Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * PRNG: Pseudo Random Number Generator
4 * Based on NIST Recommended PRNG From ANSI X9.31 Appendix A.2.4 using
5 * AES 128 cipher
6 *
7 * (C) Neil Horman <nhorman@tuxdriver.com>
8 */
9
10#include <crypto/internal/cipher.h>
11#include <crypto/internal/rng.h>
12#include <linux/err.h>
13#include <linux/init.h>
14#include <linux/module.h>
15#include <linux/moduleparam.h>
16#include <linux/string.h>
17
18#define DEFAULT_PRNG_KEY "0123456789abcdef"
19#define DEFAULT_PRNG_KSZ 16
20#define DEFAULT_BLK_SZ 16
21#define DEFAULT_V_SEED "zaybxcwdveuftgsh"
22
23/*
24 * Flags for the prng_context flags field
25 */
26
27#define PRNG_FIXED_SIZE 0x1
28#define PRNG_NEED_RESET 0x2
29
30/*
31 * Note: DT is our counter value
32 * I is our intermediate value
33 * V is our seed vector
34 * See http://csrc.nist.gov/groups/STM/cavp/documents/rng/931rngext.pdf
35 * for implementation details
36 */
37
38
39struct prng_context {
40 spinlock_t prng_lock;
41 unsigned char rand_data[DEFAULT_BLK_SZ];
42 unsigned char last_rand_data[DEFAULT_BLK_SZ];
43 unsigned char DT[DEFAULT_BLK_SZ];
44 unsigned char I[DEFAULT_BLK_SZ];
45 unsigned char V[DEFAULT_BLK_SZ];
46 u32 rand_data_valid;
47 struct crypto_cipher *tfm;
48 u32 flags;
49};
50
51static int dbg;
52
53static void hexdump(char *note, unsigned char *buf, unsigned int len)
54{
55 if (dbg) {
56 printk(KERN_CRIT "%s", note);
57 print_hex_dump(KERN_CONT, "", DUMP_PREFIX_OFFSET,
58 16, 1,
59 buf, len, false);
60 }
61}
62
63#define dbgprint(format, args...) do {\
64if (dbg)\
65 printk(format, ##args);\
66} while (0)
67
68static void xor_vectors(unsigned char *in1, unsigned char *in2,
69 unsigned char *out, unsigned int size)
70{
71 int i;
72
73 for (i = 0; i < size; i++)
74 out[i] = in1[i] ^ in2[i];
75
76}
77/*
78 * Returns DEFAULT_BLK_SZ bytes of random data per call
79 * returns 0 if generation succeeded, <0 if something went wrong
80 */
81static int _get_more_prng_bytes(struct prng_context *ctx, int cont_test)
82{
83 int i;
84 unsigned char tmp[DEFAULT_BLK_SZ];
85 unsigned char *output = NULL;
86
87
88 dbgprint(KERN_CRIT "Calling _get_more_prng_bytes for context %p\n",
89 ctx);
90
91 hexdump("Input DT: ", ctx->DT, DEFAULT_BLK_SZ);
92 hexdump("Input I: ", ctx->I, DEFAULT_BLK_SZ);
93 hexdump("Input V: ", ctx->V, DEFAULT_BLK_SZ);
94
95 /*
96 * This algorithm is a 3 stage state machine
97 */
98 for (i = 0; i < 3; i++) {
99
100 switch (i) {
101 case 0:
102 /*
103 * Start by encrypting the counter value
104 * This gives us an intermediate value I
105 */
106 memcpy(tmp, ctx->DT, DEFAULT_BLK_SZ);
107 output = ctx->I;
108 hexdump("tmp stage 0: ", tmp, DEFAULT_BLK_SZ);
109 break;
110 case 1:
111
112 /*
113 * Next xor I with our secret vector V
114 * encrypt that result to obtain our
115 * pseudo random data which we output
116 */
117 xor_vectors(ctx->I, ctx->V, tmp, DEFAULT_BLK_SZ);
118 hexdump("tmp stage 1: ", tmp, DEFAULT_BLK_SZ);
119 output = ctx->rand_data;
120 break;
121 case 2:
122 /*
123 * First check that we didn't produce the same
124 * random data that we did last time around through this
125 */
126 if (!memcmp(ctx->rand_data, ctx->last_rand_data,
127 DEFAULT_BLK_SZ)) {
128 if (cont_test) {
129 panic("cprng %p Failed repetition check!\n",
130 ctx);
131 }
132
133 printk(KERN_ERR
134 "ctx %p Failed repetition check!\n",
135 ctx);
136
137 ctx->flags |= PRNG_NEED_RESET;
138 return -EINVAL;
139 }
140 memcpy(ctx->last_rand_data, ctx->rand_data,
141 DEFAULT_BLK_SZ);
142
143 /*
144 * Lastly xor the random data with I
145 * and encrypt that to obtain a new secret vector V
146 */
147 xor_vectors(ctx->rand_data, ctx->I, tmp,
148 DEFAULT_BLK_SZ);
149 output = ctx->V;
150 hexdump("tmp stage 2: ", tmp, DEFAULT_BLK_SZ);
151 break;
152 }
153
154
155 /* do the encryption */
156 crypto_cipher_encrypt_one(ctx->tfm, output, tmp);
157
158 }
159
160 /*
161 * Now update our DT value
162 */
163 for (i = DEFAULT_BLK_SZ - 1; i >= 0; i--) {
164 ctx->DT[i] += 1;
165 if (ctx->DT[i] != 0)
166 break;
167 }
168
169 dbgprint("Returning new block for context %p\n", ctx);
170 ctx->rand_data_valid = 0;
171
172 hexdump("Output DT: ", ctx->DT, DEFAULT_BLK_SZ);
173 hexdump("Output I: ", ctx->I, DEFAULT_BLK_SZ);
174 hexdump("Output V: ", ctx->V, DEFAULT_BLK_SZ);
175 hexdump("New Random Data: ", ctx->rand_data, DEFAULT_BLK_SZ);
176
177 return 0;
178}
179
180/* Our exported functions */
181static int get_prng_bytes(char *buf, size_t nbytes, struct prng_context *ctx,
182 int do_cont_test)
183{
184 unsigned char *ptr = buf;
185 unsigned int byte_count = (unsigned int)nbytes;
186 int err;
187
188
189 spin_lock_bh(&ctx->prng_lock);
190
191 err = -EINVAL;
192 if (ctx->flags & PRNG_NEED_RESET)
193 goto done;
194
195 /*
196 * If the FIXED_SIZE flag is on, only return whole blocks of
197 * pseudo random data
198 */
199 err = -EINVAL;
200 if (ctx->flags & PRNG_FIXED_SIZE) {
201 if (nbytes < DEFAULT_BLK_SZ)
202 goto done;
203 byte_count = DEFAULT_BLK_SZ;
204 }
205
206 /*
207 * Return 0 in case of success as mandated by the kernel
208 * crypto API interface definition.
209 */
210 err = 0;
211
212 dbgprint(KERN_CRIT "getting %d random bytes for context %p\n",
213 byte_count, ctx);
214
215
216remainder:
217 if (ctx->rand_data_valid == DEFAULT_BLK_SZ) {
218 if (_get_more_prng_bytes(ctx, do_cont_test) < 0) {
219 memset(buf, 0, nbytes);
220 err = -EINVAL;
221 goto done;
222 }
223 }
224
225 /*
226 * Copy any data less than an entire block
227 */
228 if (byte_count < DEFAULT_BLK_SZ) {
229empty_rbuf:
230 while (ctx->rand_data_valid < DEFAULT_BLK_SZ) {
231 *ptr = ctx->rand_data[ctx->rand_data_valid];
232 ptr++;
233 byte_count--;
234 ctx->rand_data_valid++;
235 if (byte_count == 0)
236 goto done;
237 }
238 }
239
240 /*
241 * Now copy whole blocks
242 */
243 for (; byte_count >= DEFAULT_BLK_SZ; byte_count -= DEFAULT_BLK_SZ) {
244 if (ctx->rand_data_valid == DEFAULT_BLK_SZ) {
245 if (_get_more_prng_bytes(ctx, do_cont_test) < 0) {
246 memset(buf, 0, nbytes);
247 err = -EINVAL;
248 goto done;
249 }
250 }
251 if (ctx->rand_data_valid > 0)
252 goto empty_rbuf;
253 memcpy(ptr, ctx->rand_data, DEFAULT_BLK_SZ);
254 ctx->rand_data_valid += DEFAULT_BLK_SZ;
255 ptr += DEFAULT_BLK_SZ;
256 }
257
258 /*
259 * Now go back and get any remaining partial block
260 */
261 if (byte_count)
262 goto remainder;
263
264done:
265 spin_unlock_bh(&ctx->prng_lock);
266 dbgprint(KERN_CRIT "returning %d from get_prng_bytes in context %p\n",
267 err, ctx);
268 return err;
269}
270
271static void free_prng_context(struct prng_context *ctx)
272{
273 crypto_free_cipher(ctx->tfm);
274}
275
276static int reset_prng_context(struct prng_context *ctx,
277 const unsigned char *key, size_t klen,
278 const unsigned char *V, const unsigned char *DT)
279{
280 int ret;
281 const unsigned char *prng_key;
282
283 spin_lock_bh(&ctx->prng_lock);
284 ctx->flags |= PRNG_NEED_RESET;
285
286 prng_key = (key != NULL) ? key : (unsigned char *)DEFAULT_PRNG_KEY;
287
288 if (!key)
289 klen = DEFAULT_PRNG_KSZ;
290
291 if (V)
292 memcpy(ctx->V, V, DEFAULT_BLK_SZ);
293 else
294 memcpy(ctx->V, DEFAULT_V_SEED, DEFAULT_BLK_SZ);
295
296 if (DT)
297 memcpy(ctx->DT, DT, DEFAULT_BLK_SZ);
298 else
299 memset(ctx->DT, 0, DEFAULT_BLK_SZ);
300
301 memset(ctx->rand_data, 0, DEFAULT_BLK_SZ);
302 memset(ctx->last_rand_data, 0, DEFAULT_BLK_SZ);
303
304 ctx->rand_data_valid = DEFAULT_BLK_SZ;
305
306 ret = crypto_cipher_setkey(ctx->tfm, prng_key, klen);
307 if (ret) {
308 dbgprint(KERN_CRIT "PRNG: setkey() failed flags=%x\n",
309 crypto_cipher_get_flags(ctx->tfm));
310 goto out;
311 }
312
313 ret = 0;
314 ctx->flags &= ~PRNG_NEED_RESET;
315out:
316 spin_unlock_bh(&ctx->prng_lock);
317 return ret;
318}
319
320static int cprng_init(struct crypto_tfm *tfm)
321{
322 struct prng_context *ctx = crypto_tfm_ctx(tfm);
323
324 spin_lock_init(&ctx->prng_lock);
325 ctx->tfm = crypto_alloc_cipher("aes", 0, 0);
326 if (IS_ERR(ctx->tfm)) {
327 dbgprint(KERN_CRIT "Failed to alloc tfm for context %p\n",
328 ctx);
329 return PTR_ERR(ctx->tfm);
330 }
331
332 if (reset_prng_context(ctx, NULL, DEFAULT_PRNG_KSZ, NULL, NULL) < 0)
333 return -EINVAL;
334
335 /*
336 * after allocation, we should always force the user to reset
337 * so they don't inadvertently use the insecure default values
338 * without specifying them intentially
339 */
340 ctx->flags |= PRNG_NEED_RESET;
341 return 0;
342}
343
344static void cprng_exit(struct crypto_tfm *tfm)
345{
346 free_prng_context(crypto_tfm_ctx(tfm));
347}
348
349static int cprng_get_random(struct crypto_rng *tfm,
350 const u8 *src, unsigned int slen,
351 u8 *rdata, unsigned int dlen)
352{
353 struct prng_context *prng = crypto_rng_ctx(tfm);
354
355 return get_prng_bytes(rdata, dlen, prng, 0);
356}
357
358/*
359 * This is the cprng_registered reset method the seed value is
360 * interpreted as the tuple { V KEY DT}
361 * V and KEY are required during reset, and DT is optional, detected
362 * as being present by testing the length of the seed
363 */
364static int cprng_reset(struct crypto_rng *tfm,
365 const u8 *seed, unsigned int slen)
366{
367 struct prng_context *prng = crypto_rng_ctx(tfm);
368 const u8 *key = seed + DEFAULT_BLK_SZ;
369 const u8 *dt = NULL;
370
371 if (slen < DEFAULT_PRNG_KSZ + DEFAULT_BLK_SZ)
372 return -EINVAL;
373
374 if (slen >= (2 * DEFAULT_BLK_SZ + DEFAULT_PRNG_KSZ))
375 dt = key + DEFAULT_PRNG_KSZ;
376
377 reset_prng_context(prng, key, DEFAULT_PRNG_KSZ, seed, dt);
378
379 if (prng->flags & PRNG_NEED_RESET)
380 return -EINVAL;
381 return 0;
382}
383
384#ifdef CONFIG_CRYPTO_FIPS
385static int fips_cprng_get_random(struct crypto_rng *tfm,
386 const u8 *src, unsigned int slen,
387 u8 *rdata, unsigned int dlen)
388{
389 struct prng_context *prng = crypto_rng_ctx(tfm);
390
391 return get_prng_bytes(rdata, dlen, prng, 1);
392}
393
394static int fips_cprng_reset(struct crypto_rng *tfm,
395 const u8 *seed, unsigned int slen)
396{
397 u8 rdata[DEFAULT_BLK_SZ];
398 const u8 *key = seed + DEFAULT_BLK_SZ;
399 int rc;
400
401 struct prng_context *prng = crypto_rng_ctx(tfm);
402
403 if (slen < DEFAULT_PRNG_KSZ + DEFAULT_BLK_SZ)
404 return -EINVAL;
405
406 /* fips strictly requires seed != key */
407 if (!memcmp(seed, key, DEFAULT_PRNG_KSZ))
408 return -EINVAL;
409
410 rc = cprng_reset(tfm, seed, slen);
411
412 if (!rc)
413 goto out;
414
415 /* this primes our continuity test */
416 rc = get_prng_bytes(rdata, DEFAULT_BLK_SZ, prng, 0);
417 prng->rand_data_valid = DEFAULT_BLK_SZ;
418
419out:
420 return rc;
421}
422#endif
423
424static struct rng_alg rng_algs[] = { {
425 .generate = cprng_get_random,
426 .seed = cprng_reset,
427 .seedsize = DEFAULT_PRNG_KSZ + 2 * DEFAULT_BLK_SZ,
428 .base = {
429 .cra_name = "stdrng",
430 .cra_driver_name = "ansi_cprng",
431 .cra_priority = 100,
432 .cra_ctxsize = sizeof(struct prng_context),
433 .cra_module = THIS_MODULE,
434 .cra_init = cprng_init,
435 .cra_exit = cprng_exit,
436 }
437#ifdef CONFIG_CRYPTO_FIPS
438}, {
439 .generate = fips_cprng_get_random,
440 .seed = fips_cprng_reset,
441 .seedsize = DEFAULT_PRNG_KSZ + 2 * DEFAULT_BLK_SZ,
442 .base = {
443 .cra_name = "fips(ansi_cprng)",
444 .cra_driver_name = "fips_ansi_cprng",
445 .cra_priority = 300,
446 .cra_ctxsize = sizeof(struct prng_context),
447 .cra_module = THIS_MODULE,
448 .cra_init = cprng_init,
449 .cra_exit = cprng_exit,
450 }
451#endif
452} };
453
454/* Module initalization */
455static int __init prng_mod_init(void)
456{
457 return crypto_register_rngs(rng_algs, ARRAY_SIZE(rng_algs));
458}
459
460static void __exit prng_mod_fini(void)
461{
462 crypto_unregister_rngs(rng_algs, ARRAY_SIZE(rng_algs));
463}
464
465MODULE_LICENSE("GPL");
466MODULE_DESCRIPTION("Software Pseudo Random Number Generator");
467MODULE_AUTHOR("Neil Horman <nhorman@tuxdriver.com>");
468module_param(dbg, int, 0);
469MODULE_PARM_DESC(dbg, "Boolean to enable debugging (0/1 == off/on)");
470subsys_initcall(prng_mod_init);
471module_exit(prng_mod_fini);
472MODULE_ALIAS_CRYPTO("stdrng");
473MODULE_ALIAS_CRYPTO("ansi_cprng");
474MODULE_IMPORT_NS("CRYPTO_INTERNAL");
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * PRNG: Pseudo Random Number Generator
4 * Based on NIST Recommended PRNG From ANSI X9.31 Appendix A.2.4 using
5 * AES 128 cipher
6 *
7 * (C) Neil Horman <nhorman@tuxdriver.com>
8 */
9
10#include <crypto/internal/rng.h>
11#include <linux/err.h>
12#include <linux/init.h>
13#include <linux/module.h>
14#include <linux/moduleparam.h>
15#include <linux/string.h>
16
17#define DEFAULT_PRNG_KEY "0123456789abcdef"
18#define DEFAULT_PRNG_KSZ 16
19#define DEFAULT_BLK_SZ 16
20#define DEFAULT_V_SEED "zaybxcwdveuftgsh"
21
22/*
23 * Flags for the prng_context flags field
24 */
25
26#define PRNG_FIXED_SIZE 0x1
27#define PRNG_NEED_RESET 0x2
28
29/*
30 * Note: DT is our counter value
31 * I is our intermediate value
32 * V is our seed vector
33 * See http://csrc.nist.gov/groups/STM/cavp/documents/rng/931rngext.pdf
34 * for implementation details
35 */
36
37
38struct prng_context {
39 spinlock_t prng_lock;
40 unsigned char rand_data[DEFAULT_BLK_SZ];
41 unsigned char last_rand_data[DEFAULT_BLK_SZ];
42 unsigned char DT[DEFAULT_BLK_SZ];
43 unsigned char I[DEFAULT_BLK_SZ];
44 unsigned char V[DEFAULT_BLK_SZ];
45 u32 rand_data_valid;
46 struct crypto_cipher *tfm;
47 u32 flags;
48};
49
50static int dbg;
51
52static void hexdump(char *note, unsigned char *buf, unsigned int len)
53{
54 if (dbg) {
55 printk(KERN_CRIT "%s", note);
56 print_hex_dump(KERN_CONT, "", DUMP_PREFIX_OFFSET,
57 16, 1,
58 buf, len, false);
59 }
60}
61
62#define dbgprint(format, args...) do {\
63if (dbg)\
64 printk(format, ##args);\
65} while (0)
66
67static void xor_vectors(unsigned char *in1, unsigned char *in2,
68 unsigned char *out, unsigned int size)
69{
70 int i;
71
72 for (i = 0; i < size; i++)
73 out[i] = in1[i] ^ in2[i];
74
75}
76/*
77 * Returns DEFAULT_BLK_SZ bytes of random data per call
78 * returns 0 if generation succeeded, <0 if something went wrong
79 */
80static int _get_more_prng_bytes(struct prng_context *ctx, int cont_test)
81{
82 int i;
83 unsigned char tmp[DEFAULT_BLK_SZ];
84 unsigned char *output = NULL;
85
86
87 dbgprint(KERN_CRIT "Calling _get_more_prng_bytes for context %p\n",
88 ctx);
89
90 hexdump("Input DT: ", ctx->DT, DEFAULT_BLK_SZ);
91 hexdump("Input I: ", ctx->I, DEFAULT_BLK_SZ);
92 hexdump("Input V: ", ctx->V, DEFAULT_BLK_SZ);
93
94 /*
95 * This algorithm is a 3 stage state machine
96 */
97 for (i = 0; i < 3; i++) {
98
99 switch (i) {
100 case 0:
101 /*
102 * Start by encrypting the counter value
103 * This gives us an intermediate value I
104 */
105 memcpy(tmp, ctx->DT, DEFAULT_BLK_SZ);
106 output = ctx->I;
107 hexdump("tmp stage 0: ", tmp, DEFAULT_BLK_SZ);
108 break;
109 case 1:
110
111 /*
112 * Next xor I with our secret vector V
113 * encrypt that result to obtain our
114 * pseudo random data which we output
115 */
116 xor_vectors(ctx->I, ctx->V, tmp, DEFAULT_BLK_SZ);
117 hexdump("tmp stage 1: ", tmp, DEFAULT_BLK_SZ);
118 output = ctx->rand_data;
119 break;
120 case 2:
121 /*
122 * First check that we didn't produce the same
123 * random data that we did last time around through this
124 */
125 if (!memcmp(ctx->rand_data, ctx->last_rand_data,
126 DEFAULT_BLK_SZ)) {
127 if (cont_test) {
128 panic("cprng %p Failed repetition check!\n",
129 ctx);
130 }
131
132 printk(KERN_ERR
133 "ctx %p Failed repetition check!\n",
134 ctx);
135
136 ctx->flags |= PRNG_NEED_RESET;
137 return -EINVAL;
138 }
139 memcpy(ctx->last_rand_data, ctx->rand_data,
140 DEFAULT_BLK_SZ);
141
142 /*
143 * Lastly xor the random data with I
144 * and encrypt that to obtain a new secret vector V
145 */
146 xor_vectors(ctx->rand_data, ctx->I, tmp,
147 DEFAULT_BLK_SZ);
148 output = ctx->V;
149 hexdump("tmp stage 2: ", tmp, DEFAULT_BLK_SZ);
150 break;
151 }
152
153
154 /* do the encryption */
155 crypto_cipher_encrypt_one(ctx->tfm, output, tmp);
156
157 }
158
159 /*
160 * Now update our DT value
161 */
162 for (i = DEFAULT_BLK_SZ - 1; i >= 0; i--) {
163 ctx->DT[i] += 1;
164 if (ctx->DT[i] != 0)
165 break;
166 }
167
168 dbgprint("Returning new block for context %p\n", ctx);
169 ctx->rand_data_valid = 0;
170
171 hexdump("Output DT: ", ctx->DT, DEFAULT_BLK_SZ);
172 hexdump("Output I: ", ctx->I, DEFAULT_BLK_SZ);
173 hexdump("Output V: ", ctx->V, DEFAULT_BLK_SZ);
174 hexdump("New Random Data: ", ctx->rand_data, DEFAULT_BLK_SZ);
175
176 return 0;
177}
178
179/* Our exported functions */
180static int get_prng_bytes(char *buf, size_t nbytes, struct prng_context *ctx,
181 int do_cont_test)
182{
183 unsigned char *ptr = buf;
184 unsigned int byte_count = (unsigned int)nbytes;
185 int err;
186
187
188 spin_lock_bh(&ctx->prng_lock);
189
190 err = -EINVAL;
191 if (ctx->flags & PRNG_NEED_RESET)
192 goto done;
193
194 /*
195 * If the FIXED_SIZE flag is on, only return whole blocks of
196 * pseudo random data
197 */
198 err = -EINVAL;
199 if (ctx->flags & PRNG_FIXED_SIZE) {
200 if (nbytes < DEFAULT_BLK_SZ)
201 goto done;
202 byte_count = DEFAULT_BLK_SZ;
203 }
204
205 /*
206 * Return 0 in case of success as mandated by the kernel
207 * crypto API interface definition.
208 */
209 err = 0;
210
211 dbgprint(KERN_CRIT "getting %d random bytes for context %p\n",
212 byte_count, ctx);
213
214
215remainder:
216 if (ctx->rand_data_valid == DEFAULT_BLK_SZ) {
217 if (_get_more_prng_bytes(ctx, do_cont_test) < 0) {
218 memset(buf, 0, nbytes);
219 err = -EINVAL;
220 goto done;
221 }
222 }
223
224 /*
225 * Copy any data less than an entire block
226 */
227 if (byte_count < DEFAULT_BLK_SZ) {
228empty_rbuf:
229 while (ctx->rand_data_valid < DEFAULT_BLK_SZ) {
230 *ptr = ctx->rand_data[ctx->rand_data_valid];
231 ptr++;
232 byte_count--;
233 ctx->rand_data_valid++;
234 if (byte_count == 0)
235 goto done;
236 }
237 }
238
239 /*
240 * Now copy whole blocks
241 */
242 for (; byte_count >= DEFAULT_BLK_SZ; byte_count -= DEFAULT_BLK_SZ) {
243 if (ctx->rand_data_valid == DEFAULT_BLK_SZ) {
244 if (_get_more_prng_bytes(ctx, do_cont_test) < 0) {
245 memset(buf, 0, nbytes);
246 err = -EINVAL;
247 goto done;
248 }
249 }
250 if (ctx->rand_data_valid > 0)
251 goto empty_rbuf;
252 memcpy(ptr, ctx->rand_data, DEFAULT_BLK_SZ);
253 ctx->rand_data_valid += DEFAULT_BLK_SZ;
254 ptr += DEFAULT_BLK_SZ;
255 }
256
257 /*
258 * Now go back and get any remaining partial block
259 */
260 if (byte_count)
261 goto remainder;
262
263done:
264 spin_unlock_bh(&ctx->prng_lock);
265 dbgprint(KERN_CRIT "returning %d from get_prng_bytes in context %p\n",
266 err, ctx);
267 return err;
268}
269
270static void free_prng_context(struct prng_context *ctx)
271{
272 crypto_free_cipher(ctx->tfm);
273}
274
275static int reset_prng_context(struct prng_context *ctx,
276 const unsigned char *key, size_t klen,
277 const unsigned char *V, const unsigned char *DT)
278{
279 int ret;
280 const unsigned char *prng_key;
281
282 spin_lock_bh(&ctx->prng_lock);
283 ctx->flags |= PRNG_NEED_RESET;
284
285 prng_key = (key != NULL) ? key : (unsigned char *)DEFAULT_PRNG_KEY;
286
287 if (!key)
288 klen = DEFAULT_PRNG_KSZ;
289
290 if (V)
291 memcpy(ctx->V, V, DEFAULT_BLK_SZ);
292 else
293 memcpy(ctx->V, DEFAULT_V_SEED, DEFAULT_BLK_SZ);
294
295 if (DT)
296 memcpy(ctx->DT, DT, DEFAULT_BLK_SZ);
297 else
298 memset(ctx->DT, 0, DEFAULT_BLK_SZ);
299
300 memset(ctx->rand_data, 0, DEFAULT_BLK_SZ);
301 memset(ctx->last_rand_data, 0, DEFAULT_BLK_SZ);
302
303 ctx->rand_data_valid = DEFAULT_BLK_SZ;
304
305 ret = crypto_cipher_setkey(ctx->tfm, prng_key, klen);
306 if (ret) {
307 dbgprint(KERN_CRIT "PRNG: setkey() failed flags=%x\n",
308 crypto_cipher_get_flags(ctx->tfm));
309 goto out;
310 }
311
312 ret = 0;
313 ctx->flags &= ~PRNG_NEED_RESET;
314out:
315 spin_unlock_bh(&ctx->prng_lock);
316 return ret;
317}
318
319static int cprng_init(struct crypto_tfm *tfm)
320{
321 struct prng_context *ctx = crypto_tfm_ctx(tfm);
322
323 spin_lock_init(&ctx->prng_lock);
324 ctx->tfm = crypto_alloc_cipher("aes", 0, 0);
325 if (IS_ERR(ctx->tfm)) {
326 dbgprint(KERN_CRIT "Failed to alloc tfm for context %p\n",
327 ctx);
328 return PTR_ERR(ctx->tfm);
329 }
330
331 if (reset_prng_context(ctx, NULL, DEFAULT_PRNG_KSZ, NULL, NULL) < 0)
332 return -EINVAL;
333
334 /*
335 * after allocation, we should always force the user to reset
336 * so they don't inadvertently use the insecure default values
337 * without specifying them intentially
338 */
339 ctx->flags |= PRNG_NEED_RESET;
340 return 0;
341}
342
343static void cprng_exit(struct crypto_tfm *tfm)
344{
345 free_prng_context(crypto_tfm_ctx(tfm));
346}
347
348static int cprng_get_random(struct crypto_rng *tfm,
349 const u8 *src, unsigned int slen,
350 u8 *rdata, unsigned int dlen)
351{
352 struct prng_context *prng = crypto_rng_ctx(tfm);
353
354 return get_prng_bytes(rdata, dlen, prng, 0);
355}
356
357/*
358 * This is the cprng_registered reset method the seed value is
359 * interpreted as the tuple { V KEY DT}
360 * V and KEY are required during reset, and DT is optional, detected
361 * as being present by testing the length of the seed
362 */
363static int cprng_reset(struct crypto_rng *tfm,
364 const u8 *seed, unsigned int slen)
365{
366 struct prng_context *prng = crypto_rng_ctx(tfm);
367 const u8 *key = seed + DEFAULT_BLK_SZ;
368 const u8 *dt = NULL;
369
370 if (slen < DEFAULT_PRNG_KSZ + DEFAULT_BLK_SZ)
371 return -EINVAL;
372
373 if (slen >= (2 * DEFAULT_BLK_SZ + DEFAULT_PRNG_KSZ))
374 dt = key + DEFAULT_PRNG_KSZ;
375
376 reset_prng_context(prng, key, DEFAULT_PRNG_KSZ, seed, dt);
377
378 if (prng->flags & PRNG_NEED_RESET)
379 return -EINVAL;
380 return 0;
381}
382
383#ifdef CONFIG_CRYPTO_FIPS
384static int fips_cprng_get_random(struct crypto_rng *tfm,
385 const u8 *src, unsigned int slen,
386 u8 *rdata, unsigned int dlen)
387{
388 struct prng_context *prng = crypto_rng_ctx(tfm);
389
390 return get_prng_bytes(rdata, dlen, prng, 1);
391}
392
393static int fips_cprng_reset(struct crypto_rng *tfm,
394 const u8 *seed, unsigned int slen)
395{
396 u8 rdata[DEFAULT_BLK_SZ];
397 const u8 *key = seed + DEFAULT_BLK_SZ;
398 int rc;
399
400 struct prng_context *prng = crypto_rng_ctx(tfm);
401
402 if (slen < DEFAULT_PRNG_KSZ + DEFAULT_BLK_SZ)
403 return -EINVAL;
404
405 /* fips strictly requires seed != key */
406 if (!memcmp(seed, key, DEFAULT_PRNG_KSZ))
407 return -EINVAL;
408
409 rc = cprng_reset(tfm, seed, slen);
410
411 if (!rc)
412 goto out;
413
414 /* this primes our continuity test */
415 rc = get_prng_bytes(rdata, DEFAULT_BLK_SZ, prng, 0);
416 prng->rand_data_valid = DEFAULT_BLK_SZ;
417
418out:
419 return rc;
420}
421#endif
422
423static struct rng_alg rng_algs[] = { {
424 .generate = cprng_get_random,
425 .seed = cprng_reset,
426 .seedsize = DEFAULT_PRNG_KSZ + 2 * DEFAULT_BLK_SZ,
427 .base = {
428 .cra_name = "stdrng",
429 .cra_driver_name = "ansi_cprng",
430 .cra_priority = 100,
431 .cra_ctxsize = sizeof(struct prng_context),
432 .cra_module = THIS_MODULE,
433 .cra_init = cprng_init,
434 .cra_exit = cprng_exit,
435 }
436#ifdef CONFIG_CRYPTO_FIPS
437}, {
438 .generate = fips_cprng_get_random,
439 .seed = fips_cprng_reset,
440 .seedsize = DEFAULT_PRNG_KSZ + 2 * DEFAULT_BLK_SZ,
441 .base = {
442 .cra_name = "fips(ansi_cprng)",
443 .cra_driver_name = "fips_ansi_cprng",
444 .cra_priority = 300,
445 .cra_ctxsize = sizeof(struct prng_context),
446 .cra_module = THIS_MODULE,
447 .cra_init = cprng_init,
448 .cra_exit = cprng_exit,
449 }
450#endif
451} };
452
453/* Module initalization */
454static int __init prng_mod_init(void)
455{
456 return crypto_register_rngs(rng_algs, ARRAY_SIZE(rng_algs));
457}
458
459static void __exit prng_mod_fini(void)
460{
461 crypto_unregister_rngs(rng_algs, ARRAY_SIZE(rng_algs));
462}
463
464MODULE_LICENSE("GPL");
465MODULE_DESCRIPTION("Software Pseudo Random Number Generator");
466MODULE_AUTHOR("Neil Horman <nhorman@tuxdriver.com>");
467module_param(dbg, int, 0);
468MODULE_PARM_DESC(dbg, "Boolean to enable debugging (0/1 == off/on)");
469subsys_initcall(prng_mod_init);
470module_exit(prng_mod_fini);
471MODULE_ALIAS_CRYPTO("stdrng");
472MODULE_ALIAS_CRYPTO("ansi_cprng");