Linux Audio

Check our new training course

Yocto distribution development and maintenance

Need a Yocto distribution for your embedded project?
Loading...
v6.13.7
   1// SPDX-License-Identifier: MIT
   2/*
   3 * Copyright © 2016 Intel Corporation
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 */
   5
   6#include <linux/string_helpers.h>
   7
   8#include <drm/drm_print.h>
   9
  10#include "gem/i915_gem_context.h"
  11#include "gem/i915_gem_internal.h"
  12#include "gt/intel_gt_print.h"
  13#include "gt/intel_gt_regs.h"
  14
  15#include "i915_cmd_parser.h"
  16#include "i915_drv.h"
  17#include "i915_irq.h"
  18#include "i915_reg.h"
  19#include "intel_breadcrumbs.h"
  20#include "intel_context.h"
  21#include "intel_engine.h"
  22#include "intel_engine_pm.h"
  23#include "intel_engine_regs.h"
  24#include "intel_engine_user.h"
  25#include "intel_execlists_submission.h"
  26#include "intel_gt.h"
  27#include "intel_gt_mcr.h"
  28#include "intel_gt_pm.h"
  29#include "intel_gt_requests.h"
  30#include "intel_lrc.h"
  31#include "intel_lrc_reg.h"
  32#include "intel_reset.h"
  33#include "intel_ring.h"
  34#include "uc/intel_guc_submission.h"
  35
  36/* Haswell does have the CXT_SIZE register however it does not appear to be
  37 * valid. Now, docs explain in dwords what is in the context object. The full
  38 * size is 70720 bytes, however, the power context and execlist context will
  39 * never be saved (power context is stored elsewhere, and execlists don't work
  40 * on HSW) - so the final size, including the extra state required for the
  41 * Resource Streamer, is 66944 bytes, which rounds to 17 pages.
  42 */
  43#define HSW_CXT_TOTAL_SIZE		(17 * PAGE_SIZE)
  44
  45#define DEFAULT_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
  46#define GEN8_LR_CONTEXT_RENDER_SIZE	(20 * PAGE_SIZE)
  47#define GEN9_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
 
  48#define GEN11_LR_CONTEXT_RENDER_SIZE	(14 * PAGE_SIZE)
  49
  50#define GEN8_LR_CONTEXT_OTHER_SIZE	(2 * PAGE_SIZE)
  51
  52#define MAX_MMIO_BASES 3
  53struct engine_info {
 
  54	u8 class;
  55	u8 instance;
  56	/* mmio bases table *must* be sorted in reverse graphics_ver order */
  57	struct engine_mmio_base {
  58		u32 graphics_ver : 8;
  59		u32 base : 24;
  60	} mmio_bases[MAX_MMIO_BASES];
  61};
  62
  63static const struct engine_info intel_engines[] = {
  64	[RCS0] = {
 
  65		.class = RENDER_CLASS,
  66		.instance = 0,
  67		.mmio_bases = {
  68			{ .graphics_ver = 1, .base = RENDER_RING_BASE }
  69		},
  70	},
  71	[BCS0] = {
 
  72		.class = COPY_ENGINE_CLASS,
  73		.instance = 0,
  74		.mmio_bases = {
  75			{ .graphics_ver = 6, .base = BLT_RING_BASE }
  76		},
  77	},
  78	[BCS1] = {
  79		.class = COPY_ENGINE_CLASS,
  80		.instance = 1,
  81		.mmio_bases = {
  82			{ .graphics_ver = 12, .base = XEHPC_BCS1_RING_BASE }
  83		},
  84	},
  85	[BCS2] = {
  86		.class = COPY_ENGINE_CLASS,
  87		.instance = 2,
  88		.mmio_bases = {
  89			{ .graphics_ver = 12, .base = XEHPC_BCS2_RING_BASE }
  90		},
  91	},
  92	[BCS3] = {
  93		.class = COPY_ENGINE_CLASS,
  94		.instance = 3,
  95		.mmio_bases = {
  96			{ .graphics_ver = 12, .base = XEHPC_BCS3_RING_BASE }
  97		},
  98	},
  99	[BCS4] = {
 100		.class = COPY_ENGINE_CLASS,
 101		.instance = 4,
 102		.mmio_bases = {
 103			{ .graphics_ver = 12, .base = XEHPC_BCS4_RING_BASE }
 104		},
 105	},
 106	[BCS5] = {
 107		.class = COPY_ENGINE_CLASS,
 108		.instance = 5,
 109		.mmio_bases = {
 110			{ .graphics_ver = 12, .base = XEHPC_BCS5_RING_BASE }
 111		},
 112	},
 113	[BCS6] = {
 114		.class = COPY_ENGINE_CLASS,
 115		.instance = 6,
 116		.mmio_bases = {
 117			{ .graphics_ver = 12, .base = XEHPC_BCS6_RING_BASE }
 118		},
 119	},
 120	[BCS7] = {
 121		.class = COPY_ENGINE_CLASS,
 122		.instance = 7,
 123		.mmio_bases = {
 124			{ .graphics_ver = 12, .base = XEHPC_BCS7_RING_BASE }
 125		},
 126	},
 127	[BCS8] = {
 128		.class = COPY_ENGINE_CLASS,
 129		.instance = 8,
 130		.mmio_bases = {
 131			{ .graphics_ver = 12, .base = XEHPC_BCS8_RING_BASE }
 132		},
 133	},
 134	[VCS0] = {
 
 135		.class = VIDEO_DECODE_CLASS,
 136		.instance = 0,
 137		.mmio_bases = {
 138			{ .graphics_ver = 11, .base = GEN11_BSD_RING_BASE },
 139			{ .graphics_ver = 6, .base = GEN6_BSD_RING_BASE },
 140			{ .graphics_ver = 4, .base = BSD_RING_BASE }
 141		},
 142	},
 143	[VCS1] = {
 
 144		.class = VIDEO_DECODE_CLASS,
 145		.instance = 1,
 146		.mmio_bases = {
 147			{ .graphics_ver = 11, .base = GEN11_BSD2_RING_BASE },
 148			{ .graphics_ver = 8, .base = GEN8_BSD2_RING_BASE }
 149		},
 150	},
 151	[VCS2] = {
 
 152		.class = VIDEO_DECODE_CLASS,
 153		.instance = 2,
 154		.mmio_bases = {
 155			{ .graphics_ver = 11, .base = GEN11_BSD3_RING_BASE }
 156		},
 157	},
 158	[VCS3] = {
 
 159		.class = VIDEO_DECODE_CLASS,
 160		.instance = 3,
 161		.mmio_bases = {
 162			{ .graphics_ver = 11, .base = GEN11_BSD4_RING_BASE }
 163		},
 164	},
 165	[VCS4] = {
 166		.class = VIDEO_DECODE_CLASS,
 167		.instance = 4,
 168		.mmio_bases = {
 169			{ .graphics_ver = 12, .base = XEHP_BSD5_RING_BASE }
 170		},
 171	},
 172	[VCS5] = {
 173		.class = VIDEO_DECODE_CLASS,
 174		.instance = 5,
 175		.mmio_bases = {
 176			{ .graphics_ver = 12, .base = XEHP_BSD6_RING_BASE }
 177		},
 178	},
 179	[VCS6] = {
 180		.class = VIDEO_DECODE_CLASS,
 181		.instance = 6,
 182		.mmio_bases = {
 183			{ .graphics_ver = 12, .base = XEHP_BSD7_RING_BASE }
 184		},
 185	},
 186	[VCS7] = {
 187		.class = VIDEO_DECODE_CLASS,
 188		.instance = 7,
 189		.mmio_bases = {
 190			{ .graphics_ver = 12, .base = XEHP_BSD8_RING_BASE }
 191		},
 192	},
 193	[VECS0] = {
 
 194		.class = VIDEO_ENHANCEMENT_CLASS,
 195		.instance = 0,
 196		.mmio_bases = {
 197			{ .graphics_ver = 11, .base = GEN11_VEBOX_RING_BASE },
 198			{ .graphics_ver = 7, .base = VEBOX_RING_BASE }
 199		},
 200	},
 201	[VECS1] = {
 
 202		.class = VIDEO_ENHANCEMENT_CLASS,
 203		.instance = 1,
 204		.mmio_bases = {
 205			{ .graphics_ver = 11, .base = GEN11_VEBOX2_RING_BASE }
 206		},
 207	},
 208	[VECS2] = {
 209		.class = VIDEO_ENHANCEMENT_CLASS,
 210		.instance = 2,
 211		.mmio_bases = {
 212			{ .graphics_ver = 12, .base = XEHP_VEBOX3_RING_BASE }
 213		},
 214	},
 215	[VECS3] = {
 216		.class = VIDEO_ENHANCEMENT_CLASS,
 217		.instance = 3,
 218		.mmio_bases = {
 219			{ .graphics_ver = 12, .base = XEHP_VEBOX4_RING_BASE }
 220		},
 221	},
 222	[CCS0] = {
 223		.class = COMPUTE_CLASS,
 224		.instance = 0,
 225		.mmio_bases = {
 226			{ .graphics_ver = 12, .base = GEN12_COMPUTE0_RING_BASE }
 227		}
 228	},
 229	[CCS1] = {
 230		.class = COMPUTE_CLASS,
 231		.instance = 1,
 232		.mmio_bases = {
 233			{ .graphics_ver = 12, .base = GEN12_COMPUTE1_RING_BASE }
 234		}
 235	},
 236	[CCS2] = {
 237		.class = COMPUTE_CLASS,
 238		.instance = 2,
 239		.mmio_bases = {
 240			{ .graphics_ver = 12, .base = GEN12_COMPUTE2_RING_BASE }
 241		}
 242	},
 243	[CCS3] = {
 244		.class = COMPUTE_CLASS,
 245		.instance = 3,
 246		.mmio_bases = {
 247			{ .graphics_ver = 12, .base = GEN12_COMPUTE3_RING_BASE }
 248		}
 249	},
 250	[GSC0] = {
 251		.class = OTHER_CLASS,
 252		.instance = OTHER_GSC_INSTANCE,
 253		.mmio_bases = {
 254			{ .graphics_ver = 12, .base = MTL_GSC_RING_BASE }
 255		}
 256	},
 257};
 258
 259/**
 260 * intel_engine_context_size() - return the size of the context for an engine
 261 * @gt: the gt
 262 * @class: engine class
 263 *
 264 * Each engine class may require a different amount of space for a context
 265 * image.
 266 *
 267 * Return: size (in bytes) of an engine class specific context image
 268 *
 269 * Note: this size includes the HWSP, which is part of the context image
 270 * in LRC mode, but does not include the "shared data page" used with
 271 * GuC submission. The caller should account for this if using the GuC.
 272 */
 273u32 intel_engine_context_size(struct intel_gt *gt, u8 class)
 274{
 275	struct intel_uncore *uncore = gt->uncore;
 276	u32 cxt_size;
 277
 278	BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);
 279
 280	switch (class) {
 281	case COMPUTE_CLASS:
 282		fallthrough;
 283	case RENDER_CLASS:
 284		switch (GRAPHICS_VER(gt->i915)) {
 285		default:
 286			MISSING_CASE(GRAPHICS_VER(gt->i915));
 287			return DEFAULT_LR_CONTEXT_RENDER_SIZE;
 288		case 12:
 289		case 11:
 290			return GEN11_LR_CONTEXT_RENDER_SIZE;
 
 
 291		case 9:
 292			return GEN9_LR_CONTEXT_RENDER_SIZE;
 293		case 8:
 294			return GEN8_LR_CONTEXT_RENDER_SIZE;
 295		case 7:
 296			if (IS_HASWELL(gt->i915))
 297				return HSW_CXT_TOTAL_SIZE;
 298
 299			cxt_size = intel_uncore_read(uncore, GEN7_CXT_SIZE);
 300			return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
 301					PAGE_SIZE);
 302		case 6:
 303			cxt_size = intel_uncore_read(uncore, CXT_SIZE);
 304			return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
 305					PAGE_SIZE);
 306		case 5:
 307		case 4:
 308			/*
 309			 * There is a discrepancy here between the size reported
 310			 * by the register and the size of the context layout
 311			 * in the docs. Both are described as authorative!
 312			 *
 313			 * The discrepancy is on the order of a few cachelines,
 314			 * but the total is under one page (4k), which is our
 315			 * minimum allocation anyway so it should all come
 316			 * out in the wash.
 317			 */
 318			cxt_size = intel_uncore_read(uncore, CXT_SIZE) + 1;
 319			gt_dbg(gt, "graphics_ver = %d CXT_SIZE = %d bytes [0x%08x]\n",
 320			       GRAPHICS_VER(gt->i915), cxt_size * 64,
 321			       cxt_size - 1);
 
 322			return round_up(cxt_size * 64, PAGE_SIZE);
 323		case 3:
 324		case 2:
 325		/* For the special day when i810 gets merged. */
 326		case 1:
 327			return 0;
 328		}
 329		break;
 330	default:
 331		MISSING_CASE(class);
 332		fallthrough;
 333	case VIDEO_DECODE_CLASS:
 334	case VIDEO_ENHANCEMENT_CLASS:
 335	case COPY_ENGINE_CLASS:
 336	case OTHER_CLASS:
 337		if (GRAPHICS_VER(gt->i915) < 8)
 338			return 0;
 339		return GEN8_LR_CONTEXT_OTHER_SIZE;
 340	}
 341}
 342
 343static u32 __engine_mmio_base(struct drm_i915_private *i915,
 344			      const struct engine_mmio_base *bases)
 345{
 346	int i;
 347
 348	for (i = 0; i < MAX_MMIO_BASES; i++)
 349		if (GRAPHICS_VER(i915) >= bases[i].graphics_ver)
 350			break;
 351
 352	GEM_BUG_ON(i == MAX_MMIO_BASES);
 353	GEM_BUG_ON(!bases[i].base);
 354
 355	return bases[i].base;
 356}
 357
 358static void __sprint_engine_name(struct intel_engine_cs *engine)
 359{
 360	/*
 361	 * Before we know what the uABI name for this engine will be,
 362	 * we still would like to keep track of this engine in the debug logs.
 363	 * We throw in a ' here as a reminder that this isn't its final name.
 364	 */
 365	GEM_WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s'%u",
 366			     intel_engine_class_repr(engine->class),
 367			     engine->instance) >= sizeof(engine->name));
 368}
 369
 370void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask)
 371{
 372	/*
 373	 * Though they added more rings on g4x/ilk, they did not add
 374	 * per-engine HWSTAM until gen6.
 375	 */
 376	if (GRAPHICS_VER(engine->i915) < 6 && engine->class != RENDER_CLASS)
 377		return;
 378
 379	if (GRAPHICS_VER(engine->i915) >= 3)
 380		ENGINE_WRITE(engine, RING_HWSTAM, mask);
 381	else
 382		ENGINE_WRITE16(engine, RING_HWSTAM, mask);
 383}
 384
 385static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine)
 386{
 387	/* Mask off all writes into the unknown HWSP */
 388	intel_engine_set_hwsp_writemask(engine, ~0u);
 389}
 390
 391static void nop_irq_handler(struct intel_engine_cs *engine, u16 iir)
 392{
 393	GEM_DEBUG_WARN_ON(iir);
 394}
 395
 396static u32 get_reset_domain(u8 ver, enum intel_engine_id id)
 397{
 398	u32 reset_domain;
 399
 400	if (ver >= 11) {
 401		static const u32 engine_reset_domains[] = {
 402			[RCS0]  = GEN11_GRDOM_RENDER,
 403			[BCS0]  = GEN11_GRDOM_BLT,
 404			[BCS1]  = XEHPC_GRDOM_BLT1,
 405			[BCS2]  = XEHPC_GRDOM_BLT2,
 406			[BCS3]  = XEHPC_GRDOM_BLT3,
 407			[BCS4]  = XEHPC_GRDOM_BLT4,
 408			[BCS5]  = XEHPC_GRDOM_BLT5,
 409			[BCS6]  = XEHPC_GRDOM_BLT6,
 410			[BCS7]  = XEHPC_GRDOM_BLT7,
 411			[BCS8]  = XEHPC_GRDOM_BLT8,
 412			[VCS0]  = GEN11_GRDOM_MEDIA,
 413			[VCS1]  = GEN11_GRDOM_MEDIA2,
 414			[VCS2]  = GEN11_GRDOM_MEDIA3,
 415			[VCS3]  = GEN11_GRDOM_MEDIA4,
 416			[VCS4]  = GEN11_GRDOM_MEDIA5,
 417			[VCS5]  = GEN11_GRDOM_MEDIA6,
 418			[VCS6]  = GEN11_GRDOM_MEDIA7,
 419			[VCS7]  = GEN11_GRDOM_MEDIA8,
 420			[VECS0] = GEN11_GRDOM_VECS,
 421			[VECS1] = GEN11_GRDOM_VECS2,
 422			[VECS2] = GEN11_GRDOM_VECS3,
 423			[VECS3] = GEN11_GRDOM_VECS4,
 424			[CCS0]  = GEN11_GRDOM_RENDER,
 425			[CCS1]  = GEN11_GRDOM_RENDER,
 426			[CCS2]  = GEN11_GRDOM_RENDER,
 427			[CCS3]  = GEN11_GRDOM_RENDER,
 428			[GSC0]  = GEN12_GRDOM_GSC,
 429		};
 430		GEM_BUG_ON(id >= ARRAY_SIZE(engine_reset_domains) ||
 431			   !engine_reset_domains[id]);
 432		reset_domain = engine_reset_domains[id];
 433	} else {
 434		static const u32 engine_reset_domains[] = {
 435			[RCS0]  = GEN6_GRDOM_RENDER,
 436			[BCS0]  = GEN6_GRDOM_BLT,
 437			[VCS0]  = GEN6_GRDOM_MEDIA,
 438			[VCS1]  = GEN8_GRDOM_MEDIA2,
 439			[VECS0] = GEN6_GRDOM_VECS,
 440		};
 441		GEM_BUG_ON(id >= ARRAY_SIZE(engine_reset_domains) ||
 442			   !engine_reset_domains[id]);
 443		reset_domain = engine_reset_domains[id];
 444	}
 445
 446	return reset_domain;
 447}
 448
 449static int intel_engine_setup(struct intel_gt *gt, enum intel_engine_id id,
 450			      u8 logical_instance)
 451{
 452	const struct engine_info *info = &intel_engines[id];
 453	struct drm_i915_private *i915 = gt->i915;
 454	struct intel_engine_cs *engine;
 455	u8 guc_class;
 456
 457	BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
 458	BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));
 459	BUILD_BUG_ON(I915_MAX_VCS > (MAX_ENGINE_INSTANCE + 1));
 460	BUILD_BUG_ON(I915_MAX_VECS > (MAX_ENGINE_INSTANCE + 1));
 461
 462	if (GEM_DEBUG_WARN_ON(id >= ARRAY_SIZE(gt->engine)))
 463		return -EINVAL;
 464
 465	if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS))
 466		return -EINVAL;
 467
 468	if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
 469		return -EINVAL;
 470
 471	if (GEM_DEBUG_WARN_ON(gt->engine_class[info->class][info->instance]))
 472		return -EINVAL;
 473
 474	engine = kzalloc(sizeof(*engine), GFP_KERNEL);
 475	if (!engine)
 476		return -ENOMEM;
 477
 478	BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES);
 479
 480	INIT_LIST_HEAD(&engine->pinned_contexts_list);
 481	engine->id = id;
 482	engine->legacy_idx = INVALID_ENGINE;
 483	engine->mask = BIT(id);
 484	engine->reset_domain = get_reset_domain(GRAPHICS_VER(gt->i915),
 485						id);
 486	engine->i915 = i915;
 487	engine->gt = gt;
 488	engine->uncore = gt->uncore;
 489	guc_class = engine_class_to_guc_class(info->class);
 490	engine->guc_id = MAKE_GUC_ID(guc_class, info->instance);
 491	engine->mmio_base = __engine_mmio_base(i915, info->mmio_bases);
 492
 493	engine->irq_handler = nop_irq_handler;
 494
 495	engine->class = info->class;
 496	engine->instance = info->instance;
 497	engine->logical_mask = BIT(logical_instance);
 498	__sprint_engine_name(engine);
 499
 500	if ((engine->class == COMPUTE_CLASS || engine->class == RENDER_CLASS) &&
 501	    __ffs(CCS_MASK(engine->gt) | RCS_MASK(engine->gt)) == engine->instance)
 502		engine->flags |= I915_ENGINE_FIRST_RENDER_COMPUTE;
 503
 504	/* features common between engines sharing EUs */
 505	if (engine->class == RENDER_CLASS || engine->class == COMPUTE_CLASS) {
 506		engine->flags |= I915_ENGINE_HAS_RCS_REG_STATE;
 507		engine->flags |= I915_ENGINE_HAS_EU_PRIORITY;
 508	}
 509
 510	engine->props.heartbeat_interval_ms =
 511		CONFIG_DRM_I915_HEARTBEAT_INTERVAL;
 512	engine->props.max_busywait_duration_ns =
 513		CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT;
 514	engine->props.preempt_timeout_ms =
 515		CONFIG_DRM_I915_PREEMPT_TIMEOUT;
 516	engine->props.stop_timeout_ms =
 517		CONFIG_DRM_I915_STOP_TIMEOUT;
 518	engine->props.timeslice_duration_ms =
 519		CONFIG_DRM_I915_TIMESLICE_DURATION;
 520
 521	/*
 522	 * Mid-thread pre-emption is not available in Gen12. Unfortunately,
 523	 * some compute workloads run quite long threads. That means they get
 524	 * reset due to not pre-empting in a timely manner. So, bump the
 525	 * pre-emption timeout value to be much higher for compute engines.
 526	 */
 527	if (GRAPHICS_VER(i915) == 12 && (engine->flags & I915_ENGINE_HAS_RCS_REG_STATE))
 528		engine->props.preempt_timeout_ms = CONFIG_DRM_I915_PREEMPT_TIMEOUT_COMPUTE;
 529
 530	/* Cap properties according to any system limits */
 531#define CLAMP_PROP(field) \
 532	do { \
 533		u64 clamp = intel_clamp_##field(engine, engine->props.field); \
 534		if (clamp != engine->props.field) { \
 535			drm_notice(&engine->i915->drm, \
 536				   "Warning, clamping %s to %lld to prevent overflow\n", \
 537				   #field, clamp); \
 538			engine->props.field = clamp; \
 539		} \
 540	} while (0)
 541
 542	CLAMP_PROP(heartbeat_interval_ms);
 543	CLAMP_PROP(max_busywait_duration_ns);
 544	CLAMP_PROP(preempt_timeout_ms);
 545	CLAMP_PROP(stop_timeout_ms);
 546	CLAMP_PROP(timeslice_duration_ms);
 547
 548#undef CLAMP_PROP
 549
 550	engine->defaults = engine->props; /* never to change again */
 551
 552	engine->context_size = intel_engine_context_size(gt, engine->class);
 553	if (WARN_ON(engine->context_size > BIT(20)))
 554		engine->context_size = 0;
 555	if (engine->context_size)
 556		DRIVER_CAPS(i915)->has_logical_contexts = true;
 557
 558	ewma__engine_latency_init(&engine->latency);
 
 
 
 559
 560	ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);
 561
 562	/* Scrub mmio state on takeover */
 563	intel_engine_sanitize_mmio(engine);
 564
 565	gt->engine_class[info->class][info->instance] = engine;
 566	gt->engine[id] = engine;
 567
 568	return 0;
 569}
 570
 571u64 intel_clamp_heartbeat_interval_ms(struct intel_engine_cs *engine, u64 value)
 572{
 573	value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
 574
 575	return value;
 576}
 577
 578u64 intel_clamp_max_busywait_duration_ns(struct intel_engine_cs *engine, u64 value)
 579{
 580	value = min(value, jiffies_to_nsecs(2));
 581
 582	return value;
 583}
 584
 585u64 intel_clamp_preempt_timeout_ms(struct intel_engine_cs *engine, u64 value)
 586{
 587	/*
 588	 * NB: The GuC API only supports 32bit values. However, the limit is further
 589	 * reduced due to internal calculations which would otherwise overflow.
 590	 */
 591	if (intel_guc_submission_is_wanted(gt_to_guc(engine->gt)))
 592		value = min_t(u64, value, guc_policy_max_preempt_timeout_ms());
 593
 594	value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
 595
 596	return value;
 597}
 598
 599u64 intel_clamp_stop_timeout_ms(struct intel_engine_cs *engine, u64 value)
 600{
 601	value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
 602
 603	return value;
 604}
 605
 606u64 intel_clamp_timeslice_duration_ms(struct intel_engine_cs *engine, u64 value)
 607{
 608	/*
 609	 * NB: The GuC API only supports 32bit values. However, the limit is further
 610	 * reduced due to internal calculations which would otherwise overflow.
 611	 */
 612	if (intel_guc_submission_is_wanted(gt_to_guc(engine->gt)))
 613		value = min_t(u64, value, guc_policy_max_exec_quantum_ms());
 614
 615	value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
 616
 617	return value;
 618}
 619
 620static void __setup_engine_capabilities(struct intel_engine_cs *engine)
 621{
 622	struct drm_i915_private *i915 = engine->i915;
 623
 624	if (engine->class == VIDEO_DECODE_CLASS) {
 625		/*
 626		 * HEVC support is present on first engine instance
 627		 * before Gen11 and on all instances afterwards.
 628		 */
 629		if (GRAPHICS_VER(i915) >= 11 ||
 630		    (GRAPHICS_VER(i915) >= 9 && engine->instance == 0))
 631			engine->uabi_capabilities |=
 632				I915_VIDEO_CLASS_CAPABILITY_HEVC;
 633
 634		/*
 635		 * SFC block is present only on even logical engine
 636		 * instances.
 637		 */
 638		if ((GRAPHICS_VER(i915) >= 11 &&
 639		     (engine->gt->info.vdbox_sfc_access &
 640		      BIT(engine->instance))) ||
 641		    (GRAPHICS_VER(i915) >= 9 && engine->instance == 0))
 642			engine->uabi_capabilities |=
 643				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
 644	} else if (engine->class == VIDEO_ENHANCEMENT_CLASS) {
 645		if (GRAPHICS_VER(i915) >= 9 &&
 646		    engine->gt->info.sfc_mask & BIT(engine->instance))
 647			engine->uabi_capabilities |=
 648				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
 649	}
 650}
 651
 652static void intel_setup_engine_capabilities(struct intel_gt *gt)
 653{
 654	struct intel_engine_cs *engine;
 655	enum intel_engine_id id;
 656
 657	for_each_engine(engine, gt, id)
 658		__setup_engine_capabilities(engine);
 659}
 660
 661/**
 662 * intel_engines_release() - free the resources allocated for Command Streamers
 663 * @gt: pointer to struct intel_gt
 664 */
 665void intel_engines_release(struct intel_gt *gt)
 666{
 667	struct intel_engine_cs *engine;
 668	enum intel_engine_id id;
 669
 670	/*
 671	 * Before we release the resources held by engine, we must be certain
 672	 * that the HW is no longer accessing them -- having the GPU scribble
 673	 * to or read from a page being used for something else causes no end
 674	 * of fun.
 675	 *
 676	 * The GPU should be reset by this point, but assume the worst just
 677	 * in case we aborted before completely initialising the engines.
 678	 */
 679	GEM_BUG_ON(intel_gt_pm_is_awake(gt));
 680	if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
 681		intel_gt_reset_all_engines(gt);
 682
 683	/* Decouple the backend; but keep the layout for late GPU resets */
 684	for_each_engine(engine, gt, id) {
 685		if (!engine->release)
 686			continue;
 687
 688		intel_wakeref_wait_for_idle(&engine->wakeref);
 689		GEM_BUG_ON(intel_engine_pm_is_awake(engine));
 690
 691		engine->release(engine);
 692		engine->release = NULL;
 693
 694		memset(&engine->reset, 0, sizeof(engine->reset));
 695	}
 696
 697	llist_del_all(&gt->i915->uabi_engines_llist);
 698}
 699
 700void intel_engine_free_request_pool(struct intel_engine_cs *engine)
 701{
 702	if (!engine->request_pool)
 703		return;
 704
 705	kmem_cache_free(i915_request_slab_cache(), engine->request_pool);
 706}
 707
 708void intel_engines_free(struct intel_gt *gt)
 709{
 710	struct intel_engine_cs *engine;
 711	enum intel_engine_id id;
 712
 713	/* Free the requests! dma-resv keeps fences around for an eternity */
 714	rcu_barrier();
 715
 716	for_each_engine(engine, gt, id) {
 717		intel_engine_free_request_pool(engine);
 718		kfree(engine);
 719		gt->engine[id] = NULL;
 720	}
 721}
 722
 723static
 724bool gen11_vdbox_has_sfc(struct intel_gt *gt,
 725			 unsigned int physical_vdbox,
 726			 unsigned int logical_vdbox, u16 vdbox_mask)
 727{
 728	struct drm_i915_private *i915 = gt->i915;
 729
 730	/*
 731	 * In Gen11, only even numbered logical VDBOXes are hooked
 732	 * up to an SFC (Scaler & Format Converter) unit.
 733	 * In Gen12, Even numbered physical instance always are connected
 734	 * to an SFC. Odd numbered physical instances have SFC only if
 735	 * previous even instance is fused off.
 736	 *
 737	 * Starting with Xe_HP, there's also a dedicated SFC_ENABLE field
 738	 * in the fuse register that tells us whether a specific SFC is present.
 739	 */
 740	if ((gt->info.sfc_mask & BIT(physical_vdbox / 2)) == 0)
 741		return false;
 742	else if (MEDIA_VER(i915) >= 12)
 743		return (physical_vdbox % 2 == 0) ||
 744			!(BIT(physical_vdbox - 1) & vdbox_mask);
 745	else if (MEDIA_VER(i915) == 11)
 746		return logical_vdbox % 2 == 0;
 747
 748	return false;
 749}
 750
 751static void engine_mask_apply_media_fuses(struct intel_gt *gt)
 752{
 753	struct drm_i915_private *i915 = gt->i915;
 754	unsigned int logical_vdbox = 0;
 
 755	unsigned int i;
 756	u32 media_fuse, fuse1;
 757	u16 vdbox_mask;
 758	u16 vebox_mask;
 759
 760	if (MEDIA_VER(gt->i915) < 11)
 761		return;
 762
 763	/*
 764	 * On newer platforms the fusing register is called 'enable' and has
 765	 * enable semantics, while on older platforms it is called 'disable'
 766	 * and bits have disable semantices.
 767	 */
 768	media_fuse = intel_uncore_read(gt->uncore, GEN11_GT_VEBOX_VDBOX_DISABLE);
 769	if (MEDIA_VER_FULL(i915) < IP_VER(12, 55))
 770		media_fuse = ~media_fuse;
 771
 772	vdbox_mask = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK;
 773	vebox_mask = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >>
 774		      GEN11_GT_VEBOX_DISABLE_SHIFT;
 775
 776	if (MEDIA_VER_FULL(i915) >= IP_VER(12, 55)) {
 777		fuse1 = intel_uncore_read(gt->uncore, HSW_PAVP_FUSE1);
 778		gt->info.sfc_mask = REG_FIELD_GET(XEHP_SFC_ENABLE_MASK, fuse1);
 779	} else {
 780		gt->info.sfc_mask = ~0;
 781	}
 782
 783	for (i = 0; i < I915_MAX_VCS; i++) {
 784		if (!HAS_ENGINE(gt, _VCS(i))) {
 785			vdbox_mask &= ~BIT(i);
 786			continue;
 787		}
 788
 789		if (!(BIT(i) & vdbox_mask)) {
 790			gt->info.engine_mask &= ~BIT(_VCS(i));
 791			gt_dbg(gt, "vcs%u fused off\n", i);
 792			continue;
 793		}
 794
 795		if (gen11_vdbox_has_sfc(gt, i, logical_vdbox, vdbox_mask))
 796			gt->info.vdbox_sfc_access |= BIT(i);
 797		logical_vdbox++;
 798	}
 799	gt_dbg(gt, "vdbox enable: %04x, instances: %04lx\n", vdbox_mask, VDBOX_MASK(gt));
 800	GEM_BUG_ON(vdbox_mask != VDBOX_MASK(gt));
 801
 802	for (i = 0; i < I915_MAX_VECS; i++) {
 803		if (!HAS_ENGINE(gt, _VECS(i))) {
 804			vebox_mask &= ~BIT(i);
 805			continue;
 806		}
 807
 808		if (!(BIT(i) & vebox_mask)) {
 809			gt->info.engine_mask &= ~BIT(_VECS(i));
 810			gt_dbg(gt, "vecs%u fused off\n", i);
 811		}
 812	}
 813	gt_dbg(gt, "vebox enable: %04x, instances: %04lx\n", vebox_mask, VEBOX_MASK(gt));
 814	GEM_BUG_ON(vebox_mask != VEBOX_MASK(gt));
 815}
 816
 817static void engine_mask_apply_compute_fuses(struct intel_gt *gt)
 818{
 819	struct drm_i915_private *i915 = gt->i915;
 820	struct intel_gt_info *info = &gt->info;
 821	int ss_per_ccs = info->sseu.max_subslices / I915_MAX_CCS;
 822	unsigned long ccs_mask;
 823	unsigned int i;
 824
 825	if (GRAPHICS_VER(i915) < 11)
 826		return;
 827
 828	if (hweight32(CCS_MASK(gt)) <= 1)
 829		return;
 830
 831	ccs_mask = intel_slicemask_from_xehp_dssmask(info->sseu.compute_subslice_mask,
 832						     ss_per_ccs);
 833	/*
 834	 * If all DSS in a quadrant are fused off, the corresponding CCS
 835	 * engine is not available for use.
 836	 */
 837	for_each_clear_bit(i, &ccs_mask, I915_MAX_CCS) {
 838		info->engine_mask &= ~BIT(_CCS(i));
 839		gt_dbg(gt, "ccs%u fused off\n", i);
 840	}
 841}
 842
 843/*
 844 * Determine which engines are fused off in our particular hardware.
 845 * Note that we have a catch-22 situation where we need to be able to access
 846 * the blitter forcewake domain to read the engine fuses, but at the same time
 847 * we need to know which engines are available on the system to know which
 848 * forcewake domains are present. We solve this by intializing the forcewake
 849 * domains based on the full engine mask in the platform capabilities before
 850 * calling this function and pruning the domains for fused-off engines
 851 * afterwards.
 852 */
 853static intel_engine_mask_t init_engine_mask(struct intel_gt *gt)
 854{
 855	struct intel_gt_info *info = &gt->info;
 856
 857	GEM_BUG_ON(!info->engine_mask);
 858
 859	engine_mask_apply_media_fuses(gt);
 860	engine_mask_apply_compute_fuses(gt);
 861
 862	/*
 863	 * The only use of the GSC CS is to load and communicate with the GSC
 864	 * FW, so we have no use for it if we don't have the FW.
 865	 *
 866	 * IMPORTANT: in cases where we don't have the GSC FW, we have a
 867	 * catch-22 situation that breaks media C6 due to 2 requirements:
 868	 * 1) once turned on, the GSC power well will not go to sleep unless the
 869	 *    GSC FW is loaded.
 870	 * 2) to enable idling (which is required for media C6) we need to
 871	 *    initialize the IDLE_MSG register for the GSC CS and do at least 1
 872	 *    submission, which will wake up the GSC power well.
 873	 */
 874	if (__HAS_ENGINE(info->engine_mask, GSC0) && !intel_uc_wants_gsc_uc(&gt->uc)) {
 875		gt_notice(gt, "No GSC FW selected, disabling GSC CS and media C6\n");
 876		info->engine_mask &= ~BIT(GSC0);
 877	}
 878
 879	/*
 880	 * Do not create the command streamer for CCS slices beyond the first.
 881	 * All the workload submitted to the first engine will be shared among
 882	 * all the slices.
 883	 *
 884	 * Once the user will be allowed to customize the CCS mode, then this
 885	 * check needs to be removed.
 886	 */
 887	if (IS_DG2(gt->i915)) {
 888		u8 first_ccs = __ffs(CCS_MASK(gt));
 889
 890		/*
 891		 * Store the number of active cslices before
 892		 * changing the CCS engine configuration
 893		 */
 894		gt->ccs.cslices = CCS_MASK(gt);
 895
 896		/* Mask off all the CCS engine */
 897		info->engine_mask &= ~GENMASK(CCS3, CCS0);
 898		/* Put back in the first CCS engine */
 899		info->engine_mask |= BIT(_CCS(first_ccs));
 900	}
 901
 902	return info->engine_mask;
 903}
 904
 905static void populate_logical_ids(struct intel_gt *gt, u8 *logical_ids,
 906				 u8 class, const u8 *map, u8 num_instances)
 907{
 908	int i, j;
 909	u8 current_logical_id = 0;
 910
 911	for (j = 0; j < num_instances; ++j) {
 912		for (i = 0; i < ARRAY_SIZE(intel_engines); ++i) {
 913			if (!HAS_ENGINE(gt, i) ||
 914			    intel_engines[i].class != class)
 915				continue;
 916
 917			if (intel_engines[i].instance == map[j]) {
 918				logical_ids[intel_engines[i].instance] =
 919					current_logical_id++;
 920				break;
 921			}
 922		}
 923	}
 924}
 925
 926static void setup_logical_ids(struct intel_gt *gt, u8 *logical_ids, u8 class)
 927{
 928	/*
 929	 * Logical to physical mapping is needed for proper support
 930	 * to split-frame feature.
 931	 */
 932	if (MEDIA_VER(gt->i915) >= 11 && class == VIDEO_DECODE_CLASS) {
 933		const u8 map[] = { 0, 2, 4, 6, 1, 3, 5, 7 };
 934
 935		populate_logical_ids(gt, logical_ids, class,
 936				     map, ARRAY_SIZE(map));
 937	} else {
 938		int i;
 939		u8 map[MAX_ENGINE_INSTANCE + 1];
 940
 941		for (i = 0; i < MAX_ENGINE_INSTANCE + 1; ++i)
 942			map[i] = i;
 943		populate_logical_ids(gt, logical_ids, class,
 944				     map, ARRAY_SIZE(map));
 945	}
 946}
 947
 948/**
 949 * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
 950 * @gt: pointer to struct intel_gt
 951 *
 952 * Return: non-zero if the initialization failed.
 953 */
 954int intel_engines_init_mmio(struct intel_gt *gt)
 955{
 956	struct drm_i915_private *i915 = gt->i915;
 957	const unsigned int engine_mask = init_engine_mask(gt);
 958	unsigned int mask = 0;
 959	unsigned int i, class;
 960	u8 logical_ids[MAX_ENGINE_INSTANCE + 1];
 961	int err;
 962
 963	drm_WARN_ON(&i915->drm, engine_mask == 0);
 964	drm_WARN_ON(&i915->drm, engine_mask &
 965		    GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES));
 966
 967	if (i915_inject_probe_failure(i915))
 968		return -ENODEV;
 969
 970	for (class = 0; class < MAX_ENGINE_CLASS + 1; ++class) {
 971		setup_logical_ids(gt, logical_ids, class);
 972
 973		for (i = 0; i < ARRAY_SIZE(intel_engines); ++i) {
 974			u8 instance = intel_engines[i].instance;
 975
 976			if (intel_engines[i].class != class ||
 977			    !HAS_ENGINE(gt, i))
 978				continue;
 979
 980			err = intel_engine_setup(gt, i,
 981						 logical_ids[instance]);
 982			if (err)
 983				goto cleanup;
 984
 985			mask |= BIT(i);
 986		}
 
 
 987	}
 988
 989	/*
 990	 * Catch failures to update intel_engines table when the new engines
 991	 * are added to the driver by a warning and disabling the forgotten
 992	 * engines.
 993	 */
 994	if (drm_WARN_ON(&i915->drm, mask != engine_mask))
 995		gt->info.engine_mask = mask;
 996
 997	gt->info.num_engines = hweight32(mask);
 998
 999	intel_gt_check_and_clear_faults(gt);
1000
1001	intel_setup_engine_capabilities(gt);
1002
1003	intel_uncore_prune_engine_fw_domains(gt->uncore, gt);
1004
1005	return 0;
1006
1007cleanup:
1008	intel_engines_free(gt);
1009	return err;
1010}
1011
1012void intel_engine_init_execlists(struct intel_engine_cs *engine)
1013{
1014	struct intel_engine_execlists * const execlists = &engine->execlists;
1015
1016	execlists->port_mask = 1;
1017	GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists)));
1018	GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);
1019
1020	memset(execlists->pending, 0, sizeof(execlists->pending));
1021	execlists->active =
1022		memset(execlists->inflight, 0, sizeof(execlists->inflight));
 
 
 
1023}
1024
1025static void cleanup_status_page(struct intel_engine_cs *engine)
1026{
1027	struct i915_vma *vma;
1028
1029	/* Prevent writes into HWSP after returning the page to the system */
1030	intel_engine_set_hwsp_writemask(engine, ~0u);
1031
1032	vma = fetch_and_zero(&engine->status_page.vma);
1033	if (!vma)
1034		return;
1035
1036	if (!HWS_NEEDS_PHYSICAL(engine->i915))
1037		i915_vma_unpin(vma);
1038
1039	i915_gem_object_unpin_map(vma->obj);
1040	i915_gem_object_put(vma->obj);
1041}
1042
1043static int pin_ggtt_status_page(struct intel_engine_cs *engine,
1044				struct i915_gem_ww_ctx *ww,
1045				struct i915_vma *vma)
1046{
1047	unsigned int flags;
1048
1049	if (!HAS_LLC(engine->i915) && i915_ggtt_has_aperture(engine->gt->ggtt))
 
1050		/*
1051		 * On g33, we cannot place HWS above 256MiB, so
1052		 * restrict its pinning to the low mappable arena.
1053		 * Though this restriction is not documented for
1054		 * gen4, gen5, or byt, they also behave similarly
1055		 * and hang if the HWS is placed at the top of the
1056		 * GTT. To generalise, it appears that all !llc
1057		 * platforms have issues with us placing the HWS
1058		 * above the mappable region (even though we never
1059		 * actually map it).
1060		 */
1061		flags = PIN_MAPPABLE;
1062	else
1063		flags = PIN_HIGH;
1064
1065	return i915_ggtt_pin(vma, ww, 0, flags);
1066}
1067
1068static int init_status_page(struct intel_engine_cs *engine)
1069{
1070	struct drm_i915_gem_object *obj;
1071	struct i915_gem_ww_ctx ww;
1072	struct i915_vma *vma;
1073	void *vaddr;
1074	int ret;
1075
1076	INIT_LIST_HEAD(&engine->status_page.timelines);
1077
1078	/*
1079	 * Though the HWS register does support 36bit addresses, historically
1080	 * we have had hangs and corruption reported due to wild writes if
1081	 * the HWS is placed above 4G. We only allow objects to be allocated
1082	 * in GFP_DMA32 for i965, and no earlier physical address users had
1083	 * access to more than 4G.
1084	 */
1085	obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
1086	if (IS_ERR(obj)) {
1087		gt_err(engine->gt, "Failed to allocate status page\n");
1088		return PTR_ERR(obj);
1089	}
1090
1091	i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
1092
1093	vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
1094	if (IS_ERR(vma)) {
1095		ret = PTR_ERR(vma);
1096		goto err_put;
1097	}
1098
1099	i915_gem_ww_ctx_init(&ww, true);
1100retry:
1101	ret = i915_gem_object_lock(obj, &ww);
1102	if (!ret && !HWS_NEEDS_PHYSICAL(engine->i915))
1103		ret = pin_ggtt_status_page(engine, &ww, vma);
1104	if (ret)
1105		goto err;
 
1106
1107	vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
1108	if (IS_ERR(vaddr)) {
1109		ret = PTR_ERR(vaddr);
1110		goto err_unpin;
1111	}
1112
1113	engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE);
1114	engine->status_page.vma = vma;
1115
1116err_unpin:
1117	if (ret)
1118		i915_vma_unpin(vma);
1119err:
1120	if (ret == -EDEADLK) {
1121		ret = i915_gem_ww_ctx_backoff(&ww);
1122		if (!ret)
1123			goto retry;
1124	}
1125	i915_gem_ww_ctx_fini(&ww);
1126err_put:
1127	if (ret)
1128		i915_gem_object_put(obj);
1129	return ret;
1130}
1131
1132static int intel_engine_init_tlb_invalidation(struct intel_engine_cs *engine)
1133{
1134	static const union intel_engine_tlb_inv_reg gen8_regs[] = {
1135		[RENDER_CLASS].reg		= GEN8_RTCR,
1136		[VIDEO_DECODE_CLASS].reg	= GEN8_M1TCR, /* , GEN8_M2TCR */
1137		[VIDEO_ENHANCEMENT_CLASS].reg	= GEN8_VTCR,
1138		[COPY_ENGINE_CLASS].reg		= GEN8_BTCR,
1139	};
1140	static const union intel_engine_tlb_inv_reg gen12_regs[] = {
1141		[RENDER_CLASS].reg		= GEN12_GFX_TLB_INV_CR,
1142		[VIDEO_DECODE_CLASS].reg	= GEN12_VD_TLB_INV_CR,
1143		[VIDEO_ENHANCEMENT_CLASS].reg	= GEN12_VE_TLB_INV_CR,
1144		[COPY_ENGINE_CLASS].reg		= GEN12_BLT_TLB_INV_CR,
1145		[COMPUTE_CLASS].reg		= GEN12_COMPCTX_TLB_INV_CR,
1146	};
1147	static const union intel_engine_tlb_inv_reg xehp_regs[] = {
1148		[RENDER_CLASS].mcr_reg		  = XEHP_GFX_TLB_INV_CR,
1149		[VIDEO_DECODE_CLASS].mcr_reg	  = XEHP_VD_TLB_INV_CR,
1150		[VIDEO_ENHANCEMENT_CLASS].mcr_reg = XEHP_VE_TLB_INV_CR,
1151		[COPY_ENGINE_CLASS].mcr_reg	  = XEHP_BLT_TLB_INV_CR,
1152		[COMPUTE_CLASS].mcr_reg		  = XEHP_COMPCTX_TLB_INV_CR,
1153	};
1154	static const union intel_engine_tlb_inv_reg xelpmp_regs[] = {
1155		[VIDEO_DECODE_CLASS].reg	  = GEN12_VD_TLB_INV_CR,
1156		[VIDEO_ENHANCEMENT_CLASS].reg     = GEN12_VE_TLB_INV_CR,
1157		[OTHER_CLASS].reg		  = XELPMP_GSC_TLB_INV_CR,
1158	};
1159	struct drm_i915_private *i915 = engine->i915;
1160	const unsigned int instance = engine->instance;
1161	const unsigned int class = engine->class;
1162	const union intel_engine_tlb_inv_reg *regs;
1163	union intel_engine_tlb_inv_reg reg;
1164	unsigned int num = 0;
1165	u32 val;
1166
1167	/*
1168	 * New platforms should not be added with catch-all-newer (>=)
1169	 * condition so that any later platform added triggers the below warning
1170	 * and in turn mandates a human cross-check of whether the invalidation
1171	 * flows have compatible semantics.
1172	 *
1173	 * For instance with the 11.00 -> 12.00 transition three out of five
1174	 * respective engine registers were moved to masked type. Then after the
1175	 * 12.00 -> 12.50 transition multi cast handling is required too.
1176	 */
1177
1178	if (engine->gt->type == GT_MEDIA) {
1179		if (MEDIA_VER_FULL(i915) == IP_VER(13, 0)) {
1180			regs = xelpmp_regs;
1181			num = ARRAY_SIZE(xelpmp_regs);
1182		}
1183	} else {
1184		if (GRAPHICS_VER_FULL(i915) == IP_VER(12, 74) ||
1185		    GRAPHICS_VER_FULL(i915) == IP_VER(12, 71) ||
1186		    GRAPHICS_VER_FULL(i915) == IP_VER(12, 70) ||
1187		    GRAPHICS_VER_FULL(i915) == IP_VER(12, 55)) {
1188			regs = xehp_regs;
1189			num = ARRAY_SIZE(xehp_regs);
1190		} else if (GRAPHICS_VER_FULL(i915) == IP_VER(12, 0) ||
1191			   GRAPHICS_VER_FULL(i915) == IP_VER(12, 10)) {
1192			regs = gen12_regs;
1193			num = ARRAY_SIZE(gen12_regs);
1194		} else if (GRAPHICS_VER(i915) >= 8 && GRAPHICS_VER(i915) <= 11) {
1195			regs = gen8_regs;
1196			num = ARRAY_SIZE(gen8_regs);
1197		} else if (GRAPHICS_VER(i915) < 8) {
1198			return 0;
1199		}
1200	}
1201
1202	if (gt_WARN_ONCE(engine->gt, !num,
1203			 "Platform does not implement TLB invalidation!"))
1204		return -ENODEV;
1205
1206	if (gt_WARN_ON_ONCE(engine->gt,
1207			    class >= num ||
1208			    (!regs[class].reg.reg &&
1209			     !regs[class].mcr_reg.reg)))
1210		return -ERANGE;
1211
1212	reg = regs[class];
1213
1214	if (regs == xelpmp_regs && class == OTHER_CLASS) {
1215		/*
1216		 * There's only a single GSC instance, but it uses register bit
1217		 * 1 instead of either 0 or OTHER_GSC_INSTANCE.
1218		 */
1219		GEM_WARN_ON(instance != OTHER_GSC_INSTANCE);
1220		val = 1;
1221	} else if (regs == gen8_regs && class == VIDEO_DECODE_CLASS && instance == 1) {
1222		reg.reg = GEN8_M2TCR;
1223		val = 0;
1224	} else {
1225		val = instance;
1226	}
1227
1228	val = BIT(val);
1229
1230	engine->tlb_inv.mcr = regs == xehp_regs;
1231	engine->tlb_inv.reg = reg;
1232	engine->tlb_inv.done = val;
1233
1234	if (GRAPHICS_VER(i915) >= 12 &&
1235	    (engine->class == VIDEO_DECODE_CLASS ||
1236	     engine->class == VIDEO_ENHANCEMENT_CLASS ||
1237	     engine->class == COMPUTE_CLASS ||
1238	     engine->class == OTHER_CLASS))
1239		engine->tlb_inv.request = _MASKED_BIT_ENABLE(val);
1240	else
1241		engine->tlb_inv.request = val;
1242
1243	return 0;
 
 
 
 
 
 
1244}
1245
1246static int engine_setup_common(struct intel_engine_cs *engine)
1247{
1248	int err;
1249
1250	init_llist_head(&engine->barrier_tasks);
1251
1252	err = intel_engine_init_tlb_invalidation(engine);
1253	if (err)
1254		return err;
1255
1256	err = init_status_page(engine);
1257	if (err)
1258		return err;
1259
1260	engine->breadcrumbs = intel_breadcrumbs_create(engine);
1261	if (!engine->breadcrumbs) {
1262		err = -ENOMEM;
1263		goto err_status;
1264	}
1265
1266	engine->sched_engine = i915_sched_engine_create(ENGINE_PHYSICAL);
1267	if (!engine->sched_engine) {
1268		err = -ENOMEM;
1269		goto err_sched_engine;
1270	}
1271	engine->sched_engine->private_data = engine;
1272
1273	err = intel_engine_init_cmd_parser(engine);
1274	if (err)
1275		goto err_cmd_parser;
1276
1277	intel_engine_init_execlists(engine);
 
 
1278	intel_engine_init__pm(engine);
1279	intel_engine_init_retire(engine);
 
1280
1281	/* Use the whole device by default */
1282	engine->sseu =
1283		intel_sseu_from_device_info(&engine->gt->info.sseu);
1284
1285	intel_engine_init_workarounds(engine);
1286	intel_engine_init_whitelist(engine);
1287	intel_engine_init_ctx_wa(engine);
1288
1289	if (GRAPHICS_VER(engine->i915) >= 12)
1290		engine->flags |= I915_ENGINE_HAS_RELATIVE_MMIO;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1291
1292	return 0;
1293
1294err_cmd_parser:
1295	i915_sched_engine_put(engine->sched_engine);
1296err_sched_engine:
1297	intel_breadcrumbs_put(engine->breadcrumbs);
1298err_status:
1299	cleanup_status_page(engine);
1300	return err;
1301}
1302
1303struct measure_breadcrumb {
1304	struct i915_request rq;
 
1305	struct intel_ring ring;
1306	u32 cs[2048];
1307};
1308
1309static int measure_breadcrumb_dw(struct intel_context *ce)
1310{
1311	struct intel_engine_cs *engine = ce->engine;
1312	struct measure_breadcrumb *frame;
1313	int dw;
1314
1315	GEM_BUG_ON(!engine->gt->scratch);
1316
1317	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
1318	if (!frame)
1319		return -ENOMEM;
1320
1321	frame->rq.i915 = engine->i915;
1322	frame->rq.engine = engine;
1323	frame->rq.context = ce;
1324	rcu_assign_pointer(frame->rq.timeline, ce->timeline);
1325	frame->rq.hwsp_seqno = ce->timeline->hwsp_seqno;
1326
1327	frame->ring.vaddr = frame->cs;
1328	frame->ring.size = sizeof(frame->cs);
1329	frame->ring.wrap =
1330		BITS_PER_TYPE(frame->ring.size) - ilog2(frame->ring.size);
1331	frame->ring.effective_size = frame->ring.size;
1332	intel_ring_update_space(&frame->ring);
 
 
 
1333	frame->rq.ring = &frame->ring;
 
1334
1335	mutex_lock(&ce->timeline->mutex);
1336	spin_lock_irq(&engine->sched_engine->lock);
 
1337
1338	dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs;
1339
1340	spin_unlock_irq(&engine->sched_engine->lock);
1341	mutex_unlock(&ce->timeline->mutex);
1342
1343	GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */
1344
 
 
 
 
 
1345	kfree(frame);
1346	return dw;
1347}
1348
1349struct intel_context *
1350intel_engine_create_pinned_context(struct intel_engine_cs *engine,
1351				   struct i915_address_space *vm,
1352				   unsigned int ring_size,
1353				   unsigned int hwsp,
1354				   struct lock_class_key *key,
1355				   const char *name)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1356{
1357	struct intel_context *ce;
1358	int err;
1359
1360	ce = intel_context_create(engine);
1361	if (IS_ERR(ce))
1362		return ce;
1363
1364	__set_bit(CONTEXT_BARRIER_BIT, &ce->flags);
1365	ce->timeline = page_pack_bits(NULL, hwsp);
1366	ce->ring = NULL;
1367	ce->ring_size = ring_size;
1368
1369	i915_vm_put(ce->vm);
1370	ce->vm = i915_vm_get(vm);
1371
1372	err = intel_context_pin(ce); /* perma-pin so it is always available */
1373	if (err) {
1374		intel_context_put(ce);
1375		return ERR_PTR(err);
1376	}
1377
1378	list_add_tail(&ce->pinned_contexts_link, &engine->pinned_contexts_list);
1379
1380	/*
1381	 * Give our perma-pinned kernel timelines a separate lockdep class,
1382	 * so that we can use them from within the normal user timelines
1383	 * should we need to inject GPU operations during their request
1384	 * construction.
1385	 */
1386	lockdep_set_class_and_name(&ce->timeline->mutex, key, name);
1387
1388	return ce;
1389}
1390
1391void intel_engine_destroy_pinned_context(struct intel_context *ce)
1392{
1393	struct intel_engine_cs *engine = ce->engine;
1394	struct i915_vma *hwsp = engine->status_page.vma;
1395
1396	GEM_BUG_ON(ce->timeline->hwsp_ggtt != hwsp);
1397
1398	mutex_lock(&hwsp->vm->mutex);
1399	list_del(&ce->timeline->engine_link);
1400	mutex_unlock(&hwsp->vm->mutex);
1401
1402	list_del(&ce->pinned_contexts_link);
1403	intel_context_unpin(ce);
1404	intel_context_put(ce);
1405}
1406
1407static struct intel_context *
1408create_ggtt_bind_context(struct intel_engine_cs *engine)
1409{
1410	static struct lock_class_key kernel;
1411
1412	/*
1413	 * MI_UPDATE_GTT can insert up to 511 PTE entries and there could be multiple
1414	 * bind requets at a time so get a bigger ring.
1415	 */
1416	return intel_engine_create_pinned_context(engine, engine->gt->vm, SZ_512K,
1417						  I915_GEM_HWS_GGTT_BIND_ADDR,
1418						  &kernel, "ggtt_bind_context");
1419}
1420
1421static struct intel_context *
1422create_kernel_context(struct intel_engine_cs *engine)
1423{
1424	static struct lock_class_key kernel;
1425
1426	return intel_engine_create_pinned_context(engine, engine->gt->vm, SZ_4K,
1427						  I915_GEM_HWS_SEQNO_ADDR,
1428						  &kernel, "kernel_context");
1429}
1430
1431/*
1432 * engine_init_common - initialize engine state which might require hw access
1433 * @engine: Engine to initialize.
1434 *
1435 * Initializes @engine@ structure members shared between legacy and execlists
1436 * submission modes which do require hardware access.
1437 *
1438 * Typcally done at later stages of submission mode specific engine setup.
1439 *
1440 * Returns zero on success or an error code on failure.
1441 */
1442static int engine_init_common(struct intel_engine_cs *engine)
1443{
1444	struct intel_context *ce, *bce = NULL;
1445	int ret;
1446
1447	engine->set_default_submission(engine);
1448
1449	/*
1450	 * We may need to do things with the shrinker which
1451	 * require us to immediately switch back to the default
1452	 * context. This can cause a problem as pinning the
1453	 * default context also requires GTT space which may not
1454	 * be available. To avoid this we always pin the default
1455	 * context.
1456	 */
1457	ce = create_kernel_context(engine);
1458	if (IS_ERR(ce))
1459		return PTR_ERR(ce);
1460	/*
1461	 * Create a separate pinned context for GGTT update with blitter engine
1462	 * if a platform require such service. MI_UPDATE_GTT works on other
1463	 * engines as well but BCS should be less busy engine so pick that for
1464	 * GGTT updates.
1465	 */
1466	if (i915_ggtt_require_binder(engine->i915) && engine->id == BCS0) {
1467		bce = create_ggtt_bind_context(engine);
1468		if (IS_ERR(bce)) {
1469			ret = PTR_ERR(bce);
1470			goto err_ce_context;
1471		}
1472	}
1473
1474	ret = measure_breadcrumb_dw(ce);
 
 
1475	if (ret < 0)
1476		goto err_bce_context;
1477
1478	engine->emit_fini_breadcrumb_dw = ret;
1479	engine->kernel_context = ce;
1480	engine->bind_context = bce;
1481
1482	return 0;
1483
1484err_bce_context:
1485	if (bce)
1486		intel_engine_destroy_pinned_context(bce);
1487err_ce_context:
1488	intel_engine_destroy_pinned_context(ce);
1489	return ret;
1490}
1491
1492int intel_engines_init(struct intel_gt *gt)
1493{
1494	int (*setup)(struct intel_engine_cs *engine);
1495	struct intel_engine_cs *engine;
1496	enum intel_engine_id id;
1497	int err;
1498
1499	if (intel_uc_uses_guc_submission(&gt->uc)) {
1500		gt->submission_method = INTEL_SUBMISSION_GUC;
1501		setup = intel_guc_submission_setup;
1502	} else if (HAS_EXECLISTS(gt->i915)) {
1503		gt->submission_method = INTEL_SUBMISSION_ELSP;
1504		setup = intel_execlists_submission_setup;
1505	} else {
1506		gt->submission_method = INTEL_SUBMISSION_RING;
1507		setup = intel_ring_submission_setup;
1508	}
1509
1510	for_each_engine(engine, gt, id) {
1511		err = engine_setup_common(engine);
1512		if (err)
1513			return err;
1514
1515		err = setup(engine);
1516		if (err) {
1517			intel_engine_cleanup_common(engine);
1518			return err;
1519		}
1520
1521		/* The backend should now be responsible for cleanup */
1522		GEM_BUG_ON(engine->release == NULL);
1523
1524		err = engine_init_common(engine);
1525		if (err)
1526			return err;
1527
1528		intel_engine_add_user(engine);
1529	}
1530
1531	return 0;
1532}
1533
1534/**
1535 * intel_engine_cleanup_common - cleans up the engine state created by
1536 *                                the common initiailizers.
1537 * @engine: Engine to cleanup.
1538 *
1539 * This cleans up everything created by the common helpers.
1540 */
1541void intel_engine_cleanup_common(struct intel_engine_cs *engine)
1542{
1543	GEM_BUG_ON(!list_empty(&engine->sched_engine->requests));
1544
1545	i915_sched_engine_put(engine->sched_engine);
1546	intel_breadcrumbs_put(engine->breadcrumbs);
1547
1548	intel_engine_fini_retire(engine);
 
1549	intel_engine_cleanup_cmd_parser(engine);
1550
1551	if (engine->default_state)
1552		fput(engine->default_state);
1553
1554	if (engine->kernel_context)
1555		intel_engine_destroy_pinned_context(engine->kernel_context);
1556
1557	if (engine->bind_context)
1558		intel_engine_destroy_pinned_context(engine->bind_context);
1559
1560
 
 
1561	GEM_BUG_ON(!llist_empty(&engine->barrier_tasks));
1562	cleanup_status_page(engine);
1563
1564	intel_wa_list_free(&engine->ctx_wa_list);
1565	intel_wa_list_free(&engine->wa_list);
1566	intel_wa_list_free(&engine->whitelist);
1567}
1568
1569/**
1570 * intel_engine_resume - re-initializes the HW state of the engine
1571 * @engine: Engine to resume.
1572 *
1573 * Returns zero on success or an error code on failure.
1574 */
1575int intel_engine_resume(struct intel_engine_cs *engine)
1576{
1577	intel_engine_apply_workarounds(engine);
1578	intel_engine_apply_whitelist(engine);
1579
1580	return engine->resume(engine);
1581}
1582
1583u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
1584{
1585	struct drm_i915_private *i915 = engine->i915;
1586
1587	u64 acthd;
1588
1589	if (GRAPHICS_VER(i915) >= 8)
1590		acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW);
1591	else if (GRAPHICS_VER(i915) >= 4)
1592		acthd = ENGINE_READ(engine, RING_ACTHD);
1593	else
1594		acthd = ENGINE_READ(engine, ACTHD);
1595
1596	return acthd;
1597}
1598
1599u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
1600{
1601	u64 bbaddr;
1602
1603	if (GRAPHICS_VER(engine->i915) >= 8)
1604		bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW);
1605	else
1606		bbaddr = ENGINE_READ(engine, RING_BBADDR);
1607
1608	return bbaddr;
1609}
1610
1611static unsigned long stop_timeout(const struct intel_engine_cs *engine)
1612{
1613	if (in_atomic() || irqs_disabled()) /* inside atomic preempt-reset? */
1614		return 0;
1615
1616	/*
1617	 * If we are doing a normal GPU reset, we can take our time and allow
1618	 * the engine to quiesce. We've stopped submission to the engine, and
1619	 * if we wait long enough an innocent context should complete and
1620	 * leave the engine idle. So they should not be caught unaware by
1621	 * the forthcoming GPU reset (which usually follows the stop_cs)!
1622	 */
1623	return READ_ONCE(engine->props.stop_timeout_ms);
1624}
1625
1626static int __intel_engine_stop_cs(struct intel_engine_cs *engine,
1627				  int fast_timeout_us,
1628				  int slow_timeout_ms)
1629{
1630	struct intel_uncore *uncore = engine->uncore;
1631	const i915_reg_t mode = RING_MI_MODE(engine->mmio_base);
 
1632	int err;
1633
 
 
 
 
 
1634	intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING));
1635
1636	/*
1637	 * Wa_22011802037: Prior to doing a reset, ensure CS is
1638	 * stopped, set ring stop bit and prefetch disable bit to halt CS
1639	 */
1640	if (intel_engine_reset_needs_wa_22011802037(engine->gt))
1641		intel_uncore_write_fw(uncore, RING_MODE_GEN7(engine->mmio_base),
1642				      _MASKED_BIT_ENABLE(GEN12_GFX_PREFETCH_DISABLE));
1643
1644	err = __intel_wait_for_register_fw(engine->uncore, mode,
1645					   MODE_IDLE, MODE_IDLE,
1646					   fast_timeout_us,
1647					   slow_timeout_ms,
1648					   NULL);
1649
1650	/* A final mmio read to let GPU writes be hopefully flushed to memory */
1651	intel_uncore_posting_read_fw(uncore, mode);
1652	return err;
1653}
1654
1655int intel_engine_stop_cs(struct intel_engine_cs *engine)
1656{
1657	int err = 0;
1658
1659	if (GRAPHICS_VER(engine->i915) < 3)
1660		return -ENODEV;
1661
1662	ENGINE_TRACE(engine, "\n");
1663	/*
1664	 * TODO: Find out why occasionally stopping the CS times out. Seen
1665	 * especially with gem_eio tests.
1666	 *
1667	 * Occasionally trying to stop the cs times out, but does not adversely
1668	 * affect functionality. The timeout is set as a config parameter that
1669	 * defaults to 100ms. In most cases the follow up operation is to wait
1670	 * for pending MI_FORCE_WAKES. The assumption is that this timeout is
1671	 * sufficient for any pending MI_FORCEWAKEs to complete. Once root
1672	 * caused, the caller must check and handle the return from this
1673	 * function.
1674	 */
1675	if (__intel_engine_stop_cs(engine, 1000, stop_timeout(engine))) {
1676		ENGINE_TRACE(engine,
1677			     "timed out on STOP_RING -> IDLE; HEAD:%04x, TAIL:%04x\n",
1678			     ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR,
1679			     ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR);
1680
1681		/*
1682		 * Sometimes we observe that the idle flag is not
1683		 * set even though the ring is empty. So double
1684		 * check before giving up.
1685		 */
1686		if ((ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR) !=
1687		    (ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR))
1688			err = -ETIMEDOUT;
1689	}
1690
1691	return err;
1692}
1693
1694void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine)
1695{
1696	ENGINE_TRACE(engine, "\n");
1697
1698	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
1699}
1700
1701static u32 __cs_pending_mi_force_wakes(struct intel_engine_cs *engine)
1702{
1703	static const i915_reg_t _reg[I915_NUM_ENGINES] = {
1704		[RCS0] = MSG_IDLE_CS,
1705		[BCS0] = MSG_IDLE_BCS,
1706		[VCS0] = MSG_IDLE_VCS0,
1707		[VCS1] = MSG_IDLE_VCS1,
1708		[VCS2] = MSG_IDLE_VCS2,
1709		[VCS3] = MSG_IDLE_VCS3,
1710		[VCS4] = MSG_IDLE_VCS4,
1711		[VCS5] = MSG_IDLE_VCS5,
1712		[VCS6] = MSG_IDLE_VCS6,
1713		[VCS7] = MSG_IDLE_VCS7,
1714		[VECS0] = MSG_IDLE_VECS0,
1715		[VECS1] = MSG_IDLE_VECS1,
1716		[VECS2] = MSG_IDLE_VECS2,
1717		[VECS3] = MSG_IDLE_VECS3,
1718		[CCS0] = MSG_IDLE_CS,
1719		[CCS1] = MSG_IDLE_CS,
1720		[CCS2] = MSG_IDLE_CS,
1721		[CCS3] = MSG_IDLE_CS,
1722	};
1723	u32 val;
1724
1725	if (!_reg[engine->id].reg)
1726		return 0;
1727
1728	val = intel_uncore_read(engine->uncore, _reg[engine->id]);
1729
1730	/* bits[29:25] & bits[13:9] >> shift */
1731	return (val & (val >> 16) & MSG_IDLE_FW_MASK) >> MSG_IDLE_FW_SHIFT;
1732}
1733
1734static void __gpm_wait_for_fw_complete(struct intel_gt *gt, u32 fw_mask)
 
 
1735{
1736	int ret;
 
 
 
1737
1738	/* Ensure GPM receives fw up/down after CS is stopped */
1739	udelay(1);
 
 
 
 
 
1740
1741	/* Wait for forcewake request to complete in GPM */
1742	ret =  __intel_wait_for_register_fw(gt->uncore,
1743					    GEN9_PWRGT_DOMAIN_STATUS,
1744					    fw_mask, fw_mask, 5000, 0, NULL);
 
1745
1746	/* Ensure CS receives fw ack from GPM */
1747	udelay(1);
1748
1749	if (ret)
1750		GT_TRACE(gt, "Failed to complete pending forcewake %d\n", ret);
1751}
1752
1753/*
1754 * Wa_22011802037:gen12: In addition to stopping the cs, we need to wait for any
1755 * pending MI_FORCE_WAKEUP requests that the CS has initiated to complete. The
1756 * pending status is indicated by bits[13:9] (masked by bits[29:25]) in the
1757 * MSG_IDLE register. There's one MSG_IDLE register per reset domain. Since we
1758 * are concerned only with the gt reset here, we use a logical OR of pending
1759 * forcewakeups from all reset domains and then wait for them to complete by
1760 * querying PWRGT_DOMAIN_STATUS.
1761 */
1762void intel_engine_wait_for_pending_mi_fw(struct intel_engine_cs *engine)
1763{
1764	u32 fw_pending = __cs_pending_mi_force_wakes(engine);
1765
1766	if (fw_pending)
1767		__gpm_wait_for_fw_complete(engine->gt, fw_pending);
 
 
1768}
1769
1770/* NB: please notice the memset */
1771void intel_engine_get_instdone(const struct intel_engine_cs *engine,
1772			       struct intel_instdone *instdone)
1773{
1774	struct drm_i915_private *i915 = engine->i915;
1775	struct intel_uncore *uncore = engine->uncore;
1776	u32 mmio_base = engine->mmio_base;
1777	int slice;
1778	int subslice;
1779	int iter;
1780
1781	memset(instdone, 0, sizeof(*instdone));
1782
1783	if (GRAPHICS_VER(i915) >= 8) {
 
1784		instdone->instdone =
1785			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1786
1787		if (engine->id != RCS0)
1788			return;
1789
1790		instdone->slice_common =
1791			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1792		if (GRAPHICS_VER(i915) >= 12) {
1793			instdone->slice_common_extra[0] =
1794				intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA);
1795			instdone->slice_common_extra[1] =
1796				intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA2);
1797		}
1798
1799		for_each_ss_steering(iter, engine->gt, slice, subslice) {
1800			instdone->sampler[slice][subslice] =
1801				intel_gt_mcr_read(engine->gt,
1802						  GEN8_SAMPLER_INSTDONE,
1803						  slice, subslice);
1804			instdone->row[slice][subslice] =
1805				intel_gt_mcr_read(engine->gt,
1806						  GEN8_ROW_INSTDONE,
1807						  slice, subslice);
1808		}
1809
1810		if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 55)) {
1811			for_each_ss_steering(iter, engine->gt, slice, subslice)
1812				instdone->geom_svg[slice][subslice] =
1813					intel_gt_mcr_read(engine->gt,
1814							  XEHPG_INSTDONE_GEOM_SVG,
1815							  slice, subslice);
1816		}
1817	} else if (GRAPHICS_VER(i915) >= 7) {
1818		instdone->instdone =
1819			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1820
1821		if (engine->id != RCS0)
1822			return;
1823
1824		instdone->slice_common =
1825			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1826		instdone->sampler[0][0] =
1827			intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE);
1828		instdone->row[0][0] =
1829			intel_uncore_read(uncore, GEN7_ROW_INSTDONE);
1830	} else if (GRAPHICS_VER(i915) >= 4) {
 
 
 
 
1831		instdone->instdone =
1832			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1833		if (engine->id == RCS0)
1834			/* HACK: Using the wrong struct member */
1835			instdone->slice_common =
1836				intel_uncore_read(uncore, GEN4_INSTDONE1);
1837	} else {
 
 
1838		instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE);
 
1839	}
1840}
1841
1842static bool ring_is_idle(struct intel_engine_cs *engine)
1843{
1844	bool idle = true;
1845
1846	if (I915_SELFTEST_ONLY(!engine->mmio_base))
1847		return true;
1848
1849	if (!intel_engine_pm_get_if_awake(engine))
1850		return true;
1851
1852	/* First check that no commands are left in the ring */
1853	if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) !=
1854	    (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR))
1855		idle = false;
1856
1857	/* No bit for gen2, so assume the CS parser is idle */
1858	if (GRAPHICS_VER(engine->i915) > 2 &&
1859	    !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE))
1860		idle = false;
1861
1862	intel_engine_pm_put(engine);
1863
1864	return idle;
1865}
1866
1867void __intel_engine_flush_submission(struct intel_engine_cs *engine, bool sync)
1868{
1869	struct tasklet_struct *t = &engine->sched_engine->tasklet;
1870
1871	if (!t->callback)
1872		return;
1873
1874	local_bh_disable();
1875	if (tasklet_trylock(t)) {
1876		/* Must wait for any GPU reset in progress. */
1877		if (__tasklet_is_enabled(t))
1878			t->callback(t);
1879		tasklet_unlock(t);
1880	}
1881	local_bh_enable();
1882
1883	/* Synchronise and wait for the tasklet on another CPU */
1884	if (sync)
1885		tasklet_unlock_wait(t);
1886}
1887
1888/**
1889 * intel_engine_is_idle() - Report if the engine has finished process all work
1890 * @engine: the intel_engine_cs
1891 *
1892 * Return true if there are no requests pending, nothing left to be submitted
1893 * to hardware, and that the engine is idle.
1894 */
1895bool intel_engine_is_idle(struct intel_engine_cs *engine)
1896{
1897	/* More white lies, if wedged, hw state is inconsistent */
1898	if (intel_gt_is_wedged(engine->gt))
1899		return true;
1900
1901	if (!intel_engine_pm_is_awake(engine))
1902		return true;
1903
1904	/* Waiting to drain ELSP? */
1905	intel_synchronize_hardirq(engine->i915);
1906	intel_engine_flush_submission(engine);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1907
1908	/* ELSP is empty, but there are ready requests? E.g. after reset */
1909	if (!i915_sched_engine_is_empty(engine->sched_engine))
1910		return false;
1911
1912	/* Ring stopped? */
1913	return ring_is_idle(engine);
1914}
1915
1916bool intel_engines_are_idle(struct intel_gt *gt)
1917{
1918	struct intel_engine_cs *engine;
1919	enum intel_engine_id id;
1920
1921	/*
1922	 * If the driver is wedged, HW state may be very inconsistent and
1923	 * report that it is still busy, even though we have stopped using it.
1924	 */
1925	if (intel_gt_is_wedged(gt))
1926		return true;
1927
1928	/* Already parked (and passed an idleness test); must still be idle */
1929	if (!READ_ONCE(gt->awake))
1930		return true;
1931
1932	for_each_engine(engine, gt, id) {
1933		if (!intel_engine_is_idle(engine))
1934			return false;
1935	}
1936
1937	return true;
1938}
1939
1940bool intel_engine_irq_enable(struct intel_engine_cs *engine)
1941{
1942	if (!engine->irq_enable)
1943		return false;
1944
1945	/* Caller disables interrupts */
1946	spin_lock(engine->gt->irq_lock);
1947	engine->irq_enable(engine);
1948	spin_unlock(engine->gt->irq_lock);
1949
1950	return true;
1951}
1952
1953void intel_engine_irq_disable(struct intel_engine_cs *engine)
1954{
1955	if (!engine->irq_disable)
1956		return;
1957
1958	/* Caller disables interrupts */
1959	spin_lock(engine->gt->irq_lock);
1960	engine->irq_disable(engine);
1961	spin_unlock(engine->gt->irq_lock);
1962}
1963
1964void intel_engines_reset_default_submission(struct intel_gt *gt)
1965{
1966	struct intel_engine_cs *engine;
1967	enum intel_engine_id id;
1968
1969	for_each_engine(engine, gt, id) {
1970		if (engine->sanitize)
1971			engine->sanitize(engine);
1972
1973		engine->set_default_submission(engine);
1974	}
1975}
1976
1977bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
1978{
1979	switch (GRAPHICS_VER(engine->i915)) {
1980	case 2:
1981		return false; /* uses physical not virtual addresses */
1982	case 3:
1983		/* maybe only uses physical not virtual addresses */
1984		return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
1985	case 4:
1986		return !IS_I965G(engine->i915); /* who knows! */
1987	case 6:
1988		return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
1989	default:
1990		return true;
1991	}
1992}
1993
1994static struct intel_timeline *get_timeline(struct i915_request *rq)
1995{
1996	struct intel_timeline *tl;
1997
1998	/*
1999	 * Even though we are holding the engine->sched_engine->lock here, there
2000	 * is no control over the submission queue per-se and we are
2001	 * inspecting the active state at a random point in time, with an
2002	 * unknown queue. Play safe and make sure the timeline remains valid.
2003	 * (Only being used for pretty printing, one extra kref shouldn't
2004	 * cause a camel stampede!)
2005	 */
2006	rcu_read_lock();
2007	tl = rcu_dereference(rq->timeline);
2008	if (!kref_get_unless_zero(&tl->kref))
2009		tl = NULL;
2010	rcu_read_unlock();
2011
2012	return tl;
2013}
2014
2015static int print_ring(char *buf, int sz, struct i915_request *rq)
2016{
2017	int len = 0;
2018
2019	if (!i915_request_signaled(rq)) {
2020		struct intel_timeline *tl = get_timeline(rq);
2021
2022		len = scnprintf(buf, sz,
2023				"ring:{start:%08x, hwsp:%08x, seqno:%08x, runtime:%llums}, ",
2024				i915_ggtt_offset(rq->ring->vma),
2025				tl ? tl->hwsp_offset : 0,
2026				hwsp_seqno(rq),
2027				DIV_ROUND_CLOSEST_ULL(intel_context_get_total_runtime_ns(rq->context),
2028						      1000 * 1000));
2029
2030		if (tl)
2031			intel_timeline_put(tl);
2032	}
2033
2034	return len;
2035}
2036
2037static void hexdump(struct drm_printer *m, const void *buf, size_t len)
2038{
2039	const size_t rowsize = 8 * sizeof(u32);
2040	const void *prev = NULL;
2041	bool skip = false;
2042	size_t pos;
2043
2044	for (pos = 0; pos < len; pos += rowsize) {
2045		char line[128];
2046
2047		if (prev && !memcmp(prev, buf + pos, rowsize)) {
2048			if (!skip) {
2049				drm_printf(m, "*\n");
2050				skip = true;
2051			}
2052			continue;
2053		}
2054
2055		WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
2056						rowsize, sizeof(u32),
2057						line, sizeof(line),
2058						false) >= sizeof(line));
2059		drm_printf(m, "[%04zx] %s\n", pos, line);
2060
2061		prev = buf + pos;
2062		skip = false;
2063	}
2064}
2065
2066static const char *repr_timer(const struct timer_list *t)
2067{
2068	if (!READ_ONCE(t->expires))
2069		return "inactive";
2070
2071	if (timer_pending(t))
2072		return "active";
2073
2074	return "expired";
2075}
2076
2077static void intel_engine_print_registers(struct intel_engine_cs *engine,
2078					 struct drm_printer *m)
2079{
2080	struct drm_i915_private *i915 = engine->i915;
2081	struct intel_engine_execlists * const execlists = &engine->execlists;
2082	u64 addr;
2083
2084	if (engine->id == RENDER_CLASS && IS_GRAPHICS_VER(i915, 4, 7))
2085		drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID));
2086	if (HAS_EXECLISTS(i915)) {
2087		drm_printf(m, "\tEL_STAT_HI: 0x%08x\n",
2088			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI));
2089		drm_printf(m, "\tEL_STAT_LO: 0x%08x\n",
2090			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO));
2091	}
2092	drm_printf(m, "\tRING_START: 0x%08x\n",
2093		   ENGINE_READ(engine, RING_START));
2094	drm_printf(m, "\tRING_HEAD:  0x%08x\n",
2095		   ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR);
2096	drm_printf(m, "\tRING_TAIL:  0x%08x\n",
2097		   ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR);
2098	drm_printf(m, "\tRING_CTL:   0x%08x%s\n",
2099		   ENGINE_READ(engine, RING_CTL),
2100		   ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
2101	if (GRAPHICS_VER(engine->i915) > 2) {
2102		drm_printf(m, "\tRING_MODE:  0x%08x%s\n",
2103			   ENGINE_READ(engine, RING_MI_MODE),
2104			   ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : "");
2105	}
2106
2107	if (GRAPHICS_VER(i915) >= 6) {
2108		drm_printf(m, "\tRING_IMR:   0x%08x\n",
2109			   ENGINE_READ(engine, RING_IMR));
2110		drm_printf(m, "\tRING_ESR:   0x%08x\n",
2111			   ENGINE_READ(engine, RING_ESR));
2112		drm_printf(m, "\tRING_EMR:   0x%08x\n",
2113			   ENGINE_READ(engine, RING_EMR));
2114		drm_printf(m, "\tRING_EIR:   0x%08x\n",
2115			   ENGINE_READ(engine, RING_EIR));
2116	}
2117
2118	addr = intel_engine_get_active_head(engine);
2119	drm_printf(m, "\tACTHD:  0x%08x_%08x\n",
2120		   upper_32_bits(addr), lower_32_bits(addr));
2121	addr = intel_engine_get_last_batch_head(engine);
2122	drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
2123		   upper_32_bits(addr), lower_32_bits(addr));
2124	if (GRAPHICS_VER(i915) >= 8)
2125		addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW);
2126	else if (GRAPHICS_VER(i915) >= 4)
2127		addr = ENGINE_READ(engine, RING_DMA_FADD);
2128	else
2129		addr = ENGINE_READ(engine, DMA_FADD_I8XX);
2130	drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
2131		   upper_32_bits(addr), lower_32_bits(addr));
2132	if (GRAPHICS_VER(i915) >= 4) {
2133		drm_printf(m, "\tIPEIR: 0x%08x\n",
2134			   ENGINE_READ(engine, RING_IPEIR));
2135		drm_printf(m, "\tIPEHR: 0x%08x\n",
2136			   ENGINE_READ(engine, RING_IPEHR));
2137	} else {
2138		drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR));
2139		drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR));
2140	}
2141
2142	if (HAS_EXECLISTS(i915) && !intel_engine_uses_guc(engine)) {
2143		struct i915_request * const *port, *rq;
2144		const u32 *hws =
2145			&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
2146		const u8 num_entries = execlists->csb_size;
2147		unsigned int idx;
2148		u8 read, write;
2149
2150		drm_printf(m, "\tExeclist tasklet queued? %s (%s), preempt? %s, timeslice? %s\n",
2151			   str_yes_no(test_bit(TASKLET_STATE_SCHED, &engine->sched_engine->tasklet.state)),
2152			   str_enabled_disabled(!atomic_read(&engine->sched_engine->tasklet.count)),
2153			   repr_timer(&engine->execlists.preempt),
2154			   repr_timer(&engine->execlists.timer));
2155
2156		read = execlists->csb_head;
2157		write = READ_ONCE(*execlists->csb_write);
2158
2159		drm_printf(m, "\tExeclist status: 0x%08x %08x; CSB read:%d, write:%d, entries:%d\n",
2160			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO),
2161			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI),
2162			   read, write, num_entries);
2163
2164		if (read >= num_entries)
2165			read = 0;
2166		if (write >= num_entries)
2167			write = 0;
2168		if (read > write)
2169			write += num_entries;
2170		while (read < write) {
2171			idx = ++read % num_entries;
2172			drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
2173				   idx, hws[idx * 2], hws[idx * 2 + 1]);
2174		}
2175
2176		i915_sched_engine_active_lock_bh(engine->sched_engine);
2177		rcu_read_lock();
2178		for (port = execlists->active; (rq = *port); port++) {
2179			char hdr[160];
2180			int len;
2181
2182			len = scnprintf(hdr, sizeof(hdr),
2183					"\t\tActive[%d]:  ccid:%08x%s%s, ",
2184					(int)(port - execlists->active),
2185					rq->context->lrc.ccid,
2186					intel_context_is_closed(rq->context) ? "!" : "",
2187					intel_context_is_banned(rq->context) ? "*" : "");
2188			len += print_ring(hdr + len, sizeof(hdr) - len, rq);
2189			scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
2190			i915_request_show(m, rq, hdr, 0);
 
 
2191		}
2192		for (port = execlists->pending; (rq = *port); port++) {
2193			char hdr[160];
2194			int len;
2195
2196			len = scnprintf(hdr, sizeof(hdr),
2197					"\t\tPending[%d]: ccid:%08x%s%s, ",
2198					(int)(port - execlists->pending),
2199					rq->context->lrc.ccid,
2200					intel_context_is_closed(rq->context) ? "!" : "",
2201					intel_context_is_banned(rq->context) ? "*" : "");
2202			len += print_ring(hdr + len, sizeof(hdr) - len, rq);
2203			scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
2204			i915_request_show(m, rq, hdr, 0);
2205		}
2206		rcu_read_unlock();
2207		i915_sched_engine_active_unlock_bh(engine->sched_engine);
2208	} else if (GRAPHICS_VER(i915) > 6) {
2209		drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
2210			   ENGINE_READ(engine, RING_PP_DIR_BASE));
2211		drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
2212			   ENGINE_READ(engine, RING_PP_DIR_BASE_READ));
2213		drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
2214			   ENGINE_READ(engine, RING_PP_DIR_DCLV));
2215	}
2216}
2217
2218static void print_request_ring(struct drm_printer *m, struct i915_request *rq)
2219{
2220	struct i915_vma_resource *vma_res = rq->batch_res;
2221	void *ring;
2222	int size;
2223
2224	drm_printf(m,
2225		   "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n",
2226		   rq->head, rq->postfix, rq->tail,
2227		   vma_res ? upper_32_bits(vma_res->start) : ~0u,
2228		   vma_res ? lower_32_bits(vma_res->start) : ~0u);
2229
2230	size = rq->tail - rq->head;
2231	if (rq->tail < rq->head)
2232		size += rq->ring->size;
2233
2234	ring = kmalloc(size, GFP_ATOMIC);
2235	if (ring) {
2236		const void *vaddr = rq->ring->vaddr;
2237		unsigned int head = rq->head;
2238		unsigned int len = 0;
2239
2240		if (rq->tail < head) {
2241			len = rq->ring->size - head;
2242			memcpy(ring, vaddr + head, len);
2243			head = 0;
2244		}
2245		memcpy(ring + len, vaddr + head, size - len);
2246
2247		hexdump(m, ring, size);
2248		kfree(ring);
2249	}
2250}
2251
2252static unsigned long read_ul(void *p, size_t x)
2253{
2254	return *(unsigned long *)(p + x);
2255}
2256
2257static void print_properties(struct intel_engine_cs *engine,
2258			     struct drm_printer *m)
2259{
2260	static const struct pmap {
2261		size_t offset;
2262		const char *name;
2263	} props[] = {
2264#define P(x) { \
2265	.offset = offsetof(typeof(engine->props), x), \
2266	.name = #x \
2267}
2268		P(heartbeat_interval_ms),
2269		P(max_busywait_duration_ns),
2270		P(preempt_timeout_ms),
2271		P(stop_timeout_ms),
2272		P(timeslice_duration_ms),
2273
2274		{},
2275#undef P
2276	};
2277	const struct pmap *p;
2278
2279	drm_printf(m, "\tProperties:\n");
2280	for (p = props; p->name; p++)
2281		drm_printf(m, "\t\t%s: %lu [default %lu]\n",
2282			   p->name,
2283			   read_ul(&engine->props, p->offset),
2284			   read_ul(&engine->defaults, p->offset));
2285}
2286
2287static void engine_dump_request(struct i915_request *rq, struct drm_printer *m, const char *msg)
2288{
2289	struct intel_timeline *tl = get_timeline(rq);
2290
2291	i915_request_show(m, rq, msg, 0);
2292
2293	drm_printf(m, "\t\tring->start:  0x%08x\n",
2294		   i915_ggtt_offset(rq->ring->vma));
2295	drm_printf(m, "\t\tring->head:   0x%08x\n",
2296		   rq->ring->head);
2297	drm_printf(m, "\t\tring->tail:   0x%08x\n",
2298		   rq->ring->tail);
2299	drm_printf(m, "\t\tring->emit:   0x%08x\n",
2300		   rq->ring->emit);
2301	drm_printf(m, "\t\tring->space:  0x%08x\n",
2302		   rq->ring->space);
2303
2304	if (tl) {
2305		drm_printf(m, "\t\tring->hwsp:   0x%08x\n",
2306			   tl->hwsp_offset);
2307		intel_timeline_put(tl);
2308	}
2309
2310	print_request_ring(m, rq);
2311
2312	if (rq->context->lrc_reg_state) {
2313		drm_printf(m, "Logical Ring Context:\n");
2314		hexdump(m, rq->context->lrc_reg_state, PAGE_SIZE);
2315	}
2316}
2317
2318void intel_engine_dump_active_requests(struct list_head *requests,
2319				       struct i915_request *hung_rq,
2320				       struct drm_printer *m)
2321{
2322	struct i915_request *rq;
2323	const char *msg;
2324	enum i915_request_state state;
2325
2326	list_for_each_entry(rq, requests, sched.link) {
2327		if (rq == hung_rq)
2328			continue;
2329
2330		state = i915_test_request_state(rq);
2331		if (state < I915_REQUEST_QUEUED)
2332			continue;
2333
2334		if (state == I915_REQUEST_ACTIVE)
2335			msg = "\t\tactive on engine";
2336		else
2337			msg = "\t\tactive in queue";
2338
2339		engine_dump_request(rq, m, msg);
2340	}
2341}
2342
2343static void engine_dump_active_requests(struct intel_engine_cs *engine,
2344					struct drm_printer *m)
2345{
2346	struct intel_context *hung_ce = NULL;
2347	struct i915_request *hung_rq = NULL;
2348
2349	/*
2350	 * No need for an engine->irq_seqno_barrier() before the seqno reads.
2351	 * The GPU is still running so requests are still executing and any
2352	 * hardware reads will be out of date by the time they are reported.
2353	 * But the intention here is just to report an instantaneous snapshot
2354	 * so that's fine.
2355	 */
2356	intel_engine_get_hung_entity(engine, &hung_ce, &hung_rq);
2357
2358	drm_printf(m, "\tRequests:\n");
2359
2360	if (hung_rq)
2361		engine_dump_request(hung_rq, m, "\t\thung");
2362	else if (hung_ce)
2363		drm_printf(m, "\t\tGot hung ce but no hung rq!\n");
2364
2365	if (intel_uc_uses_guc_submission(&engine->gt->uc))
2366		intel_guc_dump_active_requests(engine, hung_rq, m);
2367	else
2368		intel_execlists_dump_active_requests(engine, hung_rq, m);
2369
2370	if (hung_rq)
2371		i915_request_put(hung_rq);
2372}
2373
2374void intel_engine_dump(struct intel_engine_cs *engine,
2375		       struct drm_printer *m,
2376		       const char *header, ...)
2377{
2378	struct i915_gpu_error * const error = &engine->i915->gpu_error;
2379	struct i915_request *rq;
2380	intel_wakeref_t wakeref;
2381	ktime_t dummy;
2382
2383	if (header) {
2384		va_list ap;
2385
2386		va_start(ap, header);
2387		drm_vprintf(m, header, &ap);
2388		va_end(ap);
2389	}
2390
2391	if (intel_gt_is_wedged(engine->gt))
2392		drm_printf(m, "*** WEDGED ***\n");
2393
2394	drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count));
2395	drm_printf(m, "\tBarriers?: %s\n",
2396		   str_yes_no(!llist_empty(&engine->barrier_tasks)));
2397	drm_printf(m, "\tLatency: %luus\n",
2398		   ewma__engine_latency_read(&engine->latency));
2399	if (intel_engine_supports_stats(engine))
2400		drm_printf(m, "\tRuntime: %llums\n",
2401			   ktime_to_ms(intel_engine_get_busy_time(engine,
2402								  &dummy)));
2403	drm_printf(m, "\tForcewake: %x domains, %d active\n",
2404		   engine->fw_domain, READ_ONCE(engine->fw_active));
2405
2406	rcu_read_lock();
2407	rq = READ_ONCE(engine->heartbeat.systole);
2408	if (rq)
2409		drm_printf(m, "\tHeartbeat: %d ms ago\n",
2410			   jiffies_to_msecs(jiffies - rq->emitted_jiffies));
2411	rcu_read_unlock();
2412	drm_printf(m, "\tReset count: %d (global %d)\n",
2413		   i915_reset_engine_count(error, engine),
2414		   i915_reset_count(error));
2415	print_properties(engine, m);
2416
2417	engine_dump_active_requests(engine, m);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2418
2419	drm_printf(m, "\tMMIO base:  0x%08x\n", engine->mmio_base);
2420	wakeref = intel_runtime_pm_get_if_in_use(engine->uncore->rpm);
2421	if (wakeref) {
2422		intel_engine_print_registers(engine, m);
2423		intel_runtime_pm_put(engine->uncore->rpm, wakeref);
2424	} else {
2425		drm_printf(m, "\tDevice is asleep; skipping register dump\n");
2426	}
2427
2428	intel_execlists_show_requests(engine, m, i915_request_show, 8);
2429
2430	drm_printf(m, "HWSP:\n");
2431	hexdump(m, engine->status_page.addr, PAGE_SIZE);
2432
2433	drm_printf(m, "Idle? %s\n", str_yes_no(intel_engine_is_idle(engine)));
2434
2435	intel_engine_print_breadcrumbs(engine, m);
2436}
2437
2438/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2439 * intel_engine_get_busy_time() - Return current accumulated engine busyness
2440 * @engine: engine to report on
2441 * @now: monotonic timestamp of sampling
2442 *
2443 * Returns accumulated time @engine was busy since engine stats were enabled.
2444 */
2445ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine, ktime_t *now)
2446{
2447	return engine->busyness(engine, now);
 
 
 
 
 
 
 
 
2448}
2449
2450struct intel_context *
2451intel_engine_create_virtual(struct intel_engine_cs **siblings,
2452			    unsigned int count, unsigned long flags)
 
 
 
 
2453{
2454	if (count == 0)
2455		return ERR_PTR(-EINVAL);
2456
2457	if (count == 1 && !(flags & FORCE_VIRTUAL))
2458		return intel_context_create(siblings[0]);
2459
2460	GEM_BUG_ON(!siblings[0]->cops->create_virtual);
2461	return siblings[0]->cops->create_virtual(siblings, count, flags);
 
 
 
 
 
2462}
2463
2464static struct i915_request *engine_execlist_find_hung_request(struct intel_engine_cs *engine)
2465{
2466	struct i915_request *request, *active = NULL;
2467
2468	/*
2469	 * This search does not work in GuC submission mode. However, the GuC
2470	 * will report the hanging context directly to the driver itself. So
2471	 * the driver should never get here when in GuC mode.
2472	 */
2473	GEM_BUG_ON(intel_uc_uses_guc_submission(&engine->gt->uc));
 
2474
2475	/*
2476	 * We are called by the error capture, reset and to dump engine
2477	 * state at random points in time. In particular, note that neither is
2478	 * crucially ordered with an interrupt. After a hang, the GPU is dead
2479	 * and we assume that no more writes can happen (we waited long enough
2480	 * for all writes that were in transaction to be flushed) - adding an
2481	 * extra delay for a recent interrupt is pointless. Hence, we do
2482	 * not need an engine->irq_seqno_barrier() before the seqno reads.
2483	 * At all other times, we must assume the GPU is still running, but
2484	 * we only care about the snapshot of this moment.
2485	 */
2486	lockdep_assert_held(&engine->sched_engine->lock);
 
 
 
2487
2488	rcu_read_lock();
2489	request = execlists_active(&engine->execlists);
2490	if (request) {
2491		struct intel_timeline *tl = request->context->timeline;
2492
2493		list_for_each_entry_from_reverse(request, &tl->requests, link) {
2494			if (__i915_request_is_complete(request))
2495				break;
2496
2497			active = request;
2498		}
2499	}
2500	rcu_read_unlock();
2501	if (active)
2502		return active;
2503
2504	list_for_each_entry(request, &engine->sched_engine->requests,
2505			    sched.link) {
2506		if (i915_test_request_state(request) != I915_REQUEST_ACTIVE)
2507			continue;
2508
2509		active = request;
2510		break;
2511	}
2512
2513	return active;
2514}
2515
2516void intel_engine_get_hung_entity(struct intel_engine_cs *engine,
2517				  struct intel_context **ce, struct i915_request **rq)
2518{
2519	unsigned long flags;
2520
2521	*ce = intel_engine_get_hung_context(engine);
2522	if (*ce) {
2523		intel_engine_clear_hung_context(engine);
2524
2525		*rq = intel_context_get_active_request(*ce);
2526		return;
2527	}
2528
2529	/*
2530	 * Getting here with GuC enabled means it is a forced error capture
2531	 * with no actual hang. So, no need to attempt the execlist search.
2532	 */
2533	if (intel_uc_uses_guc_submission(&engine->gt->uc))
2534		return;
2535
2536	spin_lock_irqsave(&engine->sched_engine->lock, flags);
2537	*rq = engine_execlist_find_hung_request(engine);
2538	if (*rq)
2539		*rq = i915_request_get_rcu(*rq);
2540	spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
2541}
2542
2543void xehp_enable_ccs_engines(struct intel_engine_cs *engine)
2544{
2545	/*
2546	 * If there are any non-fused-off CCS engines, we need to enable CCS
2547	 * support in the RCU_MODE register.  This only needs to be done once,
2548	 * so for simplicity we'll take care of this in the RCS engine's
2549	 * resume handler; since the RCS and all CCS engines belong to the
2550	 * same reset domain and are reset together, this will also take care
2551	 * of re-applying the setting after i915-triggered resets.
2552	 */
2553	if (!CCS_MASK(engine->gt))
2554		return;
2555
2556	intel_uncore_write(engine->uncore, GEN12_RCU_MODE,
2557			   _MASKED_BIT_ENABLE(GEN12_RCU_MODE_CCS_ENABLE));
2558}
2559
2560#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2561#include "mock_engine.c"
2562#include "selftest_engine.c"
2563#include "selftest_engine_cs.c"
2564#endif
v5.4
 
   1/*
   2 * Copyright © 2016 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21 * IN THE SOFTWARE.
  22 *
  23 */
  24
 
 
  25#include <drm/drm_print.h>
  26
  27#include "gem/i915_gem_context.h"
 
 
 
  28
 
  29#include "i915_drv.h"
  30
  31#include "gt/intel_gt.h"
  32
 
  33#include "intel_engine.h"
  34#include "intel_engine_pm.h"
  35#include "intel_engine_pool.h"
  36#include "intel_engine_user.h"
  37#include "intel_context.h"
 
 
 
 
  38#include "intel_lrc.h"
 
  39#include "intel_reset.h"
 
 
  40
  41/* Haswell does have the CXT_SIZE register however it does not appear to be
  42 * valid. Now, docs explain in dwords what is in the context object. The full
  43 * size is 70720 bytes, however, the power context and execlist context will
  44 * never be saved (power context is stored elsewhere, and execlists don't work
  45 * on HSW) - so the final size, including the extra state required for the
  46 * Resource Streamer, is 66944 bytes, which rounds to 17 pages.
  47 */
  48#define HSW_CXT_TOTAL_SIZE		(17 * PAGE_SIZE)
  49
  50#define DEFAULT_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
  51#define GEN8_LR_CONTEXT_RENDER_SIZE	(20 * PAGE_SIZE)
  52#define GEN9_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
  53#define GEN10_LR_CONTEXT_RENDER_SIZE	(18 * PAGE_SIZE)
  54#define GEN11_LR_CONTEXT_RENDER_SIZE	(14 * PAGE_SIZE)
  55
  56#define GEN8_LR_CONTEXT_OTHER_SIZE	( 2 * PAGE_SIZE)
  57
  58#define MAX_MMIO_BASES 3
  59struct engine_info {
  60	unsigned int hw_id;
  61	u8 class;
  62	u8 instance;
  63	/* mmio bases table *must* be sorted in reverse gen order */
  64	struct engine_mmio_base {
  65		u32 gen : 8;
  66		u32 base : 24;
  67	} mmio_bases[MAX_MMIO_BASES];
  68};
  69
  70static const struct engine_info intel_engines[] = {
  71	[RCS0] = {
  72		.hw_id = RCS0_HW,
  73		.class = RENDER_CLASS,
  74		.instance = 0,
  75		.mmio_bases = {
  76			{ .gen = 1, .base = RENDER_RING_BASE }
  77		},
  78	},
  79	[BCS0] = {
  80		.hw_id = BCS0_HW,
  81		.class = COPY_ENGINE_CLASS,
  82		.instance = 0,
  83		.mmio_bases = {
  84			{ .gen = 6, .base = BLT_RING_BASE }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  85		},
  86	},
  87	[VCS0] = {
  88		.hw_id = VCS0_HW,
  89		.class = VIDEO_DECODE_CLASS,
  90		.instance = 0,
  91		.mmio_bases = {
  92			{ .gen = 11, .base = GEN11_BSD_RING_BASE },
  93			{ .gen = 6, .base = GEN6_BSD_RING_BASE },
  94			{ .gen = 4, .base = BSD_RING_BASE }
  95		},
  96	},
  97	[VCS1] = {
  98		.hw_id = VCS1_HW,
  99		.class = VIDEO_DECODE_CLASS,
 100		.instance = 1,
 101		.mmio_bases = {
 102			{ .gen = 11, .base = GEN11_BSD2_RING_BASE },
 103			{ .gen = 8, .base = GEN8_BSD2_RING_BASE }
 104		},
 105	},
 106	[VCS2] = {
 107		.hw_id = VCS2_HW,
 108		.class = VIDEO_DECODE_CLASS,
 109		.instance = 2,
 110		.mmio_bases = {
 111			{ .gen = 11, .base = GEN11_BSD3_RING_BASE }
 112		},
 113	},
 114	[VCS3] = {
 115		.hw_id = VCS3_HW,
 116		.class = VIDEO_DECODE_CLASS,
 117		.instance = 3,
 118		.mmio_bases = {
 119			{ .gen = 11, .base = GEN11_BSD4_RING_BASE }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 120		},
 121	},
 122	[VECS0] = {
 123		.hw_id = VECS0_HW,
 124		.class = VIDEO_ENHANCEMENT_CLASS,
 125		.instance = 0,
 126		.mmio_bases = {
 127			{ .gen = 11, .base = GEN11_VEBOX_RING_BASE },
 128			{ .gen = 7, .base = VEBOX_RING_BASE }
 129		},
 130	},
 131	[VECS1] = {
 132		.hw_id = VECS1_HW,
 133		.class = VIDEO_ENHANCEMENT_CLASS,
 134		.instance = 1,
 135		.mmio_bases = {
 136			{ .gen = 11, .base = GEN11_VEBOX2_RING_BASE }
 137		},
 138	},
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 139};
 140
 141/**
 142 * intel_engine_context_size() - return the size of the context for an engine
 143 * @dev_priv: i915 device private
 144 * @class: engine class
 145 *
 146 * Each engine class may require a different amount of space for a context
 147 * image.
 148 *
 149 * Return: size (in bytes) of an engine class specific context image
 150 *
 151 * Note: this size includes the HWSP, which is part of the context image
 152 * in LRC mode, but does not include the "shared data page" used with
 153 * GuC submission. The caller should account for this if using the GuC.
 154 */
 155u32 intel_engine_context_size(struct drm_i915_private *dev_priv, u8 class)
 156{
 
 157	u32 cxt_size;
 158
 159	BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);
 160
 161	switch (class) {
 
 
 162	case RENDER_CLASS:
 163		switch (INTEL_GEN(dev_priv)) {
 164		default:
 165			MISSING_CASE(INTEL_GEN(dev_priv));
 166			return DEFAULT_LR_CONTEXT_RENDER_SIZE;
 167		case 12:
 168		case 11:
 169			return GEN11_LR_CONTEXT_RENDER_SIZE;
 170		case 10:
 171			return GEN10_LR_CONTEXT_RENDER_SIZE;
 172		case 9:
 173			return GEN9_LR_CONTEXT_RENDER_SIZE;
 174		case 8:
 175			return GEN8_LR_CONTEXT_RENDER_SIZE;
 176		case 7:
 177			if (IS_HASWELL(dev_priv))
 178				return HSW_CXT_TOTAL_SIZE;
 179
 180			cxt_size = I915_READ(GEN7_CXT_SIZE);
 181			return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
 182					PAGE_SIZE);
 183		case 6:
 184			cxt_size = I915_READ(CXT_SIZE);
 185			return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
 186					PAGE_SIZE);
 187		case 5:
 188		case 4:
 189			/*
 190			 * There is a discrepancy here between the size reported
 191			 * by the register and the size of the context layout
 192			 * in the docs. Both are described as authorative!
 193			 *
 194			 * The discrepancy is on the order of a few cachelines,
 195			 * but the total is under one page (4k), which is our
 196			 * minimum allocation anyway so it should all come
 197			 * out in the wash.
 198			 */
 199			cxt_size = I915_READ(CXT_SIZE) + 1;
 200			DRM_DEBUG_DRIVER("gen%d CXT_SIZE = %d bytes [0x%08x]\n",
 201					 INTEL_GEN(dev_priv),
 202					 cxt_size * 64,
 203					 cxt_size - 1);
 204			return round_up(cxt_size * 64, PAGE_SIZE);
 205		case 3:
 206		case 2:
 207		/* For the special day when i810 gets merged. */
 208		case 1:
 209			return 0;
 210		}
 211		break;
 212	default:
 213		MISSING_CASE(class);
 214		/* fall through */
 215	case VIDEO_DECODE_CLASS:
 216	case VIDEO_ENHANCEMENT_CLASS:
 217	case COPY_ENGINE_CLASS:
 218		if (INTEL_GEN(dev_priv) < 8)
 
 219			return 0;
 220		return GEN8_LR_CONTEXT_OTHER_SIZE;
 221	}
 222}
 223
 224static u32 __engine_mmio_base(struct drm_i915_private *i915,
 225			      const struct engine_mmio_base *bases)
 226{
 227	int i;
 228
 229	for (i = 0; i < MAX_MMIO_BASES; i++)
 230		if (INTEL_GEN(i915) >= bases[i].gen)
 231			break;
 232
 233	GEM_BUG_ON(i == MAX_MMIO_BASES);
 234	GEM_BUG_ON(!bases[i].base);
 235
 236	return bases[i].base;
 237}
 238
 239static void __sprint_engine_name(struct intel_engine_cs *engine)
 240{
 241	/*
 242	 * Before we know what the uABI name for this engine will be,
 243	 * we still would like to keep track of this engine in the debug logs.
 244	 * We throw in a ' here as a reminder that this isn't its final name.
 245	 */
 246	GEM_WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s'%u",
 247			     intel_engine_class_repr(engine->class),
 248			     engine->instance) >= sizeof(engine->name));
 249}
 250
 251void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask)
 252{
 253	/*
 254	 * Though they added more rings on g4x/ilk, they did not add
 255	 * per-engine HWSTAM until gen6.
 256	 */
 257	if (INTEL_GEN(engine->i915) < 6 && engine->class != RENDER_CLASS)
 258		return;
 259
 260	if (INTEL_GEN(engine->i915) >= 3)
 261		ENGINE_WRITE(engine, RING_HWSTAM, mask);
 262	else
 263		ENGINE_WRITE16(engine, RING_HWSTAM, mask);
 264}
 265
 266static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine)
 267{
 268	/* Mask off all writes into the unknown HWSP */
 269	intel_engine_set_hwsp_writemask(engine, ~0u);
 270}
 271
 272static int intel_engine_setup(struct intel_gt *gt, enum intel_engine_id id)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 273{
 274	const struct engine_info *info = &intel_engines[id];
 
 275	struct intel_engine_cs *engine;
 
 276
 277	BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
 278	BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));
 
 
 
 
 
 279
 280	if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS))
 281		return -EINVAL;
 282
 283	if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
 284		return -EINVAL;
 285
 286	if (GEM_DEBUG_WARN_ON(gt->engine_class[info->class][info->instance]))
 287		return -EINVAL;
 288
 289	engine = kzalloc(sizeof(*engine), GFP_KERNEL);
 290	if (!engine)
 291		return -ENOMEM;
 292
 293	BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES);
 294
 
 295	engine->id = id;
 
 296	engine->mask = BIT(id);
 297	engine->i915 = gt->i915;
 
 
 298	engine->gt = gt;
 299	engine->uncore = gt->uncore;
 300	engine->hw_id = engine->guc_id = info->hw_id;
 301	engine->mmio_base = __engine_mmio_base(gt->i915, info->mmio_bases);
 
 
 
 302
 303	engine->class = info->class;
 304	engine->instance = info->instance;
 
 305	__sprint_engine_name(engine);
 306
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 307	/*
 308	 * To be overridden by the backend on setup. However to facilitate
 309	 * cleanup on error during setup, we always provide the destroy vfunc.
 
 
 310	 */
 311	engine->destroy = (typeof(engine->destroy))kfree;
 
 312
 313	engine->context_size = intel_engine_context_size(gt->i915,
 314							 engine->class);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 315	if (WARN_ON(engine->context_size > BIT(20)))
 316		engine->context_size = 0;
 317	if (engine->context_size)
 318		DRIVER_CAPS(gt->i915)->has_logical_contexts = true;
 319
 320	/* Nothing to do here, execute in order of dependencies */
 321	engine->schedule = NULL;
 322
 323	seqlock_init(&engine->stats.lock);
 324
 325	ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);
 326
 327	/* Scrub mmio state on takeover */
 328	intel_engine_sanitize_mmio(engine);
 329
 330	gt->engine_class[info->class][info->instance] = engine;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 331
 332	intel_engine_add_user(engine);
 333	gt->i915->engine[id] = engine;
 
 
 
 
 334
 335	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 336}
 337
 338static void __setup_engine_capabilities(struct intel_engine_cs *engine)
 339{
 340	struct drm_i915_private *i915 = engine->i915;
 341
 342	if (engine->class == VIDEO_DECODE_CLASS) {
 343		/*
 344		 * HEVC support is present on first engine instance
 345		 * before Gen11 and on all instances afterwards.
 346		 */
 347		if (INTEL_GEN(i915) >= 11 ||
 348		    (INTEL_GEN(i915) >= 9 && engine->instance == 0))
 349			engine->uabi_capabilities |=
 350				I915_VIDEO_CLASS_CAPABILITY_HEVC;
 351
 352		/*
 353		 * SFC block is present only on even logical engine
 354		 * instances.
 355		 */
 356		if ((INTEL_GEN(i915) >= 11 &&
 357		     RUNTIME_INFO(i915)->vdbox_sfc_access & engine->mask) ||
 358		    (INTEL_GEN(i915) >= 9 && engine->instance == 0))
 
 359			engine->uabi_capabilities |=
 360				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
 361	} else if (engine->class == VIDEO_ENHANCEMENT_CLASS) {
 362		if (INTEL_GEN(i915) >= 9)
 
 363			engine->uabi_capabilities |=
 364				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
 365	}
 366}
 367
 368static void intel_setup_engine_capabilities(struct drm_i915_private *i915)
 369{
 370	struct intel_engine_cs *engine;
 371	enum intel_engine_id id;
 372
 373	for_each_engine(engine, i915, id)
 374		__setup_engine_capabilities(engine);
 375}
 376
 377/**
 378 * intel_engines_cleanup() - free the resources allocated for Command Streamers
 379 * @i915: the i915 devic
 380 */
 381void intel_engines_cleanup(struct drm_i915_private *i915)
 382{
 383	struct intel_engine_cs *engine;
 384	enum intel_engine_id id;
 385
 386	for_each_engine(engine, i915, id) {
 387		engine->destroy(engine);
 388		i915->engine[id] = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 389	}
 
 
 390}
 391
 392/**
 393 * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
 394 * @i915: the i915 device
 395 *
 396 * Return: non-zero if the initialization failed.
 397 */
 398int intel_engines_init_mmio(struct drm_i915_private *i915)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 399{
 400	struct intel_device_info *device_info = mkwrite_device_info(i915);
 401	const unsigned int engine_mask = INTEL_INFO(i915)->engine_mask;
 402	unsigned int mask = 0;
 403	unsigned int i;
 404	int err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 405
 406	WARN_ON(engine_mask == 0);
 407	WARN_ON(engine_mask &
 408		GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES));
 
 
 409
 410	if (i915_inject_probe_failure(i915))
 411		return -ENODEV;
 
 
 
 412
 413	for (i = 0; i < ARRAY_SIZE(intel_engines); i++) {
 414		if (!HAS_ENGINE(i915, i))
 
 
 
 
 
 
 
 
 415			continue;
 
 416
 417		err = intel_engine_setup(&i915->gt, i);
 418		if (err)
 419			goto cleanup;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 420
 421		mask |= BIT(i);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 422	}
 423
 424	/*
 425	 * Catch failures to update intel_engines table when the new engines
 426	 * are added to the driver by a warning and disabling the forgotten
 427	 * engines.
 
 
 
 428	 */
 429	if (WARN_ON(mask != engine_mask))
 430		device_info->engine_mask = mask;
 431
 432	RUNTIME_INFO(i915)->num_engines = hweight32(mask);
 
 
 
 
 433
 434	intel_gt_check_and_clear_faults(&i915->gt);
 
 
 
 
 435
 436	intel_setup_engine_capabilities(i915);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 437
 438	return 0;
 
 
 
 
 439
 440cleanup:
 441	intel_engines_cleanup(i915);
 442	return err;
 
 
 443}
 444
 445/**
 446 * intel_engines_init() - init the Engine Command Streamers
 447 * @i915: i915 device private
 448 *
 449 * Return: non-zero if the initialization failed.
 450 */
 451int intel_engines_init(struct drm_i915_private *i915)
 452{
 453	int (*init)(struct intel_engine_cs *engine);
 454	struct intel_engine_cs *engine;
 455	enum intel_engine_id id;
 
 
 456	int err;
 457
 458	if (HAS_EXECLISTS(i915))
 459		init = intel_execlists_submission_init;
 460	else
 461		init = intel_ring_submission_init;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 462
 463	for_each_engine(engine, i915, id) {
 464		err = init(engine);
 465		if (err)
 466			goto cleanup;
 467	}
 468
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 469	return 0;
 470
 471cleanup:
 472	intel_engines_cleanup(i915);
 473	return err;
 474}
 475
 476void intel_engine_init_execlists(struct intel_engine_cs *engine)
 477{
 478	struct intel_engine_execlists * const execlists = &engine->execlists;
 479
 480	execlists->port_mask = 1;
 481	GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists)));
 482	GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);
 483
 484	memset(execlists->pending, 0, sizeof(execlists->pending));
 485	execlists->active =
 486		memset(execlists->inflight, 0, sizeof(execlists->inflight));
 487
 488	execlists->queue_priority_hint = INT_MIN;
 489	execlists->queue = RB_ROOT_CACHED;
 490}
 491
 492static void cleanup_status_page(struct intel_engine_cs *engine)
 493{
 494	struct i915_vma *vma;
 495
 496	/* Prevent writes into HWSP after returning the page to the system */
 497	intel_engine_set_hwsp_writemask(engine, ~0u);
 498
 499	vma = fetch_and_zero(&engine->status_page.vma);
 500	if (!vma)
 501		return;
 502
 503	if (!HWS_NEEDS_PHYSICAL(engine->i915))
 504		i915_vma_unpin(vma);
 505
 506	i915_gem_object_unpin_map(vma->obj);
 507	i915_gem_object_put(vma->obj);
 508}
 509
 510static int pin_ggtt_status_page(struct intel_engine_cs *engine,
 
 511				struct i915_vma *vma)
 512{
 513	unsigned int flags;
 514
 515	flags = PIN_GLOBAL;
 516	if (!HAS_LLC(engine->i915))
 517		/*
 518		 * On g33, we cannot place HWS above 256MiB, so
 519		 * restrict its pinning to the low mappable arena.
 520		 * Though this restriction is not documented for
 521		 * gen4, gen5, or byt, they also behave similarly
 522		 * and hang if the HWS is placed at the top of the
 523		 * GTT. To generalise, it appears that all !llc
 524		 * platforms have issues with us placing the HWS
 525		 * above the mappable region (even though we never
 526		 * actually map it).
 527		 */
 528		flags |= PIN_MAPPABLE;
 529	else
 530		flags |= PIN_HIGH;
 531
 532	return i915_vma_pin(vma, 0, 0, flags);
 533}
 534
 535static int init_status_page(struct intel_engine_cs *engine)
 536{
 537	struct drm_i915_gem_object *obj;
 
 538	struct i915_vma *vma;
 539	void *vaddr;
 540	int ret;
 541
 
 
 542	/*
 543	 * Though the HWS register does support 36bit addresses, historically
 544	 * we have had hangs and corruption reported due to wild writes if
 545	 * the HWS is placed above 4G. We only allow objects to be allocated
 546	 * in GFP_DMA32 for i965, and no earlier physical address users had
 547	 * access to more than 4G.
 548	 */
 549	obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
 550	if (IS_ERR(obj)) {
 551		DRM_ERROR("Failed to allocate status page\n");
 552		return PTR_ERR(obj);
 553	}
 554
 555	i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
 556
 557	vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
 558	if (IS_ERR(vma)) {
 559		ret = PTR_ERR(vma);
 
 
 
 
 
 
 
 
 
 560		goto err;
 561	}
 562
 563	vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
 564	if (IS_ERR(vaddr)) {
 565		ret = PTR_ERR(vaddr);
 566		goto err;
 567	}
 568
 569	engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE);
 570	engine->status_page.vma = vma;
 571
 572	if (!HWS_NEEDS_PHYSICAL(engine->i915)) {
 573		ret = pin_ggtt_status_page(engine, vma);
 574		if (ret)
 575			goto err_unpin;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 576	}
 577
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 578	return 0;
 579
 580err_unpin:
 581	i915_gem_object_unpin_map(obj);
 582err:
 583	i915_gem_object_put(obj);
 584	return ret;
 585}
 586
 587static int intel_engine_setup_common(struct intel_engine_cs *engine)
 588{
 589	int err;
 590
 591	init_llist_head(&engine->barrier_tasks);
 592
 
 
 
 
 593	err = init_status_page(engine);
 594	if (err)
 595		return err;
 596
 597	intel_engine_init_active(engine, ENGINE_PHYSICAL);
 598	intel_engine_init_breadcrumbs(engine);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 599	intel_engine_init_execlists(engine);
 600	intel_engine_init_hangcheck(engine);
 601	intel_engine_init_cmd_parser(engine);
 602	intel_engine_init__pm(engine);
 603
 604	intel_engine_pool_init(&engine->pool);
 605
 606	/* Use the whole device by default */
 607	engine->sseu =
 608		intel_sseu_from_device_info(&RUNTIME_INFO(engine->i915)->sseu);
 609
 610	intel_engine_init_workarounds(engine);
 611	intel_engine_init_whitelist(engine);
 612	intel_engine_init_ctx_wa(engine);
 613
 614	return 0;
 615}
 616
 617/**
 618 * intel_engines_setup- setup engine state not requiring hw access
 619 * @i915: Device to setup.
 620 *
 621 * Initializes engine structure members shared between legacy and execlists
 622 * submission modes which do not require hardware access.
 623 *
 624 * Typically done early in the submission mode specific engine setup stage.
 625 */
 626int intel_engines_setup(struct drm_i915_private *i915)
 627{
 628	int (*setup)(struct intel_engine_cs *engine);
 629	struct intel_engine_cs *engine;
 630	enum intel_engine_id id;
 631	int err;
 632
 633	if (HAS_EXECLISTS(i915))
 634		setup = intel_execlists_submission_setup;
 635	else
 636		setup = intel_ring_submission_setup;
 637
 638	for_each_engine(engine, i915, id) {
 639		err = intel_engine_setup_common(engine);
 640		if (err)
 641			goto cleanup;
 642
 643		err = setup(engine);
 644		if (err)
 645			goto cleanup;
 646
 647		/* We expect the backend to take control over its state */
 648		GEM_BUG_ON(engine->destroy == (typeof(engine->destroy))kfree);
 649
 650		GEM_BUG_ON(!engine->cops);
 651	}
 652
 653	return 0;
 654
 655cleanup:
 656	intel_engines_cleanup(i915);
 
 
 
 
 657	return err;
 658}
 659
 660struct measure_breadcrumb {
 661	struct i915_request rq;
 662	struct intel_timeline timeline;
 663	struct intel_ring ring;
 664	u32 cs[1024];
 665};
 666
 667static int measure_breadcrumb_dw(struct intel_engine_cs *engine)
 668{
 
 669	struct measure_breadcrumb *frame;
 670	int dw = -ENOMEM;
 671
 672	GEM_BUG_ON(!engine->gt->scratch);
 673
 674	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
 675	if (!frame)
 676		return -ENOMEM;
 677
 678	if (intel_timeline_init(&frame->timeline,
 679				engine->gt,
 680				engine->status_page.vma))
 681		goto out_frame;
 
 682
 683	frame->ring.vaddr = frame->cs;
 684	frame->ring.size = sizeof(frame->cs);
 
 
 685	frame->ring.effective_size = frame->ring.size;
 686	intel_ring_update_space(&frame->ring);
 687
 688	frame->rq.i915 = engine->i915;
 689	frame->rq.engine = engine;
 690	frame->rq.ring = &frame->ring;
 691	frame->rq.timeline = &frame->timeline;
 692
 693	dw = intel_timeline_pin(&frame->timeline);
 694	if (dw < 0)
 695		goto out_timeline;
 696
 697	dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs;
 
 
 
 
 698	GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */
 699
 700	intel_timeline_unpin(&frame->timeline);
 701
 702out_timeline:
 703	intel_timeline_fini(&frame->timeline);
 704out_frame:
 705	kfree(frame);
 706	return dw;
 707}
 708
 709void
 710intel_engine_init_active(struct intel_engine_cs *engine, unsigned int subclass)
 711{
 712	INIT_LIST_HEAD(&engine->active.requests);
 713
 714	spin_lock_init(&engine->active.lock);
 715	lockdep_set_subclass(&engine->active.lock, subclass);
 716
 717	/*
 718	 * Due to an interesting quirk in lockdep's internal debug tracking,
 719	 * after setting a subclass we must ensure the lock is used. Otherwise,
 720	 * nr_unused_locks is incremented once too often.
 721	 */
 722#ifdef CONFIG_DEBUG_LOCK_ALLOC
 723	local_irq_disable();
 724	lock_map_acquire(&engine->active.lock.dep_map);
 725	lock_map_release(&engine->active.lock.dep_map);
 726	local_irq_enable();
 727#endif
 728}
 729
 730static struct intel_context *
 731create_kernel_context(struct intel_engine_cs *engine)
 732{
 733	struct intel_context *ce;
 734	int err;
 735
 736	ce = intel_context_create(engine->i915->kernel_context, engine);
 737	if (IS_ERR(ce))
 738		return ce;
 739
 740	ce->ring = __intel_context_ring_size(SZ_4K);
 
 
 
 741
 742	err = intel_context_pin(ce);
 
 
 
 743	if (err) {
 744		intel_context_put(ce);
 745		return ERR_PTR(err);
 746	}
 747
 
 
 
 
 
 
 
 
 
 
 748	return ce;
 749}
 750
 751/**
 752 * intel_engines_init_common - initialize cengine state which might require hw access
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 753 * @engine: Engine to initialize.
 754 *
 755 * Initializes @engine@ structure members shared between legacy and execlists
 756 * submission modes which do require hardware access.
 757 *
 758 * Typcally done at later stages of submission mode specific engine setup.
 759 *
 760 * Returns zero on success or an error code on failure.
 761 */
 762int intel_engine_init_common(struct intel_engine_cs *engine)
 763{
 764	struct intel_context *ce;
 765	int ret;
 766
 767	engine->set_default_submission(engine);
 768
 769	/*
 770	 * We may need to do things with the shrinker which
 771	 * require us to immediately switch back to the default
 772	 * context. This can cause a problem as pinning the
 773	 * default context also requires GTT space which may not
 774	 * be available. To avoid this we always pin the default
 775	 * context.
 776	 */
 777	ce = create_kernel_context(engine);
 778	if (IS_ERR(ce))
 779		return PTR_ERR(ce);
 
 
 
 
 
 
 
 
 
 
 
 
 
 780
 781	engine->kernel_context = ce;
 782
 783	ret = measure_breadcrumb_dw(engine);
 784	if (ret < 0)
 785		goto err_unpin;
 786
 787	engine->emit_fini_breadcrumb_dw = ret;
 
 
 788
 789	return 0;
 790
 791err_unpin:
 792	intel_context_unpin(ce);
 793	intel_context_put(ce);
 
 
 794	return ret;
 795}
 796
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 797/**
 798 * intel_engines_cleanup_common - cleans up the engine state created by
 799 *                                the common initiailizers.
 800 * @engine: Engine to cleanup.
 801 *
 802 * This cleans up everything created by the common helpers.
 803 */
 804void intel_engine_cleanup_common(struct intel_engine_cs *engine)
 805{
 806	GEM_BUG_ON(!list_empty(&engine->active.requests));
 807
 808	cleanup_status_page(engine);
 
 809
 810	intel_engine_pool_fini(&engine->pool);
 811	intel_engine_fini_breadcrumbs(engine);
 812	intel_engine_cleanup_cmd_parser(engine);
 813
 814	if (engine->default_state)
 815		i915_gem_object_put(engine->default_state);
 
 
 
 
 
 
 
 816
 817	intel_context_unpin(engine->kernel_context);
 818	intel_context_put(engine->kernel_context);
 819	GEM_BUG_ON(!llist_empty(&engine->barrier_tasks));
 
 820
 821	intel_wa_list_free(&engine->ctx_wa_list);
 822	intel_wa_list_free(&engine->wa_list);
 823	intel_wa_list_free(&engine->whitelist);
 824}
 825
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 826u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
 827{
 828	struct drm_i915_private *i915 = engine->i915;
 829
 830	u64 acthd;
 831
 832	if (INTEL_GEN(i915) >= 8)
 833		acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW);
 834	else if (INTEL_GEN(i915) >= 4)
 835		acthd = ENGINE_READ(engine, RING_ACTHD);
 836	else
 837		acthd = ENGINE_READ(engine, ACTHD);
 838
 839	return acthd;
 840}
 841
 842u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
 843{
 844	u64 bbaddr;
 845
 846	if (INTEL_GEN(engine->i915) >= 8)
 847		bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW);
 848	else
 849		bbaddr = ENGINE_READ(engine, RING_BBADDR);
 850
 851	return bbaddr;
 852}
 853
 854int intel_engine_stop_cs(struct intel_engine_cs *engine)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 855{
 856	struct intel_uncore *uncore = engine->uncore;
 857	const u32 base = engine->mmio_base;
 858	const i915_reg_t mode = RING_MI_MODE(base);
 859	int err;
 860
 861	if (INTEL_GEN(engine->i915) < 3)
 862		return -ENODEV;
 863
 864	GEM_TRACE("%s\n", engine->name);
 865
 866	intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING));
 867
 868	err = 0;
 869	if (__intel_wait_for_register_fw(uncore,
 870					 mode, MODE_IDLE, MODE_IDLE,
 871					 1000, 0,
 872					 NULL)) {
 873		GEM_TRACE("%s: timed out on STOP_RING -> IDLE\n", engine->name);
 874		err = -ETIMEDOUT;
 875	}
 
 
 
 
 
 876
 877	/* A final mmio read to let GPU writes be hopefully flushed to memory */
 878	intel_uncore_posting_read_fw(uncore, mode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 879
 880	return err;
 881}
 882
 883void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine)
 884{
 885	GEM_TRACE("%s\n", engine->name);
 886
 887	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
 888}
 889
 890const char *i915_cache_level_str(struct drm_i915_private *i915, int type)
 891{
 892	switch (type) {
 893	case I915_CACHE_NONE: return " uncached";
 894	case I915_CACHE_LLC: return HAS_LLC(i915) ? " LLC" : " snooped";
 895	case I915_CACHE_L3_LLC: return " L3+LLC";
 896	case I915_CACHE_WT: return " WT";
 897	default: return "";
 898	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 899}
 900
 901static u32
 902read_subslice_reg(struct intel_engine_cs *engine, int slice, int subslice,
 903		  i915_reg_t reg)
 904{
 905	struct drm_i915_private *i915 = engine->i915;
 906	struct intel_uncore *uncore = engine->uncore;
 907	u32 mcr_mask, mcr_ss, mcr, old_mcr, val;
 908	enum forcewake_domains fw_domains;
 909
 910	if (INTEL_GEN(i915) >= 11) {
 911		mcr_mask = GEN11_MCR_SLICE_MASK | GEN11_MCR_SUBSLICE_MASK;
 912		mcr_ss = GEN11_MCR_SLICE(slice) | GEN11_MCR_SUBSLICE(subslice);
 913	} else {
 914		mcr_mask = GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK;
 915		mcr_ss = GEN8_MCR_SLICE(slice) | GEN8_MCR_SUBSLICE(subslice);
 916	}
 917
 918	fw_domains = intel_uncore_forcewake_for_reg(uncore, reg,
 919						    FW_REG_READ);
 920	fw_domains |= intel_uncore_forcewake_for_reg(uncore,
 921						     GEN8_MCR_SELECTOR,
 922						     FW_REG_READ | FW_REG_WRITE);
 923
 924	spin_lock_irq(&uncore->lock);
 925	intel_uncore_forcewake_get__locked(uncore, fw_domains);
 926
 927	old_mcr = mcr = intel_uncore_read_fw(uncore, GEN8_MCR_SELECTOR);
 
 
 928
 929	mcr &= ~mcr_mask;
 930	mcr |= mcr_ss;
 931	intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
 932
 933	val = intel_uncore_read_fw(uncore, reg);
 934
 935	mcr &= ~mcr_mask;
 936	mcr |= old_mcr & mcr_mask;
 937
 938	intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
 
 
 939
 940	intel_uncore_forcewake_put__locked(uncore, fw_domains);
 941	spin_unlock_irq(&uncore->lock);
 942
 943	return val;
 944}
 945
 946/* NB: please notice the memset */
 947void intel_engine_get_instdone(struct intel_engine_cs *engine,
 948			       struct intel_instdone *instdone)
 949{
 950	struct drm_i915_private *i915 = engine->i915;
 951	struct intel_uncore *uncore = engine->uncore;
 952	u32 mmio_base = engine->mmio_base;
 953	int slice;
 954	int subslice;
 
 955
 956	memset(instdone, 0, sizeof(*instdone));
 957
 958	switch (INTEL_GEN(i915)) {
 959	default:
 960		instdone->instdone =
 961			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
 962
 963		if (engine->id != RCS0)
 964			break;
 965
 966		instdone->slice_common =
 967			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
 968		for_each_instdone_slice_subslice(i915, slice, subslice) {
 
 
 
 
 
 
 
 969			instdone->sampler[slice][subslice] =
 970				read_subslice_reg(engine, slice, subslice,
 971						  GEN7_SAMPLER_INSTDONE);
 
 972			instdone->row[slice][subslice] =
 973				read_subslice_reg(engine, slice, subslice,
 974						  GEN7_ROW_INSTDONE);
 
 975		}
 976		break;
 977	case 7:
 
 
 
 
 
 
 
 978		instdone->instdone =
 979			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
 980
 981		if (engine->id != RCS0)
 982			break;
 983
 984		instdone->slice_common =
 985			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
 986		instdone->sampler[0][0] =
 987			intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE);
 988		instdone->row[0][0] =
 989			intel_uncore_read(uncore, GEN7_ROW_INSTDONE);
 990
 991		break;
 992	case 6:
 993	case 5:
 994	case 4:
 995		instdone->instdone =
 996			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
 997		if (engine->id == RCS0)
 998			/* HACK: Using the wrong struct member */
 999			instdone->slice_common =
1000				intel_uncore_read(uncore, GEN4_INSTDONE1);
1001		break;
1002	case 3:
1003	case 2:
1004		instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE);
1005		break;
1006	}
1007}
1008
1009static bool ring_is_idle(struct intel_engine_cs *engine)
1010{
1011	bool idle = true;
1012
1013	if (I915_SELFTEST_ONLY(!engine->mmio_base))
1014		return true;
1015
1016	if (!intel_engine_pm_get_if_awake(engine))
1017		return true;
1018
1019	/* First check that no commands are left in the ring */
1020	if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) !=
1021	    (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR))
1022		idle = false;
1023
1024	/* No bit for gen2, so assume the CS parser is idle */
1025	if (INTEL_GEN(engine->i915) > 2 &&
1026	    !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE))
1027		idle = false;
1028
1029	intel_engine_pm_put(engine);
1030
1031	return idle;
1032}
1033
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1034/**
1035 * intel_engine_is_idle() - Report if the engine has finished process all work
1036 * @engine: the intel_engine_cs
1037 *
1038 * Return true if there are no requests pending, nothing left to be submitted
1039 * to hardware, and that the engine is idle.
1040 */
1041bool intel_engine_is_idle(struct intel_engine_cs *engine)
1042{
1043	/* More white lies, if wedged, hw state is inconsistent */
1044	if (intel_gt_is_wedged(engine->gt))
1045		return true;
1046
1047	if (!intel_engine_pm_is_awake(engine))
1048		return true;
1049
1050	/* Waiting to drain ELSP? */
1051	if (execlists_active(&engine->execlists)) {
1052		struct tasklet_struct *t = &engine->execlists.tasklet;
1053
1054		synchronize_hardirq(engine->i915->drm.pdev->irq);
1055
1056		local_bh_disable();
1057		if (tasklet_trylock(t)) {
1058			/* Must wait for any GPU reset in progress. */
1059			if (__tasklet_is_enabled(t))
1060				t->func(t->data);
1061			tasklet_unlock(t);
1062		}
1063		local_bh_enable();
1064
1065		/* Otherwise flush the tasklet if it was on another cpu */
1066		tasklet_unlock_wait(t);
1067
1068		if (execlists_active(&engine->execlists))
1069			return false;
1070	}
1071
1072	/* ELSP is empty, but there are ready requests? E.g. after reset */
1073	if (!RB_EMPTY_ROOT(&engine->execlists.queue.rb_root))
1074		return false;
1075
1076	/* Ring stopped? */
1077	return ring_is_idle(engine);
1078}
1079
1080bool intel_engines_are_idle(struct intel_gt *gt)
1081{
1082	struct intel_engine_cs *engine;
1083	enum intel_engine_id id;
1084
1085	/*
1086	 * If the driver is wedged, HW state may be very inconsistent and
1087	 * report that it is still busy, even though we have stopped using it.
1088	 */
1089	if (intel_gt_is_wedged(gt))
1090		return true;
1091
1092	/* Already parked (and passed an idleness test); must still be idle */
1093	if (!READ_ONCE(gt->awake))
1094		return true;
1095
1096	for_each_engine(engine, gt->i915, id) {
1097		if (!intel_engine_is_idle(engine))
1098			return false;
1099	}
1100
1101	return true;
1102}
1103
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1104void intel_engines_reset_default_submission(struct intel_gt *gt)
1105{
1106	struct intel_engine_cs *engine;
1107	enum intel_engine_id id;
1108
1109	for_each_engine(engine, gt->i915, id)
 
 
 
1110		engine->set_default_submission(engine);
 
1111}
1112
1113bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
1114{
1115	switch (INTEL_GEN(engine->i915)) {
1116	case 2:
1117		return false; /* uses physical not virtual addresses */
1118	case 3:
1119		/* maybe only uses physical not virtual addresses */
1120		return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
 
 
1121	case 6:
1122		return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
1123	default:
1124		return true;
1125	}
1126}
1127
1128static int print_sched_attr(struct drm_i915_private *i915,
1129			    const struct i915_sched_attr *attr,
1130			    char *buf, int x, int len)
1131{
1132	if (attr->priority == I915_PRIORITY_INVALID)
1133		return x;
1134
1135	x += snprintf(buf + x, len - x,
1136		      " prio=%d", attr->priority);
1137
1138	return x;
1139}
1140
1141static void print_request(struct drm_printer *m,
1142			  struct i915_request *rq,
1143			  const char *prefix)
1144{
1145	const char *name = rq->fence.ops->get_timeline_name(&rq->fence);
1146	char buf[80] = "";
1147	int x = 0;
1148
1149	x = print_sched_attr(rq->i915, &rq->sched.attr, buf, x, sizeof(buf));
1150
1151	drm_printf(m, "%s %llx:%llx%s%s %s @ %dms: %s\n",
1152		   prefix,
1153		   rq->fence.context, rq->fence.seqno,
1154		   i915_request_completed(rq) ? "!" :
1155		   i915_request_started(rq) ? "*" :
1156		   "",
1157		   test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
1158			    &rq->fence.flags) ? "+" :
1159		   test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
1160			    &rq->fence.flags) ? "-" :
1161		   "",
1162		   buf,
1163		   jiffies_to_msecs(jiffies - rq->emitted_jiffies),
1164		   name);
 
 
 
 
1165}
1166
1167static void hexdump(struct drm_printer *m, const void *buf, size_t len)
1168{
1169	const size_t rowsize = 8 * sizeof(u32);
1170	const void *prev = NULL;
1171	bool skip = false;
1172	size_t pos;
1173
1174	for (pos = 0; pos < len; pos += rowsize) {
1175		char line[128];
1176
1177		if (prev && !memcmp(prev, buf + pos, rowsize)) {
1178			if (!skip) {
1179				drm_printf(m, "*\n");
1180				skip = true;
1181			}
1182			continue;
1183		}
1184
1185		WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
1186						rowsize, sizeof(u32),
1187						line, sizeof(line),
1188						false) >= sizeof(line));
1189		drm_printf(m, "[%04zx] %s\n", pos, line);
1190
1191		prev = buf + pos;
1192		skip = false;
1193	}
1194}
1195
 
 
 
 
 
 
 
 
 
 
 
1196static void intel_engine_print_registers(struct intel_engine_cs *engine,
1197					 struct drm_printer *m)
1198{
1199	struct drm_i915_private *dev_priv = engine->i915;
1200	struct intel_engine_execlists * const execlists = &engine->execlists;
1201	u64 addr;
1202
1203	if (engine->id == RENDER_CLASS && IS_GEN_RANGE(dev_priv, 4, 7))
1204		drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID));
 
 
 
 
 
 
1205	drm_printf(m, "\tRING_START: 0x%08x\n",
1206		   ENGINE_READ(engine, RING_START));
1207	drm_printf(m, "\tRING_HEAD:  0x%08x\n",
1208		   ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR);
1209	drm_printf(m, "\tRING_TAIL:  0x%08x\n",
1210		   ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR);
1211	drm_printf(m, "\tRING_CTL:   0x%08x%s\n",
1212		   ENGINE_READ(engine, RING_CTL),
1213		   ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
1214	if (INTEL_GEN(engine->i915) > 2) {
1215		drm_printf(m, "\tRING_MODE:  0x%08x%s\n",
1216			   ENGINE_READ(engine, RING_MI_MODE),
1217			   ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : "");
1218	}
1219
1220	if (INTEL_GEN(dev_priv) >= 6) {
1221		drm_printf(m, "\tRING_IMR: %08x\n",
1222			   ENGINE_READ(engine, RING_IMR));
 
 
 
 
 
 
1223	}
1224
1225	addr = intel_engine_get_active_head(engine);
1226	drm_printf(m, "\tACTHD:  0x%08x_%08x\n",
1227		   upper_32_bits(addr), lower_32_bits(addr));
1228	addr = intel_engine_get_last_batch_head(engine);
1229	drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
1230		   upper_32_bits(addr), lower_32_bits(addr));
1231	if (INTEL_GEN(dev_priv) >= 8)
1232		addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW);
1233	else if (INTEL_GEN(dev_priv) >= 4)
1234		addr = ENGINE_READ(engine, RING_DMA_FADD);
1235	else
1236		addr = ENGINE_READ(engine, DMA_FADD_I8XX);
1237	drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
1238		   upper_32_bits(addr), lower_32_bits(addr));
1239	if (INTEL_GEN(dev_priv) >= 4) {
1240		drm_printf(m, "\tIPEIR: 0x%08x\n",
1241			   ENGINE_READ(engine, RING_IPEIR));
1242		drm_printf(m, "\tIPEHR: 0x%08x\n",
1243			   ENGINE_READ(engine, RING_IPEHR));
1244	} else {
1245		drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR));
1246		drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR));
1247	}
1248
1249	if (HAS_EXECLISTS(dev_priv)) {
1250		struct i915_request * const *port, *rq;
1251		const u32 *hws =
1252			&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
1253		const u8 num_entries = execlists->csb_size;
1254		unsigned int idx;
1255		u8 read, write;
1256
1257		drm_printf(m, "\tExeclist status: 0x%08x %08x, entries %u\n",
1258			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO),
1259			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI),
1260			   num_entries);
 
1261
1262		read = execlists->csb_head;
1263		write = READ_ONCE(*execlists->csb_write);
1264
1265		drm_printf(m, "\tExeclist CSB read %d, write %d, tasklet queued? %s (%s)\n",
1266			   read, write,
1267			   yesno(test_bit(TASKLET_STATE_SCHED,
1268					  &engine->execlists.tasklet.state)),
1269			   enableddisabled(!atomic_read(&engine->execlists.tasklet.count)));
1270		if (read >= num_entries)
1271			read = 0;
1272		if (write >= num_entries)
1273			write = 0;
1274		if (read > write)
1275			write += num_entries;
1276		while (read < write) {
1277			idx = ++read % num_entries;
1278			drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
1279				   idx, hws[idx * 2], hws[idx * 2 + 1]);
1280		}
1281
1282		execlists_active_lock_bh(execlists);
 
1283		for (port = execlists->active; (rq = *port); port++) {
1284			char hdr[80];
1285			int len;
1286
1287			len = snprintf(hdr, sizeof(hdr),
1288				       "\t\tActive[%d: ",
1289				       (int)(port - execlists->active));
1290			if (!i915_request_signaled(rq))
1291				len += snprintf(hdr + len, sizeof(hdr) - len,
1292						"ring:{start:%08x, hwsp:%08x, seqno:%08x}, ",
1293						i915_ggtt_offset(rq->ring->vma),
1294						rq->timeline->hwsp_offset,
1295						hwsp_seqno(rq));
1296			snprintf(hdr + len, sizeof(hdr) - len, "rq: ");
1297			print_request(m, rq, hdr);
1298		}
1299		for (port = execlists->pending; (rq = *port); port++) {
1300			char hdr[80];
 
1301
1302			snprintf(hdr, sizeof(hdr),
1303				 "\t\tPending[%d] ring:{start:%08x, hwsp:%08x, seqno:%08x}, rq: ",
1304				 (int)(port - execlists->pending),
1305				 i915_ggtt_offset(rq->ring->vma),
1306				 rq->timeline->hwsp_offset,
1307				 hwsp_seqno(rq));
1308			print_request(m, rq, hdr);
 
 
1309		}
1310		execlists_active_unlock_bh(execlists);
1311	} else if (INTEL_GEN(dev_priv) > 6) {
 
1312		drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
1313			   ENGINE_READ(engine, RING_PP_DIR_BASE));
1314		drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
1315			   ENGINE_READ(engine, RING_PP_DIR_BASE_READ));
1316		drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
1317			   ENGINE_READ(engine, RING_PP_DIR_DCLV));
1318	}
1319}
1320
1321static void print_request_ring(struct drm_printer *m, struct i915_request *rq)
1322{
 
1323	void *ring;
1324	int size;
1325
1326	drm_printf(m,
1327		   "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n",
1328		   rq->head, rq->postfix, rq->tail,
1329		   rq->batch ? upper_32_bits(rq->batch->node.start) : ~0u,
1330		   rq->batch ? lower_32_bits(rq->batch->node.start) : ~0u);
1331
1332	size = rq->tail - rq->head;
1333	if (rq->tail < rq->head)
1334		size += rq->ring->size;
1335
1336	ring = kmalloc(size, GFP_ATOMIC);
1337	if (ring) {
1338		const void *vaddr = rq->ring->vaddr;
1339		unsigned int head = rq->head;
1340		unsigned int len = 0;
1341
1342		if (rq->tail < head) {
1343			len = rq->ring->size - head;
1344			memcpy(ring, vaddr + head, len);
1345			head = 0;
1346		}
1347		memcpy(ring + len, vaddr + head, size - len);
1348
1349		hexdump(m, ring, size);
1350		kfree(ring);
1351	}
1352}
1353
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1354void intel_engine_dump(struct intel_engine_cs *engine,
1355		       struct drm_printer *m,
1356		       const char *header, ...)
1357{
1358	struct i915_gpu_error * const error = &engine->i915->gpu_error;
1359	struct i915_request *rq;
1360	intel_wakeref_t wakeref;
1361	unsigned long flags;
1362
1363	if (header) {
1364		va_list ap;
1365
1366		va_start(ap, header);
1367		drm_vprintf(m, header, &ap);
1368		va_end(ap);
1369	}
1370
1371	if (intel_gt_is_wedged(engine->gt))
1372		drm_printf(m, "*** WEDGED ***\n");
1373
1374	drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count));
1375	drm_printf(m, "\tHangcheck: %d ms ago\n",
1376		   jiffies_to_msecs(jiffies - engine->hangcheck.action_timestamp));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1377	drm_printf(m, "\tReset count: %d (global %d)\n",
1378		   i915_reset_engine_count(error, engine),
1379		   i915_reset_count(error));
 
1380
1381	drm_printf(m, "\tRequests:\n");
1382
1383	spin_lock_irqsave(&engine->active.lock, flags);
1384	rq = intel_engine_find_active_request(engine);
1385	if (rq) {
1386		print_request(m, rq, "\t\tactive ");
1387
1388		drm_printf(m, "\t\tring->start:  0x%08x\n",
1389			   i915_ggtt_offset(rq->ring->vma));
1390		drm_printf(m, "\t\tring->head:   0x%08x\n",
1391			   rq->ring->head);
1392		drm_printf(m, "\t\tring->tail:   0x%08x\n",
1393			   rq->ring->tail);
1394		drm_printf(m, "\t\tring->emit:   0x%08x\n",
1395			   rq->ring->emit);
1396		drm_printf(m, "\t\tring->space:  0x%08x\n",
1397			   rq->ring->space);
1398		drm_printf(m, "\t\tring->hwsp:   0x%08x\n",
1399			   rq->timeline->hwsp_offset);
1400
1401		print_request_ring(m, rq);
1402	}
1403	spin_unlock_irqrestore(&engine->active.lock, flags);
1404
1405	drm_printf(m, "\tMMIO base:  0x%08x\n", engine->mmio_base);
1406	wakeref = intel_runtime_pm_get_if_in_use(&engine->i915->runtime_pm);
1407	if (wakeref) {
1408		intel_engine_print_registers(engine, m);
1409		intel_runtime_pm_put(&engine->i915->runtime_pm, wakeref);
1410	} else {
1411		drm_printf(m, "\tDevice is asleep; skipping register dump\n");
1412	}
1413
1414	intel_execlists_show_requests(engine, m, print_request, 8);
1415
1416	drm_printf(m, "HWSP:\n");
1417	hexdump(m, engine->status_page.addr, PAGE_SIZE);
1418
1419	drm_printf(m, "Idle? %s\n", yesno(intel_engine_is_idle(engine)));
1420
1421	intel_engine_print_breadcrumbs(engine, m);
1422}
1423
1424/**
1425 * intel_enable_engine_stats() - Enable engine busy tracking on engine
1426 * @engine: engine to enable stats collection
1427 *
1428 * Start collecting the engine busyness data for @engine.
1429 *
1430 * Returns 0 on success or a negative error code.
1431 */
1432int intel_enable_engine_stats(struct intel_engine_cs *engine)
1433{
1434	struct intel_engine_execlists *execlists = &engine->execlists;
1435	unsigned long flags;
1436	int err = 0;
1437
1438	if (!intel_engine_supports_stats(engine))
1439		return -ENODEV;
1440
1441	execlists_active_lock_bh(execlists);
1442	write_seqlock_irqsave(&engine->stats.lock, flags);
1443
1444	if (unlikely(engine->stats.enabled == ~0)) {
1445		err = -EBUSY;
1446		goto unlock;
1447	}
1448
1449	if (engine->stats.enabled++ == 0) {
1450		struct i915_request * const *port;
1451		struct i915_request *rq;
1452
1453		engine->stats.enabled_at = ktime_get();
1454
1455		/* XXX submission method oblivious? */
1456		for (port = execlists->active; (rq = *port); port++)
1457			engine->stats.active++;
1458
1459		for (port = execlists->pending; (rq = *port); port++) {
1460			/* Exclude any contexts already counted in active */
1461			if (!intel_context_inflight_count(rq->hw_context))
1462				engine->stats.active++;
1463		}
1464
1465		if (engine->stats.active)
1466			engine->stats.start = engine->stats.enabled_at;
1467	}
1468
1469unlock:
1470	write_sequnlock_irqrestore(&engine->stats.lock, flags);
1471	execlists_active_unlock_bh(execlists);
1472
1473	return err;
1474}
1475
1476static ktime_t __intel_engine_get_busy_time(struct intel_engine_cs *engine)
1477{
1478	ktime_t total = engine->stats.total;
1479
1480	/*
1481	 * If the engine is executing something at the moment
1482	 * add it to the total.
1483	 */
1484	if (engine->stats.active)
1485		total = ktime_add(total,
1486				  ktime_sub(ktime_get(), engine->stats.start));
1487
1488	return total;
1489}
1490
1491/**
1492 * intel_engine_get_busy_time() - Return current accumulated engine busyness
1493 * @engine: engine to report on
 
1494 *
1495 * Returns accumulated time @engine was busy since engine stats were enabled.
1496 */
1497ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine)
1498{
1499	unsigned int seq;
1500	ktime_t total;
1501
1502	do {
1503		seq = read_seqbegin(&engine->stats.lock);
1504		total = __intel_engine_get_busy_time(engine);
1505	} while (read_seqretry(&engine->stats.lock, seq));
1506
1507	return total;
1508}
1509
1510/**
1511 * intel_disable_engine_stats() - Disable engine busy tracking on engine
1512 * @engine: engine to disable stats collection
1513 *
1514 * Stops collecting the engine busyness data for @engine.
1515 */
1516void intel_disable_engine_stats(struct intel_engine_cs *engine)
1517{
1518	unsigned long flags;
 
1519
1520	if (!intel_engine_supports_stats(engine))
1521		return;
1522
1523	write_seqlock_irqsave(&engine->stats.lock, flags);
1524	WARN_ON_ONCE(engine->stats.enabled == 0);
1525	if (--engine->stats.enabled == 0) {
1526		engine->stats.total = __intel_engine_get_busy_time(engine);
1527		engine->stats.active = 0;
1528	}
1529	write_sequnlock_irqrestore(&engine->stats.lock, flags);
1530}
1531
1532static bool match_ring(struct i915_request *rq)
1533{
1534	u32 ring = ENGINE_READ(rq->engine, RING_START);
1535
1536	return ring == i915_ggtt_offset(rq->ring->vma);
1537}
1538
1539struct i915_request *
1540intel_engine_find_active_request(struct intel_engine_cs *engine)
1541{
1542	struct i915_request *request, *active = NULL;
1543
1544	/*
1545	 * We are called by the error capture, reset and to dump engine
1546	 * state at random points in time. In particular, note that neither is
1547	 * crucially ordered with an interrupt. After a hang, the GPU is dead
1548	 * and we assume that no more writes can happen (we waited long enough
1549	 * for all writes that were in transaction to be flushed) - adding an
1550	 * extra delay for a recent interrupt is pointless. Hence, we do
1551	 * not need an engine->irq_seqno_barrier() before the seqno reads.
1552	 * At all other times, we must assume the GPU is still running, but
1553	 * we only care about the snapshot of this moment.
1554	 */
1555	lockdep_assert_held(&engine->active.lock);
1556	list_for_each_entry(request, &engine->active.requests, sched.link) {
1557		if (i915_request_completed(request))
1558			continue;
1559
1560		if (!i915_request_started(request))
1561			continue;
 
 
 
 
 
 
1562
1563		/* More than one preemptible request may match! */
1564		if (!match_ring(request))
 
 
 
 
 
 
 
 
1565			continue;
1566
1567		active = request;
1568		break;
1569	}
1570
1571	return active;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1572}
1573
1574#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1575#include "mock_engine.c"
1576#include "selftest_engine.c"
1577#include "selftest_engine_cs.c"
1578#endif