limit() &&
395	    !xe_hw_engine_timeout_in_range(value, min, max))
396		return -EINVAL;
397
398	q->sched_props.timeslice_us = value;
399	return 0;
400}
401
402typedef int (*xe_exec_queue_set_property_fn)(struct xe_device *xe,
403					     struct xe_exec_queue *q,
404					     u64 value);
405
406static const xe_exec_queue_set_property_fn exec_queue_set_property_funcs[] = {
407	[DRM_XE_EXEC_QUEUE_SET_PROPERTY_PRIORITY] = exec_queue_set_priority,
408	[DRM_XE_EXEC_QUEUE_SET_PROPERTY_TIMESLICE] = exec_queue_set_timeslice,
409};
410
411static int exec_queue_user_ext_set_property(struct xe_device *xe,
412					    struct xe_exec_queue *q,
413					    u64 extension)
414{
415	u64 __user *address = u64_to_user_ptr(extension);
416	struct drm_xe_ext_set_property ext;
417	int err;
418	u32 idx;
419
420	err = __copy_from_user(&ext, address, sizeof(ext));
421	if (XE_IOCTL_DBG(xe, err))
422		return -EFAULT;
423
424	if (XE_IOCTL_DBG(xe, ext.property >=
425			 ARRAY_SIZE(exec_queue_set_property_funcs)) ||
426	    XE_IOCTL_DBG(xe, ext.pad) ||
427	    XE_IOCTL_DBG(xe, ext.property != DRM_XE_EXEC_QUEUE_SET_PROPERTY_PRIORITY &&
428			 ext.property != DRM_XE_EXEC_QUEUE_SET_PROPERTY_TIMESLICE))
429		return -EINVAL;
430
431	idx = array_index_nospec(ext.property, ARRAY_SIZE(exec_queue_set_property_funcs));
432	if (!exec_queue_set_property_funcs[idx])
433		return -EINVAL;
434
435	return exec_queue_set_property_funcs[idx](xe, q, ext.value);
436}
437
438typedef int (*xe_exec_queue_user_extension_fn)(struct xe_device *xe,
439					       struct xe_exec_queue *q,
440					       u64 extension);
441
442static const xe_exec_queue_user_extension_fn exec_queue_user_extension_funcs[] = {
443	[DRM_XE_EXEC_QUEUE_EXTENSION_SET_PROPERTY] = exec_queue_user_ext_set_property,
444};
445
446#define MAX_USER_EXTENSIONS	16
447static int exec_queue_user_extensions(struct xe_device *xe, struct xe_exec_queue *q,
448				      u64 extensions, int ext_number)
449{
450	u64 __user *address = u64_to_user_ptr(extensions);
451	struct drm_xe_user_extension ext;
452	int err;
453	u32 idx;
454
455	if (XE_IOCTL_DBG(xe, ext_number >= MAX_USER_EXTENSIONS))
456		return -E2BIG;
457
458	err = __copy_from_user(&ext, address, sizeof(ext));
459	if (XE_IOCTL_DBG(xe, err))
460		return -EFAULT;
461
462	if (XE_IOCTL_DBG(xe, ext.pad) ||
463	    XE_IOCTL_DBG(xe, ext.name >=
464			 ARRAY_SIZE(exec_queue_user_extension_funcs)))
465		return -EINVAL;
466
467	idx = array_index_nospec(ext.name,
468				 ARRAY_SIZE(exec_queue_user_extension_funcs));
469	err = exec_queue_user_extension_funcs[idx](xe, q, extensions);
470	if (XE_IOCTL_DBG(xe, err))
471		return err;
472
473	if (ext.next_extension)
474		return exec_queue_user_extensions(xe, q, ext.next_extension,
475						  ++ext_number);
476
477	return 0;
478}
479
480static u32 calc_validate_logical_mask(struct xe_device *xe, struct xe_gt *gt,
481				      struct drm_xe_engine_class_instance *eci,
482				      u16 width, u16 num_placements)
483{
484	int len = width * num_placements;
485	int i, j, n;
486	u16 class;
487	u16 gt_id;
488	u32 return_mask = 0, prev_mask;
489
490	if (XE_IOCTL_DBG(xe, !xe_device_uc_enabled(xe) &&
491			 len > 1))
492		return 0;
493
494	for (i = 0; i < width; ++i) {
495		u32 current_mask = 0;
496
497		for (j = 0; j < num_placements; ++j) {
498			struct xe_hw_engine *hwe;
499
500			n = j * width + i;
501
502			hwe = xe_hw_engine_lookup(xe, eci[n]);
503			if (XE_IOCTL_DBG(xe, !hwe))
504				return 0;
505
506			if (XE_IOCTL_DBG(xe, xe_hw_engine_is_reserved(hwe)))
507				return 0;
508
509			if (XE_IOCTL_DBG(xe, n && eci[n].gt_id != gt_id) ||
510			    XE_IOCTL_DBG(xe, n && eci[n].engine_class != class))
511				return 0;
512
513			class = eci[n].engine_class;
514			gt_id = eci[n].gt_id;
515
516			if (width == 1 || !i)
517				return_mask |= BIT(eci[n].engine_instance);
518			current_mask |= BIT(eci[n].engine_instance);
519		}
520
521		/* Parallel submissions must be logically contiguous */
522		if (i && XE_IOCTL_DBG(xe, current_mask != prev_mask << 1))
523			return 0;
524
525		prev_mask = current_mask;
526	}
527
528	return return_mask;
529}
530
531int xe_exec_queue_create_ioctl(struct drm_device *dev, void *data,
532			       struct drm_file *file)
533{
534	struct xe_device *xe = to_xe_device(dev);
535	struct xe_file *xef = to_xe_file(file);
536	struct drm_xe_exec_queue_create *args = data;
537	struct drm_xe_engine_class_instance eci[XE_HW_ENGINE_MAX_INSTANCE];
538	struct drm_xe_engine_class_instance __user *user_eci =
539		u64_to_user_ptr(args->instances);
540	struct xe_hw_engine *hwe;
541	struct xe_vm *vm;
542	struct xe_gt *gt;
543	struct xe_tile *tile;
544	struct xe_exec_queue *q = NULL;
545	u32 logical_mask;
546	u32 id;
547	u32 len;
548	int err;
549
550	if (XE_IOCTL_DBG(xe, args->flags) ||
551	    XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1]))
552		return -EINVAL;
553
554	len = args->width * args->num_placements;
555	if (XE_IOCTL_DBG(xe, !len || len > XE_HW_ENGINE_MAX_INSTANCE))
556		return -EINVAL;
557
558	err = __copy_from_user(eci, user_eci,
559			       sizeof(struct drm_xe_engine_class_instance) *
560			       len);
561	if (XE_IOCTL_DBG(xe, err))
562		return -EFAULT;
563
564	if (XE_IOCTL_DBG(xe, eci[0].gt_id >= xe->info.gt_count))
565		return -EINVAL;
566
567	if (eci[0].engine_class == DRM_XE_ENGINE_CLASS_VM_BIND) {
568		if (XE_IOCTL_DBG(xe, args->width != 1) ||
569		    XE_IOCTL_DBG(xe, args->num_placements != 1) ||
570		    XE_IOCTL_DBG(xe, eci[0].engine_instance != 0))
571			return -EINVAL;
572
573		for_each_tile(tile, xe, id) {
574			struct xe_exec_queue *new;
575			u32 flags = EXEC_QUEUE_FLAG_VM;
576
577			if (id)
578				flags |= EXEC_QUEUE_FLAG_BIND_ENGINE_CHILD;
579
580			new = xe_exec_queue_create_bind(xe, tile, flags,
581							args->extensions);
582			if (IS_ERR(new)) {
583				err = PTR_ERR(new);
584				if (q)
585					goto put_exec_queue;
586				return err;
587			}
588			if (id == 0)
589				q = new;
590			else
591				list_add_tail(&new->multi_gt_list,
592					      &q->multi_gt_link);
593		}
594	} else {
595		gt = xe_device_get_gt(xe, eci[0].gt_id);
596		logical_mask = calc_validate_logical_mask(xe, gt, eci,
597							  args->width,
598							  args->num_placements);
599		if (XE_IOCTL_DBG(xe, !logical_mask))
600			return -EINVAL;
601
602		hwe = xe_hw_engine_lookup(xe, eci[0]);
603		if (XE_IOCTL_DBG(xe, !hwe))
604			return -EINVAL;
605
606		vm = xe_vm_lookup(xef, args->vm_id);
607		if (XE_IOCTL_DBG(xe, !vm))
608			return -ENOENT;
609
610		err = down_read_interruptible(&vm->lock);
611		if (err) {
612			xe_vm_put(vm);
613			return err;
614		}
615
616		if (XE_IOCTL_DBG(xe, xe_vm_is_closed_or_banned(vm))) {
617			up_read(&vm->lock);
618			xe_vm_put(vm);
619			return -ENOENT;
620		}
621
622		q = xe_exec_queue_create(xe, vm, logical_mask,
623					 args->width, hwe, 0,
624					 args->extensions);
625		up_read(&vm->lock);
626		xe_vm_put(vm);
627		if (IS_ERR(q))
628			return PTR_ERR(q);
629
630		if (xe_vm_in_preempt_fence_mode(vm)) {
631			q->lr.context = dma_fence_context_alloc(1);
632
633			err = xe_vm_add_compute_exec_queue(vm, q);
634			if (XE_IOCTL_DBG(xe, err))
635				goto put_exec_queue;
636		}
637
638		if (q->vm && q->hwe->hw_engine_group) {
639			err = xe_hw_engine_group_add_exec_queue(q->hwe->hw_engine_group, q);
640			if (err)
641				goto put_exec_queue;
642		}
643	}
644
645	q->xef = xe_file_get(xef);
646
647	/* user id alloc must always be last in ioctl to prevent UAF */
648	err = xa_alloc(&xef->exec_queue.xa, &id, q, xa_limit_32b, GFP_KERNEL);
649	if (err)
650		goto kill_exec_queue;
651
652	args->exec_queue_id = id;
653
654	return 0;
655
656kill_exec_queue:
657	xe_exec_queue_kill(q);
658put_exec_queue:
659	xe_exec_queue_put(q);
660	return err;
661}
662
663int xe_exec_queue_get_property_ioctl(struct drm_device *dev, void *data,
664				     struct drm_file *file)
665{
666	struct xe_device *xe = to_xe_device(dev);
667	struct xe_file *xef = to_xe_file(file);
668	struct drm_xe_exec_queue_get_property *args = data;
669	struct xe_exec_queue *q;
670	int ret;
671
672	if (XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1]))
673		return -EINVAL;
674
675	q = xe_exec_queue_lookup(xef, args->exec_queue_id);
676	if (XE_IOCTL_DBG(xe, !q))
677		return -ENOENT;
678
679	switch (args->property) {
680	case DRM_XE_EXEC_QUEUE_GET_PROPERTY_BAN:
681		args->value = q->ops->reset_status(q);
682		ret = 0;
683		break;
684	default:
685		ret = -EINVAL;
686	}
687
688	xe_exec_queue_put(q);
689
690	return ret;
691}
692
693/**
694 * xe_exec_queue_is_lr() - Whether an exec_queue is long-running
695 * @q: The exec_queue
696 *
697 * Return: True if the exec_queue is long-running, false otherwise.
698 */
699bool xe_exec_queue_is_lr(struct xe_exec_queue *q)
700{
701	return q->vm && xe_vm_in_lr_mode(q->vm) &&
702		!(q->flags & EXEC_QUEUE_FLAG_VM);
703}
704
705static s32 xe_exec_queue_num_job_inflight(struct xe_exec_queue *q)
706{
707	return q->lrc[0]->fence_ctx.next_seqno - xe_lrc_seqno(q->lrc[0]) - 1;
708}
709
710/**
711 * xe_exec_queue_ring_full() - Whether an exec_queue's ring is full
712 * @q: The exec_queue
713 *
714 * Return: True if the exec_queue's ring is full, false otherwise.
715 */
716bool xe_exec_queue_ring_full(struct xe_exec_queue *q)
717{
718	struct xe_lrc *lrc = q->lrc[0];
719	s32 max_job = lrc->ring.size / MAX_JOB_SIZE_BYTES;
720
721	return xe_exec_queue_num_job_inflight(q) >= max_job;
722}
723
724/**
725 * xe_exec_queue_is_idle() - Whether an exec_queue is idle.
726 * @q: The exec_queue
727 *
728 * FIXME: Need to determine what to use as the short-lived
729 * timeline lock for the exec_queues, so that the return value
730 * of this function becomes more than just an advisory
731 * snapshot in time. The timeline lock must protect the
732 * seqno from racing submissions on the same exec_queue.
733 * Typically vm->resv, but user-created timeline locks use the migrate vm
734 * and never grabs the migrate vm->resv so we have a race there.
735 *
736 * Return: True if the exec_queue is idle, false otherwise.
737 */
738bool xe_exec_queue_is_idle(struct xe_exec_queue *q)
739{
740	if (xe_exec_queue_is_parallel(q)) {
741		int i;
742
743		for (i = 0; i < q->width; ++i) {
744			if (xe_lrc_seqno(q->lrc[i]) !=
745			    q->lrc[i]->fence_ctx.next_seqno - 1)
746				return false;
747		}
748
749		return true;
750	}
751
752	return xe_lrc_seqno(q->lrc[0]) ==
753		q->lrc[0]->fence_ctx.next_seqno - 1;
754}
755
756/**
757 * xe_exec_queue_update_run_ticks() - Update run time in ticks for this exec queue
758 * from hw
759 * @q: The exec queue
760 *
761 * Update the timestamp saved by HW for this exec queue and save run ticks
762 * calculated by using the delta from last update.
763 */
764void xe_exec_queue_update_run_ticks(struct xe_exec_queue *q)
765{
766	struct xe_device *xe = gt_to_xe(q->gt);
767	struct xe_file *xef;
768	struct xe_lrc *lrc;
769	u32 old_ts, new_ts;
770	int idx;
771
772	/*
773	 * Jobs that are run during driver load may use an exec_queue, but are
774	 * not associated with a user xe file, so avoid accumulating busyness
775	 * for kernel specific work.
776	 */
777	if (!q->vm || !q->vm->xef)
778		return;
779
780	/* Synchronize with unbind while holding the xe file open */
781	if (!drm_dev_enter(&xe->drm, &idx))
782		return;
783
784	xef = q->vm->xef;
785
786	/*
787	 * Only sample the first LRC. For parallel submission, all of them are
788	 * scheduled together and we compensate that below by multiplying by
789	 * width - this may introduce errors if that premise is not true and
790	 * they don't exit 100% aligned. On the other hand, looping through
791	 * the LRCs and reading them in different time could also introduce
792	 * errors.
793	 */
794	lrc = q->lrc[0];
795	new_ts = xe_lrc_update_timestamp(lrc, &old_ts);
796	xef->run_ticks[q->class] += (new_ts - old_ts) * q->width;
797
798	drm_dev_exit(idx);
799}
800
801/**
802 * xe_exec_queue_kill - permanently stop all execution from an exec queue
803 * @q: The exec queue
804 *
805 * This function permanently stops all activity on an exec queue. If the queue
806 * is actively executing on the HW, it will be kicked off the engine; any
807 * pending jobs are discarded and all future submissions are rejected.
808 * This function is safe to call multiple times.
809 */
810void xe_exec_queue_kill(struct xe_exec_queue *q)
811{
812	struct xe_exec_queue *eq = q, *next;
813
814	list_for_each_entry_safe(eq, next, &eq->multi_gt_list,
815				 multi_gt_link) {
816		q->ops->kill(eq);
817		xe_vm_remove_compute_exec_queue(q->vm, eq);
818	}
819
820	q->ops->kill(q);
821	xe_vm_remove_compute_exec_queue(q->vm, q);
822}
823
824int xe_exec_queue_destroy_ioctl(struct drm_device *dev, void *data,
825				struct drm_file *file)
826{
827	struct xe_device *xe = to_xe_device(dev);
828	struct xe_file *xef = to_xe_file(file);
829	struct drm_xe_exec_queue_destroy *args = data;
830	struct xe_exec_queue *q;
831
832	if (XE_IOCTL_DBG(xe, args->pad) ||
833	    XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1]))
834		return -EINVAL;
835
836	mutex_lock(&xef->exec_queue.lock);
837	q = xa_erase(&xef->exec_queue.xa, args->exec_queue_id);
838	mutex_unlock(&xef->exec_queue.lock);
839	if (XE_IOCTL_DBG(xe, !q))
840		return -ENOENT;
841
842	if (q->vm && q->hwe->hw_engine_group)
843		xe_hw_engine_group_del_exec_queue(q->hwe->hw_engine_group, q);
844
845	xe_exec_queue_kill(q);
846
847	trace_xe_exec_queue_close(q);
848	xe_exec_queue_put(q);
849
850	return 0;
851}
852
853static void xe_exec_queue_last_fence_lockdep_assert(struct xe_exec_queue *q,
854						    struct xe_vm *vm)
855{
856	if (q->flags & EXEC_QUEUE_FLAG_VM) {
857		lockdep_assert_held(&vm->lock);
858	} else {
859		xe_vm_assert_held(vm);
860		lockdep_assert_held(&q->hwe->hw_engine_group->mode_sem);
861	}
862}
863
864/**
865 * xe_exec_queue_last_fence_put() - Drop ref to last fence
866 * @q: The exec queue
867 * @vm: The VM the engine does a bind or exec for
868 */
869void xe_exec_queue_last_fence_put(struct xe_exec_queue *q, struct xe_vm *vm)
870{
871	xe_exec_queue_last_fence_lockdep_assert(q, vm);
872
873	xe_exec_queue_last_fence_put_unlocked(q);
874}
875
876/**
877 * xe_exec_queue_last_fence_put_unlocked() - Drop ref to last fence unlocked
878 * @q: The exec queue
879 *
880 * Only safe to be called from xe_exec_queue_destroy().
881 */
882void xe_exec_queue_last_fence_put_unlocked(struct xe_exec_queue *q)
883{
884	if (q->last_fence) {
885		dma_fence_put(q->last_fence);
886		q->last_fence = NULL;
887	}
888}
889
890/**
891 * xe_exec_queue_last_fence_get() - Get last fence
892 * @q: The exec queue
893 * @vm: The VM the engine does a bind or exec for
894 *
895 * Get last fence, takes a ref
896 *
897 * Returns: last fence if not signaled, dma fence stub if signaled
898 */
899struct dma_fence *xe_exec_queue_last_fence_get(struct xe_exec_queue *q,
900					       struct xe_vm *vm)
901{
902	struct dma_fence *fence;
903
904	xe_exec_queue_last_fence_lockdep_assert(q, vm);
905
906	if (q->last_fence &&
907	    test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &q->last_fence->flags))
908		xe_exec_queue_last_fence_put(q, vm);
909
910	fence = q->last_fence ? q->last_fence : dma_fence_get_stub();
911	dma_fence_get(fence);
912	return fence;
913}
914
915/**
916 * xe_exec_queue_last_fence_get_for_resume() - Get last fence
917 * @q: The exec queue
918 * @vm: The VM the engine does a bind or exec for
919 *
920 * Get last fence, takes a ref. Only safe to be called in the context of
921 * resuming the hw engine group's long-running exec queue, when the group
922 * semaphore is held.
923 *
924 * Returns: last fence if not signaled, dma fence stub if signaled
925 */
926struct dma_fence *xe_exec_queue_last_fence_get_for_resume(struct xe_exec_queue *q,
927							  struct xe_vm *vm)
928{
929	struct dma_fence *fence;
930
931	lockdep_assert_held_write(&q->hwe->hw_engine_group->mode_sem);
932
933	if (q->last_fence &&
934	    test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &q->last_fence->flags))
935		xe_exec_queue_last_fence_put_unlocked(q);
936
937	fence = q->last_fence ? q->last_fence : dma_fence_get_stub();
938	dma_fence_get(fence);
939	return fence;
940}
941
942/**
943 * xe_exec_queue_last_fence_set() - Set last fence
944 * @q: The exec queue
945 * @vm: The VM the engine does a bind or exec for
946 * @fence: The fence
947 *
948 * Set the last fence for the engine. Increases reference count for fence, when
949 * closing engine xe_exec_queue_last_fence_put should be called.
950 */
951void xe_exec_queue_last_fence_set(struct xe_exec_queue *q, struct xe_vm *vm,
952				  struct dma_fence *fence)
953{
954	xe_exec_queue_last_fence_lockdep_assert(q, vm);
955
956	xe_exec_queue_last_fence_put(q, vm);
957	q->last_fence = dma_fence_get(fence);
958}
959
960/**
961 * xe_exec_queue_last_fence_test_dep - Test last fence dependency of queue
962 * @q: The exec queue
963 * @vm: The VM the engine does a bind or exec for
964 *
965 * Returns:
966 * -ETIME if there exists an unsignalled last fence dependency, zero otherwise.
967 */
968int xe_exec_queue_last_fence_test_dep(struct xe_exec_queue *q, struct xe_vm *vm)
969{
970	struct dma_fence *fence;
971	int err = 0;
972
973	fence = xe_exec_queue_last_fence_get(q, vm);
974	if (fence) {
975		err = test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags) ?
976			0 : -ETIME;
977		dma_fence_put(fence);
978	}
979
980	return err;
981}