Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Freescale Memory Controller kernel module
4 *
5 * Support Power-based SoCs including MPC85xx, MPC86xx, MPC83xx and
6 * ARM-based Layerscape SoCs including LS2xxx and LS1021A. Originally
7 * split out from mpc85xx_edac EDAC driver.
8 *
9 * Parts Copyrighted (c) 2013 by Freescale Semiconductor, Inc.
10 *
11 * Author: Dave Jiang <djiang@mvista.com>
12 *
13 * 2006-2007 (c) MontaVista Software, Inc.
14 */
15#include <linux/module.h>
16#include <linux/init.h>
17#include <linux/interrupt.h>
18#include <linux/ctype.h>
19#include <linux/io.h>
20#include <linux/mod_devicetable.h>
21#include <linux/edac.h>
22#include <linux/smp.h>
23#include <linux/gfp.h>
24
25#include <linux/of.h>
26#include <linux/of_address.h>
27#include "edac_module.h"
28#include "fsl_ddr_edac.h"
29
30#define EDAC_MOD_STR "fsl_ddr_edac"
31
32static int edac_mc_idx;
33
34static inline void __iomem *ddr_reg_addr(struct fsl_mc_pdata *pdata, unsigned int off)
35{
36 if (pdata->flag == TYPE_IMX9 && off >= FSL_MC_DATA_ERR_INJECT_HI && off <= FSL_MC_ERR_SBE)
37 return pdata->inject_vbase + off - FSL_MC_DATA_ERR_INJECT_HI
38 + IMX9_MC_DATA_ERR_INJECT_OFF;
39
40 if (pdata->flag == TYPE_IMX9 && off >= IMX9_MC_ERR_EN)
41 return pdata->inject_vbase + off - IMX9_MC_ERR_EN;
42
43 return pdata->mc_vbase + off;
44}
45
46static inline u32 ddr_in32(struct fsl_mc_pdata *pdata, unsigned int off)
47{
48 void __iomem *addr = ddr_reg_addr(pdata, off);
49
50 return pdata->little_endian ? ioread32(addr) : ioread32be(addr);
51}
52
53static inline void ddr_out32(struct fsl_mc_pdata *pdata, unsigned int off, u32 value)
54{
55 void __iomem *addr = ddr_reg_addr(pdata, off);
56
57 if (pdata->little_endian)
58 iowrite32(value, addr);
59 else
60 iowrite32be(value, addr);
61}
62
63#ifdef CONFIG_EDAC_DEBUG
64/************************ MC SYSFS parts ***********************************/
65
66#define to_mci(k) container_of(k, struct mem_ctl_info, dev)
67
68static ssize_t fsl_mc_inject_data_hi_show(struct device *dev,
69 struct device_attribute *mattr,
70 char *data)
71{
72 struct mem_ctl_info *mci = to_mci(dev);
73 struct fsl_mc_pdata *pdata = mci->pvt_info;
74 return sprintf(data, "0x%08x",
75 ddr_in32(pdata, FSL_MC_DATA_ERR_INJECT_HI));
76}
77
78static ssize_t fsl_mc_inject_data_lo_show(struct device *dev,
79 struct device_attribute *mattr,
80 char *data)
81{
82 struct mem_ctl_info *mci = to_mci(dev);
83 struct fsl_mc_pdata *pdata = mci->pvt_info;
84 return sprintf(data, "0x%08x",
85 ddr_in32(pdata, FSL_MC_DATA_ERR_INJECT_LO));
86}
87
88static ssize_t fsl_mc_inject_ctrl_show(struct device *dev,
89 struct device_attribute *mattr,
90 char *data)
91{
92 struct mem_ctl_info *mci = to_mci(dev);
93 struct fsl_mc_pdata *pdata = mci->pvt_info;
94 return sprintf(data, "0x%08x",
95 ddr_in32(pdata, FSL_MC_ECC_ERR_INJECT));
96}
97
98static ssize_t fsl_mc_inject_data_hi_store(struct device *dev,
99 struct device_attribute *mattr,
100 const char *data, size_t count)
101{
102 struct mem_ctl_info *mci = to_mci(dev);
103 struct fsl_mc_pdata *pdata = mci->pvt_info;
104 unsigned long val;
105 int rc;
106
107 if (isdigit(*data)) {
108 rc = kstrtoul(data, 0, &val);
109 if (rc)
110 return rc;
111
112 ddr_out32(pdata, FSL_MC_DATA_ERR_INJECT_HI, val);
113 return count;
114 }
115 return 0;
116}
117
118static ssize_t fsl_mc_inject_data_lo_store(struct device *dev,
119 struct device_attribute *mattr,
120 const char *data, size_t count)
121{
122 struct mem_ctl_info *mci = to_mci(dev);
123 struct fsl_mc_pdata *pdata = mci->pvt_info;
124 unsigned long val;
125 int rc;
126
127 if (isdigit(*data)) {
128 rc = kstrtoul(data, 0, &val);
129 if (rc)
130 return rc;
131
132 ddr_out32(pdata, FSL_MC_DATA_ERR_INJECT_LO, val);
133 return count;
134 }
135 return 0;
136}
137
138static ssize_t fsl_mc_inject_ctrl_store(struct device *dev,
139 struct device_attribute *mattr,
140 const char *data, size_t count)
141{
142 struct mem_ctl_info *mci = to_mci(dev);
143 struct fsl_mc_pdata *pdata = mci->pvt_info;
144 unsigned long val;
145 int rc;
146
147 if (isdigit(*data)) {
148 rc = kstrtoul(data, 0, &val);
149 if (rc)
150 return rc;
151
152 ddr_out32(pdata, FSL_MC_ECC_ERR_INJECT, val);
153 return count;
154 }
155 return 0;
156}
157
158static DEVICE_ATTR(inject_data_hi, S_IRUGO | S_IWUSR,
159 fsl_mc_inject_data_hi_show, fsl_mc_inject_data_hi_store);
160static DEVICE_ATTR(inject_data_lo, S_IRUGO | S_IWUSR,
161 fsl_mc_inject_data_lo_show, fsl_mc_inject_data_lo_store);
162static DEVICE_ATTR(inject_ctrl, S_IRUGO | S_IWUSR,
163 fsl_mc_inject_ctrl_show, fsl_mc_inject_ctrl_store);
164#endif /* CONFIG_EDAC_DEBUG */
165
166static struct attribute *fsl_ddr_dev_attrs[] = {
167#ifdef CONFIG_EDAC_DEBUG
168 &dev_attr_inject_data_hi.attr,
169 &dev_attr_inject_data_lo.attr,
170 &dev_attr_inject_ctrl.attr,
171#endif
172 NULL
173};
174
175ATTRIBUTE_GROUPS(fsl_ddr_dev);
176
177/**************************** MC Err device ***************************/
178
179/*
180 * Taken from table 8-55 in the MPC8641 User's Manual and/or 9-61 in the
181 * MPC8572 User's Manual. Each line represents a syndrome bit column as a
182 * 64-bit value, but split into an upper and lower 32-bit chunk. The labels
183 * below correspond to Freescale's manuals.
184 */
185static unsigned int ecc_table[16] = {
186 /* MSB LSB */
187 /* [0:31] [32:63] */
188 0xf00fe11e, 0xc33c0ff7, /* Syndrome bit 7 */
189 0x00ff00ff, 0x00fff0ff,
190 0x0f0f0f0f, 0x0f0fff00,
191 0x11113333, 0x7777000f,
192 0x22224444, 0x8888222f,
193 0x44448888, 0xffff4441,
194 0x8888ffff, 0x11118882,
195 0xffff1111, 0x22221114, /* Syndrome bit 0 */
196};
197
198/*
199 * Calculate the correct ECC value for a 64-bit value specified by high:low
200 */
201static u8 calculate_ecc(u32 high, u32 low)
202{
203 u32 mask_low;
204 u32 mask_high;
205 int bit_cnt;
206 u8 ecc = 0;
207 int i;
208 int j;
209
210 for (i = 0; i < 8; i++) {
211 mask_high = ecc_table[i * 2];
212 mask_low = ecc_table[i * 2 + 1];
213 bit_cnt = 0;
214
215 for (j = 0; j < 32; j++) {
216 if ((mask_high >> j) & 1)
217 bit_cnt ^= (high >> j) & 1;
218 if ((mask_low >> j) & 1)
219 bit_cnt ^= (low >> j) & 1;
220 }
221
222 ecc |= bit_cnt << i;
223 }
224
225 return ecc;
226}
227
228/*
229 * Create the syndrome code which is generated if the data line specified by
230 * 'bit' failed. Eg generate an 8-bit codes seen in Table 8-55 in the MPC8641
231 * User's Manual and 9-61 in the MPC8572 User's Manual.
232 */
233static u8 syndrome_from_bit(unsigned int bit) {
234 int i;
235 u8 syndrome = 0;
236
237 /*
238 * Cycle through the upper or lower 32-bit portion of each value in
239 * ecc_table depending on if 'bit' is in the upper or lower half of
240 * 64-bit data.
241 */
242 for (i = bit < 32; i < 16; i += 2)
243 syndrome |= ((ecc_table[i] >> (bit % 32)) & 1) << (i / 2);
244
245 return syndrome;
246}
247
248/*
249 * Decode data and ecc syndrome to determine what went wrong
250 * Note: This can only decode single-bit errors
251 */
252static void sbe_ecc_decode(u32 cap_high, u32 cap_low, u32 cap_ecc,
253 int *bad_data_bit, int *bad_ecc_bit)
254{
255 int i;
256 u8 syndrome;
257
258 *bad_data_bit = -1;
259 *bad_ecc_bit = -1;
260
261 /*
262 * Calculate the ECC of the captured data and XOR it with the captured
263 * ECC to find an ECC syndrome value we can search for
264 */
265 syndrome = calculate_ecc(cap_high, cap_low) ^ cap_ecc;
266
267 /* Check if a data line is stuck... */
268 for (i = 0; i < 64; i++) {
269 if (syndrome == syndrome_from_bit(i)) {
270 *bad_data_bit = i;
271 return;
272 }
273 }
274
275 /* If data is correct, check ECC bits for errors... */
276 for (i = 0; i < 8; i++) {
277 if ((syndrome >> i) & 0x1) {
278 *bad_ecc_bit = i;
279 return;
280 }
281 }
282}
283
284#define make64(high, low) (((u64)(high) << 32) | (low))
285
286static void fsl_mc_check(struct mem_ctl_info *mci)
287{
288 struct fsl_mc_pdata *pdata = mci->pvt_info;
289 struct csrow_info *csrow;
290 u32 bus_width;
291 u32 err_detect;
292 u32 syndrome;
293 u64 err_addr;
294 u32 pfn;
295 int row_index;
296 u32 cap_high;
297 u32 cap_low;
298 int bad_data_bit;
299 int bad_ecc_bit;
300
301 err_detect = ddr_in32(pdata, FSL_MC_ERR_DETECT);
302 if (!err_detect)
303 return;
304
305 fsl_mc_printk(mci, KERN_ERR, "Err Detect Register: %#8.8x\n",
306 err_detect);
307
308 /* no more processing if not ECC bit errors */
309 if (!(err_detect & (DDR_EDE_SBE | DDR_EDE_MBE))) {
310 ddr_out32(pdata, FSL_MC_ERR_DETECT, err_detect);
311 return;
312 }
313
314 syndrome = ddr_in32(pdata, FSL_MC_CAPTURE_ECC);
315
316 /* Mask off appropriate bits of syndrome based on bus width */
317 bus_width = (ddr_in32(pdata, FSL_MC_DDR_SDRAM_CFG) &
318 DSC_DBW_MASK) ? 32 : 64;
319 if (bus_width == 64)
320 syndrome &= 0xff;
321 else
322 syndrome &= 0xffff;
323
324 err_addr = make64(
325 ddr_in32(pdata, FSL_MC_CAPTURE_EXT_ADDRESS),
326 ddr_in32(pdata, FSL_MC_CAPTURE_ADDRESS));
327 pfn = err_addr >> PAGE_SHIFT;
328
329 for (row_index = 0; row_index < mci->nr_csrows; row_index++) {
330 csrow = mci->csrows[row_index];
331 if ((pfn >= csrow->first_page) && (pfn <= csrow->last_page))
332 break;
333 }
334
335 cap_high = ddr_in32(pdata, FSL_MC_CAPTURE_DATA_HI);
336 cap_low = ddr_in32(pdata, FSL_MC_CAPTURE_DATA_LO);
337
338 /*
339 * Analyze single-bit errors on 64-bit wide buses
340 * TODO: Add support for 32-bit wide buses
341 */
342 if ((err_detect & DDR_EDE_SBE) && (bus_width == 64)) {
343 u64 cap = (u64)cap_high << 32 | cap_low;
344 u32 s = syndrome;
345
346 sbe_ecc_decode(cap_high, cap_low, syndrome,
347 &bad_data_bit, &bad_ecc_bit);
348
349 if (bad_data_bit >= 0) {
350 fsl_mc_printk(mci, KERN_ERR, "Faulty Data bit: %d\n", bad_data_bit);
351 cap ^= 1ULL << bad_data_bit;
352 }
353
354 if (bad_ecc_bit >= 0) {
355 fsl_mc_printk(mci, KERN_ERR, "Faulty ECC bit: %d\n", bad_ecc_bit);
356 s ^= 1 << bad_ecc_bit;
357 }
358
359 fsl_mc_printk(mci, KERN_ERR,
360 "Expected Data / ECC:\t%#8.8x_%08x / %#2.2x\n",
361 upper_32_bits(cap), lower_32_bits(cap), s);
362 }
363
364 fsl_mc_printk(mci, KERN_ERR,
365 "Captured Data / ECC:\t%#8.8x_%08x / %#2.2x\n",
366 cap_high, cap_low, syndrome);
367 fsl_mc_printk(mci, KERN_ERR, "Err addr: %#8.8llx\n", err_addr);
368 fsl_mc_printk(mci, KERN_ERR, "PFN: %#8.8x\n", pfn);
369
370 /* we are out of range */
371 if (row_index == mci->nr_csrows)
372 fsl_mc_printk(mci, KERN_ERR, "PFN out of range!\n");
373
374 if (err_detect & DDR_EDE_SBE)
375 edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1,
376 pfn, err_addr & ~PAGE_MASK, syndrome,
377 row_index, 0, -1,
378 mci->ctl_name, "");
379
380 if (err_detect & DDR_EDE_MBE)
381 edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1,
382 pfn, err_addr & ~PAGE_MASK, syndrome,
383 row_index, 0, -1,
384 mci->ctl_name, "");
385
386 ddr_out32(pdata, FSL_MC_ERR_DETECT, err_detect);
387}
388
389static irqreturn_t fsl_mc_isr(int irq, void *dev_id)
390{
391 struct mem_ctl_info *mci = dev_id;
392 struct fsl_mc_pdata *pdata = mci->pvt_info;
393 u32 err_detect;
394
395 err_detect = ddr_in32(pdata, FSL_MC_ERR_DETECT);
396 if (!err_detect)
397 return IRQ_NONE;
398
399 fsl_mc_check(mci);
400
401 return IRQ_HANDLED;
402}
403
404static void fsl_ddr_init_csrows(struct mem_ctl_info *mci)
405{
406 struct fsl_mc_pdata *pdata = mci->pvt_info;
407 struct csrow_info *csrow;
408 struct dimm_info *dimm;
409 u32 sdram_ctl;
410 u32 sdtype;
411 enum mem_type mtype;
412 u32 cs_bnds;
413 int index;
414
415 sdram_ctl = ddr_in32(pdata, FSL_MC_DDR_SDRAM_CFG);
416
417 sdtype = sdram_ctl & DSC_SDTYPE_MASK;
418 if (sdram_ctl & DSC_RD_EN) {
419 switch (sdtype) {
420 case 0x02000000:
421 mtype = MEM_RDDR;
422 break;
423 case 0x03000000:
424 mtype = MEM_RDDR2;
425 break;
426 case 0x07000000:
427 mtype = MEM_RDDR3;
428 break;
429 case 0x05000000:
430 mtype = MEM_RDDR4;
431 break;
432 default:
433 mtype = MEM_UNKNOWN;
434 break;
435 }
436 } else {
437 switch (sdtype) {
438 case 0x02000000:
439 mtype = MEM_DDR;
440 break;
441 case 0x03000000:
442 mtype = MEM_DDR2;
443 break;
444 case 0x07000000:
445 mtype = MEM_DDR3;
446 break;
447 case 0x05000000:
448 mtype = MEM_DDR4;
449 break;
450 case 0x04000000:
451 mtype = MEM_LPDDR4;
452 break;
453 default:
454 mtype = MEM_UNKNOWN;
455 break;
456 }
457 }
458
459 for (index = 0; index < mci->nr_csrows; index++) {
460 u32 start;
461 u32 end;
462
463 csrow = mci->csrows[index];
464 dimm = csrow->channels[0]->dimm;
465
466 cs_bnds = ddr_in32(pdata, FSL_MC_CS_BNDS_0 +
467 (index * FSL_MC_CS_BNDS_OFS));
468
469 start = (cs_bnds & 0xffff0000) >> 16;
470 end = (cs_bnds & 0x0000ffff);
471
472 if (start == end)
473 continue; /* not populated */
474
475 start <<= (24 - PAGE_SHIFT);
476 end <<= (24 - PAGE_SHIFT);
477 end |= (1 << (24 - PAGE_SHIFT)) - 1;
478
479 csrow->first_page = start;
480 csrow->last_page = end;
481
482 dimm->nr_pages = end + 1 - start;
483 dimm->grain = 8;
484 dimm->mtype = mtype;
485 dimm->dtype = DEV_UNKNOWN;
486 if (pdata->flag == TYPE_IMX9)
487 dimm->dtype = DEV_X16;
488 else if (sdram_ctl & DSC_X32_EN)
489 dimm->dtype = DEV_X32;
490 dimm->edac_mode = EDAC_SECDED;
491 }
492}
493
494int fsl_mc_err_probe(struct platform_device *op)
495{
496 struct mem_ctl_info *mci;
497 struct edac_mc_layer layers[2];
498 struct fsl_mc_pdata *pdata;
499 struct resource r;
500 u32 ecc_en_mask;
501 u32 sdram_ctl;
502 int res;
503
504 if (!devres_open_group(&op->dev, fsl_mc_err_probe, GFP_KERNEL))
505 return -ENOMEM;
506
507 layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
508 layers[0].size = 4;
509 layers[0].is_virt_csrow = true;
510 layers[1].type = EDAC_MC_LAYER_CHANNEL;
511 layers[1].size = 1;
512 layers[1].is_virt_csrow = false;
513 mci = edac_mc_alloc(edac_mc_idx, ARRAY_SIZE(layers), layers,
514 sizeof(*pdata));
515 if (!mci) {
516 devres_release_group(&op->dev, fsl_mc_err_probe);
517 return -ENOMEM;
518 }
519
520 pdata = mci->pvt_info;
521 pdata->name = "fsl_mc_err";
522 mci->pdev = &op->dev;
523 pdata->edac_idx = edac_mc_idx++;
524 dev_set_drvdata(mci->pdev, mci);
525 mci->ctl_name = pdata->name;
526 mci->dev_name = pdata->name;
527
528 pdata->flag = (unsigned long)device_get_match_data(&op->dev);
529
530 /*
531 * Get the endianness of DDR controller registers.
532 * Default is big endian.
533 */
534 pdata->little_endian = of_property_read_bool(op->dev.of_node, "little-endian");
535
536 res = of_address_to_resource(op->dev.of_node, 0, &r);
537 if (res) {
538 pr_err("%s: Unable to get resource for MC err regs\n",
539 __func__);
540 goto err;
541 }
542
543 if (!devm_request_mem_region(&op->dev, r.start, resource_size(&r),
544 pdata->name)) {
545 pr_err("%s: Error while requesting mem region\n",
546 __func__);
547 res = -EBUSY;
548 goto err;
549 }
550
551 pdata->mc_vbase = devm_ioremap(&op->dev, r.start, resource_size(&r));
552 if (!pdata->mc_vbase) {
553 pr_err("%s: Unable to setup MC err regs\n", __func__);
554 res = -ENOMEM;
555 goto err;
556 }
557
558 if (pdata->flag == TYPE_IMX9) {
559 pdata->inject_vbase = devm_platform_ioremap_resource_byname(op, "inject");
560 if (IS_ERR(pdata->inject_vbase)) {
561 res = -ENOMEM;
562 goto err;
563 }
564 }
565
566 if (pdata->flag == TYPE_IMX9) {
567 sdram_ctl = ddr_in32(pdata, IMX9_MC_ERR_EN);
568 ecc_en_mask = ERR_ECC_EN | ERR_INLINE_ECC;
569 } else {
570 sdram_ctl = ddr_in32(pdata, FSL_MC_DDR_SDRAM_CFG);
571 ecc_en_mask = DSC_ECC_EN;
572 }
573
574 if ((sdram_ctl & ecc_en_mask) != ecc_en_mask) {
575 /* no ECC */
576 pr_warn("%s: No ECC DIMMs discovered\n", __func__);
577 res = -ENODEV;
578 goto err;
579 }
580
581 edac_dbg(3, "init mci\n");
582 mci->mtype_cap = MEM_FLAG_DDR | MEM_FLAG_RDDR |
583 MEM_FLAG_DDR2 | MEM_FLAG_RDDR2 |
584 MEM_FLAG_DDR3 | MEM_FLAG_RDDR3 |
585 MEM_FLAG_DDR4 | MEM_FLAG_RDDR4 |
586 MEM_FLAG_LPDDR4;
587 mci->edac_ctl_cap = EDAC_FLAG_NONE | EDAC_FLAG_SECDED;
588 mci->edac_cap = EDAC_FLAG_SECDED;
589 mci->mod_name = EDAC_MOD_STR;
590
591 if (edac_op_state == EDAC_OPSTATE_POLL)
592 mci->edac_check = fsl_mc_check;
593
594 mci->ctl_page_to_phys = NULL;
595
596 mci->scrub_mode = SCRUB_SW_SRC;
597
598 fsl_ddr_init_csrows(mci);
599
600 /* store the original error disable bits */
601 pdata->orig_ddr_err_disable = ddr_in32(pdata, FSL_MC_ERR_DISABLE);
602 ddr_out32(pdata, FSL_MC_ERR_DISABLE, 0);
603
604 /* clear all error bits */
605 ddr_out32(pdata, FSL_MC_ERR_DETECT, ~0);
606
607 res = edac_mc_add_mc_with_groups(mci, fsl_ddr_dev_groups);
608 if (res) {
609 edac_dbg(3, "failed edac_mc_add_mc()\n");
610 goto err;
611 }
612
613 if (edac_op_state == EDAC_OPSTATE_INT) {
614 ddr_out32(pdata, FSL_MC_ERR_INT_EN,
615 DDR_EIE_MBEE | DDR_EIE_SBEE);
616
617 /* store the original error management threshold */
618 pdata->orig_ddr_err_sbe = ddr_in32(pdata,
619 FSL_MC_ERR_SBE) & 0xff0000;
620
621 /* set threshold to 1 error per interrupt */
622 ddr_out32(pdata, FSL_MC_ERR_SBE, 0x10000);
623
624 /* register interrupts */
625 pdata->irq = platform_get_irq(op, 0);
626 res = devm_request_irq(&op->dev, pdata->irq,
627 fsl_mc_isr,
628 IRQF_SHARED,
629 "[EDAC] MC err", mci);
630 if (res < 0) {
631 pr_err("%s: Unable to request irq %d for FSL DDR DRAM ERR\n",
632 __func__, pdata->irq);
633 res = -ENODEV;
634 goto err2;
635 }
636
637 pr_info(EDAC_MOD_STR " acquired irq %d for MC\n",
638 pdata->irq);
639 }
640
641 devres_remove_group(&op->dev, fsl_mc_err_probe);
642 edac_dbg(3, "success\n");
643 pr_info(EDAC_MOD_STR " MC err registered\n");
644
645 return 0;
646
647err2:
648 edac_mc_del_mc(&op->dev);
649err:
650 devres_release_group(&op->dev, fsl_mc_err_probe);
651 edac_mc_free(mci);
652 return res;
653}
654
655void fsl_mc_err_remove(struct platform_device *op)
656{
657 struct mem_ctl_info *mci = dev_get_drvdata(&op->dev);
658 struct fsl_mc_pdata *pdata = mci->pvt_info;
659
660 edac_dbg(0, "\n");
661
662 if (edac_op_state == EDAC_OPSTATE_INT) {
663 ddr_out32(pdata, FSL_MC_ERR_INT_EN, 0);
664 }
665
666 ddr_out32(pdata, FSL_MC_ERR_DISABLE,
667 pdata->orig_ddr_err_disable);
668 ddr_out32(pdata, FSL_MC_ERR_SBE, pdata->orig_ddr_err_sbe);
669
670
671 edac_mc_del_mc(&op->dev);
672 edac_mc_free(mci);
673}
1/*
2 * Freescale Memory Controller kernel module
3 *
4 * Support Power-based SoCs including MPC85xx, MPC86xx, MPC83xx and
5 * ARM-based Layerscape SoCs including LS2xxx and LS1021A. Originally
6 * split out from mpc85xx_edac EDAC driver.
7 *
8 * Parts Copyrighted (c) 2013 by Freescale Semiconductor, Inc.
9 *
10 * Author: Dave Jiang <djiang@mvista.com>
11 *
12 * 2006-2007 (c) MontaVista Software, Inc. This file is licensed under
13 * the terms of the GNU General Public License version 2. This program
14 * is licensed "as is" without any warranty of any kind, whether express
15 * or implied.
16 */
17#include <linux/module.h>
18#include <linux/init.h>
19#include <linux/interrupt.h>
20#include <linux/ctype.h>
21#include <linux/io.h>
22#include <linux/mod_devicetable.h>
23#include <linux/edac.h>
24#include <linux/smp.h>
25#include <linux/gfp.h>
26
27#include <linux/of_platform.h>
28#include <linux/of_device.h>
29#include <linux/of_address.h>
30#include "edac_module.h"
31#include "fsl_ddr_edac.h"
32
33#define EDAC_MOD_STR "fsl_ddr_edac"
34
35static int edac_mc_idx;
36
37static u32 orig_ddr_err_disable;
38static u32 orig_ddr_err_sbe;
39static bool little_endian;
40
41static inline u32 ddr_in32(void __iomem *addr)
42{
43 return little_endian ? ioread32(addr) : ioread32be(addr);
44}
45
46static inline void ddr_out32(void __iomem *addr, u32 value)
47{
48 if (little_endian)
49 iowrite32(value, addr);
50 else
51 iowrite32be(value, addr);
52}
53
54#ifdef CONFIG_EDAC_DEBUG
55/************************ MC SYSFS parts ***********************************/
56
57#define to_mci(k) container_of(k, struct mem_ctl_info, dev)
58
59static ssize_t fsl_mc_inject_data_hi_show(struct device *dev,
60 struct device_attribute *mattr,
61 char *data)
62{
63 struct mem_ctl_info *mci = to_mci(dev);
64 struct fsl_mc_pdata *pdata = mci->pvt_info;
65 return sprintf(data, "0x%08x",
66 ddr_in32(pdata->mc_vbase + FSL_MC_DATA_ERR_INJECT_HI));
67}
68
69static ssize_t fsl_mc_inject_data_lo_show(struct device *dev,
70 struct device_attribute *mattr,
71 char *data)
72{
73 struct mem_ctl_info *mci = to_mci(dev);
74 struct fsl_mc_pdata *pdata = mci->pvt_info;
75 return sprintf(data, "0x%08x",
76 ddr_in32(pdata->mc_vbase + FSL_MC_DATA_ERR_INJECT_LO));
77}
78
79static ssize_t fsl_mc_inject_ctrl_show(struct device *dev,
80 struct device_attribute *mattr,
81 char *data)
82{
83 struct mem_ctl_info *mci = to_mci(dev);
84 struct fsl_mc_pdata *pdata = mci->pvt_info;
85 return sprintf(data, "0x%08x",
86 ddr_in32(pdata->mc_vbase + FSL_MC_ECC_ERR_INJECT));
87}
88
89static ssize_t fsl_mc_inject_data_hi_store(struct device *dev,
90 struct device_attribute *mattr,
91 const char *data, size_t count)
92{
93 struct mem_ctl_info *mci = to_mci(dev);
94 struct fsl_mc_pdata *pdata = mci->pvt_info;
95 unsigned long val;
96 int rc;
97
98 if (isdigit(*data)) {
99 rc = kstrtoul(data, 0, &val);
100 if (rc)
101 return rc;
102
103 ddr_out32(pdata->mc_vbase + FSL_MC_DATA_ERR_INJECT_HI, val);
104 return count;
105 }
106 return 0;
107}
108
109static ssize_t fsl_mc_inject_data_lo_store(struct device *dev,
110 struct device_attribute *mattr,
111 const char *data, size_t count)
112{
113 struct mem_ctl_info *mci = to_mci(dev);
114 struct fsl_mc_pdata *pdata = mci->pvt_info;
115 unsigned long val;
116 int rc;
117
118 if (isdigit(*data)) {
119 rc = kstrtoul(data, 0, &val);
120 if (rc)
121 return rc;
122
123 ddr_out32(pdata->mc_vbase + FSL_MC_DATA_ERR_INJECT_LO, val);
124 return count;
125 }
126 return 0;
127}
128
129static ssize_t fsl_mc_inject_ctrl_store(struct device *dev,
130 struct device_attribute *mattr,
131 const char *data, size_t count)
132{
133 struct mem_ctl_info *mci = to_mci(dev);
134 struct fsl_mc_pdata *pdata = mci->pvt_info;
135 unsigned long val;
136 int rc;
137
138 if (isdigit(*data)) {
139 rc = kstrtoul(data, 0, &val);
140 if (rc)
141 return rc;
142
143 ddr_out32(pdata->mc_vbase + FSL_MC_ECC_ERR_INJECT, val);
144 return count;
145 }
146 return 0;
147}
148
149static DEVICE_ATTR(inject_data_hi, S_IRUGO | S_IWUSR,
150 fsl_mc_inject_data_hi_show, fsl_mc_inject_data_hi_store);
151static DEVICE_ATTR(inject_data_lo, S_IRUGO | S_IWUSR,
152 fsl_mc_inject_data_lo_show, fsl_mc_inject_data_lo_store);
153static DEVICE_ATTR(inject_ctrl, S_IRUGO | S_IWUSR,
154 fsl_mc_inject_ctrl_show, fsl_mc_inject_ctrl_store);
155#endif /* CONFIG_EDAC_DEBUG */
156
157static struct attribute *fsl_ddr_dev_attrs[] = {
158#ifdef CONFIG_EDAC_DEBUG
159 &dev_attr_inject_data_hi.attr,
160 &dev_attr_inject_data_lo.attr,
161 &dev_attr_inject_ctrl.attr,
162#endif
163 NULL
164};
165
166ATTRIBUTE_GROUPS(fsl_ddr_dev);
167
168/**************************** MC Err device ***************************/
169
170/*
171 * Taken from table 8-55 in the MPC8641 User's Manual and/or 9-61 in the
172 * MPC8572 User's Manual. Each line represents a syndrome bit column as a
173 * 64-bit value, but split into an upper and lower 32-bit chunk. The labels
174 * below correspond to Freescale's manuals.
175 */
176static unsigned int ecc_table[16] = {
177 /* MSB LSB */
178 /* [0:31] [32:63] */
179 0xf00fe11e, 0xc33c0ff7, /* Syndrome bit 7 */
180 0x00ff00ff, 0x00fff0ff,
181 0x0f0f0f0f, 0x0f0fff00,
182 0x11113333, 0x7777000f,
183 0x22224444, 0x8888222f,
184 0x44448888, 0xffff4441,
185 0x8888ffff, 0x11118882,
186 0xffff1111, 0x22221114, /* Syndrome bit 0 */
187};
188
189/*
190 * Calculate the correct ECC value for a 64-bit value specified by high:low
191 */
192static u8 calculate_ecc(u32 high, u32 low)
193{
194 u32 mask_low;
195 u32 mask_high;
196 int bit_cnt;
197 u8 ecc = 0;
198 int i;
199 int j;
200
201 for (i = 0; i < 8; i++) {
202 mask_high = ecc_table[i * 2];
203 mask_low = ecc_table[i * 2 + 1];
204 bit_cnt = 0;
205
206 for (j = 0; j < 32; j++) {
207 if ((mask_high >> j) & 1)
208 bit_cnt ^= (high >> j) & 1;
209 if ((mask_low >> j) & 1)
210 bit_cnt ^= (low >> j) & 1;
211 }
212
213 ecc |= bit_cnt << i;
214 }
215
216 return ecc;
217}
218
219/*
220 * Create the syndrome code which is generated if the data line specified by
221 * 'bit' failed. Eg generate an 8-bit codes seen in Table 8-55 in the MPC8641
222 * User's Manual and 9-61 in the MPC8572 User's Manual.
223 */
224static u8 syndrome_from_bit(unsigned int bit) {
225 int i;
226 u8 syndrome = 0;
227
228 /*
229 * Cycle through the upper or lower 32-bit portion of each value in
230 * ecc_table depending on if 'bit' is in the upper or lower half of
231 * 64-bit data.
232 */
233 for (i = bit < 32; i < 16; i += 2)
234 syndrome |= ((ecc_table[i] >> (bit % 32)) & 1) << (i / 2);
235
236 return syndrome;
237}
238
239/*
240 * Decode data and ecc syndrome to determine what went wrong
241 * Note: This can only decode single-bit errors
242 */
243static void sbe_ecc_decode(u32 cap_high, u32 cap_low, u32 cap_ecc,
244 int *bad_data_bit, int *bad_ecc_bit)
245{
246 int i;
247 u8 syndrome;
248
249 *bad_data_bit = -1;
250 *bad_ecc_bit = -1;
251
252 /*
253 * Calculate the ECC of the captured data and XOR it with the captured
254 * ECC to find an ECC syndrome value we can search for
255 */
256 syndrome = calculate_ecc(cap_high, cap_low) ^ cap_ecc;
257
258 /* Check if a data line is stuck... */
259 for (i = 0; i < 64; i++) {
260 if (syndrome == syndrome_from_bit(i)) {
261 *bad_data_bit = i;
262 return;
263 }
264 }
265
266 /* If data is correct, check ECC bits for errors... */
267 for (i = 0; i < 8; i++) {
268 if ((syndrome >> i) & 0x1) {
269 *bad_ecc_bit = i;
270 return;
271 }
272 }
273}
274
275#define make64(high, low) (((u64)(high) << 32) | (low))
276
277static void fsl_mc_check(struct mem_ctl_info *mci)
278{
279 struct fsl_mc_pdata *pdata = mci->pvt_info;
280 struct csrow_info *csrow;
281 u32 bus_width;
282 u32 err_detect;
283 u32 syndrome;
284 u64 err_addr;
285 u32 pfn;
286 int row_index;
287 u32 cap_high;
288 u32 cap_low;
289 int bad_data_bit;
290 int bad_ecc_bit;
291
292 err_detect = ddr_in32(pdata->mc_vbase + FSL_MC_ERR_DETECT);
293 if (!err_detect)
294 return;
295
296 fsl_mc_printk(mci, KERN_ERR, "Err Detect Register: %#8.8x\n",
297 err_detect);
298
299 /* no more processing if not ECC bit errors */
300 if (!(err_detect & (DDR_EDE_SBE | DDR_EDE_MBE))) {
301 ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DETECT, err_detect);
302 return;
303 }
304
305 syndrome = ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_ECC);
306
307 /* Mask off appropriate bits of syndrome based on bus width */
308 bus_width = (ddr_in32(pdata->mc_vbase + FSL_MC_DDR_SDRAM_CFG) &
309 DSC_DBW_MASK) ? 32 : 64;
310 if (bus_width == 64)
311 syndrome &= 0xff;
312 else
313 syndrome &= 0xffff;
314
315 err_addr = make64(
316 ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_EXT_ADDRESS),
317 ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_ADDRESS));
318 pfn = err_addr >> PAGE_SHIFT;
319
320 for (row_index = 0; row_index < mci->nr_csrows; row_index++) {
321 csrow = mci->csrows[row_index];
322 if ((pfn >= csrow->first_page) && (pfn <= csrow->last_page))
323 break;
324 }
325
326 cap_high = ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_DATA_HI);
327 cap_low = ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_DATA_LO);
328
329 /*
330 * Analyze single-bit errors on 64-bit wide buses
331 * TODO: Add support for 32-bit wide buses
332 */
333 if ((err_detect & DDR_EDE_SBE) && (bus_width == 64)) {
334 sbe_ecc_decode(cap_high, cap_low, syndrome,
335 &bad_data_bit, &bad_ecc_bit);
336
337 if (bad_data_bit != -1)
338 fsl_mc_printk(mci, KERN_ERR,
339 "Faulty Data bit: %d\n", bad_data_bit);
340 if (bad_ecc_bit != -1)
341 fsl_mc_printk(mci, KERN_ERR,
342 "Faulty ECC bit: %d\n", bad_ecc_bit);
343
344 fsl_mc_printk(mci, KERN_ERR,
345 "Expected Data / ECC:\t%#8.8x_%08x / %#2.2x\n",
346 cap_high ^ (1 << (bad_data_bit - 32)),
347 cap_low ^ (1 << bad_data_bit),
348 syndrome ^ (1 << bad_ecc_bit));
349 }
350
351 fsl_mc_printk(mci, KERN_ERR,
352 "Captured Data / ECC:\t%#8.8x_%08x / %#2.2x\n",
353 cap_high, cap_low, syndrome);
354 fsl_mc_printk(mci, KERN_ERR, "Err addr: %#8.8llx\n", err_addr);
355 fsl_mc_printk(mci, KERN_ERR, "PFN: %#8.8x\n", pfn);
356
357 /* we are out of range */
358 if (row_index == mci->nr_csrows)
359 fsl_mc_printk(mci, KERN_ERR, "PFN out of range!\n");
360
361 if (err_detect & DDR_EDE_SBE)
362 edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1,
363 pfn, err_addr & ~PAGE_MASK, syndrome,
364 row_index, 0, -1,
365 mci->ctl_name, "");
366
367 if (err_detect & DDR_EDE_MBE)
368 edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1,
369 pfn, err_addr & ~PAGE_MASK, syndrome,
370 row_index, 0, -1,
371 mci->ctl_name, "");
372
373 ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DETECT, err_detect);
374}
375
376static irqreturn_t fsl_mc_isr(int irq, void *dev_id)
377{
378 struct mem_ctl_info *mci = dev_id;
379 struct fsl_mc_pdata *pdata = mci->pvt_info;
380 u32 err_detect;
381
382 err_detect = ddr_in32(pdata->mc_vbase + FSL_MC_ERR_DETECT);
383 if (!err_detect)
384 return IRQ_NONE;
385
386 fsl_mc_check(mci);
387
388 return IRQ_HANDLED;
389}
390
391static void fsl_ddr_init_csrows(struct mem_ctl_info *mci)
392{
393 struct fsl_mc_pdata *pdata = mci->pvt_info;
394 struct csrow_info *csrow;
395 struct dimm_info *dimm;
396 u32 sdram_ctl;
397 u32 sdtype;
398 enum mem_type mtype;
399 u32 cs_bnds;
400 int index;
401
402 sdram_ctl = ddr_in32(pdata->mc_vbase + FSL_MC_DDR_SDRAM_CFG);
403
404 sdtype = sdram_ctl & DSC_SDTYPE_MASK;
405 if (sdram_ctl & DSC_RD_EN) {
406 switch (sdtype) {
407 case 0x02000000:
408 mtype = MEM_RDDR;
409 break;
410 case 0x03000000:
411 mtype = MEM_RDDR2;
412 break;
413 case 0x07000000:
414 mtype = MEM_RDDR3;
415 break;
416 case 0x05000000:
417 mtype = MEM_RDDR4;
418 break;
419 default:
420 mtype = MEM_UNKNOWN;
421 break;
422 }
423 } else {
424 switch (sdtype) {
425 case 0x02000000:
426 mtype = MEM_DDR;
427 break;
428 case 0x03000000:
429 mtype = MEM_DDR2;
430 break;
431 case 0x07000000:
432 mtype = MEM_DDR3;
433 break;
434 case 0x05000000:
435 mtype = MEM_DDR4;
436 break;
437 default:
438 mtype = MEM_UNKNOWN;
439 break;
440 }
441 }
442
443 for (index = 0; index < mci->nr_csrows; index++) {
444 u32 start;
445 u32 end;
446
447 csrow = mci->csrows[index];
448 dimm = csrow->channels[0]->dimm;
449
450 cs_bnds = ddr_in32(pdata->mc_vbase + FSL_MC_CS_BNDS_0 +
451 (index * FSL_MC_CS_BNDS_OFS));
452
453 start = (cs_bnds & 0xffff0000) >> 16;
454 end = (cs_bnds & 0x0000ffff);
455
456 if (start == end)
457 continue; /* not populated */
458
459 start <<= (24 - PAGE_SHIFT);
460 end <<= (24 - PAGE_SHIFT);
461 end |= (1 << (24 - PAGE_SHIFT)) - 1;
462
463 csrow->first_page = start;
464 csrow->last_page = end;
465
466 dimm->nr_pages = end + 1 - start;
467 dimm->grain = 8;
468 dimm->mtype = mtype;
469 dimm->dtype = DEV_UNKNOWN;
470 if (sdram_ctl & DSC_X32_EN)
471 dimm->dtype = DEV_X32;
472 dimm->edac_mode = EDAC_SECDED;
473 }
474}
475
476int fsl_mc_err_probe(struct platform_device *op)
477{
478 struct mem_ctl_info *mci;
479 struct edac_mc_layer layers[2];
480 struct fsl_mc_pdata *pdata;
481 struct resource r;
482 u32 sdram_ctl;
483 int res;
484
485 if (!devres_open_group(&op->dev, fsl_mc_err_probe, GFP_KERNEL))
486 return -ENOMEM;
487
488 layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
489 layers[0].size = 4;
490 layers[0].is_virt_csrow = true;
491 layers[1].type = EDAC_MC_LAYER_CHANNEL;
492 layers[1].size = 1;
493 layers[1].is_virt_csrow = false;
494 mci = edac_mc_alloc(edac_mc_idx, ARRAY_SIZE(layers), layers,
495 sizeof(*pdata));
496 if (!mci) {
497 devres_release_group(&op->dev, fsl_mc_err_probe);
498 return -ENOMEM;
499 }
500
501 pdata = mci->pvt_info;
502 pdata->name = "fsl_mc_err";
503 mci->pdev = &op->dev;
504 pdata->edac_idx = edac_mc_idx++;
505 dev_set_drvdata(mci->pdev, mci);
506 mci->ctl_name = pdata->name;
507 mci->dev_name = pdata->name;
508
509 /*
510 * Get the endianness of DDR controller registers.
511 * Default is big endian.
512 */
513 little_endian = of_property_read_bool(op->dev.of_node, "little-endian");
514
515 res = of_address_to_resource(op->dev.of_node, 0, &r);
516 if (res) {
517 pr_err("%s: Unable to get resource for MC err regs\n",
518 __func__);
519 goto err;
520 }
521
522 if (!devm_request_mem_region(&op->dev, r.start, resource_size(&r),
523 pdata->name)) {
524 pr_err("%s: Error while requesting mem region\n",
525 __func__);
526 res = -EBUSY;
527 goto err;
528 }
529
530 pdata->mc_vbase = devm_ioremap(&op->dev, r.start, resource_size(&r));
531 if (!pdata->mc_vbase) {
532 pr_err("%s: Unable to setup MC err regs\n", __func__);
533 res = -ENOMEM;
534 goto err;
535 }
536
537 sdram_ctl = ddr_in32(pdata->mc_vbase + FSL_MC_DDR_SDRAM_CFG);
538 if (!(sdram_ctl & DSC_ECC_EN)) {
539 /* no ECC */
540 pr_warn("%s: No ECC DIMMs discovered\n", __func__);
541 res = -ENODEV;
542 goto err;
543 }
544
545 edac_dbg(3, "init mci\n");
546 mci->mtype_cap = MEM_FLAG_DDR | MEM_FLAG_RDDR |
547 MEM_FLAG_DDR2 | MEM_FLAG_RDDR2 |
548 MEM_FLAG_DDR3 | MEM_FLAG_RDDR3 |
549 MEM_FLAG_DDR4 | MEM_FLAG_RDDR4;
550 mci->edac_ctl_cap = EDAC_FLAG_NONE | EDAC_FLAG_SECDED;
551 mci->edac_cap = EDAC_FLAG_SECDED;
552 mci->mod_name = EDAC_MOD_STR;
553
554 if (edac_op_state == EDAC_OPSTATE_POLL)
555 mci->edac_check = fsl_mc_check;
556
557 mci->ctl_page_to_phys = NULL;
558
559 mci->scrub_mode = SCRUB_SW_SRC;
560
561 fsl_ddr_init_csrows(mci);
562
563 /* store the original error disable bits */
564 orig_ddr_err_disable = ddr_in32(pdata->mc_vbase + FSL_MC_ERR_DISABLE);
565 ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DISABLE, 0);
566
567 /* clear all error bits */
568 ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DETECT, ~0);
569
570 res = edac_mc_add_mc_with_groups(mci, fsl_ddr_dev_groups);
571 if (res) {
572 edac_dbg(3, "failed edac_mc_add_mc()\n");
573 goto err;
574 }
575
576 if (edac_op_state == EDAC_OPSTATE_INT) {
577 ddr_out32(pdata->mc_vbase + FSL_MC_ERR_INT_EN,
578 DDR_EIE_MBEE | DDR_EIE_SBEE);
579
580 /* store the original error management threshold */
581 orig_ddr_err_sbe = ddr_in32(pdata->mc_vbase +
582 FSL_MC_ERR_SBE) & 0xff0000;
583
584 /* set threshold to 1 error per interrupt */
585 ddr_out32(pdata->mc_vbase + FSL_MC_ERR_SBE, 0x10000);
586
587 /* register interrupts */
588 pdata->irq = platform_get_irq(op, 0);
589 res = devm_request_irq(&op->dev, pdata->irq,
590 fsl_mc_isr,
591 IRQF_SHARED,
592 "[EDAC] MC err", mci);
593 if (res < 0) {
594 pr_err("%s: Unable to request irq %d for FSL DDR DRAM ERR\n",
595 __func__, pdata->irq);
596 res = -ENODEV;
597 goto err2;
598 }
599
600 pr_info(EDAC_MOD_STR " acquired irq %d for MC\n",
601 pdata->irq);
602 }
603
604 devres_remove_group(&op->dev, fsl_mc_err_probe);
605 edac_dbg(3, "success\n");
606 pr_info(EDAC_MOD_STR " MC err registered\n");
607
608 return 0;
609
610err2:
611 edac_mc_del_mc(&op->dev);
612err:
613 devres_release_group(&op->dev, fsl_mc_err_probe);
614 edac_mc_free(mci);
615 return res;
616}
617
618int fsl_mc_err_remove(struct platform_device *op)
619{
620 struct mem_ctl_info *mci = dev_get_drvdata(&op->dev);
621 struct fsl_mc_pdata *pdata = mci->pvt_info;
622
623 edac_dbg(0, "\n");
624
625 if (edac_op_state == EDAC_OPSTATE_INT) {
626 ddr_out32(pdata->mc_vbase + FSL_MC_ERR_INT_EN, 0);
627 }
628
629 ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DISABLE,
630 orig_ddr_err_disable);
631 ddr_out32(pdata->mc_vbase + FSL_MC_ERR_SBE, orig_ddr_err_sbe);
632
633 edac_mc_del_mc(&op->dev);
634 edac_mc_free(mci);
635 return 0;
636}