Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/arch/arm/mm/dma-mapping.c
4 *
5 * Copyright (C) 2000-2004 Russell King
6 *
7 * DMA uncached mapping support.
8 */
9#include <linux/module.h>
10#include <linux/mm.h>
11#include <linux/genalloc.h>
12#include <linux/gfp.h>
13#include <linux/errno.h>
14#include <linux/list.h>
15#include <linux/init.h>
16#include <linux/device.h>
17#include <linux/dma-direct.h>
18#include <linux/dma-map-ops.h>
19#include <linux/highmem.h>
20#include <linux/memblock.h>
21#include <linux/slab.h>
22#include <linux/iommu.h>
23#include <linux/io.h>
24#include <linux/vmalloc.h>
25#include <linux/sizes.h>
26#include <linux/cma.h>
27
28#include <asm/page.h>
29#include <asm/highmem.h>
30#include <asm/cacheflush.h>
31#include <asm/tlbflush.h>
32#include <asm/mach/arch.h>
33#include <asm/dma-iommu.h>
34#include <asm/mach/map.h>
35#include <asm/system_info.h>
36#include <asm/xen/xen-ops.h>
37
38#include "dma.h"
39#include "mm.h"
40
41struct arm_dma_alloc_args {
42 struct device *dev;
43 size_t size;
44 gfp_t gfp;
45 pgprot_t prot;
46 const void *caller;
47 bool want_vaddr;
48 int coherent_flag;
49};
50
51struct arm_dma_free_args {
52 struct device *dev;
53 size_t size;
54 void *cpu_addr;
55 struct page *page;
56 bool want_vaddr;
57};
58
59#define NORMAL 0
60#define COHERENT 1
61
62struct arm_dma_allocator {
63 void *(*alloc)(struct arm_dma_alloc_args *args,
64 struct page **ret_page);
65 void (*free)(struct arm_dma_free_args *args);
66};
67
68struct arm_dma_buffer {
69 struct list_head list;
70 void *virt;
71 struct arm_dma_allocator *allocator;
72};
73
74static LIST_HEAD(arm_dma_bufs);
75static DEFINE_SPINLOCK(arm_dma_bufs_lock);
76
77static struct arm_dma_buffer *arm_dma_buffer_find(void *virt)
78{
79 struct arm_dma_buffer *buf, *found = NULL;
80 unsigned long flags;
81
82 spin_lock_irqsave(&arm_dma_bufs_lock, flags);
83 list_for_each_entry(buf, &arm_dma_bufs, list) {
84 if (buf->virt == virt) {
85 list_del(&buf->list);
86 found = buf;
87 break;
88 }
89 }
90 spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
91 return found;
92}
93
94/*
95 * The DMA API is built upon the notion of "buffer ownership". A buffer
96 * is either exclusively owned by the CPU (and therefore may be accessed
97 * by it) or exclusively owned by the DMA device. These helper functions
98 * represent the transitions between these two ownership states.
99 *
100 * Note, however, that on later ARMs, this notion does not work due to
101 * speculative prefetches. We model our approach on the assumption that
102 * the CPU does do speculative prefetches, which means we clean caches
103 * before transfers and delay cache invalidation until transfer completion.
104 *
105 */
106
107static void __dma_clear_buffer(struct page *page, size_t size, int coherent_flag)
108{
109 /*
110 * Ensure that the allocated pages are zeroed, and that any data
111 * lurking in the kernel direct-mapped region is invalidated.
112 */
113 if (PageHighMem(page)) {
114 phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
115 phys_addr_t end = base + size;
116 while (size > 0) {
117 void *ptr = kmap_atomic(page);
118 memset(ptr, 0, PAGE_SIZE);
119 if (coherent_flag != COHERENT)
120 dmac_flush_range(ptr, ptr + PAGE_SIZE);
121 kunmap_atomic(ptr);
122 page++;
123 size -= PAGE_SIZE;
124 }
125 if (coherent_flag != COHERENT)
126 outer_flush_range(base, end);
127 } else {
128 void *ptr = page_address(page);
129 memset(ptr, 0, size);
130 if (coherent_flag != COHERENT) {
131 dmac_flush_range(ptr, ptr + size);
132 outer_flush_range(__pa(ptr), __pa(ptr) + size);
133 }
134 }
135}
136
137/*
138 * Allocate a DMA buffer for 'dev' of size 'size' using the
139 * specified gfp mask. Note that 'size' must be page aligned.
140 */
141static struct page *__dma_alloc_buffer(struct device *dev, size_t size,
142 gfp_t gfp, int coherent_flag)
143{
144 unsigned long order = get_order(size);
145 struct page *page, *p, *e;
146
147 page = alloc_pages(gfp, order);
148 if (!page)
149 return NULL;
150
151 /*
152 * Now split the huge page and free the excess pages
153 */
154 split_page(page, order);
155 for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
156 __free_page(p);
157
158 __dma_clear_buffer(page, size, coherent_flag);
159
160 return page;
161}
162
163/*
164 * Free a DMA buffer. 'size' must be page aligned.
165 */
166static void __dma_free_buffer(struct page *page, size_t size)
167{
168 struct page *e = page + (size >> PAGE_SHIFT);
169
170 while (page < e) {
171 __free_page(page);
172 page++;
173 }
174}
175
176static void *__alloc_from_contiguous(struct device *dev, size_t size,
177 pgprot_t prot, struct page **ret_page,
178 const void *caller, bool want_vaddr,
179 int coherent_flag, gfp_t gfp);
180
181static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
182 pgprot_t prot, struct page **ret_page,
183 const void *caller, bool want_vaddr);
184
185#define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K
186static struct gen_pool *atomic_pool __ro_after_init;
187
188static size_t atomic_pool_size __initdata = DEFAULT_DMA_COHERENT_POOL_SIZE;
189
190static int __init early_coherent_pool(char *p)
191{
192 atomic_pool_size = memparse(p, &p);
193 return 0;
194}
195early_param("coherent_pool", early_coherent_pool);
196
197/*
198 * Initialise the coherent pool for atomic allocations.
199 */
200static int __init atomic_pool_init(void)
201{
202 pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL);
203 gfp_t gfp = GFP_KERNEL | GFP_DMA;
204 struct page *page;
205 void *ptr;
206
207 atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
208 if (!atomic_pool)
209 goto out;
210 /*
211 * The atomic pool is only used for non-coherent allocations
212 * so we must pass NORMAL for coherent_flag.
213 */
214 if (dev_get_cma_area(NULL))
215 ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot,
216 &page, atomic_pool_init, true, NORMAL,
217 GFP_KERNEL);
218 else
219 ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot,
220 &page, atomic_pool_init, true);
221 if (ptr) {
222 int ret;
223
224 ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr,
225 page_to_phys(page),
226 atomic_pool_size, -1);
227 if (ret)
228 goto destroy_genpool;
229
230 gen_pool_set_algo(atomic_pool,
231 gen_pool_first_fit_order_align,
232 NULL);
233 pr_info("DMA: preallocated %zu KiB pool for atomic coherent allocations\n",
234 atomic_pool_size / 1024);
235 return 0;
236 }
237
238destroy_genpool:
239 gen_pool_destroy(atomic_pool);
240 atomic_pool = NULL;
241out:
242 pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n",
243 atomic_pool_size / 1024);
244 return -ENOMEM;
245}
246/*
247 * CMA is activated by core_initcall, so we must be called after it.
248 */
249postcore_initcall(atomic_pool_init);
250
251#ifdef CONFIG_CMA_AREAS
252struct dma_contig_early_reserve {
253 phys_addr_t base;
254 unsigned long size;
255};
256
257static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
258
259static int dma_mmu_remap_num __initdata;
260
261#ifdef CONFIG_DMA_CMA
262void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
263{
264 dma_mmu_remap[dma_mmu_remap_num].base = base;
265 dma_mmu_remap[dma_mmu_remap_num].size = size;
266 dma_mmu_remap_num++;
267}
268#endif
269
270void __init dma_contiguous_remap(void)
271{
272 int i;
273 for (i = 0; i < dma_mmu_remap_num; i++) {
274 phys_addr_t start = dma_mmu_remap[i].base;
275 phys_addr_t end = start + dma_mmu_remap[i].size;
276 struct map_desc map;
277 unsigned long addr;
278
279 if (end > arm_lowmem_limit)
280 end = arm_lowmem_limit;
281 if (start >= end)
282 continue;
283
284 map.pfn = __phys_to_pfn(start);
285 map.virtual = __phys_to_virt(start);
286 map.length = end - start;
287 map.type = MT_MEMORY_DMA_READY;
288
289 /*
290 * Clear previous low-memory mapping to ensure that the
291 * TLB does not see any conflicting entries, then flush
292 * the TLB of the old entries before creating new mappings.
293 *
294 * This ensures that any speculatively loaded TLB entries
295 * (even though they may be rare) can not cause any problems,
296 * and ensures that this code is architecturally compliant.
297 */
298 for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
299 addr += PMD_SIZE)
300 pmd_clear(pmd_off_k(addr));
301
302 flush_tlb_kernel_range(__phys_to_virt(start),
303 __phys_to_virt(end));
304
305 iotable_init(&map, 1);
306 }
307}
308#endif
309
310static int __dma_update_pte(pte_t *pte, unsigned long addr, void *data)
311{
312 struct page *page = virt_to_page((void *)addr);
313 pgprot_t prot = *(pgprot_t *)data;
314
315 set_pte_ext(pte, mk_pte(page, prot), 0);
316 return 0;
317}
318
319static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
320{
321 unsigned long start = (unsigned long) page_address(page);
322 unsigned end = start + size;
323
324 apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
325 flush_tlb_kernel_range(start, end);
326}
327
328static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
329 pgprot_t prot, struct page **ret_page,
330 const void *caller, bool want_vaddr)
331{
332 struct page *page;
333 void *ptr = NULL;
334 /*
335 * __alloc_remap_buffer is only called when the device is
336 * non-coherent
337 */
338 page = __dma_alloc_buffer(dev, size, gfp, NORMAL);
339 if (!page)
340 return NULL;
341 if (!want_vaddr)
342 goto out;
343
344 ptr = dma_common_contiguous_remap(page, size, prot, caller);
345 if (!ptr) {
346 __dma_free_buffer(page, size);
347 return NULL;
348 }
349
350 out:
351 *ret_page = page;
352 return ptr;
353}
354
355static void *__alloc_from_pool(size_t size, struct page **ret_page)
356{
357 unsigned long val;
358 void *ptr = NULL;
359
360 if (!atomic_pool) {
361 WARN(1, "coherent pool not initialised!\n");
362 return NULL;
363 }
364
365 val = gen_pool_alloc(atomic_pool, size);
366 if (val) {
367 phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
368
369 *ret_page = phys_to_page(phys);
370 ptr = (void *)val;
371 }
372
373 return ptr;
374}
375
376static bool __in_atomic_pool(void *start, size_t size)
377{
378 return gen_pool_has_addr(atomic_pool, (unsigned long)start, size);
379}
380
381static int __free_from_pool(void *start, size_t size)
382{
383 if (!__in_atomic_pool(start, size))
384 return 0;
385
386 gen_pool_free(atomic_pool, (unsigned long)start, size);
387
388 return 1;
389}
390
391static void *__alloc_from_contiguous(struct device *dev, size_t size,
392 pgprot_t prot, struct page **ret_page,
393 const void *caller, bool want_vaddr,
394 int coherent_flag, gfp_t gfp)
395{
396 unsigned long order = get_order(size);
397 size_t count = size >> PAGE_SHIFT;
398 struct page *page;
399 void *ptr = NULL;
400
401 page = dma_alloc_from_contiguous(dev, count, order, gfp & __GFP_NOWARN);
402 if (!page)
403 return NULL;
404
405 __dma_clear_buffer(page, size, coherent_flag);
406
407 if (!want_vaddr)
408 goto out;
409
410 if (PageHighMem(page)) {
411 ptr = dma_common_contiguous_remap(page, size, prot, caller);
412 if (!ptr) {
413 dma_release_from_contiguous(dev, page, count);
414 return NULL;
415 }
416 } else {
417 __dma_remap(page, size, prot);
418 ptr = page_address(page);
419 }
420
421 out:
422 *ret_page = page;
423 return ptr;
424}
425
426static void __free_from_contiguous(struct device *dev, struct page *page,
427 void *cpu_addr, size_t size, bool want_vaddr)
428{
429 if (want_vaddr) {
430 if (PageHighMem(page))
431 dma_common_free_remap(cpu_addr, size);
432 else
433 __dma_remap(page, size, PAGE_KERNEL);
434 }
435 dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
436}
437
438static inline pgprot_t __get_dma_pgprot(unsigned long attrs, pgprot_t prot)
439{
440 prot = (attrs & DMA_ATTR_WRITE_COMBINE) ?
441 pgprot_writecombine(prot) :
442 pgprot_dmacoherent(prot);
443 return prot;
444}
445
446static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
447 struct page **ret_page)
448{
449 struct page *page;
450 /* __alloc_simple_buffer is only called when the device is coherent */
451 page = __dma_alloc_buffer(dev, size, gfp, COHERENT);
452 if (!page)
453 return NULL;
454
455 *ret_page = page;
456 return page_address(page);
457}
458
459static void *simple_allocator_alloc(struct arm_dma_alloc_args *args,
460 struct page **ret_page)
461{
462 return __alloc_simple_buffer(args->dev, args->size, args->gfp,
463 ret_page);
464}
465
466static void simple_allocator_free(struct arm_dma_free_args *args)
467{
468 __dma_free_buffer(args->page, args->size);
469}
470
471static struct arm_dma_allocator simple_allocator = {
472 .alloc = simple_allocator_alloc,
473 .free = simple_allocator_free,
474};
475
476static void *cma_allocator_alloc(struct arm_dma_alloc_args *args,
477 struct page **ret_page)
478{
479 return __alloc_from_contiguous(args->dev, args->size, args->prot,
480 ret_page, args->caller,
481 args->want_vaddr, args->coherent_flag,
482 args->gfp);
483}
484
485static void cma_allocator_free(struct arm_dma_free_args *args)
486{
487 __free_from_contiguous(args->dev, args->page, args->cpu_addr,
488 args->size, args->want_vaddr);
489}
490
491static struct arm_dma_allocator cma_allocator = {
492 .alloc = cma_allocator_alloc,
493 .free = cma_allocator_free,
494};
495
496static void *pool_allocator_alloc(struct arm_dma_alloc_args *args,
497 struct page **ret_page)
498{
499 return __alloc_from_pool(args->size, ret_page);
500}
501
502static void pool_allocator_free(struct arm_dma_free_args *args)
503{
504 __free_from_pool(args->cpu_addr, args->size);
505}
506
507static struct arm_dma_allocator pool_allocator = {
508 .alloc = pool_allocator_alloc,
509 .free = pool_allocator_free,
510};
511
512static void *remap_allocator_alloc(struct arm_dma_alloc_args *args,
513 struct page **ret_page)
514{
515 return __alloc_remap_buffer(args->dev, args->size, args->gfp,
516 args->prot, ret_page, args->caller,
517 args->want_vaddr);
518}
519
520static void remap_allocator_free(struct arm_dma_free_args *args)
521{
522 if (args->want_vaddr)
523 dma_common_free_remap(args->cpu_addr, args->size);
524
525 __dma_free_buffer(args->page, args->size);
526}
527
528static struct arm_dma_allocator remap_allocator = {
529 .alloc = remap_allocator_alloc,
530 .free = remap_allocator_free,
531};
532
533static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
534 gfp_t gfp, pgprot_t prot, bool is_coherent,
535 unsigned long attrs, const void *caller)
536{
537 u64 mask = min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit);
538 struct page *page = NULL;
539 void *addr;
540 bool allowblock, cma;
541 struct arm_dma_buffer *buf;
542 struct arm_dma_alloc_args args = {
543 .dev = dev,
544 .size = PAGE_ALIGN(size),
545 .gfp = gfp,
546 .prot = prot,
547 .caller = caller,
548 .want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
549 .coherent_flag = is_coherent ? COHERENT : NORMAL,
550 };
551
552#ifdef CONFIG_DMA_API_DEBUG
553 u64 limit = (mask + 1) & ~mask;
554 if (limit && size >= limit) {
555 dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
556 size, mask);
557 return NULL;
558 }
559#endif
560
561 buf = kzalloc(sizeof(*buf),
562 gfp & ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM));
563 if (!buf)
564 return NULL;
565
566 if (mask < 0xffffffffULL)
567 gfp |= GFP_DMA;
568
569 args.gfp = gfp;
570
571 *handle = DMA_MAPPING_ERROR;
572 allowblock = gfpflags_allow_blocking(gfp);
573 cma = allowblock ? dev_get_cma_area(dev) : NULL;
574
575 if (cma)
576 buf->allocator = &cma_allocator;
577 else if (is_coherent)
578 buf->allocator = &simple_allocator;
579 else if (allowblock)
580 buf->allocator = &remap_allocator;
581 else
582 buf->allocator = &pool_allocator;
583
584 addr = buf->allocator->alloc(&args, &page);
585
586 if (page) {
587 unsigned long flags;
588
589 *handle = phys_to_dma(dev, page_to_phys(page));
590 buf->virt = args.want_vaddr ? addr : page;
591
592 spin_lock_irqsave(&arm_dma_bufs_lock, flags);
593 list_add(&buf->list, &arm_dma_bufs);
594 spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
595 } else {
596 kfree(buf);
597 }
598
599 return args.want_vaddr ? addr : page;
600}
601
602/*
603 * Free a buffer as defined by the above mapping.
604 */
605static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
606 dma_addr_t handle, unsigned long attrs,
607 bool is_coherent)
608{
609 struct page *page = phys_to_page(dma_to_phys(dev, handle));
610 struct arm_dma_buffer *buf;
611 struct arm_dma_free_args args = {
612 .dev = dev,
613 .size = PAGE_ALIGN(size),
614 .cpu_addr = cpu_addr,
615 .page = page,
616 .want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
617 };
618
619 buf = arm_dma_buffer_find(cpu_addr);
620 if (WARN(!buf, "Freeing invalid buffer %p\n", cpu_addr))
621 return;
622
623 buf->allocator->free(&args);
624 kfree(buf);
625}
626
627static void dma_cache_maint_page(struct page *page, unsigned long offset,
628 size_t size, enum dma_data_direction dir,
629 void (*op)(const void *, size_t, int))
630{
631 unsigned long pfn;
632 size_t left = size;
633
634 pfn = page_to_pfn(page) + offset / PAGE_SIZE;
635 offset %= PAGE_SIZE;
636
637 /*
638 * A single sg entry may refer to multiple physically contiguous
639 * pages. But we still need to process highmem pages individually.
640 * If highmem is not configured then the bulk of this loop gets
641 * optimized out.
642 */
643 do {
644 size_t len = left;
645 void *vaddr;
646
647 page = pfn_to_page(pfn);
648
649 if (PageHighMem(page)) {
650 if (len + offset > PAGE_SIZE)
651 len = PAGE_SIZE - offset;
652
653 if (cache_is_vipt_nonaliasing()) {
654 vaddr = kmap_atomic(page);
655 op(vaddr + offset, len, dir);
656 kunmap_atomic(vaddr);
657 } else {
658 vaddr = kmap_high_get(page);
659 if (vaddr) {
660 op(vaddr + offset, len, dir);
661 kunmap_high(page);
662 }
663 }
664 } else {
665 vaddr = page_address(page) + offset;
666 op(vaddr, len, dir);
667 }
668 offset = 0;
669 pfn++;
670 left -= len;
671 } while (left);
672}
673
674/*
675 * Make an area consistent for devices.
676 * Note: Drivers should NOT use this function directly.
677 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
678 */
679static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
680 size_t size, enum dma_data_direction dir)
681{
682 phys_addr_t paddr;
683
684 dma_cache_maint_page(page, off, size, dir, dmac_map_area);
685
686 paddr = page_to_phys(page) + off;
687 if (dir == DMA_FROM_DEVICE) {
688 outer_inv_range(paddr, paddr + size);
689 } else {
690 outer_clean_range(paddr, paddr + size);
691 }
692 /* FIXME: non-speculating: flush on bidirectional mappings? */
693}
694
695static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
696 size_t size, enum dma_data_direction dir)
697{
698 phys_addr_t paddr = page_to_phys(page) + off;
699
700 /* FIXME: non-speculating: not required */
701 /* in any case, don't bother invalidating if DMA to device */
702 if (dir != DMA_TO_DEVICE) {
703 outer_inv_range(paddr, paddr + size);
704
705 dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
706 }
707
708 /*
709 * Mark the D-cache clean for these pages to avoid extra flushing.
710 */
711 if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
712 struct folio *folio = pfn_folio(paddr / PAGE_SIZE);
713 size_t offset = offset_in_folio(folio, paddr);
714
715 for (;;) {
716 size_t sz = folio_size(folio) - offset;
717
718 if (size < sz)
719 break;
720 if (!offset)
721 set_bit(PG_dcache_clean, &folio->flags);
722 offset = 0;
723 size -= sz;
724 if (!size)
725 break;
726 folio = folio_next(folio);
727 }
728 }
729}
730
731#ifdef CONFIG_ARM_DMA_USE_IOMMU
732
733static int __dma_info_to_prot(enum dma_data_direction dir, unsigned long attrs)
734{
735 int prot = 0;
736
737 if (attrs & DMA_ATTR_PRIVILEGED)
738 prot |= IOMMU_PRIV;
739
740 switch (dir) {
741 case DMA_BIDIRECTIONAL:
742 return prot | IOMMU_READ | IOMMU_WRITE;
743 case DMA_TO_DEVICE:
744 return prot | IOMMU_READ;
745 case DMA_FROM_DEVICE:
746 return prot | IOMMU_WRITE;
747 default:
748 return prot;
749 }
750}
751
752/* IOMMU */
753
754static int extend_iommu_mapping(struct dma_iommu_mapping *mapping);
755
756static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
757 size_t size)
758{
759 unsigned int order = get_order(size);
760 unsigned int align = 0;
761 unsigned int count, start;
762 size_t mapping_size = mapping->bits << PAGE_SHIFT;
763 unsigned long flags;
764 dma_addr_t iova;
765 int i;
766
767 if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
768 order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
769
770 count = PAGE_ALIGN(size) >> PAGE_SHIFT;
771 align = (1 << order) - 1;
772
773 spin_lock_irqsave(&mapping->lock, flags);
774 for (i = 0; i < mapping->nr_bitmaps; i++) {
775 start = bitmap_find_next_zero_area(mapping->bitmaps[i],
776 mapping->bits, 0, count, align);
777
778 if (start > mapping->bits)
779 continue;
780
781 bitmap_set(mapping->bitmaps[i], start, count);
782 break;
783 }
784
785 /*
786 * No unused range found. Try to extend the existing mapping
787 * and perform a second attempt to reserve an IO virtual
788 * address range of size bytes.
789 */
790 if (i == mapping->nr_bitmaps) {
791 if (extend_iommu_mapping(mapping)) {
792 spin_unlock_irqrestore(&mapping->lock, flags);
793 return DMA_MAPPING_ERROR;
794 }
795
796 start = bitmap_find_next_zero_area(mapping->bitmaps[i],
797 mapping->bits, 0, count, align);
798
799 if (start > mapping->bits) {
800 spin_unlock_irqrestore(&mapping->lock, flags);
801 return DMA_MAPPING_ERROR;
802 }
803
804 bitmap_set(mapping->bitmaps[i], start, count);
805 }
806 spin_unlock_irqrestore(&mapping->lock, flags);
807
808 iova = mapping->base + (mapping_size * i);
809 iova += start << PAGE_SHIFT;
810
811 return iova;
812}
813
814static inline void __free_iova(struct dma_iommu_mapping *mapping,
815 dma_addr_t addr, size_t size)
816{
817 unsigned int start, count;
818 size_t mapping_size = mapping->bits << PAGE_SHIFT;
819 unsigned long flags;
820 dma_addr_t bitmap_base;
821 u32 bitmap_index;
822
823 if (!size)
824 return;
825
826 bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size;
827 BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions);
828
829 bitmap_base = mapping->base + mapping_size * bitmap_index;
830
831 start = (addr - bitmap_base) >> PAGE_SHIFT;
832
833 if (addr + size > bitmap_base + mapping_size) {
834 /*
835 * The address range to be freed reaches into the iova
836 * range of the next bitmap. This should not happen as
837 * we don't allow this in __alloc_iova (at the
838 * moment).
839 */
840 BUG();
841 } else
842 count = size >> PAGE_SHIFT;
843
844 spin_lock_irqsave(&mapping->lock, flags);
845 bitmap_clear(mapping->bitmaps[bitmap_index], start, count);
846 spin_unlock_irqrestore(&mapping->lock, flags);
847}
848
849/* We'll try 2M, 1M, 64K, and finally 4K; array must end with 0! */
850static const int iommu_order_array[] = { 9, 8, 4, 0 };
851
852static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
853 gfp_t gfp, unsigned long attrs,
854 int coherent_flag)
855{
856 struct page **pages;
857 int count = size >> PAGE_SHIFT;
858 int array_size = count * sizeof(struct page *);
859 int i = 0;
860 int order_idx = 0;
861
862 pages = kvzalloc(array_size, GFP_KERNEL);
863 if (!pages)
864 return NULL;
865
866 if (attrs & DMA_ATTR_FORCE_CONTIGUOUS)
867 {
868 unsigned long order = get_order(size);
869 struct page *page;
870
871 page = dma_alloc_from_contiguous(dev, count, order,
872 gfp & __GFP_NOWARN);
873 if (!page)
874 goto error;
875
876 __dma_clear_buffer(page, size, coherent_flag);
877
878 for (i = 0; i < count; i++)
879 pages[i] = page + i;
880
881 return pages;
882 }
883
884 /* Go straight to 4K chunks if caller says it's OK. */
885 if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
886 order_idx = ARRAY_SIZE(iommu_order_array) - 1;
887
888 /*
889 * IOMMU can map any pages, so himem can also be used here
890 */
891 gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
892
893 while (count) {
894 int j, order;
895
896 order = iommu_order_array[order_idx];
897
898 /* Drop down when we get small */
899 if (__fls(count) < order) {
900 order_idx++;
901 continue;
902 }
903
904 if (order) {
905 /* See if it's easy to allocate a high-order chunk */
906 pages[i] = alloc_pages(gfp | __GFP_NORETRY, order);
907
908 /* Go down a notch at first sign of pressure */
909 if (!pages[i]) {
910 order_idx++;
911 continue;
912 }
913 } else {
914 pages[i] = alloc_pages(gfp, 0);
915 if (!pages[i])
916 goto error;
917 }
918
919 if (order) {
920 split_page(pages[i], order);
921 j = 1 << order;
922 while (--j)
923 pages[i + j] = pages[i] + j;
924 }
925
926 __dma_clear_buffer(pages[i], PAGE_SIZE << order, coherent_flag);
927 i += 1 << order;
928 count -= 1 << order;
929 }
930
931 return pages;
932error:
933 while (i--)
934 if (pages[i])
935 __free_pages(pages[i], 0);
936 kvfree(pages);
937 return NULL;
938}
939
940static int __iommu_free_buffer(struct device *dev, struct page **pages,
941 size_t size, unsigned long attrs)
942{
943 int count = size >> PAGE_SHIFT;
944 int i;
945
946 if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
947 dma_release_from_contiguous(dev, pages[0], count);
948 } else {
949 for (i = 0; i < count; i++)
950 if (pages[i])
951 __free_pages(pages[i], 0);
952 }
953
954 kvfree(pages);
955 return 0;
956}
957
958/*
959 * Create a mapping in device IO address space for specified pages
960 */
961static dma_addr_t
962__iommu_create_mapping(struct device *dev, struct page **pages, size_t size,
963 unsigned long attrs)
964{
965 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
966 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
967 dma_addr_t dma_addr, iova;
968 int i;
969
970 dma_addr = __alloc_iova(mapping, size);
971 if (dma_addr == DMA_MAPPING_ERROR)
972 return dma_addr;
973
974 iova = dma_addr;
975 for (i = 0; i < count; ) {
976 int ret;
977
978 unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
979 phys_addr_t phys = page_to_phys(pages[i]);
980 unsigned int len, j;
981
982 for (j = i + 1; j < count; j++, next_pfn++)
983 if (page_to_pfn(pages[j]) != next_pfn)
984 break;
985
986 len = (j - i) << PAGE_SHIFT;
987 ret = iommu_map(mapping->domain, iova, phys, len,
988 __dma_info_to_prot(DMA_BIDIRECTIONAL, attrs),
989 GFP_KERNEL);
990 if (ret < 0)
991 goto fail;
992 iova += len;
993 i = j;
994 }
995 return dma_addr;
996fail:
997 iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
998 __free_iova(mapping, dma_addr, size);
999 return DMA_MAPPING_ERROR;
1000}
1001
1002static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1003{
1004 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1005
1006 /*
1007 * add optional in-page offset from iova to size and align
1008 * result to page size
1009 */
1010 size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1011 iova &= PAGE_MASK;
1012
1013 iommu_unmap(mapping->domain, iova, size);
1014 __free_iova(mapping, iova, size);
1015 return 0;
1016}
1017
1018static struct page **__atomic_get_pages(void *addr)
1019{
1020 struct page *page;
1021 phys_addr_t phys;
1022
1023 phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr);
1024 page = phys_to_page(phys);
1025
1026 return (struct page **)page;
1027}
1028
1029static struct page **__iommu_get_pages(void *cpu_addr, unsigned long attrs)
1030{
1031 if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1032 return __atomic_get_pages(cpu_addr);
1033
1034 if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1035 return cpu_addr;
1036
1037 return dma_common_find_pages(cpu_addr);
1038}
1039
1040static void *__iommu_alloc_simple(struct device *dev, size_t size, gfp_t gfp,
1041 dma_addr_t *handle, int coherent_flag,
1042 unsigned long attrs)
1043{
1044 struct page *page;
1045 void *addr;
1046
1047 if (coherent_flag == COHERENT)
1048 addr = __alloc_simple_buffer(dev, size, gfp, &page);
1049 else
1050 addr = __alloc_from_pool(size, &page);
1051 if (!addr)
1052 return NULL;
1053
1054 *handle = __iommu_create_mapping(dev, &page, size, attrs);
1055 if (*handle == DMA_MAPPING_ERROR)
1056 goto err_mapping;
1057
1058 return addr;
1059
1060err_mapping:
1061 __free_from_pool(addr, size);
1062 return NULL;
1063}
1064
1065static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
1066 dma_addr_t handle, size_t size, int coherent_flag)
1067{
1068 __iommu_remove_mapping(dev, handle, size);
1069 if (coherent_flag == COHERENT)
1070 __dma_free_buffer(virt_to_page(cpu_addr), size);
1071 else
1072 __free_from_pool(cpu_addr, size);
1073}
1074
1075static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1076 dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1077{
1078 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
1079 struct page **pages;
1080 void *addr = NULL;
1081 int coherent_flag = dev->dma_coherent ? COHERENT : NORMAL;
1082
1083 *handle = DMA_MAPPING_ERROR;
1084 size = PAGE_ALIGN(size);
1085
1086 if (coherent_flag == COHERENT || !gfpflags_allow_blocking(gfp))
1087 return __iommu_alloc_simple(dev, size, gfp, handle,
1088 coherent_flag, attrs);
1089
1090 pages = __iommu_alloc_buffer(dev, size, gfp, attrs, coherent_flag);
1091 if (!pages)
1092 return NULL;
1093
1094 *handle = __iommu_create_mapping(dev, pages, size, attrs);
1095 if (*handle == DMA_MAPPING_ERROR)
1096 goto err_buffer;
1097
1098 if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1099 return pages;
1100
1101 addr = dma_common_pages_remap(pages, size, prot,
1102 __builtin_return_address(0));
1103 if (!addr)
1104 goto err_mapping;
1105
1106 return addr;
1107
1108err_mapping:
1109 __iommu_remove_mapping(dev, *handle, size);
1110err_buffer:
1111 __iommu_free_buffer(dev, pages, size, attrs);
1112 return NULL;
1113}
1114
1115static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1116 void *cpu_addr, dma_addr_t dma_addr, size_t size,
1117 unsigned long attrs)
1118{
1119 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1120 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1121 int err;
1122
1123 if (!pages)
1124 return -ENXIO;
1125
1126 if (vma->vm_pgoff >= nr_pages)
1127 return -ENXIO;
1128
1129 if (!dev->dma_coherent)
1130 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1131
1132 err = vm_map_pages(vma, pages, nr_pages);
1133 if (err)
1134 pr_err("Remapping memory failed: %d\n", err);
1135
1136 return err;
1137}
1138
1139/*
1140 * free a page as defined by the above mapping.
1141 * Must not be called with IRQs disabled.
1142 */
1143static void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1144 dma_addr_t handle, unsigned long attrs)
1145{
1146 int coherent_flag = dev->dma_coherent ? COHERENT : NORMAL;
1147 struct page **pages;
1148 size = PAGE_ALIGN(size);
1149
1150 if (coherent_flag == COHERENT || __in_atomic_pool(cpu_addr, size)) {
1151 __iommu_free_atomic(dev, cpu_addr, handle, size, coherent_flag);
1152 return;
1153 }
1154
1155 pages = __iommu_get_pages(cpu_addr, attrs);
1156 if (!pages) {
1157 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1158 return;
1159 }
1160
1161 if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0)
1162 dma_common_free_remap(cpu_addr, size);
1163
1164 __iommu_remove_mapping(dev, handle, size);
1165 __iommu_free_buffer(dev, pages, size, attrs);
1166}
1167
1168static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1169 void *cpu_addr, dma_addr_t dma_addr,
1170 size_t size, unsigned long attrs)
1171{
1172 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1173 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1174
1175 if (!pages)
1176 return -ENXIO;
1177
1178 return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1179 GFP_KERNEL);
1180}
1181
1182/*
1183 * Map a part of the scatter-gather list into contiguous io address space
1184 */
1185static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1186 size_t size, dma_addr_t *handle,
1187 enum dma_data_direction dir, unsigned long attrs)
1188{
1189 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1190 dma_addr_t iova, iova_base;
1191 int ret = 0;
1192 unsigned int count;
1193 struct scatterlist *s;
1194 int prot;
1195
1196 size = PAGE_ALIGN(size);
1197 *handle = DMA_MAPPING_ERROR;
1198
1199 iova_base = iova = __alloc_iova(mapping, size);
1200 if (iova == DMA_MAPPING_ERROR)
1201 return -ENOMEM;
1202
1203 for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1204 phys_addr_t phys = page_to_phys(sg_page(s));
1205 unsigned int len = PAGE_ALIGN(s->offset + s->length);
1206
1207 if (!dev->dma_coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1208 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1209
1210 prot = __dma_info_to_prot(dir, attrs);
1211
1212 ret = iommu_map(mapping->domain, iova, phys, len, prot,
1213 GFP_KERNEL);
1214 if (ret < 0)
1215 goto fail;
1216 count += len >> PAGE_SHIFT;
1217 iova += len;
1218 }
1219 *handle = iova_base;
1220
1221 return 0;
1222fail:
1223 iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1224 __free_iova(mapping, iova_base, size);
1225 return ret;
1226}
1227
1228/**
1229 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1230 * @dev: valid struct device pointer
1231 * @sg: list of buffers
1232 * @nents: number of buffers to map
1233 * @dir: DMA transfer direction
1234 *
1235 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1236 * The scatter gather list elements are merged together (if possible) and
1237 * tagged with the appropriate dma address and length. They are obtained via
1238 * sg_dma_{address,length}.
1239 */
1240static int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1241 int nents, enum dma_data_direction dir, unsigned long attrs)
1242{
1243 struct scatterlist *s = sg, *dma = sg, *start = sg;
1244 int i, count = 0, ret;
1245 unsigned int offset = s->offset;
1246 unsigned int size = s->offset + s->length;
1247 unsigned int max = dma_get_max_seg_size(dev);
1248
1249 for (i = 1; i < nents; i++) {
1250 s = sg_next(s);
1251
1252 s->dma_length = 0;
1253
1254 if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1255 ret = __map_sg_chunk(dev, start, size,
1256 &dma->dma_address, dir, attrs);
1257 if (ret < 0)
1258 goto bad_mapping;
1259
1260 dma->dma_address += offset;
1261 dma->dma_length = size - offset;
1262
1263 size = offset = s->offset;
1264 start = s;
1265 dma = sg_next(dma);
1266 count += 1;
1267 }
1268 size += s->length;
1269 }
1270 ret = __map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs);
1271 if (ret < 0)
1272 goto bad_mapping;
1273
1274 dma->dma_address += offset;
1275 dma->dma_length = size - offset;
1276
1277 return count+1;
1278
1279bad_mapping:
1280 for_each_sg(sg, s, count, i)
1281 __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1282 if (ret == -ENOMEM)
1283 return ret;
1284 return -EINVAL;
1285}
1286
1287/**
1288 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1289 * @dev: valid struct device pointer
1290 * @sg: list of buffers
1291 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1292 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1293 *
1294 * Unmap a set of streaming mode DMA translations. Again, CPU access
1295 * rules concerning calls here are the same as for dma_unmap_single().
1296 */
1297static void arm_iommu_unmap_sg(struct device *dev,
1298 struct scatterlist *sg, int nents,
1299 enum dma_data_direction dir,
1300 unsigned long attrs)
1301{
1302 struct scatterlist *s;
1303 int i;
1304
1305 for_each_sg(sg, s, nents, i) {
1306 if (sg_dma_len(s))
1307 __iommu_remove_mapping(dev, sg_dma_address(s),
1308 sg_dma_len(s));
1309 if (!dev->dma_coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1310 __dma_page_dev_to_cpu(sg_page(s), s->offset,
1311 s->length, dir);
1312 }
1313}
1314
1315/**
1316 * arm_iommu_sync_sg_for_cpu
1317 * @dev: valid struct device pointer
1318 * @sg: list of buffers
1319 * @nents: number of buffers to map (returned from dma_map_sg)
1320 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1321 */
1322static void arm_iommu_sync_sg_for_cpu(struct device *dev,
1323 struct scatterlist *sg,
1324 int nents, enum dma_data_direction dir)
1325{
1326 struct scatterlist *s;
1327 int i;
1328
1329 if (dev->dma_coherent)
1330 return;
1331
1332 for_each_sg(sg, s, nents, i)
1333 __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1334
1335}
1336
1337/**
1338 * arm_iommu_sync_sg_for_device
1339 * @dev: valid struct device pointer
1340 * @sg: list of buffers
1341 * @nents: number of buffers to map (returned from dma_map_sg)
1342 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1343 */
1344static void arm_iommu_sync_sg_for_device(struct device *dev,
1345 struct scatterlist *sg,
1346 int nents, enum dma_data_direction dir)
1347{
1348 struct scatterlist *s;
1349 int i;
1350
1351 if (dev->dma_coherent)
1352 return;
1353
1354 for_each_sg(sg, s, nents, i)
1355 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1356}
1357
1358/**
1359 * arm_iommu_map_page
1360 * @dev: valid struct device pointer
1361 * @page: page that buffer resides in
1362 * @offset: offset into page for start of buffer
1363 * @size: size of buffer to map
1364 * @dir: DMA transfer direction
1365 *
1366 * IOMMU aware version of arm_dma_map_page()
1367 */
1368static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1369 unsigned long offset, size_t size, enum dma_data_direction dir,
1370 unsigned long attrs)
1371{
1372 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1373 dma_addr_t dma_addr;
1374 int ret, prot, len = PAGE_ALIGN(size + offset);
1375
1376 if (!dev->dma_coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1377 __dma_page_cpu_to_dev(page, offset, size, dir);
1378
1379 dma_addr = __alloc_iova(mapping, len);
1380 if (dma_addr == DMA_MAPPING_ERROR)
1381 return dma_addr;
1382
1383 prot = __dma_info_to_prot(dir, attrs);
1384
1385 ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len,
1386 prot, GFP_KERNEL);
1387 if (ret < 0)
1388 goto fail;
1389
1390 return dma_addr + offset;
1391fail:
1392 __free_iova(mapping, dma_addr, len);
1393 return DMA_MAPPING_ERROR;
1394}
1395
1396/**
1397 * arm_iommu_unmap_page
1398 * @dev: valid struct device pointer
1399 * @handle: DMA address of buffer
1400 * @size: size of buffer (same as passed to dma_map_page)
1401 * @dir: DMA transfer direction (same as passed to dma_map_page)
1402 *
1403 * IOMMU aware version of arm_dma_unmap_page()
1404 */
1405static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1406 size_t size, enum dma_data_direction dir, unsigned long attrs)
1407{
1408 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1409 dma_addr_t iova = handle & PAGE_MASK;
1410 struct page *page;
1411 int offset = handle & ~PAGE_MASK;
1412 int len = PAGE_ALIGN(size + offset);
1413
1414 if (!iova)
1415 return;
1416
1417 if (!dev->dma_coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) {
1418 page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1419 __dma_page_dev_to_cpu(page, offset, size, dir);
1420 }
1421
1422 iommu_unmap(mapping->domain, iova, len);
1423 __free_iova(mapping, iova, len);
1424}
1425
1426/**
1427 * arm_iommu_map_resource - map a device resource for DMA
1428 * @dev: valid struct device pointer
1429 * @phys_addr: physical address of resource
1430 * @size: size of resource to map
1431 * @dir: DMA transfer direction
1432 */
1433static dma_addr_t arm_iommu_map_resource(struct device *dev,
1434 phys_addr_t phys_addr, size_t size,
1435 enum dma_data_direction dir, unsigned long attrs)
1436{
1437 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1438 dma_addr_t dma_addr;
1439 int ret, prot;
1440 phys_addr_t addr = phys_addr & PAGE_MASK;
1441 unsigned int offset = phys_addr & ~PAGE_MASK;
1442 size_t len = PAGE_ALIGN(size + offset);
1443
1444 dma_addr = __alloc_iova(mapping, len);
1445 if (dma_addr == DMA_MAPPING_ERROR)
1446 return dma_addr;
1447
1448 prot = __dma_info_to_prot(dir, attrs) | IOMMU_MMIO;
1449
1450 ret = iommu_map(mapping->domain, dma_addr, addr, len, prot, GFP_KERNEL);
1451 if (ret < 0)
1452 goto fail;
1453
1454 return dma_addr + offset;
1455fail:
1456 __free_iova(mapping, dma_addr, len);
1457 return DMA_MAPPING_ERROR;
1458}
1459
1460/**
1461 * arm_iommu_unmap_resource - unmap a device DMA resource
1462 * @dev: valid struct device pointer
1463 * @dma_handle: DMA address to resource
1464 * @size: size of resource to map
1465 * @dir: DMA transfer direction
1466 */
1467static void arm_iommu_unmap_resource(struct device *dev, dma_addr_t dma_handle,
1468 size_t size, enum dma_data_direction dir,
1469 unsigned long attrs)
1470{
1471 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1472 dma_addr_t iova = dma_handle & PAGE_MASK;
1473 unsigned int offset = dma_handle & ~PAGE_MASK;
1474 size_t len = PAGE_ALIGN(size + offset);
1475
1476 if (!iova)
1477 return;
1478
1479 iommu_unmap(mapping->domain, iova, len);
1480 __free_iova(mapping, iova, len);
1481}
1482
1483static void arm_iommu_sync_single_for_cpu(struct device *dev,
1484 dma_addr_t handle, size_t size, enum dma_data_direction dir)
1485{
1486 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1487 dma_addr_t iova = handle & PAGE_MASK;
1488 struct page *page;
1489 unsigned int offset = handle & ~PAGE_MASK;
1490
1491 if (dev->dma_coherent || !iova)
1492 return;
1493
1494 page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1495 __dma_page_dev_to_cpu(page, offset, size, dir);
1496}
1497
1498static void arm_iommu_sync_single_for_device(struct device *dev,
1499 dma_addr_t handle, size_t size, enum dma_data_direction dir)
1500{
1501 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1502 dma_addr_t iova = handle & PAGE_MASK;
1503 struct page *page;
1504 unsigned int offset = handle & ~PAGE_MASK;
1505
1506 if (dev->dma_coherent || !iova)
1507 return;
1508
1509 page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1510 __dma_page_cpu_to_dev(page, offset, size, dir);
1511}
1512
1513static const struct dma_map_ops iommu_ops = {
1514 .alloc = arm_iommu_alloc_attrs,
1515 .free = arm_iommu_free_attrs,
1516 .mmap = arm_iommu_mmap_attrs,
1517 .get_sgtable = arm_iommu_get_sgtable,
1518
1519 .map_page = arm_iommu_map_page,
1520 .unmap_page = arm_iommu_unmap_page,
1521 .sync_single_for_cpu = arm_iommu_sync_single_for_cpu,
1522 .sync_single_for_device = arm_iommu_sync_single_for_device,
1523
1524 .map_sg = arm_iommu_map_sg,
1525 .unmap_sg = arm_iommu_unmap_sg,
1526 .sync_sg_for_cpu = arm_iommu_sync_sg_for_cpu,
1527 .sync_sg_for_device = arm_iommu_sync_sg_for_device,
1528
1529 .map_resource = arm_iommu_map_resource,
1530 .unmap_resource = arm_iommu_unmap_resource,
1531};
1532
1533/**
1534 * arm_iommu_create_mapping
1535 * @dev: pointer to the client device (for IOMMU calls)
1536 * @base: start address of the valid IO address space
1537 * @size: maximum size of the valid IO address space
1538 *
1539 * Creates a mapping structure which holds information about used/unused
1540 * IO address ranges, which is required to perform memory allocation and
1541 * mapping with IOMMU aware functions.
1542 *
1543 * The client device need to be attached to the mapping with
1544 * arm_iommu_attach_device function.
1545 */
1546struct dma_iommu_mapping *
1547arm_iommu_create_mapping(struct device *dev, dma_addr_t base, u64 size)
1548{
1549 unsigned int bits = size >> PAGE_SHIFT;
1550 unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long);
1551 struct dma_iommu_mapping *mapping;
1552 int extensions = 1;
1553 int err = -ENOMEM;
1554
1555 /* currently only 32-bit DMA address space is supported */
1556 if (size > DMA_BIT_MASK(32) + 1)
1557 return ERR_PTR(-ERANGE);
1558
1559 if (!bitmap_size)
1560 return ERR_PTR(-EINVAL);
1561
1562 if (bitmap_size > PAGE_SIZE) {
1563 extensions = bitmap_size / PAGE_SIZE;
1564 bitmap_size = PAGE_SIZE;
1565 }
1566
1567 mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
1568 if (!mapping)
1569 goto err;
1570
1571 mapping->bitmap_size = bitmap_size;
1572 mapping->bitmaps = kcalloc(extensions, sizeof(unsigned long *),
1573 GFP_KERNEL);
1574 if (!mapping->bitmaps)
1575 goto err2;
1576
1577 mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL);
1578 if (!mapping->bitmaps[0])
1579 goto err3;
1580
1581 mapping->nr_bitmaps = 1;
1582 mapping->extensions = extensions;
1583 mapping->base = base;
1584 mapping->bits = BITS_PER_BYTE * bitmap_size;
1585
1586 spin_lock_init(&mapping->lock);
1587
1588 mapping->domain = iommu_paging_domain_alloc(dev);
1589 if (IS_ERR(mapping->domain)) {
1590 err = PTR_ERR(mapping->domain);
1591 goto err4;
1592 }
1593
1594 kref_init(&mapping->kref);
1595 return mapping;
1596err4:
1597 kfree(mapping->bitmaps[0]);
1598err3:
1599 kfree(mapping->bitmaps);
1600err2:
1601 kfree(mapping);
1602err:
1603 return ERR_PTR(err);
1604}
1605EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
1606
1607static void release_iommu_mapping(struct kref *kref)
1608{
1609 int i;
1610 struct dma_iommu_mapping *mapping =
1611 container_of(kref, struct dma_iommu_mapping, kref);
1612
1613 iommu_domain_free(mapping->domain);
1614 for (i = 0; i < mapping->nr_bitmaps; i++)
1615 kfree(mapping->bitmaps[i]);
1616 kfree(mapping->bitmaps);
1617 kfree(mapping);
1618}
1619
1620static int extend_iommu_mapping(struct dma_iommu_mapping *mapping)
1621{
1622 int next_bitmap;
1623
1624 if (mapping->nr_bitmaps >= mapping->extensions)
1625 return -EINVAL;
1626
1627 next_bitmap = mapping->nr_bitmaps;
1628 mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size,
1629 GFP_ATOMIC);
1630 if (!mapping->bitmaps[next_bitmap])
1631 return -ENOMEM;
1632
1633 mapping->nr_bitmaps++;
1634
1635 return 0;
1636}
1637
1638void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
1639{
1640 if (mapping)
1641 kref_put(&mapping->kref, release_iommu_mapping);
1642}
1643EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
1644
1645static int __arm_iommu_attach_device(struct device *dev,
1646 struct dma_iommu_mapping *mapping)
1647{
1648 int err;
1649
1650 err = iommu_attach_device(mapping->domain, dev);
1651 if (err)
1652 return err;
1653
1654 kref_get(&mapping->kref);
1655 to_dma_iommu_mapping(dev) = mapping;
1656
1657 pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
1658 return 0;
1659}
1660
1661/**
1662 * arm_iommu_attach_device
1663 * @dev: valid struct device pointer
1664 * @mapping: io address space mapping structure (returned from
1665 * arm_iommu_create_mapping)
1666 *
1667 * Attaches specified io address space mapping to the provided device.
1668 * This replaces the dma operations (dma_map_ops pointer) with the
1669 * IOMMU aware version.
1670 *
1671 * More than one client might be attached to the same io address space
1672 * mapping.
1673 */
1674int arm_iommu_attach_device(struct device *dev,
1675 struct dma_iommu_mapping *mapping)
1676{
1677 int err;
1678
1679 err = __arm_iommu_attach_device(dev, mapping);
1680 if (err)
1681 return err;
1682
1683 set_dma_ops(dev, &iommu_ops);
1684 return 0;
1685}
1686EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
1687
1688/**
1689 * arm_iommu_detach_device
1690 * @dev: valid struct device pointer
1691 *
1692 * Detaches the provided device from a previously attached map.
1693 * This overwrites the dma_ops pointer with appropriate non-IOMMU ops.
1694 */
1695void arm_iommu_detach_device(struct device *dev)
1696{
1697 struct dma_iommu_mapping *mapping;
1698
1699 mapping = to_dma_iommu_mapping(dev);
1700 if (!mapping) {
1701 dev_warn(dev, "Not attached\n");
1702 return;
1703 }
1704
1705 iommu_detach_device(mapping->domain, dev);
1706 kref_put(&mapping->kref, release_iommu_mapping);
1707 to_dma_iommu_mapping(dev) = NULL;
1708 set_dma_ops(dev, NULL);
1709
1710 pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
1711}
1712EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
1713
1714static void arm_setup_iommu_dma_ops(struct device *dev)
1715{
1716 struct dma_iommu_mapping *mapping;
1717 u64 dma_base = 0, size = 1ULL << 32;
1718
1719 if (dev->dma_range_map) {
1720 dma_base = dma_range_map_min(dev->dma_range_map);
1721 size = dma_range_map_max(dev->dma_range_map) - dma_base;
1722 }
1723 mapping = arm_iommu_create_mapping(dev, dma_base, size);
1724 if (IS_ERR(mapping)) {
1725 pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n",
1726 size, dev_name(dev));
1727 return;
1728 }
1729
1730 if (__arm_iommu_attach_device(dev, mapping)) {
1731 pr_warn("Failed to attached device %s to IOMMU_mapping\n",
1732 dev_name(dev));
1733 arm_iommu_release_mapping(mapping);
1734 return;
1735 }
1736
1737 set_dma_ops(dev, &iommu_ops);
1738}
1739
1740static void arm_teardown_iommu_dma_ops(struct device *dev)
1741{
1742 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1743
1744 if (!mapping)
1745 return;
1746
1747 arm_iommu_detach_device(dev);
1748 arm_iommu_release_mapping(mapping);
1749}
1750
1751#else
1752
1753static void arm_setup_iommu_dma_ops(struct device *dev)
1754{
1755}
1756
1757static void arm_teardown_iommu_dma_ops(struct device *dev) { }
1758
1759#endif /* CONFIG_ARM_DMA_USE_IOMMU */
1760
1761void arch_setup_dma_ops(struct device *dev, bool coherent)
1762{
1763 /*
1764 * Due to legacy code that sets the ->dma_coherent flag from a bus
1765 * notifier we can't just assign coherent to the ->dma_coherent flag
1766 * here, but instead have to make sure we only set but never clear it
1767 * for now.
1768 */
1769 if (coherent)
1770 dev->dma_coherent = true;
1771
1772 /*
1773 * Don't override the dma_ops if they have already been set. Ideally
1774 * this should be the only location where dma_ops are set, remove this
1775 * check when all other callers of set_dma_ops will have disappeared.
1776 */
1777 if (dev->dma_ops)
1778 return;
1779
1780 if (device_iommu_mapped(dev))
1781 arm_setup_iommu_dma_ops(dev);
1782
1783 xen_setup_dma_ops(dev);
1784 dev->archdata.dma_ops_setup = true;
1785}
1786
1787void arch_teardown_dma_ops(struct device *dev)
1788{
1789 if (!dev->archdata.dma_ops_setup)
1790 return;
1791
1792 arm_teardown_iommu_dma_ops(dev);
1793 /* Let arch_setup_dma_ops() start again from scratch upon re-probe */
1794 set_dma_ops(dev, NULL);
1795}
1796
1797void arch_sync_dma_for_device(phys_addr_t paddr, size_t size,
1798 enum dma_data_direction dir)
1799{
1800 __dma_page_cpu_to_dev(phys_to_page(paddr), paddr & (PAGE_SIZE - 1),
1801 size, dir);
1802}
1803
1804void arch_sync_dma_for_cpu(phys_addr_t paddr, size_t size,
1805 enum dma_data_direction dir)
1806{
1807 __dma_page_dev_to_cpu(phys_to_page(paddr), paddr & (PAGE_SIZE - 1),
1808 size, dir);
1809}
1810
1811void *arch_dma_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle,
1812 gfp_t gfp, unsigned long attrs)
1813{
1814 return __dma_alloc(dev, size, dma_handle, gfp,
1815 __get_dma_pgprot(attrs, PAGE_KERNEL), false,
1816 attrs, __builtin_return_address(0));
1817}
1818
1819void arch_dma_free(struct device *dev, size_t size, void *cpu_addr,
1820 dma_addr_t dma_handle, unsigned long attrs)
1821{
1822 __arm_dma_free(dev, size, cpu_addr, dma_handle, attrs, false);
1823}
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/arch/arm/mm/dma-mapping.c
4 *
5 * Copyright (C) 2000-2004 Russell King
6 *
7 * DMA uncached mapping support.
8 */
9#include <linux/module.h>
10#include <linux/mm.h>
11#include <linux/genalloc.h>
12#include <linux/gfp.h>
13#include <linux/errno.h>
14#include <linux/list.h>
15#include <linux/init.h>
16#include <linux/device.h>
17#include <linux/dma-direct.h>
18#include <linux/dma-mapping.h>
19#include <linux/dma-noncoherent.h>
20#include <linux/dma-contiguous.h>
21#include <linux/highmem.h>
22#include <linux/memblock.h>
23#include <linux/slab.h>
24#include <linux/iommu.h>
25#include <linux/io.h>
26#include <linux/vmalloc.h>
27#include <linux/sizes.h>
28#include <linux/cma.h>
29
30#include <asm/memory.h>
31#include <asm/highmem.h>
32#include <asm/cacheflush.h>
33#include <asm/tlbflush.h>
34#include <asm/mach/arch.h>
35#include <asm/dma-iommu.h>
36#include <asm/mach/map.h>
37#include <asm/system_info.h>
38#include <asm/dma-contiguous.h>
39#include <xen/swiotlb-xen.h>
40
41#include "dma.h"
42#include "mm.h"
43
44struct arm_dma_alloc_args {
45 struct device *dev;
46 size_t size;
47 gfp_t gfp;
48 pgprot_t prot;
49 const void *caller;
50 bool want_vaddr;
51 int coherent_flag;
52};
53
54struct arm_dma_free_args {
55 struct device *dev;
56 size_t size;
57 void *cpu_addr;
58 struct page *page;
59 bool want_vaddr;
60};
61
62#define NORMAL 0
63#define COHERENT 1
64
65struct arm_dma_allocator {
66 void *(*alloc)(struct arm_dma_alloc_args *args,
67 struct page **ret_page);
68 void (*free)(struct arm_dma_free_args *args);
69};
70
71struct arm_dma_buffer {
72 struct list_head list;
73 void *virt;
74 struct arm_dma_allocator *allocator;
75};
76
77static LIST_HEAD(arm_dma_bufs);
78static DEFINE_SPINLOCK(arm_dma_bufs_lock);
79
80static struct arm_dma_buffer *arm_dma_buffer_find(void *virt)
81{
82 struct arm_dma_buffer *buf, *found = NULL;
83 unsigned long flags;
84
85 spin_lock_irqsave(&arm_dma_bufs_lock, flags);
86 list_for_each_entry(buf, &arm_dma_bufs, list) {
87 if (buf->virt == virt) {
88 list_del(&buf->list);
89 found = buf;
90 break;
91 }
92 }
93 spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
94 return found;
95}
96
97/*
98 * The DMA API is built upon the notion of "buffer ownership". A buffer
99 * is either exclusively owned by the CPU (and therefore may be accessed
100 * by it) or exclusively owned by the DMA device. These helper functions
101 * represent the transitions between these two ownership states.
102 *
103 * Note, however, that on later ARMs, this notion does not work due to
104 * speculative prefetches. We model our approach on the assumption that
105 * the CPU does do speculative prefetches, which means we clean caches
106 * before transfers and delay cache invalidation until transfer completion.
107 *
108 */
109static void __dma_page_cpu_to_dev(struct page *, unsigned long,
110 size_t, enum dma_data_direction);
111static void __dma_page_dev_to_cpu(struct page *, unsigned long,
112 size_t, enum dma_data_direction);
113
114/**
115 * arm_dma_map_page - map a portion of a page for streaming DMA
116 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
117 * @page: page that buffer resides in
118 * @offset: offset into page for start of buffer
119 * @size: size of buffer to map
120 * @dir: DMA transfer direction
121 *
122 * Ensure that any data held in the cache is appropriately discarded
123 * or written back.
124 *
125 * The device owns this memory once this call has completed. The CPU
126 * can regain ownership by calling dma_unmap_page().
127 */
128static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
129 unsigned long offset, size_t size, enum dma_data_direction dir,
130 unsigned long attrs)
131{
132 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
133 __dma_page_cpu_to_dev(page, offset, size, dir);
134 return pfn_to_dma(dev, page_to_pfn(page)) + offset;
135}
136
137static dma_addr_t arm_coherent_dma_map_page(struct device *dev, struct page *page,
138 unsigned long offset, size_t size, enum dma_data_direction dir,
139 unsigned long attrs)
140{
141 return pfn_to_dma(dev, page_to_pfn(page)) + offset;
142}
143
144/**
145 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
146 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
147 * @handle: DMA address of buffer
148 * @size: size of buffer (same as passed to dma_map_page)
149 * @dir: DMA transfer direction (same as passed to dma_map_page)
150 *
151 * Unmap a page streaming mode DMA translation. The handle and size
152 * must match what was provided in the previous dma_map_page() call.
153 * All other usages are undefined.
154 *
155 * After this call, reads by the CPU to the buffer are guaranteed to see
156 * whatever the device wrote there.
157 */
158static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
159 size_t size, enum dma_data_direction dir, unsigned long attrs)
160{
161 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
162 __dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
163 handle & ~PAGE_MASK, size, dir);
164}
165
166static void arm_dma_sync_single_for_cpu(struct device *dev,
167 dma_addr_t handle, size_t size, enum dma_data_direction dir)
168{
169 unsigned int offset = handle & (PAGE_SIZE - 1);
170 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
171 __dma_page_dev_to_cpu(page, offset, size, dir);
172}
173
174static void arm_dma_sync_single_for_device(struct device *dev,
175 dma_addr_t handle, size_t size, enum dma_data_direction dir)
176{
177 unsigned int offset = handle & (PAGE_SIZE - 1);
178 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
179 __dma_page_cpu_to_dev(page, offset, size, dir);
180}
181
182const struct dma_map_ops arm_dma_ops = {
183 .alloc = arm_dma_alloc,
184 .free = arm_dma_free,
185 .mmap = arm_dma_mmap,
186 .get_sgtable = arm_dma_get_sgtable,
187 .map_page = arm_dma_map_page,
188 .unmap_page = arm_dma_unmap_page,
189 .map_sg = arm_dma_map_sg,
190 .unmap_sg = arm_dma_unmap_sg,
191 .map_resource = dma_direct_map_resource,
192 .sync_single_for_cpu = arm_dma_sync_single_for_cpu,
193 .sync_single_for_device = arm_dma_sync_single_for_device,
194 .sync_sg_for_cpu = arm_dma_sync_sg_for_cpu,
195 .sync_sg_for_device = arm_dma_sync_sg_for_device,
196 .dma_supported = arm_dma_supported,
197 .get_required_mask = dma_direct_get_required_mask,
198};
199EXPORT_SYMBOL(arm_dma_ops);
200
201static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
202 dma_addr_t *handle, gfp_t gfp, unsigned long attrs);
203static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
204 dma_addr_t handle, unsigned long attrs);
205static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
206 void *cpu_addr, dma_addr_t dma_addr, size_t size,
207 unsigned long attrs);
208
209const struct dma_map_ops arm_coherent_dma_ops = {
210 .alloc = arm_coherent_dma_alloc,
211 .free = arm_coherent_dma_free,
212 .mmap = arm_coherent_dma_mmap,
213 .get_sgtable = arm_dma_get_sgtable,
214 .map_page = arm_coherent_dma_map_page,
215 .map_sg = arm_dma_map_sg,
216 .map_resource = dma_direct_map_resource,
217 .dma_supported = arm_dma_supported,
218 .get_required_mask = dma_direct_get_required_mask,
219};
220EXPORT_SYMBOL(arm_coherent_dma_ops);
221
222static int __dma_supported(struct device *dev, u64 mask, bool warn)
223{
224 unsigned long max_dma_pfn = min(max_pfn, arm_dma_pfn_limit);
225
226 /*
227 * Translate the device's DMA mask to a PFN limit. This
228 * PFN number includes the page which we can DMA to.
229 */
230 if (dma_to_pfn(dev, mask) < max_dma_pfn) {
231 if (warn)
232 dev_warn(dev, "Coherent DMA mask %#llx (pfn %#lx-%#lx) covers a smaller range of system memory than the DMA zone pfn 0x0-%#lx\n",
233 mask,
234 dma_to_pfn(dev, 0), dma_to_pfn(dev, mask) + 1,
235 max_dma_pfn + 1);
236 return 0;
237 }
238
239 return 1;
240}
241
242static u64 get_coherent_dma_mask(struct device *dev)
243{
244 u64 mask = (u64)DMA_BIT_MASK(32);
245
246 if (dev) {
247 mask = dev->coherent_dma_mask;
248
249 /*
250 * Sanity check the DMA mask - it must be non-zero, and
251 * must be able to be satisfied by a DMA allocation.
252 */
253 if (mask == 0) {
254 dev_warn(dev, "coherent DMA mask is unset\n");
255 return 0;
256 }
257
258 if (!__dma_supported(dev, mask, true))
259 return 0;
260 }
261
262 return mask;
263}
264
265static void __dma_clear_buffer(struct page *page, size_t size, int coherent_flag)
266{
267 /*
268 * Ensure that the allocated pages are zeroed, and that any data
269 * lurking in the kernel direct-mapped region is invalidated.
270 */
271 if (PageHighMem(page)) {
272 phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
273 phys_addr_t end = base + size;
274 while (size > 0) {
275 void *ptr = kmap_atomic(page);
276 memset(ptr, 0, PAGE_SIZE);
277 if (coherent_flag != COHERENT)
278 dmac_flush_range(ptr, ptr + PAGE_SIZE);
279 kunmap_atomic(ptr);
280 page++;
281 size -= PAGE_SIZE;
282 }
283 if (coherent_flag != COHERENT)
284 outer_flush_range(base, end);
285 } else {
286 void *ptr = page_address(page);
287 memset(ptr, 0, size);
288 if (coherent_flag != COHERENT) {
289 dmac_flush_range(ptr, ptr + size);
290 outer_flush_range(__pa(ptr), __pa(ptr) + size);
291 }
292 }
293}
294
295/*
296 * Allocate a DMA buffer for 'dev' of size 'size' using the
297 * specified gfp mask. Note that 'size' must be page aligned.
298 */
299static struct page *__dma_alloc_buffer(struct device *dev, size_t size,
300 gfp_t gfp, int coherent_flag)
301{
302 unsigned long order = get_order(size);
303 struct page *page, *p, *e;
304
305 page = alloc_pages(gfp, order);
306 if (!page)
307 return NULL;
308
309 /*
310 * Now split the huge page and free the excess pages
311 */
312 split_page(page, order);
313 for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
314 __free_page(p);
315
316 __dma_clear_buffer(page, size, coherent_flag);
317
318 return page;
319}
320
321/*
322 * Free a DMA buffer. 'size' must be page aligned.
323 */
324static void __dma_free_buffer(struct page *page, size_t size)
325{
326 struct page *e = page + (size >> PAGE_SHIFT);
327
328 while (page < e) {
329 __free_page(page);
330 page++;
331 }
332}
333
334static void *__alloc_from_contiguous(struct device *dev, size_t size,
335 pgprot_t prot, struct page **ret_page,
336 const void *caller, bool want_vaddr,
337 int coherent_flag, gfp_t gfp);
338
339static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
340 pgprot_t prot, struct page **ret_page,
341 const void *caller, bool want_vaddr);
342
343#define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K
344static struct gen_pool *atomic_pool __ro_after_init;
345
346static size_t atomic_pool_size __initdata = DEFAULT_DMA_COHERENT_POOL_SIZE;
347
348static int __init early_coherent_pool(char *p)
349{
350 atomic_pool_size = memparse(p, &p);
351 return 0;
352}
353early_param("coherent_pool", early_coherent_pool);
354
355/*
356 * Initialise the coherent pool for atomic allocations.
357 */
358static int __init atomic_pool_init(void)
359{
360 pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL);
361 gfp_t gfp = GFP_KERNEL | GFP_DMA;
362 struct page *page;
363 void *ptr;
364
365 atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
366 if (!atomic_pool)
367 goto out;
368 /*
369 * The atomic pool is only used for non-coherent allocations
370 * so we must pass NORMAL for coherent_flag.
371 */
372 if (dev_get_cma_area(NULL))
373 ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot,
374 &page, atomic_pool_init, true, NORMAL,
375 GFP_KERNEL);
376 else
377 ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot,
378 &page, atomic_pool_init, true);
379 if (ptr) {
380 int ret;
381
382 ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr,
383 page_to_phys(page),
384 atomic_pool_size, -1);
385 if (ret)
386 goto destroy_genpool;
387
388 gen_pool_set_algo(atomic_pool,
389 gen_pool_first_fit_order_align,
390 NULL);
391 pr_info("DMA: preallocated %zu KiB pool for atomic coherent allocations\n",
392 atomic_pool_size / 1024);
393 return 0;
394 }
395
396destroy_genpool:
397 gen_pool_destroy(atomic_pool);
398 atomic_pool = NULL;
399out:
400 pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n",
401 atomic_pool_size / 1024);
402 return -ENOMEM;
403}
404/*
405 * CMA is activated by core_initcall, so we must be called after it.
406 */
407postcore_initcall(atomic_pool_init);
408
409struct dma_contig_early_reserve {
410 phys_addr_t base;
411 unsigned long size;
412};
413
414static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
415
416static int dma_mmu_remap_num __initdata;
417
418void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
419{
420 dma_mmu_remap[dma_mmu_remap_num].base = base;
421 dma_mmu_remap[dma_mmu_remap_num].size = size;
422 dma_mmu_remap_num++;
423}
424
425void __init dma_contiguous_remap(void)
426{
427 int i;
428 for (i = 0; i < dma_mmu_remap_num; i++) {
429 phys_addr_t start = dma_mmu_remap[i].base;
430 phys_addr_t end = start + dma_mmu_remap[i].size;
431 struct map_desc map;
432 unsigned long addr;
433
434 if (end > arm_lowmem_limit)
435 end = arm_lowmem_limit;
436 if (start >= end)
437 continue;
438
439 map.pfn = __phys_to_pfn(start);
440 map.virtual = __phys_to_virt(start);
441 map.length = end - start;
442 map.type = MT_MEMORY_DMA_READY;
443
444 /*
445 * Clear previous low-memory mapping to ensure that the
446 * TLB does not see any conflicting entries, then flush
447 * the TLB of the old entries before creating new mappings.
448 *
449 * This ensures that any speculatively loaded TLB entries
450 * (even though they may be rare) can not cause any problems,
451 * and ensures that this code is architecturally compliant.
452 */
453 for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
454 addr += PMD_SIZE)
455 pmd_clear(pmd_off_k(addr));
456
457 flush_tlb_kernel_range(__phys_to_virt(start),
458 __phys_to_virt(end));
459
460 iotable_init(&map, 1);
461 }
462}
463
464static int __dma_update_pte(pte_t *pte, unsigned long addr, void *data)
465{
466 struct page *page = virt_to_page(addr);
467 pgprot_t prot = *(pgprot_t *)data;
468
469 set_pte_ext(pte, mk_pte(page, prot), 0);
470 return 0;
471}
472
473static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
474{
475 unsigned long start = (unsigned long) page_address(page);
476 unsigned end = start + size;
477
478 apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
479 flush_tlb_kernel_range(start, end);
480}
481
482static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
483 pgprot_t prot, struct page **ret_page,
484 const void *caller, bool want_vaddr)
485{
486 struct page *page;
487 void *ptr = NULL;
488 /*
489 * __alloc_remap_buffer is only called when the device is
490 * non-coherent
491 */
492 page = __dma_alloc_buffer(dev, size, gfp, NORMAL);
493 if (!page)
494 return NULL;
495 if (!want_vaddr)
496 goto out;
497
498 ptr = dma_common_contiguous_remap(page, size, prot, caller);
499 if (!ptr) {
500 __dma_free_buffer(page, size);
501 return NULL;
502 }
503
504 out:
505 *ret_page = page;
506 return ptr;
507}
508
509static void *__alloc_from_pool(size_t size, struct page **ret_page)
510{
511 unsigned long val;
512 void *ptr = NULL;
513
514 if (!atomic_pool) {
515 WARN(1, "coherent pool not initialised!\n");
516 return NULL;
517 }
518
519 val = gen_pool_alloc(atomic_pool, size);
520 if (val) {
521 phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
522
523 *ret_page = phys_to_page(phys);
524 ptr = (void *)val;
525 }
526
527 return ptr;
528}
529
530static bool __in_atomic_pool(void *start, size_t size)
531{
532 return addr_in_gen_pool(atomic_pool, (unsigned long)start, size);
533}
534
535static int __free_from_pool(void *start, size_t size)
536{
537 if (!__in_atomic_pool(start, size))
538 return 0;
539
540 gen_pool_free(atomic_pool, (unsigned long)start, size);
541
542 return 1;
543}
544
545static void *__alloc_from_contiguous(struct device *dev, size_t size,
546 pgprot_t prot, struct page **ret_page,
547 const void *caller, bool want_vaddr,
548 int coherent_flag, gfp_t gfp)
549{
550 unsigned long order = get_order(size);
551 size_t count = size >> PAGE_SHIFT;
552 struct page *page;
553 void *ptr = NULL;
554
555 page = dma_alloc_from_contiguous(dev, count, order, gfp & __GFP_NOWARN);
556 if (!page)
557 return NULL;
558
559 __dma_clear_buffer(page, size, coherent_flag);
560
561 if (!want_vaddr)
562 goto out;
563
564 if (PageHighMem(page)) {
565 ptr = dma_common_contiguous_remap(page, size, prot, caller);
566 if (!ptr) {
567 dma_release_from_contiguous(dev, page, count);
568 return NULL;
569 }
570 } else {
571 __dma_remap(page, size, prot);
572 ptr = page_address(page);
573 }
574
575 out:
576 *ret_page = page;
577 return ptr;
578}
579
580static void __free_from_contiguous(struct device *dev, struct page *page,
581 void *cpu_addr, size_t size, bool want_vaddr)
582{
583 if (want_vaddr) {
584 if (PageHighMem(page))
585 dma_common_free_remap(cpu_addr, size);
586 else
587 __dma_remap(page, size, PAGE_KERNEL);
588 }
589 dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
590}
591
592static inline pgprot_t __get_dma_pgprot(unsigned long attrs, pgprot_t prot)
593{
594 prot = (attrs & DMA_ATTR_WRITE_COMBINE) ?
595 pgprot_writecombine(prot) :
596 pgprot_dmacoherent(prot);
597 return prot;
598}
599
600static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
601 struct page **ret_page)
602{
603 struct page *page;
604 /* __alloc_simple_buffer is only called when the device is coherent */
605 page = __dma_alloc_buffer(dev, size, gfp, COHERENT);
606 if (!page)
607 return NULL;
608
609 *ret_page = page;
610 return page_address(page);
611}
612
613static void *simple_allocator_alloc(struct arm_dma_alloc_args *args,
614 struct page **ret_page)
615{
616 return __alloc_simple_buffer(args->dev, args->size, args->gfp,
617 ret_page);
618}
619
620static void simple_allocator_free(struct arm_dma_free_args *args)
621{
622 __dma_free_buffer(args->page, args->size);
623}
624
625static struct arm_dma_allocator simple_allocator = {
626 .alloc = simple_allocator_alloc,
627 .free = simple_allocator_free,
628};
629
630static void *cma_allocator_alloc(struct arm_dma_alloc_args *args,
631 struct page **ret_page)
632{
633 return __alloc_from_contiguous(args->dev, args->size, args->prot,
634 ret_page, args->caller,
635 args->want_vaddr, args->coherent_flag,
636 args->gfp);
637}
638
639static void cma_allocator_free(struct arm_dma_free_args *args)
640{
641 __free_from_contiguous(args->dev, args->page, args->cpu_addr,
642 args->size, args->want_vaddr);
643}
644
645static struct arm_dma_allocator cma_allocator = {
646 .alloc = cma_allocator_alloc,
647 .free = cma_allocator_free,
648};
649
650static void *pool_allocator_alloc(struct arm_dma_alloc_args *args,
651 struct page **ret_page)
652{
653 return __alloc_from_pool(args->size, ret_page);
654}
655
656static void pool_allocator_free(struct arm_dma_free_args *args)
657{
658 __free_from_pool(args->cpu_addr, args->size);
659}
660
661static struct arm_dma_allocator pool_allocator = {
662 .alloc = pool_allocator_alloc,
663 .free = pool_allocator_free,
664};
665
666static void *remap_allocator_alloc(struct arm_dma_alloc_args *args,
667 struct page **ret_page)
668{
669 return __alloc_remap_buffer(args->dev, args->size, args->gfp,
670 args->prot, ret_page, args->caller,
671 args->want_vaddr);
672}
673
674static void remap_allocator_free(struct arm_dma_free_args *args)
675{
676 if (args->want_vaddr)
677 dma_common_free_remap(args->cpu_addr, args->size);
678
679 __dma_free_buffer(args->page, args->size);
680}
681
682static struct arm_dma_allocator remap_allocator = {
683 .alloc = remap_allocator_alloc,
684 .free = remap_allocator_free,
685};
686
687static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
688 gfp_t gfp, pgprot_t prot, bool is_coherent,
689 unsigned long attrs, const void *caller)
690{
691 u64 mask = get_coherent_dma_mask(dev);
692 struct page *page = NULL;
693 void *addr;
694 bool allowblock, cma;
695 struct arm_dma_buffer *buf;
696 struct arm_dma_alloc_args args = {
697 .dev = dev,
698 .size = PAGE_ALIGN(size),
699 .gfp = gfp,
700 .prot = prot,
701 .caller = caller,
702 .want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
703 .coherent_flag = is_coherent ? COHERENT : NORMAL,
704 };
705
706#ifdef CONFIG_DMA_API_DEBUG
707 u64 limit = (mask + 1) & ~mask;
708 if (limit && size >= limit) {
709 dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
710 size, mask);
711 return NULL;
712 }
713#endif
714
715 if (!mask)
716 return NULL;
717
718 buf = kzalloc(sizeof(*buf),
719 gfp & ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM));
720 if (!buf)
721 return NULL;
722
723 if (mask < 0xffffffffULL)
724 gfp |= GFP_DMA;
725
726 /*
727 * Following is a work-around (a.k.a. hack) to prevent pages
728 * with __GFP_COMP being passed to split_page() which cannot
729 * handle them. The real problem is that this flag probably
730 * should be 0 on ARM as it is not supported on this
731 * platform; see CONFIG_HUGETLBFS.
732 */
733 gfp &= ~(__GFP_COMP);
734 args.gfp = gfp;
735
736 *handle = DMA_MAPPING_ERROR;
737 allowblock = gfpflags_allow_blocking(gfp);
738 cma = allowblock ? dev_get_cma_area(dev) : false;
739
740 if (cma)
741 buf->allocator = &cma_allocator;
742 else if (is_coherent)
743 buf->allocator = &simple_allocator;
744 else if (allowblock)
745 buf->allocator = &remap_allocator;
746 else
747 buf->allocator = &pool_allocator;
748
749 addr = buf->allocator->alloc(&args, &page);
750
751 if (page) {
752 unsigned long flags;
753
754 *handle = pfn_to_dma(dev, page_to_pfn(page));
755 buf->virt = args.want_vaddr ? addr : page;
756
757 spin_lock_irqsave(&arm_dma_bufs_lock, flags);
758 list_add(&buf->list, &arm_dma_bufs);
759 spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
760 } else {
761 kfree(buf);
762 }
763
764 return args.want_vaddr ? addr : page;
765}
766
767/*
768 * Allocate DMA-coherent memory space and return both the kernel remapped
769 * virtual and bus address for that space.
770 */
771void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
772 gfp_t gfp, unsigned long attrs)
773{
774 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
775
776 return __dma_alloc(dev, size, handle, gfp, prot, false,
777 attrs, __builtin_return_address(0));
778}
779
780static void *arm_coherent_dma_alloc(struct device *dev, size_t size,
781 dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
782{
783 return __dma_alloc(dev, size, handle, gfp, PAGE_KERNEL, true,
784 attrs, __builtin_return_address(0));
785}
786
787static int __arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
788 void *cpu_addr, dma_addr_t dma_addr, size_t size,
789 unsigned long attrs)
790{
791 int ret = -ENXIO;
792 unsigned long nr_vma_pages = vma_pages(vma);
793 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
794 unsigned long pfn = dma_to_pfn(dev, dma_addr);
795 unsigned long off = vma->vm_pgoff;
796
797 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
798 return ret;
799
800 if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
801 ret = remap_pfn_range(vma, vma->vm_start,
802 pfn + off,
803 vma->vm_end - vma->vm_start,
804 vma->vm_page_prot);
805 }
806
807 return ret;
808}
809
810/*
811 * Create userspace mapping for the DMA-coherent memory.
812 */
813static int arm_coherent_dma_mmap(struct device *dev, struct vm_area_struct *vma,
814 void *cpu_addr, dma_addr_t dma_addr, size_t size,
815 unsigned long attrs)
816{
817 return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
818}
819
820int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
821 void *cpu_addr, dma_addr_t dma_addr, size_t size,
822 unsigned long attrs)
823{
824 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
825 return __arm_dma_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
826}
827
828/*
829 * Free a buffer as defined by the above mapping.
830 */
831static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
832 dma_addr_t handle, unsigned long attrs,
833 bool is_coherent)
834{
835 struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
836 struct arm_dma_buffer *buf;
837 struct arm_dma_free_args args = {
838 .dev = dev,
839 .size = PAGE_ALIGN(size),
840 .cpu_addr = cpu_addr,
841 .page = page,
842 .want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
843 };
844
845 buf = arm_dma_buffer_find(cpu_addr);
846 if (WARN(!buf, "Freeing invalid buffer %p\n", cpu_addr))
847 return;
848
849 buf->allocator->free(&args);
850 kfree(buf);
851}
852
853void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
854 dma_addr_t handle, unsigned long attrs)
855{
856 __arm_dma_free(dev, size, cpu_addr, handle, attrs, false);
857}
858
859static void arm_coherent_dma_free(struct device *dev, size_t size, void *cpu_addr,
860 dma_addr_t handle, unsigned long attrs)
861{
862 __arm_dma_free(dev, size, cpu_addr, handle, attrs, true);
863}
864
865int arm_dma_get_sgtable(struct device *dev, struct sg_table *sgt,
866 void *cpu_addr, dma_addr_t handle, size_t size,
867 unsigned long attrs)
868{
869 unsigned long pfn = dma_to_pfn(dev, handle);
870 struct page *page;
871 int ret;
872
873 /* If the PFN is not valid, we do not have a struct page */
874 if (!pfn_valid(pfn))
875 return -ENXIO;
876
877 page = pfn_to_page(pfn);
878
879 ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
880 if (unlikely(ret))
881 return ret;
882
883 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
884 return 0;
885}
886
887static void dma_cache_maint_page(struct page *page, unsigned long offset,
888 size_t size, enum dma_data_direction dir,
889 void (*op)(const void *, size_t, int))
890{
891 unsigned long pfn;
892 size_t left = size;
893
894 pfn = page_to_pfn(page) + offset / PAGE_SIZE;
895 offset %= PAGE_SIZE;
896
897 /*
898 * A single sg entry may refer to multiple physically contiguous
899 * pages. But we still need to process highmem pages individually.
900 * If highmem is not configured then the bulk of this loop gets
901 * optimized out.
902 */
903 do {
904 size_t len = left;
905 void *vaddr;
906
907 page = pfn_to_page(pfn);
908
909 if (PageHighMem(page)) {
910 if (len + offset > PAGE_SIZE)
911 len = PAGE_SIZE - offset;
912
913 if (cache_is_vipt_nonaliasing()) {
914 vaddr = kmap_atomic(page);
915 op(vaddr + offset, len, dir);
916 kunmap_atomic(vaddr);
917 } else {
918 vaddr = kmap_high_get(page);
919 if (vaddr) {
920 op(vaddr + offset, len, dir);
921 kunmap_high(page);
922 }
923 }
924 } else {
925 vaddr = page_address(page) + offset;
926 op(vaddr, len, dir);
927 }
928 offset = 0;
929 pfn++;
930 left -= len;
931 } while (left);
932}
933
934/*
935 * Make an area consistent for devices.
936 * Note: Drivers should NOT use this function directly, as it will break
937 * platforms with CONFIG_DMABOUNCE.
938 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
939 */
940static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
941 size_t size, enum dma_data_direction dir)
942{
943 phys_addr_t paddr;
944
945 dma_cache_maint_page(page, off, size, dir, dmac_map_area);
946
947 paddr = page_to_phys(page) + off;
948 if (dir == DMA_FROM_DEVICE) {
949 outer_inv_range(paddr, paddr + size);
950 } else {
951 outer_clean_range(paddr, paddr + size);
952 }
953 /* FIXME: non-speculating: flush on bidirectional mappings? */
954}
955
956static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
957 size_t size, enum dma_data_direction dir)
958{
959 phys_addr_t paddr = page_to_phys(page) + off;
960
961 /* FIXME: non-speculating: not required */
962 /* in any case, don't bother invalidating if DMA to device */
963 if (dir != DMA_TO_DEVICE) {
964 outer_inv_range(paddr, paddr + size);
965
966 dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
967 }
968
969 /*
970 * Mark the D-cache clean for these pages to avoid extra flushing.
971 */
972 if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
973 unsigned long pfn;
974 size_t left = size;
975
976 pfn = page_to_pfn(page) + off / PAGE_SIZE;
977 off %= PAGE_SIZE;
978 if (off) {
979 pfn++;
980 left -= PAGE_SIZE - off;
981 }
982 while (left >= PAGE_SIZE) {
983 page = pfn_to_page(pfn++);
984 set_bit(PG_dcache_clean, &page->flags);
985 left -= PAGE_SIZE;
986 }
987 }
988}
989
990/**
991 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
992 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
993 * @sg: list of buffers
994 * @nents: number of buffers to map
995 * @dir: DMA transfer direction
996 *
997 * Map a set of buffers described by scatterlist in streaming mode for DMA.
998 * This is the scatter-gather version of the dma_map_single interface.
999 * Here the scatter gather list elements are each tagged with the
1000 * appropriate dma address and length. They are obtained via
1001 * sg_dma_{address,length}.
1002 *
1003 * Device ownership issues as mentioned for dma_map_single are the same
1004 * here.
1005 */
1006int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1007 enum dma_data_direction dir, unsigned long attrs)
1008{
1009 const struct dma_map_ops *ops = get_dma_ops(dev);
1010 struct scatterlist *s;
1011 int i, j;
1012
1013 for_each_sg(sg, s, nents, i) {
1014#ifdef CONFIG_NEED_SG_DMA_LENGTH
1015 s->dma_length = s->length;
1016#endif
1017 s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
1018 s->length, dir, attrs);
1019 if (dma_mapping_error(dev, s->dma_address))
1020 goto bad_mapping;
1021 }
1022 return nents;
1023
1024 bad_mapping:
1025 for_each_sg(sg, s, i, j)
1026 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
1027 return 0;
1028}
1029
1030/**
1031 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1032 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1033 * @sg: list of buffers
1034 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1035 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1036 *
1037 * Unmap a set of streaming mode DMA translations. Again, CPU access
1038 * rules concerning calls here are the same as for dma_unmap_single().
1039 */
1040void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1041 enum dma_data_direction dir, unsigned long attrs)
1042{
1043 const struct dma_map_ops *ops = get_dma_ops(dev);
1044 struct scatterlist *s;
1045
1046 int i;
1047
1048 for_each_sg(sg, s, nents, i)
1049 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
1050}
1051
1052/**
1053 * arm_dma_sync_sg_for_cpu
1054 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1055 * @sg: list of buffers
1056 * @nents: number of buffers to map (returned from dma_map_sg)
1057 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1058 */
1059void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1060 int nents, enum dma_data_direction dir)
1061{
1062 const struct dma_map_ops *ops = get_dma_ops(dev);
1063 struct scatterlist *s;
1064 int i;
1065
1066 for_each_sg(sg, s, nents, i)
1067 ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
1068 dir);
1069}
1070
1071/**
1072 * arm_dma_sync_sg_for_device
1073 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
1074 * @sg: list of buffers
1075 * @nents: number of buffers to map (returned from dma_map_sg)
1076 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1077 */
1078void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1079 int nents, enum dma_data_direction dir)
1080{
1081 const struct dma_map_ops *ops = get_dma_ops(dev);
1082 struct scatterlist *s;
1083 int i;
1084
1085 for_each_sg(sg, s, nents, i)
1086 ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
1087 dir);
1088}
1089
1090/*
1091 * Return whether the given device DMA address mask can be supported
1092 * properly. For example, if your device can only drive the low 24-bits
1093 * during bus mastering, then you would pass 0x00ffffff as the mask
1094 * to this function.
1095 */
1096int arm_dma_supported(struct device *dev, u64 mask)
1097{
1098 return __dma_supported(dev, mask, false);
1099}
1100
1101static const struct dma_map_ops *arm_get_dma_map_ops(bool coherent)
1102{
1103 /*
1104 * When CONFIG_ARM_LPAE is set, physical address can extend above
1105 * 32-bits, which then can't be addressed by devices that only support
1106 * 32-bit DMA.
1107 * Use the generic dma-direct / swiotlb ops code in that case, as that
1108 * handles bounce buffering for us.
1109 */
1110 if (IS_ENABLED(CONFIG_ARM_LPAE))
1111 return NULL;
1112 return coherent ? &arm_coherent_dma_ops : &arm_dma_ops;
1113}
1114
1115#ifdef CONFIG_ARM_DMA_USE_IOMMU
1116
1117static int __dma_info_to_prot(enum dma_data_direction dir, unsigned long attrs)
1118{
1119 int prot = 0;
1120
1121 if (attrs & DMA_ATTR_PRIVILEGED)
1122 prot |= IOMMU_PRIV;
1123
1124 switch (dir) {
1125 case DMA_BIDIRECTIONAL:
1126 return prot | IOMMU_READ | IOMMU_WRITE;
1127 case DMA_TO_DEVICE:
1128 return prot | IOMMU_READ;
1129 case DMA_FROM_DEVICE:
1130 return prot | IOMMU_WRITE;
1131 default:
1132 return prot;
1133 }
1134}
1135
1136/* IOMMU */
1137
1138static int extend_iommu_mapping(struct dma_iommu_mapping *mapping);
1139
1140static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
1141 size_t size)
1142{
1143 unsigned int order = get_order(size);
1144 unsigned int align = 0;
1145 unsigned int count, start;
1146 size_t mapping_size = mapping->bits << PAGE_SHIFT;
1147 unsigned long flags;
1148 dma_addr_t iova;
1149 int i;
1150
1151 if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
1152 order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
1153
1154 count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1155 align = (1 << order) - 1;
1156
1157 spin_lock_irqsave(&mapping->lock, flags);
1158 for (i = 0; i < mapping->nr_bitmaps; i++) {
1159 start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1160 mapping->bits, 0, count, align);
1161
1162 if (start > mapping->bits)
1163 continue;
1164
1165 bitmap_set(mapping->bitmaps[i], start, count);
1166 break;
1167 }
1168
1169 /*
1170 * No unused range found. Try to extend the existing mapping
1171 * and perform a second attempt to reserve an IO virtual
1172 * address range of size bytes.
1173 */
1174 if (i == mapping->nr_bitmaps) {
1175 if (extend_iommu_mapping(mapping)) {
1176 spin_unlock_irqrestore(&mapping->lock, flags);
1177 return DMA_MAPPING_ERROR;
1178 }
1179
1180 start = bitmap_find_next_zero_area(mapping->bitmaps[i],
1181 mapping->bits, 0, count, align);
1182
1183 if (start > mapping->bits) {
1184 spin_unlock_irqrestore(&mapping->lock, flags);
1185 return DMA_MAPPING_ERROR;
1186 }
1187
1188 bitmap_set(mapping->bitmaps[i], start, count);
1189 }
1190 spin_unlock_irqrestore(&mapping->lock, flags);
1191
1192 iova = mapping->base + (mapping_size * i);
1193 iova += start << PAGE_SHIFT;
1194
1195 return iova;
1196}
1197
1198static inline void __free_iova(struct dma_iommu_mapping *mapping,
1199 dma_addr_t addr, size_t size)
1200{
1201 unsigned int start, count;
1202 size_t mapping_size = mapping->bits << PAGE_SHIFT;
1203 unsigned long flags;
1204 dma_addr_t bitmap_base;
1205 u32 bitmap_index;
1206
1207 if (!size)
1208 return;
1209
1210 bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size;
1211 BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions);
1212
1213 bitmap_base = mapping->base + mapping_size * bitmap_index;
1214
1215 start = (addr - bitmap_base) >> PAGE_SHIFT;
1216
1217 if (addr + size > bitmap_base + mapping_size) {
1218 /*
1219 * The address range to be freed reaches into the iova
1220 * range of the next bitmap. This should not happen as
1221 * we don't allow this in __alloc_iova (at the
1222 * moment).
1223 */
1224 BUG();
1225 } else
1226 count = size >> PAGE_SHIFT;
1227
1228 spin_lock_irqsave(&mapping->lock, flags);
1229 bitmap_clear(mapping->bitmaps[bitmap_index], start, count);
1230 spin_unlock_irqrestore(&mapping->lock, flags);
1231}
1232
1233/* We'll try 2M, 1M, 64K, and finally 4K; array must end with 0! */
1234static const int iommu_order_array[] = { 9, 8, 4, 0 };
1235
1236static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
1237 gfp_t gfp, unsigned long attrs,
1238 int coherent_flag)
1239{
1240 struct page **pages;
1241 int count = size >> PAGE_SHIFT;
1242 int array_size = count * sizeof(struct page *);
1243 int i = 0;
1244 int order_idx = 0;
1245
1246 if (array_size <= PAGE_SIZE)
1247 pages = kzalloc(array_size, GFP_KERNEL);
1248 else
1249 pages = vzalloc(array_size);
1250 if (!pages)
1251 return NULL;
1252
1253 if (attrs & DMA_ATTR_FORCE_CONTIGUOUS)
1254 {
1255 unsigned long order = get_order(size);
1256 struct page *page;
1257
1258 page = dma_alloc_from_contiguous(dev, count, order,
1259 gfp & __GFP_NOWARN);
1260 if (!page)
1261 goto error;
1262
1263 __dma_clear_buffer(page, size, coherent_flag);
1264
1265 for (i = 0; i < count; i++)
1266 pages[i] = page + i;
1267
1268 return pages;
1269 }
1270
1271 /* Go straight to 4K chunks if caller says it's OK. */
1272 if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
1273 order_idx = ARRAY_SIZE(iommu_order_array) - 1;
1274
1275 /*
1276 * IOMMU can map any pages, so himem can also be used here
1277 */
1278 gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
1279
1280 while (count) {
1281 int j, order;
1282
1283 order = iommu_order_array[order_idx];
1284
1285 /* Drop down when we get small */
1286 if (__fls(count) < order) {
1287 order_idx++;
1288 continue;
1289 }
1290
1291 if (order) {
1292 /* See if it's easy to allocate a high-order chunk */
1293 pages[i] = alloc_pages(gfp | __GFP_NORETRY, order);
1294
1295 /* Go down a notch at first sign of pressure */
1296 if (!pages[i]) {
1297 order_idx++;
1298 continue;
1299 }
1300 } else {
1301 pages[i] = alloc_pages(gfp, 0);
1302 if (!pages[i])
1303 goto error;
1304 }
1305
1306 if (order) {
1307 split_page(pages[i], order);
1308 j = 1 << order;
1309 while (--j)
1310 pages[i + j] = pages[i] + j;
1311 }
1312
1313 __dma_clear_buffer(pages[i], PAGE_SIZE << order, coherent_flag);
1314 i += 1 << order;
1315 count -= 1 << order;
1316 }
1317
1318 return pages;
1319error:
1320 while (i--)
1321 if (pages[i])
1322 __free_pages(pages[i], 0);
1323 kvfree(pages);
1324 return NULL;
1325}
1326
1327static int __iommu_free_buffer(struct device *dev, struct page **pages,
1328 size_t size, unsigned long attrs)
1329{
1330 int count = size >> PAGE_SHIFT;
1331 int i;
1332
1333 if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
1334 dma_release_from_contiguous(dev, pages[0], count);
1335 } else {
1336 for (i = 0; i < count; i++)
1337 if (pages[i])
1338 __free_pages(pages[i], 0);
1339 }
1340
1341 kvfree(pages);
1342 return 0;
1343}
1344
1345/*
1346 * Create a mapping in device IO address space for specified pages
1347 */
1348static dma_addr_t
1349__iommu_create_mapping(struct device *dev, struct page **pages, size_t size,
1350 unsigned long attrs)
1351{
1352 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1353 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1354 dma_addr_t dma_addr, iova;
1355 int i;
1356
1357 dma_addr = __alloc_iova(mapping, size);
1358 if (dma_addr == DMA_MAPPING_ERROR)
1359 return dma_addr;
1360
1361 iova = dma_addr;
1362 for (i = 0; i < count; ) {
1363 int ret;
1364
1365 unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1366 phys_addr_t phys = page_to_phys(pages[i]);
1367 unsigned int len, j;
1368
1369 for (j = i + 1; j < count; j++, next_pfn++)
1370 if (page_to_pfn(pages[j]) != next_pfn)
1371 break;
1372
1373 len = (j - i) << PAGE_SHIFT;
1374 ret = iommu_map(mapping->domain, iova, phys, len,
1375 __dma_info_to_prot(DMA_BIDIRECTIONAL, attrs));
1376 if (ret < 0)
1377 goto fail;
1378 iova += len;
1379 i = j;
1380 }
1381 return dma_addr;
1382fail:
1383 iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1384 __free_iova(mapping, dma_addr, size);
1385 return DMA_MAPPING_ERROR;
1386}
1387
1388static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1389{
1390 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1391
1392 /*
1393 * add optional in-page offset from iova to size and align
1394 * result to page size
1395 */
1396 size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1397 iova &= PAGE_MASK;
1398
1399 iommu_unmap(mapping->domain, iova, size);
1400 __free_iova(mapping, iova, size);
1401 return 0;
1402}
1403
1404static struct page **__atomic_get_pages(void *addr)
1405{
1406 struct page *page;
1407 phys_addr_t phys;
1408
1409 phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr);
1410 page = phys_to_page(phys);
1411
1412 return (struct page **)page;
1413}
1414
1415static struct page **__iommu_get_pages(void *cpu_addr, unsigned long attrs)
1416{
1417 if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1418 return __atomic_get_pages(cpu_addr);
1419
1420 if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1421 return cpu_addr;
1422
1423 return dma_common_find_pages(cpu_addr);
1424}
1425
1426static void *__iommu_alloc_simple(struct device *dev, size_t size, gfp_t gfp,
1427 dma_addr_t *handle, int coherent_flag,
1428 unsigned long attrs)
1429{
1430 struct page *page;
1431 void *addr;
1432
1433 if (coherent_flag == COHERENT)
1434 addr = __alloc_simple_buffer(dev, size, gfp, &page);
1435 else
1436 addr = __alloc_from_pool(size, &page);
1437 if (!addr)
1438 return NULL;
1439
1440 *handle = __iommu_create_mapping(dev, &page, size, attrs);
1441 if (*handle == DMA_MAPPING_ERROR)
1442 goto err_mapping;
1443
1444 return addr;
1445
1446err_mapping:
1447 __free_from_pool(addr, size);
1448 return NULL;
1449}
1450
1451static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
1452 dma_addr_t handle, size_t size, int coherent_flag)
1453{
1454 __iommu_remove_mapping(dev, handle, size);
1455 if (coherent_flag == COHERENT)
1456 __dma_free_buffer(virt_to_page(cpu_addr), size);
1457 else
1458 __free_from_pool(cpu_addr, size);
1459}
1460
1461static void *__arm_iommu_alloc_attrs(struct device *dev, size_t size,
1462 dma_addr_t *handle, gfp_t gfp, unsigned long attrs,
1463 int coherent_flag)
1464{
1465 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
1466 struct page **pages;
1467 void *addr = NULL;
1468
1469 *handle = DMA_MAPPING_ERROR;
1470 size = PAGE_ALIGN(size);
1471
1472 if (coherent_flag == COHERENT || !gfpflags_allow_blocking(gfp))
1473 return __iommu_alloc_simple(dev, size, gfp, handle,
1474 coherent_flag, attrs);
1475
1476 /*
1477 * Following is a work-around (a.k.a. hack) to prevent pages
1478 * with __GFP_COMP being passed to split_page() which cannot
1479 * handle them. The real problem is that this flag probably
1480 * should be 0 on ARM as it is not supported on this
1481 * platform; see CONFIG_HUGETLBFS.
1482 */
1483 gfp &= ~(__GFP_COMP);
1484
1485 pages = __iommu_alloc_buffer(dev, size, gfp, attrs, coherent_flag);
1486 if (!pages)
1487 return NULL;
1488
1489 *handle = __iommu_create_mapping(dev, pages, size, attrs);
1490 if (*handle == DMA_MAPPING_ERROR)
1491 goto err_buffer;
1492
1493 if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1494 return pages;
1495
1496 addr = dma_common_pages_remap(pages, size, prot,
1497 __builtin_return_address(0));
1498 if (!addr)
1499 goto err_mapping;
1500
1501 return addr;
1502
1503err_mapping:
1504 __iommu_remove_mapping(dev, *handle, size);
1505err_buffer:
1506 __iommu_free_buffer(dev, pages, size, attrs);
1507 return NULL;
1508}
1509
1510static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1511 dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1512{
1513 return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, NORMAL);
1514}
1515
1516static void *arm_coherent_iommu_alloc_attrs(struct device *dev, size_t size,
1517 dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1518{
1519 return __arm_iommu_alloc_attrs(dev, size, handle, gfp, attrs, COHERENT);
1520}
1521
1522static int __arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1523 void *cpu_addr, dma_addr_t dma_addr, size_t size,
1524 unsigned long attrs)
1525{
1526 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1527 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1528 int err;
1529
1530 if (!pages)
1531 return -ENXIO;
1532
1533 if (vma->vm_pgoff >= nr_pages)
1534 return -ENXIO;
1535
1536 err = vm_map_pages(vma, pages, nr_pages);
1537 if (err)
1538 pr_err("Remapping memory failed: %d\n", err);
1539
1540 return err;
1541}
1542static int arm_iommu_mmap_attrs(struct device *dev,
1543 struct vm_area_struct *vma, void *cpu_addr,
1544 dma_addr_t dma_addr, size_t size, unsigned long attrs)
1545{
1546 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1547
1548 return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs);
1549}
1550
1551static int arm_coherent_iommu_mmap_attrs(struct device *dev,
1552 struct vm_area_struct *vma, void *cpu_addr,
1553 dma_addr_t dma_addr, size_t size, unsigned long attrs)
1554{
1555 return __arm_iommu_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, attrs);
1556}
1557
1558/*
1559 * free a page as defined by the above mapping.
1560 * Must not be called with IRQs disabled.
1561 */
1562void __arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1563 dma_addr_t handle, unsigned long attrs, int coherent_flag)
1564{
1565 struct page **pages;
1566 size = PAGE_ALIGN(size);
1567
1568 if (coherent_flag == COHERENT || __in_atomic_pool(cpu_addr, size)) {
1569 __iommu_free_atomic(dev, cpu_addr, handle, size, coherent_flag);
1570 return;
1571 }
1572
1573 pages = __iommu_get_pages(cpu_addr, attrs);
1574 if (!pages) {
1575 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1576 return;
1577 }
1578
1579 if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0)
1580 dma_common_free_remap(cpu_addr, size);
1581
1582 __iommu_remove_mapping(dev, handle, size);
1583 __iommu_free_buffer(dev, pages, size, attrs);
1584}
1585
1586void arm_iommu_free_attrs(struct device *dev, size_t size,
1587 void *cpu_addr, dma_addr_t handle, unsigned long attrs)
1588{
1589 __arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, NORMAL);
1590}
1591
1592void arm_coherent_iommu_free_attrs(struct device *dev, size_t size,
1593 void *cpu_addr, dma_addr_t handle, unsigned long attrs)
1594{
1595 __arm_iommu_free_attrs(dev, size, cpu_addr, handle, attrs, COHERENT);
1596}
1597
1598static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1599 void *cpu_addr, dma_addr_t dma_addr,
1600 size_t size, unsigned long attrs)
1601{
1602 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1603 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1604
1605 if (!pages)
1606 return -ENXIO;
1607
1608 return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1609 GFP_KERNEL);
1610}
1611
1612/*
1613 * Map a part of the scatter-gather list into contiguous io address space
1614 */
1615static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1616 size_t size, dma_addr_t *handle,
1617 enum dma_data_direction dir, unsigned long attrs,
1618 bool is_coherent)
1619{
1620 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1621 dma_addr_t iova, iova_base;
1622 int ret = 0;
1623 unsigned int count;
1624 struct scatterlist *s;
1625 int prot;
1626
1627 size = PAGE_ALIGN(size);
1628 *handle = DMA_MAPPING_ERROR;
1629
1630 iova_base = iova = __alloc_iova(mapping, size);
1631 if (iova == DMA_MAPPING_ERROR)
1632 return -ENOMEM;
1633
1634 for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1635 phys_addr_t phys = page_to_phys(sg_page(s));
1636 unsigned int len = PAGE_ALIGN(s->offset + s->length);
1637
1638 if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1639 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1640
1641 prot = __dma_info_to_prot(dir, attrs);
1642
1643 ret = iommu_map(mapping->domain, iova, phys, len, prot);
1644 if (ret < 0)
1645 goto fail;
1646 count += len >> PAGE_SHIFT;
1647 iova += len;
1648 }
1649 *handle = iova_base;
1650
1651 return 0;
1652fail:
1653 iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1654 __free_iova(mapping, iova_base, size);
1655 return ret;
1656}
1657
1658static int __iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1659 enum dma_data_direction dir, unsigned long attrs,
1660 bool is_coherent)
1661{
1662 struct scatterlist *s = sg, *dma = sg, *start = sg;
1663 int i, count = 0;
1664 unsigned int offset = s->offset;
1665 unsigned int size = s->offset + s->length;
1666 unsigned int max = dma_get_max_seg_size(dev);
1667
1668 for (i = 1; i < nents; i++) {
1669 s = sg_next(s);
1670
1671 s->dma_address = DMA_MAPPING_ERROR;
1672 s->dma_length = 0;
1673
1674 if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1675 if (__map_sg_chunk(dev, start, size, &dma->dma_address,
1676 dir, attrs, is_coherent) < 0)
1677 goto bad_mapping;
1678
1679 dma->dma_address += offset;
1680 dma->dma_length = size - offset;
1681
1682 size = offset = s->offset;
1683 start = s;
1684 dma = sg_next(dma);
1685 count += 1;
1686 }
1687 size += s->length;
1688 }
1689 if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs,
1690 is_coherent) < 0)
1691 goto bad_mapping;
1692
1693 dma->dma_address += offset;
1694 dma->dma_length = size - offset;
1695
1696 return count+1;
1697
1698bad_mapping:
1699 for_each_sg(sg, s, count, i)
1700 __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1701 return 0;
1702}
1703
1704/**
1705 * arm_coherent_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1706 * @dev: valid struct device pointer
1707 * @sg: list of buffers
1708 * @nents: number of buffers to map
1709 * @dir: DMA transfer direction
1710 *
1711 * Map a set of i/o coherent buffers described by scatterlist in streaming
1712 * mode for DMA. The scatter gather list elements are merged together (if
1713 * possible) and tagged with the appropriate dma address and length. They are
1714 * obtained via sg_dma_{address,length}.
1715 */
1716int arm_coherent_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1717 int nents, enum dma_data_direction dir, unsigned long attrs)
1718{
1719 return __iommu_map_sg(dev, sg, nents, dir, attrs, true);
1720}
1721
1722/**
1723 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1724 * @dev: valid struct device pointer
1725 * @sg: list of buffers
1726 * @nents: number of buffers to map
1727 * @dir: DMA transfer direction
1728 *
1729 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1730 * The scatter gather list elements are merged together (if possible) and
1731 * tagged with the appropriate dma address and length. They are obtained via
1732 * sg_dma_{address,length}.
1733 */
1734int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1735 int nents, enum dma_data_direction dir, unsigned long attrs)
1736{
1737 return __iommu_map_sg(dev, sg, nents, dir, attrs, false);
1738}
1739
1740static void __iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1741 int nents, enum dma_data_direction dir,
1742 unsigned long attrs, bool is_coherent)
1743{
1744 struct scatterlist *s;
1745 int i;
1746
1747 for_each_sg(sg, s, nents, i) {
1748 if (sg_dma_len(s))
1749 __iommu_remove_mapping(dev, sg_dma_address(s),
1750 sg_dma_len(s));
1751 if (!is_coherent && (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1752 __dma_page_dev_to_cpu(sg_page(s), s->offset,
1753 s->length, dir);
1754 }
1755}
1756
1757/**
1758 * arm_coherent_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1759 * @dev: valid struct device pointer
1760 * @sg: list of buffers
1761 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1762 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1763 *
1764 * Unmap a set of streaming mode DMA translations. Again, CPU access
1765 * rules concerning calls here are the same as for dma_unmap_single().
1766 */
1767void arm_coherent_iommu_unmap_sg(struct device *dev, struct scatterlist *sg,
1768 int nents, enum dma_data_direction dir,
1769 unsigned long attrs)
1770{
1771 __iommu_unmap_sg(dev, sg, nents, dir, attrs, true);
1772}
1773
1774/**
1775 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1776 * @dev: valid struct device pointer
1777 * @sg: list of buffers
1778 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1779 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1780 *
1781 * Unmap a set of streaming mode DMA translations. Again, CPU access
1782 * rules concerning calls here are the same as for dma_unmap_single().
1783 */
1784void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1785 enum dma_data_direction dir,
1786 unsigned long attrs)
1787{
1788 __iommu_unmap_sg(dev, sg, nents, dir, attrs, false);
1789}
1790
1791/**
1792 * arm_iommu_sync_sg_for_cpu
1793 * @dev: valid struct device pointer
1794 * @sg: list of buffers
1795 * @nents: number of buffers to map (returned from dma_map_sg)
1796 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1797 */
1798void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1799 int nents, enum dma_data_direction dir)
1800{
1801 struct scatterlist *s;
1802 int i;
1803
1804 for_each_sg(sg, s, nents, i)
1805 __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1806
1807}
1808
1809/**
1810 * arm_iommu_sync_sg_for_device
1811 * @dev: valid struct device pointer
1812 * @sg: list of buffers
1813 * @nents: number of buffers to map (returned from dma_map_sg)
1814 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1815 */
1816void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1817 int nents, enum dma_data_direction dir)
1818{
1819 struct scatterlist *s;
1820 int i;
1821
1822 for_each_sg(sg, s, nents, i)
1823 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1824}
1825
1826
1827/**
1828 * arm_coherent_iommu_map_page
1829 * @dev: valid struct device pointer
1830 * @page: page that buffer resides in
1831 * @offset: offset into page for start of buffer
1832 * @size: size of buffer to map
1833 * @dir: DMA transfer direction
1834 *
1835 * Coherent IOMMU aware version of arm_dma_map_page()
1836 */
1837static dma_addr_t arm_coherent_iommu_map_page(struct device *dev, struct page *page,
1838 unsigned long offset, size_t size, enum dma_data_direction dir,
1839 unsigned long attrs)
1840{
1841 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1842 dma_addr_t dma_addr;
1843 int ret, prot, len = PAGE_ALIGN(size + offset);
1844
1845 dma_addr = __alloc_iova(mapping, len);
1846 if (dma_addr == DMA_MAPPING_ERROR)
1847 return dma_addr;
1848
1849 prot = __dma_info_to_prot(dir, attrs);
1850
1851 ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, prot);
1852 if (ret < 0)
1853 goto fail;
1854
1855 return dma_addr + offset;
1856fail:
1857 __free_iova(mapping, dma_addr, len);
1858 return DMA_MAPPING_ERROR;
1859}
1860
1861/**
1862 * arm_iommu_map_page
1863 * @dev: valid struct device pointer
1864 * @page: page that buffer resides in
1865 * @offset: offset into page for start of buffer
1866 * @size: size of buffer to map
1867 * @dir: DMA transfer direction
1868 *
1869 * IOMMU aware version of arm_dma_map_page()
1870 */
1871static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1872 unsigned long offset, size_t size, enum dma_data_direction dir,
1873 unsigned long attrs)
1874{
1875 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1876 __dma_page_cpu_to_dev(page, offset, size, dir);
1877
1878 return arm_coherent_iommu_map_page(dev, page, offset, size, dir, attrs);
1879}
1880
1881/**
1882 * arm_coherent_iommu_unmap_page
1883 * @dev: valid struct device pointer
1884 * @handle: DMA address of buffer
1885 * @size: size of buffer (same as passed to dma_map_page)
1886 * @dir: DMA transfer direction (same as passed to dma_map_page)
1887 *
1888 * Coherent IOMMU aware version of arm_dma_unmap_page()
1889 */
1890static void arm_coherent_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1891 size_t size, enum dma_data_direction dir, unsigned long attrs)
1892{
1893 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1894 dma_addr_t iova = handle & PAGE_MASK;
1895 int offset = handle & ~PAGE_MASK;
1896 int len = PAGE_ALIGN(size + offset);
1897
1898 if (!iova)
1899 return;
1900
1901 iommu_unmap(mapping->domain, iova, len);
1902 __free_iova(mapping, iova, len);
1903}
1904
1905/**
1906 * arm_iommu_unmap_page
1907 * @dev: valid struct device pointer
1908 * @handle: DMA address of buffer
1909 * @size: size of buffer (same as passed to dma_map_page)
1910 * @dir: DMA transfer direction (same as passed to dma_map_page)
1911 *
1912 * IOMMU aware version of arm_dma_unmap_page()
1913 */
1914static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1915 size_t size, enum dma_data_direction dir, unsigned long attrs)
1916{
1917 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1918 dma_addr_t iova = handle & PAGE_MASK;
1919 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1920 int offset = handle & ~PAGE_MASK;
1921 int len = PAGE_ALIGN(size + offset);
1922
1923 if (!iova)
1924 return;
1925
1926 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
1927 __dma_page_dev_to_cpu(page, offset, size, dir);
1928
1929 iommu_unmap(mapping->domain, iova, len);
1930 __free_iova(mapping, iova, len);
1931}
1932
1933/**
1934 * arm_iommu_map_resource - map a device resource for DMA
1935 * @dev: valid struct device pointer
1936 * @phys_addr: physical address of resource
1937 * @size: size of resource to map
1938 * @dir: DMA transfer direction
1939 */
1940static dma_addr_t arm_iommu_map_resource(struct device *dev,
1941 phys_addr_t phys_addr, size_t size,
1942 enum dma_data_direction dir, unsigned long attrs)
1943{
1944 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1945 dma_addr_t dma_addr;
1946 int ret, prot;
1947 phys_addr_t addr = phys_addr & PAGE_MASK;
1948 unsigned int offset = phys_addr & ~PAGE_MASK;
1949 size_t len = PAGE_ALIGN(size + offset);
1950
1951 dma_addr = __alloc_iova(mapping, len);
1952 if (dma_addr == DMA_MAPPING_ERROR)
1953 return dma_addr;
1954
1955 prot = __dma_info_to_prot(dir, attrs) | IOMMU_MMIO;
1956
1957 ret = iommu_map(mapping->domain, dma_addr, addr, len, prot);
1958 if (ret < 0)
1959 goto fail;
1960
1961 return dma_addr + offset;
1962fail:
1963 __free_iova(mapping, dma_addr, len);
1964 return DMA_MAPPING_ERROR;
1965}
1966
1967/**
1968 * arm_iommu_unmap_resource - unmap a device DMA resource
1969 * @dev: valid struct device pointer
1970 * @dma_handle: DMA address to resource
1971 * @size: size of resource to map
1972 * @dir: DMA transfer direction
1973 */
1974static void arm_iommu_unmap_resource(struct device *dev, dma_addr_t dma_handle,
1975 size_t size, enum dma_data_direction dir,
1976 unsigned long attrs)
1977{
1978 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1979 dma_addr_t iova = dma_handle & PAGE_MASK;
1980 unsigned int offset = dma_handle & ~PAGE_MASK;
1981 size_t len = PAGE_ALIGN(size + offset);
1982
1983 if (!iova)
1984 return;
1985
1986 iommu_unmap(mapping->domain, iova, len);
1987 __free_iova(mapping, iova, len);
1988}
1989
1990static void arm_iommu_sync_single_for_cpu(struct device *dev,
1991 dma_addr_t handle, size_t size, enum dma_data_direction dir)
1992{
1993 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1994 dma_addr_t iova = handle & PAGE_MASK;
1995 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1996 unsigned int offset = handle & ~PAGE_MASK;
1997
1998 if (!iova)
1999 return;
2000
2001 __dma_page_dev_to_cpu(page, offset, size, dir);
2002}
2003
2004static void arm_iommu_sync_single_for_device(struct device *dev,
2005 dma_addr_t handle, size_t size, enum dma_data_direction dir)
2006{
2007 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2008 dma_addr_t iova = handle & PAGE_MASK;
2009 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
2010 unsigned int offset = handle & ~PAGE_MASK;
2011
2012 if (!iova)
2013 return;
2014
2015 __dma_page_cpu_to_dev(page, offset, size, dir);
2016}
2017
2018const struct dma_map_ops iommu_ops = {
2019 .alloc = arm_iommu_alloc_attrs,
2020 .free = arm_iommu_free_attrs,
2021 .mmap = arm_iommu_mmap_attrs,
2022 .get_sgtable = arm_iommu_get_sgtable,
2023
2024 .map_page = arm_iommu_map_page,
2025 .unmap_page = arm_iommu_unmap_page,
2026 .sync_single_for_cpu = arm_iommu_sync_single_for_cpu,
2027 .sync_single_for_device = arm_iommu_sync_single_for_device,
2028
2029 .map_sg = arm_iommu_map_sg,
2030 .unmap_sg = arm_iommu_unmap_sg,
2031 .sync_sg_for_cpu = arm_iommu_sync_sg_for_cpu,
2032 .sync_sg_for_device = arm_iommu_sync_sg_for_device,
2033
2034 .map_resource = arm_iommu_map_resource,
2035 .unmap_resource = arm_iommu_unmap_resource,
2036
2037 .dma_supported = arm_dma_supported,
2038};
2039
2040const struct dma_map_ops iommu_coherent_ops = {
2041 .alloc = arm_coherent_iommu_alloc_attrs,
2042 .free = arm_coherent_iommu_free_attrs,
2043 .mmap = arm_coherent_iommu_mmap_attrs,
2044 .get_sgtable = arm_iommu_get_sgtable,
2045
2046 .map_page = arm_coherent_iommu_map_page,
2047 .unmap_page = arm_coherent_iommu_unmap_page,
2048
2049 .map_sg = arm_coherent_iommu_map_sg,
2050 .unmap_sg = arm_coherent_iommu_unmap_sg,
2051
2052 .map_resource = arm_iommu_map_resource,
2053 .unmap_resource = arm_iommu_unmap_resource,
2054
2055 .dma_supported = arm_dma_supported,
2056};
2057
2058/**
2059 * arm_iommu_create_mapping
2060 * @bus: pointer to the bus holding the client device (for IOMMU calls)
2061 * @base: start address of the valid IO address space
2062 * @size: maximum size of the valid IO address space
2063 *
2064 * Creates a mapping structure which holds information about used/unused
2065 * IO address ranges, which is required to perform memory allocation and
2066 * mapping with IOMMU aware functions.
2067 *
2068 * The client device need to be attached to the mapping with
2069 * arm_iommu_attach_device function.
2070 */
2071struct dma_iommu_mapping *
2072arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, u64 size)
2073{
2074 unsigned int bits = size >> PAGE_SHIFT;
2075 unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long);
2076 struct dma_iommu_mapping *mapping;
2077 int extensions = 1;
2078 int err = -ENOMEM;
2079
2080 /* currently only 32-bit DMA address space is supported */
2081 if (size > DMA_BIT_MASK(32) + 1)
2082 return ERR_PTR(-ERANGE);
2083
2084 if (!bitmap_size)
2085 return ERR_PTR(-EINVAL);
2086
2087 if (bitmap_size > PAGE_SIZE) {
2088 extensions = bitmap_size / PAGE_SIZE;
2089 bitmap_size = PAGE_SIZE;
2090 }
2091
2092 mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
2093 if (!mapping)
2094 goto err;
2095
2096 mapping->bitmap_size = bitmap_size;
2097 mapping->bitmaps = kcalloc(extensions, sizeof(unsigned long *),
2098 GFP_KERNEL);
2099 if (!mapping->bitmaps)
2100 goto err2;
2101
2102 mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL);
2103 if (!mapping->bitmaps[0])
2104 goto err3;
2105
2106 mapping->nr_bitmaps = 1;
2107 mapping->extensions = extensions;
2108 mapping->base = base;
2109 mapping->bits = BITS_PER_BYTE * bitmap_size;
2110
2111 spin_lock_init(&mapping->lock);
2112
2113 mapping->domain = iommu_domain_alloc(bus);
2114 if (!mapping->domain)
2115 goto err4;
2116
2117 kref_init(&mapping->kref);
2118 return mapping;
2119err4:
2120 kfree(mapping->bitmaps[0]);
2121err3:
2122 kfree(mapping->bitmaps);
2123err2:
2124 kfree(mapping);
2125err:
2126 return ERR_PTR(err);
2127}
2128EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
2129
2130static void release_iommu_mapping(struct kref *kref)
2131{
2132 int i;
2133 struct dma_iommu_mapping *mapping =
2134 container_of(kref, struct dma_iommu_mapping, kref);
2135
2136 iommu_domain_free(mapping->domain);
2137 for (i = 0; i < mapping->nr_bitmaps; i++)
2138 kfree(mapping->bitmaps[i]);
2139 kfree(mapping->bitmaps);
2140 kfree(mapping);
2141}
2142
2143static int extend_iommu_mapping(struct dma_iommu_mapping *mapping)
2144{
2145 int next_bitmap;
2146
2147 if (mapping->nr_bitmaps >= mapping->extensions)
2148 return -EINVAL;
2149
2150 next_bitmap = mapping->nr_bitmaps;
2151 mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size,
2152 GFP_ATOMIC);
2153 if (!mapping->bitmaps[next_bitmap])
2154 return -ENOMEM;
2155
2156 mapping->nr_bitmaps++;
2157
2158 return 0;
2159}
2160
2161void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
2162{
2163 if (mapping)
2164 kref_put(&mapping->kref, release_iommu_mapping);
2165}
2166EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
2167
2168static int __arm_iommu_attach_device(struct device *dev,
2169 struct dma_iommu_mapping *mapping)
2170{
2171 int err;
2172
2173 err = iommu_attach_device(mapping->domain, dev);
2174 if (err)
2175 return err;
2176
2177 kref_get(&mapping->kref);
2178 to_dma_iommu_mapping(dev) = mapping;
2179
2180 pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
2181 return 0;
2182}
2183
2184/**
2185 * arm_iommu_attach_device
2186 * @dev: valid struct device pointer
2187 * @mapping: io address space mapping structure (returned from
2188 * arm_iommu_create_mapping)
2189 *
2190 * Attaches specified io address space mapping to the provided device.
2191 * This replaces the dma operations (dma_map_ops pointer) with the
2192 * IOMMU aware version.
2193 *
2194 * More than one client might be attached to the same io address space
2195 * mapping.
2196 */
2197int arm_iommu_attach_device(struct device *dev,
2198 struct dma_iommu_mapping *mapping)
2199{
2200 int err;
2201
2202 err = __arm_iommu_attach_device(dev, mapping);
2203 if (err)
2204 return err;
2205
2206 set_dma_ops(dev, &iommu_ops);
2207 return 0;
2208}
2209EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
2210
2211/**
2212 * arm_iommu_detach_device
2213 * @dev: valid struct device pointer
2214 *
2215 * Detaches the provided device from a previously attached map.
2216 * This overwrites the dma_ops pointer with appropriate non-IOMMU ops.
2217 */
2218void arm_iommu_detach_device(struct device *dev)
2219{
2220 struct dma_iommu_mapping *mapping;
2221
2222 mapping = to_dma_iommu_mapping(dev);
2223 if (!mapping) {
2224 dev_warn(dev, "Not attached\n");
2225 return;
2226 }
2227
2228 iommu_detach_device(mapping->domain, dev);
2229 kref_put(&mapping->kref, release_iommu_mapping);
2230 to_dma_iommu_mapping(dev) = NULL;
2231 set_dma_ops(dev, arm_get_dma_map_ops(dev->archdata.dma_coherent));
2232
2233 pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
2234}
2235EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
2236
2237static const struct dma_map_ops *arm_get_iommu_dma_map_ops(bool coherent)
2238{
2239 return coherent ? &iommu_coherent_ops : &iommu_ops;
2240}
2241
2242static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2243 const struct iommu_ops *iommu)
2244{
2245 struct dma_iommu_mapping *mapping;
2246
2247 if (!iommu)
2248 return false;
2249
2250 mapping = arm_iommu_create_mapping(dev->bus, dma_base, size);
2251 if (IS_ERR(mapping)) {
2252 pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n",
2253 size, dev_name(dev));
2254 return false;
2255 }
2256
2257 if (__arm_iommu_attach_device(dev, mapping)) {
2258 pr_warn("Failed to attached device %s to IOMMU_mapping\n",
2259 dev_name(dev));
2260 arm_iommu_release_mapping(mapping);
2261 return false;
2262 }
2263
2264 return true;
2265}
2266
2267static void arm_teardown_iommu_dma_ops(struct device *dev)
2268{
2269 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
2270
2271 if (!mapping)
2272 return;
2273
2274 arm_iommu_detach_device(dev);
2275 arm_iommu_release_mapping(mapping);
2276}
2277
2278#else
2279
2280static bool arm_setup_iommu_dma_ops(struct device *dev, u64 dma_base, u64 size,
2281 const struct iommu_ops *iommu)
2282{
2283 return false;
2284}
2285
2286static void arm_teardown_iommu_dma_ops(struct device *dev) { }
2287
2288#define arm_get_iommu_dma_map_ops arm_get_dma_map_ops
2289
2290#endif /* CONFIG_ARM_DMA_USE_IOMMU */
2291
2292void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
2293 const struct iommu_ops *iommu, bool coherent)
2294{
2295 const struct dma_map_ops *dma_ops;
2296
2297 dev->archdata.dma_coherent = coherent;
2298#ifdef CONFIG_SWIOTLB
2299 dev->dma_coherent = coherent;
2300#endif
2301
2302 /*
2303 * Don't override the dma_ops if they have already been set. Ideally
2304 * this should be the only location where dma_ops are set, remove this
2305 * check when all other callers of set_dma_ops will have disappeared.
2306 */
2307 if (dev->dma_ops)
2308 return;
2309
2310 if (arm_setup_iommu_dma_ops(dev, dma_base, size, iommu))
2311 dma_ops = arm_get_iommu_dma_map_ops(coherent);
2312 else
2313 dma_ops = arm_get_dma_map_ops(coherent);
2314
2315 set_dma_ops(dev, dma_ops);
2316
2317#ifdef CONFIG_XEN
2318 if (xen_initial_domain())
2319 dev->dma_ops = &xen_swiotlb_dma_ops;
2320#endif
2321 dev->archdata.dma_ops_setup = true;
2322}
2323
2324void arch_teardown_dma_ops(struct device *dev)
2325{
2326 if (!dev->archdata.dma_ops_setup)
2327 return;
2328
2329 arm_teardown_iommu_dma_ops(dev);
2330 /* Let arch_setup_dma_ops() start again from scratch upon re-probe */
2331 set_dma_ops(dev, NULL);
2332}
2333
2334#ifdef CONFIG_SWIOTLB
2335void arch_sync_dma_for_device(struct device *dev, phys_addr_t paddr,
2336 size_t size, enum dma_data_direction dir)
2337{
2338 __dma_page_cpu_to_dev(phys_to_page(paddr), paddr & (PAGE_SIZE - 1),
2339 size, dir);
2340}
2341
2342void arch_sync_dma_for_cpu(struct device *dev, phys_addr_t paddr,
2343 size_t size, enum dma_data_direction dir)
2344{
2345 __dma_page_dev_to_cpu(phys_to_page(paddr), paddr & (PAGE_SIZE - 1),
2346 size, dir);
2347}
2348
2349long arch_dma_coherent_to_pfn(struct device *dev, void *cpu_addr,
2350 dma_addr_t dma_addr)
2351{
2352 return dma_to_pfn(dev, dma_addr);
2353}
2354
2355void *arch_dma_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle,
2356 gfp_t gfp, unsigned long attrs)
2357{
2358 return __dma_alloc(dev, size, dma_handle, gfp,
2359 __get_dma_pgprot(attrs, PAGE_KERNEL), false,
2360 attrs, __builtin_return_address(0));
2361}
2362
2363void arch_dma_free(struct device *dev, size_t size, void *cpu_addr,
2364 dma_addr_t dma_handle, unsigned long attrs)
2365{
2366 __arm_dma_free(dev, size, cpu_addr, dma_handle, attrs, false);
2367}
2368#endif /* CONFIG_SWIOTLB */