Linux Audio

Check our new training course

Loading...
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Routines supporting the Power 7+ Nest Accelerators driver
  4 *
  5 * Copyright (C) 2011-2012 International Business Machines Inc.
  6 *
  7 * Author: Kent Yoder <yoder1@us.ibm.com>
  8 */
  9
 10#include <crypto/internal/aead.h>
 11#include <crypto/internal/hash.h>
 12#include <crypto/aes.h>
 13#include <crypto/sha2.h>
 14#include <crypto/algapi.h>
 15#include <crypto/scatterwalk.h>
 16#include <linux/module.h>
 17#include <linux/moduleparam.h>
 18#include <linux/types.h>
 19#include <linux/mm.h>
 20#include <linux/scatterlist.h>
 21#include <linux/device.h>
 22#include <linux/of.h>
 23#include <asm/hvcall.h>
 24#include <asm/vio.h>
 25
 26#include "nx_csbcpb.h"
 27#include "nx.h"
 28
 29
 30/**
 31 * nx_hcall_sync - make an H_COP_OP hcall for the passed in op structure
 32 *
 33 * @nx_ctx: the crypto context handle
 34 * @op: PFO operation struct to pass in
 35 * @may_sleep: flag indicating the request can sleep
 36 *
 37 * Make the hcall, retrying while the hardware is busy. If we cannot yield
 38 * the thread, limit the number of retries to 10 here.
 39 */
 40int nx_hcall_sync(struct nx_crypto_ctx *nx_ctx,
 41		  struct vio_pfo_op    *op,
 42		  u32                   may_sleep)
 43{
 44	int rc, retries = 10;
 45	struct vio_dev *viodev = nx_driver.viodev;
 46
 47	atomic_inc(&(nx_ctx->stats->sync_ops));
 48
 49	do {
 50		rc = vio_h_cop_sync(viodev, op);
 51	} while (rc == -EBUSY && !may_sleep && retries--);
 52
 53	if (rc) {
 54		dev_dbg(&viodev->dev, "vio_h_cop_sync failed: rc: %d "
 55			"hcall rc: %ld\n", rc, op->hcall_err);
 56		atomic_inc(&(nx_ctx->stats->errors));
 57		atomic_set(&(nx_ctx->stats->last_error), op->hcall_err);
 58		atomic_set(&(nx_ctx->stats->last_error_pid), current->pid);
 59	}
 60
 61	return rc;
 62}
 63
 64/**
 65 * nx_build_sg_list - build an NX scatter list describing a single  buffer
 66 *
 67 * @sg_head: pointer to the first scatter list element to build
 68 * @start_addr: pointer to the linear buffer
 69 * @len: length of the data at @start_addr
 70 * @sgmax: the largest number of scatter list elements we're allowed to create
 71 *
 72 * This function will start writing nx_sg elements at @sg_head and keep
 73 * writing them until all of the data from @start_addr is described or
 74 * until sgmax elements have been written. Scatter list elements will be
 75 * created such that none of the elements describes a buffer that crosses a 4K
 76 * boundary.
 77 */
 78struct nx_sg *nx_build_sg_list(struct nx_sg *sg_head,
 79			       u8           *start_addr,
 80			       unsigned int *len,
 81			       u32           sgmax)
 82{
 83	unsigned int sg_len = 0;
 84	struct nx_sg *sg;
 85	u64 sg_addr = (u64)start_addr;
 86	u64 end_addr;
 87
 88	/* determine the start and end for this address range - slightly
 89	 * different if this is in VMALLOC_REGION */
 90	if (is_vmalloc_addr(start_addr))
 91		sg_addr = page_to_phys(vmalloc_to_page(start_addr))
 92			  + offset_in_page(sg_addr);
 93	else
 94		sg_addr = __pa(sg_addr);
 95
 96	end_addr = sg_addr + *len;
 97
 98	/* each iteration will write one struct nx_sg element and add the
 99	 * length of data described by that element to sg_len. Once @len bytes
100	 * have been described (or @sgmax elements have been written), the
101	 * loop ends. min_t is used to ensure @end_addr falls on the same page
102	 * as sg_addr, if not, we need to create another nx_sg element for the
103	 * data on the next page.
104	 *
105	 * Also when using vmalloc'ed data, every time that a system page
106	 * boundary is crossed the physical address needs to be re-calculated.
107	 */
108	for (sg = sg_head; sg_len < *len; sg++) {
109		u64 next_page;
110
111		sg->addr = sg_addr;
112		sg_addr = min_t(u64, NX_PAGE_NUM(sg_addr + NX_PAGE_SIZE),
113				end_addr);
114
115		next_page = (sg->addr & PAGE_MASK) + PAGE_SIZE;
116		sg->len = min_t(u64, sg_addr, next_page) - sg->addr;
117		sg_len += sg->len;
118
119		if (sg_addr >= next_page &&
120				is_vmalloc_addr(start_addr + sg_len)) {
121			sg_addr = page_to_phys(vmalloc_to_page(
122						start_addr + sg_len));
123			end_addr = sg_addr + *len - sg_len;
124		}
125
126		if ((sg - sg_head) == sgmax) {
127			pr_err("nx: scatter/gather list overflow, pid: %d\n",
128			       current->pid);
129			sg++;
130			break;
131		}
132	}
133	*len = sg_len;
134
135	/* return the moved sg_head pointer */
136	return sg;
137}
138
139/**
140 * nx_walk_and_build - walk a linux scatterlist and build an nx scatterlist
141 *
142 * @nx_dst: pointer to the first nx_sg element to write
143 * @sglen: max number of nx_sg entries we're allowed to write
144 * @sg_src: pointer to the source linux scatterlist to walk
145 * @start: number of bytes to fast-forward past at the beginning of @sg_src
146 * @src_len: number of bytes to walk in @sg_src
147 */
148struct nx_sg *nx_walk_and_build(struct nx_sg       *nx_dst,
149				unsigned int        sglen,
150				struct scatterlist *sg_src,
151				unsigned int        start,
152				unsigned int       *src_len)
153{
154	struct scatter_walk walk;
155	struct nx_sg *nx_sg = nx_dst;
156	unsigned int n, offset = 0, len = *src_len;
157	char *dst;
158
159	/* we need to fast forward through @start bytes first */
160	for (;;) {
161		scatterwalk_start(&walk, sg_src);
162
163		if (start < offset + sg_src->length)
164			break;
165
166		offset += sg_src->length;
167		sg_src = sg_next(sg_src);
168	}
169
170	/* start - offset is the number of bytes to advance in the scatterlist
171	 * element we're currently looking at */
172	scatterwalk_advance(&walk, start - offset);
173
174	while (len && (nx_sg - nx_dst) < sglen) {
175		n = scatterwalk_clamp(&walk, len);
176		if (!n) {
177			/* In cases where we have scatterlist chain sg_next
178			 * handles with it properly */
179			scatterwalk_start(&walk, sg_next(walk.sg));
180			n = scatterwalk_clamp(&walk, len);
181		}
182		dst = scatterwalk_map(&walk);
183
184		nx_sg = nx_build_sg_list(nx_sg, dst, &n, sglen - (nx_sg - nx_dst));
185		len -= n;
186
187		scatterwalk_unmap(dst);
188		scatterwalk_advance(&walk, n);
189		scatterwalk_done(&walk, SCATTERWALK_FROM_SG, len);
190	}
191	/* update to_process */
192	*src_len -= len;
193
194	/* return the moved destination pointer */
195	return nx_sg;
196}
197
198/**
199 * trim_sg_list - ensures the bound in sg list.
200 * @sg: sg list head
201 * @end: sg lisg end
202 * @delta:  is the amount we need to crop in order to bound the list.
203 * @nbytes: length of data in the scatterlists or data length - whichever
204 *          is greater.
205 */
206static long int trim_sg_list(struct nx_sg *sg,
207			     struct nx_sg *end,
208			     unsigned int delta,
209			     unsigned int *nbytes)
210{
211	long int oplen;
212	long int data_back;
213	unsigned int is_delta = delta;
214
215	while (delta && end > sg) {
216		struct nx_sg *last = end - 1;
217
218		if (last->len > delta) {
219			last->len -= delta;
220			delta = 0;
221		} else {
222			end--;
223			delta -= last->len;
224		}
225	}
226
227	/* There are cases where we need to crop list in order to make it
228	 * a block size multiple, but we also need to align data. In order to
229	 * that we need to calculate how much we need to put back to be
230	 * processed
231	 */
232	oplen = (sg - end) * sizeof(struct nx_sg);
233	if (is_delta) {
234		data_back = (abs(oplen) / AES_BLOCK_SIZE) *  sg->len;
235		data_back = *nbytes - (data_back & ~(AES_BLOCK_SIZE - 1));
236		*nbytes -= data_back;
237	}
238
239	return oplen;
240}
241
242/**
243 * nx_build_sg_lists - walk the input scatterlists and build arrays of NX
244 *                     scatterlists based on them.
245 *
246 * @nx_ctx: NX crypto context for the lists we're building
247 * @iv: iv data, if the algorithm requires it
248 * @dst: destination scatterlist
249 * @src: source scatterlist
250 * @nbytes: length of data described in the scatterlists
251 * @offset: number of bytes to fast-forward past at the beginning of
252 *          scatterlists.
253 * @oiv: destination for the iv data, if the algorithm requires it
254 *
255 * This is common code shared by all the AES algorithms. It uses the crypto
256 * scatterlist walk routines to traverse input and output scatterlists, building
257 * corresponding NX scatterlists
258 */
259int nx_build_sg_lists(struct nx_crypto_ctx  *nx_ctx,
260		      const u8              *iv,
261		      struct scatterlist    *dst,
262		      struct scatterlist    *src,
263		      unsigned int          *nbytes,
264		      unsigned int           offset,
265		      u8                    *oiv)
266{
267	unsigned int delta = 0;
268	unsigned int total = *nbytes;
269	struct nx_sg *nx_insg = nx_ctx->in_sg;
270	struct nx_sg *nx_outsg = nx_ctx->out_sg;
271	unsigned int max_sg_len;
272
273	max_sg_len = min_t(u64, nx_ctx->ap->sglen,
274			nx_driver.of.max_sg_len/sizeof(struct nx_sg));
275	max_sg_len = min_t(u64, max_sg_len,
276			nx_ctx->ap->databytelen/NX_PAGE_SIZE);
277
278	if (oiv)
279		memcpy(oiv, iv, AES_BLOCK_SIZE);
280
281	*nbytes = min_t(u64, *nbytes, nx_ctx->ap->databytelen);
282
283	nx_outsg = nx_walk_and_build(nx_outsg, max_sg_len, dst,
284					offset, nbytes);
285	nx_insg = nx_walk_and_build(nx_insg, max_sg_len, src,
286					offset, nbytes);
287
288	if (*nbytes < total)
289		delta = *nbytes - (*nbytes & ~(AES_BLOCK_SIZE - 1));
290
291	/* these lengths should be negative, which will indicate to phyp that
292	 * the input and output parameters are scatterlists, not linear
293	 * buffers */
294	nx_ctx->op.inlen = trim_sg_list(nx_ctx->in_sg, nx_insg, delta, nbytes);
295	nx_ctx->op.outlen = trim_sg_list(nx_ctx->out_sg, nx_outsg, delta, nbytes);
296
297	return 0;
298}
299
300/**
301 * nx_ctx_init - initialize an nx_ctx's vio_pfo_op struct
302 *
303 * @nx_ctx: the nx context to initialize
304 * @function: the function code for the op
305 */
306void nx_ctx_init(struct nx_crypto_ctx *nx_ctx, unsigned int function)
307{
308	spin_lock_init(&nx_ctx->lock);
309	memset(nx_ctx->kmem, 0, nx_ctx->kmem_len);
310	nx_ctx->csbcpb->csb.valid |= NX_CSB_VALID_BIT;
311
312	nx_ctx->op.flags = function;
313	nx_ctx->op.csbcpb = __pa(nx_ctx->csbcpb);
314	nx_ctx->op.in = __pa(nx_ctx->in_sg);
315	nx_ctx->op.out = __pa(nx_ctx->out_sg);
316
317	if (nx_ctx->csbcpb_aead) {
318		nx_ctx->csbcpb_aead->csb.valid |= NX_CSB_VALID_BIT;
319
320		nx_ctx->op_aead.flags = function;
321		nx_ctx->op_aead.csbcpb = __pa(nx_ctx->csbcpb_aead);
322		nx_ctx->op_aead.in = __pa(nx_ctx->in_sg);
323		nx_ctx->op_aead.out = __pa(nx_ctx->out_sg);
324	}
325}
326
327static void nx_of_update_status(struct device   *dev,
328			       struct property *p,
329			       struct nx_of    *props)
330{
331	if (!strncmp(p->value, "okay", p->length)) {
332		props->status = NX_WAITING;
333		props->flags |= NX_OF_FLAG_STATUS_SET;
334	} else {
335		dev_info(dev, "%s: status '%s' is not 'okay'\n", __func__,
336			 (char *)p->value);
337	}
338}
339
340static void nx_of_update_sglen(struct device   *dev,
341			       struct property *p,
342			       struct nx_of    *props)
343{
344	if (p->length != sizeof(props->max_sg_len)) {
345		dev_err(dev, "%s: unexpected format for "
346			"ibm,max-sg-len property\n", __func__);
347		dev_dbg(dev, "%s: ibm,max-sg-len is %d bytes "
348			"long, expected %zd bytes\n", __func__,
349			p->length, sizeof(props->max_sg_len));
350		return;
351	}
352
353	props->max_sg_len = *(u32 *)p->value;
354	props->flags |= NX_OF_FLAG_MAXSGLEN_SET;
355}
356
357static void nx_of_update_msc(struct device   *dev,
358			     struct property *p,
359			     struct nx_of    *props)
360{
361	struct msc_triplet *trip;
362	struct max_sync_cop *msc;
363	unsigned int bytes_so_far, i, lenp;
364
365	msc = (struct max_sync_cop *)p->value;
366	lenp = p->length;
367
368	/* You can't tell if the data read in for this property is sane by its
369	 * size alone. This is because there are sizes embedded in the data
370	 * structure. The best we can do is check lengths as we parse and bail
371	 * as soon as a length error is detected. */
372	bytes_so_far = 0;
373
374	while ((bytes_so_far + sizeof(struct max_sync_cop)) <= lenp) {
375		bytes_so_far += sizeof(struct max_sync_cop);
376
377		trip = msc->trip;
378
379		for (i = 0;
380		     ((bytes_so_far + sizeof(struct msc_triplet)) <= lenp) &&
381		     i < msc->triplets;
382		     i++) {
383			if (msc->fc >= NX_MAX_FC || msc->mode >= NX_MAX_MODE) {
384				dev_err(dev, "unknown function code/mode "
385					"combo: %d/%d (ignored)\n", msc->fc,
386					msc->mode);
387				goto next_loop;
388			}
389
390			if (!trip->sglen || trip->databytelen < NX_PAGE_SIZE) {
391				dev_warn(dev, "bogus sglen/databytelen: "
392					 "%u/%u (ignored)\n", trip->sglen,
393					 trip->databytelen);
394				goto next_loop;
395			}
396
397			switch (trip->keybitlen) {
398			case 128:
399			case 160:
400				props->ap[msc->fc][msc->mode][0].databytelen =
401					trip->databytelen;
402				props->ap[msc->fc][msc->mode][0].sglen =
403					trip->sglen;
404				break;
405			case 192:
406				props->ap[msc->fc][msc->mode][1].databytelen =
407					trip->databytelen;
408				props->ap[msc->fc][msc->mode][1].sglen =
409					trip->sglen;
410				break;
411			case 256:
412				if (msc->fc == NX_FC_AES) {
413					props->ap[msc->fc][msc->mode][2].
414						databytelen = trip->databytelen;
415					props->ap[msc->fc][msc->mode][2].sglen =
416						trip->sglen;
417				} else if (msc->fc == NX_FC_AES_HMAC ||
418					   msc->fc == NX_FC_SHA) {
419					props->ap[msc->fc][msc->mode][1].
420						databytelen = trip->databytelen;
421					props->ap[msc->fc][msc->mode][1].sglen =
422						trip->sglen;
423				} else {
424					dev_warn(dev, "unknown function "
425						"code/key bit len combo"
426						": (%u/256)\n", msc->fc);
427				}
428				break;
429			case 512:
430				props->ap[msc->fc][msc->mode][2].databytelen =
431					trip->databytelen;
432				props->ap[msc->fc][msc->mode][2].sglen =
433					trip->sglen;
434				break;
435			default:
436				dev_warn(dev, "unknown function code/key bit "
437					 "len combo: (%u/%u)\n", msc->fc,
438					 trip->keybitlen);
439				break;
440			}
441next_loop:
442			bytes_so_far += sizeof(struct msc_triplet);
443			trip++;
444		}
445
446		msc = (struct max_sync_cop *)trip;
447	}
448
449	props->flags |= NX_OF_FLAG_MAXSYNCCOP_SET;
450}
451
452/**
453 * nx_of_init - read openFirmware values from the device tree
454 *
455 * @dev: device handle
456 * @props: pointer to struct to hold the properties values
457 *
458 * Called once at driver probe time, this function will read out the
459 * openFirmware properties we use at runtime. If all the OF properties are
460 * acceptable, when we exit this function props->flags will indicate that
461 * we're ready to register our crypto algorithms.
462 */
463static void nx_of_init(struct device *dev, struct nx_of *props)
464{
465	struct device_node *base_node = dev->of_node;
466	struct property *p;
467
468	p = of_find_property(base_node, "status", NULL);
469	if (!p)
470		dev_info(dev, "%s: property 'status' not found\n", __func__);
471	else
472		nx_of_update_status(dev, p, props);
473
474	p = of_find_property(base_node, "ibm,max-sg-len", NULL);
475	if (!p)
476		dev_info(dev, "%s: property 'ibm,max-sg-len' not found\n",
477			 __func__);
478	else
479		nx_of_update_sglen(dev, p, props);
480
481	p = of_find_property(base_node, "ibm,max-sync-cop", NULL);
482	if (!p)
483		dev_info(dev, "%s: property 'ibm,max-sync-cop' not found\n",
484			 __func__);
485	else
486		nx_of_update_msc(dev, p, props);
487}
488
489static bool nx_check_prop(struct device *dev, u32 fc, u32 mode, int slot)
490{
491	struct alg_props *props = &nx_driver.of.ap[fc][mode][slot];
492
493	if (!props->sglen || props->databytelen < NX_PAGE_SIZE) {
494		if (dev)
495			dev_warn(dev, "bogus sglen/databytelen for %u/%u/%u: "
496				 "%u/%u (ignored)\n", fc, mode, slot,
497				 props->sglen, props->databytelen);
498		return false;
499	}
500
501	return true;
502}
503
504static bool nx_check_props(struct device *dev, u32 fc, u32 mode)
505{
506	int i;
507
508	for (i = 0; i < 3; i++)
509		if (!nx_check_prop(dev, fc, mode, i))
510			return false;
511
512	return true;
513}
514
515static int nx_register_skcipher(struct skcipher_alg *alg, u32 fc, u32 mode)
516{
517	return nx_check_props(&nx_driver.viodev->dev, fc, mode) ?
518	       crypto_register_skcipher(alg) : 0;
519}
520
521static int nx_register_aead(struct aead_alg *alg, u32 fc, u32 mode)
522{
523	return nx_check_props(&nx_driver.viodev->dev, fc, mode) ?
524	       crypto_register_aead(alg) : 0;
525}
526
527static int nx_register_shash(struct shash_alg *alg, u32 fc, u32 mode, int slot)
528{
529	return (slot >= 0 ? nx_check_prop(&nx_driver.viodev->dev,
530					  fc, mode, slot) :
531			    nx_check_props(&nx_driver.viodev->dev, fc, mode)) ?
532	       crypto_register_shash(alg) : 0;
533}
534
535static void nx_unregister_skcipher(struct skcipher_alg *alg, u32 fc, u32 mode)
536{
537	if (nx_check_props(NULL, fc, mode))
538		crypto_unregister_skcipher(alg);
539}
540
541static void nx_unregister_aead(struct aead_alg *alg, u32 fc, u32 mode)
542{
543	if (nx_check_props(NULL, fc, mode))
544		crypto_unregister_aead(alg);
545}
546
547static void nx_unregister_shash(struct shash_alg *alg, u32 fc, u32 mode,
548				int slot)
549{
550	if (slot >= 0 ? nx_check_prop(NULL, fc, mode, slot) :
551			nx_check_props(NULL, fc, mode))
552		crypto_unregister_shash(alg);
553}
554
555/**
556 * nx_register_algs - register algorithms with the crypto API
557 *
558 * Called from nx_probe()
559 *
560 * If all OF properties are in an acceptable state, the driver flags will
561 * indicate that we're ready and we'll create our debugfs files and register
562 * out crypto algorithms.
563 */
564static int nx_register_algs(void)
565{
566	int rc = -1;
567
568	if (nx_driver.of.flags != NX_OF_FLAG_MASK_READY)
569		goto out;
570
571	memset(&nx_driver.stats, 0, sizeof(struct nx_stats));
572
573	NX_DEBUGFS_INIT(&nx_driver);
574
575	nx_driver.of.status = NX_OKAY;
576
577	rc = nx_register_skcipher(&nx_ecb_aes_alg, NX_FC_AES, NX_MODE_AES_ECB);
578	if (rc)
579		goto out;
580
581	rc = nx_register_skcipher(&nx_cbc_aes_alg, NX_FC_AES, NX_MODE_AES_CBC);
582	if (rc)
583		goto out_unreg_ecb;
584
585	rc = nx_register_skcipher(&nx_ctr3686_aes_alg, NX_FC_AES,
586				  NX_MODE_AES_CTR);
587	if (rc)
588		goto out_unreg_cbc;
589
590	rc = nx_register_aead(&nx_gcm_aes_alg, NX_FC_AES, NX_MODE_AES_GCM);
591	if (rc)
592		goto out_unreg_ctr3686;
593
594	rc = nx_register_aead(&nx_gcm4106_aes_alg, NX_FC_AES, NX_MODE_AES_GCM);
595	if (rc)
596		goto out_unreg_gcm;
597
598	rc = nx_register_aead(&nx_ccm_aes_alg, NX_FC_AES, NX_MODE_AES_CCM);
599	if (rc)
600		goto out_unreg_gcm4106;
601
602	rc = nx_register_aead(&nx_ccm4309_aes_alg, NX_FC_AES, NX_MODE_AES_CCM);
603	if (rc)
604		goto out_unreg_ccm;
605
606	rc = nx_register_shash(&nx_shash_sha256_alg, NX_FC_SHA, NX_MODE_SHA,
607			       NX_PROPS_SHA256);
608	if (rc)
609		goto out_unreg_ccm4309;
610
611	rc = nx_register_shash(&nx_shash_sha512_alg, NX_FC_SHA, NX_MODE_SHA,
612			       NX_PROPS_SHA512);
613	if (rc)
614		goto out_unreg_s256;
615
616	rc = nx_register_shash(&nx_shash_aes_xcbc_alg,
617			       NX_FC_AES, NX_MODE_AES_XCBC_MAC, -1);
618	if (rc)
619		goto out_unreg_s512;
620
621	goto out;
622
623out_unreg_s512:
624	nx_unregister_shash(&nx_shash_sha512_alg, NX_FC_SHA, NX_MODE_SHA,
625			    NX_PROPS_SHA512);
626out_unreg_s256:
627	nx_unregister_shash(&nx_shash_sha256_alg, NX_FC_SHA, NX_MODE_SHA,
628			    NX_PROPS_SHA256);
629out_unreg_ccm4309:
630	nx_unregister_aead(&nx_ccm4309_aes_alg, NX_FC_AES, NX_MODE_AES_CCM);
631out_unreg_ccm:
632	nx_unregister_aead(&nx_ccm_aes_alg, NX_FC_AES, NX_MODE_AES_CCM);
633out_unreg_gcm4106:
634	nx_unregister_aead(&nx_gcm4106_aes_alg, NX_FC_AES, NX_MODE_AES_GCM);
635out_unreg_gcm:
636	nx_unregister_aead(&nx_gcm_aes_alg, NX_FC_AES, NX_MODE_AES_GCM);
637out_unreg_ctr3686:
638	nx_unregister_skcipher(&nx_ctr3686_aes_alg, NX_FC_AES, NX_MODE_AES_CTR);
639out_unreg_cbc:
640	nx_unregister_skcipher(&nx_cbc_aes_alg, NX_FC_AES, NX_MODE_AES_CBC);
641out_unreg_ecb:
642	nx_unregister_skcipher(&nx_ecb_aes_alg, NX_FC_AES, NX_MODE_AES_ECB);
643out:
644	return rc;
645}
646
647/**
648 * nx_crypto_ctx_init - create and initialize a crypto api context
649 *
650 * @nx_ctx: the crypto api context
651 * @fc: function code for the context
652 * @mode: the function code specific mode for this context
653 */
654static int nx_crypto_ctx_init(struct nx_crypto_ctx *nx_ctx, u32 fc, u32 mode)
655{
656	if (nx_driver.of.status != NX_OKAY) {
657		pr_err("Attempt to initialize NX crypto context while device "
658		       "is not available!\n");
659		return -ENODEV;
660	}
661
662	/* we need an extra page for csbcpb_aead for these modes */
663	if (mode == NX_MODE_AES_GCM || mode == NX_MODE_AES_CCM)
664		nx_ctx->kmem_len = (5 * NX_PAGE_SIZE) +
665				   sizeof(struct nx_csbcpb);
666	else
667		nx_ctx->kmem_len = (4 * NX_PAGE_SIZE) +
668				   sizeof(struct nx_csbcpb);
669
670	nx_ctx->kmem = kmalloc(nx_ctx->kmem_len, GFP_KERNEL);
671	if (!nx_ctx->kmem)
672		return -ENOMEM;
673
674	/* the csbcpb and scatterlists must be 4K aligned pages */
675	nx_ctx->csbcpb = (struct nx_csbcpb *)(round_up((u64)nx_ctx->kmem,
676						       (u64)NX_PAGE_SIZE));
677	nx_ctx->in_sg = (struct nx_sg *)((u8 *)nx_ctx->csbcpb + NX_PAGE_SIZE);
678	nx_ctx->out_sg = (struct nx_sg *)((u8 *)nx_ctx->in_sg + NX_PAGE_SIZE);
679
680	if (mode == NX_MODE_AES_GCM || mode == NX_MODE_AES_CCM)
681		nx_ctx->csbcpb_aead =
682			(struct nx_csbcpb *)((u8 *)nx_ctx->out_sg +
683					     NX_PAGE_SIZE);
684
685	/* give each context a pointer to global stats and their OF
686	 * properties */
687	nx_ctx->stats = &nx_driver.stats;
688	memcpy(nx_ctx->props, nx_driver.of.ap[fc][mode],
689	       sizeof(struct alg_props) * 3);
690
691	return 0;
692}
693
694/* entry points from the crypto tfm initializers */
695int nx_crypto_ctx_aes_ccm_init(struct crypto_aead *tfm)
696{
697	crypto_aead_set_reqsize(tfm, sizeof(struct nx_ccm_rctx));
698	return nx_crypto_ctx_init(crypto_aead_ctx(tfm), NX_FC_AES,
699				  NX_MODE_AES_CCM);
700}
701
702int nx_crypto_ctx_aes_gcm_init(struct crypto_aead *tfm)
703{
704	crypto_aead_set_reqsize(tfm, sizeof(struct nx_gcm_rctx));
705	return nx_crypto_ctx_init(crypto_aead_ctx(tfm), NX_FC_AES,
706				  NX_MODE_AES_GCM);
707}
708
709int nx_crypto_ctx_aes_ctr_init(struct crypto_skcipher *tfm)
710{
711	return nx_crypto_ctx_init(crypto_skcipher_ctx(tfm), NX_FC_AES,
712				  NX_MODE_AES_CTR);
713}
714
715int nx_crypto_ctx_aes_cbc_init(struct crypto_skcipher *tfm)
716{
717	return nx_crypto_ctx_init(crypto_skcipher_ctx(tfm), NX_FC_AES,
718				  NX_MODE_AES_CBC);
719}
720
721int nx_crypto_ctx_aes_ecb_init(struct crypto_skcipher *tfm)
722{
723	return nx_crypto_ctx_init(crypto_skcipher_ctx(tfm), NX_FC_AES,
724				  NX_MODE_AES_ECB);
725}
726
727int nx_crypto_ctx_sha_init(struct crypto_tfm *tfm)
728{
729	return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_SHA, NX_MODE_SHA);
730}
731
732int nx_crypto_ctx_aes_xcbc_init(struct crypto_tfm *tfm)
733{
734	return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES,
735				  NX_MODE_AES_XCBC_MAC);
736}
737
738/**
739 * nx_crypto_ctx_exit - destroy a crypto api context
740 *
741 * @tfm: the crypto transform pointer for the context
742 *
743 * As crypto API contexts are destroyed, this exit hook is called to free the
744 * memory associated with it.
745 */
746void nx_crypto_ctx_exit(struct crypto_tfm *tfm)
747{
748	struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(tfm);
749
750	kfree_sensitive(nx_ctx->kmem);
751	nx_ctx->csbcpb = NULL;
752	nx_ctx->csbcpb_aead = NULL;
753	nx_ctx->in_sg = NULL;
754	nx_ctx->out_sg = NULL;
755}
756
757void nx_crypto_ctx_skcipher_exit(struct crypto_skcipher *tfm)
758{
759	nx_crypto_ctx_exit(crypto_skcipher_ctx(tfm));
760}
761
762void nx_crypto_ctx_aead_exit(struct crypto_aead *tfm)
763{
764	struct nx_crypto_ctx *nx_ctx = crypto_aead_ctx(tfm);
765
766	kfree_sensitive(nx_ctx->kmem);
767}
768
769static int nx_probe(struct vio_dev *viodev, const struct vio_device_id *id)
770{
771	dev_dbg(&viodev->dev, "driver probed: %s resource id: 0x%x\n",
772		viodev->name, viodev->resource_id);
773
774	if (nx_driver.viodev) {
775		dev_err(&viodev->dev, "%s: Attempt to register more than one "
776			"instance of the hardware\n", __func__);
777		return -EINVAL;
778	}
779
780	nx_driver.viodev = viodev;
781
782	nx_of_init(&viodev->dev, &nx_driver.of);
783
784	return nx_register_algs();
785}
786
787static void nx_remove(struct vio_dev *viodev)
788{
789	dev_dbg(&viodev->dev, "entering nx_remove for UA 0x%x\n",
790		viodev->unit_address);
791
792	if (nx_driver.of.status == NX_OKAY) {
793		NX_DEBUGFS_FINI(&nx_driver);
794
795		nx_unregister_shash(&nx_shash_aes_xcbc_alg,
796				    NX_FC_AES, NX_MODE_AES_XCBC_MAC, -1);
797		nx_unregister_shash(&nx_shash_sha512_alg,
798				    NX_FC_SHA, NX_MODE_SHA, NX_PROPS_SHA256);
799		nx_unregister_shash(&nx_shash_sha256_alg,
800				    NX_FC_SHA, NX_MODE_SHA, NX_PROPS_SHA512);
801		nx_unregister_aead(&nx_ccm4309_aes_alg,
802				   NX_FC_AES, NX_MODE_AES_CCM);
803		nx_unregister_aead(&nx_ccm_aes_alg, NX_FC_AES, NX_MODE_AES_CCM);
804		nx_unregister_aead(&nx_gcm4106_aes_alg,
805				   NX_FC_AES, NX_MODE_AES_GCM);
806		nx_unregister_aead(&nx_gcm_aes_alg,
807				   NX_FC_AES, NX_MODE_AES_GCM);
808		nx_unregister_skcipher(&nx_ctr3686_aes_alg,
809				       NX_FC_AES, NX_MODE_AES_CTR);
810		nx_unregister_skcipher(&nx_cbc_aes_alg, NX_FC_AES,
811				       NX_MODE_AES_CBC);
812		nx_unregister_skcipher(&nx_ecb_aes_alg, NX_FC_AES,
813				       NX_MODE_AES_ECB);
814	}
 
 
815}
816
817
818/* module wide initialization/cleanup */
819static int __init nx_init(void)
820{
821	return vio_register_driver(&nx_driver.viodriver);
822}
823
824static void __exit nx_fini(void)
825{
826	vio_unregister_driver(&nx_driver.viodriver);
827}
828
829static const struct vio_device_id nx_crypto_driver_ids[] = {
830	{ "ibm,sym-encryption-v1", "ibm,sym-encryption" },
831	{ "", "" }
832};
833MODULE_DEVICE_TABLE(vio, nx_crypto_driver_ids);
834
835/* driver state structure */
836struct nx_crypto_driver nx_driver = {
837	.viodriver = {
838		.id_table = nx_crypto_driver_ids,
839		.probe = nx_probe,
840		.remove = nx_remove,
841		.name  = NX_NAME,
842	},
843};
844
845module_init(nx_init);
846module_exit(nx_fini);
847
848MODULE_AUTHOR("Kent Yoder <yoder1@us.ibm.com>");
849MODULE_DESCRIPTION(NX_STRING);
850MODULE_LICENSE("GPL");
851MODULE_VERSION(NX_VERSION);
v5.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2/**
  3 * Routines supporting the Power 7+ Nest Accelerators driver
  4 *
  5 * Copyright (C) 2011-2012 International Business Machines Inc.
  6 *
  7 * Author: Kent Yoder <yoder1@us.ibm.com>
  8 */
  9
 10#include <crypto/internal/aead.h>
 11#include <crypto/internal/hash.h>
 12#include <crypto/aes.h>
 13#include <crypto/sha.h>
 14#include <crypto/algapi.h>
 15#include <crypto/scatterwalk.h>
 16#include <linux/module.h>
 17#include <linux/moduleparam.h>
 18#include <linux/types.h>
 19#include <linux/mm.h>
 20#include <linux/scatterlist.h>
 21#include <linux/device.h>
 22#include <linux/of.h>
 23#include <asm/hvcall.h>
 24#include <asm/vio.h>
 25
 26#include "nx_csbcpb.h"
 27#include "nx.h"
 28
 29
 30/**
 31 * nx_hcall_sync - make an H_COP_OP hcall for the passed in op structure
 32 *
 33 * @nx_ctx: the crypto context handle
 34 * @op: PFO operation struct to pass in
 35 * @may_sleep: flag indicating the request can sleep
 36 *
 37 * Make the hcall, retrying while the hardware is busy. If we cannot yield
 38 * the thread, limit the number of retries to 10 here.
 39 */
 40int nx_hcall_sync(struct nx_crypto_ctx *nx_ctx,
 41		  struct vio_pfo_op    *op,
 42		  u32                   may_sleep)
 43{
 44	int rc, retries = 10;
 45	struct vio_dev *viodev = nx_driver.viodev;
 46
 47	atomic_inc(&(nx_ctx->stats->sync_ops));
 48
 49	do {
 50		rc = vio_h_cop_sync(viodev, op);
 51	} while (rc == -EBUSY && !may_sleep && retries--);
 52
 53	if (rc) {
 54		dev_dbg(&viodev->dev, "vio_h_cop_sync failed: rc: %d "
 55			"hcall rc: %ld\n", rc, op->hcall_err);
 56		atomic_inc(&(nx_ctx->stats->errors));
 57		atomic_set(&(nx_ctx->stats->last_error), op->hcall_err);
 58		atomic_set(&(nx_ctx->stats->last_error_pid), current->pid);
 59	}
 60
 61	return rc;
 62}
 63
 64/**
 65 * nx_build_sg_list - build an NX scatter list describing a single  buffer
 66 *
 67 * @sg_head: pointer to the first scatter list element to build
 68 * @start_addr: pointer to the linear buffer
 69 * @len: length of the data at @start_addr
 70 * @sgmax: the largest number of scatter list elements we're allowed to create
 71 *
 72 * This function will start writing nx_sg elements at @sg_head and keep
 73 * writing them until all of the data from @start_addr is described or
 74 * until sgmax elements have been written. Scatter list elements will be
 75 * created such that none of the elements describes a buffer that crosses a 4K
 76 * boundary.
 77 */
 78struct nx_sg *nx_build_sg_list(struct nx_sg *sg_head,
 79			       u8           *start_addr,
 80			       unsigned int *len,
 81			       u32           sgmax)
 82{
 83	unsigned int sg_len = 0;
 84	struct nx_sg *sg;
 85	u64 sg_addr = (u64)start_addr;
 86	u64 end_addr;
 87
 88	/* determine the start and end for this address range - slightly
 89	 * different if this is in VMALLOC_REGION */
 90	if (is_vmalloc_addr(start_addr))
 91		sg_addr = page_to_phys(vmalloc_to_page(start_addr))
 92			  + offset_in_page(sg_addr);
 93	else
 94		sg_addr = __pa(sg_addr);
 95
 96	end_addr = sg_addr + *len;
 97
 98	/* each iteration will write one struct nx_sg element and add the
 99	 * length of data described by that element to sg_len. Once @len bytes
100	 * have been described (or @sgmax elements have been written), the
101	 * loop ends. min_t is used to ensure @end_addr falls on the same page
102	 * as sg_addr, if not, we need to create another nx_sg element for the
103	 * data on the next page.
104	 *
105	 * Also when using vmalloc'ed data, every time that a system page
106	 * boundary is crossed the physical address needs to be re-calculated.
107	 */
108	for (sg = sg_head; sg_len < *len; sg++) {
109		u64 next_page;
110
111		sg->addr = sg_addr;
112		sg_addr = min_t(u64, NX_PAGE_NUM(sg_addr + NX_PAGE_SIZE),
113				end_addr);
114
115		next_page = (sg->addr & PAGE_MASK) + PAGE_SIZE;
116		sg->len = min_t(u64, sg_addr, next_page) - sg->addr;
117		sg_len += sg->len;
118
119		if (sg_addr >= next_page &&
120				is_vmalloc_addr(start_addr + sg_len)) {
121			sg_addr = page_to_phys(vmalloc_to_page(
122						start_addr + sg_len));
123			end_addr = sg_addr + *len - sg_len;
124		}
125
126		if ((sg - sg_head) == sgmax) {
127			pr_err("nx: scatter/gather list overflow, pid: %d\n",
128			       current->pid);
129			sg++;
130			break;
131		}
132	}
133	*len = sg_len;
134
135	/* return the moved sg_head pointer */
136	return sg;
137}
138
139/**
140 * nx_walk_and_build - walk a linux scatterlist and build an nx scatterlist
141 *
142 * @nx_dst: pointer to the first nx_sg element to write
143 * @sglen: max number of nx_sg entries we're allowed to write
144 * @sg_src: pointer to the source linux scatterlist to walk
145 * @start: number of bytes to fast-forward past at the beginning of @sg_src
146 * @src_len: number of bytes to walk in @sg_src
147 */
148struct nx_sg *nx_walk_and_build(struct nx_sg       *nx_dst,
149				unsigned int        sglen,
150				struct scatterlist *sg_src,
151				unsigned int        start,
152				unsigned int       *src_len)
153{
154	struct scatter_walk walk;
155	struct nx_sg *nx_sg = nx_dst;
156	unsigned int n, offset = 0, len = *src_len;
157	char *dst;
158
159	/* we need to fast forward through @start bytes first */
160	for (;;) {
161		scatterwalk_start(&walk, sg_src);
162
163		if (start < offset + sg_src->length)
164			break;
165
166		offset += sg_src->length;
167		sg_src = sg_next(sg_src);
168	}
169
170	/* start - offset is the number of bytes to advance in the scatterlist
171	 * element we're currently looking at */
172	scatterwalk_advance(&walk, start - offset);
173
174	while (len && (nx_sg - nx_dst) < sglen) {
175		n = scatterwalk_clamp(&walk, len);
176		if (!n) {
177			/* In cases where we have scatterlist chain sg_next
178			 * handles with it properly */
179			scatterwalk_start(&walk, sg_next(walk.sg));
180			n = scatterwalk_clamp(&walk, len);
181		}
182		dst = scatterwalk_map(&walk);
183
184		nx_sg = nx_build_sg_list(nx_sg, dst, &n, sglen - (nx_sg - nx_dst));
185		len -= n;
186
187		scatterwalk_unmap(dst);
188		scatterwalk_advance(&walk, n);
189		scatterwalk_done(&walk, SCATTERWALK_FROM_SG, len);
190	}
191	/* update to_process */
192	*src_len -= len;
193
194	/* return the moved destination pointer */
195	return nx_sg;
196}
197
198/**
199 * trim_sg_list - ensures the bound in sg list.
200 * @sg: sg list head
201 * @end: sg lisg end
202 * @delta:  is the amount we need to crop in order to bound the list.
203 *
 
204 */
205static long int trim_sg_list(struct nx_sg *sg,
206			     struct nx_sg *end,
207			     unsigned int delta,
208			     unsigned int *nbytes)
209{
210	long int oplen;
211	long int data_back;
212	unsigned int is_delta = delta;
213
214	while (delta && end > sg) {
215		struct nx_sg *last = end - 1;
216
217		if (last->len > delta) {
218			last->len -= delta;
219			delta = 0;
220		} else {
221			end--;
222			delta -= last->len;
223		}
224	}
225
226	/* There are cases where we need to crop list in order to make it
227	 * a block size multiple, but we also need to align data. In order to
228	 * that we need to calculate how much we need to put back to be
229	 * processed
230	 */
231	oplen = (sg - end) * sizeof(struct nx_sg);
232	if (is_delta) {
233		data_back = (abs(oplen) / AES_BLOCK_SIZE) *  sg->len;
234		data_back = *nbytes - (data_back & ~(AES_BLOCK_SIZE - 1));
235		*nbytes -= data_back;
236	}
237
238	return oplen;
239}
240
241/**
242 * nx_build_sg_lists - walk the input scatterlists and build arrays of NX
243 *                     scatterlists based on them.
244 *
245 * @nx_ctx: NX crypto context for the lists we're building
246 * @desc: the block cipher descriptor for the operation
247 * @dst: destination scatterlist
248 * @src: source scatterlist
249 * @nbytes: length of data described in the scatterlists
250 * @offset: number of bytes to fast-forward past at the beginning of
251 *          scatterlists.
252 * @iv: destination for the iv data, if the algorithm requires it
253 *
254 * This is common code shared by all the AES algorithms. It uses the block
255 * cipher walk routines to traverse input and output scatterlists, building
256 * corresponding NX scatterlists
257 */
258int nx_build_sg_lists(struct nx_crypto_ctx  *nx_ctx,
259		      struct blkcipher_desc *desc,
260		      struct scatterlist    *dst,
261		      struct scatterlist    *src,
262		      unsigned int          *nbytes,
263		      unsigned int           offset,
264		      u8                    *iv)
265{
266	unsigned int delta = 0;
267	unsigned int total = *nbytes;
268	struct nx_sg *nx_insg = nx_ctx->in_sg;
269	struct nx_sg *nx_outsg = nx_ctx->out_sg;
270	unsigned int max_sg_len;
271
272	max_sg_len = min_t(u64, nx_ctx->ap->sglen,
273			nx_driver.of.max_sg_len/sizeof(struct nx_sg));
274	max_sg_len = min_t(u64, max_sg_len,
275			nx_ctx->ap->databytelen/NX_PAGE_SIZE);
276
277	if (iv)
278		memcpy(iv, desc->info, AES_BLOCK_SIZE);
279
280	*nbytes = min_t(u64, *nbytes, nx_ctx->ap->databytelen);
281
282	nx_outsg = nx_walk_and_build(nx_outsg, max_sg_len, dst,
283					offset, nbytes);
284	nx_insg = nx_walk_and_build(nx_insg, max_sg_len, src,
285					offset, nbytes);
286
287	if (*nbytes < total)
288		delta = *nbytes - (*nbytes & ~(AES_BLOCK_SIZE - 1));
289
290	/* these lengths should be negative, which will indicate to phyp that
291	 * the input and output parameters are scatterlists, not linear
292	 * buffers */
293	nx_ctx->op.inlen = trim_sg_list(nx_ctx->in_sg, nx_insg, delta, nbytes);
294	nx_ctx->op.outlen = trim_sg_list(nx_ctx->out_sg, nx_outsg, delta, nbytes);
295
296	return 0;
297}
298
299/**
300 * nx_ctx_init - initialize an nx_ctx's vio_pfo_op struct
301 *
302 * @nx_ctx: the nx context to initialize
303 * @function: the function code for the op
304 */
305void nx_ctx_init(struct nx_crypto_ctx *nx_ctx, unsigned int function)
306{
307	spin_lock_init(&nx_ctx->lock);
308	memset(nx_ctx->kmem, 0, nx_ctx->kmem_len);
309	nx_ctx->csbcpb->csb.valid |= NX_CSB_VALID_BIT;
310
311	nx_ctx->op.flags = function;
312	nx_ctx->op.csbcpb = __pa(nx_ctx->csbcpb);
313	nx_ctx->op.in = __pa(nx_ctx->in_sg);
314	nx_ctx->op.out = __pa(nx_ctx->out_sg);
315
316	if (nx_ctx->csbcpb_aead) {
317		nx_ctx->csbcpb_aead->csb.valid |= NX_CSB_VALID_BIT;
318
319		nx_ctx->op_aead.flags = function;
320		nx_ctx->op_aead.csbcpb = __pa(nx_ctx->csbcpb_aead);
321		nx_ctx->op_aead.in = __pa(nx_ctx->in_sg);
322		nx_ctx->op_aead.out = __pa(nx_ctx->out_sg);
323	}
324}
325
326static void nx_of_update_status(struct device   *dev,
327			       struct property *p,
328			       struct nx_of    *props)
329{
330	if (!strncmp(p->value, "okay", p->length)) {
331		props->status = NX_WAITING;
332		props->flags |= NX_OF_FLAG_STATUS_SET;
333	} else {
334		dev_info(dev, "%s: status '%s' is not 'okay'\n", __func__,
335			 (char *)p->value);
336	}
337}
338
339static void nx_of_update_sglen(struct device   *dev,
340			       struct property *p,
341			       struct nx_of    *props)
342{
343	if (p->length != sizeof(props->max_sg_len)) {
344		dev_err(dev, "%s: unexpected format for "
345			"ibm,max-sg-len property\n", __func__);
346		dev_dbg(dev, "%s: ibm,max-sg-len is %d bytes "
347			"long, expected %zd bytes\n", __func__,
348			p->length, sizeof(props->max_sg_len));
349		return;
350	}
351
352	props->max_sg_len = *(u32 *)p->value;
353	props->flags |= NX_OF_FLAG_MAXSGLEN_SET;
354}
355
356static void nx_of_update_msc(struct device   *dev,
357			     struct property *p,
358			     struct nx_of    *props)
359{
360	struct msc_triplet *trip;
361	struct max_sync_cop *msc;
362	unsigned int bytes_so_far, i, lenp;
363
364	msc = (struct max_sync_cop *)p->value;
365	lenp = p->length;
366
367	/* You can't tell if the data read in for this property is sane by its
368	 * size alone. This is because there are sizes embedded in the data
369	 * structure. The best we can do is check lengths as we parse and bail
370	 * as soon as a length error is detected. */
371	bytes_so_far = 0;
372
373	while ((bytes_so_far + sizeof(struct max_sync_cop)) <= lenp) {
374		bytes_so_far += sizeof(struct max_sync_cop);
375
376		trip = msc->trip;
377
378		for (i = 0;
379		     ((bytes_so_far + sizeof(struct msc_triplet)) <= lenp) &&
380		     i < msc->triplets;
381		     i++) {
382			if (msc->fc >= NX_MAX_FC || msc->mode >= NX_MAX_MODE) {
383				dev_err(dev, "unknown function code/mode "
384					"combo: %d/%d (ignored)\n", msc->fc,
385					msc->mode);
386				goto next_loop;
387			}
388
389			if (!trip->sglen || trip->databytelen < NX_PAGE_SIZE) {
390				dev_warn(dev, "bogus sglen/databytelen: "
391					 "%u/%u (ignored)\n", trip->sglen,
392					 trip->databytelen);
393				goto next_loop;
394			}
395
396			switch (trip->keybitlen) {
397			case 128:
398			case 160:
399				props->ap[msc->fc][msc->mode][0].databytelen =
400					trip->databytelen;
401				props->ap[msc->fc][msc->mode][0].sglen =
402					trip->sglen;
403				break;
404			case 192:
405				props->ap[msc->fc][msc->mode][1].databytelen =
406					trip->databytelen;
407				props->ap[msc->fc][msc->mode][1].sglen =
408					trip->sglen;
409				break;
410			case 256:
411				if (msc->fc == NX_FC_AES) {
412					props->ap[msc->fc][msc->mode][2].
413						databytelen = trip->databytelen;
414					props->ap[msc->fc][msc->mode][2].sglen =
415						trip->sglen;
416				} else if (msc->fc == NX_FC_AES_HMAC ||
417					   msc->fc == NX_FC_SHA) {
418					props->ap[msc->fc][msc->mode][1].
419						databytelen = trip->databytelen;
420					props->ap[msc->fc][msc->mode][1].sglen =
421						trip->sglen;
422				} else {
423					dev_warn(dev, "unknown function "
424						"code/key bit len combo"
425						": (%u/256)\n", msc->fc);
426				}
427				break;
428			case 512:
429				props->ap[msc->fc][msc->mode][2].databytelen =
430					trip->databytelen;
431				props->ap[msc->fc][msc->mode][2].sglen =
432					trip->sglen;
433				break;
434			default:
435				dev_warn(dev, "unknown function code/key bit "
436					 "len combo: (%u/%u)\n", msc->fc,
437					 trip->keybitlen);
438				break;
439			}
440next_loop:
441			bytes_so_far += sizeof(struct msc_triplet);
442			trip++;
443		}
444
445		msc = (struct max_sync_cop *)trip;
446	}
447
448	props->flags |= NX_OF_FLAG_MAXSYNCCOP_SET;
449}
450
451/**
452 * nx_of_init - read openFirmware values from the device tree
453 *
454 * @dev: device handle
455 * @props: pointer to struct to hold the properties values
456 *
457 * Called once at driver probe time, this function will read out the
458 * openFirmware properties we use at runtime. If all the OF properties are
459 * acceptable, when we exit this function props->flags will indicate that
460 * we're ready to register our crypto algorithms.
461 */
462static void nx_of_init(struct device *dev, struct nx_of *props)
463{
464	struct device_node *base_node = dev->of_node;
465	struct property *p;
466
467	p = of_find_property(base_node, "status", NULL);
468	if (!p)
469		dev_info(dev, "%s: property 'status' not found\n", __func__);
470	else
471		nx_of_update_status(dev, p, props);
472
473	p = of_find_property(base_node, "ibm,max-sg-len", NULL);
474	if (!p)
475		dev_info(dev, "%s: property 'ibm,max-sg-len' not found\n",
476			 __func__);
477	else
478		nx_of_update_sglen(dev, p, props);
479
480	p = of_find_property(base_node, "ibm,max-sync-cop", NULL);
481	if (!p)
482		dev_info(dev, "%s: property 'ibm,max-sync-cop' not found\n",
483			 __func__);
484	else
485		nx_of_update_msc(dev, p, props);
486}
487
488static bool nx_check_prop(struct device *dev, u32 fc, u32 mode, int slot)
489{
490	struct alg_props *props = &nx_driver.of.ap[fc][mode][slot];
491
492	if (!props->sglen || props->databytelen < NX_PAGE_SIZE) {
493		if (dev)
494			dev_warn(dev, "bogus sglen/databytelen for %u/%u/%u: "
495				 "%u/%u (ignored)\n", fc, mode, slot,
496				 props->sglen, props->databytelen);
497		return false;
498	}
499
500	return true;
501}
502
503static bool nx_check_props(struct device *dev, u32 fc, u32 mode)
504{
505	int i;
506
507	for (i = 0; i < 3; i++)
508		if (!nx_check_prop(dev, fc, mode, i))
509			return false;
510
511	return true;
512}
513
514static int nx_register_alg(struct crypto_alg *alg, u32 fc, u32 mode)
515{
516	return nx_check_props(&nx_driver.viodev->dev, fc, mode) ?
517	       crypto_register_alg(alg) : 0;
518}
519
520static int nx_register_aead(struct aead_alg *alg, u32 fc, u32 mode)
521{
522	return nx_check_props(&nx_driver.viodev->dev, fc, mode) ?
523	       crypto_register_aead(alg) : 0;
524}
525
526static int nx_register_shash(struct shash_alg *alg, u32 fc, u32 mode, int slot)
527{
528	return (slot >= 0 ? nx_check_prop(&nx_driver.viodev->dev,
529					  fc, mode, slot) :
530			    nx_check_props(&nx_driver.viodev->dev, fc, mode)) ?
531	       crypto_register_shash(alg) : 0;
532}
533
534static void nx_unregister_alg(struct crypto_alg *alg, u32 fc, u32 mode)
535{
536	if (nx_check_props(NULL, fc, mode))
537		crypto_unregister_alg(alg);
538}
539
540static void nx_unregister_aead(struct aead_alg *alg, u32 fc, u32 mode)
541{
542	if (nx_check_props(NULL, fc, mode))
543		crypto_unregister_aead(alg);
544}
545
546static void nx_unregister_shash(struct shash_alg *alg, u32 fc, u32 mode,
547				int slot)
548{
549	if (slot >= 0 ? nx_check_prop(NULL, fc, mode, slot) :
550			nx_check_props(NULL, fc, mode))
551		crypto_unregister_shash(alg);
552}
553
554/**
555 * nx_register_algs - register algorithms with the crypto API
556 *
557 * Called from nx_probe()
558 *
559 * If all OF properties are in an acceptable state, the driver flags will
560 * indicate that we're ready and we'll create our debugfs files and register
561 * out crypto algorithms.
562 */
563static int nx_register_algs(void)
564{
565	int rc = -1;
566
567	if (nx_driver.of.flags != NX_OF_FLAG_MASK_READY)
568		goto out;
569
570	memset(&nx_driver.stats, 0, sizeof(struct nx_stats));
571
572	NX_DEBUGFS_INIT(&nx_driver);
573
574	nx_driver.of.status = NX_OKAY;
575
576	rc = nx_register_alg(&nx_ecb_aes_alg, NX_FC_AES, NX_MODE_AES_ECB);
577	if (rc)
578		goto out;
579
580	rc = nx_register_alg(&nx_cbc_aes_alg, NX_FC_AES, NX_MODE_AES_CBC);
581	if (rc)
582		goto out_unreg_ecb;
583
584	rc = nx_register_alg(&nx_ctr3686_aes_alg, NX_FC_AES, NX_MODE_AES_CTR);
 
585	if (rc)
586		goto out_unreg_cbc;
587
588	rc = nx_register_aead(&nx_gcm_aes_alg, NX_FC_AES, NX_MODE_AES_GCM);
589	if (rc)
590		goto out_unreg_ctr3686;
591
592	rc = nx_register_aead(&nx_gcm4106_aes_alg, NX_FC_AES, NX_MODE_AES_GCM);
593	if (rc)
594		goto out_unreg_gcm;
595
596	rc = nx_register_aead(&nx_ccm_aes_alg, NX_FC_AES, NX_MODE_AES_CCM);
597	if (rc)
598		goto out_unreg_gcm4106;
599
600	rc = nx_register_aead(&nx_ccm4309_aes_alg, NX_FC_AES, NX_MODE_AES_CCM);
601	if (rc)
602		goto out_unreg_ccm;
603
604	rc = nx_register_shash(&nx_shash_sha256_alg, NX_FC_SHA, NX_MODE_SHA,
605			       NX_PROPS_SHA256);
606	if (rc)
607		goto out_unreg_ccm4309;
608
609	rc = nx_register_shash(&nx_shash_sha512_alg, NX_FC_SHA, NX_MODE_SHA,
610			       NX_PROPS_SHA512);
611	if (rc)
612		goto out_unreg_s256;
613
614	rc = nx_register_shash(&nx_shash_aes_xcbc_alg,
615			       NX_FC_AES, NX_MODE_AES_XCBC_MAC, -1);
616	if (rc)
617		goto out_unreg_s512;
618
619	goto out;
620
621out_unreg_s512:
622	nx_unregister_shash(&nx_shash_sha512_alg, NX_FC_SHA, NX_MODE_SHA,
623			    NX_PROPS_SHA512);
624out_unreg_s256:
625	nx_unregister_shash(&nx_shash_sha256_alg, NX_FC_SHA, NX_MODE_SHA,
626			    NX_PROPS_SHA256);
627out_unreg_ccm4309:
628	nx_unregister_aead(&nx_ccm4309_aes_alg, NX_FC_AES, NX_MODE_AES_CCM);
629out_unreg_ccm:
630	nx_unregister_aead(&nx_ccm_aes_alg, NX_FC_AES, NX_MODE_AES_CCM);
631out_unreg_gcm4106:
632	nx_unregister_aead(&nx_gcm4106_aes_alg, NX_FC_AES, NX_MODE_AES_GCM);
633out_unreg_gcm:
634	nx_unregister_aead(&nx_gcm_aes_alg, NX_FC_AES, NX_MODE_AES_GCM);
635out_unreg_ctr3686:
636	nx_unregister_alg(&nx_ctr3686_aes_alg, NX_FC_AES, NX_MODE_AES_CTR);
637out_unreg_cbc:
638	nx_unregister_alg(&nx_cbc_aes_alg, NX_FC_AES, NX_MODE_AES_CBC);
639out_unreg_ecb:
640	nx_unregister_alg(&nx_ecb_aes_alg, NX_FC_AES, NX_MODE_AES_ECB);
641out:
642	return rc;
643}
644
645/**
646 * nx_crypto_ctx_init - create and initialize a crypto api context
647 *
648 * @nx_ctx: the crypto api context
649 * @fc: function code for the context
650 * @mode: the function code specific mode for this context
651 */
652static int nx_crypto_ctx_init(struct nx_crypto_ctx *nx_ctx, u32 fc, u32 mode)
653{
654	if (nx_driver.of.status != NX_OKAY) {
655		pr_err("Attempt to initialize NX crypto context while device "
656		       "is not available!\n");
657		return -ENODEV;
658	}
659
660	/* we need an extra page for csbcpb_aead for these modes */
661	if (mode == NX_MODE_AES_GCM || mode == NX_MODE_AES_CCM)
662		nx_ctx->kmem_len = (5 * NX_PAGE_SIZE) +
663				   sizeof(struct nx_csbcpb);
664	else
665		nx_ctx->kmem_len = (4 * NX_PAGE_SIZE) +
666				   sizeof(struct nx_csbcpb);
667
668	nx_ctx->kmem = kmalloc(nx_ctx->kmem_len, GFP_KERNEL);
669	if (!nx_ctx->kmem)
670		return -ENOMEM;
671
672	/* the csbcpb and scatterlists must be 4K aligned pages */
673	nx_ctx->csbcpb = (struct nx_csbcpb *)(round_up((u64)nx_ctx->kmem,
674						       (u64)NX_PAGE_SIZE));
675	nx_ctx->in_sg = (struct nx_sg *)((u8 *)nx_ctx->csbcpb + NX_PAGE_SIZE);
676	nx_ctx->out_sg = (struct nx_sg *)((u8 *)nx_ctx->in_sg + NX_PAGE_SIZE);
677
678	if (mode == NX_MODE_AES_GCM || mode == NX_MODE_AES_CCM)
679		nx_ctx->csbcpb_aead =
680			(struct nx_csbcpb *)((u8 *)nx_ctx->out_sg +
681					     NX_PAGE_SIZE);
682
683	/* give each context a pointer to global stats and their OF
684	 * properties */
685	nx_ctx->stats = &nx_driver.stats;
686	memcpy(nx_ctx->props, nx_driver.of.ap[fc][mode],
687	       sizeof(struct alg_props) * 3);
688
689	return 0;
690}
691
692/* entry points from the crypto tfm initializers */
693int nx_crypto_ctx_aes_ccm_init(struct crypto_aead *tfm)
694{
695	crypto_aead_set_reqsize(tfm, sizeof(struct nx_ccm_rctx));
696	return nx_crypto_ctx_init(crypto_aead_ctx(tfm), NX_FC_AES,
697				  NX_MODE_AES_CCM);
698}
699
700int nx_crypto_ctx_aes_gcm_init(struct crypto_aead *tfm)
701{
702	crypto_aead_set_reqsize(tfm, sizeof(struct nx_gcm_rctx));
703	return nx_crypto_ctx_init(crypto_aead_ctx(tfm), NX_FC_AES,
704				  NX_MODE_AES_GCM);
705}
706
707int nx_crypto_ctx_aes_ctr_init(struct crypto_tfm *tfm)
708{
709	return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES,
710				  NX_MODE_AES_CTR);
711}
712
713int nx_crypto_ctx_aes_cbc_init(struct crypto_tfm *tfm)
714{
715	return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES,
716				  NX_MODE_AES_CBC);
717}
718
719int nx_crypto_ctx_aes_ecb_init(struct crypto_tfm *tfm)
720{
721	return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES,
722				  NX_MODE_AES_ECB);
723}
724
725int nx_crypto_ctx_sha_init(struct crypto_tfm *tfm)
726{
727	return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_SHA, NX_MODE_SHA);
728}
729
730int nx_crypto_ctx_aes_xcbc_init(struct crypto_tfm *tfm)
731{
732	return nx_crypto_ctx_init(crypto_tfm_ctx(tfm), NX_FC_AES,
733				  NX_MODE_AES_XCBC_MAC);
734}
735
736/**
737 * nx_crypto_ctx_exit - destroy a crypto api context
738 *
739 * @tfm: the crypto transform pointer for the context
740 *
741 * As crypto API contexts are destroyed, this exit hook is called to free the
742 * memory associated with it.
743 */
744void nx_crypto_ctx_exit(struct crypto_tfm *tfm)
745{
746	struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(tfm);
747
748	kzfree(nx_ctx->kmem);
749	nx_ctx->csbcpb = NULL;
750	nx_ctx->csbcpb_aead = NULL;
751	nx_ctx->in_sg = NULL;
752	nx_ctx->out_sg = NULL;
753}
754
 
 
 
 
 
755void nx_crypto_ctx_aead_exit(struct crypto_aead *tfm)
756{
757	struct nx_crypto_ctx *nx_ctx = crypto_aead_ctx(tfm);
758
759	kzfree(nx_ctx->kmem);
760}
761
762static int nx_probe(struct vio_dev *viodev, const struct vio_device_id *id)
763{
764	dev_dbg(&viodev->dev, "driver probed: %s resource id: 0x%x\n",
765		viodev->name, viodev->resource_id);
766
767	if (nx_driver.viodev) {
768		dev_err(&viodev->dev, "%s: Attempt to register more than one "
769			"instance of the hardware\n", __func__);
770		return -EINVAL;
771	}
772
773	nx_driver.viodev = viodev;
774
775	nx_of_init(&viodev->dev, &nx_driver.of);
776
777	return nx_register_algs();
778}
779
780static int nx_remove(struct vio_dev *viodev)
781{
782	dev_dbg(&viodev->dev, "entering nx_remove for UA 0x%x\n",
783		viodev->unit_address);
784
785	if (nx_driver.of.status == NX_OKAY) {
786		NX_DEBUGFS_FINI(&nx_driver);
787
788		nx_unregister_shash(&nx_shash_aes_xcbc_alg,
789				    NX_FC_AES, NX_MODE_AES_XCBC_MAC, -1);
790		nx_unregister_shash(&nx_shash_sha512_alg,
791				    NX_FC_SHA, NX_MODE_SHA, NX_PROPS_SHA256);
792		nx_unregister_shash(&nx_shash_sha256_alg,
793				    NX_FC_SHA, NX_MODE_SHA, NX_PROPS_SHA512);
794		nx_unregister_aead(&nx_ccm4309_aes_alg,
795				   NX_FC_AES, NX_MODE_AES_CCM);
796		nx_unregister_aead(&nx_ccm_aes_alg, NX_FC_AES, NX_MODE_AES_CCM);
797		nx_unregister_aead(&nx_gcm4106_aes_alg,
798				   NX_FC_AES, NX_MODE_AES_GCM);
799		nx_unregister_aead(&nx_gcm_aes_alg,
800				   NX_FC_AES, NX_MODE_AES_GCM);
801		nx_unregister_alg(&nx_ctr3686_aes_alg,
802				  NX_FC_AES, NX_MODE_AES_CTR);
803		nx_unregister_alg(&nx_cbc_aes_alg, NX_FC_AES, NX_MODE_AES_CBC);
804		nx_unregister_alg(&nx_ecb_aes_alg, NX_FC_AES, NX_MODE_AES_ECB);
 
 
805	}
806
807	return 0;
808}
809
810
811/* module wide initialization/cleanup */
812static int __init nx_init(void)
813{
814	return vio_register_driver(&nx_driver.viodriver);
815}
816
817static void __exit nx_fini(void)
818{
819	vio_unregister_driver(&nx_driver.viodriver);
820}
821
822static const struct vio_device_id nx_crypto_driver_ids[] = {
823	{ "ibm,sym-encryption-v1", "ibm,sym-encryption" },
824	{ "", "" }
825};
826MODULE_DEVICE_TABLE(vio, nx_crypto_driver_ids);
827
828/* driver state structure */
829struct nx_crypto_driver nx_driver = {
830	.viodriver = {
831		.id_table = nx_crypto_driver_ids,
832		.probe = nx_probe,
833		.remove = nx_remove,
834		.name  = NX_NAME,
835	},
836};
837
838module_init(nx_init);
839module_exit(nx_fini);
840
841MODULE_AUTHOR("Kent Yoder <yoder1@us.ibm.com>");
842MODULE_DESCRIPTION(NX_STRING);
843MODULE_LICENSE("GPL");
844MODULE_VERSION(NX_VERSION);