Linux Audio

Check our new training course

In-person Linux kernel drivers training

Jun 16-20, 2025
Register
Loading...
Note: File does not exist in v5.4.
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Driver for Intel client SoC with integrated memory controller using IBECC
   4 *
   5 * Copyright (C) 2020 Intel Corporation
   6 *
   7 * The In-Band ECC (IBECC) IP provides ECC protection to all or specific
   8 * regions of the physical memory space. It's used for memory controllers
   9 * that don't support the out-of-band ECC which often needs an additional
  10 * storage device to each channel for storing ECC data.
  11 */
  12
  13#include <linux/module.h>
  14#include <linux/init.h>
  15#include <linux/pci.h>
  16#include <linux/slab.h>
  17#include <linux/irq_work.h>
  18#include <linux/llist.h>
  19#include <linux/genalloc.h>
  20#include <linux/edac.h>
  21#include <linux/bits.h>
  22#include <linux/io.h>
  23#include <asm/mach_traps.h>
  24#include <asm/nmi.h>
  25#include <asm/mce.h>
  26
  27#include "edac_mc.h"
  28#include "edac_module.h"
  29
  30#define IGEN6_REVISION	"v2.5.1"
  31
  32#define EDAC_MOD_STR	"igen6_edac"
  33#define IGEN6_NMI_NAME	"igen6_ibecc"
  34
  35/* Debug macros */
  36#define igen6_printk(level, fmt, arg...)		\
  37	edac_printk(level, "igen6", fmt, ##arg)
  38
  39#define igen6_mc_printk(mci, level, fmt, arg...)	\
  40	edac_mc_chipset_printk(mci, level, "igen6", fmt, ##arg)
  41
  42#define GET_BITFIELD(v, lo, hi) (((v) & GENMASK_ULL(hi, lo)) >> (lo))
  43
  44#define NUM_IMC				2 /* Max memory controllers */
  45#define NUM_CHANNELS			2 /* Max channels */
  46#define NUM_DIMMS			2 /* Max DIMMs per channel */
  47
  48#define _4GB				BIT_ULL(32)
  49
  50/* Size of physical memory */
  51#define TOM_OFFSET			0xa0
  52/* Top of low usable DRAM */
  53#define TOLUD_OFFSET			0xbc
  54/* Capability register C */
  55#define CAPID_C_OFFSET			0xec
  56#define CAPID_C_IBECC			BIT(15)
  57
  58/* Capability register E */
  59#define CAPID_E_OFFSET			0xf0
  60#define CAPID_E_IBECC			BIT(12)
  61#define CAPID_E_IBECC_BIT18		BIT(18)
  62
  63/* Error Status */
  64#define ERRSTS_OFFSET			0xc8
  65#define ERRSTS_CE			BIT_ULL(6)
  66#define ERRSTS_UE			BIT_ULL(7)
  67
  68/* Error Command */
  69#define ERRCMD_OFFSET			0xca
  70#define ERRCMD_CE			BIT_ULL(6)
  71#define ERRCMD_UE			BIT_ULL(7)
  72
  73/* IBECC MMIO base address */
  74#define IBECC_BASE			(res_cfg->ibecc_base)
  75#define IBECC_ACTIVATE_OFFSET		IBECC_BASE
  76#define IBECC_ACTIVATE_EN		BIT(0)
  77
  78/* IBECC error log */
  79#define ECC_ERROR_LOG_OFFSET		(IBECC_BASE + res_cfg->ibecc_error_log_offset)
  80#define ECC_ERROR_LOG_CE		BIT_ULL(62)
  81#define ECC_ERROR_LOG_UE		BIT_ULL(63)
  82#define ECC_ERROR_LOG_ADDR_SHIFT	5
  83#define ECC_ERROR_LOG_ADDR(v)		GET_BITFIELD(v, 5, 38)
  84#define ECC_ERROR_LOG_ADDR45(v)		GET_BITFIELD(v, 5, 45)
  85#define ECC_ERROR_LOG_SYND(v)		GET_BITFIELD(v, 46, 61)
  86
  87/* Host MMIO base address */
  88#define MCHBAR_OFFSET			0x48
  89#define MCHBAR_EN			BIT_ULL(0)
  90#define MCHBAR_BASE(v)			(GET_BITFIELD(v, 16, 38) << 16)
  91#define MCHBAR_SIZE			0x10000
  92
  93/* Parameters for the channel decode stage */
  94#define IMC_BASE			(res_cfg->imc_base)
  95#define MAD_INTER_CHANNEL_OFFSET	IMC_BASE
  96#define MAD_INTER_CHANNEL_DDR_TYPE(v)	GET_BITFIELD(v, 0, 2)
  97#define MAD_INTER_CHANNEL_ECHM(v)	GET_BITFIELD(v, 3, 3)
  98#define MAD_INTER_CHANNEL_CH_L_MAP(v)	GET_BITFIELD(v, 4, 4)
  99#define MAD_INTER_CHANNEL_CH_S_SIZE(v)	((u64)GET_BITFIELD(v, 12, 19) << 29)
 100
 101/* Parameters for DRAM decode stage */
 102#define MAD_INTRA_CH0_OFFSET		(IMC_BASE + 4)
 103#define MAD_INTRA_CH_DIMM_L_MAP(v)	GET_BITFIELD(v, 0, 0)
 104
 105/* DIMM characteristics */
 106#define MAD_DIMM_CH0_OFFSET		(IMC_BASE + 0xc)
 107#define MAD_DIMM_CH_DIMM_L_SIZE(v)	((u64)GET_BITFIELD(v, 0, 6) << 29)
 108#define MAD_DIMM_CH_DLW(v)		GET_BITFIELD(v, 7, 8)
 109#define MAD_DIMM_CH_DIMM_S_SIZE(v)	((u64)GET_BITFIELD(v, 16, 22) << 29)
 110#define MAD_DIMM_CH_DSW(v)		GET_BITFIELD(v, 24, 25)
 111
 112/* Hash for memory controller selection */
 113#define MAD_MC_HASH_OFFSET		(IMC_BASE + 0x1b8)
 114#define MAC_MC_HASH_LSB(v)		GET_BITFIELD(v, 1, 3)
 115
 116/* Hash for channel selection */
 117#define CHANNEL_HASH_OFFSET		(IMC_BASE + 0x24)
 118/* Hash for enhanced channel selection */
 119#define CHANNEL_EHASH_OFFSET		(IMC_BASE + 0x28)
 120#define CHANNEL_HASH_MASK(v)		(GET_BITFIELD(v, 6, 19) << 6)
 121#define CHANNEL_HASH_LSB_MASK_BIT(v)	GET_BITFIELD(v, 24, 26)
 122#define CHANNEL_HASH_MODE(v)		GET_BITFIELD(v, 28, 28)
 123
 124/* Parameters for memory slice decode stage */
 125#define MEM_SLICE_HASH_MASK(v)		(GET_BITFIELD(v, 6, 19) << 6)
 126#define MEM_SLICE_HASH_LSB_MASK_BIT(v)	GET_BITFIELD(v, 24, 26)
 127
 128static struct res_config {
 129	bool machine_check;
 130	int num_imc;
 131	u32 imc_base;
 132	u32 cmf_base;
 133	u32 cmf_size;
 134	u32 ms_hash_offset;
 135	u32 ibecc_base;
 136	u32 ibecc_error_log_offset;
 137	bool (*ibecc_available)(struct pci_dev *pdev);
 138	/* Extract error address logged in IBECC */
 139	u64 (*err_addr)(u64 ecclog);
 140	/* Convert error address logged in IBECC to system physical address */
 141	u64 (*err_addr_to_sys_addr)(u64 eaddr, int mc);
 142	/* Convert error address logged in IBECC to integrated memory controller address */
 143	u64 (*err_addr_to_imc_addr)(u64 eaddr, int mc);
 144} *res_cfg;
 145
 146struct igen6_imc {
 147	int mc;
 148	struct mem_ctl_info *mci;
 149	struct pci_dev *pdev;
 150	struct device dev;
 151	void __iomem *window;
 152	u64 size;
 153	u64 ch_s_size;
 154	int ch_l_map;
 155	u64 dimm_s_size[NUM_CHANNELS];
 156	u64 dimm_l_size[NUM_CHANNELS];
 157	int dimm_l_map[NUM_CHANNELS];
 158};
 159
 160static struct igen6_pvt {
 161	struct igen6_imc imc[NUM_IMC];
 162	u64 ms_hash;
 163	u64 ms_s_size;
 164	int ms_l_map;
 165} *igen6_pvt;
 166
 167/* The top of low usable DRAM */
 168static u32 igen6_tolud;
 169/* The size of physical memory */
 170static u64 igen6_tom;
 171
 172struct decoded_addr {
 173	int mc;
 174	u64 imc_addr;
 175	u64 sys_addr;
 176	int channel_idx;
 177	u64 channel_addr;
 178	int sub_channel_idx;
 179	u64 sub_channel_addr;
 180};
 181
 182struct ecclog_node {
 183	struct llist_node llnode;
 184	int mc;
 185	u64 ecclog;
 186};
 187
 188/*
 189 * In the NMI handler, the driver uses the lock-less memory allocator
 190 * to allocate memory to store the IBECC error logs and links the logs
 191 * to the lock-less list. Delay printk() and the work of error reporting
 192 * to EDAC core in a worker.
 193 */
 194#define ECCLOG_POOL_SIZE	PAGE_SIZE
 195static LLIST_HEAD(ecclog_llist);
 196static struct gen_pool *ecclog_pool;
 197static char ecclog_buf[ECCLOG_POOL_SIZE];
 198static struct irq_work ecclog_irq_work;
 199static struct work_struct ecclog_work;
 200
 201/* Compute die IDs for Elkhart Lake with IBECC */
 202#define DID_EHL_SKU5	0x4514
 203#define DID_EHL_SKU6	0x4528
 204#define DID_EHL_SKU7	0x452a
 205#define DID_EHL_SKU8	0x4516
 206#define DID_EHL_SKU9	0x452c
 207#define DID_EHL_SKU10	0x452e
 208#define DID_EHL_SKU11	0x4532
 209#define DID_EHL_SKU12	0x4518
 210#define DID_EHL_SKU13	0x451a
 211#define DID_EHL_SKU14	0x4534
 212#define DID_EHL_SKU15	0x4536
 213
 214/* Compute die IDs for ICL-NNPI with IBECC */
 215#define DID_ICL_SKU8	0x4581
 216#define DID_ICL_SKU10	0x4585
 217#define DID_ICL_SKU11	0x4589
 218#define DID_ICL_SKU12	0x458d
 219
 220/* Compute die IDs for Tiger Lake with IBECC */
 221#define DID_TGL_SKU	0x9a14
 222
 223/* Compute die IDs for Alder Lake with IBECC */
 224#define DID_ADL_SKU1	0x4601
 225#define DID_ADL_SKU2	0x4602
 226#define DID_ADL_SKU3	0x4621
 227#define DID_ADL_SKU4	0x4641
 228
 229/* Compute die IDs for Alder Lake-N with IBECC */
 230#define DID_ADL_N_SKU1	0x4614
 231#define DID_ADL_N_SKU2	0x4617
 232#define DID_ADL_N_SKU3	0x461b
 233#define DID_ADL_N_SKU4	0x461c
 234#define DID_ADL_N_SKU5	0x4673
 235#define DID_ADL_N_SKU6	0x4674
 236#define DID_ADL_N_SKU7	0x4675
 237#define DID_ADL_N_SKU8	0x4677
 238#define DID_ADL_N_SKU9	0x4678
 239#define DID_ADL_N_SKU10	0x4679
 240#define DID_ADL_N_SKU11	0x467c
 241#define DID_ADL_N_SKU12	0x4632
 242
 243/* Compute die IDs for Raptor Lake-P with IBECC */
 244#define DID_RPL_P_SKU1	0xa706
 245#define DID_RPL_P_SKU2	0xa707
 246#define DID_RPL_P_SKU3	0xa708
 247#define DID_RPL_P_SKU4	0xa716
 248#define DID_RPL_P_SKU5	0xa718
 249
 250/* Compute die IDs for Meteor Lake-PS with IBECC */
 251#define DID_MTL_PS_SKU1	0x7d21
 252#define DID_MTL_PS_SKU2	0x7d22
 253#define DID_MTL_PS_SKU3	0x7d23
 254#define DID_MTL_PS_SKU4	0x7d24
 255
 256/* Compute die IDs for Meteor Lake-P with IBECC */
 257#define DID_MTL_P_SKU1	0x7d01
 258#define DID_MTL_P_SKU2	0x7d02
 259#define DID_MTL_P_SKU3	0x7d14
 260
 261/* Compute die IDs for Arrow Lake-UH with IBECC */
 262#define DID_ARL_UH_SKU1	0x7d06
 263#define DID_ARL_UH_SKU2	0x7d20
 264#define DID_ARL_UH_SKU3	0x7d30
 265
 266/* Compute die IDs for Panther Lake-H with IBECC */
 267#define DID_PTL_H_SKU1	0xb000
 268#define DID_PTL_H_SKU2	0xb001
 269#define DID_PTL_H_SKU3	0xb002
 270
 271static int get_mchbar(struct pci_dev *pdev, u64 *mchbar)
 272{
 273	union  {
 274		u64 v;
 275		struct {
 276			u32 v_lo;
 277			u32 v_hi;
 278		};
 279	} u;
 280
 281	if (pci_read_config_dword(pdev, MCHBAR_OFFSET, &u.v_lo)) {
 282		igen6_printk(KERN_ERR, "Failed to read lower MCHBAR\n");
 283		return -ENODEV;
 284	}
 285
 286	if (pci_read_config_dword(pdev, MCHBAR_OFFSET + 4, &u.v_hi)) {
 287		igen6_printk(KERN_ERR, "Failed to read upper MCHBAR\n");
 288		return -ENODEV;
 289	}
 290
 291	if (!(u.v & MCHBAR_EN)) {
 292		igen6_printk(KERN_ERR, "MCHBAR is disabled\n");
 293		return -ENODEV;
 294	}
 295
 296	*mchbar = MCHBAR_BASE(u.v);
 297
 298	return 0;
 299}
 300
 301static bool ehl_ibecc_available(struct pci_dev *pdev)
 302{
 303	u32 v;
 304
 305	if (pci_read_config_dword(pdev, CAPID_C_OFFSET, &v))
 306		return false;
 307
 308	return !!(CAPID_C_IBECC & v);
 309}
 310
 311static u64 ehl_err_addr_to_sys_addr(u64 eaddr, int mc)
 312{
 313	return eaddr;
 314}
 315
 316static u64 ehl_err_addr_to_imc_addr(u64 eaddr, int mc)
 317{
 318	if (eaddr < igen6_tolud)
 319		return eaddr;
 320
 321	if (igen6_tom <= _4GB)
 322		return eaddr + igen6_tolud - _4GB;
 323
 324	if (eaddr >= igen6_tom)
 325		return eaddr + igen6_tolud - igen6_tom;
 326
 327	return eaddr;
 328}
 329
 330static bool icl_ibecc_available(struct pci_dev *pdev)
 331{
 332	u32 v;
 333
 334	if (pci_read_config_dword(pdev, CAPID_C_OFFSET, &v))
 335		return false;
 336
 337	return !(CAPID_C_IBECC & v) &&
 338		(boot_cpu_data.x86_stepping >= 1);
 339}
 340
 341static bool tgl_ibecc_available(struct pci_dev *pdev)
 342{
 343	u32 v;
 344
 345	if (pci_read_config_dword(pdev, CAPID_E_OFFSET, &v))
 346		return false;
 347
 348	return !(CAPID_E_IBECC & v);
 349}
 350
 351static bool mtl_p_ibecc_available(struct pci_dev *pdev)
 352{
 353	u32 v;
 354
 355	if (pci_read_config_dword(pdev, CAPID_E_OFFSET, &v))
 356		return false;
 357
 358	return !(CAPID_E_IBECC_BIT18 & v);
 359}
 360
 361static bool mtl_ps_ibecc_available(struct pci_dev *pdev)
 362{
 363#define MCHBAR_MEMSS_IBECCDIS	0x13c00
 364	void __iomem *window;
 365	u64 mchbar;
 366	u32 val;
 367
 368	if (get_mchbar(pdev, &mchbar))
 369		return false;
 370
 371	window = ioremap(mchbar, MCHBAR_SIZE * 2);
 372	if (!window) {
 373		igen6_printk(KERN_ERR, "Failed to ioremap 0x%llx\n", mchbar);
 374		return false;
 375	}
 376
 377	val = readl(window + MCHBAR_MEMSS_IBECCDIS);
 378	iounmap(window);
 379
 380	/* Bit6: 1 - IBECC is disabled, 0 - IBECC isn't disabled */
 381	return !GET_BITFIELD(val, 6, 6);
 382}
 383
 384static u64 mem_addr_to_sys_addr(u64 maddr)
 385{
 386	if (maddr < igen6_tolud)
 387		return maddr;
 388
 389	if (igen6_tom <= _4GB)
 390		return maddr - igen6_tolud + _4GB;
 391
 392	if (maddr < _4GB)
 393		return maddr - igen6_tolud + igen6_tom;
 394
 395	return maddr;
 396}
 397
 398static u64 mem_slice_hash(u64 addr, u64 mask, u64 hash_init, int intlv_bit)
 399{
 400	u64 hash_addr = addr & mask, hash = hash_init;
 401	u64 intlv = (addr >> intlv_bit) & 1;
 402	int i;
 403
 404	for (i = 6; i < 20; i++)
 405		hash ^= (hash_addr >> i) & 1;
 406
 407	return hash ^ intlv;
 408}
 409
 410static u64 tgl_err_addr_to_mem_addr(u64 eaddr, int mc)
 411{
 412	u64 maddr, hash, mask, ms_s_size;
 413	int intlv_bit;
 414	u32 ms_hash;
 415
 416	ms_s_size = igen6_pvt->ms_s_size;
 417	if (eaddr >= ms_s_size)
 418		return eaddr + ms_s_size;
 419
 420	ms_hash = igen6_pvt->ms_hash;
 421
 422	mask = MEM_SLICE_HASH_MASK(ms_hash);
 423	intlv_bit = MEM_SLICE_HASH_LSB_MASK_BIT(ms_hash) + 6;
 424
 425	maddr = GET_BITFIELD(eaddr, intlv_bit, 63) << (intlv_bit + 1) |
 426		GET_BITFIELD(eaddr, 0, intlv_bit - 1);
 427
 428	hash = mem_slice_hash(maddr, mask, mc, intlv_bit);
 429
 430	return maddr | (hash << intlv_bit);
 431}
 432
 433static u64 tgl_err_addr_to_sys_addr(u64 eaddr, int mc)
 434{
 435	u64 maddr = tgl_err_addr_to_mem_addr(eaddr, mc);
 436
 437	return mem_addr_to_sys_addr(maddr);
 438}
 439
 440static u64 tgl_err_addr_to_imc_addr(u64 eaddr, int mc)
 441{
 442	return eaddr;
 443}
 444
 445static u64 adl_err_addr_to_sys_addr(u64 eaddr, int mc)
 446{
 447	return mem_addr_to_sys_addr(eaddr);
 448}
 449
 450static u64 adl_err_addr_to_imc_addr(u64 eaddr, int mc)
 451{
 452	u64 imc_addr, ms_s_size = igen6_pvt->ms_s_size;
 453	struct igen6_imc *imc = &igen6_pvt->imc[mc];
 454	int intlv_bit;
 455	u32 mc_hash;
 456
 457	if (eaddr >= 2 * ms_s_size)
 458		return eaddr - ms_s_size;
 459
 460	mc_hash = readl(imc->window + MAD_MC_HASH_OFFSET);
 461
 462	intlv_bit = MAC_MC_HASH_LSB(mc_hash) + 6;
 463
 464	imc_addr = GET_BITFIELD(eaddr, intlv_bit + 1, 63) << intlv_bit |
 465		   GET_BITFIELD(eaddr, 0, intlv_bit - 1);
 466
 467	return imc_addr;
 468}
 469
 470static u64 rpl_p_err_addr(u64 ecclog)
 471{
 472	return ECC_ERROR_LOG_ADDR45(ecclog);
 473}
 474
 475static struct res_config ehl_cfg = {
 476	.num_imc		= 1,
 477	.imc_base		= 0x5000,
 478	.ibecc_base		= 0xdc00,
 479	.ibecc_available	= ehl_ibecc_available,
 480	.ibecc_error_log_offset	= 0x170,
 481	.err_addr_to_sys_addr	= ehl_err_addr_to_sys_addr,
 482	.err_addr_to_imc_addr	= ehl_err_addr_to_imc_addr,
 483};
 484
 485static struct res_config icl_cfg = {
 486	.num_imc		= 1,
 487	.imc_base		= 0x5000,
 488	.ibecc_base		= 0xd800,
 489	.ibecc_error_log_offset	= 0x170,
 490	.ibecc_available	= icl_ibecc_available,
 491	.err_addr_to_sys_addr	= ehl_err_addr_to_sys_addr,
 492	.err_addr_to_imc_addr	= ehl_err_addr_to_imc_addr,
 493};
 494
 495static struct res_config tgl_cfg = {
 496	.machine_check		= true,
 497	.num_imc		= 2,
 498	.imc_base		= 0x5000,
 499	.cmf_base		= 0x11000,
 500	.cmf_size		= 0x800,
 501	.ms_hash_offset		= 0xac,
 502	.ibecc_base		= 0xd400,
 503	.ibecc_error_log_offset	= 0x170,
 504	.ibecc_available	= tgl_ibecc_available,
 505	.err_addr_to_sys_addr	= tgl_err_addr_to_sys_addr,
 506	.err_addr_to_imc_addr	= tgl_err_addr_to_imc_addr,
 507};
 508
 509static struct res_config adl_cfg = {
 510	.machine_check		= true,
 511	.num_imc		= 2,
 512	.imc_base		= 0xd800,
 513	.ibecc_base		= 0xd400,
 514	.ibecc_error_log_offset	= 0x68,
 515	.ibecc_available	= tgl_ibecc_available,
 516	.err_addr_to_sys_addr	= adl_err_addr_to_sys_addr,
 517	.err_addr_to_imc_addr	= adl_err_addr_to_imc_addr,
 518};
 519
 520static struct res_config adl_n_cfg = {
 521	.machine_check		= true,
 522	.num_imc		= 1,
 523	.imc_base		= 0xd800,
 524	.ibecc_base		= 0xd400,
 525	.ibecc_error_log_offset	= 0x68,
 526	.ibecc_available	= tgl_ibecc_available,
 527	.err_addr_to_sys_addr	= adl_err_addr_to_sys_addr,
 528	.err_addr_to_imc_addr	= adl_err_addr_to_imc_addr,
 529};
 530
 531static struct res_config rpl_p_cfg = {
 532	.machine_check		= true,
 533	.num_imc		= 2,
 534	.imc_base		= 0xd800,
 535	.ibecc_base		= 0xd400,
 536	.ibecc_error_log_offset	= 0x68,
 537	.ibecc_available	= tgl_ibecc_available,
 538	.err_addr		= rpl_p_err_addr,
 539	.err_addr_to_sys_addr	= adl_err_addr_to_sys_addr,
 540	.err_addr_to_imc_addr	= adl_err_addr_to_imc_addr,
 541};
 542
 543static struct res_config mtl_ps_cfg = {
 544	.machine_check		= true,
 545	.num_imc		= 2,
 546	.imc_base		= 0xd800,
 547	.ibecc_base		= 0xd400,
 548	.ibecc_error_log_offset	= 0x170,
 549	.ibecc_available	= mtl_ps_ibecc_available,
 550	.err_addr_to_sys_addr	= adl_err_addr_to_sys_addr,
 551	.err_addr_to_imc_addr	= adl_err_addr_to_imc_addr,
 552};
 553
 554static struct res_config mtl_p_cfg = {
 555	.machine_check		= true,
 556	.num_imc		= 2,
 557	.imc_base		= 0xd800,
 558	.ibecc_base		= 0xd400,
 559	.ibecc_error_log_offset	= 0x170,
 560	.ibecc_available	= mtl_p_ibecc_available,
 561	.err_addr_to_sys_addr	= adl_err_addr_to_sys_addr,
 562	.err_addr_to_imc_addr	= adl_err_addr_to_imc_addr,
 563};
 564
 565static const struct pci_device_id igen6_pci_tbl[] = {
 566	{ PCI_VDEVICE(INTEL, DID_EHL_SKU5), (kernel_ulong_t)&ehl_cfg },
 567	{ PCI_VDEVICE(INTEL, DID_EHL_SKU6), (kernel_ulong_t)&ehl_cfg },
 568	{ PCI_VDEVICE(INTEL, DID_EHL_SKU7), (kernel_ulong_t)&ehl_cfg },
 569	{ PCI_VDEVICE(INTEL, DID_EHL_SKU8), (kernel_ulong_t)&ehl_cfg },
 570	{ PCI_VDEVICE(INTEL, DID_EHL_SKU9), (kernel_ulong_t)&ehl_cfg },
 571	{ PCI_VDEVICE(INTEL, DID_EHL_SKU10), (kernel_ulong_t)&ehl_cfg },
 572	{ PCI_VDEVICE(INTEL, DID_EHL_SKU11), (kernel_ulong_t)&ehl_cfg },
 573	{ PCI_VDEVICE(INTEL, DID_EHL_SKU12), (kernel_ulong_t)&ehl_cfg },
 574	{ PCI_VDEVICE(INTEL, DID_EHL_SKU13), (kernel_ulong_t)&ehl_cfg },
 575	{ PCI_VDEVICE(INTEL, DID_EHL_SKU14), (kernel_ulong_t)&ehl_cfg },
 576	{ PCI_VDEVICE(INTEL, DID_EHL_SKU15), (kernel_ulong_t)&ehl_cfg },
 577	{ PCI_VDEVICE(INTEL, DID_ICL_SKU8), (kernel_ulong_t)&icl_cfg },
 578	{ PCI_VDEVICE(INTEL, DID_ICL_SKU10), (kernel_ulong_t)&icl_cfg },
 579	{ PCI_VDEVICE(INTEL, DID_ICL_SKU11), (kernel_ulong_t)&icl_cfg },
 580	{ PCI_VDEVICE(INTEL, DID_ICL_SKU12), (kernel_ulong_t)&icl_cfg },
 581	{ PCI_VDEVICE(INTEL, DID_TGL_SKU), (kernel_ulong_t)&tgl_cfg },
 582	{ PCI_VDEVICE(INTEL, DID_ADL_SKU1), (kernel_ulong_t)&adl_cfg },
 583	{ PCI_VDEVICE(INTEL, DID_ADL_SKU2), (kernel_ulong_t)&adl_cfg },
 584	{ PCI_VDEVICE(INTEL, DID_ADL_SKU3), (kernel_ulong_t)&adl_cfg },
 585	{ PCI_VDEVICE(INTEL, DID_ADL_SKU4), (kernel_ulong_t)&adl_cfg },
 586	{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU1), (kernel_ulong_t)&adl_n_cfg },
 587	{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU2), (kernel_ulong_t)&adl_n_cfg },
 588	{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU3), (kernel_ulong_t)&adl_n_cfg },
 589	{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU4), (kernel_ulong_t)&adl_n_cfg },
 590	{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU5), (kernel_ulong_t)&adl_n_cfg },
 591	{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU6), (kernel_ulong_t)&adl_n_cfg },
 592	{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU7), (kernel_ulong_t)&adl_n_cfg },
 593	{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU8), (kernel_ulong_t)&adl_n_cfg },
 594	{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU9), (kernel_ulong_t)&adl_n_cfg },
 595	{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU10), (kernel_ulong_t)&adl_n_cfg },
 596	{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU11), (kernel_ulong_t)&adl_n_cfg },
 597	{ PCI_VDEVICE(INTEL, DID_ADL_N_SKU12), (kernel_ulong_t)&adl_n_cfg },
 598	{ PCI_VDEVICE(INTEL, DID_RPL_P_SKU1), (kernel_ulong_t)&rpl_p_cfg },
 599	{ PCI_VDEVICE(INTEL, DID_RPL_P_SKU2), (kernel_ulong_t)&rpl_p_cfg },
 600	{ PCI_VDEVICE(INTEL, DID_RPL_P_SKU3), (kernel_ulong_t)&rpl_p_cfg },
 601	{ PCI_VDEVICE(INTEL, DID_RPL_P_SKU4), (kernel_ulong_t)&rpl_p_cfg },
 602	{ PCI_VDEVICE(INTEL, DID_RPL_P_SKU5), (kernel_ulong_t)&rpl_p_cfg },
 603	{ PCI_VDEVICE(INTEL, DID_MTL_PS_SKU1), (kernel_ulong_t)&mtl_ps_cfg },
 604	{ PCI_VDEVICE(INTEL, DID_MTL_PS_SKU2), (kernel_ulong_t)&mtl_ps_cfg },
 605	{ PCI_VDEVICE(INTEL, DID_MTL_PS_SKU3), (kernel_ulong_t)&mtl_ps_cfg },
 606	{ PCI_VDEVICE(INTEL, DID_MTL_PS_SKU4), (kernel_ulong_t)&mtl_ps_cfg },
 607	{ PCI_VDEVICE(INTEL, DID_MTL_P_SKU1), (kernel_ulong_t)&mtl_p_cfg },
 608	{ PCI_VDEVICE(INTEL, DID_MTL_P_SKU2), (kernel_ulong_t)&mtl_p_cfg },
 609	{ PCI_VDEVICE(INTEL, DID_MTL_P_SKU3), (kernel_ulong_t)&mtl_p_cfg },
 610	{ PCI_VDEVICE(INTEL, DID_ARL_UH_SKU1), (kernel_ulong_t)&mtl_p_cfg },
 611	{ PCI_VDEVICE(INTEL, DID_ARL_UH_SKU2), (kernel_ulong_t)&mtl_p_cfg },
 612	{ PCI_VDEVICE(INTEL, DID_ARL_UH_SKU3), (kernel_ulong_t)&mtl_p_cfg },
 613	{ PCI_VDEVICE(INTEL, DID_PTL_H_SKU1), (kernel_ulong_t)&mtl_p_cfg },
 614	{ PCI_VDEVICE(INTEL, DID_PTL_H_SKU2), (kernel_ulong_t)&mtl_p_cfg },
 615	{ PCI_VDEVICE(INTEL, DID_PTL_H_SKU3), (kernel_ulong_t)&mtl_p_cfg },
 616	{ },
 617};
 618MODULE_DEVICE_TABLE(pci, igen6_pci_tbl);
 619
 620static enum dev_type get_width(int dimm_l, u32 mad_dimm)
 621{
 622	u32 w = dimm_l ? MAD_DIMM_CH_DLW(mad_dimm) :
 623			 MAD_DIMM_CH_DSW(mad_dimm);
 624
 625	switch (w) {
 626	case 0:
 627		return DEV_X8;
 628	case 1:
 629		return DEV_X16;
 630	case 2:
 631		return DEV_X32;
 632	default:
 633		return DEV_UNKNOWN;
 634	}
 635}
 636
 637static enum mem_type get_memory_type(u32 mad_inter)
 638{
 639	u32 t = MAD_INTER_CHANNEL_DDR_TYPE(mad_inter);
 640
 641	switch (t) {
 642	case 0:
 643		return MEM_DDR4;
 644	case 1:
 645		return MEM_DDR3;
 646	case 2:
 647		return MEM_LPDDR3;
 648	case 3:
 649		return MEM_LPDDR4;
 650	case 4:
 651		return MEM_WIO2;
 652	default:
 653		return MEM_UNKNOWN;
 654	}
 655}
 656
 657static int decode_chan_idx(u64 addr, u64 mask, int intlv_bit)
 658{
 659	u64 hash_addr = addr & mask, hash = 0;
 660	u64 intlv = (addr >> intlv_bit) & 1;
 661	int i;
 662
 663	for (i = 6; i < 20; i++)
 664		hash ^= (hash_addr >> i) & 1;
 665
 666	return (int)hash ^ intlv;
 667}
 668
 669static u64 decode_channel_addr(u64 addr, int intlv_bit)
 670{
 671	u64 channel_addr;
 672
 673	/* Remove the interleave bit and shift upper part down to fill gap */
 674	channel_addr  = GET_BITFIELD(addr, intlv_bit + 1, 63) << intlv_bit;
 675	channel_addr |= GET_BITFIELD(addr, 0, intlv_bit - 1);
 676
 677	return channel_addr;
 678}
 679
 680static void decode_addr(u64 addr, u32 hash, u64 s_size, int l_map,
 681			int *idx, u64 *sub_addr)
 682{
 683	int intlv_bit = CHANNEL_HASH_LSB_MASK_BIT(hash) + 6;
 684
 685	if (addr > 2 * s_size) {
 686		*sub_addr = addr - s_size;
 687		*idx = l_map;
 688		return;
 689	}
 690
 691	if (CHANNEL_HASH_MODE(hash)) {
 692		*sub_addr = decode_channel_addr(addr, intlv_bit);
 693		*idx = decode_chan_idx(addr, CHANNEL_HASH_MASK(hash), intlv_bit);
 694	} else {
 695		*sub_addr = decode_channel_addr(addr, 6);
 696		*idx = GET_BITFIELD(addr, 6, 6);
 697	}
 698}
 699
 700static int igen6_decode(struct decoded_addr *res)
 701{
 702	struct igen6_imc *imc = &igen6_pvt->imc[res->mc];
 703	u64 addr = res->imc_addr, sub_addr, s_size;
 704	int idx, l_map;
 705	u32 hash;
 706
 707	if (addr >= igen6_tom) {
 708		edac_dbg(0, "Address 0x%llx out of range\n", addr);
 709		return -EINVAL;
 710	}
 711
 712	/* Decode channel */
 713	hash   = readl(imc->window + CHANNEL_HASH_OFFSET);
 714	s_size = imc->ch_s_size;
 715	l_map  = imc->ch_l_map;
 716	decode_addr(addr, hash, s_size, l_map, &idx, &sub_addr);
 717	res->channel_idx  = idx;
 718	res->channel_addr = sub_addr;
 719
 720	/* Decode sub-channel/DIMM */
 721	hash   = readl(imc->window + CHANNEL_EHASH_OFFSET);
 722	s_size = imc->dimm_s_size[idx];
 723	l_map  = imc->dimm_l_map[idx];
 724	decode_addr(res->channel_addr, hash, s_size, l_map, &idx, &sub_addr);
 725	res->sub_channel_idx  = idx;
 726	res->sub_channel_addr = sub_addr;
 727
 728	return 0;
 729}
 730
 731static void igen6_output_error(struct decoded_addr *res,
 732			       struct mem_ctl_info *mci, u64 ecclog)
 733{
 734	enum hw_event_mc_err_type type = ecclog & ECC_ERROR_LOG_UE ?
 735					 HW_EVENT_ERR_UNCORRECTED :
 736					 HW_EVENT_ERR_CORRECTED;
 737
 738	edac_mc_handle_error(type, mci, 1,
 739			     res->sys_addr >> PAGE_SHIFT,
 740			     res->sys_addr & ~PAGE_MASK,
 741			     ECC_ERROR_LOG_SYND(ecclog),
 742			     res->channel_idx, res->sub_channel_idx,
 743			     -1, "", "");
 744}
 745
 746static struct gen_pool *ecclog_gen_pool_create(void)
 747{
 748	struct gen_pool *pool;
 749
 750	pool = gen_pool_create(ilog2(sizeof(struct ecclog_node)), -1);
 751	if (!pool)
 752		return NULL;
 753
 754	if (gen_pool_add(pool, (unsigned long)ecclog_buf, ECCLOG_POOL_SIZE, -1)) {
 755		gen_pool_destroy(pool);
 756		return NULL;
 757	}
 758
 759	return pool;
 760}
 761
 762static int ecclog_gen_pool_add(int mc, u64 ecclog)
 763{
 764	struct ecclog_node *node;
 765
 766	node = (void *)gen_pool_alloc(ecclog_pool, sizeof(*node));
 767	if (!node)
 768		return -ENOMEM;
 769
 770	node->mc = mc;
 771	node->ecclog = ecclog;
 772	llist_add(&node->llnode, &ecclog_llist);
 773
 774	return 0;
 775}
 776
 777/*
 778 * Either the memory-mapped I/O status register ECC_ERROR_LOG or the PCI
 779 * configuration space status register ERRSTS can indicate whether a
 780 * correctable error or an uncorrectable error occurred. We only use the
 781 * ECC_ERROR_LOG register to check error type, but need to clear both
 782 * registers to enable future error events.
 783 */
 784static u64 ecclog_read_and_clear(struct igen6_imc *imc)
 785{
 786	u64 ecclog = readq(imc->window + ECC_ERROR_LOG_OFFSET);
 787
 788	if (ecclog & (ECC_ERROR_LOG_CE | ECC_ERROR_LOG_UE)) {
 789		/* Clear CE/UE bits by writing 1s */
 790		writeq(ecclog, imc->window + ECC_ERROR_LOG_OFFSET);
 791		return ecclog;
 792	}
 793
 794	return 0;
 795}
 796
 797static void errsts_clear(struct igen6_imc *imc)
 798{
 799	u16 errsts;
 800
 801	if (pci_read_config_word(imc->pdev, ERRSTS_OFFSET, &errsts)) {
 802		igen6_printk(KERN_ERR, "Failed to read ERRSTS\n");
 803		return;
 804	}
 805
 806	/* Clear CE/UE bits by writing 1s */
 807	if (errsts & (ERRSTS_CE | ERRSTS_UE))
 808		pci_write_config_word(imc->pdev, ERRSTS_OFFSET, errsts);
 809}
 810
 811static int errcmd_enable_error_reporting(bool enable)
 812{
 813	struct igen6_imc *imc = &igen6_pvt->imc[0];
 814	u16 errcmd;
 815	int rc;
 816
 817	rc = pci_read_config_word(imc->pdev, ERRCMD_OFFSET, &errcmd);
 818	if (rc)
 819		return pcibios_err_to_errno(rc);
 820
 821	if (enable)
 822		errcmd |= ERRCMD_CE | ERRSTS_UE;
 823	else
 824		errcmd &= ~(ERRCMD_CE | ERRSTS_UE);
 825
 826	rc = pci_write_config_word(imc->pdev, ERRCMD_OFFSET, errcmd);
 827	if (rc)
 828		return pcibios_err_to_errno(rc);
 829
 830	return 0;
 831}
 832
 833static int ecclog_handler(void)
 834{
 835	struct igen6_imc *imc;
 836	int i, n = 0;
 837	u64 ecclog;
 838
 839	for (i = 0; i < res_cfg->num_imc; i++) {
 840		imc = &igen6_pvt->imc[i];
 841
 842		/* errsts_clear() isn't NMI-safe. Delay it in the IRQ context */
 843
 844		ecclog = ecclog_read_and_clear(imc);
 845		if (!ecclog)
 846			continue;
 847
 848		if (!ecclog_gen_pool_add(i, ecclog))
 849			irq_work_queue(&ecclog_irq_work);
 850
 851		n++;
 852	}
 853
 854	return n;
 855}
 856
 857static void ecclog_work_cb(struct work_struct *work)
 858{
 859	struct ecclog_node *node, *tmp;
 860	struct mem_ctl_info *mci;
 861	struct llist_node *head;
 862	struct decoded_addr res;
 863	u64 eaddr;
 864
 865	head = llist_del_all(&ecclog_llist);
 866	if (!head)
 867		return;
 868
 869	llist_for_each_entry_safe(node, tmp, head, llnode) {
 870		memset(&res, 0, sizeof(res));
 871		if (res_cfg->err_addr)
 872			eaddr = res_cfg->err_addr(node->ecclog);
 873		else
 874			eaddr = ECC_ERROR_LOG_ADDR(node->ecclog) <<
 875				ECC_ERROR_LOG_ADDR_SHIFT;
 876		res.mc	     = node->mc;
 877		res.sys_addr = res_cfg->err_addr_to_sys_addr(eaddr, res.mc);
 878		res.imc_addr = res_cfg->err_addr_to_imc_addr(eaddr, res.mc);
 879
 880		mci = igen6_pvt->imc[res.mc].mci;
 881
 882		edac_dbg(2, "MC %d, ecclog = 0x%llx\n", node->mc, node->ecclog);
 883		igen6_mc_printk(mci, KERN_DEBUG, "HANDLING IBECC MEMORY ERROR\n");
 884		igen6_mc_printk(mci, KERN_DEBUG, "ADDR 0x%llx ", res.sys_addr);
 885
 886		if (!igen6_decode(&res))
 887			igen6_output_error(&res, mci, node->ecclog);
 888
 889		gen_pool_free(ecclog_pool, (unsigned long)node, sizeof(*node));
 890	}
 891}
 892
 893static void ecclog_irq_work_cb(struct irq_work *irq_work)
 894{
 895	int i;
 896
 897	for (i = 0; i < res_cfg->num_imc; i++)
 898		errsts_clear(&igen6_pvt->imc[i]);
 899
 900	if (!llist_empty(&ecclog_llist))
 901		schedule_work(&ecclog_work);
 902}
 903
 904static int ecclog_nmi_handler(unsigned int cmd, struct pt_regs *regs)
 905{
 906	unsigned char reason;
 907
 908	if (!ecclog_handler())
 909		return NMI_DONE;
 910
 911	/*
 912	 * Both In-Band ECC correctable error and uncorrectable error are
 913	 * reported by SERR# NMI. The NMI generic code (see pci_serr_error())
 914	 * doesn't clear the bit NMI_REASON_CLEAR_SERR (in port 0x61) to
 915	 * re-enable the SERR# NMI after NMI handling. So clear this bit here
 916	 * to re-enable SERR# NMI for receiving future In-Band ECC errors.
 917	 */
 918	reason  = x86_platform.get_nmi_reason() & NMI_REASON_CLEAR_MASK;
 919	reason |= NMI_REASON_CLEAR_SERR;
 920	outb(reason, NMI_REASON_PORT);
 921	reason &= ~NMI_REASON_CLEAR_SERR;
 922	outb(reason, NMI_REASON_PORT);
 923
 924	return NMI_HANDLED;
 925}
 926
 927static int ecclog_mce_handler(struct notifier_block *nb, unsigned long val,
 928			      void *data)
 929{
 930	struct mce *mce = (struct mce *)data;
 931	char *type;
 932
 933	if (mce->kflags & MCE_HANDLED_CEC)
 934		return NOTIFY_DONE;
 935
 936	/*
 937	 * Ignore unless this is a memory related error.
 938	 * We don't check the bit MCI_STATUS_ADDRV of MCi_STATUS here,
 939	 * since this bit isn't set on some CPU (e.g., Tiger Lake UP3).
 940	 */
 941	if ((mce->status & 0xefff) >> 7 != 1)
 942		return NOTIFY_DONE;
 943
 944	if (mce->mcgstatus & MCG_STATUS_MCIP)
 945		type = "Exception";
 946	else
 947		type = "Event";
 948
 949	edac_dbg(0, "CPU %d: Machine Check %s: 0x%llx Bank %d: 0x%llx\n",
 950		 mce->extcpu, type, mce->mcgstatus,
 951		 mce->bank, mce->status);
 952	edac_dbg(0, "TSC 0x%llx\n", mce->tsc);
 953	edac_dbg(0, "ADDR 0x%llx\n", mce->addr);
 954	edac_dbg(0, "MISC 0x%llx\n", mce->misc);
 955	edac_dbg(0, "PROCESSOR %u:0x%x TIME %llu SOCKET %u APIC 0x%x\n",
 956		 mce->cpuvendor, mce->cpuid, mce->time,
 957		 mce->socketid, mce->apicid);
 958	/*
 959	 * We just use the Machine Check for the memory error notification.
 960	 * Each memory controller is associated with an IBECC instance.
 961	 * Directly read and clear the error information(error address and
 962	 * error type) on all the IBECC instances so that we know on which
 963	 * memory controller the memory error(s) occurred.
 964	 */
 965	if (!ecclog_handler())
 966		return NOTIFY_DONE;
 967
 968	mce->kflags |= MCE_HANDLED_EDAC;
 969
 970	return NOTIFY_DONE;
 971}
 972
 973static struct notifier_block ecclog_mce_dec = {
 974	.notifier_call	= ecclog_mce_handler,
 975	.priority	= MCE_PRIO_EDAC,
 976};
 977
 978static bool igen6_check_ecc(struct igen6_imc *imc)
 979{
 980	u32 activate = readl(imc->window + IBECC_ACTIVATE_OFFSET);
 981
 982	return !!(activate & IBECC_ACTIVATE_EN);
 983}
 984
 985static int igen6_get_dimm_config(struct mem_ctl_info *mci)
 986{
 987	struct igen6_imc *imc = mci->pvt_info;
 988	u32 mad_inter, mad_intra, mad_dimm;
 989	int i, j, ndimms, mc = imc->mc;
 990	struct dimm_info *dimm;
 991	enum mem_type mtype;
 992	enum dev_type dtype;
 993	u64 dsize;
 994	bool ecc;
 995
 996	edac_dbg(2, "\n");
 997
 998	mad_inter = readl(imc->window + MAD_INTER_CHANNEL_OFFSET);
 999	mtype = get_memory_type(mad_inter);
1000	ecc = igen6_check_ecc(imc);
1001	imc->ch_s_size = MAD_INTER_CHANNEL_CH_S_SIZE(mad_inter);
1002	imc->ch_l_map  = MAD_INTER_CHANNEL_CH_L_MAP(mad_inter);
1003
1004	for (i = 0; i < NUM_CHANNELS; i++) {
1005		mad_intra = readl(imc->window + MAD_INTRA_CH0_OFFSET + i * 4);
1006		mad_dimm  = readl(imc->window + MAD_DIMM_CH0_OFFSET + i * 4);
1007
1008		imc->dimm_l_size[i] = MAD_DIMM_CH_DIMM_L_SIZE(mad_dimm);
1009		imc->dimm_s_size[i] = MAD_DIMM_CH_DIMM_S_SIZE(mad_dimm);
1010		imc->dimm_l_map[i]  = MAD_INTRA_CH_DIMM_L_MAP(mad_intra);
1011		imc->size += imc->dimm_s_size[i];
1012		imc->size += imc->dimm_l_size[i];
1013		ndimms = 0;
1014
1015		for (j = 0; j < NUM_DIMMS; j++) {
1016			dimm = edac_get_dimm(mci, i, j, 0);
1017
1018			if (j ^ imc->dimm_l_map[i]) {
1019				dtype = get_width(0, mad_dimm);
1020				dsize = imc->dimm_s_size[i];
1021			} else {
1022				dtype = get_width(1, mad_dimm);
1023				dsize = imc->dimm_l_size[i];
1024			}
1025
1026			if (!dsize)
1027				continue;
1028
1029			dimm->grain = 64;
1030			dimm->mtype = mtype;
1031			dimm->dtype = dtype;
1032			dimm->nr_pages  = MiB_TO_PAGES(dsize >> 20);
1033			dimm->edac_mode = EDAC_SECDED;
1034			snprintf(dimm->label, sizeof(dimm->label),
1035				 "MC#%d_Chan#%d_DIMM#%d", mc, i, j);
1036			edac_dbg(0, "MC %d, Channel %d, DIMM %d, Size %llu MiB (%u pages)\n",
1037				 mc, i, j, dsize >> 20, dimm->nr_pages);
1038
1039			ndimms++;
1040		}
1041
1042		if (ndimms && !ecc) {
1043			igen6_printk(KERN_ERR, "MC%d In-Band ECC is disabled\n", mc);
1044			return -ENODEV;
1045		}
1046	}
1047
1048	edac_dbg(0, "MC %d, total size %llu MiB\n", mc, imc->size >> 20);
1049
1050	return 0;
1051}
1052
1053#ifdef CONFIG_EDAC_DEBUG
1054/* Top of upper usable DRAM */
1055static u64 igen6_touud;
1056#define TOUUD_OFFSET	0xa8
1057
1058static void igen6_reg_dump(struct igen6_imc *imc)
1059{
1060	int i;
1061
1062	edac_dbg(2, "CHANNEL_HASH     : 0x%x\n",
1063		 readl(imc->window + CHANNEL_HASH_OFFSET));
1064	edac_dbg(2, "CHANNEL_EHASH    : 0x%x\n",
1065		 readl(imc->window + CHANNEL_EHASH_OFFSET));
1066	edac_dbg(2, "MAD_INTER_CHANNEL: 0x%x\n",
1067		 readl(imc->window + MAD_INTER_CHANNEL_OFFSET));
1068	edac_dbg(2, "ECC_ERROR_LOG    : 0x%llx\n",
1069		 readq(imc->window + ECC_ERROR_LOG_OFFSET));
1070
1071	for (i = 0; i < NUM_CHANNELS; i++) {
1072		edac_dbg(2, "MAD_INTRA_CH%d    : 0x%x\n", i,
1073			 readl(imc->window + MAD_INTRA_CH0_OFFSET + i * 4));
1074		edac_dbg(2, "MAD_DIMM_CH%d     : 0x%x\n", i,
1075			 readl(imc->window + MAD_DIMM_CH0_OFFSET + i * 4));
1076	}
1077	edac_dbg(2, "TOLUD            : 0x%x", igen6_tolud);
1078	edac_dbg(2, "TOUUD            : 0x%llx", igen6_touud);
1079	edac_dbg(2, "TOM              : 0x%llx", igen6_tom);
1080}
1081
1082static struct dentry *igen6_test;
1083
1084static int debugfs_u64_set(void *data, u64 val)
1085{
1086	u64 ecclog;
1087
1088	if ((val >= igen6_tolud && val < _4GB) || val >= igen6_touud) {
1089		edac_dbg(0, "Address 0x%llx out of range\n", val);
1090		return 0;
1091	}
1092
1093	pr_warn_once("Fake error to 0x%llx injected via debugfs\n", val);
1094
1095	val  >>= ECC_ERROR_LOG_ADDR_SHIFT;
1096	ecclog = (val << ECC_ERROR_LOG_ADDR_SHIFT) | ECC_ERROR_LOG_CE;
1097
1098	if (!ecclog_gen_pool_add(0, ecclog))
1099		irq_work_queue(&ecclog_irq_work);
1100
1101	return 0;
1102}
1103DEFINE_SIMPLE_ATTRIBUTE(fops_u64_wo, NULL, debugfs_u64_set, "%llu\n");
1104
1105static void igen6_debug_setup(void)
1106{
1107	igen6_test = edac_debugfs_create_dir("igen6_test");
1108	if (!igen6_test)
1109		return;
1110
1111	if (!edac_debugfs_create_file("addr", 0200, igen6_test,
1112				      NULL, &fops_u64_wo)) {
1113		debugfs_remove(igen6_test);
1114		igen6_test = NULL;
1115	}
1116}
1117
1118static void igen6_debug_teardown(void)
1119{
1120	debugfs_remove_recursive(igen6_test);
1121}
1122#else
1123static void igen6_reg_dump(struct igen6_imc *imc) {}
1124static void igen6_debug_setup(void) {}
1125static void igen6_debug_teardown(void) {}
1126#endif
1127
1128static int igen6_pci_setup(struct pci_dev *pdev, u64 *mchbar)
1129{
1130	union  {
1131		u64 v;
1132		struct {
1133			u32 v_lo;
1134			u32 v_hi;
1135		};
1136	} u;
1137
1138	edac_dbg(2, "\n");
1139
1140	if (!res_cfg->ibecc_available(pdev)) {
1141		edac_dbg(2, "No In-Band ECC IP\n");
1142		goto fail;
1143	}
1144
1145	if (pci_read_config_dword(pdev, TOLUD_OFFSET, &igen6_tolud)) {
1146		igen6_printk(KERN_ERR, "Failed to read TOLUD\n");
1147		goto fail;
1148	}
1149
1150	igen6_tolud &= GENMASK(31, 20);
1151
1152	if (pci_read_config_dword(pdev, TOM_OFFSET, &u.v_lo)) {
1153		igen6_printk(KERN_ERR, "Failed to read lower TOM\n");
1154		goto fail;
1155	}
1156
1157	if (pci_read_config_dword(pdev, TOM_OFFSET + 4, &u.v_hi)) {
1158		igen6_printk(KERN_ERR, "Failed to read upper TOM\n");
1159		goto fail;
1160	}
1161
1162	igen6_tom = u.v & GENMASK_ULL(38, 20);
1163
1164	if (get_mchbar(pdev, mchbar))
1165		goto fail;
1166
1167#ifdef CONFIG_EDAC_DEBUG
1168	if (pci_read_config_dword(pdev, TOUUD_OFFSET, &u.v_lo))
1169		edac_dbg(2, "Failed to read lower TOUUD\n");
1170	else if (pci_read_config_dword(pdev, TOUUD_OFFSET + 4, &u.v_hi))
1171		edac_dbg(2, "Failed to read upper TOUUD\n");
1172	else
1173		igen6_touud = u.v & GENMASK_ULL(38, 20);
1174#endif
1175
1176	return 0;
1177fail:
1178	return -ENODEV;
1179}
1180
1181static void igen6_check(struct mem_ctl_info *mci)
1182{
1183	struct igen6_imc *imc = mci->pvt_info;
1184	u64 ecclog;
1185
1186	/* errsts_clear() isn't NMI-safe. Delay it in the IRQ context */
1187	ecclog = ecclog_read_and_clear(imc);
1188	if (!ecclog)
1189		return;
1190
1191	if (!ecclog_gen_pool_add(imc->mc, ecclog))
1192		irq_work_queue(&ecclog_irq_work);
1193}
1194
1195static int igen6_register_mci(int mc, u64 mchbar, struct pci_dev *pdev)
1196{
1197	struct edac_mc_layer layers[2];
1198	struct mem_ctl_info *mci;
1199	struct igen6_imc *imc;
1200	void __iomem *window;
1201	int rc;
1202
1203	edac_dbg(2, "\n");
1204
1205	mchbar += mc * MCHBAR_SIZE;
1206	window = ioremap(mchbar, MCHBAR_SIZE);
1207	if (!window) {
1208		igen6_printk(KERN_ERR, "Failed to ioremap 0x%llx\n", mchbar);
1209		return -ENODEV;
1210	}
1211
1212	layers[0].type = EDAC_MC_LAYER_CHANNEL;
1213	layers[0].size = NUM_CHANNELS;
1214	layers[0].is_virt_csrow = false;
1215	layers[1].type = EDAC_MC_LAYER_SLOT;
1216	layers[1].size = NUM_DIMMS;
1217	layers[1].is_virt_csrow = true;
1218
1219	mci = edac_mc_alloc(mc, ARRAY_SIZE(layers), layers, 0);
1220	if (!mci) {
1221		rc = -ENOMEM;
1222		goto fail;
1223	}
1224
1225	mci->ctl_name = kasprintf(GFP_KERNEL, "Intel_client_SoC MC#%d", mc);
1226	if (!mci->ctl_name) {
1227		rc = -ENOMEM;
1228		goto fail2;
1229	}
1230
1231	mci->mtype_cap = MEM_FLAG_LPDDR4 | MEM_FLAG_DDR4;
1232	mci->edac_ctl_cap = EDAC_FLAG_SECDED;
1233	mci->edac_cap = EDAC_FLAG_SECDED;
1234	mci->mod_name = EDAC_MOD_STR;
1235	mci->dev_name = pci_name(pdev);
1236	if (edac_op_state == EDAC_OPSTATE_POLL)
1237		mci->edac_check = igen6_check;
1238	mci->pvt_info = &igen6_pvt->imc[mc];
1239
1240	imc = mci->pvt_info;
1241	device_initialize(&imc->dev);
1242	/*
1243	 * EDAC core uses mci->pdev(pointer of structure device) as
1244	 * memory controller ID. The client SoCs attach one or more
1245	 * memory controllers to single pci_dev (single pci_dev->dev
1246	 * can be for multiple memory controllers).
1247	 *
1248	 * To make mci->pdev unique, assign pci_dev->dev to mci->pdev
1249	 * for the first memory controller and assign a unique imc->dev
1250	 * to mci->pdev for each non-first memory controller.
1251	 */
1252	mci->pdev = mc ? &imc->dev : &pdev->dev;
1253	imc->mc	= mc;
1254	imc->pdev = pdev;
1255	imc->window = window;
1256
1257	igen6_reg_dump(imc);
1258
1259	rc = igen6_get_dimm_config(mci);
1260	if (rc)
1261		goto fail3;
1262
1263	rc = edac_mc_add_mc(mci);
1264	if (rc) {
1265		igen6_printk(KERN_ERR, "Failed to register mci#%d\n", mc);
1266		goto fail3;
1267	}
1268
1269	imc->mci = mci;
1270	return 0;
1271fail3:
1272	mci->pvt_info = NULL;
1273	kfree(mci->ctl_name);
1274fail2:
1275	edac_mc_free(mci);
1276fail:
1277	iounmap(window);
1278	return rc;
1279}
1280
1281static void igen6_unregister_mcis(void)
1282{
1283	struct mem_ctl_info *mci;
1284	struct igen6_imc *imc;
1285	int i;
1286
1287	edac_dbg(2, "\n");
1288
1289	for (i = 0; i < res_cfg->num_imc; i++) {
1290		imc = &igen6_pvt->imc[i];
1291		mci = imc->mci;
1292		if (!mci)
1293			continue;
1294
1295		edac_mc_del_mc(mci->pdev);
1296		kfree(mci->ctl_name);
1297		mci->pvt_info = NULL;
1298		edac_mc_free(mci);
1299		iounmap(imc->window);
1300	}
1301}
1302
1303static int igen6_mem_slice_setup(u64 mchbar)
1304{
1305	struct igen6_imc *imc = &igen6_pvt->imc[0];
1306	u64 base = mchbar + res_cfg->cmf_base;
1307	u32 offset = res_cfg->ms_hash_offset;
1308	u32 size = res_cfg->cmf_size;
1309	u64 ms_s_size, ms_hash;
1310	void __iomem *cmf;
1311	int ms_l_map;
1312
1313	edac_dbg(2, "\n");
1314
1315	if (imc[0].size < imc[1].size) {
1316		ms_s_size = imc[0].size;
1317		ms_l_map  = 1;
1318	} else {
1319		ms_s_size = imc[1].size;
1320		ms_l_map  = 0;
1321	}
1322
1323	igen6_pvt->ms_s_size = ms_s_size;
1324	igen6_pvt->ms_l_map  = ms_l_map;
1325
1326	edac_dbg(0, "ms_s_size: %llu MiB, ms_l_map %d\n",
1327		 ms_s_size >> 20, ms_l_map);
1328
1329	if (!size)
1330		return 0;
1331
1332	cmf = ioremap(base, size);
1333	if (!cmf) {
1334		igen6_printk(KERN_ERR, "Failed to ioremap cmf 0x%llx\n", base);
1335		return -ENODEV;
1336	}
1337
1338	ms_hash = readq(cmf + offset);
1339	igen6_pvt->ms_hash = ms_hash;
1340
1341	edac_dbg(0, "MEM_SLICE_HASH: 0x%llx\n", ms_hash);
1342
1343	iounmap(cmf);
1344
1345	return 0;
1346}
1347
1348static int register_err_handler(void)
1349{
1350	int rc;
1351
1352	if (res_cfg->machine_check) {
1353		mce_register_decode_chain(&ecclog_mce_dec);
1354		return 0;
1355	}
1356
1357	rc = register_nmi_handler(NMI_SERR, ecclog_nmi_handler,
1358				  0, IGEN6_NMI_NAME);
1359	if (rc) {
1360		igen6_printk(KERN_ERR, "Failed to register NMI handler\n");
1361		return rc;
1362	}
1363
1364	return 0;
1365}
1366
1367static void unregister_err_handler(void)
1368{
1369	if (res_cfg->machine_check) {
1370		mce_unregister_decode_chain(&ecclog_mce_dec);
1371		return;
1372	}
1373
1374	unregister_nmi_handler(NMI_SERR, IGEN6_NMI_NAME);
1375}
1376
1377static void opstate_set(struct res_config *cfg, const struct pci_device_id *ent)
1378{
1379	/*
1380	 * Quirk: Certain SoCs' error reporting interrupts don't work.
1381	 *        Force polling mode for them to ensure that memory error
1382	 *        events can be handled.
1383	 */
1384	if (ent->device == DID_ADL_N_SKU4) {
1385		edac_op_state = EDAC_OPSTATE_POLL;
1386		return;
1387	}
1388
1389	/* Set the mode according to the configuration data. */
1390	if (cfg->machine_check)
1391		edac_op_state = EDAC_OPSTATE_INT;
1392	else
1393		edac_op_state = EDAC_OPSTATE_NMI;
1394}
1395
1396static int igen6_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1397{
1398	u64 mchbar;
1399	int i, rc;
1400
1401	edac_dbg(2, "\n");
1402
1403	igen6_pvt = kzalloc(sizeof(*igen6_pvt), GFP_KERNEL);
1404	if (!igen6_pvt)
1405		return -ENOMEM;
1406
1407	res_cfg = (struct res_config *)ent->driver_data;
1408
1409	rc = igen6_pci_setup(pdev, &mchbar);
1410	if (rc)
1411		goto fail;
1412
1413	opstate_set(res_cfg, ent);
1414
1415	for (i = 0; i < res_cfg->num_imc; i++) {
1416		rc = igen6_register_mci(i, mchbar, pdev);
1417		if (rc)
1418			goto fail2;
1419	}
1420
1421	if (res_cfg->num_imc > 1) {
1422		rc = igen6_mem_slice_setup(mchbar);
1423		if (rc)
1424			goto fail2;
1425	}
1426
1427	ecclog_pool = ecclog_gen_pool_create();
1428	if (!ecclog_pool) {
1429		rc = -ENOMEM;
1430		goto fail2;
1431	}
1432
1433	INIT_WORK(&ecclog_work, ecclog_work_cb);
1434	init_irq_work(&ecclog_irq_work, ecclog_irq_work_cb);
1435
1436	rc = register_err_handler();
1437	if (rc)
1438		goto fail3;
1439
1440	/* Enable error reporting */
1441	rc = errcmd_enable_error_reporting(true);
1442	if (rc) {
1443		igen6_printk(KERN_ERR, "Failed to enable error reporting\n");
1444		goto fail4;
1445	}
1446
1447	/* Check if any pending errors before/during the registration of the error handler */
1448	ecclog_handler();
1449
1450	igen6_debug_setup();
1451	return 0;
1452fail4:
1453	unregister_nmi_handler(NMI_SERR, IGEN6_NMI_NAME);
1454fail3:
1455	gen_pool_destroy(ecclog_pool);
1456fail2:
1457	igen6_unregister_mcis();
1458fail:
1459	kfree(igen6_pvt);
1460	return rc;
1461}
1462
1463static void igen6_remove(struct pci_dev *pdev)
1464{
1465	edac_dbg(2, "\n");
1466
1467	igen6_debug_teardown();
1468	errcmd_enable_error_reporting(false);
1469	unregister_err_handler();
1470	irq_work_sync(&ecclog_irq_work);
1471	flush_work(&ecclog_work);
1472	gen_pool_destroy(ecclog_pool);
1473	igen6_unregister_mcis();
1474	kfree(igen6_pvt);
1475}
1476
1477static struct pci_driver igen6_driver = {
1478	.name     = EDAC_MOD_STR,
1479	.probe    = igen6_probe,
1480	.remove   = igen6_remove,
1481	.id_table = igen6_pci_tbl,
1482};
1483
1484static int __init igen6_init(void)
1485{
1486	const char *owner;
1487	int rc;
1488
1489	edac_dbg(2, "\n");
1490
1491	if (ghes_get_devices())
1492		return -EBUSY;
1493
1494	owner = edac_get_owner();
1495	if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR)))
1496		return -EBUSY;
1497
1498	rc = pci_register_driver(&igen6_driver);
1499	if (rc)
1500		return rc;
1501
1502	igen6_printk(KERN_INFO, "%s\n", IGEN6_REVISION);
1503
1504	return 0;
1505}
1506
1507static void __exit igen6_exit(void)
1508{
1509	edac_dbg(2, "\n");
1510
1511	pci_unregister_driver(&igen6_driver);
1512}
1513
1514module_init(igen6_init);
1515module_exit(igen6_exit);
1516
1517MODULE_LICENSE("GPL v2");
1518MODULE_AUTHOR("Qiuxu Zhuo");
1519MODULE_DESCRIPTION("MC Driver for Intel client SoC using In-Band ECC");