Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.13.7.
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Cryptographic API.
   4 *
   5 * Driver for EIP97 SHA1/SHA2(HMAC) acceleration.
   6 *
   7 * Copyright (c) 2016 Ryder Lee <ryder.lee@mediatek.com>
   8 *
   9 * Some ideas are from atmel-sha.c and omap-sham.c drivers.
  10 */
  11
  12#include <crypto/hmac.h>
  13#include <crypto/sha.h>
  14#include "mtk-platform.h"
  15
  16#define SHA_ALIGN_MSK		(sizeof(u32) - 1)
  17#define SHA_QUEUE_SIZE		512
  18#define SHA_BUF_SIZE		((u32)PAGE_SIZE)
  19
  20#define SHA_OP_UPDATE		1
  21#define SHA_OP_FINAL		2
  22
  23#define SHA_DATA_LEN_MSK	cpu_to_le32(GENMASK(16, 0))
  24#define SHA_MAX_DIGEST_BUF_SIZE	32
  25
  26/* SHA command token */
  27#define SHA_CT_SIZE		5
  28#define SHA_CT_CTRL_HDR		cpu_to_le32(0x02220000)
  29#define SHA_CMD0		cpu_to_le32(0x03020000)
  30#define SHA_CMD1		cpu_to_le32(0x21060000)
  31#define SHA_CMD2		cpu_to_le32(0xe0e63802)
  32
  33/* SHA transform information */
  34#define SHA_TFM_HASH		cpu_to_le32(0x2 << 0)
  35#define SHA_TFM_SIZE(x)		cpu_to_le32((x) << 8)
  36#define SHA_TFM_START		cpu_to_le32(0x1 << 4)
  37#define SHA_TFM_CONTINUE	cpu_to_le32(0x1 << 5)
  38#define SHA_TFM_HASH_STORE	cpu_to_le32(0x1 << 19)
  39#define SHA_TFM_SHA1		cpu_to_le32(0x2 << 23)
  40#define SHA_TFM_SHA256		cpu_to_le32(0x3 << 23)
  41#define SHA_TFM_SHA224		cpu_to_le32(0x4 << 23)
  42#define SHA_TFM_SHA512		cpu_to_le32(0x5 << 23)
  43#define SHA_TFM_SHA384		cpu_to_le32(0x6 << 23)
  44#define SHA_TFM_DIGEST(x)	cpu_to_le32(((x) & GENMASK(3, 0)) << 24)
  45
  46/* SHA flags */
  47#define SHA_FLAGS_BUSY		BIT(0)
  48#define	SHA_FLAGS_FINAL		BIT(1)
  49#define SHA_FLAGS_FINUP		BIT(2)
  50#define SHA_FLAGS_SG		BIT(3)
  51#define SHA_FLAGS_ALGO_MSK	GENMASK(8, 4)
  52#define SHA_FLAGS_SHA1		BIT(4)
  53#define SHA_FLAGS_SHA224	BIT(5)
  54#define SHA_FLAGS_SHA256	BIT(6)
  55#define SHA_FLAGS_SHA384	BIT(7)
  56#define SHA_FLAGS_SHA512	BIT(8)
  57#define SHA_FLAGS_HMAC		BIT(9)
  58#define SHA_FLAGS_PAD		BIT(10)
  59
  60/**
  61 * mtk_sha_info - hardware information of AES
  62 * @cmd:	command token, hardware instruction
  63 * @tfm:	transform state of cipher algorithm.
  64 * @state:	contains keys and initial vectors.
  65 *
  66 */
  67struct mtk_sha_info {
  68	__le32 ctrl[2];
  69	__le32 cmd[3];
  70	__le32 tfm[2];
  71	__le32 digest[SHA_MAX_DIGEST_BUF_SIZE];
  72};
  73
  74struct mtk_sha_reqctx {
  75	struct mtk_sha_info info;
  76	unsigned long flags;
  77	unsigned long op;
  78
  79	u64 digcnt;
  80	size_t bufcnt;
  81	dma_addr_t dma_addr;
  82
  83	__le32 ct_hdr;
  84	u32 ct_size;
  85	dma_addr_t ct_dma;
  86	dma_addr_t tfm_dma;
  87
  88	/* Walk state */
  89	struct scatterlist *sg;
  90	u32 offset;	/* Offset in current sg */
  91	u32 total;	/* Total request */
  92	size_t ds;
  93	size_t bs;
  94
  95	u8 *buffer;
  96};
  97
  98struct mtk_sha_hmac_ctx {
  99	struct crypto_shash	*shash;
 100	u8 ipad[SHA512_BLOCK_SIZE] __aligned(sizeof(u32));
 101	u8 opad[SHA512_BLOCK_SIZE] __aligned(sizeof(u32));
 102};
 103
 104struct mtk_sha_ctx {
 105	struct mtk_cryp *cryp;
 106	unsigned long flags;
 107	u8 id;
 108	u8 buf[SHA_BUF_SIZE] __aligned(sizeof(u32));
 109
 110	struct mtk_sha_hmac_ctx	base[0];
 111};
 112
 113struct mtk_sha_drv {
 114	struct list_head dev_list;
 115	/* Device list lock */
 116	spinlock_t lock;
 117};
 118
 119static struct mtk_sha_drv mtk_sha = {
 120	.dev_list = LIST_HEAD_INIT(mtk_sha.dev_list),
 121	.lock = __SPIN_LOCK_UNLOCKED(mtk_sha.lock),
 122};
 123
 124static int mtk_sha_handle_queue(struct mtk_cryp *cryp, u8 id,
 125				struct ahash_request *req);
 126
 127static inline u32 mtk_sha_read(struct mtk_cryp *cryp, u32 offset)
 128{
 129	return readl_relaxed(cryp->base + offset);
 130}
 131
 132static inline void mtk_sha_write(struct mtk_cryp *cryp,
 133				 u32 offset, u32 value)
 134{
 135	writel_relaxed(value, cryp->base + offset);
 136}
 137
 138static inline void mtk_sha_ring_shift(struct mtk_ring *ring,
 139				      struct mtk_desc **cmd_curr,
 140				      struct mtk_desc **res_curr,
 141				      int *count)
 142{
 143	*cmd_curr = ring->cmd_next++;
 144	*res_curr = ring->res_next++;
 145	(*count)++;
 146
 147	if (ring->cmd_next == ring->cmd_base + MTK_DESC_NUM) {
 148		ring->cmd_next = ring->cmd_base;
 149		ring->res_next = ring->res_base;
 150	}
 151}
 152
 153static struct mtk_cryp *mtk_sha_find_dev(struct mtk_sha_ctx *tctx)
 154{
 155	struct mtk_cryp *cryp = NULL;
 156	struct mtk_cryp *tmp;
 157
 158	spin_lock_bh(&mtk_sha.lock);
 159	if (!tctx->cryp) {
 160		list_for_each_entry(tmp, &mtk_sha.dev_list, sha_list) {
 161			cryp = tmp;
 162			break;
 163		}
 164		tctx->cryp = cryp;
 165	} else {
 166		cryp = tctx->cryp;
 167	}
 168
 169	/*
 170	 * Assign record id to tfm in round-robin fashion, and this
 171	 * will help tfm to bind  to corresponding descriptor rings.
 172	 */
 173	tctx->id = cryp->rec;
 174	cryp->rec = !cryp->rec;
 175
 176	spin_unlock_bh(&mtk_sha.lock);
 177
 178	return cryp;
 179}
 180
 181static int mtk_sha_append_sg(struct mtk_sha_reqctx *ctx)
 182{
 183	size_t count;
 184
 185	while ((ctx->bufcnt < SHA_BUF_SIZE) && ctx->total) {
 186		count = min(ctx->sg->length - ctx->offset, ctx->total);
 187		count = min(count, SHA_BUF_SIZE - ctx->bufcnt);
 188
 189		if (count <= 0) {
 190			/*
 191			 * Check if count <= 0 because the buffer is full or
 192			 * because the sg length is 0. In the latest case,
 193			 * check if there is another sg in the list, a 0 length
 194			 * sg doesn't necessarily mean the end of the sg list.
 195			 */
 196			if ((ctx->sg->length == 0) && !sg_is_last(ctx->sg)) {
 197				ctx->sg = sg_next(ctx->sg);
 198				continue;
 199			} else {
 200				break;
 201			}
 202		}
 203
 204		scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, ctx->sg,
 205					 ctx->offset, count, 0);
 206
 207		ctx->bufcnt += count;
 208		ctx->offset += count;
 209		ctx->total -= count;
 210
 211		if (ctx->offset == ctx->sg->length) {
 212			ctx->sg = sg_next(ctx->sg);
 213			if (ctx->sg)
 214				ctx->offset = 0;
 215			else
 216				ctx->total = 0;
 217		}
 218	}
 219
 220	return 0;
 221}
 222
 223/*
 224 * The purpose of this padding is to ensure that the padded message is a
 225 * multiple of 512 bits (SHA1/SHA224/SHA256) or 1024 bits (SHA384/SHA512).
 226 * The bit "1" is appended at the end of the message followed by
 227 * "padlen-1" zero bits. Then a 64 bits block (SHA1/SHA224/SHA256) or
 228 * 128 bits block (SHA384/SHA512) equals to the message length in bits
 229 * is appended.
 230 *
 231 * For SHA1/SHA224/SHA256, padlen is calculated as followed:
 232 *  - if message length < 56 bytes then padlen = 56 - message length
 233 *  - else padlen = 64 + 56 - message length
 234 *
 235 * For SHA384/SHA512, padlen is calculated as followed:
 236 *  - if message length < 112 bytes then padlen = 112 - message length
 237 *  - else padlen = 128 + 112 - message length
 238 */
 239static void mtk_sha_fill_padding(struct mtk_sha_reqctx *ctx, u32 len)
 240{
 241	u32 index, padlen;
 242	u64 bits[2];
 243	u64 size = ctx->digcnt;
 244
 245	size += ctx->bufcnt;
 246	size += len;
 247
 248	bits[1] = cpu_to_be64(size << 3);
 249	bits[0] = cpu_to_be64(size >> 61);
 250
 251	switch (ctx->flags & SHA_FLAGS_ALGO_MSK) {
 252	case SHA_FLAGS_SHA384:
 253	case SHA_FLAGS_SHA512:
 254		index = ctx->bufcnt & 0x7f;
 255		padlen = (index < 112) ? (112 - index) : ((128 + 112) - index);
 256		*(ctx->buffer + ctx->bufcnt) = 0x80;
 257		memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen - 1);
 258		memcpy(ctx->buffer + ctx->bufcnt + padlen, bits, 16);
 259		ctx->bufcnt += padlen + 16;
 260		ctx->flags |= SHA_FLAGS_PAD;
 261		break;
 262
 263	default:
 264		index = ctx->bufcnt & 0x3f;
 265		padlen = (index < 56) ? (56 - index) : ((64 + 56) - index);
 266		*(ctx->buffer + ctx->bufcnt) = 0x80;
 267		memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen - 1);
 268		memcpy(ctx->buffer + ctx->bufcnt + padlen, &bits[1], 8);
 269		ctx->bufcnt += padlen + 8;
 270		ctx->flags |= SHA_FLAGS_PAD;
 271		break;
 272	}
 273}
 274
 275/* Initialize basic transform information of SHA */
 276static void mtk_sha_info_init(struct mtk_sha_reqctx *ctx)
 277{
 278	struct mtk_sha_info *info = &ctx->info;
 279
 280	ctx->ct_hdr = SHA_CT_CTRL_HDR;
 281	ctx->ct_size = SHA_CT_SIZE;
 282
 283	info->tfm[0] = SHA_TFM_HASH | SHA_TFM_SIZE(SIZE_IN_WORDS(ctx->ds));
 284
 285	switch (ctx->flags & SHA_FLAGS_ALGO_MSK) {
 286	case SHA_FLAGS_SHA1:
 287		info->tfm[0] |= SHA_TFM_SHA1;
 288		break;
 289	case SHA_FLAGS_SHA224:
 290		info->tfm[0] |= SHA_TFM_SHA224;
 291		break;
 292	case SHA_FLAGS_SHA256:
 293		info->tfm[0] |= SHA_TFM_SHA256;
 294		break;
 295	case SHA_FLAGS_SHA384:
 296		info->tfm[0] |= SHA_TFM_SHA384;
 297		break;
 298	case SHA_FLAGS_SHA512:
 299		info->tfm[0] |= SHA_TFM_SHA512;
 300		break;
 301
 302	default:
 303		/* Should not happen... */
 304		return;
 305	}
 306
 307	info->tfm[1] = SHA_TFM_HASH_STORE;
 308	info->ctrl[0] = info->tfm[0] | SHA_TFM_CONTINUE | SHA_TFM_START;
 309	info->ctrl[1] = info->tfm[1];
 310
 311	info->cmd[0] = SHA_CMD0;
 312	info->cmd[1] = SHA_CMD1;
 313	info->cmd[2] = SHA_CMD2 | SHA_TFM_DIGEST(SIZE_IN_WORDS(ctx->ds));
 314}
 315
 316/*
 317 * Update input data length field of transform information and
 318 * map it to DMA region.
 319 */
 320static int mtk_sha_info_update(struct mtk_cryp *cryp,
 321			       struct mtk_sha_rec *sha,
 322			       size_t len1, size_t len2)
 323{
 324	struct mtk_sha_reqctx *ctx = ahash_request_ctx(sha->req);
 325	struct mtk_sha_info *info = &ctx->info;
 326
 327	ctx->ct_hdr &= ~SHA_DATA_LEN_MSK;
 328	ctx->ct_hdr |= cpu_to_le32(len1 + len2);
 329	info->cmd[0] &= ~SHA_DATA_LEN_MSK;
 330	info->cmd[0] |= cpu_to_le32(len1 + len2);
 331
 332	/* Setting SHA_TFM_START only for the first iteration */
 333	if (ctx->digcnt)
 334		info->ctrl[0] &= ~SHA_TFM_START;
 335
 336	ctx->digcnt += len1;
 337
 338	ctx->ct_dma = dma_map_single(cryp->dev, info, sizeof(*info),
 339				     DMA_BIDIRECTIONAL);
 340	if (unlikely(dma_mapping_error(cryp->dev, ctx->ct_dma))) {
 341		dev_err(cryp->dev, "dma %zu bytes error\n", sizeof(*info));
 342		return -EINVAL;
 343	}
 344
 345	ctx->tfm_dma = ctx->ct_dma + sizeof(info->ctrl) + sizeof(info->cmd);
 346
 347	return 0;
 348}
 349
 350/*
 351 * Because of hardware limitation, we must pre-calculate the inner
 352 * and outer digest that need to be processed firstly by engine, then
 353 * apply the result digest to the input message. These complex hashing
 354 * procedures limits HMAC performance, so we use fallback SW encoding.
 355 */
 356static int mtk_sha_finish_hmac(struct ahash_request *req)
 357{
 358	struct mtk_sha_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
 359	struct mtk_sha_hmac_ctx *bctx = tctx->base;
 360	struct mtk_sha_reqctx *ctx = ahash_request_ctx(req);
 361
 362	SHASH_DESC_ON_STACK(shash, bctx->shash);
 363
 364	shash->tfm = bctx->shash;
 365
 366	return crypto_shash_init(shash) ?:
 367	       crypto_shash_update(shash, bctx->opad, ctx->bs) ?:
 368	       crypto_shash_finup(shash, req->result, ctx->ds, req->result);
 369}
 370
 371/* Initialize request context */
 372static int mtk_sha_init(struct ahash_request *req)
 373{
 374	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 375	struct mtk_sha_ctx *tctx = crypto_ahash_ctx(tfm);
 376	struct mtk_sha_reqctx *ctx = ahash_request_ctx(req);
 377
 378	ctx->flags = 0;
 379	ctx->ds = crypto_ahash_digestsize(tfm);
 380
 381	switch (ctx->ds) {
 382	case SHA1_DIGEST_SIZE:
 383		ctx->flags |= SHA_FLAGS_SHA1;
 384		ctx->bs = SHA1_BLOCK_SIZE;
 385		break;
 386	case SHA224_DIGEST_SIZE:
 387		ctx->flags |= SHA_FLAGS_SHA224;
 388		ctx->bs = SHA224_BLOCK_SIZE;
 389		break;
 390	case SHA256_DIGEST_SIZE:
 391		ctx->flags |= SHA_FLAGS_SHA256;
 392		ctx->bs = SHA256_BLOCK_SIZE;
 393		break;
 394	case SHA384_DIGEST_SIZE:
 395		ctx->flags |= SHA_FLAGS_SHA384;
 396		ctx->bs = SHA384_BLOCK_SIZE;
 397		break;
 398	case SHA512_DIGEST_SIZE:
 399		ctx->flags |= SHA_FLAGS_SHA512;
 400		ctx->bs = SHA512_BLOCK_SIZE;
 401		break;
 402	default:
 403		return -EINVAL;
 404	}
 405
 406	ctx->bufcnt = 0;
 407	ctx->digcnt = 0;
 408	ctx->buffer = tctx->buf;
 409
 410	if (tctx->flags & SHA_FLAGS_HMAC) {
 411		struct mtk_sha_hmac_ctx *bctx = tctx->base;
 412
 413		memcpy(ctx->buffer, bctx->ipad, ctx->bs);
 414		ctx->bufcnt = ctx->bs;
 415		ctx->flags |= SHA_FLAGS_HMAC;
 416	}
 417
 418	return 0;
 419}
 420
 421static int mtk_sha_xmit(struct mtk_cryp *cryp, struct mtk_sha_rec *sha,
 422			dma_addr_t addr1, size_t len1,
 423			dma_addr_t addr2, size_t len2)
 424{
 425	struct mtk_sha_reqctx *ctx = ahash_request_ctx(sha->req);
 426	struct mtk_ring *ring = cryp->ring[sha->id];
 427	struct mtk_desc *cmd, *res;
 428	int err, count = 0;
 429
 430	err = mtk_sha_info_update(cryp, sha, len1, len2);
 431	if (err)
 432		return err;
 433
 434	/* Fill in the command/result descriptors */
 435	mtk_sha_ring_shift(ring, &cmd, &res, &count);
 436
 437	res->hdr = MTK_DESC_FIRST | MTK_DESC_BUF_LEN(len1);
 438	cmd->hdr = MTK_DESC_FIRST | MTK_DESC_BUF_LEN(len1) |
 439		   MTK_DESC_CT_LEN(ctx->ct_size);
 440	cmd->buf = cpu_to_le32(addr1);
 441	cmd->ct = cpu_to_le32(ctx->ct_dma);
 442	cmd->ct_hdr = ctx->ct_hdr;
 443	cmd->tfm = cpu_to_le32(ctx->tfm_dma);
 444
 445	if (len2) {
 446		mtk_sha_ring_shift(ring, &cmd, &res, &count);
 447
 448		res->hdr = MTK_DESC_BUF_LEN(len2);
 449		cmd->hdr = MTK_DESC_BUF_LEN(len2);
 450		cmd->buf = cpu_to_le32(addr2);
 451	}
 452
 453	cmd->hdr |= MTK_DESC_LAST;
 454	res->hdr |= MTK_DESC_LAST;
 455
 456	/*
 457	 * Make sure that all changes to the DMA ring are done before we
 458	 * start engine.
 459	 */
 460	wmb();
 461	/* Start DMA transfer */
 462	mtk_sha_write(cryp, RDR_PREP_COUNT(sha->id), MTK_DESC_CNT(count));
 463	mtk_sha_write(cryp, CDR_PREP_COUNT(sha->id), MTK_DESC_CNT(count));
 464
 465	return -EINPROGRESS;
 466}
 467
 468static int mtk_sha_dma_map(struct mtk_cryp *cryp,
 469			   struct mtk_sha_rec *sha,
 470			   struct mtk_sha_reqctx *ctx,
 471			   size_t count)
 472{
 473	ctx->dma_addr = dma_map_single(cryp->dev, ctx->buffer,
 474				       SHA_BUF_SIZE, DMA_TO_DEVICE);
 475	if (unlikely(dma_mapping_error(cryp->dev, ctx->dma_addr))) {
 476		dev_err(cryp->dev, "dma map error\n");
 477		return -EINVAL;
 478	}
 479
 480	ctx->flags &= ~SHA_FLAGS_SG;
 481
 482	return mtk_sha_xmit(cryp, sha, ctx->dma_addr, count, 0, 0);
 483}
 484
 485static int mtk_sha_update_slow(struct mtk_cryp *cryp,
 486			       struct mtk_sha_rec *sha)
 487{
 488	struct mtk_sha_reqctx *ctx = ahash_request_ctx(sha->req);
 489	size_t count;
 490	u32 final;
 491
 492	mtk_sha_append_sg(ctx);
 493
 494	final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total;
 495
 496	dev_dbg(cryp->dev, "slow: bufcnt: %zu\n", ctx->bufcnt);
 497
 498	if (final) {
 499		sha->flags |= SHA_FLAGS_FINAL;
 500		mtk_sha_fill_padding(ctx, 0);
 501	}
 502
 503	if (final || (ctx->bufcnt == SHA_BUF_SIZE && ctx->total)) {
 504		count = ctx->bufcnt;
 505		ctx->bufcnt = 0;
 506
 507		return mtk_sha_dma_map(cryp, sha, ctx, count);
 508	}
 509	return 0;
 510}
 511
 512static int mtk_sha_update_start(struct mtk_cryp *cryp,
 513				struct mtk_sha_rec *sha)
 514{
 515	struct mtk_sha_reqctx *ctx = ahash_request_ctx(sha->req);
 516	u32 len, final, tail;
 517	struct scatterlist *sg;
 518
 519	if (!ctx->total)
 520		return 0;
 521
 522	if (ctx->bufcnt || ctx->offset)
 523		return mtk_sha_update_slow(cryp, sha);
 524
 525	sg = ctx->sg;
 526
 527	if (!IS_ALIGNED(sg->offset, sizeof(u32)))
 528		return mtk_sha_update_slow(cryp, sha);
 529
 530	if (!sg_is_last(sg) && !IS_ALIGNED(sg->length, ctx->bs))
 531		/* size is not ctx->bs aligned */
 532		return mtk_sha_update_slow(cryp, sha);
 533
 534	len = min(ctx->total, sg->length);
 535
 536	if (sg_is_last(sg)) {
 537		if (!(ctx->flags & SHA_FLAGS_FINUP)) {
 538			/* not last sg must be ctx->bs aligned */
 539			tail = len & (ctx->bs - 1);
 540			len -= tail;
 541		}
 542	}
 543
 544	ctx->total -= len;
 545	ctx->offset = len; /* offset where to start slow */
 546
 547	final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total;
 548
 549	/* Add padding */
 550	if (final) {
 551		size_t count;
 552
 553		tail = len & (ctx->bs - 1);
 554		len -= tail;
 555		ctx->total += tail;
 556		ctx->offset = len; /* offset where to start slow */
 557
 558		sg = ctx->sg;
 559		mtk_sha_append_sg(ctx);
 560		mtk_sha_fill_padding(ctx, len);
 561
 562		ctx->dma_addr = dma_map_single(cryp->dev, ctx->buffer,
 563					       SHA_BUF_SIZE, DMA_TO_DEVICE);
 564		if (unlikely(dma_mapping_error(cryp->dev, ctx->dma_addr))) {
 565			dev_err(cryp->dev, "dma map bytes error\n");
 566			return -EINVAL;
 567		}
 568
 569		sha->flags |= SHA_FLAGS_FINAL;
 570		count = ctx->bufcnt;
 571		ctx->bufcnt = 0;
 572
 573		if (len == 0) {
 574			ctx->flags &= ~SHA_FLAGS_SG;
 575			return mtk_sha_xmit(cryp, sha, ctx->dma_addr,
 576					    count, 0, 0);
 577
 578		} else {
 579			ctx->sg = sg;
 580			if (!dma_map_sg(cryp->dev, ctx->sg, 1, DMA_TO_DEVICE)) {
 581				dev_err(cryp->dev, "dma_map_sg error\n");
 582				return -EINVAL;
 583			}
 584
 585			ctx->flags |= SHA_FLAGS_SG;
 586			return mtk_sha_xmit(cryp, sha, sg_dma_address(ctx->sg),
 587					    len, ctx->dma_addr, count);
 588		}
 589	}
 590
 591	if (!dma_map_sg(cryp->dev, ctx->sg, 1, DMA_TO_DEVICE)) {
 592		dev_err(cryp->dev, "dma_map_sg  error\n");
 593		return -EINVAL;
 594	}
 595
 596	ctx->flags |= SHA_FLAGS_SG;
 597
 598	return mtk_sha_xmit(cryp, sha, sg_dma_address(ctx->sg),
 599			    len, 0, 0);
 600}
 601
 602static int mtk_sha_final_req(struct mtk_cryp *cryp,
 603			     struct mtk_sha_rec *sha)
 604{
 605	struct mtk_sha_reqctx *ctx = ahash_request_ctx(sha->req);
 606	size_t count;
 607
 608	mtk_sha_fill_padding(ctx, 0);
 609
 610	sha->flags |= SHA_FLAGS_FINAL;
 611	count = ctx->bufcnt;
 612	ctx->bufcnt = 0;
 613
 614	return mtk_sha_dma_map(cryp, sha, ctx, count);
 615}
 616
 617/* Copy ready hash (+ finalize hmac) */
 618static int mtk_sha_finish(struct ahash_request *req)
 619{
 620	struct mtk_sha_reqctx *ctx = ahash_request_ctx(req);
 621	__le32 *digest = ctx->info.digest;
 622	u32 *result = (u32 *)req->result;
 623	int i;
 624
 625	/* Get the hash from the digest buffer */
 626	for (i = 0; i < SIZE_IN_WORDS(ctx->ds); i++)
 627		result[i] = le32_to_cpu(digest[i]);
 628
 629	if (ctx->flags & SHA_FLAGS_HMAC)
 630		return mtk_sha_finish_hmac(req);
 631
 632	return 0;
 633}
 634
 635static void mtk_sha_finish_req(struct mtk_cryp *cryp,
 636			       struct mtk_sha_rec *sha,
 637			       int err)
 638{
 639	if (likely(!err && (SHA_FLAGS_FINAL & sha->flags)))
 640		err = mtk_sha_finish(sha->req);
 641
 642	sha->flags &= ~(SHA_FLAGS_BUSY | SHA_FLAGS_FINAL);
 643
 644	sha->req->base.complete(&sha->req->base, err);
 645
 646	/* Handle new request */
 647	tasklet_schedule(&sha->queue_task);
 648}
 649
 650static int mtk_sha_handle_queue(struct mtk_cryp *cryp, u8 id,
 651				struct ahash_request *req)
 652{
 653	struct mtk_sha_rec *sha = cryp->sha[id];
 654	struct crypto_async_request *async_req, *backlog;
 655	struct mtk_sha_reqctx *ctx;
 656	unsigned long flags;
 657	int err = 0, ret = 0;
 658
 659	spin_lock_irqsave(&sha->lock, flags);
 660	if (req)
 661		ret = ahash_enqueue_request(&sha->queue, req);
 662
 663	if (SHA_FLAGS_BUSY & sha->flags) {
 664		spin_unlock_irqrestore(&sha->lock, flags);
 665		return ret;
 666	}
 667
 668	backlog = crypto_get_backlog(&sha->queue);
 669	async_req = crypto_dequeue_request(&sha->queue);
 670	if (async_req)
 671		sha->flags |= SHA_FLAGS_BUSY;
 672	spin_unlock_irqrestore(&sha->lock, flags);
 673
 674	if (!async_req)
 675		return ret;
 676
 677	if (backlog)
 678		backlog->complete(backlog, -EINPROGRESS);
 679
 680	req = ahash_request_cast(async_req);
 681	ctx = ahash_request_ctx(req);
 682
 683	sha->req = req;
 684
 685	mtk_sha_info_init(ctx);
 686
 687	if (ctx->op == SHA_OP_UPDATE) {
 688		err = mtk_sha_update_start(cryp, sha);
 689		if (err != -EINPROGRESS && (ctx->flags & SHA_FLAGS_FINUP))
 690			/* No final() after finup() */
 691			err = mtk_sha_final_req(cryp, sha);
 692	} else if (ctx->op == SHA_OP_FINAL) {
 693		err = mtk_sha_final_req(cryp, sha);
 694	}
 695
 696	if (unlikely(err != -EINPROGRESS))
 697		/* Task will not finish it, so do it here */
 698		mtk_sha_finish_req(cryp, sha, err);
 699
 700	return ret;
 701}
 702
 703static int mtk_sha_enqueue(struct ahash_request *req, u32 op)
 704{
 705	struct mtk_sha_reqctx *ctx = ahash_request_ctx(req);
 706	struct mtk_sha_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
 707
 708	ctx->op = op;
 709
 710	return mtk_sha_handle_queue(tctx->cryp, tctx->id, req);
 711}
 712
 713static void mtk_sha_unmap(struct mtk_cryp *cryp, struct mtk_sha_rec *sha)
 714{
 715	struct mtk_sha_reqctx *ctx = ahash_request_ctx(sha->req);
 716
 717	dma_unmap_single(cryp->dev, ctx->ct_dma, sizeof(ctx->info),
 718			 DMA_BIDIRECTIONAL);
 719
 720	if (ctx->flags & SHA_FLAGS_SG) {
 721		dma_unmap_sg(cryp->dev, ctx->sg, 1, DMA_TO_DEVICE);
 722		if (ctx->sg->length == ctx->offset) {
 723			ctx->sg = sg_next(ctx->sg);
 724			if (ctx->sg)
 725				ctx->offset = 0;
 726		}
 727		if (ctx->flags & SHA_FLAGS_PAD) {
 728			dma_unmap_single(cryp->dev, ctx->dma_addr,
 729					 SHA_BUF_SIZE, DMA_TO_DEVICE);
 730		}
 731	} else
 732		dma_unmap_single(cryp->dev, ctx->dma_addr,
 733				 SHA_BUF_SIZE, DMA_TO_DEVICE);
 734}
 735
 736static void mtk_sha_complete(struct mtk_cryp *cryp,
 737			     struct mtk_sha_rec *sha)
 738{
 739	int err = 0;
 740
 741	err = mtk_sha_update_start(cryp, sha);
 742	if (err != -EINPROGRESS)
 743		mtk_sha_finish_req(cryp, sha, err);
 744}
 745
 746static int mtk_sha_update(struct ahash_request *req)
 747{
 748	struct mtk_sha_reqctx *ctx = ahash_request_ctx(req);
 749
 750	ctx->total = req->nbytes;
 751	ctx->sg = req->src;
 752	ctx->offset = 0;
 753
 754	if ((ctx->bufcnt + ctx->total < SHA_BUF_SIZE) &&
 755	    !(ctx->flags & SHA_FLAGS_FINUP))
 756		return mtk_sha_append_sg(ctx);
 757
 758	return mtk_sha_enqueue(req, SHA_OP_UPDATE);
 759}
 760
 761static int mtk_sha_final(struct ahash_request *req)
 762{
 763	struct mtk_sha_reqctx *ctx = ahash_request_ctx(req);
 764
 765	ctx->flags |= SHA_FLAGS_FINUP;
 766
 767	if (ctx->flags & SHA_FLAGS_PAD)
 768		return mtk_sha_finish(req);
 769
 770	return mtk_sha_enqueue(req, SHA_OP_FINAL);
 771}
 772
 773static int mtk_sha_finup(struct ahash_request *req)
 774{
 775	struct mtk_sha_reqctx *ctx = ahash_request_ctx(req);
 776	int err1, err2;
 777
 778	ctx->flags |= SHA_FLAGS_FINUP;
 779
 780	err1 = mtk_sha_update(req);
 781	if (err1 == -EINPROGRESS ||
 782	    (err1 == -EBUSY && (ahash_request_flags(req) &
 783				CRYPTO_TFM_REQ_MAY_BACKLOG)))
 784		return err1;
 785	/*
 786	 * final() has to be always called to cleanup resources
 787	 * even if update() failed
 788	 */
 789	err2 = mtk_sha_final(req);
 790
 791	return err1 ?: err2;
 792}
 793
 794static int mtk_sha_digest(struct ahash_request *req)
 795{
 796	return mtk_sha_init(req) ?: mtk_sha_finup(req);
 797}
 798
 799static int mtk_sha_setkey(struct crypto_ahash *tfm, const u8 *key,
 800			  u32 keylen)
 801{
 802	struct mtk_sha_ctx *tctx = crypto_ahash_ctx(tfm);
 803	struct mtk_sha_hmac_ctx *bctx = tctx->base;
 804	size_t bs = crypto_shash_blocksize(bctx->shash);
 805	size_t ds = crypto_shash_digestsize(bctx->shash);
 806	int err, i;
 807
 808	SHASH_DESC_ON_STACK(shash, bctx->shash);
 809
 810	shash->tfm = bctx->shash;
 811
 812	if (keylen > bs) {
 813		err = crypto_shash_digest(shash, key, keylen, bctx->ipad);
 814		if (err)
 815			return err;
 816		keylen = ds;
 817	} else {
 818		memcpy(bctx->ipad, key, keylen);
 819	}
 820
 821	memset(bctx->ipad + keylen, 0, bs - keylen);
 822	memcpy(bctx->opad, bctx->ipad, bs);
 823
 824	for (i = 0; i < bs; i++) {
 825		bctx->ipad[i] ^= HMAC_IPAD_VALUE;
 826		bctx->opad[i] ^= HMAC_OPAD_VALUE;
 827	}
 828
 829	return 0;
 830}
 831
 832static int mtk_sha_export(struct ahash_request *req, void *out)
 833{
 834	const struct mtk_sha_reqctx *ctx = ahash_request_ctx(req);
 835
 836	memcpy(out, ctx, sizeof(*ctx));
 837	return 0;
 838}
 839
 840static int mtk_sha_import(struct ahash_request *req, const void *in)
 841{
 842	struct mtk_sha_reqctx *ctx = ahash_request_ctx(req);
 843
 844	memcpy(ctx, in, sizeof(*ctx));
 845	return 0;
 846}
 847
 848static int mtk_sha_cra_init_alg(struct crypto_tfm *tfm,
 849				const char *alg_base)
 850{
 851	struct mtk_sha_ctx *tctx = crypto_tfm_ctx(tfm);
 852	struct mtk_cryp *cryp = NULL;
 853
 854	cryp = mtk_sha_find_dev(tctx);
 855	if (!cryp)
 856		return -ENODEV;
 857
 858	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
 859				 sizeof(struct mtk_sha_reqctx));
 860
 861	if (alg_base) {
 862		struct mtk_sha_hmac_ctx *bctx = tctx->base;
 863
 864		tctx->flags |= SHA_FLAGS_HMAC;
 865		bctx->shash = crypto_alloc_shash(alg_base, 0,
 866					CRYPTO_ALG_NEED_FALLBACK);
 867		if (IS_ERR(bctx->shash)) {
 868			pr_err("base driver %s could not be loaded.\n",
 869			       alg_base);
 870
 871			return PTR_ERR(bctx->shash);
 872		}
 873	}
 874	return 0;
 875}
 876
 877static int mtk_sha_cra_init(struct crypto_tfm *tfm)
 878{
 879	return mtk_sha_cra_init_alg(tfm, NULL);
 880}
 881
 882static int mtk_sha_cra_sha1_init(struct crypto_tfm *tfm)
 883{
 884	return mtk_sha_cra_init_alg(tfm, "sha1");
 885}
 886
 887static int mtk_sha_cra_sha224_init(struct crypto_tfm *tfm)
 888{
 889	return mtk_sha_cra_init_alg(tfm, "sha224");
 890}
 891
 892static int mtk_sha_cra_sha256_init(struct crypto_tfm *tfm)
 893{
 894	return mtk_sha_cra_init_alg(tfm, "sha256");
 895}
 896
 897static int mtk_sha_cra_sha384_init(struct crypto_tfm *tfm)
 898{
 899	return mtk_sha_cra_init_alg(tfm, "sha384");
 900}
 901
 902static int mtk_sha_cra_sha512_init(struct crypto_tfm *tfm)
 903{
 904	return mtk_sha_cra_init_alg(tfm, "sha512");
 905}
 906
 907static void mtk_sha_cra_exit(struct crypto_tfm *tfm)
 908{
 909	struct mtk_sha_ctx *tctx = crypto_tfm_ctx(tfm);
 910
 911	if (tctx->flags & SHA_FLAGS_HMAC) {
 912		struct mtk_sha_hmac_ctx *bctx = tctx->base;
 913
 914		crypto_free_shash(bctx->shash);
 915	}
 916}
 917
 918static struct ahash_alg algs_sha1_sha224_sha256[] = {
 919{
 920	.init		= mtk_sha_init,
 921	.update		= mtk_sha_update,
 922	.final		= mtk_sha_final,
 923	.finup		= mtk_sha_finup,
 924	.digest		= mtk_sha_digest,
 925	.export		= mtk_sha_export,
 926	.import		= mtk_sha_import,
 927	.halg.digestsize	= SHA1_DIGEST_SIZE,
 928	.halg.statesize = sizeof(struct mtk_sha_reqctx),
 929	.halg.base	= {
 930		.cra_name		= "sha1",
 931		.cra_driver_name	= "mtk-sha1",
 932		.cra_priority		= 400,
 933		.cra_flags		= CRYPTO_ALG_ASYNC,
 934		.cra_blocksize		= SHA1_BLOCK_SIZE,
 935		.cra_ctxsize		= sizeof(struct mtk_sha_ctx),
 936		.cra_alignmask		= SHA_ALIGN_MSK,
 937		.cra_module		= THIS_MODULE,
 938		.cra_init		= mtk_sha_cra_init,
 939		.cra_exit		= mtk_sha_cra_exit,
 940	}
 941},
 942{
 943	.init		= mtk_sha_init,
 944	.update		= mtk_sha_update,
 945	.final		= mtk_sha_final,
 946	.finup		= mtk_sha_finup,
 947	.digest		= mtk_sha_digest,
 948	.export		= mtk_sha_export,
 949	.import		= mtk_sha_import,
 950	.halg.digestsize	= SHA224_DIGEST_SIZE,
 951	.halg.statesize = sizeof(struct mtk_sha_reqctx),
 952	.halg.base	= {
 953		.cra_name		= "sha224",
 954		.cra_driver_name	= "mtk-sha224",
 955		.cra_priority		= 400,
 956		.cra_flags		= CRYPTO_ALG_ASYNC,
 957		.cra_blocksize		= SHA224_BLOCK_SIZE,
 958		.cra_ctxsize		= sizeof(struct mtk_sha_ctx),
 959		.cra_alignmask		= SHA_ALIGN_MSK,
 960		.cra_module		= THIS_MODULE,
 961		.cra_init		= mtk_sha_cra_init,
 962		.cra_exit		= mtk_sha_cra_exit,
 963	}
 964},
 965{
 966	.init		= mtk_sha_init,
 967	.update		= mtk_sha_update,
 968	.final		= mtk_sha_final,
 969	.finup		= mtk_sha_finup,
 970	.digest		= mtk_sha_digest,
 971	.export		= mtk_sha_export,
 972	.import		= mtk_sha_import,
 973	.halg.digestsize	= SHA256_DIGEST_SIZE,
 974	.halg.statesize = sizeof(struct mtk_sha_reqctx),
 975	.halg.base	= {
 976		.cra_name		= "sha256",
 977		.cra_driver_name	= "mtk-sha256",
 978		.cra_priority		= 400,
 979		.cra_flags		= CRYPTO_ALG_ASYNC,
 980		.cra_blocksize		= SHA256_BLOCK_SIZE,
 981		.cra_ctxsize		= sizeof(struct mtk_sha_ctx),
 982		.cra_alignmask		= SHA_ALIGN_MSK,
 983		.cra_module		= THIS_MODULE,
 984		.cra_init		= mtk_sha_cra_init,
 985		.cra_exit		= mtk_sha_cra_exit,
 986	}
 987},
 988{
 989	.init		= mtk_sha_init,
 990	.update		= mtk_sha_update,
 991	.final		= mtk_sha_final,
 992	.finup		= mtk_sha_finup,
 993	.digest		= mtk_sha_digest,
 994	.export		= mtk_sha_export,
 995	.import		= mtk_sha_import,
 996	.setkey		= mtk_sha_setkey,
 997	.halg.digestsize	= SHA1_DIGEST_SIZE,
 998	.halg.statesize = sizeof(struct mtk_sha_reqctx),
 999	.halg.base	= {
1000		.cra_name		= "hmac(sha1)",
1001		.cra_driver_name	= "mtk-hmac-sha1",
1002		.cra_priority		= 400,
1003		.cra_flags		= CRYPTO_ALG_ASYNC |
1004					  CRYPTO_ALG_NEED_FALLBACK,
1005		.cra_blocksize		= SHA1_BLOCK_SIZE,
1006		.cra_ctxsize		= sizeof(struct mtk_sha_ctx) +
1007					sizeof(struct mtk_sha_hmac_ctx),
1008		.cra_alignmask		= SHA_ALIGN_MSK,
1009		.cra_module		= THIS_MODULE,
1010		.cra_init		= mtk_sha_cra_sha1_init,
1011		.cra_exit		= mtk_sha_cra_exit,
1012	}
1013},
1014{
1015	.init		= mtk_sha_init,
1016	.update		= mtk_sha_update,
1017	.final		= mtk_sha_final,
1018	.finup		= mtk_sha_finup,
1019	.digest		= mtk_sha_digest,
1020	.export		= mtk_sha_export,
1021	.import		= mtk_sha_import,
1022	.setkey		= mtk_sha_setkey,
1023	.halg.digestsize	= SHA224_DIGEST_SIZE,
1024	.halg.statesize = sizeof(struct mtk_sha_reqctx),
1025	.halg.base	= {
1026		.cra_name		= "hmac(sha224)",
1027		.cra_driver_name	= "mtk-hmac-sha224",
1028		.cra_priority		= 400,
1029		.cra_flags		= CRYPTO_ALG_ASYNC |
1030					  CRYPTO_ALG_NEED_FALLBACK,
1031		.cra_blocksize		= SHA224_BLOCK_SIZE,
1032		.cra_ctxsize		= sizeof(struct mtk_sha_ctx) +
1033					sizeof(struct mtk_sha_hmac_ctx),
1034		.cra_alignmask		= SHA_ALIGN_MSK,
1035		.cra_module		= THIS_MODULE,
1036		.cra_init		= mtk_sha_cra_sha224_init,
1037		.cra_exit		= mtk_sha_cra_exit,
1038	}
1039},
1040{
1041	.init		= mtk_sha_init,
1042	.update		= mtk_sha_update,
1043	.final		= mtk_sha_final,
1044	.finup		= mtk_sha_finup,
1045	.digest		= mtk_sha_digest,
1046	.export		= mtk_sha_export,
1047	.import		= mtk_sha_import,
1048	.setkey		= mtk_sha_setkey,
1049	.halg.digestsize	= SHA256_DIGEST_SIZE,
1050	.halg.statesize = sizeof(struct mtk_sha_reqctx),
1051	.halg.base	= {
1052		.cra_name		= "hmac(sha256)",
1053		.cra_driver_name	= "mtk-hmac-sha256",
1054		.cra_priority		= 400,
1055		.cra_flags		= CRYPTO_ALG_ASYNC |
1056					  CRYPTO_ALG_NEED_FALLBACK,
1057		.cra_blocksize		= SHA256_BLOCK_SIZE,
1058		.cra_ctxsize		= sizeof(struct mtk_sha_ctx) +
1059					sizeof(struct mtk_sha_hmac_ctx),
1060		.cra_alignmask		= SHA_ALIGN_MSK,
1061		.cra_module		= THIS_MODULE,
1062		.cra_init		= mtk_sha_cra_sha256_init,
1063		.cra_exit		= mtk_sha_cra_exit,
1064	}
1065},
1066};
1067
1068static struct ahash_alg algs_sha384_sha512[] = {
1069{
1070	.init		= mtk_sha_init,
1071	.update		= mtk_sha_update,
1072	.final		= mtk_sha_final,
1073	.finup		= mtk_sha_finup,
1074	.digest		= mtk_sha_digest,
1075	.export		= mtk_sha_export,
1076	.import		= mtk_sha_import,
1077	.halg.digestsize	= SHA384_DIGEST_SIZE,
1078	.halg.statesize = sizeof(struct mtk_sha_reqctx),
1079	.halg.base	= {
1080		.cra_name		= "sha384",
1081		.cra_driver_name	= "mtk-sha384",
1082		.cra_priority		= 400,
1083		.cra_flags		= CRYPTO_ALG_ASYNC,
1084		.cra_blocksize		= SHA384_BLOCK_SIZE,
1085		.cra_ctxsize		= sizeof(struct mtk_sha_ctx),
1086		.cra_alignmask		= SHA_ALIGN_MSK,
1087		.cra_module		= THIS_MODULE,
1088		.cra_init		= mtk_sha_cra_init,
1089		.cra_exit		= mtk_sha_cra_exit,
1090	}
1091},
1092{
1093	.init		= mtk_sha_init,
1094	.update		= mtk_sha_update,
1095	.final		= mtk_sha_final,
1096	.finup		= mtk_sha_finup,
1097	.digest		= mtk_sha_digest,
1098	.export		= mtk_sha_export,
1099	.import		= mtk_sha_import,
1100	.halg.digestsize	= SHA512_DIGEST_SIZE,
1101	.halg.statesize = sizeof(struct mtk_sha_reqctx),
1102	.halg.base	= {
1103		.cra_name		= "sha512",
1104		.cra_driver_name	= "mtk-sha512",
1105		.cra_priority		= 400,
1106		.cra_flags		= CRYPTO_ALG_ASYNC,
1107		.cra_blocksize		= SHA512_BLOCK_SIZE,
1108		.cra_ctxsize		= sizeof(struct mtk_sha_ctx),
1109		.cra_alignmask		= SHA_ALIGN_MSK,
1110		.cra_module		= THIS_MODULE,
1111		.cra_init		= mtk_sha_cra_init,
1112		.cra_exit		= mtk_sha_cra_exit,
1113	}
1114},
1115{
1116	.init		= mtk_sha_init,
1117	.update		= mtk_sha_update,
1118	.final		= mtk_sha_final,
1119	.finup		= mtk_sha_finup,
1120	.digest		= mtk_sha_digest,
1121	.export		= mtk_sha_export,
1122	.import		= mtk_sha_import,
1123	.setkey		= mtk_sha_setkey,
1124	.halg.digestsize	= SHA384_DIGEST_SIZE,
1125	.halg.statesize = sizeof(struct mtk_sha_reqctx),
1126	.halg.base	= {
1127		.cra_name		= "hmac(sha384)",
1128		.cra_driver_name	= "mtk-hmac-sha384",
1129		.cra_priority		= 400,
1130		.cra_flags		= CRYPTO_ALG_ASYNC |
1131					  CRYPTO_ALG_NEED_FALLBACK,
1132		.cra_blocksize		= SHA384_BLOCK_SIZE,
1133		.cra_ctxsize		= sizeof(struct mtk_sha_ctx) +
1134					sizeof(struct mtk_sha_hmac_ctx),
1135		.cra_alignmask		= SHA_ALIGN_MSK,
1136		.cra_module		= THIS_MODULE,
1137		.cra_init		= mtk_sha_cra_sha384_init,
1138		.cra_exit		= mtk_sha_cra_exit,
1139	}
1140},
1141{
1142	.init		= mtk_sha_init,
1143	.update		= mtk_sha_update,
1144	.final		= mtk_sha_final,
1145	.finup		= mtk_sha_finup,
1146	.digest		= mtk_sha_digest,
1147	.export		= mtk_sha_export,
1148	.import		= mtk_sha_import,
1149	.setkey		= mtk_sha_setkey,
1150	.halg.digestsize	= SHA512_DIGEST_SIZE,
1151	.halg.statesize = sizeof(struct mtk_sha_reqctx),
1152	.halg.base	= {
1153		.cra_name		= "hmac(sha512)",
1154		.cra_driver_name	= "mtk-hmac-sha512",
1155		.cra_priority		= 400,
1156		.cra_flags		= CRYPTO_ALG_ASYNC |
1157					  CRYPTO_ALG_NEED_FALLBACK,
1158		.cra_blocksize		= SHA512_BLOCK_SIZE,
1159		.cra_ctxsize		= sizeof(struct mtk_sha_ctx) +
1160					sizeof(struct mtk_sha_hmac_ctx),
1161		.cra_alignmask		= SHA_ALIGN_MSK,
1162		.cra_module		= THIS_MODULE,
1163		.cra_init		= mtk_sha_cra_sha512_init,
1164		.cra_exit		= mtk_sha_cra_exit,
1165	}
1166},
1167};
1168
1169static void mtk_sha_queue_task(unsigned long data)
1170{
1171	struct mtk_sha_rec *sha = (struct mtk_sha_rec *)data;
1172
1173	mtk_sha_handle_queue(sha->cryp, sha->id - MTK_RING2, NULL);
1174}
1175
1176static void mtk_sha_done_task(unsigned long data)
1177{
1178	struct mtk_sha_rec *sha = (struct mtk_sha_rec *)data;
1179	struct mtk_cryp *cryp = sha->cryp;
1180
1181	mtk_sha_unmap(cryp, sha);
1182	mtk_sha_complete(cryp, sha);
1183}
1184
1185static irqreturn_t mtk_sha_irq(int irq, void *dev_id)
1186{
1187	struct mtk_sha_rec *sha = (struct mtk_sha_rec *)dev_id;
1188	struct mtk_cryp *cryp = sha->cryp;
1189	u32 val = mtk_sha_read(cryp, RDR_STAT(sha->id));
1190
1191	mtk_sha_write(cryp, RDR_STAT(sha->id), val);
1192
1193	if (likely((SHA_FLAGS_BUSY & sha->flags))) {
1194		mtk_sha_write(cryp, RDR_PROC_COUNT(sha->id), MTK_CNT_RST);
1195		mtk_sha_write(cryp, RDR_THRESH(sha->id),
1196			      MTK_RDR_PROC_THRESH | MTK_RDR_PROC_MODE);
1197
1198		tasklet_schedule(&sha->done_task);
1199	} else {
1200		dev_warn(cryp->dev, "SHA interrupt when no active requests.\n");
1201	}
1202	return IRQ_HANDLED;
1203}
1204
1205/*
1206 * The purpose of two SHA records is used to get extra performance.
1207 * It is similar to mtk_aes_record_init().
1208 */
1209static int mtk_sha_record_init(struct mtk_cryp *cryp)
1210{
1211	struct mtk_sha_rec **sha = cryp->sha;
1212	int i, err = -ENOMEM;
1213
1214	for (i = 0; i < MTK_REC_NUM; i++) {
1215		sha[i] = kzalloc(sizeof(**sha), GFP_KERNEL);
1216		if (!sha[i])
1217			goto err_cleanup;
1218
1219		sha[i]->cryp = cryp;
1220
1221		spin_lock_init(&sha[i]->lock);
1222		crypto_init_queue(&sha[i]->queue, SHA_QUEUE_SIZE);
1223
1224		tasklet_init(&sha[i]->queue_task, mtk_sha_queue_task,
1225			     (unsigned long)sha[i]);
1226		tasklet_init(&sha[i]->done_task, mtk_sha_done_task,
1227			     (unsigned long)sha[i]);
1228	}
1229
1230	/* Link to ring2 and ring3 respectively */
1231	sha[0]->id = MTK_RING2;
1232	sha[1]->id = MTK_RING3;
1233
1234	cryp->rec = 1;
1235
1236	return 0;
1237
1238err_cleanup:
1239	for (; i--; )
1240		kfree(sha[i]);
1241	return err;
1242}
1243
1244static void mtk_sha_record_free(struct mtk_cryp *cryp)
1245{
1246	int i;
1247
1248	for (i = 0; i < MTK_REC_NUM; i++) {
1249		tasklet_kill(&cryp->sha[i]->done_task);
1250		tasklet_kill(&cryp->sha[i]->queue_task);
1251
1252		kfree(cryp->sha[i]);
1253	}
1254}
1255
1256static void mtk_sha_unregister_algs(void)
1257{
1258	int i;
1259
1260	for (i = 0; i < ARRAY_SIZE(algs_sha1_sha224_sha256); i++)
1261		crypto_unregister_ahash(&algs_sha1_sha224_sha256[i]);
1262
1263	for (i = 0; i < ARRAY_SIZE(algs_sha384_sha512); i++)
1264		crypto_unregister_ahash(&algs_sha384_sha512[i]);
1265}
1266
1267static int mtk_sha_register_algs(void)
1268{
1269	int err, i;
1270
1271	for (i = 0; i < ARRAY_SIZE(algs_sha1_sha224_sha256); i++) {
1272		err = crypto_register_ahash(&algs_sha1_sha224_sha256[i]);
1273		if (err)
1274			goto err_sha_224_256_algs;
1275	}
1276
1277	for (i = 0; i < ARRAY_SIZE(algs_sha384_sha512); i++) {
1278		err = crypto_register_ahash(&algs_sha384_sha512[i]);
1279		if (err)
1280			goto err_sha_384_512_algs;
1281	}
1282
1283	return 0;
1284
1285err_sha_384_512_algs:
1286	for (; i--; )
1287		crypto_unregister_ahash(&algs_sha384_sha512[i]);
1288	i = ARRAY_SIZE(algs_sha1_sha224_sha256);
1289err_sha_224_256_algs:
1290	for (; i--; )
1291		crypto_unregister_ahash(&algs_sha1_sha224_sha256[i]);
1292
1293	return err;
1294}
1295
1296int mtk_hash_alg_register(struct mtk_cryp *cryp)
1297{
1298	int err;
1299
1300	INIT_LIST_HEAD(&cryp->sha_list);
1301
1302	/* Initialize two hash records */
1303	err = mtk_sha_record_init(cryp);
1304	if (err)
1305		goto err_record;
1306
1307	err = devm_request_irq(cryp->dev, cryp->irq[MTK_RING2], mtk_sha_irq,
1308			       0, "mtk-sha", cryp->sha[0]);
1309	if (err) {
1310		dev_err(cryp->dev, "unable to request sha irq0.\n");
1311		goto err_res;
1312	}
1313
1314	err = devm_request_irq(cryp->dev, cryp->irq[MTK_RING3], mtk_sha_irq,
1315			       0, "mtk-sha", cryp->sha[1]);
1316	if (err) {
1317		dev_err(cryp->dev, "unable to request sha irq1.\n");
1318		goto err_res;
1319	}
1320
1321	/* Enable ring2 and ring3 interrupt for hash */
1322	mtk_sha_write(cryp, AIC_ENABLE_SET(MTK_RING2), MTK_IRQ_RDR2);
1323	mtk_sha_write(cryp, AIC_ENABLE_SET(MTK_RING3), MTK_IRQ_RDR3);
1324
1325	spin_lock(&mtk_sha.lock);
1326	list_add_tail(&cryp->sha_list, &mtk_sha.dev_list);
1327	spin_unlock(&mtk_sha.lock);
1328
1329	err = mtk_sha_register_algs();
1330	if (err)
1331		goto err_algs;
1332
1333	return 0;
1334
1335err_algs:
1336	spin_lock(&mtk_sha.lock);
1337	list_del(&cryp->sha_list);
1338	spin_unlock(&mtk_sha.lock);
1339err_res:
1340	mtk_sha_record_free(cryp);
1341err_record:
1342
1343	dev_err(cryp->dev, "mtk-sha initialization failed.\n");
1344	return err;
1345}
1346
1347void mtk_hash_alg_release(struct mtk_cryp *cryp)
1348{
1349	spin_lock(&mtk_sha.lock);
1350	list_del(&cryp->sha_list);
1351	spin_unlock(&mtk_sha.lock);
1352
1353	mtk_sha_unregister_algs();
1354	mtk_sha_record_free(cryp);
1355}