Linux Audio

Check our new training course

Loading...
v6.13.7
  1/* SPDX-License-Identifier: GPL-2.0 */
  2/*
  3 * If TRACE_SYSTEM is defined, that will be the directory created
  4 * in the ftrace directory under /sys/kernel/tracing/events/<system>
  5 *
  6 * The define_trace.h below will also look for a file name of
  7 * TRACE_SYSTEM.h where TRACE_SYSTEM is what is defined here.
  8 * In this case, it would look for sample-trace.h
  9 *
 10 * If the header name will be different than the system name
 11 * (as in this case), then you can override the header name that
 12 * define_trace.h will look up by defining TRACE_INCLUDE_FILE
 13 *
 14 * This file is called trace-events-sample.h but we want the system
 15 * to be called "sample-trace". Therefore we must define the name of this
 16 * file:
 17 *
 18 * #define TRACE_INCLUDE_FILE trace-events-sample
 19 *
 20 * As we do an the bottom of this file.
 21 *
 22 * Notice that TRACE_SYSTEM should be defined outside of #if
 23 * protection, just like TRACE_INCLUDE_FILE.
 24 */
 25#undef TRACE_SYSTEM
 26#define TRACE_SYSTEM sample-trace
 27
 28/*
 29 * TRACE_SYSTEM is expected to be a C valid variable (alpha-numeric
 30 * and underscore), although it may start with numbers. If for some
 31 * reason it is not, you need to add the following lines:
 32 */
 33#undef TRACE_SYSTEM_VAR
 34#define TRACE_SYSTEM_VAR sample_trace
 35/*
 36 * But the above is only needed if TRACE_SYSTEM is not alpha-numeric
 37 * and underscored. By default, TRACE_SYSTEM_VAR will be equal to
 38 * TRACE_SYSTEM. As TRACE_SYSTEM_VAR must be alpha-numeric, if
 39 * TRACE_SYSTEM is not, then TRACE_SYSTEM_VAR must be defined with
 40 * only alpha-numeric and underscores.
 41 *
 42 * The TRACE_SYSTEM_VAR is only used internally and not visible to
 43 * user space.
 44 */
 45
 46/*
 47 * Notice that this file is not protected like a normal header.
 48 * We also must allow for rereading of this file. The
 49 *
 50 *  || defined(TRACE_HEADER_MULTI_READ)
 51 *
 52 * serves this purpose.
 53 */
 54#if !defined(_TRACE_EVENT_SAMPLE_H) || defined(TRACE_HEADER_MULTI_READ)
 55#define _TRACE_EVENT_SAMPLE_H
 56
 57/*
 58 * All trace headers should include tracepoint.h, until we finally
 59 * make it into a standard header.
 60 */
 61#include <linux/tracepoint.h>
 62
 63/*
 64 * The TRACE_EVENT macro is broken up into 5 parts.
 65 *
 66 * name: name of the trace point. This is also how to enable the tracepoint.
 67 *   A function called trace_foo_bar() will be created.
 68 *
 69 * proto: the prototype of the function trace_foo_bar()
 70 *   Here it is trace_foo_bar(char *foo, int bar).
 71 *
 72 * args:  must match the arguments in the prototype.
 73 *    Here it is simply "foo, bar".
 74 *
 75 * struct:  This defines the way the data will be stored in the ring buffer.
 76 *          The items declared here become part of a special structure
 77 *          called "__entry", which can be used in the fast_assign part of the
 78 *          TRACE_EVENT macro.
 79 *
 80 *      Here are the currently defined types you can use:
 81 *
 82 *   __field : Is broken up into type and name. Where type can be any
 83 *         primitive type (integer, long or pointer).
 84 *
 85 *        __field(int, foo)
 86 *
 87 *        __entry->foo = 5;
 88 *
 89 *   __field_struct : This can be any static complex data type (struct, union
 90 *         but not an array). Be careful using complex types, as each
 91 *         event is limited in size, and copying large amounts of data
 92 *         into the ring buffer can slow things down.
 93 *
 94 *         __field_struct(struct bar, foo)
 95 *
 96 *         __entry->bar.x = y;
 97
 98 *   __array: There are three fields (type, name, size). The type is the
 99 *         type of elements in the array, the name is the name of the array.
100 *         size is the number of items in the array (not the total size).
101 *
102 *         __array( char, foo, 10) is the same as saying: char foo[10];
103 *
104 *         Assigning arrays can be done like any array:
105 *
106 *         __entry->foo[0] = 'a';
107 *
108 *         memcpy(__entry->foo, bar, 10);
109 *
110 *   __dynamic_array: This is similar to array, but can vary its size from
111 *         instance to instance of the tracepoint being called.
112 *         Like __array, this too has three elements (type, name, size);
113 *         type is the type of the element, name is the name of the array.
114 *         The size is different than __array. It is not a static number,
115 *         but the algorithm to figure out the length of the array for the
116 *         specific instance of tracepoint. Again, size is the number of
117 *         items in the array, not the total length in bytes.
118 *
119 *         __dynamic_array( int, foo, bar) is similar to: int foo[bar];
120 *
121 *         Note, unlike arrays, you must use the __get_dynamic_array() macro
122 *         to access the array.
123 *
124 *         memcpy(__get_dynamic_array(foo), bar, 10);
125 *
126 *         Notice, that "__entry" is not needed here.
127 *
128 *   __string: This is a special kind of __dynamic_array. It expects to
129 *         have a null terminated character array passed to it (it allows
130 *         for NULL too, which would be converted into "(null)"). __string
131 *         takes two parameter (name, src), where name is the name of
132 *         the string saved, and src is the string to copy into the
133 *         ring buffer.
134 *
135 *         __string(foo, bar)  is similar to:  strcpy(foo, bar)
136 *
137 *         To assign a string, use the helper macro __assign_str().
138 *
139 *         __assign_str(foo);
140 *
141 *	   The __string() macro saves off the string that is passed into
142 *         the second parameter, and the __assign_str() will store than
143 *         saved string into the "foo" field.
144 *
145 *   __vstring: This is similar to __string() but instead of taking a
146 *         dynamic length, it takes a variable list va_list 'va' variable.
147 *         Some event callers already have a message from parameters saved
148 *         in a va_list. Passing in the format and the va_list variable
149 *         will save just enough on the ring buffer for that string.
150 *         Note, the va variable used is a pointer to a va_list, not
151 *         to the va_list directly.
152 *
153 *           (va_list *va)
154 *
155 *         __vstring(foo, fmt, va)  is similar to:  vsnprintf(foo, fmt, va)
156 *
157 *         To assign the string, use the helper macro __assign_vstr().
158 *
159 *         __assign_vstr(foo, fmt, va);
160 *
161 *         In most cases, the __assign_vstr() macro will take the same
162 *         parameters as the __vstring() macro had to declare the string.
163 *         Use __get_str() to retrieve the __vstring() just like it would for
164 *         __string().
165 *
166 *   __string_len: This is a helper to a __dynamic_array, but it understands
167 *	   that the array has characters in it, it will allocate 'len' + 1 bytes
168 *         in the ring buffer and add a '\0' to the string. This is
169 *         useful if the string being saved has no terminating '\0' byte.
170 *         It requires that the length of the string is known as it acts
171 *         like a memcpy().
172 *
173 *         Declared with:
174 *
175 *         __string_len(foo, bar, len)
176 *
177 *         To assign this string, use the helper macro __assign_str().
178 *         The length is saved via the __string_len() and is retrieved in
179 *         __assign_str().
180 *
181 *         __assign_str(foo);
182 *
183 *         Then len + 1 is allocated to the ring buffer, and a nul terminating
184 *         byte is added. This is similar to:
185 *
186 *         memcpy(__get_str(foo), bar, len);
187 *         __get_str(foo)[len] = 0;
188 *
189 *        The advantage of using this over __dynamic_array, is that it
190 *        takes care of allocating the extra byte on the ring buffer
191 *        for the '\0' terminating byte, and __get_str(foo) can be used
192 *        in the TP_printk().
193 *
194 *   __bitmask: This is another kind of __dynamic_array, but it expects
195 *         an array of longs, and the number of bits to parse. It takes
196 *         two parameters (name, nr_bits), where name is the name of the
197 *         bitmask to save, and the nr_bits is the number of bits to record.
198 *
199 *         __bitmask(target_cpu, nr_cpumask_bits)
200 *
201 *         To assign a bitmask, use the __assign_bitmask() helper macro.
202 *
203 *         __assign_bitmask(target_cpus, cpumask_bits(bar), nr_cpumask_bits);
204 *
205 *   __cpumask: This is pretty much the same as __bitmask but is specific for
206 *         CPU masks. The type displayed to the user via the format files will
207 *         be "cpumaks_t" such that user space may deal with them differently
208 *         if they choose to do so, and the bits is always set to nr_cpumask_bits.
209 *
210 *         __cpumask(target_cpu)
211 *
212 *         To assign a cpumask, use the __assign_cpumask() helper macro.
213 *
214 *         __assign_cpumask(target_cpus, cpumask_bits(bar));
215 *
216 * fast_assign: This is a C like function that is used to store the items
217 *    into the ring buffer. A special variable called "__entry" will be the
218 *    structure that points into the ring buffer and has the same fields as
219 *    described by the struct part of TRACE_EVENT above.
220 *
221 * printk: This is a way to print out the data in pretty print. This is
222 *    useful if the system crashes and you are logging via a serial line,
223 *    the data can be printed to the console using this "printk" method.
224 *    This is also used to print out the data from the trace files.
225 *    Again, the __entry macro is used to access the data from the ring buffer.
226 *
227 *    Note, __dynamic_array, __string, __bitmask and __cpumask require special
228 *       helpers to access the data.
229 *
230 *      For __dynamic_array(int, foo, bar) use __get_dynamic_array(foo)
231 *            Use __get_dynamic_array_len(foo) to get the length of the array
232 *            saved. Note, __get_dynamic_array_len() returns the total allocated
233 *            length of the dynamic array; __print_array() expects the second
234 *            parameter to be the number of elements. To get that, the array length
235 *            needs to be divided by the element size.
236 *
237 *      For __string(foo, bar) use __get_str(foo)
238 *
239 *      For __bitmask(target_cpus, nr_cpumask_bits) use __get_bitmask(target_cpus)
240 *
241 *      For __cpumask(target_cpus) use __get_cpumask(target_cpus)
242 *
243 *
244 * Note, that for both the assign and the printk, __entry is the handler
245 * to the data structure in the ring buffer, and is defined by the
246 * TP_STRUCT__entry.
247 */
248
249/*
250 * It is OK to have helper functions in the file, but they need to be protected
251 * from being defined more than once. Remember, this file gets included more
252 * than once.
253 */
254#ifndef __TRACE_EVENT_SAMPLE_HELPER_FUNCTIONS
255#define __TRACE_EVENT_SAMPLE_HELPER_FUNCTIONS
256static inline int __length_of(const int *list)
257{
258	int i;
259
260	if (!list)
261		return 0;
262
263	for (i = 0; list[i]; i++)
264		;
265	return i;
266}
267
268enum {
269	TRACE_SAMPLE_FOO = 2,
270	TRACE_SAMPLE_BAR = 4,
271	TRACE_SAMPLE_ZOO = 8,
272};
273#endif
274
275/*
276 * If enums are used in the TP_printk(), their names will be shown in
277 * format files and not their values. This can cause problems with user
278 * space programs that parse the format files to know how to translate
279 * the raw binary trace output into human readable text.
280 *
281 * To help out user space programs, any enum that is used in the TP_printk()
282 * should be defined by TRACE_DEFINE_ENUM() macro. All that is needed to
283 * be done is to add this macro with the enum within it in the trace
284 * header file, and it will be converted in the output.
285 */
286
287TRACE_DEFINE_ENUM(TRACE_SAMPLE_FOO);
288TRACE_DEFINE_ENUM(TRACE_SAMPLE_BAR);
289TRACE_DEFINE_ENUM(TRACE_SAMPLE_ZOO);
290
291TRACE_EVENT(foo_bar,
292
293	TP_PROTO(const char *foo, int bar, const int *lst,
294		 const char *string, const struct cpumask *mask,
295		 const char *fmt, va_list *va),
296
297	TP_ARGS(foo, bar, lst, string, mask, fmt, va),
298
299	TP_STRUCT__entry(
300		__array(	char,	foo,    10		)
301		__field(	int,	bar			)
302		__dynamic_array(int,	list,   __length_of(lst))
303		__string(	str,	string			)
304		__bitmask(	cpus,	num_possible_cpus()	)
305		__cpumask(	cpum				)
306		__vstring(	vstr,	fmt,	va		)
307		__string_len(	lstr,	foo,	bar / 2 < strlen(foo) ? bar / 2 : strlen(foo) )
308	),
309
310	TP_fast_assign(
311		strscpy(__entry->foo, foo, 10);
312		__entry->bar	= bar;
313		memcpy(__get_dynamic_array(list), lst,
314		       __length_of(lst) * sizeof(int));
315		__assign_str(str);
316		__assign_str(lstr);
317		__assign_vstr(vstr, fmt, va);
318		__assign_bitmask(cpus, cpumask_bits(mask), num_possible_cpus());
319		__assign_cpumask(cpum, cpumask_bits(mask));
320	),
321
322	TP_printk("foo %s %d %s %s %s %s %s %s (%s) (%s) %s", __entry->foo, __entry->bar,
323
324/*
325 * Notice here the use of some helper functions. This includes:
326 *
327 *  __print_symbolic( variable, { value, "string" }, ... ),
328 *
329 *    The variable is tested against each value of the { } pair. If
330 *    the variable matches one of the values, then it will print the
331 *    string in that pair. If non are matched, it returns a string
332 *    version of the number (if __entry->bar == 7 then "7" is returned).
333 */
334		  __print_symbolic(__entry->bar,
335				   { 0, "zero" },
336				   { TRACE_SAMPLE_FOO, "TWO" },
337				   { TRACE_SAMPLE_BAR, "FOUR" },
338				   { TRACE_SAMPLE_ZOO, "EIGHT" },
339				   { 10, "TEN" }
340			  ),
341
342/*
343 *  __print_flags( variable, "delim", { value, "flag" }, ... ),
344 *
345 *    This is similar to __print_symbolic, except that it tests the bits
346 *    of the value. If ((FLAG & variable) == FLAG) then the string is
347 *    printed. If more than one flag matches, then each one that does is
348 *    also printed with delim in between them.
349 *    If not all bits are accounted for, then the not found bits will be
350 *    added in hex format: 0x506 will show BIT2|BIT4|0x500
351 */
352		  __print_flags(__entry->bar, "|",
353				{ 1, "BIT1" },
354				{ 2, "BIT2" },
355				{ 4, "BIT3" },
356				{ 8, "BIT4" }
357			  ),
358/*
359 *  __print_array( array, len, element_size )
360 *
361 *    This prints out the array that is defined by __array in a nice format.
362 */
363		  __print_array(__get_dynamic_array(list),
364				__get_dynamic_array_len(list) / sizeof(int),
365				sizeof(int)),
366
367/*     A shortcut is to use __print_dynamic_array for dynamic arrays */
368
369		  __print_dynamic_array(list, sizeof(int)),
370
371		  __get_str(str), __get_str(lstr),
372		  __get_bitmask(cpus), __get_cpumask(cpum),
373		  __get_str(vstr))
374);
375
376/*
377 * There may be a case where a tracepoint should only be called if
378 * some condition is set. Otherwise the tracepoint should not be called.
379 * But to do something like:
380 *
381 *  if (cond)
382 *     trace_foo();
383 *
384 * Would cause a little overhead when tracing is not enabled, and that
385 * overhead, even if small, is not something we want. As tracepoints
386 * use static branch (aka jump_labels), where no branch is taken to
387 * skip the tracepoint when not enabled, and a jmp is placed to jump
388 * to the tracepoint code when it is enabled, having a if statement
389 * nullifies that optimization. It would be nice to place that
390 * condition within the static branch. This is where TRACE_EVENT_CONDITION
391 * comes in.
392 *
393 * TRACE_EVENT_CONDITION() is just like TRACE_EVENT, except it adds another
394 * parameter just after args. Where TRACE_EVENT has:
395 *
396 * TRACE_EVENT(name, proto, args, struct, assign, printk)
397 *
398 * the CONDITION version has:
399 *
400 * TRACE_EVENT_CONDITION(name, proto, args, cond, struct, assign, printk)
401 *
402 * Everything is the same as TRACE_EVENT except for the new cond. Think
403 * of the cond variable as:
404 *
405 *   if (cond)
406 *      trace_foo_bar_with_cond();
407 *
408 * Except that the logic for the if branch is placed after the static branch.
409 * That is, the if statement that processes the condition will not be
410 * executed unless that traecpoint is enabled. Otherwise it still remains
411 * a nop.
412 */
413TRACE_EVENT_CONDITION(foo_bar_with_cond,
414
415	TP_PROTO(const char *foo, int bar),
416
417	TP_ARGS(foo, bar),
418
419	TP_CONDITION(!(bar % 10)),
420
421	TP_STRUCT__entry(
422		__string(	foo,    foo		)
423		__field(	int,	bar			)
424	),
425
426	TP_fast_assign(
427		__assign_str(foo);
428		__entry->bar	= bar;
429	),
430
431	TP_printk("foo %s %d", __get_str(foo), __entry->bar)
432);
433
434int foo_bar_reg(void);
435void foo_bar_unreg(void);
436
437/*
438 * Now in the case that some function needs to be called when the
439 * tracepoint is enabled and/or when it is disabled, the
440 * TRACE_EVENT_FN() serves this purpose. This is just like TRACE_EVENT()
441 * but adds two more parameters at the end:
442 *
443 * TRACE_EVENT_FN( name, proto, args, struct, assign, printk, reg, unreg)
444 *
445 * reg and unreg are functions with the prototype of:
446 *
447 *    void reg(void)
448 *
449 * The reg function gets called before the tracepoint is enabled, and
450 * the unreg function gets called after the tracepoint is disabled.
451 *
452 * Note, reg and unreg are allowed to be NULL. If you only need to
453 * call a function before enabling, or after disabling, just set one
454 * function and pass in NULL for the other parameter.
455 */
456TRACE_EVENT_FN(foo_bar_with_fn,
457
458	TP_PROTO(const char *foo, int bar),
459
460	TP_ARGS(foo, bar),
461
462	TP_STRUCT__entry(
463		__string(	foo,    foo		)
464		__field(	int,	bar		)
465	),
466
467	TP_fast_assign(
468		__assign_str(foo);
469		__entry->bar	= bar;
470	),
471
472	TP_printk("foo %s %d", __get_str(foo), __entry->bar),
473
474	foo_bar_reg, foo_bar_unreg
475);
476
477/*
478 * Each TRACE_EVENT macro creates several helper functions to produce
479 * the code to add the tracepoint, create the files in the trace
480 * directory, hook it to perf, assign the values and to print out
481 * the raw data from the ring buffer. To prevent too much bloat,
482 * if there are more than one tracepoint that uses the same format
483 * for the proto, args, struct, assign and printk, and only the name
484 * is different, it is highly recommended to use the DECLARE_EVENT_CLASS
485 *
486 * DECLARE_EVENT_CLASS() macro creates most of the functions for the
487 * tracepoint. Then DEFINE_EVENT() is use to hook a tracepoint to those
488 * functions. This DEFINE_EVENT() is an instance of the class and can
489 * be enabled and disabled separately from other events (either TRACE_EVENT
490 * or other DEFINE_EVENT()s).
491 *
492 * Note, TRACE_EVENT() itself is simply defined as:
493 *
494 * #define TRACE_EVENT(name, proto, args, tstruct, assign, printk)  \
495 *  DECLARE_EVENT_CLASS(name, proto, args, tstruct, assign, printk); \
496 *  DEFINE_EVENT(name, name, proto, args)
497 *
498 * The DEFINE_EVENT() also can be declared with conditions and reg functions:
499 *
500 * DEFINE_EVENT_CONDITION(template, name, proto, args, cond);
501 * DEFINE_EVENT_FN(template, name, proto, args, reg, unreg);
502 */
503DECLARE_EVENT_CLASS(foo_template,
504
505	TP_PROTO(const char *foo, int bar),
506
507	TP_ARGS(foo, bar),
508
509	TP_STRUCT__entry(
510		__string(	foo,    foo		)
511		__field(	int,	bar		)
512	),
513
514	TP_fast_assign(
515		__assign_str(foo);
516		__entry->bar	= bar;
517	),
518
519	TP_printk("foo %s %d", __get_str(foo), __entry->bar)
520);
521
522/*
523 * Here's a better way for the previous samples (except, the first
524 * example had more fields and could not be used here).
525 */
526DEFINE_EVENT(foo_template, foo_with_template_simple,
527	TP_PROTO(const char *foo, int bar),
528	TP_ARGS(foo, bar));
529
530DEFINE_EVENT_CONDITION(foo_template, foo_with_template_cond,
531	TP_PROTO(const char *foo, int bar),
532	TP_ARGS(foo, bar),
533	TP_CONDITION(!(bar % 8)));
534
535
536DEFINE_EVENT_FN(foo_template, foo_with_template_fn,
537	TP_PROTO(const char *foo, int bar),
538	TP_ARGS(foo, bar),
539	foo_bar_reg, foo_bar_unreg);
540
541/*
542 * Anytime two events share basically the same values and have
543 * the same output, use the DECLARE_EVENT_CLASS() and DEFINE_EVENT()
544 * when ever possible.
545 */
546
547/*
548 * If the event is similar to the DECLARE_EVENT_CLASS, but you need
549 * to have a different output, then use DEFINE_EVENT_PRINT() which
550 * lets you override the TP_printk() of the class.
551 */
552
553DEFINE_EVENT_PRINT(foo_template, foo_with_template_print,
554	TP_PROTO(const char *foo, int bar),
555	TP_ARGS(foo, bar),
556	TP_printk("bar %s %d", __get_str(foo), __entry->bar));
557
558/*
559 * There are yet another __rel_loc dynamic data attribute. If you
560 * use __rel_dynamic_array() and __rel_string() etc. macros, you
561 * can use this attribute. There is no difference from the viewpoint
562 * of functionality with/without 'rel' but the encoding is a bit
563 * different. This is expected to be used with user-space event,
564 * there is no reason that the kernel event use this, but only for
565 * testing.
566 */
567
568TRACE_EVENT(foo_rel_loc,
569
570	TP_PROTO(const char *foo, int bar, unsigned long *mask, const cpumask_t *cpus),
571
572	TP_ARGS(foo, bar, mask, cpus),
573
574	TP_STRUCT__entry(
575		__rel_string(	foo,	foo	)
576		__field(	int,	bar	)
577		__rel_bitmask(	bitmask,
578			BITS_PER_BYTE * sizeof(unsigned long)	)
579		__rel_cpumask(	cpumask )
580	),
581
582	TP_fast_assign(
583		__assign_rel_str(foo);
584		__entry->bar = bar;
585		__assign_rel_bitmask(bitmask, mask,
586			BITS_PER_BYTE * sizeof(unsigned long));
587		__assign_rel_cpumask(cpumask, cpus);
588	),
589
590	TP_printk("foo_rel_loc %s, %d, %s, %s", __get_rel_str(foo), __entry->bar,
591		  __get_rel_bitmask(bitmask),
592		  __get_rel_cpumask(cpumask))
593);
594#endif
595
596/***** NOTICE! The #if protection ends here. *****/
597
598
599/*
600 * There are several ways I could have done this. If I left out the
601 * TRACE_INCLUDE_PATH, then it would default to the kernel source
602 * include/trace/events directory.
603 *
604 * I could specify a path from the define_trace.h file back to this
605 * file.
606 *
607 * #define TRACE_INCLUDE_PATH ../../samples/trace_events
608 *
609 * But the safest and easiest way to simply make it use the directory
610 * that the file is in is to add in the Makefile:
611 *
612 * CFLAGS_trace-events-sample.o := -I$(src)
613 *
614 * This will make sure the current path is part of the include
615 * structure for our file so that define_trace.h can find it.
616 *
617 * I could have made only the top level directory the include:
618 *
619 * CFLAGS_trace-events-sample.o := -I$(PWD)
620 *
621 * And then let the path to this directory be the TRACE_INCLUDE_PATH:
622 *
623 * #define TRACE_INCLUDE_PATH samples/trace_events
624 *
625 * But then if something defines "samples" or "trace_events" as a macro
626 * then we could risk that being converted too, and give us an unexpected
627 * result.
628 */
629#undef TRACE_INCLUDE_PATH
630#undef TRACE_INCLUDE_FILE
631#define TRACE_INCLUDE_PATH .
632/*
633 * TRACE_INCLUDE_FILE is not needed if the filename and TRACE_SYSTEM are equal
634 */
635#define TRACE_INCLUDE_FILE trace-events-sample
636#include <trace/define_trace.h>
v5.4
  1/* SPDX-License-Identifier: GPL-2.0 */
  2/*
  3 * If TRACE_SYSTEM is defined, that will be the directory created
  4 * in the ftrace directory under /sys/kernel/tracing/events/<system>
  5 *
  6 * The define_trace.h below will also look for a file name of
  7 * TRACE_SYSTEM.h where TRACE_SYSTEM is what is defined here.
  8 * In this case, it would look for sample-trace.h
  9 *
 10 * If the header name will be different than the system name
 11 * (as in this case), then you can override the header name that
 12 * define_trace.h will look up by defining TRACE_INCLUDE_FILE
 13 *
 14 * This file is called trace-events-sample.h but we want the system
 15 * to be called "sample-trace". Therefore we must define the name of this
 16 * file:
 17 *
 18 * #define TRACE_INCLUDE_FILE trace-events-sample
 19 *
 20 * As we do an the bottom of this file.
 21 *
 22 * Notice that TRACE_SYSTEM should be defined outside of #if
 23 * protection, just like TRACE_INCLUDE_FILE.
 24 */
 25#undef TRACE_SYSTEM
 26#define TRACE_SYSTEM sample-trace
 27
 28/*
 29 * TRACE_SYSTEM is expected to be a C valid variable (alpha-numeric
 30 * and underscore), although it may start with numbers. If for some
 31 * reason it is not, you need to add the following lines:
 32 */
 33#undef TRACE_SYSTEM_VAR
 34#define TRACE_SYSTEM_VAR sample_trace
 35/*
 36 * But the above is only needed if TRACE_SYSTEM is not alpha-numeric
 37 * and underscored. By default, TRACE_SYSTEM_VAR will be equal to
 38 * TRACE_SYSTEM. As TRACE_SYSTEM_VAR must be alpha-numeric, if
 39 * TRACE_SYSTEM is not, then TRACE_SYSTEM_VAR must be defined with
 40 * only alpha-numeric and underscores.
 41 *
 42 * The TRACE_SYSTEM_VAR is only used internally and not visible to
 43 * user space.
 44 */
 45
 46/*
 47 * Notice that this file is not protected like a normal header.
 48 * We also must allow for rereading of this file. The
 49 *
 50 *  || defined(TRACE_HEADER_MULTI_READ)
 51 *
 52 * serves this purpose.
 53 */
 54#if !defined(_TRACE_EVENT_SAMPLE_H) || defined(TRACE_HEADER_MULTI_READ)
 55#define _TRACE_EVENT_SAMPLE_H
 56
 57/*
 58 * All trace headers should include tracepoint.h, until we finally
 59 * make it into a standard header.
 60 */
 61#include <linux/tracepoint.h>
 62
 63/*
 64 * The TRACE_EVENT macro is broken up into 5 parts.
 65 *
 66 * name: name of the trace point. This is also how to enable the tracepoint.
 67 *   A function called trace_foo_bar() will be created.
 68 *
 69 * proto: the prototype of the function trace_foo_bar()
 70 *   Here it is trace_foo_bar(char *foo, int bar).
 71 *
 72 * args:  must match the arguments in the prototype.
 73 *    Here it is simply "foo, bar".
 74 *
 75 * struct:  This defines the way the data will be stored in the ring buffer.
 76 *          The items declared here become part of a special structure
 77 *          called "__entry", which can be used in the fast_assign part of the
 78 *          TRACE_EVENT macro.
 79 *
 80 *      Here are the currently defined types you can use:
 81 *
 82 *   __field : Is broken up into type and name. Where type can be any
 83 *         primitive type (integer, long or pointer).
 84 *
 85 *        __field(int, foo)
 86 *
 87 *        __entry->foo = 5;
 88 *
 89 *   __field_struct : This can be any static complex data type (struct, union
 90 *         but not an array). Be careful using complex types, as each
 91 *         event is limited in size, and copying large amounts of data
 92 *         into the ring buffer can slow things down.
 93 *
 94 *         __field_struct(struct bar, foo)
 95 *
 96 *         __entry->bar.x = y;
 97
 98 *   __array: There are three fields (type, name, size). The type is the
 99 *         type of elements in the array, the name is the name of the array.
100 *         size is the number of items in the array (not the total size).
101 *
102 *         __array( char, foo, 10) is the same as saying: char foo[10];
103 *
104 *         Assigning arrays can be done like any array:
105 *
106 *         __entry->foo[0] = 'a';
107 *
108 *         memcpy(__entry->foo, bar, 10);
109 *
110 *   __dynamic_array: This is similar to array, but can vary its size from
111 *         instance to instance of the tracepoint being called.
112 *         Like __array, this too has three elements (type, name, size);
113 *         type is the type of the element, name is the name of the array.
114 *         The size is different than __array. It is not a static number,
115 *         but the algorithm to figure out the length of the array for the
116 *         specific instance of tracepoint. Again, size is the number of
117 *         items in the array, not the total length in bytes.
118 *
119 *         __dynamic_array( int, foo, bar) is similar to: int foo[bar];
120 *
121 *         Note, unlike arrays, you must use the __get_dynamic_array() macro
122 *         to access the array.
123 *
124 *         memcpy(__get_dynamic_array(foo), bar, 10);
125 *
126 *         Notice, that "__entry" is not needed here.
127 *
128 *   __string: This is a special kind of __dynamic_array. It expects to
129 *         have a null terminated character array passed to it (it allows
130 *         for NULL too, which would be converted into "(null)"). __string
131 *         takes two parameter (name, src), where name is the name of
132 *         the string saved, and src is the string to copy into the
133 *         ring buffer.
134 *
135 *         __string(foo, bar)  is similar to:  strcpy(foo, bar)
136 *
137 *         To assign a string, use the helper macro __assign_str().
138 *
139 *         __assign_str(foo, bar);
140 *
141 *         In most cases, the __assign_str() macro will take the same
142 *         parameters as the __string() macro had to declare the string.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
143 *
144 *   __bitmask: This is another kind of __dynamic_array, but it expects
145 *         an array of longs, and the number of bits to parse. It takes
146 *         two parameters (name, nr_bits), where name is the name of the
147 *         bitmask to save, and the nr_bits is the number of bits to record.
148 *
149 *         __bitmask(target_cpu, nr_cpumask_bits)
150 *
151 *         To assign a bitmask, use the __assign_bitmask() helper macro.
152 *
153 *         __assign_bitmask(target_cpus, cpumask_bits(bar), nr_cpumask_bits);
154 *
 
 
 
 
 
 
 
 
 
 
155 *
156 * fast_assign: This is a C like function that is used to store the items
157 *    into the ring buffer. A special variable called "__entry" will be the
158 *    structure that points into the ring buffer and has the same fields as
159 *    described by the struct part of TRACE_EVENT above.
160 *
161 * printk: This is a way to print out the data in pretty print. This is
162 *    useful if the system crashes and you are logging via a serial line,
163 *    the data can be printed to the console using this "printk" method.
164 *    This is also used to print out the data from the trace files.
165 *    Again, the __entry macro is used to access the data from the ring buffer.
166 *
167 *    Note, __dynamic_array, __string, and __bitmask require special helpers
168 *       to access the data.
169 *
170 *      For __dynamic_array(int, foo, bar) use __get_dynamic_array(foo)
171 *            Use __get_dynamic_array_len(foo) to get the length of the array
172 *            saved. Note, __get_dynamic_array_len() returns the total allocated
173 *            length of the dynamic array; __print_array() expects the second
174 *            parameter to be the number of elements. To get that, the array length
175 *            needs to be divided by the element size.
176 *
177 *      For __string(foo, bar) use __get_str(foo)
178 *
179 *      For __bitmask(target_cpus, nr_cpumask_bits) use __get_bitmask(target_cpus)
180 *
 
 
181 *
182 * Note, that for both the assign and the printk, __entry is the handler
183 * to the data structure in the ring buffer, and is defined by the
184 * TP_STRUCT__entry.
185 */
186
187/*
188 * It is OK to have helper functions in the file, but they need to be protected
189 * from being defined more than once. Remember, this file gets included more
190 * than once.
191 */
192#ifndef __TRACE_EVENT_SAMPLE_HELPER_FUNCTIONS
193#define __TRACE_EVENT_SAMPLE_HELPER_FUNCTIONS
194static inline int __length_of(const int *list)
195{
196	int i;
197
198	if (!list)
199		return 0;
200
201	for (i = 0; list[i]; i++)
202		;
203	return i;
204}
205
206enum {
207	TRACE_SAMPLE_FOO = 2,
208	TRACE_SAMPLE_BAR = 4,
209	TRACE_SAMPLE_ZOO = 8,
210};
211#endif
212
213/*
214 * If enums are used in the TP_printk(), their names will be shown in
215 * format files and not their values. This can cause problems with user
216 * space programs that parse the format files to know how to translate
217 * the raw binary trace output into human readable text.
218 *
219 * To help out user space programs, any enum that is used in the TP_printk()
220 * should be defined by TRACE_DEFINE_ENUM() macro. All that is needed to
221 * be done is to add this macro with the enum within it in the trace
222 * header file, and it will be converted in the output.
223 */
224
225TRACE_DEFINE_ENUM(TRACE_SAMPLE_FOO);
226TRACE_DEFINE_ENUM(TRACE_SAMPLE_BAR);
227TRACE_DEFINE_ENUM(TRACE_SAMPLE_ZOO);
228
229TRACE_EVENT(foo_bar,
230
231	TP_PROTO(const char *foo, int bar, const int *lst,
232		 const char *string, const struct cpumask *mask),
 
233
234	TP_ARGS(foo, bar, lst, string, mask),
235
236	TP_STRUCT__entry(
237		__array(	char,	foo,    10		)
238		__field(	int,	bar			)
239		__dynamic_array(int,	list,   __length_of(lst))
240		__string(	str,	string			)
241		__bitmask(	cpus,	num_possible_cpus()	)
 
 
 
242	),
243
244	TP_fast_assign(
245		strlcpy(__entry->foo, foo, 10);
246		__entry->bar	= bar;
247		memcpy(__get_dynamic_array(list), lst,
248		       __length_of(lst) * sizeof(int));
249		__assign_str(str, string);
 
 
250		__assign_bitmask(cpus, cpumask_bits(mask), num_possible_cpus());
 
251	),
252
253	TP_printk("foo %s %d %s %s %s %s (%s)", __entry->foo, __entry->bar,
254
255/*
256 * Notice here the use of some helper functions. This includes:
257 *
258 *  __print_symbolic( variable, { value, "string" }, ... ),
259 *
260 *    The variable is tested against each value of the { } pair. If
261 *    the variable matches one of the values, then it will print the
262 *    string in that pair. If non are matched, it returns a string
263 *    version of the number (if __entry->bar == 7 then "7" is returned).
264 */
265		  __print_symbolic(__entry->bar,
266				   { 0, "zero" },
267				   { TRACE_SAMPLE_FOO, "TWO" },
268				   { TRACE_SAMPLE_BAR, "FOUR" },
269				   { TRACE_SAMPLE_ZOO, "EIGHT" },
270				   { 10, "TEN" }
271			  ),
272
273/*
274 *  __print_flags( variable, "delim", { value, "flag" }, ... ),
275 *
276 *    This is similar to __print_symbolic, except that it tests the bits
277 *    of the value. If ((FLAG & variable) == FLAG) then the string is
278 *    printed. If more than one flag matches, then each one that does is
279 *    also printed with delim in between them.
280 *    If not all bits are accounted for, then the not found bits will be
281 *    added in hex format: 0x506 will show BIT2|BIT4|0x500
282 */
283		  __print_flags(__entry->bar, "|",
284				{ 1, "BIT1" },
285				{ 2, "BIT2" },
286				{ 4, "BIT3" },
287				{ 8, "BIT4" }
288			  ),
289/*
290 *  __print_array( array, len, element_size )
291 *
292 *    This prints out the array that is defined by __array in a nice format.
293 */
294		  __print_array(__get_dynamic_array(list),
295				__get_dynamic_array_len(list) / sizeof(int),
296				sizeof(int)),
297		  __get_str(str), __get_bitmask(cpus))
 
 
 
 
 
 
 
298);
299
300/*
301 * There may be a case where a tracepoint should only be called if
302 * some condition is set. Otherwise the tracepoint should not be called.
303 * But to do something like:
304 *
305 *  if (cond)
306 *     trace_foo();
307 *
308 * Would cause a little overhead when tracing is not enabled, and that
309 * overhead, even if small, is not something we want. As tracepoints
310 * use static branch (aka jump_labels), where no branch is taken to
311 * skip the tracepoint when not enabled, and a jmp is placed to jump
312 * to the tracepoint code when it is enabled, having a if statement
313 * nullifies that optimization. It would be nice to place that
314 * condition within the static branch. This is where TRACE_EVENT_CONDITION
315 * comes in.
316 *
317 * TRACE_EVENT_CONDITION() is just like TRACE_EVENT, except it adds another
318 * parameter just after args. Where TRACE_EVENT has:
319 *
320 * TRACE_EVENT(name, proto, args, struct, assign, printk)
321 *
322 * the CONDITION version has:
323 *
324 * TRACE_EVENT_CONDITION(name, proto, args, cond, struct, assign, printk)
325 *
326 * Everything is the same as TRACE_EVENT except for the new cond. Think
327 * of the cond variable as:
328 *
329 *   if (cond)
330 *      trace_foo_bar_with_cond();
331 *
332 * Except that the logic for the if branch is placed after the static branch.
333 * That is, the if statement that processes the condition will not be
334 * executed unless that traecpoint is enabled. Otherwise it still remains
335 * a nop.
336 */
337TRACE_EVENT_CONDITION(foo_bar_with_cond,
338
339	TP_PROTO(const char *foo, int bar),
340
341	TP_ARGS(foo, bar),
342
343	TP_CONDITION(!(bar % 10)),
344
345	TP_STRUCT__entry(
346		__string(	foo,    foo		)
347		__field(	int,	bar			)
348	),
349
350	TP_fast_assign(
351		__assign_str(foo, foo);
352		__entry->bar	= bar;
353	),
354
355	TP_printk("foo %s %d", __get_str(foo), __entry->bar)
356);
357
358int foo_bar_reg(void);
359void foo_bar_unreg(void);
360
361/*
362 * Now in the case that some function needs to be called when the
363 * tracepoint is enabled and/or when it is disabled, the
364 * TRACE_EVENT_FN() serves this purpose. This is just like TRACE_EVENT()
365 * but adds two more parameters at the end:
366 *
367 * TRACE_EVENT_FN( name, proto, args, struct, assign, printk, reg, unreg)
368 *
369 * reg and unreg are functions with the prototype of:
370 *
371 *    void reg(void)
372 *
373 * The reg function gets called before the tracepoint is enabled, and
374 * the unreg function gets called after the tracepoint is disabled.
375 *
376 * Note, reg and unreg are allowed to be NULL. If you only need to
377 * call a function before enabling, or after disabling, just set one
378 * function and pass in NULL for the other parameter.
379 */
380TRACE_EVENT_FN(foo_bar_with_fn,
381
382	TP_PROTO(const char *foo, int bar),
383
384	TP_ARGS(foo, bar),
385
386	TP_STRUCT__entry(
387		__string(	foo,    foo		)
388		__field(	int,	bar		)
389	),
390
391	TP_fast_assign(
392		__assign_str(foo, foo);
393		__entry->bar	= bar;
394	),
395
396	TP_printk("foo %s %d", __get_str(foo), __entry->bar),
397
398	foo_bar_reg, foo_bar_unreg
399);
400
401/*
402 * Each TRACE_EVENT macro creates several helper functions to produce
403 * the code to add the tracepoint, create the files in the trace
404 * directory, hook it to perf, assign the values and to print out
405 * the raw data from the ring buffer. To prevent too much bloat,
406 * if there are more than one tracepoint that uses the same format
407 * for the proto, args, struct, assign and printk, and only the name
408 * is different, it is highly recommended to use the DECLARE_EVENT_CLASS
409 *
410 * DECLARE_EVENT_CLASS() macro creates most of the functions for the
411 * tracepoint. Then DEFINE_EVENT() is use to hook a tracepoint to those
412 * functions. This DEFINE_EVENT() is an instance of the class and can
413 * be enabled and disabled separately from other events (either TRACE_EVENT
414 * or other DEFINE_EVENT()s).
415 *
416 * Note, TRACE_EVENT() itself is simply defined as:
417 *
418 * #define TRACE_EVENT(name, proto, args, tstruct, assign, printk)  \
419 *  DEFINE_EVENT_CLASS(name, proto, args, tstruct, assign, printk); \
420 *  DEFINE_EVENT(name, name, proto, args)
421 *
422 * The DEFINE_EVENT() also can be declared with conditions and reg functions:
423 *
424 * DEFINE_EVENT_CONDITION(template, name, proto, args, cond);
425 * DEFINE_EVENT_FN(template, name, proto, args, reg, unreg);
426 */
427DECLARE_EVENT_CLASS(foo_template,
428
429	TP_PROTO(const char *foo, int bar),
430
431	TP_ARGS(foo, bar),
432
433	TP_STRUCT__entry(
434		__string(	foo,    foo		)
435		__field(	int,	bar		)
436	),
437
438	TP_fast_assign(
439		__assign_str(foo, foo);
440		__entry->bar	= bar;
441	),
442
443	TP_printk("foo %s %d", __get_str(foo), __entry->bar)
444);
445
446/*
447 * Here's a better way for the previous samples (except, the first
448 * example had more fields and could not be used here).
449 */
450DEFINE_EVENT(foo_template, foo_with_template_simple,
451	TP_PROTO(const char *foo, int bar),
452	TP_ARGS(foo, bar));
453
454DEFINE_EVENT_CONDITION(foo_template, foo_with_template_cond,
455	TP_PROTO(const char *foo, int bar),
456	TP_ARGS(foo, bar),
457	TP_CONDITION(!(bar % 8)));
458
459
460DEFINE_EVENT_FN(foo_template, foo_with_template_fn,
461	TP_PROTO(const char *foo, int bar),
462	TP_ARGS(foo, bar),
463	foo_bar_reg, foo_bar_unreg);
464
465/*
466 * Anytime two events share basically the same values and have
467 * the same output, use the DECLARE_EVENT_CLASS() and DEFINE_EVENT()
468 * when ever possible.
469 */
470
471/*
472 * If the event is similar to the DECLARE_EVENT_CLASS, but you need
473 * to have a different output, then use DEFINE_EVENT_PRINT() which
474 * lets you override the TP_printk() of the class.
475 */
476
477DEFINE_EVENT_PRINT(foo_template, foo_with_template_print,
478	TP_PROTO(const char *foo, int bar),
479	TP_ARGS(foo, bar),
480	TP_printk("bar %s %d", __get_str(foo), __entry->bar));
481
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
482#endif
483
484/***** NOTICE! The #if protection ends here. *****/
485
486
487/*
488 * There are several ways I could have done this. If I left out the
489 * TRACE_INCLUDE_PATH, then it would default to the kernel source
490 * include/trace/events directory.
491 *
492 * I could specify a path from the define_trace.h file back to this
493 * file.
494 *
495 * #define TRACE_INCLUDE_PATH ../../samples/trace_events
496 *
497 * But the safest and easiest way to simply make it use the directory
498 * that the file is in is to add in the Makefile:
499 *
500 * CFLAGS_trace-events-sample.o := -I$(src)
501 *
502 * This will make sure the current path is part of the include
503 * structure for our file so that define_trace.h can find it.
504 *
505 * I could have made only the top level directory the include:
506 *
507 * CFLAGS_trace-events-sample.o := -I$(PWD)
508 *
509 * And then let the path to this directory be the TRACE_INCLUDE_PATH:
510 *
511 * #define TRACE_INCLUDE_PATH samples/trace_events
512 *
513 * But then if something defines "samples" or "trace_events" as a macro
514 * then we could risk that being converted too, and give us an unexpected
515 * result.
516 */
517#undef TRACE_INCLUDE_PATH
518#undef TRACE_INCLUDE_FILE
519#define TRACE_INCLUDE_PATH .
520/*
521 * TRACE_INCLUDE_FILE is not needed if the filename and TRACE_SYSTEM are equal
522 */
523#define TRACE_INCLUDE_FILE trace-events-sample
524#include <trace/define_trace.h>