Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  Ptrace user space interface.
   4 *
   5 *    Copyright IBM Corp. 1999, 2010
   6 *    Author(s): Denis Joseph Barrow
   7 *               Martin Schwidefsky (schwidefsky@de.ibm.com)
   8 */
   9
  10#include "asm/ptrace.h"
  11#include <linux/kernel.h>
  12#include <linux/sched.h>
  13#include <linux/sched/task_stack.h>
  14#include <linux/mm.h>
  15#include <linux/smp.h>
  16#include <linux/errno.h>
  17#include <linux/ptrace.h>
  18#include <linux/user.h>
  19#include <linux/security.h>
  20#include <linux/audit.h>
  21#include <linux/signal.h>
  22#include <linux/elf.h>
  23#include <linux/regset.h>
 
  24#include <linux/seccomp.h>
  25#include <linux/compat.h>
  26#include <trace/syscall.h>
  27#include <asm/guarded_storage.h>
  28#include <asm/access-regs.h>
  29#include <asm/page.h>
 
 
  30#include <linux/uaccess.h>
  31#include <asm/unistd.h>
 
  32#include <asm/runtime_instr.h>
  33#include <asm/facility.h>
  34#include <asm/fpu.h>
  35
  36#include "entry.h"
  37
  38#ifdef CONFIG_COMPAT
  39#include "compat_ptrace.h"
  40#endif
  41
 
 
 
  42void update_cr_regs(struct task_struct *task)
  43{
  44	struct pt_regs *regs = task_pt_regs(task);
  45	struct thread_struct *thread = &task->thread;
 
  46	union ctlreg0 cr0_old, cr0_new;
  47	union ctlreg2 cr2_old, cr2_new;
  48	int cr0_changed, cr2_changed;
  49	union {
  50		struct ctlreg regs[3];
  51		struct {
  52			struct ctlreg control;
  53			struct ctlreg start;
  54			struct ctlreg end;
  55		};
  56	} old, new;
  57
  58	local_ctl_store(0, &cr0_old.reg);
  59	local_ctl_store(2, &cr2_old.reg);
  60	cr0_new = cr0_old;
  61	cr2_new = cr2_old;
  62	/* Take care of the enable/disable of transactional execution. */
  63	if (MACHINE_HAS_TE) {
  64		/* Set or clear transaction execution TXC bit 8. */
  65		cr0_new.tcx = 1;
  66		if (task->thread.per_flags & PER_FLAG_NO_TE)
  67			cr0_new.tcx = 0;
  68		/* Set or clear transaction execution TDC bits 62 and 63. */
  69		cr2_new.tdc = 0;
  70		if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND) {
  71			if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND_TEND)
  72				cr2_new.tdc = 1;
  73			else
  74				cr2_new.tdc = 2;
  75		}
  76	}
  77	/* Take care of enable/disable of guarded storage. */
  78	if (MACHINE_HAS_GS) {
  79		cr2_new.gse = 0;
  80		if (task->thread.gs_cb)
  81			cr2_new.gse = 1;
  82	}
  83	/* Load control register 0/2 iff changed */
  84	cr0_changed = cr0_new.val != cr0_old.val;
  85	cr2_changed = cr2_new.val != cr2_old.val;
  86	if (cr0_changed)
  87		local_ctl_load(0, &cr0_new.reg);
  88	if (cr2_changed)
  89		local_ctl_load(2, &cr2_new.reg);
  90	/* Copy user specified PER registers */
  91	new.control.val = thread->per_user.control;
  92	new.start.val = thread->per_user.start;
  93	new.end.val = thread->per_user.end;
  94
  95	/* merge TIF_SINGLE_STEP into user specified PER registers. */
  96	if (test_tsk_thread_flag(task, TIF_SINGLE_STEP) ||
  97	    test_tsk_thread_flag(task, TIF_UPROBE_SINGLESTEP)) {
  98		if (test_tsk_thread_flag(task, TIF_BLOCK_STEP))
  99			new.control.val |= PER_EVENT_BRANCH;
 100		else
 101			new.control.val |= PER_EVENT_IFETCH;
 102		new.control.val |= PER_CONTROL_SUSPENSION;
 103		new.control.val |= PER_EVENT_TRANSACTION_END;
 104		if (test_tsk_thread_flag(task, TIF_UPROBE_SINGLESTEP))
 105			new.control.val |= PER_EVENT_IFETCH;
 106		new.start.val = 0;
 107		new.end.val = -1UL;
 108	}
 109
 110	/* Take care of the PER enablement bit in the PSW. */
 111	if (!(new.control.val & PER_EVENT_MASK)) {
 112		regs->psw.mask &= ~PSW_MASK_PER;
 113		return;
 114	}
 115	regs->psw.mask |= PSW_MASK_PER;
 116	__local_ctl_store(9, 11, old.regs);
 117	if (memcmp(&new, &old, sizeof(struct per_regs)) != 0)
 118		__local_ctl_load(9, 11, new.regs);
 119}
 120
 121void user_enable_single_step(struct task_struct *task)
 122{
 123	clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
 124	set_tsk_thread_flag(task, TIF_SINGLE_STEP);
 125}
 126
 127void user_disable_single_step(struct task_struct *task)
 128{
 129	clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
 130	clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
 131}
 132
 133void user_enable_block_step(struct task_struct *task)
 134{
 135	set_tsk_thread_flag(task, TIF_SINGLE_STEP);
 136	set_tsk_thread_flag(task, TIF_BLOCK_STEP);
 137}
 138
 139/*
 140 * Called by kernel/ptrace.c when detaching..
 141 *
 142 * Clear all debugging related fields.
 143 */
 144void ptrace_disable(struct task_struct *task)
 145{
 146	memset(&task->thread.per_user, 0, sizeof(task->thread.per_user));
 147	memset(&task->thread.per_event, 0, sizeof(task->thread.per_event));
 148	clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
 149	clear_tsk_thread_flag(task, TIF_PER_TRAP);
 150	task->thread.per_flags = 0;
 151}
 152
 153#define __ADDR_MASK 7
 154
 155static inline unsigned long __peek_user_per(struct task_struct *child,
 156					    addr_t addr)
 157{
 158	if (addr == offsetof(struct per_struct_kernel, cr9))
 
 
 159		/* Control bits of the active per set. */
 160		return test_thread_flag(TIF_SINGLE_STEP) ?
 161			PER_EVENT_IFETCH : child->thread.per_user.control;
 162	else if (addr == offsetof(struct per_struct_kernel, cr10))
 163		/* Start address of the active per set. */
 164		return test_thread_flag(TIF_SINGLE_STEP) ?
 165			0 : child->thread.per_user.start;
 166	else if (addr == offsetof(struct per_struct_kernel, cr11))
 167		/* End address of the active per set. */
 168		return test_thread_flag(TIF_SINGLE_STEP) ?
 169			-1UL : child->thread.per_user.end;
 170	else if (addr == offsetof(struct per_struct_kernel, bits))
 171		/* Single-step bit. */
 172		return test_thread_flag(TIF_SINGLE_STEP) ?
 173			(1UL << (BITS_PER_LONG - 1)) : 0;
 174	else if (addr == offsetof(struct per_struct_kernel, starting_addr))
 175		/* Start address of the user specified per set. */
 176		return child->thread.per_user.start;
 177	else if (addr == offsetof(struct per_struct_kernel, ending_addr))
 178		/* End address of the user specified per set. */
 179		return child->thread.per_user.end;
 180	else if (addr == offsetof(struct per_struct_kernel, perc_atmid))
 181		/* PER code, ATMID and AI of the last PER trap */
 182		return (unsigned long)
 183			child->thread.per_event.cause << (BITS_PER_LONG - 16);
 184	else if (addr == offsetof(struct per_struct_kernel, address))
 185		/* Address of the last PER trap */
 186		return child->thread.per_event.address;
 187	else if (addr == offsetof(struct per_struct_kernel, access_id))
 188		/* Access id of the last PER trap */
 189		return (unsigned long)
 190			child->thread.per_event.paid << (BITS_PER_LONG - 8);
 191	return 0;
 192}
 193
 194/*
 195 * Read the word at offset addr from the user area of a process. The
 196 * trouble here is that the information is littered over different
 197 * locations. The process registers are found on the kernel stack,
 198 * the floating point stuff and the trace settings are stored in
 199 * the task structure. In addition the different structures in
 200 * struct user contain pad bytes that should be read as zeroes.
 201 * Lovely...
 202 */
 203static unsigned long __peek_user(struct task_struct *child, addr_t addr)
 204{
 
 205	addr_t offset, tmp;
 206
 207	if (addr < offsetof(struct user, regs.acrs)) {
 208		/*
 209		 * psw and gprs are stored on the stack
 210		 */
 211		tmp = *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr);
 212		if (addr == offsetof(struct user, regs.psw.mask)) {
 213			/* Return a clean psw mask. */
 214			tmp &= PSW_MASK_USER | PSW_MASK_RI;
 215			tmp |= PSW_USER_BITS;
 216		}
 217
 218	} else if (addr < offsetof(struct user, regs.orig_gpr2)) {
 219		/*
 220		 * access registers are stored in the thread structure
 221		 */
 222		offset = addr - offsetof(struct user, regs.acrs);
 223		/*
 224		 * Very special case: old & broken 64 bit gdb reading
 225		 * from acrs[15]. Result is a 64 bit value. Read the
 226		 * 32 bit acrs[15] value and shift it by 32. Sick...
 227		 */
 228		if (addr == offsetof(struct user, regs.acrs[15]))
 229			tmp = ((unsigned long) child->thread.acrs[15]) << 32;
 230		else
 231			tmp = *(addr_t *)((addr_t) &child->thread.acrs + offset);
 232
 233	} else if (addr == offsetof(struct user, regs.orig_gpr2)) {
 234		/*
 235		 * orig_gpr2 is stored on the kernel stack
 236		 */
 237		tmp = (addr_t) task_pt_regs(child)->orig_gpr2;
 238
 239	} else if (addr < offsetof(struct user, regs.fp_regs)) {
 240		/*
 241		 * prevent reads of padding hole between
 242		 * orig_gpr2 and fp_regs on s390.
 243		 */
 244		tmp = 0;
 245
 246	} else if (addr == offsetof(struct user, regs.fp_regs.fpc)) {
 247		/*
 248		 * floating point control reg. is in the thread structure
 249		 */
 250		tmp = child->thread.ufpu.fpc;
 251		tmp <<= BITS_PER_LONG - 32;
 252
 253	} else if (addr < offsetof(struct user, regs.fp_regs) + sizeof(s390_fp_regs)) {
 254		/*
 255		 * floating point regs. are in the child->thread.ufpu.vxrs array
 
 256		 */
 257		offset = addr - offsetof(struct user, regs.fp_regs.fprs);
 258		tmp = *(addr_t *)((addr_t)child->thread.ufpu.vxrs + 2 * offset);
 259	} else if (addr < offsetof(struct user, regs.per_info) + sizeof(per_struct)) {
 
 
 
 
 
 
 260		/*
 261		 * Handle access to the per_info structure.
 262		 */
 263		addr -= offsetof(struct user, regs.per_info);
 264		tmp = __peek_user_per(child, addr);
 265
 266	} else
 267		tmp = 0;
 268
 269	return tmp;
 270}
 271
 272static int
 273peek_user(struct task_struct *child, addr_t addr, addr_t data)
 274{
 275	addr_t tmp, mask;
 276
 277	/*
 278	 * Stupid gdb peeks/pokes the access registers in 64 bit with
 279	 * an alignment of 4. Programmers from hell...
 280	 */
 281	mask = __ADDR_MASK;
 282	if (addr >= offsetof(struct user, regs.acrs) &&
 283	    addr < offsetof(struct user, regs.orig_gpr2))
 284		mask = 3;
 285	if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
 286		return -EIO;
 287
 288	tmp = __peek_user(child, addr);
 289	return put_user(tmp, (addr_t __user *) data);
 290}
 291
 292static inline void __poke_user_per(struct task_struct *child,
 293				   addr_t addr, addr_t data)
 294{
 
 
 295	/*
 296	 * There are only three fields in the per_info struct that the
 297	 * debugger user can write to.
 298	 * 1) cr9: the debugger wants to set a new PER event mask
 299	 * 2) starting_addr: the debugger wants to set a new starting
 300	 *    address to use with the PER event mask.
 301	 * 3) ending_addr: the debugger wants to set a new ending
 302	 *    address to use with the PER event mask.
 303	 * The user specified PER event mask and the start and end
 304	 * addresses are used only if single stepping is not in effect.
 305	 * Writes to any other field in per_info are ignored.
 306	 */
 307	if (addr == offsetof(struct per_struct_kernel, cr9))
 308		/* PER event mask of the user specified per set. */
 309		child->thread.per_user.control =
 310			data & (PER_EVENT_MASK | PER_CONTROL_MASK);
 311	else if (addr == offsetof(struct per_struct_kernel, starting_addr))
 312		/* Starting address of the user specified per set. */
 313		child->thread.per_user.start = data;
 314	else if (addr == offsetof(struct per_struct_kernel, ending_addr))
 315		/* Ending address of the user specified per set. */
 316		child->thread.per_user.end = data;
 317}
 318
 319/*
 320 * Write a word to the user area of a process at location addr. This
 321 * operation does have an additional problem compared to peek_user.
 322 * Stores to the program status word and on the floating point
 323 * control register needs to get checked for validity.
 324 */
 325static int __poke_user(struct task_struct *child, addr_t addr, addr_t data)
 326{
 
 327	addr_t offset;
 328
 329
 330	if (addr < offsetof(struct user, regs.acrs)) {
 331		struct pt_regs *regs = task_pt_regs(child);
 332		/*
 333		 * psw and gprs are stored on the stack
 334		 */
 335		if (addr == offsetof(struct user, regs.psw.mask)) {
 336			unsigned long mask = PSW_MASK_USER;
 337
 338			mask |= is_ri_task(child) ? PSW_MASK_RI : 0;
 339			if ((data ^ PSW_USER_BITS) & ~mask)
 340				/* Invalid psw mask. */
 341				return -EINVAL;
 342			if ((data & PSW_MASK_ASC) == PSW_ASC_HOME)
 343				/* Invalid address-space-control bits */
 344				return -EINVAL;
 345			if ((data & PSW_MASK_EA) && !(data & PSW_MASK_BA))
 346				/* Invalid addressing mode bits */
 347				return -EINVAL;
 348		}
 
 349
 350		if (test_pt_regs_flag(regs, PIF_SYSCALL) &&
 351			addr == offsetof(struct user, regs.gprs[2])) {
 352			struct pt_regs *regs = task_pt_regs(child);
 353
 354			regs->int_code = 0x20000 | (data & 0xffff);
 355		}
 356		*(addr_t *)((addr_t) &regs->psw + addr) = data;
 357	} else if (addr < offsetof(struct user, regs.orig_gpr2)) {
 358		/*
 359		 * access registers are stored in the thread structure
 360		 */
 361		offset = addr - offsetof(struct user, regs.acrs);
 362		/*
 363		 * Very special case: old & broken 64 bit gdb writing
 364		 * to acrs[15] with a 64 bit value. Ignore the lower
 365		 * half of the value and write the upper 32 bit to
 366		 * acrs[15]. Sick...
 367		 */
 368		if (addr == offsetof(struct user, regs.acrs[15]))
 369			child->thread.acrs[15] = (unsigned int) (data >> 32);
 370		else
 371			*(addr_t *)((addr_t) &child->thread.acrs + offset) = data;
 372
 373	} else if (addr == offsetof(struct user, regs.orig_gpr2)) {
 374		/*
 375		 * orig_gpr2 is stored on the kernel stack
 376		 */
 377		task_pt_regs(child)->orig_gpr2 = data;
 378
 379	} else if (addr < offsetof(struct user, regs.fp_regs)) {
 380		/*
 381		 * prevent writes of padding hole between
 382		 * orig_gpr2 and fp_regs on s390.
 383		 */
 384		return 0;
 385
 386	} else if (addr == offsetof(struct user, regs.fp_regs.fpc)) {
 387		/*
 388		 * floating point control reg. is in the thread structure
 389		 */
 390		if ((unsigned int)data != 0)
 
 391			return -EINVAL;
 392		child->thread.ufpu.fpc = data >> (BITS_PER_LONG - 32);
 393
 394	} else if (addr < offsetof(struct user, regs.fp_regs) + sizeof(s390_fp_regs)) {
 395		/*
 396		 * floating point regs. are in the child->thread.ufpu.vxrs array
 
 397		 */
 398		offset = addr - offsetof(struct user, regs.fp_regs.fprs);
 399		*(addr_t *)((addr_t)child->thread.ufpu.vxrs + 2 * offset) = data;
 400	} else if (addr < offsetof(struct user, regs.per_info) + sizeof(per_struct)) {
 
 
 
 
 
 
 401		/*
 402		 * Handle access to the per_info structure.
 403		 */
 404		addr -= offsetof(struct user, regs.per_info);
 405		__poke_user_per(child, addr, data);
 406
 407	}
 408
 409	return 0;
 410}
 411
 412static int poke_user(struct task_struct *child, addr_t addr, addr_t data)
 413{
 414	addr_t mask;
 415
 416	/*
 417	 * Stupid gdb peeks/pokes the access registers in 64 bit with
 418	 * an alignment of 4. Programmers from hell indeed...
 419	 */
 420	mask = __ADDR_MASK;
 421	if (addr >= offsetof(struct user, regs.acrs) &&
 422	    addr < offsetof(struct user, regs.orig_gpr2))
 423		mask = 3;
 424	if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
 425		return -EIO;
 426
 427	return __poke_user(child, addr, data);
 428}
 429
 430long arch_ptrace(struct task_struct *child, long request,
 431		 unsigned long addr, unsigned long data)
 432{
 433	ptrace_area parea; 
 434	int copied, ret;
 435
 436	switch (request) {
 437	case PTRACE_PEEKUSR:
 438		/* read the word at location addr in the USER area. */
 439		return peek_user(child, addr, data);
 440
 441	case PTRACE_POKEUSR:
 442		/* write the word at location addr in the USER area */
 443		return poke_user(child, addr, data);
 444
 445	case PTRACE_PEEKUSR_AREA:
 446	case PTRACE_POKEUSR_AREA:
 447		if (copy_from_user(&parea, (void __force __user *) addr,
 448							sizeof(parea)))
 449			return -EFAULT;
 450		addr = parea.kernel_addr;
 451		data = parea.process_addr;
 452		copied = 0;
 453		while (copied < parea.len) {
 454			if (request == PTRACE_PEEKUSR_AREA)
 455				ret = peek_user(child, addr, data);
 456			else {
 457				addr_t utmp;
 458				if (get_user(utmp,
 459					     (addr_t __force __user *) data))
 460					return -EFAULT;
 461				ret = poke_user(child, addr, utmp);
 462			}
 463			if (ret)
 464				return ret;
 465			addr += sizeof(unsigned long);
 466			data += sizeof(unsigned long);
 467			copied += sizeof(unsigned long);
 468		}
 469		return 0;
 470	case PTRACE_GET_LAST_BREAK:
 471		return put_user(child->thread.last_break, (unsigned long __user *)data);
 
 
 472	case PTRACE_ENABLE_TE:
 473		if (!MACHINE_HAS_TE)
 474			return -EIO;
 475		child->thread.per_flags &= ~PER_FLAG_NO_TE;
 476		return 0;
 477	case PTRACE_DISABLE_TE:
 478		if (!MACHINE_HAS_TE)
 479			return -EIO;
 480		child->thread.per_flags |= PER_FLAG_NO_TE;
 481		child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
 482		return 0;
 483	case PTRACE_TE_ABORT_RAND:
 484		if (!MACHINE_HAS_TE || (child->thread.per_flags & PER_FLAG_NO_TE))
 485			return -EIO;
 486		switch (data) {
 487		case 0UL:
 488			child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
 489			break;
 490		case 1UL:
 491			child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
 492			child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND_TEND;
 493			break;
 494		case 2UL:
 495			child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
 496			child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND_TEND;
 497			break;
 498		default:
 499			return -EINVAL;
 500		}
 501		return 0;
 502	default:
 503		return ptrace_request(child, request, addr, data);
 504	}
 505}
 506
 507#ifdef CONFIG_COMPAT
 508/*
 509 * Now the fun part starts... a 31 bit program running in the
 510 * 31 bit emulation tracing another program. PTRACE_PEEKTEXT,
 511 * PTRACE_PEEKDATA, PTRACE_POKETEXT and PTRACE_POKEDATA are easy
 512 * to handle, the difference to the 64 bit versions of the requests
 513 * is that the access is done in multiples of 4 byte instead of
 514 * 8 bytes (sizeof(unsigned long) on 31/64 bit).
 515 * The ugly part are PTRACE_PEEKUSR, PTRACE_PEEKUSR_AREA,
 516 * PTRACE_POKEUSR and PTRACE_POKEUSR_AREA. If the traced program
 517 * is a 31 bit program too, the content of struct user can be
 518 * emulated. A 31 bit program peeking into the struct user of
 519 * a 64 bit program is a no-no.
 520 */
 521
 522/*
 523 * Same as peek_user_per but for a 31 bit program.
 524 */
 525static inline __u32 __peek_user_per_compat(struct task_struct *child,
 526					   addr_t addr)
 527{
 528	if (addr == offsetof(struct compat_per_struct_kernel, cr9))
 
 
 529		/* Control bits of the active per set. */
 530		return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
 531			PER_EVENT_IFETCH : child->thread.per_user.control;
 532	else if (addr == offsetof(struct compat_per_struct_kernel, cr10))
 533		/* Start address of the active per set. */
 534		return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
 535			0 : child->thread.per_user.start;
 536	else if (addr == offsetof(struct compat_per_struct_kernel, cr11))
 537		/* End address of the active per set. */
 538		return test_thread_flag(TIF_SINGLE_STEP) ?
 539			PSW32_ADDR_INSN : child->thread.per_user.end;
 540	else if (addr == offsetof(struct compat_per_struct_kernel, bits))
 541		/* Single-step bit. */
 542		return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
 543			0x80000000 : 0;
 544	else if (addr == offsetof(struct compat_per_struct_kernel, starting_addr))
 545		/* Start address of the user specified per set. */
 546		return (__u32) child->thread.per_user.start;
 547	else if (addr == offsetof(struct compat_per_struct_kernel, ending_addr))
 548		/* End address of the user specified per set. */
 549		return (__u32) child->thread.per_user.end;
 550	else if (addr == offsetof(struct compat_per_struct_kernel, perc_atmid))
 551		/* PER code, ATMID and AI of the last PER trap */
 552		return (__u32) child->thread.per_event.cause << 16;
 553	else if (addr == offsetof(struct compat_per_struct_kernel, address))
 554		/* Address of the last PER trap */
 555		return (__u32) child->thread.per_event.address;
 556	else if (addr == offsetof(struct compat_per_struct_kernel, access_id))
 557		/* Access id of the last PER trap */
 558		return (__u32) child->thread.per_event.paid << 24;
 559	return 0;
 560}
 561
 562/*
 563 * Same as peek_user but for a 31 bit program.
 564 */
 565static u32 __peek_user_compat(struct task_struct *child, addr_t addr)
 566{
 
 567	addr_t offset;
 568	__u32 tmp;
 569
 570	if (addr < offsetof(struct compat_user, regs.acrs)) {
 571		struct pt_regs *regs = task_pt_regs(child);
 572		/*
 573		 * psw and gprs are stored on the stack
 574		 */
 575		if (addr == offsetof(struct compat_user, regs.psw.mask)) {
 576			/* Fake a 31 bit psw mask. */
 577			tmp = (__u32)(regs->psw.mask >> 32);
 578			tmp &= PSW32_MASK_USER | PSW32_MASK_RI;
 579			tmp |= PSW32_USER_BITS;
 580		} else if (addr == offsetof(struct compat_user, regs.psw.addr)) {
 581			/* Fake a 31 bit psw address. */
 582			tmp = (__u32) regs->psw.addr |
 583				(__u32)(regs->psw.mask & PSW_MASK_BA);
 584		} else {
 585			/* gpr 0-15 */
 586			tmp = *(__u32 *)((addr_t) &regs->psw + addr*2 + 4);
 587		}
 588	} else if (addr < offsetof(struct compat_user, regs.orig_gpr2)) {
 589		/*
 590		 * access registers are stored in the thread structure
 591		 */
 592		offset = addr - offsetof(struct compat_user, regs.acrs);
 593		tmp = *(__u32*)((addr_t) &child->thread.acrs + offset);
 594
 595	} else if (addr == offsetof(struct compat_user, regs.orig_gpr2)) {
 596		/*
 597		 * orig_gpr2 is stored on the kernel stack
 598		 */
 599		tmp = *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4);
 600
 601	} else if (addr < offsetof(struct compat_user, regs.fp_regs)) {
 602		/*
 603		 * prevent reads of padding hole between
 604		 * orig_gpr2 and fp_regs on s390.
 605		 */
 606		tmp = 0;
 607
 608	} else if (addr == offsetof(struct compat_user, regs.fp_regs.fpc)) {
 609		/*
 610		 * floating point control reg. is in the thread structure
 611		 */
 612		tmp = child->thread.ufpu.fpc;
 613
 614	} else if (addr < offsetof(struct compat_user, regs.fp_regs) + sizeof(s390_fp_regs)) {
 615		/*
 616		 * floating point regs. are in the child->thread.ufpu.vxrs array
 
 617		 */
 618		offset = addr - offsetof(struct compat_user, regs.fp_regs.fprs);
 619		tmp = *(__u32 *)((addr_t)child->thread.ufpu.vxrs + 2 * offset);
 620	} else if (addr < offsetof(struct compat_user, regs.per_info) + sizeof(struct compat_per_struct_kernel)) {
 
 
 
 
 
 
 621		/*
 622		 * Handle access to the per_info structure.
 623		 */
 624		addr -= offsetof(struct compat_user, regs.per_info);
 625		tmp = __peek_user_per_compat(child, addr);
 626
 627	} else
 628		tmp = 0;
 629
 630	return tmp;
 631}
 632
 633static int peek_user_compat(struct task_struct *child,
 634			    addr_t addr, addr_t data)
 635{
 636	__u32 tmp;
 637
 638	if (!is_compat_task() || (addr & 3) || addr > sizeof(struct user) - 3)
 639		return -EIO;
 640
 641	tmp = __peek_user_compat(child, addr);
 642	return put_user(tmp, (__u32 __user *) data);
 643}
 644
 645/*
 646 * Same as poke_user_per but for a 31 bit program.
 647 */
 648static inline void __poke_user_per_compat(struct task_struct *child,
 649					  addr_t addr, __u32 data)
 650{
 651	if (addr == offsetof(struct compat_per_struct_kernel, cr9))
 
 
 652		/* PER event mask of the user specified per set. */
 653		child->thread.per_user.control =
 654			data & (PER_EVENT_MASK | PER_CONTROL_MASK);
 655	else if (addr == offsetof(struct compat_per_struct_kernel, starting_addr))
 656		/* Starting address of the user specified per set. */
 657		child->thread.per_user.start = data;
 658	else if (addr == offsetof(struct compat_per_struct_kernel, ending_addr))
 659		/* Ending address of the user specified per set. */
 660		child->thread.per_user.end = data;
 661}
 662
 663/*
 664 * Same as poke_user but for a 31 bit program.
 665 */
 666static int __poke_user_compat(struct task_struct *child,
 667			      addr_t addr, addr_t data)
 668{
 
 669	__u32 tmp = (__u32) data;
 670	addr_t offset;
 671
 672	if (addr < offsetof(struct compat_user, regs.acrs)) {
 673		struct pt_regs *regs = task_pt_regs(child);
 674		/*
 675		 * psw, gprs, acrs and orig_gpr2 are stored on the stack
 676		 */
 677		if (addr == offsetof(struct compat_user, regs.psw.mask)) {
 678			__u32 mask = PSW32_MASK_USER;
 679
 680			mask |= is_ri_task(child) ? PSW32_MASK_RI : 0;
 681			/* Build a 64 bit psw mask from 31 bit mask. */
 682			if ((tmp ^ PSW32_USER_BITS) & ~mask)
 683				/* Invalid psw mask. */
 684				return -EINVAL;
 685			if ((data & PSW32_MASK_ASC) == PSW32_ASC_HOME)
 686				/* Invalid address-space-control bits */
 687				return -EINVAL;
 688			regs->psw.mask = (regs->psw.mask & ~PSW_MASK_USER) |
 689				(regs->psw.mask & PSW_MASK_BA) |
 690				(__u64)(tmp & mask) << 32;
 691		} else if (addr == offsetof(struct compat_user, regs.psw.addr)) {
 692			/* Build a 64 bit psw address from 31 bit address. */
 693			regs->psw.addr = (__u64) tmp & PSW32_ADDR_INSN;
 694			/* Transfer 31 bit amode bit to psw mask. */
 695			regs->psw.mask = (regs->psw.mask & ~PSW_MASK_BA) |
 696				(__u64)(tmp & PSW32_ADDR_AMODE);
 697		} else {
 698			if (test_pt_regs_flag(regs, PIF_SYSCALL) &&
 699				addr == offsetof(struct compat_user, regs.gprs[2])) {
 700				struct pt_regs *regs = task_pt_regs(child);
 701
 702				regs->int_code = 0x20000 | (data & 0xffff);
 703			}
 704			/* gpr 0-15 */
 705			*(__u32*)((addr_t) &regs->psw + addr*2 + 4) = tmp;
 706		}
 707	} else if (addr < offsetof(struct compat_user, regs.orig_gpr2)) {
 708		/*
 709		 * access registers are stored in the thread structure
 710		 */
 711		offset = addr - offsetof(struct compat_user, regs.acrs);
 712		*(__u32*)((addr_t) &child->thread.acrs + offset) = tmp;
 713
 714	} else if (addr == offsetof(struct compat_user, regs.orig_gpr2)) {
 715		/*
 716		 * orig_gpr2 is stored on the kernel stack
 717		 */
 718		*(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4) = tmp;
 719
 720	} else if (addr < offsetof(struct compat_user, regs.fp_regs)) {
 721		/*
 722		 * prevent writess of padding hole between
 723		 * orig_gpr2 and fp_regs on s390.
 724		 */
 725		return 0;
 726
 727	} else if (addr == offsetof(struct compat_user, regs.fp_regs.fpc)) {
 728		/*
 729		 * floating point control reg. is in the thread structure
 730		 */
 731		child->thread.ufpu.fpc = data;
 
 
 732
 733	} else if (addr < offsetof(struct compat_user, regs.fp_regs) + sizeof(s390_fp_regs)) {
 734		/*
 735		 * floating point regs. are in the child->thread.ufpu.vxrs array
 
 736		 */
 737		offset = addr - offsetof(struct compat_user, regs.fp_regs.fprs);
 738		*(__u32 *)((addr_t)child->thread.ufpu.vxrs + 2 * offset) = tmp;
 739	} else if (addr < offsetof(struct compat_user, regs.per_info) + sizeof(struct compat_per_struct_kernel)) {
 
 
 
 
 
 
 740		/*
 741		 * Handle access to the per_info structure.
 742		 */
 743		addr -= offsetof(struct compat_user, regs.per_info);
 744		__poke_user_per_compat(child, addr, data);
 745	}
 746
 747	return 0;
 748}
 749
 750static int poke_user_compat(struct task_struct *child,
 751			    addr_t addr, addr_t data)
 752{
 753	if (!is_compat_task() || (addr & 3) ||
 754	    addr > sizeof(struct compat_user) - 3)
 755		return -EIO;
 756
 757	return __poke_user_compat(child, addr, data);
 758}
 759
 760long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
 761			compat_ulong_t caddr, compat_ulong_t cdata)
 762{
 763	unsigned long addr = caddr;
 764	unsigned long data = cdata;
 765	compat_ptrace_area parea;
 766	int copied, ret;
 767
 768	switch (request) {
 769	case PTRACE_PEEKUSR:
 770		/* read the word at location addr in the USER area. */
 771		return peek_user_compat(child, addr, data);
 772
 773	case PTRACE_POKEUSR:
 774		/* write the word at location addr in the USER area */
 775		return poke_user_compat(child, addr, data);
 776
 777	case PTRACE_PEEKUSR_AREA:
 778	case PTRACE_POKEUSR_AREA:
 779		if (copy_from_user(&parea, (void __force __user *) addr,
 780							sizeof(parea)))
 781			return -EFAULT;
 782		addr = parea.kernel_addr;
 783		data = parea.process_addr;
 784		copied = 0;
 785		while (copied < parea.len) {
 786			if (request == PTRACE_PEEKUSR_AREA)
 787				ret = peek_user_compat(child, addr, data);
 788			else {
 789				__u32 utmp;
 790				if (get_user(utmp,
 791					     (__u32 __force __user *) data))
 792					return -EFAULT;
 793				ret = poke_user_compat(child, addr, utmp);
 794			}
 795			if (ret)
 796				return ret;
 797			addr += sizeof(unsigned int);
 798			data += sizeof(unsigned int);
 799			copied += sizeof(unsigned int);
 800		}
 801		return 0;
 802	case PTRACE_GET_LAST_BREAK:
 803		return put_user(child->thread.last_break, (unsigned int __user *)data);
 
 
 804	}
 805	return compat_ptrace_request(child, request, addr, data);
 806}
 807#endif
 808
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 809/*
 810 * user_regset definitions.
 811 */
 812
 813static int s390_regs_get(struct task_struct *target,
 814			 const struct user_regset *regset,
 815			 struct membuf to)
 
 816{
 817	unsigned pos;
 818	if (target == current)
 819		save_access_regs(target->thread.acrs);
 820
 821	for (pos = 0; pos < sizeof(s390_regs); pos += sizeof(long))
 822		membuf_store(&to, __peek_user(target, pos));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 823	return 0;
 824}
 825
 826static int s390_regs_set(struct task_struct *target,
 827			 const struct user_regset *regset,
 828			 unsigned int pos, unsigned int count,
 829			 const void *kbuf, const void __user *ubuf)
 830{
 831	int rc = 0;
 832
 833	if (target == current)
 834		save_access_regs(target->thread.acrs);
 835
 836	if (kbuf) {
 837		const unsigned long *k = kbuf;
 838		while (count > 0 && !rc) {
 839			rc = __poke_user(target, pos, *k++);
 840			count -= sizeof(*k);
 841			pos += sizeof(*k);
 842		}
 843	} else {
 844		const unsigned long  __user *u = ubuf;
 845		while (count > 0 && !rc) {
 846			unsigned long word;
 847			rc = __get_user(word, u++);
 848			if (rc)
 849				break;
 850			rc = __poke_user(target, pos, word);
 851			count -= sizeof(*u);
 852			pos += sizeof(*u);
 853		}
 854	}
 855
 856	if (rc == 0 && target == current)
 857		restore_access_regs(target->thread.acrs);
 858
 859	return rc;
 860}
 861
 862static int s390_fpregs_get(struct task_struct *target,
 863			   const struct user_regset *regset,
 864			   struct membuf to)
 865{
 866	_s390_fp_regs fp_regs;
 867
 868	if (target == current)
 869		save_user_fpu_regs();
 870
 871	fp_regs.fpc = target->thread.ufpu.fpc;
 872	fpregs_store(&fp_regs, &target->thread.ufpu);
 873
 874	return membuf_write(&to, &fp_regs, sizeof(fp_regs));
 
 875}
 876
 877static int s390_fpregs_set(struct task_struct *target,
 878			   const struct user_regset *regset, unsigned int pos,
 879			   unsigned int count, const void *kbuf,
 880			   const void __user *ubuf)
 881{
 882	int rc = 0;
 883	freg_t fprs[__NUM_FPRS];
 884
 885	if (target == current)
 886		save_user_fpu_regs();
 887	convert_vx_to_fp(fprs, target->thread.ufpu.vxrs);
 
 
 
 
 
 
 888	if (count > 0 && pos < offsetof(s390_fp_regs, fprs)) {
 889		u32 ufpc[2] = { target->thread.ufpu.fpc, 0 };
 890		rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ufpc,
 891					0, offsetof(s390_fp_regs, fprs));
 892		if (rc)
 893			return rc;
 894		if (ufpc[1] != 0)
 895			return -EINVAL;
 896		target->thread.ufpu.fpc = ufpc[0];
 897	}
 898
 899	if (rc == 0 && count > 0)
 900		rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
 901					fprs, offsetof(s390_fp_regs, fprs), -1);
 902	if (rc)
 903		return rc;
 904	convert_fp_to_vx(target->thread.ufpu.vxrs, fprs);
 
 
 
 
 
 905	return rc;
 906}
 907
 908static int s390_last_break_get(struct task_struct *target,
 909			       const struct user_regset *regset,
 910			       struct membuf to)
 
 911{
 912	return membuf_store(&to, target->thread.last_break);
 
 
 
 
 
 
 
 
 
 
 913}
 914
 915static int s390_last_break_set(struct task_struct *target,
 916			       const struct user_regset *regset,
 917			       unsigned int pos, unsigned int count,
 918			       const void *kbuf, const void __user *ubuf)
 919{
 920	return 0;
 921}
 922
 923static int s390_tdb_get(struct task_struct *target,
 924			const struct user_regset *regset,
 925			struct membuf to)
 
 926{
 927	struct pt_regs *regs = task_pt_regs(target);
 928	size_t size;
 929
 930	if (!(regs->int_code & 0x200))
 931		return -ENODATA;
 932	size = sizeof(target->thread.trap_tdb.data);
 933	return membuf_write(&to, target->thread.trap_tdb.data, size);
 934}
 935
 936static int s390_tdb_set(struct task_struct *target,
 937			const struct user_regset *regset,
 938			unsigned int pos, unsigned int count,
 939			const void *kbuf, const void __user *ubuf)
 940{
 941	return 0;
 942}
 943
 944static int s390_vxrs_low_get(struct task_struct *target,
 945			     const struct user_regset *regset,
 946			     struct membuf to)
 
 947{
 948	__u64 vxrs[__NUM_VXRS_LOW];
 949	int i;
 950
 951	if (!cpu_has_vx())
 952		return -ENODEV;
 953	if (target == current)
 954		save_user_fpu_regs();
 955	for (i = 0; i < __NUM_VXRS_LOW; i++)
 956		vxrs[i] = target->thread.ufpu.vxrs[i].low;
 957	return membuf_write(&to, vxrs, sizeof(vxrs));
 958}
 959
 960static int s390_vxrs_low_set(struct task_struct *target,
 961			     const struct user_regset *regset,
 962			     unsigned int pos, unsigned int count,
 963			     const void *kbuf, const void __user *ubuf)
 964{
 965	__u64 vxrs[__NUM_VXRS_LOW];
 966	int i, rc;
 967
 968	if (!cpu_has_vx())
 969		return -ENODEV;
 970	if (target == current)
 971		save_user_fpu_regs();
 972
 973	for (i = 0; i < __NUM_VXRS_LOW; i++)
 974		vxrs[i] = target->thread.ufpu.vxrs[i].low;
 975
 976	rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1);
 977	if (rc == 0)
 978		for (i = 0; i < __NUM_VXRS_LOW; i++)
 979			target->thread.ufpu.vxrs[i].low = vxrs[i];
 980
 981	return rc;
 982}
 983
 984static int s390_vxrs_high_get(struct task_struct *target,
 985			      const struct user_regset *regset,
 986			      struct membuf to)
 
 987{
 988	if (!cpu_has_vx())
 
 
 989		return -ENODEV;
 990	if (target == current)
 991		save_user_fpu_regs();
 992	return membuf_write(&to, target->thread.ufpu.vxrs + __NUM_VXRS_LOW,
 993			    __NUM_VXRS_HIGH * sizeof(__vector128));
 
 994}
 995
 996static int s390_vxrs_high_set(struct task_struct *target,
 997			      const struct user_regset *regset,
 998			      unsigned int pos, unsigned int count,
 999			      const void *kbuf, const void __user *ubuf)
1000{
1001	int rc;
1002
1003	if (!cpu_has_vx())
1004		return -ENODEV;
1005	if (target == current)
1006		save_user_fpu_regs();
1007
1008	rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1009				target->thread.ufpu.vxrs + __NUM_VXRS_LOW, 0, -1);
1010	return rc;
1011}
1012
1013static int s390_system_call_get(struct task_struct *target,
1014				const struct user_regset *regset,
1015				struct membuf to)
 
1016{
1017	return membuf_store(&to, target->thread.system_call);
 
 
1018}
1019
1020static int s390_system_call_set(struct task_struct *target,
1021				const struct user_regset *regset,
1022				unsigned int pos, unsigned int count,
1023				const void *kbuf, const void __user *ubuf)
1024{
1025	unsigned int *data = &target->thread.system_call;
1026	return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1027				  data, 0, sizeof(unsigned int));
1028}
1029
1030static int s390_gs_cb_get(struct task_struct *target,
1031			  const struct user_regset *regset,
1032			  struct membuf to)
 
1033{
1034	struct gs_cb *data = target->thread.gs_cb;
1035
1036	if (!MACHINE_HAS_GS)
1037		return -ENODEV;
1038	if (!data)
1039		return -ENODATA;
1040	if (target == current)
1041		save_gs_cb(data);
1042	return membuf_write(&to, data, sizeof(struct gs_cb));
 
1043}
1044
1045static int s390_gs_cb_set(struct task_struct *target,
1046			  const struct user_regset *regset,
1047			  unsigned int pos, unsigned int count,
1048			  const void *kbuf, const void __user *ubuf)
1049{
1050	struct gs_cb gs_cb = { }, *data = NULL;
1051	int rc;
1052
1053	if (!MACHINE_HAS_GS)
1054		return -ENODEV;
1055	if (!target->thread.gs_cb) {
1056		data = kzalloc(sizeof(*data), GFP_KERNEL);
1057		if (!data)
1058			return -ENOMEM;
1059	}
1060	if (!target->thread.gs_cb)
1061		gs_cb.gsd = 25;
1062	else if (target == current)
1063		save_gs_cb(&gs_cb);
1064	else
1065		gs_cb = *target->thread.gs_cb;
1066	rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1067				&gs_cb, 0, sizeof(gs_cb));
1068	if (rc) {
1069		kfree(data);
1070		return -EFAULT;
1071	}
1072	preempt_disable();
1073	if (!target->thread.gs_cb)
1074		target->thread.gs_cb = data;
1075	*target->thread.gs_cb = gs_cb;
1076	if (target == current) {
1077		local_ctl_set_bit(2, CR2_GUARDED_STORAGE_BIT);
1078		restore_gs_cb(target->thread.gs_cb);
1079	}
1080	preempt_enable();
1081	return rc;
1082}
1083
1084static int s390_gs_bc_get(struct task_struct *target,
1085			  const struct user_regset *regset,
1086			  struct membuf to)
 
1087{
1088	struct gs_cb *data = target->thread.gs_bc_cb;
1089
1090	if (!MACHINE_HAS_GS)
1091		return -ENODEV;
1092	if (!data)
1093		return -ENODATA;
1094	return membuf_write(&to, data, sizeof(struct gs_cb));
 
1095}
1096
1097static int s390_gs_bc_set(struct task_struct *target,
1098			  const struct user_regset *regset,
1099			  unsigned int pos, unsigned int count,
1100			  const void *kbuf, const void __user *ubuf)
1101{
1102	struct gs_cb *data = target->thread.gs_bc_cb;
1103
1104	if (!MACHINE_HAS_GS)
1105		return -ENODEV;
1106	if (!data) {
1107		data = kzalloc(sizeof(*data), GFP_KERNEL);
1108		if (!data)
1109			return -ENOMEM;
1110		target->thread.gs_bc_cb = data;
1111	}
1112	return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1113				  data, 0, sizeof(struct gs_cb));
1114}
1115
1116static bool is_ri_cb_valid(struct runtime_instr_cb *cb)
1117{
1118	return (cb->rca & 0x1f) == 0 &&
1119		(cb->roa & 0xfff) == 0 &&
1120		(cb->rla & 0xfff) == 0xfff &&
1121		cb->s == 1 &&
1122		cb->k == 1 &&
1123		cb->h == 0 &&
1124		cb->reserved1 == 0 &&
1125		cb->ps == 1 &&
1126		cb->qs == 0 &&
1127		cb->pc == 1 &&
1128		cb->qc == 0 &&
1129		cb->reserved2 == 0 &&
 
1130		cb->reserved3 == 0 &&
1131		cb->reserved4 == 0 &&
1132		cb->reserved5 == 0 &&
1133		cb->reserved6 == 0 &&
1134		cb->reserved7 == 0 &&
1135		cb->reserved8 == 0 &&
1136		cb->rla >= cb->roa &&
1137		cb->rca >= cb->roa &&
1138		cb->rca <= cb->rla+1 &&
1139		cb->m < 3;
1140}
1141
1142static int s390_runtime_instr_get(struct task_struct *target,
1143				const struct user_regset *regset,
1144				struct membuf to)
 
1145{
1146	struct runtime_instr_cb *data = target->thread.ri_cb;
1147
1148	if (!test_facility(64))
1149		return -ENODEV;
1150	if (!data)
1151		return -ENODATA;
1152
1153	return membuf_write(&to, data, sizeof(struct runtime_instr_cb));
 
1154}
1155
1156static int s390_runtime_instr_set(struct task_struct *target,
1157				  const struct user_regset *regset,
1158				  unsigned int pos, unsigned int count,
1159				  const void *kbuf, const void __user *ubuf)
1160{
1161	struct runtime_instr_cb ri_cb = { }, *data = NULL;
1162	int rc;
1163
1164	if (!test_facility(64))
1165		return -ENODEV;
1166
1167	if (!target->thread.ri_cb) {
1168		data = kzalloc(sizeof(*data), GFP_KERNEL);
1169		if (!data)
1170			return -ENOMEM;
1171	}
1172
1173	if (target->thread.ri_cb) {
1174		if (target == current)
1175			store_runtime_instr_cb(&ri_cb);
1176		else
1177			ri_cb = *target->thread.ri_cb;
1178	}
1179
1180	rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1181				&ri_cb, 0, sizeof(struct runtime_instr_cb));
1182	if (rc) {
1183		kfree(data);
1184		return -EFAULT;
1185	}
1186
1187	if (!is_ri_cb_valid(&ri_cb)) {
1188		kfree(data);
1189		return -EINVAL;
1190	}
1191	/*
1192	 * Override access key in any case, since user space should
1193	 * not be able to set it, nor should it care about it.
1194	 */
1195	ri_cb.key = PAGE_DEFAULT_KEY >> 4;
1196	preempt_disable();
1197	if (!target->thread.ri_cb)
1198		target->thread.ri_cb = data;
1199	*target->thread.ri_cb = ri_cb;
1200	if (target == current)
1201		load_runtime_instr_cb(target->thread.ri_cb);
1202	preempt_enable();
1203
1204	return 0;
1205}
1206
1207static const struct user_regset s390_regsets[] = {
1208	{
1209		.core_note_type = NT_PRSTATUS,
1210		.n = sizeof(s390_regs) / sizeof(long),
1211		.size = sizeof(long),
1212		.align = sizeof(long),
1213		.regset_get = s390_regs_get,
1214		.set = s390_regs_set,
1215	},
1216	{
1217		.core_note_type = NT_PRFPREG,
1218		.n = sizeof(s390_fp_regs) / sizeof(long),
1219		.size = sizeof(long),
1220		.align = sizeof(long),
1221		.regset_get = s390_fpregs_get,
1222		.set = s390_fpregs_set,
1223	},
1224	{
1225		.core_note_type = NT_S390_SYSTEM_CALL,
1226		.n = 1,
1227		.size = sizeof(unsigned int),
1228		.align = sizeof(unsigned int),
1229		.regset_get = s390_system_call_get,
1230		.set = s390_system_call_set,
1231	},
1232	{
1233		.core_note_type = NT_S390_LAST_BREAK,
1234		.n = 1,
1235		.size = sizeof(long),
1236		.align = sizeof(long),
1237		.regset_get = s390_last_break_get,
1238		.set = s390_last_break_set,
1239	},
1240	{
1241		.core_note_type = NT_S390_TDB,
1242		.n = 1,
1243		.size = 256,
1244		.align = 1,
1245		.regset_get = s390_tdb_get,
1246		.set = s390_tdb_set,
1247	},
1248	{
1249		.core_note_type = NT_S390_VXRS_LOW,
1250		.n = __NUM_VXRS_LOW,
1251		.size = sizeof(__u64),
1252		.align = sizeof(__u64),
1253		.regset_get = s390_vxrs_low_get,
1254		.set = s390_vxrs_low_set,
1255	},
1256	{
1257		.core_note_type = NT_S390_VXRS_HIGH,
1258		.n = __NUM_VXRS_HIGH,
1259		.size = sizeof(__vector128),
1260		.align = sizeof(__vector128),
1261		.regset_get = s390_vxrs_high_get,
1262		.set = s390_vxrs_high_set,
1263	},
1264	{
1265		.core_note_type = NT_S390_GS_CB,
1266		.n = sizeof(struct gs_cb) / sizeof(__u64),
1267		.size = sizeof(__u64),
1268		.align = sizeof(__u64),
1269		.regset_get = s390_gs_cb_get,
1270		.set = s390_gs_cb_set,
1271	},
1272	{
1273		.core_note_type = NT_S390_GS_BC,
1274		.n = sizeof(struct gs_cb) / sizeof(__u64),
1275		.size = sizeof(__u64),
1276		.align = sizeof(__u64),
1277		.regset_get = s390_gs_bc_get,
1278		.set = s390_gs_bc_set,
1279	},
1280	{
1281		.core_note_type = NT_S390_RI_CB,
1282		.n = sizeof(struct runtime_instr_cb) / sizeof(__u64),
1283		.size = sizeof(__u64),
1284		.align = sizeof(__u64),
1285		.regset_get = s390_runtime_instr_get,
1286		.set = s390_runtime_instr_set,
1287	},
1288};
1289
1290static const struct user_regset_view user_s390_view = {
1291	.name = "s390x",
1292	.e_machine = EM_S390,
1293	.regsets = s390_regsets,
1294	.n = ARRAY_SIZE(s390_regsets)
1295};
1296
1297#ifdef CONFIG_COMPAT
1298static int s390_compat_regs_get(struct task_struct *target,
1299				const struct user_regset *regset,
1300				struct membuf to)
 
1301{
1302	unsigned n;
1303
1304	if (target == current)
1305		save_access_regs(target->thread.acrs);
1306
1307	for (n = 0; n < sizeof(s390_compat_regs); n += sizeof(compat_ulong_t))
1308		membuf_store(&to, __peek_user_compat(target, n));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1309	return 0;
1310}
1311
1312static int s390_compat_regs_set(struct task_struct *target,
1313				const struct user_regset *regset,
1314				unsigned int pos, unsigned int count,
1315				const void *kbuf, const void __user *ubuf)
1316{
1317	int rc = 0;
1318
1319	if (target == current)
1320		save_access_regs(target->thread.acrs);
1321
1322	if (kbuf) {
1323		const compat_ulong_t *k = kbuf;
1324		while (count > 0 && !rc) {
1325			rc = __poke_user_compat(target, pos, *k++);
1326			count -= sizeof(*k);
1327			pos += sizeof(*k);
1328		}
1329	} else {
1330		const compat_ulong_t  __user *u = ubuf;
1331		while (count > 0 && !rc) {
1332			compat_ulong_t word;
1333			rc = __get_user(word, u++);
1334			if (rc)
1335				break;
1336			rc = __poke_user_compat(target, pos, word);
1337			count -= sizeof(*u);
1338			pos += sizeof(*u);
1339		}
1340	}
1341
1342	if (rc == 0 && target == current)
1343		restore_access_regs(target->thread.acrs);
1344
1345	return rc;
1346}
1347
1348static int s390_compat_regs_high_get(struct task_struct *target,
1349				     const struct user_regset *regset,
1350				     struct membuf to)
 
1351{
1352	compat_ulong_t *gprs_high;
1353	int i;
1354
1355	gprs_high = (compat_ulong_t *)task_pt_regs(target)->gprs;
1356	for (i = 0; i < NUM_GPRS; i++, gprs_high += 2)
1357		membuf_store(&to, *gprs_high);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1358	return 0;
1359}
1360
1361static int s390_compat_regs_high_set(struct task_struct *target,
1362				     const struct user_regset *regset,
1363				     unsigned int pos, unsigned int count,
1364				     const void *kbuf, const void __user *ubuf)
1365{
1366	compat_ulong_t *gprs_high;
1367	int rc = 0;
1368
1369	gprs_high = (compat_ulong_t *)
1370		&task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1371	if (kbuf) {
1372		const compat_ulong_t *k = kbuf;
1373		while (count > 0) {
1374			*gprs_high = *k++;
1375			*gprs_high += 2;
1376			count -= sizeof(*k);
1377		}
1378	} else {
1379		const compat_ulong_t  __user *u = ubuf;
1380		while (count > 0 && !rc) {
1381			unsigned long word;
1382			rc = __get_user(word, u++);
1383			if (rc)
1384				break;
1385			*gprs_high = word;
1386			*gprs_high += 2;
1387			count -= sizeof(*u);
1388		}
1389	}
1390
1391	return rc;
1392}
1393
1394static int s390_compat_last_break_get(struct task_struct *target,
1395				      const struct user_regset *regset,
1396				      struct membuf to)
 
1397{
1398	compat_ulong_t last_break = target->thread.last_break;
1399
1400	return membuf_store(&to, (unsigned long)last_break);
 
 
 
 
 
 
 
 
 
 
 
1401}
1402
1403static int s390_compat_last_break_set(struct task_struct *target,
1404				      const struct user_regset *regset,
1405				      unsigned int pos, unsigned int count,
1406				      const void *kbuf, const void __user *ubuf)
1407{
1408	return 0;
1409}
1410
1411static const struct user_regset s390_compat_regsets[] = {
1412	{
1413		.core_note_type = NT_PRSTATUS,
1414		.n = sizeof(s390_compat_regs) / sizeof(compat_long_t),
1415		.size = sizeof(compat_long_t),
1416		.align = sizeof(compat_long_t),
1417		.regset_get = s390_compat_regs_get,
1418		.set = s390_compat_regs_set,
1419	},
1420	{
1421		.core_note_type = NT_PRFPREG,
1422		.n = sizeof(s390_fp_regs) / sizeof(compat_long_t),
1423		.size = sizeof(compat_long_t),
1424		.align = sizeof(compat_long_t),
1425		.regset_get = s390_fpregs_get,
1426		.set = s390_fpregs_set,
1427	},
1428	{
1429		.core_note_type = NT_S390_SYSTEM_CALL,
1430		.n = 1,
1431		.size = sizeof(compat_uint_t),
1432		.align = sizeof(compat_uint_t),
1433		.regset_get = s390_system_call_get,
1434		.set = s390_system_call_set,
1435	},
1436	{
1437		.core_note_type = NT_S390_LAST_BREAK,
1438		.n = 1,
1439		.size = sizeof(long),
1440		.align = sizeof(long),
1441		.regset_get = s390_compat_last_break_get,
1442		.set = s390_compat_last_break_set,
1443	},
1444	{
1445		.core_note_type = NT_S390_TDB,
1446		.n = 1,
1447		.size = 256,
1448		.align = 1,
1449		.regset_get = s390_tdb_get,
1450		.set = s390_tdb_set,
1451	},
1452	{
1453		.core_note_type = NT_S390_VXRS_LOW,
1454		.n = __NUM_VXRS_LOW,
1455		.size = sizeof(__u64),
1456		.align = sizeof(__u64),
1457		.regset_get = s390_vxrs_low_get,
1458		.set = s390_vxrs_low_set,
1459	},
1460	{
1461		.core_note_type = NT_S390_VXRS_HIGH,
1462		.n = __NUM_VXRS_HIGH,
1463		.size = sizeof(__vector128),
1464		.align = sizeof(__vector128),
1465		.regset_get = s390_vxrs_high_get,
1466		.set = s390_vxrs_high_set,
1467	},
1468	{
1469		.core_note_type = NT_S390_HIGH_GPRS,
1470		.n = sizeof(s390_compat_regs_high) / sizeof(compat_long_t),
1471		.size = sizeof(compat_long_t),
1472		.align = sizeof(compat_long_t),
1473		.regset_get = s390_compat_regs_high_get,
1474		.set = s390_compat_regs_high_set,
1475	},
1476	{
1477		.core_note_type = NT_S390_GS_CB,
1478		.n = sizeof(struct gs_cb) / sizeof(__u64),
1479		.size = sizeof(__u64),
1480		.align = sizeof(__u64),
1481		.regset_get = s390_gs_cb_get,
1482		.set = s390_gs_cb_set,
1483	},
1484	{
1485		.core_note_type = NT_S390_GS_BC,
1486		.n = sizeof(struct gs_cb) / sizeof(__u64),
1487		.size = sizeof(__u64),
1488		.align = sizeof(__u64),
1489		.regset_get = s390_gs_bc_get,
1490		.set = s390_gs_bc_set,
1491	},
1492	{
1493		.core_note_type = NT_S390_RI_CB,
1494		.n = sizeof(struct runtime_instr_cb) / sizeof(__u64),
1495		.size = sizeof(__u64),
1496		.align = sizeof(__u64),
1497		.regset_get = s390_runtime_instr_get,
1498		.set = s390_runtime_instr_set,
1499	},
1500};
1501
1502static const struct user_regset_view user_s390_compat_view = {
1503	.name = "s390",
1504	.e_machine = EM_S390,
1505	.regsets = s390_compat_regsets,
1506	.n = ARRAY_SIZE(s390_compat_regsets)
1507};
1508#endif
1509
1510const struct user_regset_view *task_user_regset_view(struct task_struct *task)
1511{
1512#ifdef CONFIG_COMPAT
1513	if (test_tsk_thread_flag(task, TIF_31BIT))
1514		return &user_s390_compat_view;
1515#endif
1516	return &user_s390_view;
1517}
1518
1519static const char *gpr_names[NUM_GPRS] = {
1520	"r0", "r1",  "r2",  "r3",  "r4",  "r5",  "r6",  "r7",
1521	"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
1522};
1523
1524unsigned long regs_get_register(struct pt_regs *regs, unsigned int offset)
1525{
1526	if (offset >= NUM_GPRS)
1527		return 0;
1528	return regs->gprs[offset];
1529}
1530
1531int regs_query_register_offset(const char *name)
1532{
1533	unsigned long offset;
1534
1535	if (!name || *name != 'r')
1536		return -EINVAL;
1537	if (kstrtoul(name + 1, 10, &offset))
1538		return -EINVAL;
1539	if (offset >= NUM_GPRS)
1540		return -EINVAL;
1541	return offset;
1542}
1543
1544const char *regs_query_register_name(unsigned int offset)
1545{
1546	if (offset >= NUM_GPRS)
1547		return NULL;
1548	return gpr_names[offset];
1549}
1550
1551static int regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
1552{
1553	unsigned long ksp = kernel_stack_pointer(regs);
1554
1555	return (addr & ~(THREAD_SIZE - 1)) == (ksp & ~(THREAD_SIZE - 1));
1556}
1557
1558/**
1559 * regs_get_kernel_stack_nth() - get Nth entry of the stack
1560 * @regs:pt_regs which contains kernel stack pointer.
1561 * @n:stack entry number.
1562 *
1563 * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
1564 * is specifined by @regs. If the @n th entry is NOT in the kernel stack,
1565 * this returns 0.
1566 */
1567unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
1568{
1569	unsigned long addr;
1570
1571	addr = kernel_stack_pointer(regs) + n * sizeof(long);
1572	if (!regs_within_kernel_stack(regs, addr))
1573		return 0;
1574	return *(unsigned long *)addr;
1575}
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  Ptrace user space interface.
   4 *
   5 *    Copyright IBM Corp. 1999, 2010
   6 *    Author(s): Denis Joseph Barrow
   7 *               Martin Schwidefsky (schwidefsky@de.ibm.com)
   8 */
   9
 
  10#include <linux/kernel.h>
  11#include <linux/sched.h>
  12#include <linux/sched/task_stack.h>
  13#include <linux/mm.h>
  14#include <linux/smp.h>
  15#include <linux/errno.h>
  16#include <linux/ptrace.h>
  17#include <linux/user.h>
  18#include <linux/security.h>
  19#include <linux/audit.h>
  20#include <linux/signal.h>
  21#include <linux/elf.h>
  22#include <linux/regset.h>
  23#include <linux/tracehook.h>
  24#include <linux/seccomp.h>
  25#include <linux/compat.h>
  26#include <trace/syscall.h>
 
 
  27#include <asm/page.h>
  28#include <asm/pgtable.h>
  29#include <asm/pgalloc.h>
  30#include <linux/uaccess.h>
  31#include <asm/unistd.h>
  32#include <asm/switch_to.h>
  33#include <asm/runtime_instr.h>
  34#include <asm/facility.h>
 
  35
  36#include "entry.h"
  37
  38#ifdef CONFIG_COMPAT
  39#include "compat_ptrace.h"
  40#endif
  41
  42#define CREATE_TRACE_POINTS
  43#include <trace/events/syscalls.h>
  44
  45void update_cr_regs(struct task_struct *task)
  46{
  47	struct pt_regs *regs = task_pt_regs(task);
  48	struct thread_struct *thread = &task->thread;
  49	struct per_regs old, new;
  50	union ctlreg0 cr0_old, cr0_new;
  51	union ctlreg2 cr2_old, cr2_new;
  52	int cr0_changed, cr2_changed;
 
 
 
 
 
 
 
 
  53
  54	__ctl_store(cr0_old.val, 0, 0);
  55	__ctl_store(cr2_old.val, 2, 2);
  56	cr0_new = cr0_old;
  57	cr2_new = cr2_old;
  58	/* Take care of the enable/disable of transactional execution. */
  59	if (MACHINE_HAS_TE) {
  60		/* Set or clear transaction execution TXC bit 8. */
  61		cr0_new.tcx = 1;
  62		if (task->thread.per_flags & PER_FLAG_NO_TE)
  63			cr0_new.tcx = 0;
  64		/* Set or clear transaction execution TDC bits 62 and 63. */
  65		cr2_new.tdc = 0;
  66		if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND) {
  67			if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND_TEND)
  68				cr2_new.tdc = 1;
  69			else
  70				cr2_new.tdc = 2;
  71		}
  72	}
  73	/* Take care of enable/disable of guarded storage. */
  74	if (MACHINE_HAS_GS) {
  75		cr2_new.gse = 0;
  76		if (task->thread.gs_cb)
  77			cr2_new.gse = 1;
  78	}
  79	/* Load control register 0/2 iff changed */
  80	cr0_changed = cr0_new.val != cr0_old.val;
  81	cr2_changed = cr2_new.val != cr2_old.val;
  82	if (cr0_changed)
  83		__ctl_load(cr0_new.val, 0, 0);
  84	if (cr2_changed)
  85		__ctl_load(cr2_new.val, 2, 2);
  86	/* Copy user specified PER registers */
  87	new.control = thread->per_user.control;
  88	new.start = thread->per_user.start;
  89	new.end = thread->per_user.end;
  90
  91	/* merge TIF_SINGLE_STEP into user specified PER registers. */
  92	if (test_tsk_thread_flag(task, TIF_SINGLE_STEP) ||
  93	    test_tsk_thread_flag(task, TIF_UPROBE_SINGLESTEP)) {
  94		if (test_tsk_thread_flag(task, TIF_BLOCK_STEP))
  95			new.control |= PER_EVENT_BRANCH;
  96		else
  97			new.control |= PER_EVENT_IFETCH;
  98		new.control |= PER_CONTROL_SUSPENSION;
  99		new.control |= PER_EVENT_TRANSACTION_END;
 100		if (test_tsk_thread_flag(task, TIF_UPROBE_SINGLESTEP))
 101			new.control |= PER_EVENT_IFETCH;
 102		new.start = 0;
 103		new.end = -1UL;
 104	}
 105
 106	/* Take care of the PER enablement bit in the PSW. */
 107	if (!(new.control & PER_EVENT_MASK)) {
 108		regs->psw.mask &= ~PSW_MASK_PER;
 109		return;
 110	}
 111	regs->psw.mask |= PSW_MASK_PER;
 112	__ctl_store(old, 9, 11);
 113	if (memcmp(&new, &old, sizeof(struct per_regs)) != 0)
 114		__ctl_load(new, 9, 11);
 115}
 116
 117void user_enable_single_step(struct task_struct *task)
 118{
 119	clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
 120	set_tsk_thread_flag(task, TIF_SINGLE_STEP);
 121}
 122
 123void user_disable_single_step(struct task_struct *task)
 124{
 125	clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
 126	clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
 127}
 128
 129void user_enable_block_step(struct task_struct *task)
 130{
 131	set_tsk_thread_flag(task, TIF_SINGLE_STEP);
 132	set_tsk_thread_flag(task, TIF_BLOCK_STEP);
 133}
 134
 135/*
 136 * Called by kernel/ptrace.c when detaching..
 137 *
 138 * Clear all debugging related fields.
 139 */
 140void ptrace_disable(struct task_struct *task)
 141{
 142	memset(&task->thread.per_user, 0, sizeof(task->thread.per_user));
 143	memset(&task->thread.per_event, 0, sizeof(task->thread.per_event));
 144	clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
 145	clear_pt_regs_flag(task_pt_regs(task), PIF_PER_TRAP);
 146	task->thread.per_flags = 0;
 147}
 148
 149#define __ADDR_MASK 7
 150
 151static inline unsigned long __peek_user_per(struct task_struct *child,
 152					    addr_t addr)
 153{
 154	struct per_struct_kernel *dummy = NULL;
 155
 156	if (addr == (addr_t) &dummy->cr9)
 157		/* Control bits of the active per set. */
 158		return test_thread_flag(TIF_SINGLE_STEP) ?
 159			PER_EVENT_IFETCH : child->thread.per_user.control;
 160	else if (addr == (addr_t) &dummy->cr10)
 161		/* Start address of the active per set. */
 162		return test_thread_flag(TIF_SINGLE_STEP) ?
 163			0 : child->thread.per_user.start;
 164	else if (addr == (addr_t) &dummy->cr11)
 165		/* End address of the active per set. */
 166		return test_thread_flag(TIF_SINGLE_STEP) ?
 167			-1UL : child->thread.per_user.end;
 168	else if (addr == (addr_t) &dummy->bits)
 169		/* Single-step bit. */
 170		return test_thread_flag(TIF_SINGLE_STEP) ?
 171			(1UL << (BITS_PER_LONG - 1)) : 0;
 172	else if (addr == (addr_t) &dummy->starting_addr)
 173		/* Start address of the user specified per set. */
 174		return child->thread.per_user.start;
 175	else if (addr == (addr_t) &dummy->ending_addr)
 176		/* End address of the user specified per set. */
 177		return child->thread.per_user.end;
 178	else if (addr == (addr_t) &dummy->perc_atmid)
 179		/* PER code, ATMID and AI of the last PER trap */
 180		return (unsigned long)
 181			child->thread.per_event.cause << (BITS_PER_LONG - 16);
 182	else if (addr == (addr_t) &dummy->address)
 183		/* Address of the last PER trap */
 184		return child->thread.per_event.address;
 185	else if (addr == (addr_t) &dummy->access_id)
 186		/* Access id of the last PER trap */
 187		return (unsigned long)
 188			child->thread.per_event.paid << (BITS_PER_LONG - 8);
 189	return 0;
 190}
 191
 192/*
 193 * Read the word at offset addr from the user area of a process. The
 194 * trouble here is that the information is littered over different
 195 * locations. The process registers are found on the kernel stack,
 196 * the floating point stuff and the trace settings are stored in
 197 * the task structure. In addition the different structures in
 198 * struct user contain pad bytes that should be read as zeroes.
 199 * Lovely...
 200 */
 201static unsigned long __peek_user(struct task_struct *child, addr_t addr)
 202{
 203	struct user *dummy = NULL;
 204	addr_t offset, tmp;
 205
 206	if (addr < (addr_t) &dummy->regs.acrs) {
 207		/*
 208		 * psw and gprs are stored on the stack
 209		 */
 210		tmp = *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr);
 211		if (addr == (addr_t) &dummy->regs.psw.mask) {
 212			/* Return a clean psw mask. */
 213			tmp &= PSW_MASK_USER | PSW_MASK_RI;
 214			tmp |= PSW_USER_BITS;
 215		}
 216
 217	} else if (addr < (addr_t) &dummy->regs.orig_gpr2) {
 218		/*
 219		 * access registers are stored in the thread structure
 220		 */
 221		offset = addr - (addr_t) &dummy->regs.acrs;
 222		/*
 223		 * Very special case: old & broken 64 bit gdb reading
 224		 * from acrs[15]. Result is a 64 bit value. Read the
 225		 * 32 bit acrs[15] value and shift it by 32. Sick...
 226		 */
 227		if (addr == (addr_t) &dummy->regs.acrs[15])
 228			tmp = ((unsigned long) child->thread.acrs[15]) << 32;
 229		else
 230			tmp = *(addr_t *)((addr_t) &child->thread.acrs + offset);
 231
 232	} else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
 233		/*
 234		 * orig_gpr2 is stored on the kernel stack
 235		 */
 236		tmp = (addr_t) task_pt_regs(child)->orig_gpr2;
 237
 238	} else if (addr < (addr_t) &dummy->regs.fp_regs) {
 239		/*
 240		 * prevent reads of padding hole between
 241		 * orig_gpr2 and fp_regs on s390.
 242		 */
 243		tmp = 0;
 244
 245	} else if (addr == (addr_t) &dummy->regs.fp_regs.fpc) {
 246		/*
 247		 * floating point control reg. is in the thread structure
 248		 */
 249		tmp = child->thread.fpu.fpc;
 250		tmp <<= BITS_PER_LONG - 32;
 251
 252	} else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
 253		/*
 254		 * floating point regs. are either in child->thread.fpu
 255		 * or the child->thread.fpu.vxrs array
 256		 */
 257		offset = addr - (addr_t) &dummy->regs.fp_regs.fprs;
 258		if (MACHINE_HAS_VX)
 259			tmp = *(addr_t *)
 260			       ((addr_t) child->thread.fpu.vxrs + 2*offset);
 261		else
 262			tmp = *(addr_t *)
 263			       ((addr_t) child->thread.fpu.fprs + offset);
 264
 265	} else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
 266		/*
 267		 * Handle access to the per_info structure.
 268		 */
 269		addr -= (addr_t) &dummy->regs.per_info;
 270		tmp = __peek_user_per(child, addr);
 271
 272	} else
 273		tmp = 0;
 274
 275	return tmp;
 276}
 277
 278static int
 279peek_user(struct task_struct *child, addr_t addr, addr_t data)
 280{
 281	addr_t tmp, mask;
 282
 283	/*
 284	 * Stupid gdb peeks/pokes the access registers in 64 bit with
 285	 * an alignment of 4. Programmers from hell...
 286	 */
 287	mask = __ADDR_MASK;
 288	if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
 289	    addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
 290		mask = 3;
 291	if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
 292		return -EIO;
 293
 294	tmp = __peek_user(child, addr);
 295	return put_user(tmp, (addr_t __user *) data);
 296}
 297
 298static inline void __poke_user_per(struct task_struct *child,
 299				   addr_t addr, addr_t data)
 300{
 301	struct per_struct_kernel *dummy = NULL;
 302
 303	/*
 304	 * There are only three fields in the per_info struct that the
 305	 * debugger user can write to.
 306	 * 1) cr9: the debugger wants to set a new PER event mask
 307	 * 2) starting_addr: the debugger wants to set a new starting
 308	 *    address to use with the PER event mask.
 309	 * 3) ending_addr: the debugger wants to set a new ending
 310	 *    address to use with the PER event mask.
 311	 * The user specified PER event mask and the start and end
 312	 * addresses are used only if single stepping is not in effect.
 313	 * Writes to any other field in per_info are ignored.
 314	 */
 315	if (addr == (addr_t) &dummy->cr9)
 316		/* PER event mask of the user specified per set. */
 317		child->thread.per_user.control =
 318			data & (PER_EVENT_MASK | PER_CONTROL_MASK);
 319	else if (addr == (addr_t) &dummy->starting_addr)
 320		/* Starting address of the user specified per set. */
 321		child->thread.per_user.start = data;
 322	else if (addr == (addr_t) &dummy->ending_addr)
 323		/* Ending address of the user specified per set. */
 324		child->thread.per_user.end = data;
 325}
 326
 327/*
 328 * Write a word to the user area of a process at location addr. This
 329 * operation does have an additional problem compared to peek_user.
 330 * Stores to the program status word and on the floating point
 331 * control register needs to get checked for validity.
 332 */
 333static int __poke_user(struct task_struct *child, addr_t addr, addr_t data)
 334{
 335	struct user *dummy = NULL;
 336	addr_t offset;
 337
 338	if (addr < (addr_t) &dummy->regs.acrs) {
 
 
 339		/*
 340		 * psw and gprs are stored on the stack
 341		 */
 342		if (addr == (addr_t) &dummy->regs.psw.mask) {
 343			unsigned long mask = PSW_MASK_USER;
 344
 345			mask |= is_ri_task(child) ? PSW_MASK_RI : 0;
 346			if ((data ^ PSW_USER_BITS) & ~mask)
 347				/* Invalid psw mask. */
 348				return -EINVAL;
 349			if ((data & PSW_MASK_ASC) == PSW_ASC_HOME)
 350				/* Invalid address-space-control bits */
 351				return -EINVAL;
 352			if ((data & PSW_MASK_EA) && !(data & PSW_MASK_BA))
 353				/* Invalid addressing mode bits */
 354				return -EINVAL;
 355		}
 356		*(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr) = data;
 357
 358	} else if (addr < (addr_t) (&dummy->regs.orig_gpr2)) {
 
 
 
 
 
 
 
 359		/*
 360		 * access registers are stored in the thread structure
 361		 */
 362		offset = addr - (addr_t) &dummy->regs.acrs;
 363		/*
 364		 * Very special case: old & broken 64 bit gdb writing
 365		 * to acrs[15] with a 64 bit value. Ignore the lower
 366		 * half of the value and write the upper 32 bit to
 367		 * acrs[15]. Sick...
 368		 */
 369		if (addr == (addr_t) &dummy->regs.acrs[15])
 370			child->thread.acrs[15] = (unsigned int) (data >> 32);
 371		else
 372			*(addr_t *)((addr_t) &child->thread.acrs + offset) = data;
 373
 374	} else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
 375		/*
 376		 * orig_gpr2 is stored on the kernel stack
 377		 */
 378		task_pt_regs(child)->orig_gpr2 = data;
 379
 380	} else if (addr < (addr_t) &dummy->regs.fp_regs) {
 381		/*
 382		 * prevent writes of padding hole between
 383		 * orig_gpr2 and fp_regs on s390.
 384		 */
 385		return 0;
 386
 387	} else if (addr == (addr_t) &dummy->regs.fp_regs.fpc) {
 388		/*
 389		 * floating point control reg. is in the thread structure
 390		 */
 391		if ((unsigned int) data != 0 ||
 392		    test_fp_ctl(data >> (BITS_PER_LONG - 32)))
 393			return -EINVAL;
 394		child->thread.fpu.fpc = data >> (BITS_PER_LONG - 32);
 395
 396	} else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
 397		/*
 398		 * floating point regs. are either in child->thread.fpu
 399		 * or the child->thread.fpu.vxrs array
 400		 */
 401		offset = addr - (addr_t) &dummy->regs.fp_regs.fprs;
 402		if (MACHINE_HAS_VX)
 403			*(addr_t *)((addr_t)
 404				child->thread.fpu.vxrs + 2*offset) = data;
 405		else
 406			*(addr_t *)((addr_t)
 407				child->thread.fpu.fprs + offset) = data;
 408
 409	} else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
 410		/*
 411		 * Handle access to the per_info structure.
 412		 */
 413		addr -= (addr_t) &dummy->regs.per_info;
 414		__poke_user_per(child, addr, data);
 415
 416	}
 417
 418	return 0;
 419}
 420
 421static int poke_user(struct task_struct *child, addr_t addr, addr_t data)
 422{
 423	addr_t mask;
 424
 425	/*
 426	 * Stupid gdb peeks/pokes the access registers in 64 bit with
 427	 * an alignment of 4. Programmers from hell indeed...
 428	 */
 429	mask = __ADDR_MASK;
 430	if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
 431	    addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
 432		mask = 3;
 433	if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
 434		return -EIO;
 435
 436	return __poke_user(child, addr, data);
 437}
 438
 439long arch_ptrace(struct task_struct *child, long request,
 440		 unsigned long addr, unsigned long data)
 441{
 442	ptrace_area parea; 
 443	int copied, ret;
 444
 445	switch (request) {
 446	case PTRACE_PEEKUSR:
 447		/* read the word at location addr in the USER area. */
 448		return peek_user(child, addr, data);
 449
 450	case PTRACE_POKEUSR:
 451		/* write the word at location addr in the USER area */
 452		return poke_user(child, addr, data);
 453
 454	case PTRACE_PEEKUSR_AREA:
 455	case PTRACE_POKEUSR_AREA:
 456		if (copy_from_user(&parea, (void __force __user *) addr,
 457							sizeof(parea)))
 458			return -EFAULT;
 459		addr = parea.kernel_addr;
 460		data = parea.process_addr;
 461		copied = 0;
 462		while (copied < parea.len) {
 463			if (request == PTRACE_PEEKUSR_AREA)
 464				ret = peek_user(child, addr, data);
 465			else {
 466				addr_t utmp;
 467				if (get_user(utmp,
 468					     (addr_t __force __user *) data))
 469					return -EFAULT;
 470				ret = poke_user(child, addr, utmp);
 471			}
 472			if (ret)
 473				return ret;
 474			addr += sizeof(unsigned long);
 475			data += sizeof(unsigned long);
 476			copied += sizeof(unsigned long);
 477		}
 478		return 0;
 479	case PTRACE_GET_LAST_BREAK:
 480		put_user(child->thread.last_break,
 481			 (unsigned long __user *) data);
 482		return 0;
 483	case PTRACE_ENABLE_TE:
 484		if (!MACHINE_HAS_TE)
 485			return -EIO;
 486		child->thread.per_flags &= ~PER_FLAG_NO_TE;
 487		return 0;
 488	case PTRACE_DISABLE_TE:
 489		if (!MACHINE_HAS_TE)
 490			return -EIO;
 491		child->thread.per_flags |= PER_FLAG_NO_TE;
 492		child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
 493		return 0;
 494	case PTRACE_TE_ABORT_RAND:
 495		if (!MACHINE_HAS_TE || (child->thread.per_flags & PER_FLAG_NO_TE))
 496			return -EIO;
 497		switch (data) {
 498		case 0UL:
 499			child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
 500			break;
 501		case 1UL:
 502			child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
 503			child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND_TEND;
 504			break;
 505		case 2UL:
 506			child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
 507			child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND_TEND;
 508			break;
 509		default:
 510			return -EINVAL;
 511		}
 512		return 0;
 513	default:
 514		return ptrace_request(child, request, addr, data);
 515	}
 516}
 517
 518#ifdef CONFIG_COMPAT
 519/*
 520 * Now the fun part starts... a 31 bit program running in the
 521 * 31 bit emulation tracing another program. PTRACE_PEEKTEXT,
 522 * PTRACE_PEEKDATA, PTRACE_POKETEXT and PTRACE_POKEDATA are easy
 523 * to handle, the difference to the 64 bit versions of the requests
 524 * is that the access is done in multiples of 4 byte instead of
 525 * 8 bytes (sizeof(unsigned long) on 31/64 bit).
 526 * The ugly part are PTRACE_PEEKUSR, PTRACE_PEEKUSR_AREA,
 527 * PTRACE_POKEUSR and PTRACE_POKEUSR_AREA. If the traced program
 528 * is a 31 bit program too, the content of struct user can be
 529 * emulated. A 31 bit program peeking into the struct user of
 530 * a 64 bit program is a no-no.
 531 */
 532
 533/*
 534 * Same as peek_user_per but for a 31 bit program.
 535 */
 536static inline __u32 __peek_user_per_compat(struct task_struct *child,
 537					   addr_t addr)
 538{
 539	struct compat_per_struct_kernel *dummy32 = NULL;
 540
 541	if (addr == (addr_t) &dummy32->cr9)
 542		/* Control bits of the active per set. */
 543		return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
 544			PER_EVENT_IFETCH : child->thread.per_user.control;
 545	else if (addr == (addr_t) &dummy32->cr10)
 546		/* Start address of the active per set. */
 547		return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
 548			0 : child->thread.per_user.start;
 549	else if (addr == (addr_t) &dummy32->cr11)
 550		/* End address of the active per set. */
 551		return test_thread_flag(TIF_SINGLE_STEP) ?
 552			PSW32_ADDR_INSN : child->thread.per_user.end;
 553	else if (addr == (addr_t) &dummy32->bits)
 554		/* Single-step bit. */
 555		return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
 556			0x80000000 : 0;
 557	else if (addr == (addr_t) &dummy32->starting_addr)
 558		/* Start address of the user specified per set. */
 559		return (__u32) child->thread.per_user.start;
 560	else if (addr == (addr_t) &dummy32->ending_addr)
 561		/* End address of the user specified per set. */
 562		return (__u32) child->thread.per_user.end;
 563	else if (addr == (addr_t) &dummy32->perc_atmid)
 564		/* PER code, ATMID and AI of the last PER trap */
 565		return (__u32) child->thread.per_event.cause << 16;
 566	else if (addr == (addr_t) &dummy32->address)
 567		/* Address of the last PER trap */
 568		return (__u32) child->thread.per_event.address;
 569	else if (addr == (addr_t) &dummy32->access_id)
 570		/* Access id of the last PER trap */
 571		return (__u32) child->thread.per_event.paid << 24;
 572	return 0;
 573}
 574
 575/*
 576 * Same as peek_user but for a 31 bit program.
 577 */
 578static u32 __peek_user_compat(struct task_struct *child, addr_t addr)
 579{
 580	struct compat_user *dummy32 = NULL;
 581	addr_t offset;
 582	__u32 tmp;
 583
 584	if (addr < (addr_t) &dummy32->regs.acrs) {
 585		struct pt_regs *regs = task_pt_regs(child);
 586		/*
 587		 * psw and gprs are stored on the stack
 588		 */
 589		if (addr == (addr_t) &dummy32->regs.psw.mask) {
 590			/* Fake a 31 bit psw mask. */
 591			tmp = (__u32)(regs->psw.mask >> 32);
 592			tmp &= PSW32_MASK_USER | PSW32_MASK_RI;
 593			tmp |= PSW32_USER_BITS;
 594		} else if (addr == (addr_t) &dummy32->regs.psw.addr) {
 595			/* Fake a 31 bit psw address. */
 596			tmp = (__u32) regs->psw.addr |
 597				(__u32)(regs->psw.mask & PSW_MASK_BA);
 598		} else {
 599			/* gpr 0-15 */
 600			tmp = *(__u32 *)((addr_t) &regs->psw + addr*2 + 4);
 601		}
 602	} else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
 603		/*
 604		 * access registers are stored in the thread structure
 605		 */
 606		offset = addr - (addr_t) &dummy32->regs.acrs;
 607		tmp = *(__u32*)((addr_t) &child->thread.acrs + offset);
 608
 609	} else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
 610		/*
 611		 * orig_gpr2 is stored on the kernel stack
 612		 */
 613		tmp = *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4);
 614
 615	} else if (addr < (addr_t) &dummy32->regs.fp_regs) {
 616		/*
 617		 * prevent reads of padding hole between
 618		 * orig_gpr2 and fp_regs on s390.
 619		 */
 620		tmp = 0;
 621
 622	} else if (addr == (addr_t) &dummy32->regs.fp_regs.fpc) {
 623		/*
 624		 * floating point control reg. is in the thread structure
 625		 */
 626		tmp = child->thread.fpu.fpc;
 627
 628	} else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
 629		/*
 630		 * floating point regs. are either in child->thread.fpu
 631		 * or the child->thread.fpu.vxrs array
 632		 */
 633		offset = addr - (addr_t) &dummy32->regs.fp_regs.fprs;
 634		if (MACHINE_HAS_VX)
 635			tmp = *(__u32 *)
 636			       ((addr_t) child->thread.fpu.vxrs + 2*offset);
 637		else
 638			tmp = *(__u32 *)
 639			       ((addr_t) child->thread.fpu.fprs + offset);
 640
 641	} else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
 642		/*
 643		 * Handle access to the per_info structure.
 644		 */
 645		addr -= (addr_t) &dummy32->regs.per_info;
 646		tmp = __peek_user_per_compat(child, addr);
 647
 648	} else
 649		tmp = 0;
 650
 651	return tmp;
 652}
 653
 654static int peek_user_compat(struct task_struct *child,
 655			    addr_t addr, addr_t data)
 656{
 657	__u32 tmp;
 658
 659	if (!is_compat_task() || (addr & 3) || addr > sizeof(struct user) - 3)
 660		return -EIO;
 661
 662	tmp = __peek_user_compat(child, addr);
 663	return put_user(tmp, (__u32 __user *) data);
 664}
 665
 666/*
 667 * Same as poke_user_per but for a 31 bit program.
 668 */
 669static inline void __poke_user_per_compat(struct task_struct *child,
 670					  addr_t addr, __u32 data)
 671{
 672	struct compat_per_struct_kernel *dummy32 = NULL;
 673
 674	if (addr == (addr_t) &dummy32->cr9)
 675		/* PER event mask of the user specified per set. */
 676		child->thread.per_user.control =
 677			data & (PER_EVENT_MASK | PER_CONTROL_MASK);
 678	else if (addr == (addr_t) &dummy32->starting_addr)
 679		/* Starting address of the user specified per set. */
 680		child->thread.per_user.start = data;
 681	else if (addr == (addr_t) &dummy32->ending_addr)
 682		/* Ending address of the user specified per set. */
 683		child->thread.per_user.end = data;
 684}
 685
 686/*
 687 * Same as poke_user but for a 31 bit program.
 688 */
 689static int __poke_user_compat(struct task_struct *child,
 690			      addr_t addr, addr_t data)
 691{
 692	struct compat_user *dummy32 = NULL;
 693	__u32 tmp = (__u32) data;
 694	addr_t offset;
 695
 696	if (addr < (addr_t) &dummy32->regs.acrs) {
 697		struct pt_regs *regs = task_pt_regs(child);
 698		/*
 699		 * psw, gprs, acrs and orig_gpr2 are stored on the stack
 700		 */
 701		if (addr == (addr_t) &dummy32->regs.psw.mask) {
 702			__u32 mask = PSW32_MASK_USER;
 703
 704			mask |= is_ri_task(child) ? PSW32_MASK_RI : 0;
 705			/* Build a 64 bit psw mask from 31 bit mask. */
 706			if ((tmp ^ PSW32_USER_BITS) & ~mask)
 707				/* Invalid psw mask. */
 708				return -EINVAL;
 709			if ((data & PSW32_MASK_ASC) == PSW32_ASC_HOME)
 710				/* Invalid address-space-control bits */
 711				return -EINVAL;
 712			regs->psw.mask = (regs->psw.mask & ~PSW_MASK_USER) |
 713				(regs->psw.mask & PSW_MASK_BA) |
 714				(__u64)(tmp & mask) << 32;
 715		} else if (addr == (addr_t) &dummy32->regs.psw.addr) {
 716			/* Build a 64 bit psw address from 31 bit address. */
 717			regs->psw.addr = (__u64) tmp & PSW32_ADDR_INSN;
 718			/* Transfer 31 bit amode bit to psw mask. */
 719			regs->psw.mask = (regs->psw.mask & ~PSW_MASK_BA) |
 720				(__u64)(tmp & PSW32_ADDR_AMODE);
 721		} else {
 
 
 
 
 
 
 722			/* gpr 0-15 */
 723			*(__u32*)((addr_t) &regs->psw + addr*2 + 4) = tmp;
 724		}
 725	} else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
 726		/*
 727		 * access registers are stored in the thread structure
 728		 */
 729		offset = addr - (addr_t) &dummy32->regs.acrs;
 730		*(__u32*)((addr_t) &child->thread.acrs + offset) = tmp;
 731
 732	} else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
 733		/*
 734		 * orig_gpr2 is stored on the kernel stack
 735		 */
 736		*(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4) = tmp;
 737
 738	} else if (addr < (addr_t) &dummy32->regs.fp_regs) {
 739		/*
 740		 * prevent writess of padding hole between
 741		 * orig_gpr2 and fp_regs on s390.
 742		 */
 743		return 0;
 744
 745	} else if (addr == (addr_t) &dummy32->regs.fp_regs.fpc) {
 746		/*
 747		 * floating point control reg. is in the thread structure
 748		 */
 749		if (test_fp_ctl(tmp))
 750			return -EINVAL;
 751		child->thread.fpu.fpc = data;
 752
 753	} else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
 754		/*
 755		 * floating point regs. are either in child->thread.fpu
 756		 * or the child->thread.fpu.vxrs array
 757		 */
 758		offset = addr - (addr_t) &dummy32->regs.fp_regs.fprs;
 759		if (MACHINE_HAS_VX)
 760			*(__u32 *)((addr_t)
 761				child->thread.fpu.vxrs + 2*offset) = tmp;
 762		else
 763			*(__u32 *)((addr_t)
 764				child->thread.fpu.fprs + offset) = tmp;
 765
 766	} else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
 767		/*
 768		 * Handle access to the per_info structure.
 769		 */
 770		addr -= (addr_t) &dummy32->regs.per_info;
 771		__poke_user_per_compat(child, addr, data);
 772	}
 773
 774	return 0;
 775}
 776
 777static int poke_user_compat(struct task_struct *child,
 778			    addr_t addr, addr_t data)
 779{
 780	if (!is_compat_task() || (addr & 3) ||
 781	    addr > sizeof(struct compat_user) - 3)
 782		return -EIO;
 783
 784	return __poke_user_compat(child, addr, data);
 785}
 786
 787long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
 788			compat_ulong_t caddr, compat_ulong_t cdata)
 789{
 790	unsigned long addr = caddr;
 791	unsigned long data = cdata;
 792	compat_ptrace_area parea;
 793	int copied, ret;
 794
 795	switch (request) {
 796	case PTRACE_PEEKUSR:
 797		/* read the word at location addr in the USER area. */
 798		return peek_user_compat(child, addr, data);
 799
 800	case PTRACE_POKEUSR:
 801		/* write the word at location addr in the USER area */
 802		return poke_user_compat(child, addr, data);
 803
 804	case PTRACE_PEEKUSR_AREA:
 805	case PTRACE_POKEUSR_AREA:
 806		if (copy_from_user(&parea, (void __force __user *) addr,
 807							sizeof(parea)))
 808			return -EFAULT;
 809		addr = parea.kernel_addr;
 810		data = parea.process_addr;
 811		copied = 0;
 812		while (copied < parea.len) {
 813			if (request == PTRACE_PEEKUSR_AREA)
 814				ret = peek_user_compat(child, addr, data);
 815			else {
 816				__u32 utmp;
 817				if (get_user(utmp,
 818					     (__u32 __force __user *) data))
 819					return -EFAULT;
 820				ret = poke_user_compat(child, addr, utmp);
 821			}
 822			if (ret)
 823				return ret;
 824			addr += sizeof(unsigned int);
 825			data += sizeof(unsigned int);
 826			copied += sizeof(unsigned int);
 827		}
 828		return 0;
 829	case PTRACE_GET_LAST_BREAK:
 830		put_user(child->thread.last_break,
 831			 (unsigned int __user *) data);
 832		return 0;
 833	}
 834	return compat_ptrace_request(child, request, addr, data);
 835}
 836#endif
 837
 838asmlinkage long do_syscall_trace_enter(struct pt_regs *regs)
 839{
 840	unsigned long mask = -1UL;
 841
 842	/*
 843	 * The sysc_tracesys code in entry.S stored the system
 844	 * call number to gprs[2].
 845	 */
 846	if (test_thread_flag(TIF_SYSCALL_TRACE) &&
 847	    (tracehook_report_syscall_entry(regs) ||
 848	     regs->gprs[2] >= NR_syscalls)) {
 849		/*
 850		 * Tracing decided this syscall should not happen or the
 851		 * debugger stored an invalid system call number. Skip
 852		 * the system call and the system call restart handling.
 853		 */
 854		clear_pt_regs_flag(regs, PIF_SYSCALL);
 855		return -1;
 856	}
 857
 858	/* Do the secure computing check after ptrace. */
 859	if (secure_computing(NULL)) {
 860		/* seccomp failures shouldn't expose any additional code. */
 861		return -1;
 862	}
 863
 864	if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
 865		trace_sys_enter(regs, regs->gprs[2]);
 866
 867	if (is_compat_task())
 868		mask = 0xffffffff;
 869
 870	audit_syscall_entry(regs->gprs[2], regs->orig_gpr2 & mask,
 871			    regs->gprs[3] &mask, regs->gprs[4] &mask,
 872			    regs->gprs[5] &mask);
 873
 874	return regs->gprs[2];
 875}
 876
 877asmlinkage void do_syscall_trace_exit(struct pt_regs *regs)
 878{
 879	audit_syscall_exit(regs);
 880
 881	if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
 882		trace_sys_exit(regs, regs->gprs[2]);
 883
 884	if (test_thread_flag(TIF_SYSCALL_TRACE))
 885		tracehook_report_syscall_exit(regs, 0);
 886}
 887
 888/*
 889 * user_regset definitions.
 890 */
 891
 892static int s390_regs_get(struct task_struct *target,
 893			 const struct user_regset *regset,
 894			 unsigned int pos, unsigned int count,
 895			 void *kbuf, void __user *ubuf)
 896{
 
 897	if (target == current)
 898		save_access_regs(target->thread.acrs);
 899
 900	if (kbuf) {
 901		unsigned long *k = kbuf;
 902		while (count > 0) {
 903			*k++ = __peek_user(target, pos);
 904			count -= sizeof(*k);
 905			pos += sizeof(*k);
 906		}
 907	} else {
 908		unsigned long __user *u = ubuf;
 909		while (count > 0) {
 910			if (__put_user(__peek_user(target, pos), u++))
 911				return -EFAULT;
 912			count -= sizeof(*u);
 913			pos += sizeof(*u);
 914		}
 915	}
 916	return 0;
 917}
 918
 919static int s390_regs_set(struct task_struct *target,
 920			 const struct user_regset *regset,
 921			 unsigned int pos, unsigned int count,
 922			 const void *kbuf, const void __user *ubuf)
 923{
 924	int rc = 0;
 925
 926	if (target == current)
 927		save_access_regs(target->thread.acrs);
 928
 929	if (kbuf) {
 930		const unsigned long *k = kbuf;
 931		while (count > 0 && !rc) {
 932			rc = __poke_user(target, pos, *k++);
 933			count -= sizeof(*k);
 934			pos += sizeof(*k);
 935		}
 936	} else {
 937		const unsigned long  __user *u = ubuf;
 938		while (count > 0 && !rc) {
 939			unsigned long word;
 940			rc = __get_user(word, u++);
 941			if (rc)
 942				break;
 943			rc = __poke_user(target, pos, word);
 944			count -= sizeof(*u);
 945			pos += sizeof(*u);
 946		}
 947	}
 948
 949	if (rc == 0 && target == current)
 950		restore_access_regs(target->thread.acrs);
 951
 952	return rc;
 953}
 954
 955static int s390_fpregs_get(struct task_struct *target,
 956			   const struct user_regset *regset, unsigned int pos,
 957			   unsigned int count, void *kbuf, void __user *ubuf)
 958{
 959	_s390_fp_regs fp_regs;
 960
 961	if (target == current)
 962		save_fpu_regs();
 963
 964	fp_regs.fpc = target->thread.fpu.fpc;
 965	fpregs_store(&fp_regs, &target->thread.fpu);
 966
 967	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
 968				   &fp_regs, 0, -1);
 969}
 970
 971static int s390_fpregs_set(struct task_struct *target,
 972			   const struct user_regset *regset, unsigned int pos,
 973			   unsigned int count, const void *kbuf,
 974			   const void __user *ubuf)
 975{
 976	int rc = 0;
 977	freg_t fprs[__NUM_FPRS];
 978
 979	if (target == current)
 980		save_fpu_regs();
 981
 982	if (MACHINE_HAS_VX)
 983		convert_vx_to_fp(fprs, target->thread.fpu.vxrs);
 984	else
 985		memcpy(&fprs, target->thread.fpu.fprs, sizeof(fprs));
 986
 987	/* If setting FPC, must validate it first. */
 988	if (count > 0 && pos < offsetof(s390_fp_regs, fprs)) {
 989		u32 ufpc[2] = { target->thread.fpu.fpc, 0 };
 990		rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ufpc,
 991					0, offsetof(s390_fp_regs, fprs));
 992		if (rc)
 993			return rc;
 994		if (ufpc[1] != 0 || test_fp_ctl(ufpc[0]))
 995			return -EINVAL;
 996		target->thread.fpu.fpc = ufpc[0];
 997	}
 998
 999	if (rc == 0 && count > 0)
1000		rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1001					fprs, offsetof(s390_fp_regs, fprs), -1);
1002	if (rc)
1003		return rc;
1004
1005	if (MACHINE_HAS_VX)
1006		convert_fp_to_vx(target->thread.fpu.vxrs, fprs);
1007	else
1008		memcpy(target->thread.fpu.fprs, &fprs, sizeof(fprs));
1009
1010	return rc;
1011}
1012
1013static int s390_last_break_get(struct task_struct *target,
1014			       const struct user_regset *regset,
1015			       unsigned int pos, unsigned int count,
1016			       void *kbuf, void __user *ubuf)
1017{
1018	if (count > 0) {
1019		if (kbuf) {
1020			unsigned long *k = kbuf;
1021			*k = target->thread.last_break;
1022		} else {
1023			unsigned long  __user *u = ubuf;
1024			if (__put_user(target->thread.last_break, u))
1025				return -EFAULT;
1026		}
1027	}
1028	return 0;
1029}
1030
1031static int s390_last_break_set(struct task_struct *target,
1032			       const struct user_regset *regset,
1033			       unsigned int pos, unsigned int count,
1034			       const void *kbuf, const void __user *ubuf)
1035{
1036	return 0;
1037}
1038
1039static int s390_tdb_get(struct task_struct *target,
1040			const struct user_regset *regset,
1041			unsigned int pos, unsigned int count,
1042			void *kbuf, void __user *ubuf)
1043{
1044	struct pt_regs *regs = task_pt_regs(target);
1045	unsigned char *data;
1046
1047	if (!(regs->int_code & 0x200))
1048		return -ENODATA;
1049	data = target->thread.trap_tdb;
1050	return user_regset_copyout(&pos, &count, &kbuf, &ubuf, data, 0, 256);
1051}
1052
1053static int s390_tdb_set(struct task_struct *target,
1054			const struct user_regset *regset,
1055			unsigned int pos, unsigned int count,
1056			const void *kbuf, const void __user *ubuf)
1057{
1058	return 0;
1059}
1060
1061static int s390_vxrs_low_get(struct task_struct *target,
1062			     const struct user_regset *regset,
1063			     unsigned int pos, unsigned int count,
1064			     void *kbuf, void __user *ubuf)
1065{
1066	__u64 vxrs[__NUM_VXRS_LOW];
1067	int i;
1068
1069	if (!MACHINE_HAS_VX)
1070		return -ENODEV;
1071	if (target == current)
1072		save_fpu_regs();
1073	for (i = 0; i < __NUM_VXRS_LOW; i++)
1074		vxrs[i] = *((__u64 *)(target->thread.fpu.vxrs + i) + 1);
1075	return user_regset_copyout(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1);
1076}
1077
1078static int s390_vxrs_low_set(struct task_struct *target,
1079			     const struct user_regset *regset,
1080			     unsigned int pos, unsigned int count,
1081			     const void *kbuf, const void __user *ubuf)
1082{
1083	__u64 vxrs[__NUM_VXRS_LOW];
1084	int i, rc;
1085
1086	if (!MACHINE_HAS_VX)
1087		return -ENODEV;
1088	if (target == current)
1089		save_fpu_regs();
1090
1091	for (i = 0; i < __NUM_VXRS_LOW; i++)
1092		vxrs[i] = *((__u64 *)(target->thread.fpu.vxrs + i) + 1);
1093
1094	rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1);
1095	if (rc == 0)
1096		for (i = 0; i < __NUM_VXRS_LOW; i++)
1097			*((__u64 *)(target->thread.fpu.vxrs + i) + 1) = vxrs[i];
1098
1099	return rc;
1100}
1101
1102static int s390_vxrs_high_get(struct task_struct *target,
1103			      const struct user_regset *regset,
1104			      unsigned int pos, unsigned int count,
1105			      void *kbuf, void __user *ubuf)
1106{
1107	__vector128 vxrs[__NUM_VXRS_HIGH];
1108
1109	if (!MACHINE_HAS_VX)
1110		return -ENODEV;
1111	if (target == current)
1112		save_fpu_regs();
1113	memcpy(vxrs, target->thread.fpu.vxrs + __NUM_VXRS_LOW, sizeof(vxrs));
1114
1115	return user_regset_copyout(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1);
1116}
1117
1118static int s390_vxrs_high_set(struct task_struct *target,
1119			      const struct user_regset *regset,
1120			      unsigned int pos, unsigned int count,
1121			      const void *kbuf, const void __user *ubuf)
1122{
1123	int rc;
1124
1125	if (!MACHINE_HAS_VX)
1126		return -ENODEV;
1127	if (target == current)
1128		save_fpu_regs();
1129
1130	rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1131				target->thread.fpu.vxrs + __NUM_VXRS_LOW, 0, -1);
1132	return rc;
1133}
1134
1135static int s390_system_call_get(struct task_struct *target,
1136				const struct user_regset *regset,
1137				unsigned int pos, unsigned int count,
1138				void *kbuf, void __user *ubuf)
1139{
1140	unsigned int *data = &target->thread.system_call;
1141	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1142				   data, 0, sizeof(unsigned int));
1143}
1144
1145static int s390_system_call_set(struct task_struct *target,
1146				const struct user_regset *regset,
1147				unsigned int pos, unsigned int count,
1148				const void *kbuf, const void __user *ubuf)
1149{
1150	unsigned int *data = &target->thread.system_call;
1151	return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1152				  data, 0, sizeof(unsigned int));
1153}
1154
1155static int s390_gs_cb_get(struct task_struct *target,
1156			  const struct user_regset *regset,
1157			  unsigned int pos, unsigned int count,
1158			  void *kbuf, void __user *ubuf)
1159{
1160	struct gs_cb *data = target->thread.gs_cb;
1161
1162	if (!MACHINE_HAS_GS)
1163		return -ENODEV;
1164	if (!data)
1165		return -ENODATA;
1166	if (target == current)
1167		save_gs_cb(data);
1168	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1169				   data, 0, sizeof(struct gs_cb));
1170}
1171
1172static int s390_gs_cb_set(struct task_struct *target,
1173			  const struct user_regset *regset,
1174			  unsigned int pos, unsigned int count,
1175			  const void *kbuf, const void __user *ubuf)
1176{
1177	struct gs_cb gs_cb = { }, *data = NULL;
1178	int rc;
1179
1180	if (!MACHINE_HAS_GS)
1181		return -ENODEV;
1182	if (!target->thread.gs_cb) {
1183		data = kzalloc(sizeof(*data), GFP_KERNEL);
1184		if (!data)
1185			return -ENOMEM;
1186	}
1187	if (!target->thread.gs_cb)
1188		gs_cb.gsd = 25;
1189	else if (target == current)
1190		save_gs_cb(&gs_cb);
1191	else
1192		gs_cb = *target->thread.gs_cb;
1193	rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1194				&gs_cb, 0, sizeof(gs_cb));
1195	if (rc) {
1196		kfree(data);
1197		return -EFAULT;
1198	}
1199	preempt_disable();
1200	if (!target->thread.gs_cb)
1201		target->thread.gs_cb = data;
1202	*target->thread.gs_cb = gs_cb;
1203	if (target == current) {
1204		__ctl_set_bit(2, 4);
1205		restore_gs_cb(target->thread.gs_cb);
1206	}
1207	preempt_enable();
1208	return rc;
1209}
1210
1211static int s390_gs_bc_get(struct task_struct *target,
1212			  const struct user_regset *regset,
1213			  unsigned int pos, unsigned int count,
1214			  void *kbuf, void __user *ubuf)
1215{
1216	struct gs_cb *data = target->thread.gs_bc_cb;
1217
1218	if (!MACHINE_HAS_GS)
1219		return -ENODEV;
1220	if (!data)
1221		return -ENODATA;
1222	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1223				   data, 0, sizeof(struct gs_cb));
1224}
1225
1226static int s390_gs_bc_set(struct task_struct *target,
1227			  const struct user_regset *regset,
1228			  unsigned int pos, unsigned int count,
1229			  const void *kbuf, const void __user *ubuf)
1230{
1231	struct gs_cb *data = target->thread.gs_bc_cb;
1232
1233	if (!MACHINE_HAS_GS)
1234		return -ENODEV;
1235	if (!data) {
1236		data = kzalloc(sizeof(*data), GFP_KERNEL);
1237		if (!data)
1238			return -ENOMEM;
1239		target->thread.gs_bc_cb = data;
1240	}
1241	return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1242				  data, 0, sizeof(struct gs_cb));
1243}
1244
1245static bool is_ri_cb_valid(struct runtime_instr_cb *cb)
1246{
1247	return (cb->rca & 0x1f) == 0 &&
1248		(cb->roa & 0xfff) == 0 &&
1249		(cb->rla & 0xfff) == 0xfff &&
1250		cb->s == 1 &&
1251		cb->k == 1 &&
1252		cb->h == 0 &&
1253		cb->reserved1 == 0 &&
1254		cb->ps == 1 &&
1255		cb->qs == 0 &&
1256		cb->pc == 1 &&
1257		cb->qc == 0 &&
1258		cb->reserved2 == 0 &&
1259		cb->key == PAGE_DEFAULT_KEY &&
1260		cb->reserved3 == 0 &&
1261		cb->reserved4 == 0 &&
1262		cb->reserved5 == 0 &&
1263		cb->reserved6 == 0 &&
1264		cb->reserved7 == 0 &&
1265		cb->reserved8 == 0 &&
1266		cb->rla >= cb->roa &&
1267		cb->rca >= cb->roa &&
1268		cb->rca <= cb->rla+1 &&
1269		cb->m < 3;
1270}
1271
1272static int s390_runtime_instr_get(struct task_struct *target,
1273				const struct user_regset *regset,
1274				unsigned int pos, unsigned int count,
1275				void *kbuf, void __user *ubuf)
1276{
1277	struct runtime_instr_cb *data = target->thread.ri_cb;
1278
1279	if (!test_facility(64))
1280		return -ENODEV;
1281	if (!data)
1282		return -ENODATA;
1283
1284	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1285				   data, 0, sizeof(struct runtime_instr_cb));
1286}
1287
1288static int s390_runtime_instr_set(struct task_struct *target,
1289				  const struct user_regset *regset,
1290				  unsigned int pos, unsigned int count,
1291				  const void *kbuf, const void __user *ubuf)
1292{
1293	struct runtime_instr_cb ri_cb = { }, *data = NULL;
1294	int rc;
1295
1296	if (!test_facility(64))
1297		return -ENODEV;
1298
1299	if (!target->thread.ri_cb) {
1300		data = kzalloc(sizeof(*data), GFP_KERNEL);
1301		if (!data)
1302			return -ENOMEM;
1303	}
1304
1305	if (target->thread.ri_cb) {
1306		if (target == current)
1307			store_runtime_instr_cb(&ri_cb);
1308		else
1309			ri_cb = *target->thread.ri_cb;
1310	}
1311
1312	rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1313				&ri_cb, 0, sizeof(struct runtime_instr_cb));
1314	if (rc) {
1315		kfree(data);
1316		return -EFAULT;
1317	}
1318
1319	if (!is_ri_cb_valid(&ri_cb)) {
1320		kfree(data);
1321		return -EINVAL;
1322	}
1323
 
 
 
 
1324	preempt_disable();
1325	if (!target->thread.ri_cb)
1326		target->thread.ri_cb = data;
1327	*target->thread.ri_cb = ri_cb;
1328	if (target == current)
1329		load_runtime_instr_cb(target->thread.ri_cb);
1330	preempt_enable();
1331
1332	return 0;
1333}
1334
1335static const struct user_regset s390_regsets[] = {
1336	{
1337		.core_note_type = NT_PRSTATUS,
1338		.n = sizeof(s390_regs) / sizeof(long),
1339		.size = sizeof(long),
1340		.align = sizeof(long),
1341		.get = s390_regs_get,
1342		.set = s390_regs_set,
1343	},
1344	{
1345		.core_note_type = NT_PRFPREG,
1346		.n = sizeof(s390_fp_regs) / sizeof(long),
1347		.size = sizeof(long),
1348		.align = sizeof(long),
1349		.get = s390_fpregs_get,
1350		.set = s390_fpregs_set,
1351	},
1352	{
1353		.core_note_type = NT_S390_SYSTEM_CALL,
1354		.n = 1,
1355		.size = sizeof(unsigned int),
1356		.align = sizeof(unsigned int),
1357		.get = s390_system_call_get,
1358		.set = s390_system_call_set,
1359	},
1360	{
1361		.core_note_type = NT_S390_LAST_BREAK,
1362		.n = 1,
1363		.size = sizeof(long),
1364		.align = sizeof(long),
1365		.get = s390_last_break_get,
1366		.set = s390_last_break_set,
1367	},
1368	{
1369		.core_note_type = NT_S390_TDB,
1370		.n = 1,
1371		.size = 256,
1372		.align = 1,
1373		.get = s390_tdb_get,
1374		.set = s390_tdb_set,
1375	},
1376	{
1377		.core_note_type = NT_S390_VXRS_LOW,
1378		.n = __NUM_VXRS_LOW,
1379		.size = sizeof(__u64),
1380		.align = sizeof(__u64),
1381		.get = s390_vxrs_low_get,
1382		.set = s390_vxrs_low_set,
1383	},
1384	{
1385		.core_note_type = NT_S390_VXRS_HIGH,
1386		.n = __NUM_VXRS_HIGH,
1387		.size = sizeof(__vector128),
1388		.align = sizeof(__vector128),
1389		.get = s390_vxrs_high_get,
1390		.set = s390_vxrs_high_set,
1391	},
1392	{
1393		.core_note_type = NT_S390_GS_CB,
1394		.n = sizeof(struct gs_cb) / sizeof(__u64),
1395		.size = sizeof(__u64),
1396		.align = sizeof(__u64),
1397		.get = s390_gs_cb_get,
1398		.set = s390_gs_cb_set,
1399	},
1400	{
1401		.core_note_type = NT_S390_GS_BC,
1402		.n = sizeof(struct gs_cb) / sizeof(__u64),
1403		.size = sizeof(__u64),
1404		.align = sizeof(__u64),
1405		.get = s390_gs_bc_get,
1406		.set = s390_gs_bc_set,
1407	},
1408	{
1409		.core_note_type = NT_S390_RI_CB,
1410		.n = sizeof(struct runtime_instr_cb) / sizeof(__u64),
1411		.size = sizeof(__u64),
1412		.align = sizeof(__u64),
1413		.get = s390_runtime_instr_get,
1414		.set = s390_runtime_instr_set,
1415	},
1416};
1417
1418static const struct user_regset_view user_s390_view = {
1419	.name = UTS_MACHINE,
1420	.e_machine = EM_S390,
1421	.regsets = s390_regsets,
1422	.n = ARRAY_SIZE(s390_regsets)
1423};
1424
1425#ifdef CONFIG_COMPAT
1426static int s390_compat_regs_get(struct task_struct *target,
1427				const struct user_regset *regset,
1428				unsigned int pos, unsigned int count,
1429				void *kbuf, void __user *ubuf)
1430{
 
 
1431	if (target == current)
1432		save_access_regs(target->thread.acrs);
1433
1434	if (kbuf) {
1435		compat_ulong_t *k = kbuf;
1436		while (count > 0) {
1437			*k++ = __peek_user_compat(target, pos);
1438			count -= sizeof(*k);
1439			pos += sizeof(*k);
1440		}
1441	} else {
1442		compat_ulong_t __user *u = ubuf;
1443		while (count > 0) {
1444			if (__put_user(__peek_user_compat(target, pos), u++))
1445				return -EFAULT;
1446			count -= sizeof(*u);
1447			pos += sizeof(*u);
1448		}
1449	}
1450	return 0;
1451}
1452
1453static int s390_compat_regs_set(struct task_struct *target,
1454				const struct user_regset *regset,
1455				unsigned int pos, unsigned int count,
1456				const void *kbuf, const void __user *ubuf)
1457{
1458	int rc = 0;
1459
1460	if (target == current)
1461		save_access_regs(target->thread.acrs);
1462
1463	if (kbuf) {
1464		const compat_ulong_t *k = kbuf;
1465		while (count > 0 && !rc) {
1466			rc = __poke_user_compat(target, pos, *k++);
1467			count -= sizeof(*k);
1468			pos += sizeof(*k);
1469		}
1470	} else {
1471		const compat_ulong_t  __user *u = ubuf;
1472		while (count > 0 && !rc) {
1473			compat_ulong_t word;
1474			rc = __get_user(word, u++);
1475			if (rc)
1476				break;
1477			rc = __poke_user_compat(target, pos, word);
1478			count -= sizeof(*u);
1479			pos += sizeof(*u);
1480		}
1481	}
1482
1483	if (rc == 0 && target == current)
1484		restore_access_regs(target->thread.acrs);
1485
1486	return rc;
1487}
1488
1489static int s390_compat_regs_high_get(struct task_struct *target,
1490				     const struct user_regset *regset,
1491				     unsigned int pos, unsigned int count,
1492				     void *kbuf, void __user *ubuf)
1493{
1494	compat_ulong_t *gprs_high;
 
1495
1496	gprs_high = (compat_ulong_t *)
1497		&task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1498	if (kbuf) {
1499		compat_ulong_t *k = kbuf;
1500		while (count > 0) {
1501			*k++ = *gprs_high;
1502			gprs_high += 2;
1503			count -= sizeof(*k);
1504		}
1505	} else {
1506		compat_ulong_t __user *u = ubuf;
1507		while (count > 0) {
1508			if (__put_user(*gprs_high, u++))
1509				return -EFAULT;
1510			gprs_high += 2;
1511			count -= sizeof(*u);
1512		}
1513	}
1514	return 0;
1515}
1516
1517static int s390_compat_regs_high_set(struct task_struct *target,
1518				     const struct user_regset *regset,
1519				     unsigned int pos, unsigned int count,
1520				     const void *kbuf, const void __user *ubuf)
1521{
1522	compat_ulong_t *gprs_high;
1523	int rc = 0;
1524
1525	gprs_high = (compat_ulong_t *)
1526		&task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1527	if (kbuf) {
1528		const compat_ulong_t *k = kbuf;
1529		while (count > 0) {
1530			*gprs_high = *k++;
1531			*gprs_high += 2;
1532			count -= sizeof(*k);
1533		}
1534	} else {
1535		const compat_ulong_t  __user *u = ubuf;
1536		while (count > 0 && !rc) {
1537			unsigned long word;
1538			rc = __get_user(word, u++);
1539			if (rc)
1540				break;
1541			*gprs_high = word;
1542			*gprs_high += 2;
1543			count -= sizeof(*u);
1544		}
1545	}
1546
1547	return rc;
1548}
1549
1550static int s390_compat_last_break_get(struct task_struct *target,
1551				      const struct user_regset *regset,
1552				      unsigned int pos, unsigned int count,
1553				      void *kbuf, void __user *ubuf)
1554{
1555	compat_ulong_t last_break;
1556
1557	if (count > 0) {
1558		last_break = target->thread.last_break;
1559		if (kbuf) {
1560			unsigned long *k = kbuf;
1561			*k = last_break;
1562		} else {
1563			unsigned long  __user *u = ubuf;
1564			if (__put_user(last_break, u))
1565				return -EFAULT;
1566		}
1567	}
1568	return 0;
1569}
1570
1571static int s390_compat_last_break_set(struct task_struct *target,
1572				      const struct user_regset *regset,
1573				      unsigned int pos, unsigned int count,
1574				      const void *kbuf, const void __user *ubuf)
1575{
1576	return 0;
1577}
1578
1579static const struct user_regset s390_compat_regsets[] = {
1580	{
1581		.core_note_type = NT_PRSTATUS,
1582		.n = sizeof(s390_compat_regs) / sizeof(compat_long_t),
1583		.size = sizeof(compat_long_t),
1584		.align = sizeof(compat_long_t),
1585		.get = s390_compat_regs_get,
1586		.set = s390_compat_regs_set,
1587	},
1588	{
1589		.core_note_type = NT_PRFPREG,
1590		.n = sizeof(s390_fp_regs) / sizeof(compat_long_t),
1591		.size = sizeof(compat_long_t),
1592		.align = sizeof(compat_long_t),
1593		.get = s390_fpregs_get,
1594		.set = s390_fpregs_set,
1595	},
1596	{
1597		.core_note_type = NT_S390_SYSTEM_CALL,
1598		.n = 1,
1599		.size = sizeof(compat_uint_t),
1600		.align = sizeof(compat_uint_t),
1601		.get = s390_system_call_get,
1602		.set = s390_system_call_set,
1603	},
1604	{
1605		.core_note_type = NT_S390_LAST_BREAK,
1606		.n = 1,
1607		.size = sizeof(long),
1608		.align = sizeof(long),
1609		.get = s390_compat_last_break_get,
1610		.set = s390_compat_last_break_set,
1611	},
1612	{
1613		.core_note_type = NT_S390_TDB,
1614		.n = 1,
1615		.size = 256,
1616		.align = 1,
1617		.get = s390_tdb_get,
1618		.set = s390_tdb_set,
1619	},
1620	{
1621		.core_note_type = NT_S390_VXRS_LOW,
1622		.n = __NUM_VXRS_LOW,
1623		.size = sizeof(__u64),
1624		.align = sizeof(__u64),
1625		.get = s390_vxrs_low_get,
1626		.set = s390_vxrs_low_set,
1627	},
1628	{
1629		.core_note_type = NT_S390_VXRS_HIGH,
1630		.n = __NUM_VXRS_HIGH,
1631		.size = sizeof(__vector128),
1632		.align = sizeof(__vector128),
1633		.get = s390_vxrs_high_get,
1634		.set = s390_vxrs_high_set,
1635	},
1636	{
1637		.core_note_type = NT_S390_HIGH_GPRS,
1638		.n = sizeof(s390_compat_regs_high) / sizeof(compat_long_t),
1639		.size = sizeof(compat_long_t),
1640		.align = sizeof(compat_long_t),
1641		.get = s390_compat_regs_high_get,
1642		.set = s390_compat_regs_high_set,
1643	},
1644	{
1645		.core_note_type = NT_S390_GS_CB,
1646		.n = sizeof(struct gs_cb) / sizeof(__u64),
1647		.size = sizeof(__u64),
1648		.align = sizeof(__u64),
1649		.get = s390_gs_cb_get,
1650		.set = s390_gs_cb_set,
1651	},
1652	{
1653		.core_note_type = NT_S390_GS_BC,
1654		.n = sizeof(struct gs_cb) / sizeof(__u64),
1655		.size = sizeof(__u64),
1656		.align = sizeof(__u64),
1657		.get = s390_gs_bc_get,
1658		.set = s390_gs_bc_set,
1659	},
1660	{
1661		.core_note_type = NT_S390_RI_CB,
1662		.n = sizeof(struct runtime_instr_cb) / sizeof(__u64),
1663		.size = sizeof(__u64),
1664		.align = sizeof(__u64),
1665		.get = s390_runtime_instr_get,
1666		.set = s390_runtime_instr_set,
1667	},
1668};
1669
1670static const struct user_regset_view user_s390_compat_view = {
1671	.name = "s390",
1672	.e_machine = EM_S390,
1673	.regsets = s390_compat_regsets,
1674	.n = ARRAY_SIZE(s390_compat_regsets)
1675};
1676#endif
1677
1678const struct user_regset_view *task_user_regset_view(struct task_struct *task)
1679{
1680#ifdef CONFIG_COMPAT
1681	if (test_tsk_thread_flag(task, TIF_31BIT))
1682		return &user_s390_compat_view;
1683#endif
1684	return &user_s390_view;
1685}
1686
1687static const char *gpr_names[NUM_GPRS] = {
1688	"r0", "r1",  "r2",  "r3",  "r4",  "r5",  "r6",  "r7",
1689	"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
1690};
1691
1692unsigned long regs_get_register(struct pt_regs *regs, unsigned int offset)
1693{
1694	if (offset >= NUM_GPRS)
1695		return 0;
1696	return regs->gprs[offset];
1697}
1698
1699int regs_query_register_offset(const char *name)
1700{
1701	unsigned long offset;
1702
1703	if (!name || *name != 'r')
1704		return -EINVAL;
1705	if (kstrtoul(name + 1, 10, &offset))
1706		return -EINVAL;
1707	if (offset >= NUM_GPRS)
1708		return -EINVAL;
1709	return offset;
1710}
1711
1712const char *regs_query_register_name(unsigned int offset)
1713{
1714	if (offset >= NUM_GPRS)
1715		return NULL;
1716	return gpr_names[offset];
1717}
1718
1719static int regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
1720{
1721	unsigned long ksp = kernel_stack_pointer(regs);
1722
1723	return (addr & ~(THREAD_SIZE - 1)) == (ksp & ~(THREAD_SIZE - 1));
1724}
1725
1726/**
1727 * regs_get_kernel_stack_nth() - get Nth entry of the stack
1728 * @regs:pt_regs which contains kernel stack pointer.
1729 * @n:stack entry number.
1730 *
1731 * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
1732 * is specifined by @regs. If the @n th entry is NOT in the kernel stack,
1733 * this returns 0.
1734 */
1735unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
1736{
1737	unsigned long addr;
1738
1739	addr = kernel_stack_pointer(regs) + n * sizeof(long);
1740	if (!regs_within_kernel_stack(regs, addr))
1741		return 0;
1742	return *(unsigned long *)addr;
1743}