Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.13.7.
  1/* gf128mul.c - GF(2^128) multiplication functions
  2 *
  3 * Copyright (c) 2003, Dr Brian Gladman, Worcester, UK.
  4 * Copyright (c) 2006, Rik Snel <rsnel@cube.dyndns.org>
  5 *
  6 * Based on Dr Brian Gladman's (GPL'd) work published at
  7 * http://gladman.plushost.co.uk/oldsite/cryptography_technology/index.php
  8 * See the original copyright notice below.
  9 *
 10 * This program is free software; you can redistribute it and/or modify it
 11 * under the terms of the GNU General Public License as published by the Free
 12 * Software Foundation; either version 2 of the License, or (at your option)
 13 * any later version.
 14 */
 15
 16/*
 17 ---------------------------------------------------------------------------
 18 Copyright (c) 2003, Dr Brian Gladman, Worcester, UK.   All rights reserved.
 19
 20 LICENSE TERMS
 21
 22 The free distribution and use of this software in both source and binary
 23 form is allowed (with or without changes) provided that:
 24
 25   1. distributions of this source code include the above copyright
 26      notice, this list of conditions and the following disclaimer;
 27
 28   2. distributions in binary form include the above copyright
 29      notice, this list of conditions and the following disclaimer
 30      in the documentation and/or other associated materials;
 31
 32   3. the copyright holder's name is not used to endorse products
 33      built using this software without specific written permission.
 34
 35 ALTERNATIVELY, provided that this notice is retained in full, this product
 36 may be distributed under the terms of the GNU General Public License (GPL),
 37 in which case the provisions of the GPL apply INSTEAD OF those given above.
 38
 39 DISCLAIMER
 40
 41 This software is provided 'as is' with no explicit or implied warranties
 42 in respect of its properties, including, but not limited to, correctness
 43 and/or fitness for purpose.
 44 ---------------------------------------------------------------------------
 45 Issue 31/01/2006
 46
 47 This file provides fast multiplication in GF(2^128) as required by several
 48 cryptographic authentication modes
 49*/
 50
 51#include <crypto/gf128mul.h>
 52#include <linux/kernel.h>
 53#include <linux/module.h>
 54#include <linux/slab.h>
 55
 56#define gf128mul_dat(q) { \
 57	q(0x00), q(0x01), q(0x02), q(0x03), q(0x04), q(0x05), q(0x06), q(0x07),\
 58	q(0x08), q(0x09), q(0x0a), q(0x0b), q(0x0c), q(0x0d), q(0x0e), q(0x0f),\
 59	q(0x10), q(0x11), q(0x12), q(0x13), q(0x14), q(0x15), q(0x16), q(0x17),\
 60	q(0x18), q(0x19), q(0x1a), q(0x1b), q(0x1c), q(0x1d), q(0x1e), q(0x1f),\
 61	q(0x20), q(0x21), q(0x22), q(0x23), q(0x24), q(0x25), q(0x26), q(0x27),\
 62	q(0x28), q(0x29), q(0x2a), q(0x2b), q(0x2c), q(0x2d), q(0x2e), q(0x2f),\
 63	q(0x30), q(0x31), q(0x32), q(0x33), q(0x34), q(0x35), q(0x36), q(0x37),\
 64	q(0x38), q(0x39), q(0x3a), q(0x3b), q(0x3c), q(0x3d), q(0x3e), q(0x3f),\
 65	q(0x40), q(0x41), q(0x42), q(0x43), q(0x44), q(0x45), q(0x46), q(0x47),\
 66	q(0x48), q(0x49), q(0x4a), q(0x4b), q(0x4c), q(0x4d), q(0x4e), q(0x4f),\
 67	q(0x50), q(0x51), q(0x52), q(0x53), q(0x54), q(0x55), q(0x56), q(0x57),\
 68	q(0x58), q(0x59), q(0x5a), q(0x5b), q(0x5c), q(0x5d), q(0x5e), q(0x5f),\
 69	q(0x60), q(0x61), q(0x62), q(0x63), q(0x64), q(0x65), q(0x66), q(0x67),\
 70	q(0x68), q(0x69), q(0x6a), q(0x6b), q(0x6c), q(0x6d), q(0x6e), q(0x6f),\
 71	q(0x70), q(0x71), q(0x72), q(0x73), q(0x74), q(0x75), q(0x76), q(0x77),\
 72	q(0x78), q(0x79), q(0x7a), q(0x7b), q(0x7c), q(0x7d), q(0x7e), q(0x7f),\
 73	q(0x80), q(0x81), q(0x82), q(0x83), q(0x84), q(0x85), q(0x86), q(0x87),\
 74	q(0x88), q(0x89), q(0x8a), q(0x8b), q(0x8c), q(0x8d), q(0x8e), q(0x8f),\
 75	q(0x90), q(0x91), q(0x92), q(0x93), q(0x94), q(0x95), q(0x96), q(0x97),\
 76	q(0x98), q(0x99), q(0x9a), q(0x9b), q(0x9c), q(0x9d), q(0x9e), q(0x9f),\
 77	q(0xa0), q(0xa1), q(0xa2), q(0xa3), q(0xa4), q(0xa5), q(0xa6), q(0xa7),\
 78	q(0xa8), q(0xa9), q(0xaa), q(0xab), q(0xac), q(0xad), q(0xae), q(0xaf),\
 79	q(0xb0), q(0xb1), q(0xb2), q(0xb3), q(0xb4), q(0xb5), q(0xb6), q(0xb7),\
 80	q(0xb8), q(0xb9), q(0xba), q(0xbb), q(0xbc), q(0xbd), q(0xbe), q(0xbf),\
 81	q(0xc0), q(0xc1), q(0xc2), q(0xc3), q(0xc4), q(0xc5), q(0xc6), q(0xc7),\
 82	q(0xc8), q(0xc9), q(0xca), q(0xcb), q(0xcc), q(0xcd), q(0xce), q(0xcf),\
 83	q(0xd0), q(0xd1), q(0xd2), q(0xd3), q(0xd4), q(0xd5), q(0xd6), q(0xd7),\
 84	q(0xd8), q(0xd9), q(0xda), q(0xdb), q(0xdc), q(0xdd), q(0xde), q(0xdf),\
 85	q(0xe0), q(0xe1), q(0xe2), q(0xe3), q(0xe4), q(0xe5), q(0xe6), q(0xe7),\
 86	q(0xe8), q(0xe9), q(0xea), q(0xeb), q(0xec), q(0xed), q(0xee), q(0xef),\
 87	q(0xf0), q(0xf1), q(0xf2), q(0xf3), q(0xf4), q(0xf5), q(0xf6), q(0xf7),\
 88	q(0xf8), q(0xf9), q(0xfa), q(0xfb), q(0xfc), q(0xfd), q(0xfe), q(0xff) \
 89}
 90
 91/*
 92 * Given a value i in 0..255 as the byte overflow when a field element
 93 * in GF(2^128) is multiplied by x^8, the following macro returns the
 94 * 16-bit value that must be XOR-ed into the low-degree end of the
 95 * product to reduce it modulo the polynomial x^128 + x^7 + x^2 + x + 1.
 96 *
 97 * There are two versions of the macro, and hence two tables: one for
 98 * the "be" convention where the highest-order bit is the coefficient of
 99 * the highest-degree polynomial term, and one for the "le" convention
100 * where the highest-order bit is the coefficient of the lowest-degree
101 * polynomial term.  In both cases the values are stored in CPU byte
102 * endianness such that the coefficients are ordered consistently across
103 * bytes, i.e. in the "be" table bits 15..0 of the stored value
104 * correspond to the coefficients of x^15..x^0, and in the "le" table
105 * bits 15..0 correspond to the coefficients of x^0..x^15.
106 *
107 * Therefore, provided that the appropriate byte endianness conversions
108 * are done by the multiplication functions (and these must be in place
109 * anyway to support both little endian and big endian CPUs), the "be"
110 * table can be used for multiplications of both "bbe" and "ble"
111 * elements, and the "le" table can be used for multiplications of both
112 * "lle" and "lbe" elements.
113 */
114
115#define xda_be(i) ( \
116	(i & 0x80 ? 0x4380 : 0) ^ (i & 0x40 ? 0x21c0 : 0) ^ \
117	(i & 0x20 ? 0x10e0 : 0) ^ (i & 0x10 ? 0x0870 : 0) ^ \
118	(i & 0x08 ? 0x0438 : 0) ^ (i & 0x04 ? 0x021c : 0) ^ \
119	(i & 0x02 ? 0x010e : 0) ^ (i & 0x01 ? 0x0087 : 0) \
120)
121
122#define xda_le(i) ( \
123	(i & 0x80 ? 0xe100 : 0) ^ (i & 0x40 ? 0x7080 : 0) ^ \
124	(i & 0x20 ? 0x3840 : 0) ^ (i & 0x10 ? 0x1c20 : 0) ^ \
125	(i & 0x08 ? 0x0e10 : 0) ^ (i & 0x04 ? 0x0708 : 0) ^ \
126	(i & 0x02 ? 0x0384 : 0) ^ (i & 0x01 ? 0x01c2 : 0) \
127)
128
129static const u16 gf128mul_table_le[256] = gf128mul_dat(xda_le);
130static const u16 gf128mul_table_be[256] = gf128mul_dat(xda_be);
131
132/*
133 * The following functions multiply a field element by x^8 in
134 * the polynomial field representation.  They use 64-bit word operations
135 * to gain speed but compensate for machine endianness and hence work
136 * correctly on both styles of machine.
137 */
138
139static void gf128mul_x8_lle(be128 *x)
140{
141	u64 a = be64_to_cpu(x->a);
142	u64 b = be64_to_cpu(x->b);
143	u64 _tt = gf128mul_table_le[b & 0xff];
144
145	x->b = cpu_to_be64((b >> 8) | (a << 56));
146	x->a = cpu_to_be64((a >> 8) ^ (_tt << 48));
147}
148
149static void gf128mul_x8_bbe(be128 *x)
150{
151	u64 a = be64_to_cpu(x->a);
152	u64 b = be64_to_cpu(x->b);
153	u64 _tt = gf128mul_table_be[a >> 56];
154
155	x->a = cpu_to_be64((a << 8) | (b >> 56));
156	x->b = cpu_to_be64((b << 8) ^ _tt);
157}
158
159void gf128mul_x8_ble(le128 *r, const le128 *x)
160{
161	u64 a = le64_to_cpu(x->a);
162	u64 b = le64_to_cpu(x->b);
163	u64 _tt = gf128mul_table_be[a >> 56];
164
165	r->a = cpu_to_le64((a << 8) | (b >> 56));
166	r->b = cpu_to_le64((b << 8) ^ _tt);
167}
168EXPORT_SYMBOL(gf128mul_x8_ble);
169
170void gf128mul_lle(be128 *r, const be128 *b)
171{
172	be128 p[8];
173	int i;
174
175	p[0] = *r;
176	for (i = 0; i < 7; ++i)
177		gf128mul_x_lle(&p[i + 1], &p[i]);
178
179	memset(r, 0, sizeof(*r));
180	for (i = 0;;) {
181		u8 ch = ((u8 *)b)[15 - i];
182
183		if (ch & 0x80)
184			be128_xor(r, r, &p[0]);
185		if (ch & 0x40)
186			be128_xor(r, r, &p[1]);
187		if (ch & 0x20)
188			be128_xor(r, r, &p[2]);
189		if (ch & 0x10)
190			be128_xor(r, r, &p[3]);
191		if (ch & 0x08)
192			be128_xor(r, r, &p[4]);
193		if (ch & 0x04)
194			be128_xor(r, r, &p[5]);
195		if (ch & 0x02)
196			be128_xor(r, r, &p[6]);
197		if (ch & 0x01)
198			be128_xor(r, r, &p[7]);
199
200		if (++i >= 16)
201			break;
202
203		gf128mul_x8_lle(r);
204	}
205}
206EXPORT_SYMBOL(gf128mul_lle);
207
208void gf128mul_bbe(be128 *r, const be128 *b)
209{
210	be128 p[8];
211	int i;
212
213	p[0] = *r;
214	for (i = 0; i < 7; ++i)
215		gf128mul_x_bbe(&p[i + 1], &p[i]);
216
217	memset(r, 0, sizeof(*r));
218	for (i = 0;;) {
219		u8 ch = ((u8 *)b)[i];
220
221		if (ch & 0x80)
222			be128_xor(r, r, &p[7]);
223		if (ch & 0x40)
224			be128_xor(r, r, &p[6]);
225		if (ch & 0x20)
226			be128_xor(r, r, &p[5]);
227		if (ch & 0x10)
228			be128_xor(r, r, &p[4]);
229		if (ch & 0x08)
230			be128_xor(r, r, &p[3]);
231		if (ch & 0x04)
232			be128_xor(r, r, &p[2]);
233		if (ch & 0x02)
234			be128_xor(r, r, &p[1]);
235		if (ch & 0x01)
236			be128_xor(r, r, &p[0]);
237
238		if (++i >= 16)
239			break;
240
241		gf128mul_x8_bbe(r);
242	}
243}
244EXPORT_SYMBOL(gf128mul_bbe);
245
246/*      This version uses 64k bytes of table space.
247    A 16 byte buffer has to be multiplied by a 16 byte key
248    value in GF(2^128).  If we consider a GF(2^128) value in
249    the buffer's lowest byte, we can construct a table of
250    the 256 16 byte values that result from the 256 values
251    of this byte.  This requires 4096 bytes. But we also
252    need tables for each of the 16 higher bytes in the
253    buffer as well, which makes 64 kbytes in total.
254*/
255/* additional explanation
256 * t[0][BYTE] contains g*BYTE
257 * t[1][BYTE] contains g*x^8*BYTE
258 *  ..
259 * t[15][BYTE] contains g*x^120*BYTE */
260struct gf128mul_64k *gf128mul_init_64k_bbe(const be128 *g)
261{
262	struct gf128mul_64k *t;
263	int i, j, k;
264
265	t = kzalloc(sizeof(*t), GFP_KERNEL);
266	if (!t)
267		goto out;
268
269	for (i = 0; i < 16; i++) {
270		t->t[i] = kzalloc(sizeof(*t->t[i]), GFP_KERNEL);
271		if (!t->t[i]) {
272			gf128mul_free_64k(t);
273			t = NULL;
274			goto out;
275		}
276	}
277
278	t->t[0]->t[1] = *g;
279	for (j = 1; j <= 64; j <<= 1)
280		gf128mul_x_bbe(&t->t[0]->t[j + j], &t->t[0]->t[j]);
281
282	for (i = 0;;) {
283		for (j = 2; j < 256; j += j)
284			for (k = 1; k < j; ++k)
285				be128_xor(&t->t[i]->t[j + k],
286					  &t->t[i]->t[j], &t->t[i]->t[k]);
287
288		if (++i >= 16)
289			break;
290
291		for (j = 128; j > 0; j >>= 1) {
292			t->t[i]->t[j] = t->t[i - 1]->t[j];
293			gf128mul_x8_bbe(&t->t[i]->t[j]);
294		}
295	}
296
297out:
298	return t;
299}
300EXPORT_SYMBOL(gf128mul_init_64k_bbe);
301
302void gf128mul_free_64k(struct gf128mul_64k *t)
303{
304	int i;
305
306	for (i = 0; i < 16; i++)
307		kzfree(t->t[i]);
308	kzfree(t);
309}
310EXPORT_SYMBOL(gf128mul_free_64k);
311
312void gf128mul_64k_bbe(be128 *a, const struct gf128mul_64k *t)
313{
314	u8 *ap = (u8 *)a;
315	be128 r[1];
316	int i;
317
318	*r = t->t[0]->t[ap[15]];
319	for (i = 1; i < 16; ++i)
320		be128_xor(r, r, &t->t[i]->t[ap[15 - i]]);
321	*a = *r;
322}
323EXPORT_SYMBOL(gf128mul_64k_bbe);
324
325/*      This version uses 4k bytes of table space.
326    A 16 byte buffer has to be multiplied by a 16 byte key
327    value in GF(2^128).  If we consider a GF(2^128) value in a
328    single byte, we can construct a table of the 256 16 byte
329    values that result from the 256 values of this byte.
330    This requires 4096 bytes. If we take the highest byte in
331    the buffer and use this table to get the result, we then
332    have to multiply by x^120 to get the final value. For the
333    next highest byte the result has to be multiplied by x^112
334    and so on. But we can do this by accumulating the result
335    in an accumulator starting with the result for the top
336    byte.  We repeatedly multiply the accumulator value by
337    x^8 and then add in (i.e. xor) the 16 bytes of the next
338    lower byte in the buffer, stopping when we reach the
339    lowest byte. This requires a 4096 byte table.
340*/
341struct gf128mul_4k *gf128mul_init_4k_lle(const be128 *g)
342{
343	struct gf128mul_4k *t;
344	int j, k;
345
346	t = kzalloc(sizeof(*t), GFP_KERNEL);
347	if (!t)
348		goto out;
349
350	t->t[128] = *g;
351	for (j = 64; j > 0; j >>= 1)
352		gf128mul_x_lle(&t->t[j], &t->t[j+j]);
353
354	for (j = 2; j < 256; j += j)
355		for (k = 1; k < j; ++k)
356			be128_xor(&t->t[j + k], &t->t[j], &t->t[k]);
357
358out:
359	return t;
360}
361EXPORT_SYMBOL(gf128mul_init_4k_lle);
362
363struct gf128mul_4k *gf128mul_init_4k_bbe(const be128 *g)
364{
365	struct gf128mul_4k *t;
366	int j, k;
367
368	t = kzalloc(sizeof(*t), GFP_KERNEL);
369	if (!t)
370		goto out;
371
372	t->t[1] = *g;
373	for (j = 1; j <= 64; j <<= 1)
374		gf128mul_x_bbe(&t->t[j + j], &t->t[j]);
375
376	for (j = 2; j < 256; j += j)
377		for (k = 1; k < j; ++k)
378			be128_xor(&t->t[j + k], &t->t[j], &t->t[k]);
379
380out:
381	return t;
382}
383EXPORT_SYMBOL(gf128mul_init_4k_bbe);
384
385void gf128mul_4k_lle(be128 *a, const struct gf128mul_4k *t)
386{
387	u8 *ap = (u8 *)a;
388	be128 r[1];
389	int i = 15;
390
391	*r = t->t[ap[15]];
392	while (i--) {
393		gf128mul_x8_lle(r);
394		be128_xor(r, r, &t->t[ap[i]]);
395	}
396	*a = *r;
397}
398EXPORT_SYMBOL(gf128mul_4k_lle);
399
400void gf128mul_4k_bbe(be128 *a, const struct gf128mul_4k *t)
401{
402	u8 *ap = (u8 *)a;
403	be128 r[1];
404	int i = 0;
405
406	*r = t->t[ap[0]];
407	while (++i < 16) {
408		gf128mul_x8_bbe(r);
409		be128_xor(r, r, &t->t[ap[i]]);
410	}
411	*a = *r;
412}
413EXPORT_SYMBOL(gf128mul_4k_bbe);
414
415MODULE_LICENSE("GPL");
416MODULE_DESCRIPTION("Functions for multiplying elements of GF(2^128)");