Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.13.7.
   1/*
   2 * Copyright © 2008-2010 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21 * IN THE SOFTWARE.
  22 *
  23 * Authors:
  24 *    Eric Anholt <eric@anholt.net>
  25 *    Zou Nan hai <nanhai.zou@intel.com>
  26 *    Xiang Hai hao<haihao.xiang@intel.com>
  27 *
  28 */
  29
  30#include <linux/log2.h>
  31
  32#include <drm/i915_drm.h>
  33
  34#include "gem/i915_gem_context.h"
  35
  36#include "i915_drv.h"
  37#include "i915_trace.h"
  38#include "intel_context.h"
  39#include "intel_gt.h"
  40#include "intel_gt_irq.h"
  41#include "intel_gt_pm_irq.h"
  42#include "intel_reset.h"
  43#include "intel_workarounds.h"
  44
  45/* Rough estimate of the typical request size, performing a flush,
  46 * set-context and then emitting the batch.
  47 */
  48#define LEGACY_REQUEST_SIZE 200
  49
  50unsigned int intel_ring_update_space(struct intel_ring *ring)
  51{
  52	unsigned int space;
  53
  54	space = __intel_ring_space(ring->head, ring->emit, ring->size);
  55
  56	ring->space = space;
  57	return space;
  58}
  59
  60static int
  61gen2_render_ring_flush(struct i915_request *rq, u32 mode)
  62{
  63	unsigned int num_store_dw;
  64	u32 cmd, *cs;
  65
  66	cmd = MI_FLUSH;
  67	num_store_dw = 0;
  68	if (mode & EMIT_INVALIDATE)
  69		cmd |= MI_READ_FLUSH;
  70	if (mode & EMIT_FLUSH)
  71		num_store_dw = 4;
  72
  73	cs = intel_ring_begin(rq, 2 + 3 * num_store_dw);
  74	if (IS_ERR(cs))
  75		return PTR_ERR(cs);
  76
  77	*cs++ = cmd;
  78	while (num_store_dw--) {
  79		*cs++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
  80		*cs++ = intel_gt_scratch_offset(rq->engine->gt,
  81						INTEL_GT_SCRATCH_FIELD_DEFAULT);
  82		*cs++ = 0;
  83	}
  84	*cs++ = MI_FLUSH | MI_NO_WRITE_FLUSH;
  85
  86	intel_ring_advance(rq, cs);
  87
  88	return 0;
  89}
  90
  91static int
  92gen4_render_ring_flush(struct i915_request *rq, u32 mode)
  93{
  94	u32 cmd, *cs;
  95	int i;
  96
  97	/*
  98	 * read/write caches:
  99	 *
 100	 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
 101	 * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
 102	 * also flushed at 2d versus 3d pipeline switches.
 103	 *
 104	 * read-only caches:
 105	 *
 106	 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
 107	 * MI_READ_FLUSH is set, and is always flushed on 965.
 108	 *
 109	 * I915_GEM_DOMAIN_COMMAND may not exist?
 110	 *
 111	 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
 112	 * invalidated when MI_EXE_FLUSH is set.
 113	 *
 114	 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
 115	 * invalidated with every MI_FLUSH.
 116	 *
 117	 * TLBs:
 118	 *
 119	 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
 120	 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
 121	 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
 122	 * are flushed at any MI_FLUSH.
 123	 */
 124
 125	cmd = MI_FLUSH;
 126	if (mode & EMIT_INVALIDATE) {
 127		cmd |= MI_EXE_FLUSH;
 128		if (IS_G4X(rq->i915) || IS_GEN(rq->i915, 5))
 129			cmd |= MI_INVALIDATE_ISP;
 130	}
 131
 132	i = 2;
 133	if (mode & EMIT_INVALIDATE)
 134		i += 20;
 135
 136	cs = intel_ring_begin(rq, i);
 137	if (IS_ERR(cs))
 138		return PTR_ERR(cs);
 139
 140	*cs++ = cmd;
 141
 142	/*
 143	 * A random delay to let the CS invalidate take effect? Without this
 144	 * delay, the GPU relocation path fails as the CS does not see
 145	 * the updated contents. Just as important, if we apply the flushes
 146	 * to the EMIT_FLUSH branch (i.e. immediately after the relocation
 147	 * write and before the invalidate on the next batch), the relocations
 148	 * still fail. This implies that is a delay following invalidation
 149	 * that is required to reset the caches as opposed to a delay to
 150	 * ensure the memory is written.
 151	 */
 152	if (mode & EMIT_INVALIDATE) {
 153		*cs++ = GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE;
 154		*cs++ = intel_gt_scratch_offset(rq->engine->gt,
 155						INTEL_GT_SCRATCH_FIELD_DEFAULT) |
 156			PIPE_CONTROL_GLOBAL_GTT;
 157		*cs++ = 0;
 158		*cs++ = 0;
 159
 160		for (i = 0; i < 12; i++)
 161			*cs++ = MI_FLUSH;
 162
 163		*cs++ = GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE;
 164		*cs++ = intel_gt_scratch_offset(rq->engine->gt,
 165						INTEL_GT_SCRATCH_FIELD_DEFAULT) |
 166			PIPE_CONTROL_GLOBAL_GTT;
 167		*cs++ = 0;
 168		*cs++ = 0;
 169	}
 170
 171	*cs++ = cmd;
 172
 173	intel_ring_advance(rq, cs);
 174
 175	return 0;
 176}
 177
 178/*
 179 * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
 180 * implementing two workarounds on gen6.  From section 1.4.7.1
 181 * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
 182 *
 183 * [DevSNB-C+{W/A}] Before any depth stall flush (including those
 184 * produced by non-pipelined state commands), software needs to first
 185 * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
 186 * 0.
 187 *
 188 * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
 189 * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
 190 *
 191 * And the workaround for these two requires this workaround first:
 192 *
 193 * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
 194 * BEFORE the pipe-control with a post-sync op and no write-cache
 195 * flushes.
 196 *
 197 * And this last workaround is tricky because of the requirements on
 198 * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
 199 * volume 2 part 1:
 200 *
 201 *     "1 of the following must also be set:
 202 *      - Render Target Cache Flush Enable ([12] of DW1)
 203 *      - Depth Cache Flush Enable ([0] of DW1)
 204 *      - Stall at Pixel Scoreboard ([1] of DW1)
 205 *      - Depth Stall ([13] of DW1)
 206 *      - Post-Sync Operation ([13] of DW1)
 207 *      - Notify Enable ([8] of DW1)"
 208 *
 209 * The cache flushes require the workaround flush that triggered this
 210 * one, so we can't use it.  Depth stall would trigger the same.
 211 * Post-sync nonzero is what triggered this second workaround, so we
 212 * can't use that one either.  Notify enable is IRQs, which aren't
 213 * really our business.  That leaves only stall at scoreboard.
 214 */
 215static int
 216gen6_emit_post_sync_nonzero_flush(struct i915_request *rq)
 217{
 218	u32 scratch_addr =
 219		intel_gt_scratch_offset(rq->engine->gt,
 220					INTEL_GT_SCRATCH_FIELD_RENDER_FLUSH);
 221	u32 *cs;
 222
 223	cs = intel_ring_begin(rq, 6);
 224	if (IS_ERR(cs))
 225		return PTR_ERR(cs);
 226
 227	*cs++ = GFX_OP_PIPE_CONTROL(5);
 228	*cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
 229	*cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
 230	*cs++ = 0; /* low dword */
 231	*cs++ = 0; /* high dword */
 232	*cs++ = MI_NOOP;
 233	intel_ring_advance(rq, cs);
 234
 235	cs = intel_ring_begin(rq, 6);
 236	if (IS_ERR(cs))
 237		return PTR_ERR(cs);
 238
 239	*cs++ = GFX_OP_PIPE_CONTROL(5);
 240	*cs++ = PIPE_CONTROL_QW_WRITE;
 241	*cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
 242	*cs++ = 0;
 243	*cs++ = 0;
 244	*cs++ = MI_NOOP;
 245	intel_ring_advance(rq, cs);
 246
 247	return 0;
 248}
 249
 250static int
 251gen6_render_ring_flush(struct i915_request *rq, u32 mode)
 252{
 253	u32 scratch_addr =
 254		intel_gt_scratch_offset(rq->engine->gt,
 255					INTEL_GT_SCRATCH_FIELD_RENDER_FLUSH);
 256	u32 *cs, flags = 0;
 257	int ret;
 258
 259	/* Force SNB workarounds for PIPE_CONTROL flushes */
 260	ret = gen6_emit_post_sync_nonzero_flush(rq);
 261	if (ret)
 262		return ret;
 263
 264	/* Just flush everything.  Experiments have shown that reducing the
 265	 * number of bits based on the write domains has little performance
 266	 * impact.
 267	 */
 268	if (mode & EMIT_FLUSH) {
 269		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
 270		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
 271		/*
 272		 * Ensure that any following seqno writes only happen
 273		 * when the render cache is indeed flushed.
 274		 */
 275		flags |= PIPE_CONTROL_CS_STALL;
 276	}
 277	if (mode & EMIT_INVALIDATE) {
 278		flags |= PIPE_CONTROL_TLB_INVALIDATE;
 279		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
 280		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
 281		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
 282		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
 283		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
 284		/*
 285		 * TLB invalidate requires a post-sync write.
 286		 */
 287		flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
 288	}
 289
 290	cs = intel_ring_begin(rq, 4);
 291	if (IS_ERR(cs))
 292		return PTR_ERR(cs);
 293
 294	*cs++ = GFX_OP_PIPE_CONTROL(4);
 295	*cs++ = flags;
 296	*cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
 297	*cs++ = 0;
 298	intel_ring_advance(rq, cs);
 299
 300	return 0;
 301}
 302
 303static u32 *gen6_rcs_emit_breadcrumb(struct i915_request *rq, u32 *cs)
 304{
 305	/* First we do the gen6_emit_post_sync_nonzero_flush w/a */
 306	*cs++ = GFX_OP_PIPE_CONTROL(4);
 307	*cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
 308	*cs++ = 0;
 309	*cs++ = 0;
 310
 311	*cs++ = GFX_OP_PIPE_CONTROL(4);
 312	*cs++ = PIPE_CONTROL_QW_WRITE;
 313	*cs++ = intel_gt_scratch_offset(rq->engine->gt,
 314					INTEL_GT_SCRATCH_FIELD_DEFAULT) |
 315		PIPE_CONTROL_GLOBAL_GTT;
 316	*cs++ = 0;
 317
 318	/* Finally we can flush and with it emit the breadcrumb */
 319	*cs++ = GFX_OP_PIPE_CONTROL(4);
 320	*cs++ = (PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
 321		 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
 322		 PIPE_CONTROL_DC_FLUSH_ENABLE |
 323		 PIPE_CONTROL_QW_WRITE |
 324		 PIPE_CONTROL_CS_STALL);
 325	*cs++ = rq->timeline->hwsp_offset | PIPE_CONTROL_GLOBAL_GTT;
 326	*cs++ = rq->fence.seqno;
 327
 328	*cs++ = MI_USER_INTERRUPT;
 329	*cs++ = MI_NOOP;
 330
 331	rq->tail = intel_ring_offset(rq, cs);
 332	assert_ring_tail_valid(rq->ring, rq->tail);
 333
 334	return cs;
 335}
 336
 337static int
 338gen7_render_ring_cs_stall_wa(struct i915_request *rq)
 339{
 340	u32 *cs;
 341
 342	cs = intel_ring_begin(rq, 4);
 343	if (IS_ERR(cs))
 344		return PTR_ERR(cs);
 345
 346	*cs++ = GFX_OP_PIPE_CONTROL(4);
 347	*cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
 348	*cs++ = 0;
 349	*cs++ = 0;
 350	intel_ring_advance(rq, cs);
 351
 352	return 0;
 353}
 354
 355static int
 356gen7_render_ring_flush(struct i915_request *rq, u32 mode)
 357{
 358	u32 scratch_addr =
 359		intel_gt_scratch_offset(rq->engine->gt,
 360					INTEL_GT_SCRATCH_FIELD_RENDER_FLUSH);
 361	u32 *cs, flags = 0;
 362
 363	/*
 364	 * Ensure that any following seqno writes only happen when the render
 365	 * cache is indeed flushed.
 366	 *
 367	 * Workaround: 4th PIPE_CONTROL command (except the ones with only
 368	 * read-cache invalidate bits set) must have the CS_STALL bit set. We
 369	 * don't try to be clever and just set it unconditionally.
 370	 */
 371	flags |= PIPE_CONTROL_CS_STALL;
 372
 373	/* Just flush everything.  Experiments have shown that reducing the
 374	 * number of bits based on the write domains has little performance
 375	 * impact.
 376	 */
 377	if (mode & EMIT_FLUSH) {
 378		flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
 379		flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
 380		flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
 381		flags |= PIPE_CONTROL_FLUSH_ENABLE;
 382	}
 383	if (mode & EMIT_INVALIDATE) {
 384		flags |= PIPE_CONTROL_TLB_INVALIDATE;
 385		flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
 386		flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
 387		flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
 388		flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
 389		flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
 390		flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
 391		/*
 392		 * TLB invalidate requires a post-sync write.
 393		 */
 394		flags |= PIPE_CONTROL_QW_WRITE;
 395		flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
 396
 397		flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
 398
 399		/* Workaround: we must issue a pipe_control with CS-stall bit
 400		 * set before a pipe_control command that has the state cache
 401		 * invalidate bit set. */
 402		gen7_render_ring_cs_stall_wa(rq);
 403	}
 404
 405	cs = intel_ring_begin(rq, 4);
 406	if (IS_ERR(cs))
 407		return PTR_ERR(cs);
 408
 409	*cs++ = GFX_OP_PIPE_CONTROL(4);
 410	*cs++ = flags;
 411	*cs++ = scratch_addr;
 412	*cs++ = 0;
 413	intel_ring_advance(rq, cs);
 414
 415	return 0;
 416}
 417
 418static u32 *gen7_rcs_emit_breadcrumb(struct i915_request *rq, u32 *cs)
 419{
 420	*cs++ = GFX_OP_PIPE_CONTROL(4);
 421	*cs++ = (PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
 422		 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
 423		 PIPE_CONTROL_DC_FLUSH_ENABLE |
 424		 PIPE_CONTROL_FLUSH_ENABLE |
 425		 PIPE_CONTROL_QW_WRITE |
 426		 PIPE_CONTROL_GLOBAL_GTT_IVB |
 427		 PIPE_CONTROL_CS_STALL);
 428	*cs++ = rq->timeline->hwsp_offset;
 429	*cs++ = rq->fence.seqno;
 430
 431	*cs++ = MI_USER_INTERRUPT;
 432	*cs++ = MI_NOOP;
 433
 434	rq->tail = intel_ring_offset(rq, cs);
 435	assert_ring_tail_valid(rq->ring, rq->tail);
 436
 437	return cs;
 438}
 439
 440static u32 *gen6_xcs_emit_breadcrumb(struct i915_request *rq, u32 *cs)
 441{
 442	GEM_BUG_ON(rq->timeline->hwsp_ggtt != rq->engine->status_page.vma);
 443	GEM_BUG_ON(offset_in_page(rq->timeline->hwsp_offset) != I915_GEM_HWS_SEQNO_ADDR);
 444
 445	*cs++ = MI_FLUSH_DW | MI_FLUSH_DW_OP_STOREDW | MI_FLUSH_DW_STORE_INDEX;
 446	*cs++ = I915_GEM_HWS_SEQNO_ADDR | MI_FLUSH_DW_USE_GTT;
 447	*cs++ = rq->fence.seqno;
 448
 449	*cs++ = MI_USER_INTERRUPT;
 450
 451	rq->tail = intel_ring_offset(rq, cs);
 452	assert_ring_tail_valid(rq->ring, rq->tail);
 453
 454	return cs;
 455}
 456
 457#define GEN7_XCS_WA 32
 458static u32 *gen7_xcs_emit_breadcrumb(struct i915_request *rq, u32 *cs)
 459{
 460	int i;
 461
 462	GEM_BUG_ON(rq->timeline->hwsp_ggtt != rq->engine->status_page.vma);
 463	GEM_BUG_ON(offset_in_page(rq->timeline->hwsp_offset) != I915_GEM_HWS_SEQNO_ADDR);
 464
 465	*cs++ = MI_FLUSH_DW | MI_FLUSH_DW_OP_STOREDW | MI_FLUSH_DW_STORE_INDEX;
 466	*cs++ = I915_GEM_HWS_SEQNO_ADDR | MI_FLUSH_DW_USE_GTT;
 467	*cs++ = rq->fence.seqno;
 468
 469	for (i = 0; i < GEN7_XCS_WA; i++) {
 470		*cs++ = MI_STORE_DWORD_INDEX;
 471		*cs++ = I915_GEM_HWS_SEQNO_ADDR;
 472		*cs++ = rq->fence.seqno;
 473	}
 474
 475	*cs++ = MI_FLUSH_DW;
 476	*cs++ = 0;
 477	*cs++ = 0;
 478
 479	*cs++ = MI_USER_INTERRUPT;
 480	*cs++ = MI_NOOP;
 481
 482	rq->tail = intel_ring_offset(rq, cs);
 483	assert_ring_tail_valid(rq->ring, rq->tail);
 484
 485	return cs;
 486}
 487#undef GEN7_XCS_WA
 488
 489static void set_hwstam(struct intel_engine_cs *engine, u32 mask)
 490{
 491	/*
 492	 * Keep the render interrupt unmasked as this papers over
 493	 * lost interrupts following a reset.
 494	 */
 495	if (engine->class == RENDER_CLASS) {
 496		if (INTEL_GEN(engine->i915) >= 6)
 497			mask &= ~BIT(0);
 498		else
 499			mask &= ~I915_USER_INTERRUPT;
 500	}
 501
 502	intel_engine_set_hwsp_writemask(engine, mask);
 503}
 504
 505static void set_hws_pga(struct intel_engine_cs *engine, phys_addr_t phys)
 506{
 507	struct drm_i915_private *dev_priv = engine->i915;
 508	u32 addr;
 509
 510	addr = lower_32_bits(phys);
 511	if (INTEL_GEN(dev_priv) >= 4)
 512		addr |= (phys >> 28) & 0xf0;
 513
 514	I915_WRITE(HWS_PGA, addr);
 515}
 516
 517static struct page *status_page(struct intel_engine_cs *engine)
 518{
 519	struct drm_i915_gem_object *obj = engine->status_page.vma->obj;
 520
 521	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
 522	return sg_page(obj->mm.pages->sgl);
 523}
 524
 525static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
 526{
 527	set_hws_pga(engine, PFN_PHYS(page_to_pfn(status_page(engine))));
 528	set_hwstam(engine, ~0u);
 529}
 530
 531static void set_hwsp(struct intel_engine_cs *engine, u32 offset)
 532{
 533	struct drm_i915_private *dev_priv = engine->i915;
 534	i915_reg_t hwsp;
 535
 536	/*
 537	 * The ring status page addresses are no longer next to the rest of
 538	 * the ring registers as of gen7.
 539	 */
 540	if (IS_GEN(dev_priv, 7)) {
 541		switch (engine->id) {
 542		/*
 543		 * No more rings exist on Gen7. Default case is only to shut up
 544		 * gcc switch check warning.
 545		 */
 546		default:
 547			GEM_BUG_ON(engine->id);
 548			/* fallthrough */
 549		case RCS0:
 550			hwsp = RENDER_HWS_PGA_GEN7;
 551			break;
 552		case BCS0:
 553			hwsp = BLT_HWS_PGA_GEN7;
 554			break;
 555		case VCS0:
 556			hwsp = BSD_HWS_PGA_GEN7;
 557			break;
 558		case VECS0:
 559			hwsp = VEBOX_HWS_PGA_GEN7;
 560			break;
 561		}
 562	} else if (IS_GEN(dev_priv, 6)) {
 563		hwsp = RING_HWS_PGA_GEN6(engine->mmio_base);
 564	} else {
 565		hwsp = RING_HWS_PGA(engine->mmio_base);
 566	}
 567
 568	I915_WRITE(hwsp, offset);
 569	POSTING_READ(hwsp);
 570}
 571
 572static void flush_cs_tlb(struct intel_engine_cs *engine)
 573{
 574	struct drm_i915_private *dev_priv = engine->i915;
 575
 576	if (!IS_GEN_RANGE(dev_priv, 6, 7))
 577		return;
 578
 579	/* ring should be idle before issuing a sync flush*/
 580	WARN_ON((ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE) == 0);
 581
 582	ENGINE_WRITE(engine, RING_INSTPM,
 583		     _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
 584					INSTPM_SYNC_FLUSH));
 585	if (intel_wait_for_register(engine->uncore,
 586				    RING_INSTPM(engine->mmio_base),
 587				    INSTPM_SYNC_FLUSH, 0,
 588				    1000))
 589		DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
 590			  engine->name);
 591}
 592
 593static void ring_setup_status_page(struct intel_engine_cs *engine)
 594{
 595	set_hwsp(engine, i915_ggtt_offset(engine->status_page.vma));
 596	set_hwstam(engine, ~0u);
 597
 598	flush_cs_tlb(engine);
 599}
 600
 601static bool stop_ring(struct intel_engine_cs *engine)
 602{
 603	struct drm_i915_private *dev_priv = engine->i915;
 604
 605	if (INTEL_GEN(dev_priv) > 2) {
 606		ENGINE_WRITE(engine,
 607			     RING_MI_MODE, _MASKED_BIT_ENABLE(STOP_RING));
 608		if (intel_wait_for_register(engine->uncore,
 609					    RING_MI_MODE(engine->mmio_base),
 610					    MODE_IDLE,
 611					    MODE_IDLE,
 612					    1000)) {
 613			DRM_ERROR("%s : timed out trying to stop ring\n",
 614				  engine->name);
 615
 616			/*
 617			 * Sometimes we observe that the idle flag is not
 618			 * set even though the ring is empty. So double
 619			 * check before giving up.
 620			 */
 621			if (ENGINE_READ(engine, RING_HEAD) !=
 622			    ENGINE_READ(engine, RING_TAIL))
 623				return false;
 624		}
 625	}
 626
 627	ENGINE_WRITE(engine, RING_HEAD, ENGINE_READ(engine, RING_TAIL));
 628
 629	ENGINE_WRITE(engine, RING_HEAD, 0);
 630	ENGINE_WRITE(engine, RING_TAIL, 0);
 631
 632	/* The ring must be empty before it is disabled */
 633	ENGINE_WRITE(engine, RING_CTL, 0);
 634
 635	return (ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) == 0;
 636}
 637
 638static int xcs_resume(struct intel_engine_cs *engine)
 639{
 640	struct drm_i915_private *dev_priv = engine->i915;
 641	struct intel_ring *ring = engine->legacy.ring;
 642	int ret = 0;
 643
 644	GEM_TRACE("%s: ring:{HEAD:%04x, TAIL:%04x}\n",
 645		  engine->name, ring->head, ring->tail);
 646
 647	intel_uncore_forcewake_get(engine->uncore, FORCEWAKE_ALL);
 648
 649	/* WaClearRingBufHeadRegAtInit:ctg,elk */
 650	if (!stop_ring(engine)) {
 651		/* G45 ring initialization often fails to reset head to zero */
 652		DRM_DEBUG_DRIVER("%s head not reset to zero "
 653				"ctl %08x head %08x tail %08x start %08x\n",
 654				engine->name,
 655				ENGINE_READ(engine, RING_CTL),
 656				ENGINE_READ(engine, RING_HEAD),
 657				ENGINE_READ(engine, RING_TAIL),
 658				ENGINE_READ(engine, RING_START));
 659
 660		if (!stop_ring(engine)) {
 661			DRM_ERROR("failed to set %s head to zero "
 662				  "ctl %08x head %08x tail %08x start %08x\n",
 663				  engine->name,
 664				  ENGINE_READ(engine, RING_CTL),
 665				  ENGINE_READ(engine, RING_HEAD),
 666				  ENGINE_READ(engine, RING_TAIL),
 667				  ENGINE_READ(engine, RING_START));
 668			ret = -EIO;
 669			goto out;
 670		}
 671	}
 672
 673	if (HWS_NEEDS_PHYSICAL(dev_priv))
 674		ring_setup_phys_status_page(engine);
 675	else
 676		ring_setup_status_page(engine);
 677
 678	intel_engine_reset_breadcrumbs(engine);
 679
 680	/* Enforce ordering by reading HEAD register back */
 681	ENGINE_POSTING_READ(engine, RING_HEAD);
 682
 683	/*
 684	 * Initialize the ring. This must happen _after_ we've cleared the ring
 685	 * registers with the above sequence (the readback of the HEAD registers
 686	 * also enforces ordering), otherwise the hw might lose the new ring
 687	 * register values.
 688	 */
 689	ENGINE_WRITE(engine, RING_START, i915_ggtt_offset(ring->vma));
 690
 691	/* Check that the ring offsets point within the ring! */
 692	GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->head));
 693	GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->tail));
 694	intel_ring_update_space(ring);
 695
 696	/* First wake the ring up to an empty/idle ring */
 697	ENGINE_WRITE(engine, RING_HEAD, ring->head);
 698	ENGINE_WRITE(engine, RING_TAIL, ring->head);
 699	ENGINE_POSTING_READ(engine, RING_TAIL);
 700
 701	ENGINE_WRITE(engine, RING_CTL, RING_CTL_SIZE(ring->size) | RING_VALID);
 702
 703	/* If the head is still not zero, the ring is dead */
 704	if (intel_wait_for_register(engine->uncore,
 705				    RING_CTL(engine->mmio_base),
 706				    RING_VALID, RING_VALID,
 707				    50)) {
 708		DRM_ERROR("%s initialization failed "
 709			  "ctl %08x (valid? %d) head %08x [%08x] tail %08x [%08x] start %08x [expected %08x]\n",
 710			  engine->name,
 711			  ENGINE_READ(engine, RING_CTL),
 712			  ENGINE_READ(engine, RING_CTL) & RING_VALID,
 713			  ENGINE_READ(engine, RING_HEAD), ring->head,
 714			  ENGINE_READ(engine, RING_TAIL), ring->tail,
 715			  ENGINE_READ(engine, RING_START),
 716			  i915_ggtt_offset(ring->vma));
 717		ret = -EIO;
 718		goto out;
 719	}
 720
 721	if (INTEL_GEN(dev_priv) > 2)
 722		ENGINE_WRITE(engine,
 723			     RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
 724
 725	/* Now awake, let it get started */
 726	if (ring->tail != ring->head) {
 727		ENGINE_WRITE(engine, RING_TAIL, ring->tail);
 728		ENGINE_POSTING_READ(engine, RING_TAIL);
 729	}
 730
 731	/* Papering over lost _interrupts_ immediately following the restart */
 732	intel_engine_queue_breadcrumbs(engine);
 733out:
 734	intel_uncore_forcewake_put(engine->uncore, FORCEWAKE_ALL);
 735
 736	return ret;
 737}
 738
 739static void reset_prepare(struct intel_engine_cs *engine)
 740{
 741	struct intel_uncore *uncore = engine->uncore;
 742	const u32 base = engine->mmio_base;
 743
 744	/*
 745	 * We stop engines, otherwise we might get failed reset and a
 746	 * dead gpu (on elk). Also as modern gpu as kbl can suffer
 747	 * from system hang if batchbuffer is progressing when
 748	 * the reset is issued, regardless of READY_TO_RESET ack.
 749	 * Thus assume it is best to stop engines on all gens
 750	 * where we have a gpu reset.
 751	 *
 752	 * WaKBLVECSSemaphoreWaitPoll:kbl (on ALL_ENGINES)
 753	 *
 754	 * WaMediaResetMainRingCleanup:ctg,elk (presumably)
 755	 *
 756	 * FIXME: Wa for more modern gens needs to be validated
 757	 */
 758	GEM_TRACE("%s\n", engine->name);
 759
 760	if (intel_engine_stop_cs(engine))
 761		GEM_TRACE("%s: timed out on STOP_RING\n", engine->name);
 762
 763	intel_uncore_write_fw(uncore,
 764			      RING_HEAD(base),
 765			      intel_uncore_read_fw(uncore, RING_TAIL(base)));
 766	intel_uncore_posting_read_fw(uncore, RING_HEAD(base)); /* paranoia */
 767
 768	intel_uncore_write_fw(uncore, RING_HEAD(base), 0);
 769	intel_uncore_write_fw(uncore, RING_TAIL(base), 0);
 770	intel_uncore_posting_read_fw(uncore, RING_TAIL(base));
 771
 772	/* The ring must be empty before it is disabled */
 773	intel_uncore_write_fw(uncore, RING_CTL(base), 0);
 774
 775	/* Check acts as a post */
 776	if (intel_uncore_read_fw(uncore, RING_HEAD(base)))
 777		GEM_TRACE("%s: ring head [%x] not parked\n",
 778			  engine->name,
 779			  intel_uncore_read_fw(uncore, RING_HEAD(base)));
 780}
 781
 782static void reset_ring(struct intel_engine_cs *engine, bool stalled)
 783{
 784	struct i915_request *pos, *rq;
 785	unsigned long flags;
 786	u32 head;
 787
 788	rq = NULL;
 789	spin_lock_irqsave(&engine->active.lock, flags);
 790	list_for_each_entry(pos, &engine->active.requests, sched.link) {
 791		if (!i915_request_completed(pos)) {
 792			rq = pos;
 793			break;
 794		}
 795	}
 796
 797	/*
 798	 * The guilty request will get skipped on a hung engine.
 799	 *
 800	 * Users of client default contexts do not rely on logical
 801	 * state preserved between batches so it is safe to execute
 802	 * queued requests following the hang. Non default contexts
 803	 * rely on preserved state, so skipping a batch loses the
 804	 * evolution of the state and it needs to be considered corrupted.
 805	 * Executing more queued batches on top of corrupted state is
 806	 * risky. But we take the risk by trying to advance through
 807	 * the queued requests in order to make the client behaviour
 808	 * more predictable around resets, by not throwing away random
 809	 * amount of batches it has prepared for execution. Sophisticated
 810	 * clients can use gem_reset_stats_ioctl and dma fence status
 811	 * (exported via sync_file info ioctl on explicit fences) to observe
 812	 * when it loses the context state and should rebuild accordingly.
 813	 *
 814	 * The context ban, and ultimately the client ban, mechanism are safety
 815	 * valves if client submission ends up resulting in nothing more than
 816	 * subsequent hangs.
 817	 */
 818
 819	if (rq) {
 820		/*
 821		 * Try to restore the logical GPU state to match the
 822		 * continuation of the request queue. If we skip the
 823		 * context/PD restore, then the next request may try to execute
 824		 * assuming that its context is valid and loaded on the GPU and
 825		 * so may try to access invalid memory, prompting repeated GPU
 826		 * hangs.
 827		 *
 828		 * If the request was guilty, we still restore the logical
 829		 * state in case the next request requires it (e.g. the
 830		 * aliasing ppgtt), but skip over the hung batch.
 831		 *
 832		 * If the request was innocent, we try to replay the request
 833		 * with the restored context.
 834		 */
 835		__i915_request_reset(rq, stalled);
 836
 837		GEM_BUG_ON(rq->ring != engine->legacy.ring);
 838		head = rq->head;
 839	} else {
 840		head = engine->legacy.ring->tail;
 841	}
 842	engine->legacy.ring->head = intel_ring_wrap(engine->legacy.ring, head);
 843
 844	spin_unlock_irqrestore(&engine->active.lock, flags);
 845}
 846
 847static void reset_finish(struct intel_engine_cs *engine)
 848{
 849}
 850
 851static int rcs_resume(struct intel_engine_cs *engine)
 852{
 853	struct drm_i915_private *dev_priv = engine->i915;
 854
 855	/*
 856	 * Disable CONSTANT_BUFFER before it is loaded from the context
 857	 * image. For as it is loaded, it is executed and the stored
 858	 * address may no longer be valid, leading to a GPU hang.
 859	 *
 860	 * This imposes the requirement that userspace reload their
 861	 * CONSTANT_BUFFER on every batch, fortunately a requirement
 862	 * they are already accustomed to from before contexts were
 863	 * enabled.
 864	 */
 865	if (IS_GEN(dev_priv, 4))
 866		I915_WRITE(ECOSKPD,
 867			   _MASKED_BIT_ENABLE(ECO_CONSTANT_BUFFER_SR_DISABLE));
 868
 869	/* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
 870	if (IS_GEN_RANGE(dev_priv, 4, 6))
 871		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
 872
 873	/* We need to disable the AsyncFlip performance optimisations in order
 874	 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
 875	 * programmed to '1' on all products.
 876	 *
 877	 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
 878	 */
 879	if (IS_GEN_RANGE(dev_priv, 6, 7))
 880		I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
 881
 882	/* Required for the hardware to program scanline values for waiting */
 883	/* WaEnableFlushTlbInvalidationMode:snb */
 884	if (IS_GEN(dev_priv, 6))
 885		I915_WRITE(GFX_MODE,
 886			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
 887
 888	/* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
 889	if (IS_GEN(dev_priv, 7))
 890		I915_WRITE(GFX_MODE_GEN7,
 891			   _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
 892			   _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
 893
 894	if (IS_GEN(dev_priv, 6)) {
 895		/* From the Sandybridge PRM, volume 1 part 3, page 24:
 896		 * "If this bit is set, STCunit will have LRA as replacement
 897		 *  policy. [...] This bit must be reset.  LRA replacement
 898		 *  policy is not supported."
 899		 */
 900		I915_WRITE(CACHE_MODE_0,
 901			   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
 902	}
 903
 904	if (IS_GEN_RANGE(dev_priv, 6, 7))
 905		I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
 906
 907	return xcs_resume(engine);
 908}
 909
 910static void cancel_requests(struct intel_engine_cs *engine)
 911{
 912	struct i915_request *request;
 913	unsigned long flags;
 914
 915	spin_lock_irqsave(&engine->active.lock, flags);
 916
 917	/* Mark all submitted requests as skipped. */
 918	list_for_each_entry(request, &engine->active.requests, sched.link) {
 919		if (!i915_request_signaled(request))
 920			dma_fence_set_error(&request->fence, -EIO);
 921
 922		i915_request_mark_complete(request);
 923	}
 924
 925	/* Remaining _unready_ requests will be nop'ed when submitted */
 926
 927	spin_unlock_irqrestore(&engine->active.lock, flags);
 928}
 929
 930static void i9xx_submit_request(struct i915_request *request)
 931{
 932	i915_request_submit(request);
 933
 934	ENGINE_WRITE(request->engine, RING_TAIL,
 935		     intel_ring_set_tail(request->ring, request->tail));
 936}
 937
 938static u32 *i9xx_emit_breadcrumb(struct i915_request *rq, u32 *cs)
 939{
 940	GEM_BUG_ON(rq->timeline->hwsp_ggtt != rq->engine->status_page.vma);
 941	GEM_BUG_ON(offset_in_page(rq->timeline->hwsp_offset) != I915_GEM_HWS_SEQNO_ADDR);
 942
 943	*cs++ = MI_FLUSH;
 944
 945	*cs++ = MI_STORE_DWORD_INDEX;
 946	*cs++ = I915_GEM_HWS_SEQNO_ADDR;
 947	*cs++ = rq->fence.seqno;
 948
 949	*cs++ = MI_USER_INTERRUPT;
 950	*cs++ = MI_NOOP;
 951
 952	rq->tail = intel_ring_offset(rq, cs);
 953	assert_ring_tail_valid(rq->ring, rq->tail);
 954
 955	return cs;
 956}
 957
 958#define GEN5_WA_STORES 8 /* must be at least 1! */
 959static u32 *gen5_emit_breadcrumb(struct i915_request *rq, u32 *cs)
 960{
 961	int i;
 962
 963	GEM_BUG_ON(rq->timeline->hwsp_ggtt != rq->engine->status_page.vma);
 964	GEM_BUG_ON(offset_in_page(rq->timeline->hwsp_offset) != I915_GEM_HWS_SEQNO_ADDR);
 965
 966	*cs++ = MI_FLUSH;
 967
 968	BUILD_BUG_ON(GEN5_WA_STORES < 1);
 969	for (i = 0; i < GEN5_WA_STORES; i++) {
 970		*cs++ = MI_STORE_DWORD_INDEX;
 971		*cs++ = I915_GEM_HWS_SEQNO_ADDR;
 972		*cs++ = rq->fence.seqno;
 973	}
 974
 975	*cs++ = MI_USER_INTERRUPT;
 976
 977	rq->tail = intel_ring_offset(rq, cs);
 978	assert_ring_tail_valid(rq->ring, rq->tail);
 979
 980	return cs;
 981}
 982#undef GEN5_WA_STORES
 983
 984static void
 985gen5_irq_enable(struct intel_engine_cs *engine)
 986{
 987	gen5_gt_enable_irq(engine->gt, engine->irq_enable_mask);
 988}
 989
 990static void
 991gen5_irq_disable(struct intel_engine_cs *engine)
 992{
 993	gen5_gt_disable_irq(engine->gt, engine->irq_enable_mask);
 994}
 995
 996static void
 997i9xx_irq_enable(struct intel_engine_cs *engine)
 998{
 999	engine->i915->irq_mask &= ~engine->irq_enable_mask;
1000	intel_uncore_write(engine->uncore, GEN2_IMR, engine->i915->irq_mask);
1001	intel_uncore_posting_read_fw(engine->uncore, GEN2_IMR);
1002}
1003
1004static void
1005i9xx_irq_disable(struct intel_engine_cs *engine)
1006{
1007	engine->i915->irq_mask |= engine->irq_enable_mask;
1008	intel_uncore_write(engine->uncore, GEN2_IMR, engine->i915->irq_mask);
1009}
1010
1011static void
1012i8xx_irq_enable(struct intel_engine_cs *engine)
1013{
1014	struct drm_i915_private *i915 = engine->i915;
1015
1016	i915->irq_mask &= ~engine->irq_enable_mask;
1017	intel_uncore_write16(&i915->uncore, GEN2_IMR, i915->irq_mask);
1018	ENGINE_POSTING_READ16(engine, RING_IMR);
1019}
1020
1021static void
1022i8xx_irq_disable(struct intel_engine_cs *engine)
1023{
1024	struct drm_i915_private *i915 = engine->i915;
1025
1026	i915->irq_mask |= engine->irq_enable_mask;
1027	intel_uncore_write16(&i915->uncore, GEN2_IMR, i915->irq_mask);
1028}
1029
1030static int
1031bsd_ring_flush(struct i915_request *rq, u32 mode)
1032{
1033	u32 *cs;
1034
1035	cs = intel_ring_begin(rq, 2);
1036	if (IS_ERR(cs))
1037		return PTR_ERR(cs);
1038
1039	*cs++ = MI_FLUSH;
1040	*cs++ = MI_NOOP;
1041	intel_ring_advance(rq, cs);
1042	return 0;
1043}
1044
1045static void
1046gen6_irq_enable(struct intel_engine_cs *engine)
1047{
1048	ENGINE_WRITE(engine, RING_IMR,
1049		     ~(engine->irq_enable_mask | engine->irq_keep_mask));
1050
1051	/* Flush/delay to ensure the RING_IMR is active before the GT IMR */
1052	ENGINE_POSTING_READ(engine, RING_IMR);
1053
1054	gen5_gt_enable_irq(engine->gt, engine->irq_enable_mask);
1055}
1056
1057static void
1058gen6_irq_disable(struct intel_engine_cs *engine)
1059{
1060	ENGINE_WRITE(engine, RING_IMR, ~engine->irq_keep_mask);
1061	gen5_gt_disable_irq(engine->gt, engine->irq_enable_mask);
1062}
1063
1064static void
1065hsw_vebox_irq_enable(struct intel_engine_cs *engine)
1066{
1067	ENGINE_WRITE(engine, RING_IMR, ~engine->irq_enable_mask);
1068
1069	/* Flush/delay to ensure the RING_IMR is active before the GT IMR */
1070	ENGINE_POSTING_READ(engine, RING_IMR);
1071
1072	gen6_gt_pm_unmask_irq(engine->gt, engine->irq_enable_mask);
1073}
1074
1075static void
1076hsw_vebox_irq_disable(struct intel_engine_cs *engine)
1077{
1078	ENGINE_WRITE(engine, RING_IMR, ~0);
1079	gen6_gt_pm_mask_irq(engine->gt, engine->irq_enable_mask);
1080}
1081
1082static int
1083i965_emit_bb_start(struct i915_request *rq,
1084		   u64 offset, u32 length,
1085		   unsigned int dispatch_flags)
1086{
1087	u32 *cs;
1088
1089	cs = intel_ring_begin(rq, 2);
1090	if (IS_ERR(cs))
1091		return PTR_ERR(cs);
1092
1093	*cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT | (dispatch_flags &
1094		I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965);
1095	*cs++ = offset;
1096	intel_ring_advance(rq, cs);
1097
1098	return 0;
1099}
1100
1101/* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1102#define I830_BATCH_LIMIT SZ_256K
1103#define I830_TLB_ENTRIES (2)
1104#define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1105static int
1106i830_emit_bb_start(struct i915_request *rq,
1107		   u64 offset, u32 len,
1108		   unsigned int dispatch_flags)
1109{
1110	u32 *cs, cs_offset =
1111		intel_gt_scratch_offset(rq->engine->gt,
1112					INTEL_GT_SCRATCH_FIELD_DEFAULT);
1113
1114	GEM_BUG_ON(rq->engine->gt->scratch->size < I830_WA_SIZE);
1115
1116	cs = intel_ring_begin(rq, 6);
1117	if (IS_ERR(cs))
1118		return PTR_ERR(cs);
1119
1120	/* Evict the invalid PTE TLBs */
1121	*cs++ = COLOR_BLT_CMD | BLT_WRITE_RGBA;
1122	*cs++ = BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096;
1123	*cs++ = I830_TLB_ENTRIES << 16 | 4; /* load each page */
1124	*cs++ = cs_offset;
1125	*cs++ = 0xdeadbeef;
1126	*cs++ = MI_NOOP;
1127	intel_ring_advance(rq, cs);
1128
1129	if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1130		if (len > I830_BATCH_LIMIT)
1131			return -ENOSPC;
1132
1133		cs = intel_ring_begin(rq, 6 + 2);
1134		if (IS_ERR(cs))
1135			return PTR_ERR(cs);
1136
1137		/* Blit the batch (which has now all relocs applied) to the
1138		 * stable batch scratch bo area (so that the CS never
1139		 * stumbles over its tlb invalidation bug) ...
1140		 */
1141		*cs++ = SRC_COPY_BLT_CMD | BLT_WRITE_RGBA | (6 - 2);
1142		*cs++ = BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096;
1143		*cs++ = DIV_ROUND_UP(len, 4096) << 16 | 4096;
1144		*cs++ = cs_offset;
1145		*cs++ = 4096;
1146		*cs++ = offset;
1147
1148		*cs++ = MI_FLUSH;
1149		*cs++ = MI_NOOP;
1150		intel_ring_advance(rq, cs);
1151
1152		/* ... and execute it. */
1153		offset = cs_offset;
1154	}
1155
1156	cs = intel_ring_begin(rq, 2);
1157	if (IS_ERR(cs))
1158		return PTR_ERR(cs);
1159
1160	*cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
1161	*cs++ = offset | (dispatch_flags & I915_DISPATCH_SECURE ? 0 :
1162		MI_BATCH_NON_SECURE);
1163	intel_ring_advance(rq, cs);
1164
1165	return 0;
1166}
1167
1168static int
1169i915_emit_bb_start(struct i915_request *rq,
1170		   u64 offset, u32 len,
1171		   unsigned int dispatch_flags)
1172{
1173	u32 *cs;
1174
1175	cs = intel_ring_begin(rq, 2);
1176	if (IS_ERR(cs))
1177		return PTR_ERR(cs);
1178
1179	*cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
1180	*cs++ = offset | (dispatch_flags & I915_DISPATCH_SECURE ? 0 :
1181		MI_BATCH_NON_SECURE);
1182	intel_ring_advance(rq, cs);
1183
1184	return 0;
1185}
1186
1187int intel_ring_pin(struct intel_ring *ring)
1188{
1189	struct i915_vma *vma = ring->vma;
1190	unsigned int flags;
1191	void *addr;
1192	int ret;
1193
1194	if (atomic_fetch_inc(&ring->pin_count))
1195		return 0;
1196
1197	flags = PIN_GLOBAL;
1198
1199	/* Ring wraparound at offset 0 sometimes hangs. No idea why. */
1200	flags |= PIN_OFFSET_BIAS | i915_ggtt_pin_bias(vma);
1201
1202	if (vma->obj->stolen)
1203		flags |= PIN_MAPPABLE;
1204	else
1205		flags |= PIN_HIGH;
1206
1207	ret = i915_vma_pin(vma, 0, 0, flags);
1208	if (unlikely(ret))
1209		goto err_unpin;
1210
1211	if (i915_vma_is_map_and_fenceable(vma))
1212		addr = (void __force *)i915_vma_pin_iomap(vma);
1213	else
1214		addr = i915_gem_object_pin_map(vma->obj,
1215					       i915_coherent_map_type(vma->vm->i915));
1216	if (IS_ERR(addr)) {
1217		ret = PTR_ERR(addr);
1218		goto err_ring;
1219	}
1220
1221	i915_vma_make_unshrinkable(vma);
1222
1223	GEM_BUG_ON(ring->vaddr);
1224	ring->vaddr = addr;
1225
1226	return 0;
1227
1228err_ring:
1229	i915_vma_unpin(vma);
1230err_unpin:
1231	atomic_dec(&ring->pin_count);
1232	return ret;
1233}
1234
1235void intel_ring_reset(struct intel_ring *ring, u32 tail)
1236{
1237	tail = intel_ring_wrap(ring, tail);
1238	ring->tail = tail;
1239	ring->head = tail;
1240	ring->emit = tail;
1241	intel_ring_update_space(ring);
1242}
1243
1244void intel_ring_unpin(struct intel_ring *ring)
1245{
1246	struct i915_vma *vma = ring->vma;
1247
1248	if (!atomic_dec_and_test(&ring->pin_count))
1249		return;
1250
1251	/* Discard any unused bytes beyond that submitted to hw. */
1252	intel_ring_reset(ring, ring->emit);
1253
1254	i915_vma_unset_ggtt_write(vma);
1255	if (i915_vma_is_map_and_fenceable(vma))
1256		i915_vma_unpin_iomap(vma);
1257	else
1258		i915_gem_object_unpin_map(vma->obj);
1259
1260	GEM_BUG_ON(!ring->vaddr);
1261	ring->vaddr = NULL;
1262
1263	i915_vma_unpin(vma);
1264	i915_vma_make_purgeable(vma);
1265}
1266
1267static struct i915_vma *create_ring_vma(struct i915_ggtt *ggtt, int size)
1268{
1269	struct i915_address_space *vm = &ggtt->vm;
1270	struct drm_i915_private *i915 = vm->i915;
1271	struct drm_i915_gem_object *obj;
1272	struct i915_vma *vma;
1273
1274	obj = i915_gem_object_create_stolen(i915, size);
1275	if (!obj)
1276		obj = i915_gem_object_create_internal(i915, size);
1277	if (IS_ERR(obj))
1278		return ERR_CAST(obj);
1279
1280	/*
1281	 * Mark ring buffers as read-only from GPU side (so no stray overwrites)
1282	 * if supported by the platform's GGTT.
1283	 */
1284	if (vm->has_read_only)
1285		i915_gem_object_set_readonly(obj);
1286
1287	vma = i915_vma_instance(obj, vm, NULL);
1288	if (IS_ERR(vma))
1289		goto err;
1290
1291	return vma;
1292
1293err:
1294	i915_gem_object_put(obj);
1295	return vma;
1296}
1297
1298struct intel_ring *
1299intel_engine_create_ring(struct intel_engine_cs *engine, int size)
1300{
1301	struct drm_i915_private *i915 = engine->i915;
1302	struct intel_ring *ring;
1303	struct i915_vma *vma;
1304
1305	GEM_BUG_ON(!is_power_of_2(size));
1306	GEM_BUG_ON(RING_CTL_SIZE(size) & ~RING_NR_PAGES);
1307
1308	ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1309	if (!ring)
1310		return ERR_PTR(-ENOMEM);
1311
1312	kref_init(&ring->ref);
1313
1314	ring->size = size;
1315	/* Workaround an erratum on the i830 which causes a hang if
1316	 * the TAIL pointer points to within the last 2 cachelines
1317	 * of the buffer.
1318	 */
1319	ring->effective_size = size;
1320	if (IS_I830(i915) || IS_I845G(i915))
1321		ring->effective_size -= 2 * CACHELINE_BYTES;
1322
1323	intel_ring_update_space(ring);
1324
1325	vma = create_ring_vma(engine->gt->ggtt, size);
1326	if (IS_ERR(vma)) {
1327		kfree(ring);
1328		return ERR_CAST(vma);
1329	}
1330	ring->vma = vma;
1331
1332	return ring;
1333}
1334
1335void intel_ring_free(struct kref *ref)
1336{
1337	struct intel_ring *ring = container_of(ref, typeof(*ring), ref);
1338
1339	i915_vma_close(ring->vma);
1340	i915_vma_put(ring->vma);
1341
1342	kfree(ring);
1343}
1344
1345static void __ring_context_fini(struct intel_context *ce)
1346{
1347	i915_gem_object_put(ce->state->obj);
1348}
1349
1350static void ring_context_destroy(struct kref *ref)
1351{
1352	struct intel_context *ce = container_of(ref, typeof(*ce), ref);
1353
1354	GEM_BUG_ON(intel_context_is_pinned(ce));
1355
1356	if (ce->state)
1357		__ring_context_fini(ce);
1358
1359	intel_context_fini(ce);
1360	intel_context_free(ce);
1361}
1362
1363static struct i915_address_space *vm_alias(struct intel_context *ce)
1364{
1365	struct i915_address_space *vm;
1366
1367	vm = ce->vm;
1368	if (i915_is_ggtt(vm))
1369		vm = &i915_vm_to_ggtt(vm)->alias->vm;
1370
1371	return vm;
1372}
1373
1374static int __context_pin_ppgtt(struct intel_context *ce)
1375{
1376	struct i915_address_space *vm;
1377	int err = 0;
1378
1379	vm = vm_alias(ce);
1380	if (vm)
1381		err = gen6_ppgtt_pin(i915_vm_to_ppgtt((vm)));
1382
1383	return err;
1384}
1385
1386static void __context_unpin_ppgtt(struct intel_context *ce)
1387{
1388	struct i915_address_space *vm;
1389
1390	vm = vm_alias(ce);
1391	if (vm)
1392		gen6_ppgtt_unpin(i915_vm_to_ppgtt(vm));
1393}
1394
1395static void ring_context_unpin(struct intel_context *ce)
1396{
1397	__context_unpin_ppgtt(ce);
1398}
1399
1400static struct i915_vma *
1401alloc_context_vma(struct intel_engine_cs *engine)
1402{
1403	struct drm_i915_private *i915 = engine->i915;
1404	struct drm_i915_gem_object *obj;
1405	struct i915_vma *vma;
1406	int err;
1407
1408	obj = i915_gem_object_create_shmem(i915, engine->context_size);
1409	if (IS_ERR(obj))
1410		return ERR_CAST(obj);
1411
1412	/*
1413	 * Try to make the context utilize L3 as well as LLC.
1414	 *
1415	 * On VLV we don't have L3 controls in the PTEs so we
1416	 * shouldn't touch the cache level, especially as that
1417	 * would make the object snooped which might have a
1418	 * negative performance impact.
1419	 *
1420	 * Snooping is required on non-llc platforms in execlist
1421	 * mode, but since all GGTT accesses use PAT entry 0 we
1422	 * get snooping anyway regardless of cache_level.
1423	 *
1424	 * This is only applicable for Ivy Bridge devices since
1425	 * later platforms don't have L3 control bits in the PTE.
1426	 */
1427	if (IS_IVYBRIDGE(i915))
1428		i915_gem_object_set_cache_coherency(obj, I915_CACHE_L3_LLC);
1429
1430	if (engine->default_state) {
1431		void *defaults, *vaddr;
1432
1433		vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
1434		if (IS_ERR(vaddr)) {
1435			err = PTR_ERR(vaddr);
1436			goto err_obj;
1437		}
1438
1439		defaults = i915_gem_object_pin_map(engine->default_state,
1440						   I915_MAP_WB);
1441		if (IS_ERR(defaults)) {
1442			err = PTR_ERR(defaults);
1443			goto err_map;
1444		}
1445
1446		memcpy(vaddr, defaults, engine->context_size);
1447		i915_gem_object_unpin_map(engine->default_state);
1448
1449		i915_gem_object_flush_map(obj);
1450		i915_gem_object_unpin_map(obj);
1451	}
1452
1453	vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
1454	if (IS_ERR(vma)) {
1455		err = PTR_ERR(vma);
1456		goto err_obj;
1457	}
1458
1459	return vma;
1460
1461err_map:
1462	i915_gem_object_unpin_map(obj);
1463err_obj:
1464	i915_gem_object_put(obj);
1465	return ERR_PTR(err);
1466}
1467
1468static int ring_context_alloc(struct intel_context *ce)
1469{
1470	struct intel_engine_cs *engine = ce->engine;
1471
1472	/* One ringbuffer to rule them all */
1473	GEM_BUG_ON(!engine->legacy.ring);
1474	ce->ring = engine->legacy.ring;
1475	ce->timeline = intel_timeline_get(engine->legacy.timeline);
1476
1477	GEM_BUG_ON(ce->state);
1478	if (engine->context_size) {
1479		struct i915_vma *vma;
1480
1481		vma = alloc_context_vma(engine);
1482		if (IS_ERR(vma))
1483			return PTR_ERR(vma);
1484
1485		ce->state = vma;
1486	}
1487
1488	return 0;
1489}
1490
1491static int ring_context_pin(struct intel_context *ce)
1492{
1493	int err;
1494
1495	err = intel_context_active_acquire(ce);
1496	if (err)
1497		return err;
1498
1499	err = __context_pin_ppgtt(ce);
1500	if (err)
1501		goto err_active;
1502
1503	return 0;
1504
1505err_active:
1506	intel_context_active_release(ce);
1507	return err;
1508}
1509
1510static void ring_context_reset(struct intel_context *ce)
1511{
1512	intel_ring_reset(ce->ring, 0);
1513}
1514
1515static const struct intel_context_ops ring_context_ops = {
1516	.alloc = ring_context_alloc,
1517
1518	.pin = ring_context_pin,
1519	.unpin = ring_context_unpin,
1520
1521	.enter = intel_context_enter_engine,
1522	.exit = intel_context_exit_engine,
1523
1524	.reset = ring_context_reset,
1525	.destroy = ring_context_destroy,
1526};
1527
1528static int load_pd_dir(struct i915_request *rq, const struct i915_ppgtt *ppgtt)
1529{
1530	const struct intel_engine_cs * const engine = rq->engine;
1531	u32 *cs;
1532
1533	cs = intel_ring_begin(rq, 6);
1534	if (IS_ERR(cs))
1535		return PTR_ERR(cs);
1536
1537	*cs++ = MI_LOAD_REGISTER_IMM(1);
1538	*cs++ = i915_mmio_reg_offset(RING_PP_DIR_DCLV(engine->mmio_base));
1539	*cs++ = PP_DIR_DCLV_2G;
1540
1541	*cs++ = MI_LOAD_REGISTER_IMM(1);
1542	*cs++ = i915_mmio_reg_offset(RING_PP_DIR_BASE(engine->mmio_base));
1543	*cs++ = px_base(ppgtt->pd)->ggtt_offset << 10;
1544
1545	intel_ring_advance(rq, cs);
1546
1547	return 0;
1548}
1549
1550static int flush_pd_dir(struct i915_request *rq)
1551{
1552	const struct intel_engine_cs * const engine = rq->engine;
1553	u32 *cs;
1554
1555	cs = intel_ring_begin(rq, 4);
1556	if (IS_ERR(cs))
1557		return PTR_ERR(cs);
1558
1559	/* Stall until the page table load is complete */
1560	*cs++ = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT;
1561	*cs++ = i915_mmio_reg_offset(RING_PP_DIR_BASE(engine->mmio_base));
1562	*cs++ = intel_gt_scratch_offset(rq->engine->gt,
1563					INTEL_GT_SCRATCH_FIELD_DEFAULT);
1564	*cs++ = MI_NOOP;
1565
1566	intel_ring_advance(rq, cs);
1567	return 0;
1568}
1569
1570static inline int mi_set_context(struct i915_request *rq, u32 flags)
1571{
1572	struct drm_i915_private *i915 = rq->i915;
1573	struct intel_engine_cs *engine = rq->engine;
1574	enum intel_engine_id id;
1575	const int num_engines =
1576		IS_HASWELL(i915) ? RUNTIME_INFO(i915)->num_engines - 1 : 0;
1577	bool force_restore = false;
1578	int len;
1579	u32 *cs;
1580
1581	flags |= MI_MM_SPACE_GTT;
1582	if (IS_HASWELL(i915))
1583		/* These flags are for resource streamer on HSW+ */
1584		flags |= HSW_MI_RS_SAVE_STATE_EN | HSW_MI_RS_RESTORE_STATE_EN;
1585	else
1586		/* We need to save the extended state for powersaving modes */
1587		flags |= MI_SAVE_EXT_STATE_EN | MI_RESTORE_EXT_STATE_EN;
1588
1589	len = 4;
1590	if (IS_GEN(i915, 7))
1591		len += 2 + (num_engines ? 4 * num_engines + 6 : 0);
1592	else if (IS_GEN(i915, 5))
1593		len += 2;
1594	if (flags & MI_FORCE_RESTORE) {
1595		GEM_BUG_ON(flags & MI_RESTORE_INHIBIT);
1596		flags &= ~MI_FORCE_RESTORE;
1597		force_restore = true;
1598		len += 2;
1599	}
1600
1601	cs = intel_ring_begin(rq, len);
1602	if (IS_ERR(cs))
1603		return PTR_ERR(cs);
1604
1605	/* WaProgramMiArbOnOffAroundMiSetContext:ivb,vlv,hsw,bdw,chv */
1606	if (IS_GEN(i915, 7)) {
1607		*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1608		if (num_engines) {
1609			struct intel_engine_cs *signaller;
1610
1611			*cs++ = MI_LOAD_REGISTER_IMM(num_engines);
1612			for_each_engine(signaller, i915, id) {
1613				if (signaller == engine)
1614					continue;
1615
1616				*cs++ = i915_mmio_reg_offset(
1617					   RING_PSMI_CTL(signaller->mmio_base));
1618				*cs++ = _MASKED_BIT_ENABLE(
1619						GEN6_PSMI_SLEEP_MSG_DISABLE);
1620			}
1621		}
1622	} else if (IS_GEN(i915, 5)) {
1623		/*
1624		 * This w/a is only listed for pre-production ilk a/b steppings,
1625		 * but is also mentioned for programming the powerctx. To be
1626		 * safe, just apply the workaround; we do not use SyncFlush so
1627		 * this should never take effect and so be a no-op!
1628		 */
1629		*cs++ = MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN;
1630	}
1631
1632	if (force_restore) {
1633		/*
1634		 * The HW doesn't handle being told to restore the current
1635		 * context very well. Quite often it likes goes to go off and
1636		 * sulk, especially when it is meant to be reloading PP_DIR.
1637		 * A very simple fix to force the reload is to simply switch
1638		 * away from the current context and back again.
1639		 *
1640		 * Note that the kernel_context will contain random state
1641		 * following the INHIBIT_RESTORE. We accept this since we
1642		 * never use the kernel_context state; it is merely a
1643		 * placeholder we use to flush other contexts.
1644		 */
1645		*cs++ = MI_SET_CONTEXT;
1646		*cs++ = i915_ggtt_offset(engine->kernel_context->state) |
1647			MI_MM_SPACE_GTT |
1648			MI_RESTORE_INHIBIT;
1649	}
1650
1651	*cs++ = MI_NOOP;
1652	*cs++ = MI_SET_CONTEXT;
1653	*cs++ = i915_ggtt_offset(rq->hw_context->state) | flags;
1654	/*
1655	 * w/a: MI_SET_CONTEXT must always be followed by MI_NOOP
1656	 * WaMiSetContext_Hang:snb,ivb,vlv
1657	 */
1658	*cs++ = MI_NOOP;
1659
1660	if (IS_GEN(i915, 7)) {
1661		if (num_engines) {
1662			struct intel_engine_cs *signaller;
1663			i915_reg_t last_reg = {}; /* keep gcc quiet */
1664
1665			*cs++ = MI_LOAD_REGISTER_IMM(num_engines);
1666			for_each_engine(signaller, i915, id) {
1667				if (signaller == engine)
1668					continue;
1669
1670				last_reg = RING_PSMI_CTL(signaller->mmio_base);
1671				*cs++ = i915_mmio_reg_offset(last_reg);
1672				*cs++ = _MASKED_BIT_DISABLE(
1673						GEN6_PSMI_SLEEP_MSG_DISABLE);
1674			}
1675
1676			/* Insert a delay before the next switch! */
1677			*cs++ = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT;
1678			*cs++ = i915_mmio_reg_offset(last_reg);
1679			*cs++ = intel_gt_scratch_offset(rq->engine->gt,
1680							INTEL_GT_SCRATCH_FIELD_DEFAULT);
1681			*cs++ = MI_NOOP;
1682		}
1683		*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1684	} else if (IS_GEN(i915, 5)) {
1685		*cs++ = MI_SUSPEND_FLUSH;
1686	}
1687
1688	intel_ring_advance(rq, cs);
1689
1690	return 0;
1691}
1692
1693static int remap_l3_slice(struct i915_request *rq, int slice)
1694{
1695	u32 *cs, *remap_info = rq->i915->l3_parity.remap_info[slice];
1696	int i;
1697
1698	if (!remap_info)
1699		return 0;
1700
1701	cs = intel_ring_begin(rq, GEN7_L3LOG_SIZE/4 * 2 + 2);
1702	if (IS_ERR(cs))
1703		return PTR_ERR(cs);
1704
1705	/*
1706	 * Note: We do not worry about the concurrent register cacheline hang
1707	 * here because no other code should access these registers other than
1708	 * at initialization time.
1709	 */
1710	*cs++ = MI_LOAD_REGISTER_IMM(GEN7_L3LOG_SIZE/4);
1711	for (i = 0; i < GEN7_L3LOG_SIZE/4; i++) {
1712		*cs++ = i915_mmio_reg_offset(GEN7_L3LOG(slice, i));
1713		*cs++ = remap_info[i];
1714	}
1715	*cs++ = MI_NOOP;
1716	intel_ring_advance(rq, cs);
1717
1718	return 0;
1719}
1720
1721static int remap_l3(struct i915_request *rq)
1722{
1723	struct i915_gem_context *ctx = rq->gem_context;
1724	int i, err;
1725
1726	if (!ctx->remap_slice)
1727		return 0;
1728
1729	for (i = 0; i < MAX_L3_SLICES; i++) {
1730		if (!(ctx->remap_slice & BIT(i)))
1731			continue;
1732
1733		err = remap_l3_slice(rq, i);
1734		if (err)
1735			return err;
1736	}
1737
1738	ctx->remap_slice = 0;
1739	return 0;
1740}
1741
1742static int switch_context(struct i915_request *rq)
1743{
1744	struct intel_engine_cs *engine = rq->engine;
1745	struct i915_address_space *vm = vm_alias(rq->hw_context);
1746	unsigned int unwind_mm = 0;
1747	u32 hw_flags = 0;
1748	int ret;
1749
1750	GEM_BUG_ON(HAS_EXECLISTS(rq->i915));
1751
1752	if (vm) {
1753		struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1754		int loops;
1755
1756		/*
1757		 * Baytail takes a little more convincing that it really needs
1758		 * to reload the PD between contexts. It is not just a little
1759		 * longer, as adding more stalls after the load_pd_dir (i.e.
1760		 * adding a long loop around flush_pd_dir) is not as effective
1761		 * as reloading the PD umpteen times. 32 is derived from
1762		 * experimentation (gem_exec_parallel/fds) and has no good
1763		 * explanation.
1764		 */
1765		loops = 1;
1766		if (engine->id == BCS0 && IS_VALLEYVIEW(engine->i915))
1767			loops = 32;
1768
1769		do {
1770			ret = load_pd_dir(rq, ppgtt);
1771			if (ret)
1772				goto err;
1773		} while (--loops);
1774
1775		if (ppgtt->pd_dirty_engines & engine->mask) {
1776			unwind_mm = engine->mask;
1777			ppgtt->pd_dirty_engines &= ~unwind_mm;
1778			hw_flags = MI_FORCE_RESTORE;
1779		}
1780	}
1781
1782	if (rq->hw_context->state) {
1783		GEM_BUG_ON(engine->id != RCS0);
1784
1785		/*
1786		 * The kernel context(s) is treated as pure scratch and is not
1787		 * expected to retain any state (as we sacrifice it during
1788		 * suspend and on resume it may be corrupted). This is ok,
1789		 * as nothing actually executes using the kernel context; it
1790		 * is purely used for flushing user contexts.
1791		 */
1792		if (i915_gem_context_is_kernel(rq->gem_context))
1793			hw_flags = MI_RESTORE_INHIBIT;
1794
1795		ret = mi_set_context(rq, hw_flags);
1796		if (ret)
1797			goto err_mm;
1798	}
1799
1800	if (vm) {
1801		ret = engine->emit_flush(rq, EMIT_INVALIDATE);
1802		if (ret)
1803			goto err_mm;
1804
1805		ret = flush_pd_dir(rq);
1806		if (ret)
1807			goto err_mm;
1808
1809		/*
1810		 * Not only do we need a full barrier (post-sync write) after
1811		 * invalidating the TLBs, but we need to wait a little bit
1812		 * longer. Whether this is merely delaying us, or the
1813		 * subsequent flush is a key part of serialising with the
1814		 * post-sync op, this extra pass appears vital before a
1815		 * mm switch!
1816		 */
1817		ret = engine->emit_flush(rq, EMIT_INVALIDATE);
1818		if (ret)
1819			goto err_mm;
1820
1821		ret = engine->emit_flush(rq, EMIT_FLUSH);
1822		if (ret)
1823			goto err_mm;
1824	}
1825
1826	ret = remap_l3(rq);
1827	if (ret)
1828		goto err_mm;
1829
1830	return 0;
1831
1832err_mm:
1833	if (unwind_mm)
1834		i915_vm_to_ppgtt(vm)->pd_dirty_engines |= unwind_mm;
1835err:
1836	return ret;
1837}
1838
1839static int ring_request_alloc(struct i915_request *request)
1840{
1841	int ret;
1842
1843	GEM_BUG_ON(!intel_context_is_pinned(request->hw_context));
1844	GEM_BUG_ON(request->timeline->has_initial_breadcrumb);
1845
1846	/*
1847	 * Flush enough space to reduce the likelihood of waiting after
1848	 * we start building the request - in which case we will just
1849	 * have to repeat work.
1850	 */
1851	request->reserved_space += LEGACY_REQUEST_SIZE;
1852
1853	/* Unconditionally invalidate GPU caches and TLBs. */
1854	ret = request->engine->emit_flush(request, EMIT_INVALIDATE);
1855	if (ret)
1856		return ret;
1857
1858	ret = switch_context(request);
1859	if (ret)
1860		return ret;
1861
1862	request->reserved_space -= LEGACY_REQUEST_SIZE;
1863	return 0;
1864}
1865
1866static noinline int
1867wait_for_space(struct intel_ring *ring,
1868	       struct intel_timeline *tl,
1869	       unsigned int bytes)
1870{
1871	struct i915_request *target;
1872	long timeout;
1873
1874	if (intel_ring_update_space(ring) >= bytes)
1875		return 0;
1876
1877	GEM_BUG_ON(list_empty(&tl->requests));
1878	list_for_each_entry(target, &tl->requests, link) {
1879		if (target->ring != ring)
1880			continue;
1881
1882		/* Would completion of this request free enough space? */
1883		if (bytes <= __intel_ring_space(target->postfix,
1884						ring->emit, ring->size))
1885			break;
1886	}
1887
1888	if (GEM_WARN_ON(&target->link == &tl->requests))
1889		return -ENOSPC;
1890
1891	timeout = i915_request_wait(target,
1892				    I915_WAIT_INTERRUPTIBLE,
1893				    MAX_SCHEDULE_TIMEOUT);
1894	if (timeout < 0)
1895		return timeout;
1896
1897	i915_request_retire_upto(target);
1898
1899	intel_ring_update_space(ring);
1900	GEM_BUG_ON(ring->space < bytes);
1901	return 0;
1902}
1903
1904u32 *intel_ring_begin(struct i915_request *rq, unsigned int num_dwords)
1905{
1906	struct intel_ring *ring = rq->ring;
1907	const unsigned int remain_usable = ring->effective_size - ring->emit;
1908	const unsigned int bytes = num_dwords * sizeof(u32);
1909	unsigned int need_wrap = 0;
1910	unsigned int total_bytes;
1911	u32 *cs;
1912
1913	/* Packets must be qword aligned. */
1914	GEM_BUG_ON(num_dwords & 1);
1915
1916	total_bytes = bytes + rq->reserved_space;
1917	GEM_BUG_ON(total_bytes > ring->effective_size);
1918
1919	if (unlikely(total_bytes > remain_usable)) {
1920		const int remain_actual = ring->size - ring->emit;
1921
1922		if (bytes > remain_usable) {
1923			/*
1924			 * Not enough space for the basic request. So need to
1925			 * flush out the remainder and then wait for
1926			 * base + reserved.
1927			 */
1928			total_bytes += remain_actual;
1929			need_wrap = remain_actual | 1;
1930		} else  {
1931			/*
1932			 * The base request will fit but the reserved space
1933			 * falls off the end. So we don't need an immediate
1934			 * wrap and only need to effectively wait for the
1935			 * reserved size from the start of ringbuffer.
1936			 */
1937			total_bytes = rq->reserved_space + remain_actual;
1938		}
1939	}
1940
1941	if (unlikely(total_bytes > ring->space)) {
1942		int ret;
1943
1944		/*
1945		 * Space is reserved in the ringbuffer for finalising the
1946		 * request, as that cannot be allowed to fail. During request
1947		 * finalisation, reserved_space is set to 0 to stop the
1948		 * overallocation and the assumption is that then we never need
1949		 * to wait (which has the risk of failing with EINTR).
1950		 *
1951		 * See also i915_request_alloc() and i915_request_add().
1952		 */
1953		GEM_BUG_ON(!rq->reserved_space);
1954
1955		ret = wait_for_space(ring, rq->timeline, total_bytes);
1956		if (unlikely(ret))
1957			return ERR_PTR(ret);
1958	}
1959
1960	if (unlikely(need_wrap)) {
1961		need_wrap &= ~1;
1962		GEM_BUG_ON(need_wrap > ring->space);
1963		GEM_BUG_ON(ring->emit + need_wrap > ring->size);
1964		GEM_BUG_ON(!IS_ALIGNED(need_wrap, sizeof(u64)));
1965
1966		/* Fill the tail with MI_NOOP */
1967		memset64(ring->vaddr + ring->emit, 0, need_wrap / sizeof(u64));
1968		ring->space -= need_wrap;
1969		ring->emit = 0;
1970	}
1971
1972	GEM_BUG_ON(ring->emit > ring->size - bytes);
1973	GEM_BUG_ON(ring->space < bytes);
1974	cs = ring->vaddr + ring->emit;
1975	GEM_DEBUG_EXEC(memset32(cs, POISON_INUSE, bytes / sizeof(*cs)));
1976	ring->emit += bytes;
1977	ring->space -= bytes;
1978
1979	return cs;
1980}
1981
1982/* Align the ring tail to a cacheline boundary */
1983int intel_ring_cacheline_align(struct i915_request *rq)
1984{
1985	int num_dwords;
1986	void *cs;
1987
1988	num_dwords = (rq->ring->emit & (CACHELINE_BYTES - 1)) / sizeof(u32);
1989	if (num_dwords == 0)
1990		return 0;
1991
1992	num_dwords = CACHELINE_DWORDS - num_dwords;
1993	GEM_BUG_ON(num_dwords & 1);
1994
1995	cs = intel_ring_begin(rq, num_dwords);
1996	if (IS_ERR(cs))
1997		return PTR_ERR(cs);
1998
1999	memset64(cs, (u64)MI_NOOP << 32 | MI_NOOP, num_dwords / 2);
2000	intel_ring_advance(rq, cs);
2001
2002	GEM_BUG_ON(rq->ring->emit & (CACHELINE_BYTES - 1));
2003	return 0;
2004}
2005
2006static void gen6_bsd_submit_request(struct i915_request *request)
2007{
2008	struct intel_uncore *uncore = request->engine->uncore;
2009
2010	intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);
2011
2012       /* Every tail move must follow the sequence below */
2013
2014	/* Disable notification that the ring is IDLE. The GT
2015	 * will then assume that it is busy and bring it out of rc6.
2016	 */
2017	intel_uncore_write_fw(uncore, GEN6_BSD_SLEEP_PSMI_CONTROL,
2018			      _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2019
2020	/* Clear the context id. Here be magic! */
2021	intel_uncore_write64_fw(uncore, GEN6_BSD_RNCID, 0x0);
2022
2023	/* Wait for the ring not to be idle, i.e. for it to wake up. */
2024	if (__intel_wait_for_register_fw(uncore,
2025					 GEN6_BSD_SLEEP_PSMI_CONTROL,
2026					 GEN6_BSD_SLEEP_INDICATOR,
2027					 0,
2028					 1000, 0, NULL))
2029		DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2030
2031	/* Now that the ring is fully powered up, update the tail */
2032	i9xx_submit_request(request);
2033
2034	/* Let the ring send IDLE messages to the GT again,
2035	 * and so let it sleep to conserve power when idle.
2036	 */
2037	intel_uncore_write_fw(uncore, GEN6_BSD_SLEEP_PSMI_CONTROL,
2038			      _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2039
2040	intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL);
2041}
2042
2043static int mi_flush_dw(struct i915_request *rq, u32 flags)
2044{
2045	u32 cmd, *cs;
2046
2047	cs = intel_ring_begin(rq, 4);
2048	if (IS_ERR(cs))
2049		return PTR_ERR(cs);
2050
2051	cmd = MI_FLUSH_DW;
2052
2053	/*
2054	 * We always require a command barrier so that subsequent
2055	 * commands, such as breadcrumb interrupts, are strictly ordered
2056	 * wrt the contents of the write cache being flushed to memory
2057	 * (and thus being coherent from the CPU).
2058	 */
2059	cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2060
2061	/*
2062	 * Bspec vol 1c.3 - blitter engine command streamer:
2063	 * "If ENABLED, all TLBs will be invalidated once the flush
2064	 * operation is complete. This bit is only valid when the
2065	 * Post-Sync Operation field is a value of 1h or 3h."
2066	 */
2067	cmd |= flags;
2068
2069	*cs++ = cmd;
2070	*cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
2071	*cs++ = 0;
2072	*cs++ = MI_NOOP;
2073
2074	intel_ring_advance(rq, cs);
2075
2076	return 0;
2077}
2078
2079static int gen6_flush_dw(struct i915_request *rq, u32 mode, u32 invflags)
2080{
2081	return mi_flush_dw(rq, mode & EMIT_INVALIDATE ? invflags : 0);
2082}
2083
2084static int gen6_bsd_ring_flush(struct i915_request *rq, u32 mode)
2085{
2086	return gen6_flush_dw(rq, mode, MI_INVALIDATE_TLB | MI_INVALIDATE_BSD);
2087}
2088
2089static int
2090hsw_emit_bb_start(struct i915_request *rq,
2091		  u64 offset, u32 len,
2092		  unsigned int dispatch_flags)
2093{
2094	u32 *cs;
2095
2096	cs = intel_ring_begin(rq, 2);
2097	if (IS_ERR(cs))
2098		return PTR_ERR(cs);
2099
2100	*cs++ = MI_BATCH_BUFFER_START | (dispatch_flags & I915_DISPATCH_SECURE ?
2101		0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW);
2102	/* bit0-7 is the length on GEN6+ */
2103	*cs++ = offset;
2104	intel_ring_advance(rq, cs);
2105
2106	return 0;
2107}
2108
2109static int
2110gen6_emit_bb_start(struct i915_request *rq,
2111		   u64 offset, u32 len,
2112		   unsigned int dispatch_flags)
2113{
2114	u32 *cs;
2115
2116	cs = intel_ring_begin(rq, 2);
2117	if (IS_ERR(cs))
2118		return PTR_ERR(cs);
2119
2120	*cs++ = MI_BATCH_BUFFER_START | (dispatch_flags & I915_DISPATCH_SECURE ?
2121		0 : MI_BATCH_NON_SECURE_I965);
2122	/* bit0-7 is the length on GEN6+ */
2123	*cs++ = offset;
2124	intel_ring_advance(rq, cs);
2125
2126	return 0;
2127}
2128
2129/* Blitter support (SandyBridge+) */
2130
2131static int gen6_ring_flush(struct i915_request *rq, u32 mode)
2132{
2133	return gen6_flush_dw(rq, mode, MI_INVALIDATE_TLB);
2134}
2135
2136static void i9xx_set_default_submission(struct intel_engine_cs *engine)
2137{
2138	engine->submit_request = i9xx_submit_request;
2139	engine->cancel_requests = cancel_requests;
2140
2141	engine->park = NULL;
2142	engine->unpark = NULL;
2143}
2144
2145static void gen6_bsd_set_default_submission(struct intel_engine_cs *engine)
2146{
2147	i9xx_set_default_submission(engine);
2148	engine->submit_request = gen6_bsd_submit_request;
2149}
2150
2151static void ring_destroy(struct intel_engine_cs *engine)
2152{
2153	struct drm_i915_private *dev_priv = engine->i915;
2154
2155	WARN_ON(INTEL_GEN(dev_priv) > 2 &&
2156		(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE) == 0);
2157
2158	intel_engine_cleanup_common(engine);
2159
2160	intel_ring_unpin(engine->legacy.ring);
2161	intel_ring_put(engine->legacy.ring);
2162
2163	intel_timeline_unpin(engine->legacy.timeline);
2164	intel_timeline_put(engine->legacy.timeline);
2165
2166	kfree(engine);
2167}
2168
2169static void setup_irq(struct intel_engine_cs *engine)
2170{
2171	struct drm_i915_private *i915 = engine->i915;
2172
2173	if (INTEL_GEN(i915) >= 6) {
2174		engine->irq_enable = gen6_irq_enable;
2175		engine->irq_disable = gen6_irq_disable;
2176	} else if (INTEL_GEN(i915) >= 5) {
2177		engine->irq_enable = gen5_irq_enable;
2178		engine->irq_disable = gen5_irq_disable;
2179	} else if (INTEL_GEN(i915) >= 3) {
2180		engine->irq_enable = i9xx_irq_enable;
2181		engine->irq_disable = i9xx_irq_disable;
2182	} else {
2183		engine->irq_enable = i8xx_irq_enable;
2184		engine->irq_disable = i8xx_irq_disable;
2185	}
2186}
2187
2188static void setup_common(struct intel_engine_cs *engine)
2189{
2190	struct drm_i915_private *i915 = engine->i915;
2191
2192	/* gen8+ are only supported with execlists */
2193	GEM_BUG_ON(INTEL_GEN(i915) >= 8);
2194
2195	setup_irq(engine);
2196
2197	engine->destroy = ring_destroy;
2198
2199	engine->resume = xcs_resume;
2200	engine->reset.prepare = reset_prepare;
2201	engine->reset.reset = reset_ring;
2202	engine->reset.finish = reset_finish;
2203
2204	engine->cops = &ring_context_ops;
2205	engine->request_alloc = ring_request_alloc;
2206
2207	/*
2208	 * Using a global execution timeline; the previous final breadcrumb is
2209	 * equivalent to our next initial bread so we can elide
2210	 * engine->emit_init_breadcrumb().
2211	 */
2212	engine->emit_fini_breadcrumb = i9xx_emit_breadcrumb;
2213	if (IS_GEN(i915, 5))
2214		engine->emit_fini_breadcrumb = gen5_emit_breadcrumb;
2215
2216	engine->set_default_submission = i9xx_set_default_submission;
2217
2218	if (INTEL_GEN(i915) >= 6)
2219		engine->emit_bb_start = gen6_emit_bb_start;
2220	else if (INTEL_GEN(i915) >= 4)
2221		engine->emit_bb_start = i965_emit_bb_start;
2222	else if (IS_I830(i915) || IS_I845G(i915))
2223		engine->emit_bb_start = i830_emit_bb_start;
2224	else
2225		engine->emit_bb_start = i915_emit_bb_start;
2226}
2227
2228static void setup_rcs(struct intel_engine_cs *engine)
2229{
2230	struct drm_i915_private *i915 = engine->i915;
2231
2232	if (HAS_L3_DPF(i915))
2233		engine->irq_keep_mask = GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2234
2235	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2236
2237	if (INTEL_GEN(i915) >= 7) {
2238		engine->emit_flush = gen7_render_ring_flush;
2239		engine->emit_fini_breadcrumb = gen7_rcs_emit_breadcrumb;
2240	} else if (IS_GEN(i915, 6)) {
2241		engine->emit_flush = gen6_render_ring_flush;
2242		engine->emit_fini_breadcrumb = gen6_rcs_emit_breadcrumb;
2243	} else if (IS_GEN(i915, 5)) {
2244		engine->emit_flush = gen4_render_ring_flush;
2245	} else {
2246		if (INTEL_GEN(i915) < 4)
2247			engine->emit_flush = gen2_render_ring_flush;
2248		else
2249			engine->emit_flush = gen4_render_ring_flush;
2250		engine->irq_enable_mask = I915_USER_INTERRUPT;
2251	}
2252
2253	if (IS_HASWELL(i915))
2254		engine->emit_bb_start = hsw_emit_bb_start;
2255
2256	engine->resume = rcs_resume;
2257}
2258
2259static void setup_vcs(struct intel_engine_cs *engine)
2260{
2261	struct drm_i915_private *i915 = engine->i915;
2262
2263	if (INTEL_GEN(i915) >= 6) {
2264		/* gen6 bsd needs a special wa for tail updates */
2265		if (IS_GEN(i915, 6))
2266			engine->set_default_submission = gen6_bsd_set_default_submission;
2267		engine->emit_flush = gen6_bsd_ring_flush;
2268		engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2269
2270		if (IS_GEN(i915, 6))
2271			engine->emit_fini_breadcrumb = gen6_xcs_emit_breadcrumb;
2272		else
2273			engine->emit_fini_breadcrumb = gen7_xcs_emit_breadcrumb;
2274	} else {
2275		engine->emit_flush = bsd_ring_flush;
2276		if (IS_GEN(i915, 5))
2277			engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2278		else
2279			engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2280	}
2281}
2282
2283static void setup_bcs(struct intel_engine_cs *engine)
2284{
2285	struct drm_i915_private *i915 = engine->i915;
2286
2287	engine->emit_flush = gen6_ring_flush;
2288	engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2289
2290	if (IS_GEN(i915, 6))
2291		engine->emit_fini_breadcrumb = gen6_xcs_emit_breadcrumb;
2292	else
2293		engine->emit_fini_breadcrumb = gen7_xcs_emit_breadcrumb;
2294}
2295
2296static void setup_vecs(struct intel_engine_cs *engine)
2297{
2298	struct drm_i915_private *i915 = engine->i915;
2299
2300	GEM_BUG_ON(INTEL_GEN(i915) < 7);
2301
2302	engine->emit_flush = gen6_ring_flush;
2303	engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2304	engine->irq_enable = hsw_vebox_irq_enable;
2305	engine->irq_disable = hsw_vebox_irq_disable;
2306
2307	engine->emit_fini_breadcrumb = gen7_xcs_emit_breadcrumb;
2308}
2309
2310int intel_ring_submission_setup(struct intel_engine_cs *engine)
2311{
2312	setup_common(engine);
2313
2314	switch (engine->class) {
2315	case RENDER_CLASS:
2316		setup_rcs(engine);
2317		break;
2318	case VIDEO_DECODE_CLASS:
2319		setup_vcs(engine);
2320		break;
2321	case COPY_ENGINE_CLASS:
2322		setup_bcs(engine);
2323		break;
2324	case VIDEO_ENHANCEMENT_CLASS:
2325		setup_vecs(engine);
2326		break;
2327	default:
2328		MISSING_CASE(engine->class);
2329		return -ENODEV;
2330	}
2331
2332	return 0;
2333}
2334
2335int intel_ring_submission_init(struct intel_engine_cs *engine)
2336{
2337	struct intel_timeline *timeline;
2338	struct intel_ring *ring;
2339	int err;
2340
2341	timeline = intel_timeline_create(engine->gt, engine->status_page.vma);
2342	if (IS_ERR(timeline)) {
2343		err = PTR_ERR(timeline);
2344		goto err;
2345	}
2346	GEM_BUG_ON(timeline->has_initial_breadcrumb);
2347
2348	err = intel_timeline_pin(timeline);
2349	if (err)
2350		goto err_timeline;
2351
2352	ring = intel_engine_create_ring(engine, SZ_16K);
2353	if (IS_ERR(ring)) {
2354		err = PTR_ERR(ring);
2355		goto err_timeline_unpin;
2356	}
2357
2358	err = intel_ring_pin(ring);
2359	if (err)
2360		goto err_ring;
2361
2362	GEM_BUG_ON(engine->legacy.ring);
2363	engine->legacy.ring = ring;
2364	engine->legacy.timeline = timeline;
2365
2366	err = intel_engine_init_common(engine);
2367	if (err)
2368		goto err_ring_unpin;
2369
2370	GEM_BUG_ON(timeline->hwsp_ggtt != engine->status_page.vma);
2371
2372	return 0;
2373
2374err_ring_unpin:
2375	intel_ring_unpin(ring);
2376err_ring:
2377	intel_ring_put(ring);
2378err_timeline_unpin:
2379	intel_timeline_unpin(timeline);
2380err_timeline:
2381	intel_timeline_put(timeline);
2382err:
2383	intel_engine_cleanup_common(engine);
2384	return err;
2385}