Linux Audio

Check our new training course

Loading...
v6.13.7
   1/*
   2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
   3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
   4 *
   5 * This software is available to you under a choice of one of two
   6 * licenses.  You may choose to be licensed under the terms of the GNU
   7 * General Public License (GPL) Version 2, available from the file
   8 * COPYING in the main directory of this source tree, or the
   9 * OpenIB.org BSD license below:
  10 *
  11 *     Redistribution and use in source and binary forms, with or
  12 *     without modification, are permitted provided that the following
  13 *     conditions are met:
  14 *
  15 *      - Redistributions of source code must retain the above
  16 *        copyright notice, this list of conditions and the following
  17 *        disclaimer.
  18 *
  19 *      - Redistributions in binary form must reproduce the above
  20 *        copyright notice, this list of conditions and the following
  21 *        disclaimer in the documentation and/or other materials
  22 *        provided with the distribution.
  23 *
  24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  31 * SOFTWARE.
  32 */
  33
  34#include <linux/module.h>
  35
  36#include <net/tcp.h>
  37#include <net/inet_common.h>
  38#include <linux/highmem.h>
  39#include <linux/netdevice.h>
  40#include <linux/sched/signal.h>
  41#include <linux/inetdevice.h>
  42#include <linux/inet_diag.h>
  43
  44#include <net/snmp.h>
  45#include <net/tls.h>
  46#include <net/tls_toe.h>
  47
  48#include "tls.h"
  49
  50MODULE_AUTHOR("Mellanox Technologies");
  51MODULE_DESCRIPTION("Transport Layer Security Support");
  52MODULE_LICENSE("Dual BSD/GPL");
  53MODULE_ALIAS_TCP_ULP("tls");
  54
  55enum {
  56	TLSV4,
  57	TLSV6,
  58	TLS_NUM_PROTS,
  59};
  60
  61#define CHECK_CIPHER_DESC(cipher,ci)				\
  62	static_assert(cipher ## _IV_SIZE <= TLS_MAX_IV_SIZE);		\
  63	static_assert(cipher ## _SALT_SIZE <= TLS_MAX_SALT_SIZE);		\
  64	static_assert(cipher ## _REC_SEQ_SIZE <= TLS_MAX_REC_SEQ_SIZE);	\
  65	static_assert(cipher ## _TAG_SIZE == TLS_TAG_SIZE);		\
  66	static_assert(sizeof_field(struct ci, iv) == cipher ## _IV_SIZE);	\
  67	static_assert(sizeof_field(struct ci, key) == cipher ## _KEY_SIZE);	\
  68	static_assert(sizeof_field(struct ci, salt) == cipher ## _SALT_SIZE);	\
  69	static_assert(sizeof_field(struct ci, rec_seq) == cipher ## _REC_SEQ_SIZE);
  70
  71#define __CIPHER_DESC(ci) \
  72	.iv_offset = offsetof(struct ci, iv), \
  73	.key_offset = offsetof(struct ci, key), \
  74	.salt_offset = offsetof(struct ci, salt), \
  75	.rec_seq_offset = offsetof(struct ci, rec_seq), \
  76	.crypto_info = sizeof(struct ci)
  77
  78#define CIPHER_DESC(cipher,ci,algname,_offloadable) [cipher - TLS_CIPHER_MIN] = {	\
  79	.nonce = cipher ## _IV_SIZE, \
  80	.iv = cipher ## _IV_SIZE, \
  81	.key = cipher ## _KEY_SIZE, \
  82	.salt = cipher ## _SALT_SIZE, \
  83	.tag = cipher ## _TAG_SIZE, \
  84	.rec_seq = cipher ## _REC_SEQ_SIZE, \
  85	.cipher_name = algname,	\
  86	.offloadable = _offloadable, \
  87	__CIPHER_DESC(ci), \
  88}
  89
  90#define CIPHER_DESC_NONCE0(cipher,ci,algname,_offloadable) [cipher - TLS_CIPHER_MIN] = { \
  91	.nonce = 0, \
  92	.iv = cipher ## _IV_SIZE, \
  93	.key = cipher ## _KEY_SIZE, \
  94	.salt = cipher ## _SALT_SIZE, \
  95	.tag = cipher ## _TAG_SIZE, \
  96	.rec_seq = cipher ## _REC_SEQ_SIZE, \
  97	.cipher_name = algname,	\
  98	.offloadable = _offloadable, \
  99	__CIPHER_DESC(ci), \
 100}
 101
 102const struct tls_cipher_desc tls_cipher_desc[TLS_CIPHER_MAX + 1 - TLS_CIPHER_MIN] = {
 103	CIPHER_DESC(TLS_CIPHER_AES_GCM_128, tls12_crypto_info_aes_gcm_128, "gcm(aes)", true),
 104	CIPHER_DESC(TLS_CIPHER_AES_GCM_256, tls12_crypto_info_aes_gcm_256, "gcm(aes)", true),
 105	CIPHER_DESC(TLS_CIPHER_AES_CCM_128, tls12_crypto_info_aes_ccm_128, "ccm(aes)", false),
 106	CIPHER_DESC_NONCE0(TLS_CIPHER_CHACHA20_POLY1305, tls12_crypto_info_chacha20_poly1305, "rfc7539(chacha20,poly1305)", false),
 107	CIPHER_DESC(TLS_CIPHER_SM4_GCM, tls12_crypto_info_sm4_gcm, "gcm(sm4)", false),
 108	CIPHER_DESC(TLS_CIPHER_SM4_CCM, tls12_crypto_info_sm4_ccm, "ccm(sm4)", false),
 109	CIPHER_DESC(TLS_CIPHER_ARIA_GCM_128, tls12_crypto_info_aria_gcm_128, "gcm(aria)", false),
 110	CIPHER_DESC(TLS_CIPHER_ARIA_GCM_256, tls12_crypto_info_aria_gcm_256, "gcm(aria)", false),
 111};
 112
 113CHECK_CIPHER_DESC(TLS_CIPHER_AES_GCM_128, tls12_crypto_info_aes_gcm_128);
 114CHECK_CIPHER_DESC(TLS_CIPHER_AES_GCM_256, tls12_crypto_info_aes_gcm_256);
 115CHECK_CIPHER_DESC(TLS_CIPHER_AES_CCM_128, tls12_crypto_info_aes_ccm_128);
 116CHECK_CIPHER_DESC(TLS_CIPHER_CHACHA20_POLY1305, tls12_crypto_info_chacha20_poly1305);
 117CHECK_CIPHER_DESC(TLS_CIPHER_SM4_GCM, tls12_crypto_info_sm4_gcm);
 118CHECK_CIPHER_DESC(TLS_CIPHER_SM4_CCM, tls12_crypto_info_sm4_ccm);
 119CHECK_CIPHER_DESC(TLS_CIPHER_ARIA_GCM_128, tls12_crypto_info_aria_gcm_128);
 120CHECK_CIPHER_DESC(TLS_CIPHER_ARIA_GCM_256, tls12_crypto_info_aria_gcm_256);
 121
 122static const struct proto *saved_tcpv6_prot;
 123static DEFINE_MUTEX(tcpv6_prot_mutex);
 124static const struct proto *saved_tcpv4_prot;
 125static DEFINE_MUTEX(tcpv4_prot_mutex);
 
 
 126static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
 127static struct proto_ops tls_proto_ops[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
 128static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
 129			 const struct proto *base);
 130
 131void update_sk_prot(struct sock *sk, struct tls_context *ctx)
 132{
 133	int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
 134
 135	WRITE_ONCE(sk->sk_prot,
 136		   &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf]);
 137	WRITE_ONCE(sk->sk_socket->ops,
 138		   &tls_proto_ops[ip_ver][ctx->tx_conf][ctx->rx_conf]);
 139}
 140
 141int wait_on_pending_writer(struct sock *sk, long *timeo)
 142{
 
 143	DEFINE_WAIT_FUNC(wait, woken_wake_function);
 144	int ret, rc = 0;
 145
 146	add_wait_queue(sk_sleep(sk), &wait);
 147	while (1) {
 148		if (!*timeo) {
 149			rc = -EAGAIN;
 150			break;
 151		}
 152
 153		if (signal_pending(current)) {
 154			rc = sock_intr_errno(*timeo);
 155			break;
 156		}
 157
 158		ret = sk_wait_event(sk, timeo,
 159				    !READ_ONCE(sk->sk_write_pending), &wait);
 160		if (ret) {
 161			if (ret < 0)
 162				rc = ret;
 163			break;
 164		}
 165	}
 166	remove_wait_queue(sk_sleep(sk), &wait);
 167	return rc;
 168}
 169
 170int tls_push_sg(struct sock *sk,
 171		struct tls_context *ctx,
 172		struct scatterlist *sg,
 173		u16 first_offset,
 174		int flags)
 175{
 176	struct bio_vec bvec;
 177	struct msghdr msg = {
 178		.msg_flags = MSG_SPLICE_PAGES | flags,
 179	};
 180	int ret = 0;
 181	struct page *p;
 182	size_t size;
 183	int offset = first_offset;
 184
 185	size = sg->length - offset;
 186	offset += sg->offset;
 187
 188	ctx->splicing_pages = true;
 189	while (1) {
 
 
 
 190		/* is sending application-limited? */
 191		tcp_rate_check_app_limited(sk);
 192		p = sg_page(sg);
 193retry:
 194		bvec_set_page(&bvec, p, size, offset);
 195		iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, size);
 196
 197		ret = tcp_sendmsg_locked(sk, &msg, size);
 198
 199		if (ret != size) {
 200			if (ret > 0) {
 201				offset += ret;
 202				size -= ret;
 203				goto retry;
 204			}
 205
 206			offset -= sg->offset;
 207			ctx->partially_sent_offset = offset;
 208			ctx->partially_sent_record = (void *)sg;
 209			ctx->splicing_pages = false;
 210			return ret;
 211		}
 212
 213		put_page(p);
 214		sk_mem_uncharge(sk, sg->length);
 215		sg = sg_next(sg);
 216		if (!sg)
 217			break;
 218
 219		offset = sg->offset;
 220		size = sg->length;
 221	}
 222
 223	ctx->splicing_pages = false;
 224
 225	return 0;
 226}
 227
 228static int tls_handle_open_record(struct sock *sk, int flags)
 229{
 230	struct tls_context *ctx = tls_get_ctx(sk);
 231
 232	if (tls_is_pending_open_record(ctx))
 233		return ctx->push_pending_record(sk, flags);
 234
 235	return 0;
 236}
 237
 238int tls_process_cmsg(struct sock *sk, struct msghdr *msg,
 239		     unsigned char *record_type)
 240{
 241	struct cmsghdr *cmsg;
 242	int rc = -EINVAL;
 243
 244	for_each_cmsghdr(cmsg, msg) {
 245		if (!CMSG_OK(msg, cmsg))
 246			return -EINVAL;
 247		if (cmsg->cmsg_level != SOL_TLS)
 248			continue;
 249
 250		switch (cmsg->cmsg_type) {
 251		case TLS_SET_RECORD_TYPE:
 252			if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
 253				return -EINVAL;
 254
 255			if (msg->msg_flags & MSG_MORE)
 256				return -EINVAL;
 257
 258			rc = tls_handle_open_record(sk, msg->msg_flags);
 259			if (rc)
 260				return rc;
 261
 262			*record_type = *(unsigned char *)CMSG_DATA(cmsg);
 263			rc = 0;
 264			break;
 265		default:
 266			return -EINVAL;
 267		}
 268	}
 269
 270	return rc;
 271}
 272
 273int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
 274			    int flags)
 275{
 276	struct scatterlist *sg;
 277	u16 offset;
 278
 279	sg = ctx->partially_sent_record;
 280	offset = ctx->partially_sent_offset;
 281
 282	ctx->partially_sent_record = NULL;
 283	return tls_push_sg(sk, ctx, sg, offset, flags);
 284}
 285
 286void tls_free_partial_record(struct sock *sk, struct tls_context *ctx)
 287{
 288	struct scatterlist *sg;
 289
 290	for (sg = ctx->partially_sent_record; sg; sg = sg_next(sg)) {
 
 
 
 
 291		put_page(sg_page(sg));
 292		sk_mem_uncharge(sk, sg->length);
 
 
 
 
 293	}
 294	ctx->partially_sent_record = NULL;
 
 295}
 296
 297static void tls_write_space(struct sock *sk)
 298{
 299	struct tls_context *ctx = tls_get_ctx(sk);
 300
 301	/* If splicing_pages call lower protocol write space handler
 302	 * to ensure we wake up any waiting operations there. For example
 303	 * if splicing pages where to call sk_wait_event.
 304	 */
 305	if (ctx->splicing_pages) {
 306		ctx->sk_write_space(sk);
 307		return;
 308	}
 309
 310#ifdef CONFIG_TLS_DEVICE
 311	if (ctx->tx_conf == TLS_HW)
 312		tls_device_write_space(sk, ctx);
 313	else
 314#endif
 315		tls_sw_write_space(sk, ctx);
 316
 317	ctx->sk_write_space(sk);
 318}
 319
 320/**
 321 * tls_ctx_free() - free TLS ULP context
 322 * @sk:  socket to with @ctx is attached
 323 * @ctx: TLS context structure
 324 *
 325 * Free TLS context. If @sk is %NULL caller guarantees that the socket
 326 * to which @ctx was attached has no outstanding references.
 327 */
 328void tls_ctx_free(struct sock *sk, struct tls_context *ctx)
 329{
 330	if (!ctx)
 331		return;
 332
 333	memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send));
 334	memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv));
 335	mutex_destroy(&ctx->tx_lock);
 336
 337	if (sk)
 338		kfree_rcu(ctx, rcu);
 339	else
 340		kfree(ctx);
 341}
 342
 343static void tls_sk_proto_cleanup(struct sock *sk,
 344				 struct tls_context *ctx, long timeo)
 345{
 346	if (unlikely(sk->sk_write_pending) &&
 347	    !wait_on_pending_writer(sk, &timeo))
 348		tls_handle_open_record(sk, 0);
 349
 350	/* We need these for tls_sw_fallback handling of other packets */
 351	if (ctx->tx_conf == TLS_SW) {
 
 
 352		tls_sw_release_resources_tx(sk);
 353		TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
 354	} else if (ctx->tx_conf == TLS_HW) {
 355		tls_device_free_resources_tx(sk);
 356		TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
 357	}
 358
 359	if (ctx->rx_conf == TLS_SW) {
 360		tls_sw_release_resources_rx(sk);
 361		TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
 362	} else if (ctx->rx_conf == TLS_HW) {
 363		tls_device_offload_cleanup_rx(sk);
 364		TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
 365	}
 366}
 367
 368static void tls_sk_proto_close(struct sock *sk, long timeout)
 369{
 370	struct inet_connection_sock *icsk = inet_csk(sk);
 371	struct tls_context *ctx = tls_get_ctx(sk);
 372	long timeo = sock_sndtimeo(sk, 0);
 373	bool free_ctx;
 374
 375	if (ctx->tx_conf == TLS_SW)
 376		tls_sw_cancel_work_tx(ctx);
 377
 378	lock_sock(sk);
 379	free_ctx = ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW;
 380
 381	if (ctx->tx_conf != TLS_BASE || ctx->rx_conf != TLS_BASE)
 382		tls_sk_proto_cleanup(sk, ctx, timeo);
 383
 384	write_lock_bh(&sk->sk_callback_lock);
 385	if (free_ctx)
 386		rcu_assign_pointer(icsk->icsk_ulp_data, NULL);
 387	WRITE_ONCE(sk->sk_prot, ctx->sk_proto);
 388	if (sk->sk_write_space == tls_write_space)
 389		sk->sk_write_space = ctx->sk_write_space;
 390	write_unlock_bh(&sk->sk_callback_lock);
 391	release_sock(sk);
 392	if (ctx->tx_conf == TLS_SW)
 393		tls_sw_free_ctx_tx(ctx);
 394	if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW)
 395		tls_sw_strparser_done(ctx);
 396	if (ctx->rx_conf == TLS_SW)
 397		tls_sw_free_ctx_rx(ctx);
 398	ctx->sk_proto->close(sk, timeout);
 399
 400	if (free_ctx)
 401		tls_ctx_free(sk, ctx);
 402}
 403
 404static __poll_t tls_sk_poll(struct file *file, struct socket *sock,
 405			    struct poll_table_struct *wait)
 406{
 407	struct tls_sw_context_rx *ctx;
 408	struct tls_context *tls_ctx;
 409	struct sock *sk = sock->sk;
 410	struct sk_psock *psock;
 411	__poll_t mask = 0;
 412	u8 shutdown;
 413	int state;
 414
 415	mask = tcp_poll(file, sock, wait);
 416
 417	state = inet_sk_state_load(sk);
 418	shutdown = READ_ONCE(sk->sk_shutdown);
 419	if (unlikely(state != TCP_ESTABLISHED || shutdown & RCV_SHUTDOWN))
 420		return mask;
 421
 422	tls_ctx = tls_get_ctx(sk);
 423	ctx = tls_sw_ctx_rx(tls_ctx);
 424	psock = sk_psock_get(sk);
 425
 426	if (skb_queue_empty_lockless(&ctx->rx_list) &&
 427	    !tls_strp_msg_ready(ctx) &&
 428	    sk_psock_queue_empty(psock))
 429		mask &= ~(EPOLLIN | EPOLLRDNORM);
 430
 431	if (psock)
 432		sk_psock_put(sk, psock);
 433
 434	return mask;
 435}
 436
 437static int do_tls_getsockopt_conf(struct sock *sk, char __user *optval,
 438				  int __user *optlen, int tx)
 439{
 440	int rc = 0;
 441	const struct tls_cipher_desc *cipher_desc;
 442	struct tls_context *ctx = tls_get_ctx(sk);
 443	struct tls_crypto_info *crypto_info;
 444	struct cipher_context *cctx;
 445	int len;
 446
 447	if (get_user(len, optlen))
 448		return -EFAULT;
 449
 450	if (!optval || (len < sizeof(*crypto_info))) {
 451		rc = -EINVAL;
 452		goto out;
 453	}
 454
 455	if (!ctx) {
 456		rc = -EBUSY;
 457		goto out;
 458	}
 459
 460	/* get user crypto info */
 461	if (tx) {
 462		crypto_info = &ctx->crypto_send.info;
 463		cctx = &ctx->tx;
 464	} else {
 465		crypto_info = &ctx->crypto_recv.info;
 466		cctx = &ctx->rx;
 467	}
 468
 469	if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
 470		rc = -EBUSY;
 471		goto out;
 472	}
 473
 474	if (len == sizeof(*crypto_info)) {
 475		if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
 476			rc = -EFAULT;
 477		goto out;
 478	}
 479
 480	cipher_desc = get_cipher_desc(crypto_info->cipher_type);
 481	if (!cipher_desc || len != cipher_desc->crypto_info) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 482		rc = -EINVAL;
 483		goto out;
 484	}
 485
 486	memcpy(crypto_info_iv(crypto_info, cipher_desc),
 487	       cctx->iv + cipher_desc->salt, cipher_desc->iv);
 488	memcpy(crypto_info_rec_seq(crypto_info, cipher_desc),
 489	       cctx->rec_seq, cipher_desc->rec_seq);
 490
 491	if (copy_to_user(optval, crypto_info, cipher_desc->crypto_info))
 492		rc = -EFAULT;
 493
 494out:
 495	return rc;
 496}
 497
 498static int do_tls_getsockopt_tx_zc(struct sock *sk, char __user *optval,
 499				   int __user *optlen)
 500{
 501	struct tls_context *ctx = tls_get_ctx(sk);
 502	unsigned int value;
 503	int len;
 504
 505	if (get_user(len, optlen))
 506		return -EFAULT;
 507
 508	if (len != sizeof(value))
 509		return -EINVAL;
 510
 511	value = ctx->zerocopy_sendfile;
 512	if (copy_to_user(optval, &value, sizeof(value)))
 513		return -EFAULT;
 514
 515	return 0;
 516}
 517
 518static int do_tls_getsockopt_no_pad(struct sock *sk, char __user *optval,
 519				    int __user *optlen)
 520{
 521	struct tls_context *ctx = tls_get_ctx(sk);
 522	int value, len;
 523
 524	if (ctx->prot_info.version != TLS_1_3_VERSION)
 525		return -EINVAL;
 526
 527	if (get_user(len, optlen))
 528		return -EFAULT;
 529	if (len < sizeof(value))
 530		return -EINVAL;
 531
 532	value = -EINVAL;
 533	if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW)
 534		value = ctx->rx_no_pad;
 535	if (value < 0)
 536		return value;
 537
 538	if (put_user(sizeof(value), optlen))
 539		return -EFAULT;
 540	if (copy_to_user(optval, &value, sizeof(value)))
 541		return -EFAULT;
 542
 543	return 0;
 544}
 545
 546static int do_tls_getsockopt(struct sock *sk, int optname,
 547			     char __user *optval, int __user *optlen)
 548{
 549	int rc = 0;
 550
 551	lock_sock(sk);
 552
 553	switch (optname) {
 554	case TLS_TX:
 555	case TLS_RX:
 556		rc = do_tls_getsockopt_conf(sk, optval, optlen,
 557					    optname == TLS_TX);
 558		break;
 559	case TLS_TX_ZEROCOPY_RO:
 560		rc = do_tls_getsockopt_tx_zc(sk, optval, optlen);
 561		break;
 562	case TLS_RX_EXPECT_NO_PAD:
 563		rc = do_tls_getsockopt_no_pad(sk, optval, optlen);
 564		break;
 565	default:
 566		rc = -ENOPROTOOPT;
 567		break;
 568	}
 569
 570	release_sock(sk);
 571
 572	return rc;
 573}
 574
 575static int tls_getsockopt(struct sock *sk, int level, int optname,
 576			  char __user *optval, int __user *optlen)
 577{
 578	struct tls_context *ctx = tls_get_ctx(sk);
 579
 580	if (level != SOL_TLS)
 581		return ctx->sk_proto->getsockopt(sk, level,
 582						 optname, optval, optlen);
 583
 584	return do_tls_getsockopt(sk, optname, optval, optlen);
 585}
 586
 587static int validate_crypto_info(const struct tls_crypto_info *crypto_info,
 588				const struct tls_crypto_info *alt_crypto_info)
 589{
 590	if (crypto_info->version != TLS_1_2_VERSION &&
 591	    crypto_info->version != TLS_1_3_VERSION)
 592		return -EINVAL;
 593
 594	switch (crypto_info->cipher_type) {
 595	case TLS_CIPHER_ARIA_GCM_128:
 596	case TLS_CIPHER_ARIA_GCM_256:
 597		if (crypto_info->version != TLS_1_2_VERSION)
 598			return -EINVAL;
 599		break;
 600	}
 601
 602	/* Ensure that TLS version and ciphers are same in both directions */
 603	if (TLS_CRYPTO_INFO_READY(alt_crypto_info)) {
 604		if (alt_crypto_info->version != crypto_info->version ||
 605		    alt_crypto_info->cipher_type != crypto_info->cipher_type)
 606			return -EINVAL;
 607	}
 608
 609	return 0;
 610}
 611
 612static int do_tls_setsockopt_conf(struct sock *sk, sockptr_t optval,
 613				  unsigned int optlen, int tx)
 614{
 615	struct tls_crypto_info *crypto_info;
 616	struct tls_crypto_info *alt_crypto_info;
 617	struct tls_context *ctx = tls_get_ctx(sk);
 618	const struct tls_cipher_desc *cipher_desc;
 619	union tls_crypto_context *crypto_ctx;
 620	int rc = 0;
 621	int conf;
 622
 623	if (sockptr_is_null(optval) || (optlen < sizeof(*crypto_info)))
 624		return -EINVAL;
 
 
 625
 626	if (tx) {
 627		crypto_ctx = &ctx->crypto_send;
 628		alt_crypto_info = &ctx->crypto_recv.info;
 629	} else {
 630		crypto_ctx = &ctx->crypto_recv;
 631		alt_crypto_info = &ctx->crypto_send.info;
 632	}
 633
 634	crypto_info = &crypto_ctx->info;
 635
 636	/* Currently we don't support set crypto info more than one time */
 637	if (TLS_CRYPTO_INFO_READY(crypto_info))
 638		return -EBUSY;
 
 
 639
 640	rc = copy_from_sockptr(crypto_info, optval, sizeof(*crypto_info));
 641	if (rc) {
 642		rc = -EFAULT;
 643		goto err_crypto_info;
 644	}
 645
 646	rc = validate_crypto_info(crypto_info, alt_crypto_info);
 647	if (rc)
 
 
 648		goto err_crypto_info;
 
 649
 650	cipher_desc = get_cipher_desc(crypto_info->cipher_type);
 651	if (!cipher_desc) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 652		rc = -EINVAL;
 653		goto err_crypto_info;
 654	}
 655
 656	if (optlen != cipher_desc->crypto_info) {
 657		rc = -EINVAL;
 658		goto err_crypto_info;
 659	}
 660
 661	rc = copy_from_sockptr_offset(crypto_info + 1, optval,
 662				      sizeof(*crypto_info),
 663				      optlen - sizeof(*crypto_info));
 664	if (rc) {
 665		rc = -EFAULT;
 666		goto err_crypto_info;
 667	}
 668
 669	if (tx) {
 670		rc = tls_set_device_offload(sk);
 671		conf = TLS_HW;
 672		if (!rc) {
 673			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXDEVICE);
 674			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
 675		} else {
 676			rc = tls_set_sw_offload(sk, 1);
 677			if (rc)
 678				goto err_crypto_info;
 679			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXSW);
 680			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
 681			conf = TLS_SW;
 682		}
 683	} else {
 684		rc = tls_set_device_offload_rx(sk, ctx);
 685		conf = TLS_HW;
 686		if (!rc) {
 687			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICE);
 688			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
 689		} else {
 690			rc = tls_set_sw_offload(sk, 0);
 691			if (rc)
 692				goto err_crypto_info;
 693			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXSW);
 694			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
 695			conf = TLS_SW;
 696		}
 697		tls_sw_strparser_arm(sk, ctx);
 698	}
 699
 700	if (tx)
 701		ctx->tx_conf = conf;
 702	else
 703		ctx->rx_conf = conf;
 704	update_sk_prot(sk, ctx);
 705	if (tx) {
 706		ctx->sk_write_space = sk->sk_write_space;
 707		sk->sk_write_space = tls_write_space;
 708	} else {
 709		struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(ctx);
 710
 711		tls_strp_check_rcv(&rx_ctx->strp);
 712	}
 713	return 0;
 714
 715err_crypto_info:
 716	memzero_explicit(crypto_ctx, sizeof(*crypto_ctx));
 717	return rc;
 718}
 719
 720static int do_tls_setsockopt_tx_zc(struct sock *sk, sockptr_t optval,
 721				   unsigned int optlen)
 722{
 723	struct tls_context *ctx = tls_get_ctx(sk);
 724	unsigned int value;
 725
 726	if (sockptr_is_null(optval) || optlen != sizeof(value))
 727		return -EINVAL;
 728
 729	if (copy_from_sockptr(&value, optval, sizeof(value)))
 730		return -EFAULT;
 731
 732	if (value > 1)
 733		return -EINVAL;
 734
 735	ctx->zerocopy_sendfile = value;
 736
 737	return 0;
 738}
 739
 740static int do_tls_setsockopt_no_pad(struct sock *sk, sockptr_t optval,
 741				    unsigned int optlen)
 742{
 743	struct tls_context *ctx = tls_get_ctx(sk);
 744	u32 val;
 745	int rc;
 746
 747	if (ctx->prot_info.version != TLS_1_3_VERSION ||
 748	    sockptr_is_null(optval) || optlen < sizeof(val))
 749		return -EINVAL;
 750
 751	rc = copy_from_sockptr(&val, optval, sizeof(val));
 752	if (rc)
 753		return -EFAULT;
 754	if (val > 1)
 755		return -EINVAL;
 756	rc = check_zeroed_sockptr(optval, sizeof(val), optlen - sizeof(val));
 757	if (rc < 1)
 758		return rc == 0 ? -EINVAL : rc;
 759
 760	lock_sock(sk);
 761	rc = -EINVAL;
 762	if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW) {
 763		ctx->rx_no_pad = val;
 764		tls_update_rx_zc_capable(ctx);
 765		rc = 0;
 766	}
 767	release_sock(sk);
 768
 769	return rc;
 770}
 771
 772static int do_tls_setsockopt(struct sock *sk, int optname, sockptr_t optval,
 773			     unsigned int optlen)
 774{
 775	int rc = 0;
 776
 777	switch (optname) {
 778	case TLS_TX:
 779	case TLS_RX:
 780		lock_sock(sk);
 781		rc = do_tls_setsockopt_conf(sk, optval, optlen,
 782					    optname == TLS_TX);
 783		release_sock(sk);
 784		break;
 785	case TLS_TX_ZEROCOPY_RO:
 786		lock_sock(sk);
 787		rc = do_tls_setsockopt_tx_zc(sk, optval, optlen);
 788		release_sock(sk);
 789		break;
 790	case TLS_RX_EXPECT_NO_PAD:
 791		rc = do_tls_setsockopt_no_pad(sk, optval, optlen);
 792		break;
 793	default:
 794		rc = -ENOPROTOOPT;
 795		break;
 796	}
 797	return rc;
 798}
 799
 800static int tls_setsockopt(struct sock *sk, int level, int optname,
 801			  sockptr_t optval, unsigned int optlen)
 802{
 803	struct tls_context *ctx = tls_get_ctx(sk);
 804
 805	if (level != SOL_TLS)
 806		return ctx->sk_proto->setsockopt(sk, level, optname, optval,
 807						 optlen);
 808
 809	return do_tls_setsockopt(sk, optname, optval, optlen);
 810}
 811
 812struct tls_context *tls_ctx_create(struct sock *sk)
 813{
 814	struct inet_connection_sock *icsk = inet_csk(sk);
 815	struct tls_context *ctx;
 816
 817	ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC);
 818	if (!ctx)
 819		return NULL;
 820
 821	mutex_init(&ctx->tx_lock);
 822	ctx->sk_proto = READ_ONCE(sk->sk_prot);
 823	ctx->sk = sk;
 824	/* Release semantic of rcu_assign_pointer() ensures that
 825	 * ctx->sk_proto is visible before changing sk->sk_prot in
 826	 * update_sk_prot(), and prevents reading uninitialized value in
 827	 * tls_{getsockopt, setsockopt}. Note that we do not need a
 828	 * read barrier in tls_{getsockopt,setsockopt} as there is an
 829	 * address dependency between sk->sk_proto->{getsockopt,setsockopt}
 830	 * and ctx->sk_proto.
 831	 */
 832	rcu_assign_pointer(icsk->icsk_ulp_data, ctx);
 
 833	return ctx;
 834}
 835
 836static void build_proto_ops(struct proto_ops ops[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
 837			    const struct proto_ops *base)
 838{
 839	ops[TLS_BASE][TLS_BASE] = *base;
 840
 841	ops[TLS_SW  ][TLS_BASE] = ops[TLS_BASE][TLS_BASE];
 842	ops[TLS_SW  ][TLS_BASE].splice_eof	= tls_sw_splice_eof;
 843
 844	ops[TLS_BASE][TLS_SW  ] = ops[TLS_BASE][TLS_BASE];
 845	ops[TLS_BASE][TLS_SW  ].splice_read	= tls_sw_splice_read;
 846	ops[TLS_BASE][TLS_SW  ].poll		= tls_sk_poll;
 847	ops[TLS_BASE][TLS_SW  ].read_sock	= tls_sw_read_sock;
 848
 849	ops[TLS_SW  ][TLS_SW  ] = ops[TLS_SW  ][TLS_BASE];
 850	ops[TLS_SW  ][TLS_SW  ].splice_read	= tls_sw_splice_read;
 851	ops[TLS_SW  ][TLS_SW  ].poll		= tls_sk_poll;
 852	ops[TLS_SW  ][TLS_SW  ].read_sock	= tls_sw_read_sock;
 853
 854#ifdef CONFIG_TLS_DEVICE
 855	ops[TLS_HW  ][TLS_BASE] = ops[TLS_BASE][TLS_BASE];
 856
 857	ops[TLS_HW  ][TLS_SW  ] = ops[TLS_BASE][TLS_SW  ];
 858
 859	ops[TLS_BASE][TLS_HW  ] = ops[TLS_BASE][TLS_SW  ];
 860
 861	ops[TLS_SW  ][TLS_HW  ] = ops[TLS_SW  ][TLS_SW  ];
 862
 863	ops[TLS_HW  ][TLS_HW  ] = ops[TLS_HW  ][TLS_SW  ];
 864#endif
 865#ifdef CONFIG_TLS_TOE
 866	ops[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
 867#endif
 868}
 869
 870static void tls_build_proto(struct sock *sk)
 871{
 872	int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
 873	struct proto *prot = READ_ONCE(sk->sk_prot);
 874
 875	/* Build IPv6 TLS whenever the address of tcpv6 _prot changes */
 876	if (ip_ver == TLSV6 &&
 877	    unlikely(prot != smp_load_acquire(&saved_tcpv6_prot))) {
 878		mutex_lock(&tcpv6_prot_mutex);
 879		if (likely(prot != saved_tcpv6_prot)) {
 880			build_protos(tls_prots[TLSV6], prot);
 881			build_proto_ops(tls_proto_ops[TLSV6],
 882					sk->sk_socket->ops);
 883			smp_store_release(&saved_tcpv6_prot, prot);
 884		}
 885		mutex_unlock(&tcpv6_prot_mutex);
 886	}
 887
 888	if (ip_ver == TLSV4 &&
 889	    unlikely(prot != smp_load_acquire(&saved_tcpv4_prot))) {
 890		mutex_lock(&tcpv4_prot_mutex);
 891		if (likely(prot != saved_tcpv4_prot)) {
 892			build_protos(tls_prots[TLSV4], prot);
 893			build_proto_ops(tls_proto_ops[TLSV4],
 894					sk->sk_socket->ops);
 895			smp_store_release(&saved_tcpv4_prot, prot);
 896		}
 897		mutex_unlock(&tcpv4_prot_mutex);
 898	}
 899}
 900
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 901static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
 902			 const struct proto *base)
 903{
 904	prot[TLS_BASE][TLS_BASE] = *base;
 905	prot[TLS_BASE][TLS_BASE].setsockopt	= tls_setsockopt;
 906	prot[TLS_BASE][TLS_BASE].getsockopt	= tls_getsockopt;
 907	prot[TLS_BASE][TLS_BASE].close		= tls_sk_proto_close;
 908
 909	prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
 910	prot[TLS_SW][TLS_BASE].sendmsg		= tls_sw_sendmsg;
 911	prot[TLS_SW][TLS_BASE].splice_eof	= tls_sw_splice_eof;
 912
 913	prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE];
 914	prot[TLS_BASE][TLS_SW].recvmsg		  = tls_sw_recvmsg;
 915	prot[TLS_BASE][TLS_SW].sock_is_readable   = tls_sw_sock_is_readable;
 916	prot[TLS_BASE][TLS_SW].close		  = tls_sk_proto_close;
 917
 918	prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE];
 919	prot[TLS_SW][TLS_SW].recvmsg		= tls_sw_recvmsg;
 920	prot[TLS_SW][TLS_SW].sock_is_readable   = tls_sw_sock_is_readable;
 921	prot[TLS_SW][TLS_SW].close		= tls_sk_proto_close;
 922
 923#ifdef CONFIG_TLS_DEVICE
 924	prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
 925	prot[TLS_HW][TLS_BASE].sendmsg		= tls_device_sendmsg;
 926	prot[TLS_HW][TLS_BASE].splice_eof	= tls_device_splice_eof;
 927
 928	prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW];
 929	prot[TLS_HW][TLS_SW].sendmsg		= tls_device_sendmsg;
 930	prot[TLS_HW][TLS_SW].splice_eof		= tls_device_splice_eof;
 931
 932	prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW];
 933
 934	prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW];
 935
 936	prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW];
 937#endif
 938#ifdef CONFIG_TLS_TOE
 939	prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
 940	prot[TLS_HW_RECORD][TLS_HW_RECORD].hash		= tls_toe_hash;
 941	prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash	= tls_toe_unhash;
 942#endif
 943}
 944
 945static int tls_init(struct sock *sk)
 946{
 947	struct tls_context *ctx;
 948	int rc = 0;
 949
 950	tls_build_proto(sk);
 951
 952#ifdef CONFIG_TLS_TOE
 953	if (tls_toe_bypass(sk))
 954		return 0;
 955#endif
 956
 957	/* The TLS ulp is currently supported only for TCP sockets
 958	 * in ESTABLISHED state.
 959	 * Supporting sockets in LISTEN state will require us
 960	 * to modify the accept implementation to clone rather then
 961	 * share the ulp context.
 962	 */
 963	if (sk->sk_state != TCP_ESTABLISHED)
 964		return -ENOTCONN;
 
 
 965
 966	/* allocate tls context */
 967	write_lock_bh(&sk->sk_callback_lock);
 968	ctx = tls_ctx_create(sk);
 969	if (!ctx) {
 970		rc = -ENOMEM;
 971		goto out;
 972	}
 973
 974	ctx->tx_conf = TLS_BASE;
 975	ctx->rx_conf = TLS_BASE;
 976	update_sk_prot(sk, ctx);
 977out:
 978	write_unlock_bh(&sk->sk_callback_lock);
 979	return rc;
 980}
 981
 982static void tls_update(struct sock *sk, struct proto *p,
 983		       void (*write_space)(struct sock *sk))
 984{
 985	struct tls_context *ctx;
 986
 987	WARN_ON_ONCE(sk->sk_prot == p);
 988
 989	ctx = tls_get_ctx(sk);
 990	if (likely(ctx)) {
 991		ctx->sk_write_space = write_space;
 992		ctx->sk_proto = p;
 993	} else {
 994		/* Pairs with lockless read in sk_clone_lock(). */
 995		WRITE_ONCE(sk->sk_prot, p);
 996		sk->sk_write_space = write_space;
 997	}
 998}
 999
1000static u16 tls_user_config(struct tls_context *ctx, bool tx)
1001{
1002	u16 config = tx ? ctx->tx_conf : ctx->rx_conf;
1003
1004	switch (config) {
1005	case TLS_BASE:
1006		return TLS_CONF_BASE;
1007	case TLS_SW:
1008		return TLS_CONF_SW;
1009	case TLS_HW:
1010		return TLS_CONF_HW;
1011	case TLS_HW_RECORD:
1012		return TLS_CONF_HW_RECORD;
1013	}
1014	return 0;
1015}
1016
1017static int tls_get_info(struct sock *sk, struct sk_buff *skb)
1018{
1019	u16 version, cipher_type;
1020	struct tls_context *ctx;
1021	struct nlattr *start;
1022	int err;
1023
1024	start = nla_nest_start_noflag(skb, INET_ULP_INFO_TLS);
1025	if (!start)
1026		return -EMSGSIZE;
1027
1028	rcu_read_lock();
1029	ctx = rcu_dereference(inet_csk(sk)->icsk_ulp_data);
1030	if (!ctx) {
1031		err = 0;
1032		goto nla_failure;
1033	}
1034	version = ctx->prot_info.version;
1035	if (version) {
1036		err = nla_put_u16(skb, TLS_INFO_VERSION, version);
1037		if (err)
1038			goto nla_failure;
1039	}
1040	cipher_type = ctx->prot_info.cipher_type;
1041	if (cipher_type) {
1042		err = nla_put_u16(skb, TLS_INFO_CIPHER, cipher_type);
1043		if (err)
1044			goto nla_failure;
1045	}
1046	err = nla_put_u16(skb, TLS_INFO_TXCONF, tls_user_config(ctx, true));
1047	if (err)
1048		goto nla_failure;
1049
1050	err = nla_put_u16(skb, TLS_INFO_RXCONF, tls_user_config(ctx, false));
1051	if (err)
1052		goto nla_failure;
1053
1054	if (ctx->tx_conf == TLS_HW && ctx->zerocopy_sendfile) {
1055		err = nla_put_flag(skb, TLS_INFO_ZC_RO_TX);
1056		if (err)
1057			goto nla_failure;
1058	}
1059	if (ctx->rx_no_pad) {
1060		err = nla_put_flag(skb, TLS_INFO_RX_NO_PAD);
1061		if (err)
1062			goto nla_failure;
1063	}
1064
1065	rcu_read_unlock();
1066	nla_nest_end(skb, start);
1067	return 0;
1068
1069nla_failure:
1070	rcu_read_unlock();
1071	nla_nest_cancel(skb, start);
1072	return err;
1073}
1074
1075static size_t tls_get_info_size(const struct sock *sk)
1076{
1077	size_t size = 0;
1078
1079	size += nla_total_size(0) +		/* INET_ULP_INFO_TLS */
1080		nla_total_size(sizeof(u16)) +	/* TLS_INFO_VERSION */
1081		nla_total_size(sizeof(u16)) +	/* TLS_INFO_CIPHER */
1082		nla_total_size(sizeof(u16)) +	/* TLS_INFO_RXCONF */
1083		nla_total_size(sizeof(u16)) +	/* TLS_INFO_TXCONF */
1084		nla_total_size(0) +		/* TLS_INFO_ZC_RO_TX */
1085		nla_total_size(0) +		/* TLS_INFO_RX_NO_PAD */
1086		0;
1087
1088	return size;
1089}
1090
1091static int __net_init tls_init_net(struct net *net)
1092{
1093	int err;
1094
1095	net->mib.tls_statistics = alloc_percpu(struct linux_tls_mib);
1096	if (!net->mib.tls_statistics)
1097		return -ENOMEM;
1098
1099	err = tls_proc_init(net);
1100	if (err)
1101		goto err_free_stats;
1102
1103	return 0;
1104err_free_stats:
1105	free_percpu(net->mib.tls_statistics);
1106	return err;
1107}
 
1108
1109static void __net_exit tls_exit_net(struct net *net)
1110{
1111	tls_proc_fini(net);
1112	free_percpu(net->mib.tls_statistics);
 
1113}
1114
1115static struct pernet_operations tls_proc_ops = {
1116	.init = tls_init_net,
1117	.exit = tls_exit_net,
1118};
1119
1120static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
1121	.name			= "tls",
1122	.owner			= THIS_MODULE,
1123	.init			= tls_init,
1124	.update			= tls_update,
1125	.get_info		= tls_get_info,
1126	.get_info_size		= tls_get_info_size,
1127};
1128
1129static int __init tls_register(void)
1130{
1131	int err;
1132
1133	err = register_pernet_subsys(&tls_proc_ops);
1134	if (err)
1135		return err;
1136
1137	err = tls_strp_dev_init();
1138	if (err)
1139		goto err_pernet;
1140
1141	err = tls_device_init();
1142	if (err)
1143		goto err_strp;
1144
 
1145	tcp_register_ulp(&tcp_tls_ulp_ops);
1146
1147	return 0;
1148err_strp:
1149	tls_strp_dev_exit();
1150err_pernet:
1151	unregister_pernet_subsys(&tls_proc_ops);
1152	return err;
1153}
1154
1155static void __exit tls_unregister(void)
1156{
1157	tcp_unregister_ulp(&tcp_tls_ulp_ops);
1158	tls_strp_dev_exit();
1159	tls_device_cleanup();
1160	unregister_pernet_subsys(&tls_proc_ops);
1161}
1162
1163module_init(tls_register);
1164module_exit(tls_unregister);
v5.4
  1/*
  2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
  3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
  4 *
  5 * This software is available to you under a choice of one of two
  6 * licenses.  You may choose to be licensed under the terms of the GNU
  7 * General Public License (GPL) Version 2, available from the file
  8 * COPYING in the main directory of this source tree, or the
  9 * OpenIB.org BSD license below:
 10 *
 11 *     Redistribution and use in source and binary forms, with or
 12 *     without modification, are permitted provided that the following
 13 *     conditions are met:
 14 *
 15 *      - Redistributions of source code must retain the above
 16 *        copyright notice, this list of conditions and the following
 17 *        disclaimer.
 18 *
 19 *      - Redistributions in binary form must reproduce the above
 20 *        copyright notice, this list of conditions and the following
 21 *        disclaimer in the documentation and/or other materials
 22 *        provided with the distribution.
 23 *
 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 31 * SOFTWARE.
 32 */
 33
 34#include <linux/module.h>
 35
 36#include <net/tcp.h>
 37#include <net/inet_common.h>
 38#include <linux/highmem.h>
 39#include <linux/netdevice.h>
 40#include <linux/sched/signal.h>
 41#include <linux/inetdevice.h>
 42#include <linux/inet_diag.h>
 43
 
 44#include <net/tls.h>
 
 
 
 45
 46MODULE_AUTHOR("Mellanox Technologies");
 47MODULE_DESCRIPTION("Transport Layer Security Support");
 48MODULE_LICENSE("Dual BSD/GPL");
 49MODULE_ALIAS_TCP_ULP("tls");
 50
 51enum {
 52	TLSV4,
 53	TLSV6,
 54	TLS_NUM_PROTS,
 55};
 56
 57static struct proto *saved_tcpv6_prot;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 58static DEFINE_MUTEX(tcpv6_prot_mutex);
 59static struct proto *saved_tcpv4_prot;
 60static DEFINE_MUTEX(tcpv4_prot_mutex);
 61static LIST_HEAD(device_list);
 62static DEFINE_SPINLOCK(device_spinlock);
 63static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
 64static struct proto_ops tls_sw_proto_ops;
 65static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
 66			 struct proto *base);
 67
 68static void update_sk_prot(struct sock *sk, struct tls_context *ctx)
 69{
 70	int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
 71
 72	sk->sk_prot = &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf];
 
 
 
 73}
 74
 75int wait_on_pending_writer(struct sock *sk, long *timeo)
 76{
 77	int rc = 0;
 78	DEFINE_WAIT_FUNC(wait, woken_wake_function);
 
 79
 80	add_wait_queue(sk_sleep(sk), &wait);
 81	while (1) {
 82		if (!*timeo) {
 83			rc = -EAGAIN;
 84			break;
 85		}
 86
 87		if (signal_pending(current)) {
 88			rc = sock_intr_errno(*timeo);
 89			break;
 90		}
 91
 92		if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait))
 
 
 
 
 93			break;
 
 94	}
 95	remove_wait_queue(sk_sleep(sk), &wait);
 96	return rc;
 97}
 98
 99int tls_push_sg(struct sock *sk,
100		struct tls_context *ctx,
101		struct scatterlist *sg,
102		u16 first_offset,
103		int flags)
104{
105	int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST;
 
 
 
106	int ret = 0;
107	struct page *p;
108	size_t size;
109	int offset = first_offset;
110
111	size = sg->length - offset;
112	offset += sg->offset;
113
114	ctx->in_tcp_sendpages = true;
115	while (1) {
116		if (sg_is_last(sg))
117			sendpage_flags = flags;
118
119		/* is sending application-limited? */
120		tcp_rate_check_app_limited(sk);
121		p = sg_page(sg);
122retry:
123		ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags);
 
 
 
124
125		if (ret != size) {
126			if (ret > 0) {
127				offset += ret;
128				size -= ret;
129				goto retry;
130			}
131
132			offset -= sg->offset;
133			ctx->partially_sent_offset = offset;
134			ctx->partially_sent_record = (void *)sg;
135			ctx->in_tcp_sendpages = false;
136			return ret;
137		}
138
139		put_page(p);
140		sk_mem_uncharge(sk, sg->length);
141		sg = sg_next(sg);
142		if (!sg)
143			break;
144
145		offset = sg->offset;
146		size = sg->length;
147	}
148
149	ctx->in_tcp_sendpages = false;
150
151	return 0;
152}
153
154static int tls_handle_open_record(struct sock *sk, int flags)
155{
156	struct tls_context *ctx = tls_get_ctx(sk);
157
158	if (tls_is_pending_open_record(ctx))
159		return ctx->push_pending_record(sk, flags);
160
161	return 0;
162}
163
164int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
165		      unsigned char *record_type)
166{
167	struct cmsghdr *cmsg;
168	int rc = -EINVAL;
169
170	for_each_cmsghdr(cmsg, msg) {
171		if (!CMSG_OK(msg, cmsg))
172			return -EINVAL;
173		if (cmsg->cmsg_level != SOL_TLS)
174			continue;
175
176		switch (cmsg->cmsg_type) {
177		case TLS_SET_RECORD_TYPE:
178			if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
179				return -EINVAL;
180
181			if (msg->msg_flags & MSG_MORE)
182				return -EINVAL;
183
184			rc = tls_handle_open_record(sk, msg->msg_flags);
185			if (rc)
186				return rc;
187
188			*record_type = *(unsigned char *)CMSG_DATA(cmsg);
189			rc = 0;
190			break;
191		default:
192			return -EINVAL;
193		}
194	}
195
196	return rc;
197}
198
199int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
200			    int flags)
201{
202	struct scatterlist *sg;
203	u16 offset;
204
205	sg = ctx->partially_sent_record;
206	offset = ctx->partially_sent_offset;
207
208	ctx->partially_sent_record = NULL;
209	return tls_push_sg(sk, ctx, sg, offset, flags);
210}
211
212bool tls_free_partial_record(struct sock *sk, struct tls_context *ctx)
213{
214	struct scatterlist *sg;
215
216	sg = ctx->partially_sent_record;
217	if (!sg)
218		return false;
219
220	while (1) {
221		put_page(sg_page(sg));
222		sk_mem_uncharge(sk, sg->length);
223
224		if (sg_is_last(sg))
225			break;
226		sg++;
227	}
228	ctx->partially_sent_record = NULL;
229	return true;
230}
231
232static void tls_write_space(struct sock *sk)
233{
234	struct tls_context *ctx = tls_get_ctx(sk);
235
236	/* If in_tcp_sendpages call lower protocol write space handler
237	 * to ensure we wake up any waiting operations there. For example
238	 * if do_tcp_sendpages where to call sk_wait_event.
239	 */
240	if (ctx->in_tcp_sendpages) {
241		ctx->sk_write_space(sk);
242		return;
243	}
244
245#ifdef CONFIG_TLS_DEVICE
246	if (ctx->tx_conf == TLS_HW)
247		tls_device_write_space(sk, ctx);
248	else
249#endif
250		tls_sw_write_space(sk, ctx);
251
252	ctx->sk_write_space(sk);
253}
254
255/**
256 * tls_ctx_free() - free TLS ULP context
257 * @sk:  socket to with @ctx is attached
258 * @ctx: TLS context structure
259 *
260 * Free TLS context. If @sk is %NULL caller guarantees that the socket
261 * to which @ctx was attached has no outstanding references.
262 */
263void tls_ctx_free(struct sock *sk, struct tls_context *ctx)
264{
265	if (!ctx)
266		return;
267
268	memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send));
269	memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv));
270	mutex_destroy(&ctx->tx_lock);
271
272	if (sk)
273		kfree_rcu(ctx, rcu);
274	else
275		kfree(ctx);
276}
277
278static void tls_sk_proto_cleanup(struct sock *sk,
279				 struct tls_context *ctx, long timeo)
280{
281	if (unlikely(sk->sk_write_pending) &&
282	    !wait_on_pending_writer(sk, &timeo))
283		tls_handle_open_record(sk, 0);
284
285	/* We need these for tls_sw_fallback handling of other packets */
286	if (ctx->tx_conf == TLS_SW) {
287		kfree(ctx->tx.rec_seq);
288		kfree(ctx->tx.iv);
289		tls_sw_release_resources_tx(sk);
 
290	} else if (ctx->tx_conf == TLS_HW) {
291		tls_device_free_resources_tx(sk);
 
292	}
293
294	if (ctx->rx_conf == TLS_SW)
295		tls_sw_release_resources_rx(sk);
296	else if (ctx->rx_conf == TLS_HW)
 
297		tls_device_offload_cleanup_rx(sk);
 
 
298}
299
300static void tls_sk_proto_close(struct sock *sk, long timeout)
301{
302	struct inet_connection_sock *icsk = inet_csk(sk);
303	struct tls_context *ctx = tls_get_ctx(sk);
304	long timeo = sock_sndtimeo(sk, 0);
305	bool free_ctx;
306
307	if (ctx->tx_conf == TLS_SW)
308		tls_sw_cancel_work_tx(ctx);
309
310	lock_sock(sk);
311	free_ctx = ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW;
312
313	if (ctx->tx_conf != TLS_BASE || ctx->rx_conf != TLS_BASE)
314		tls_sk_proto_cleanup(sk, ctx, timeo);
315
316	write_lock_bh(&sk->sk_callback_lock);
317	if (free_ctx)
318		rcu_assign_pointer(icsk->icsk_ulp_data, NULL);
319	sk->sk_prot = ctx->sk_proto;
320	if (sk->sk_write_space == tls_write_space)
321		sk->sk_write_space = ctx->sk_write_space;
322	write_unlock_bh(&sk->sk_callback_lock);
323	release_sock(sk);
324	if (ctx->tx_conf == TLS_SW)
325		tls_sw_free_ctx_tx(ctx);
326	if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW)
327		tls_sw_strparser_done(ctx);
328	if (ctx->rx_conf == TLS_SW)
329		tls_sw_free_ctx_rx(ctx);
330	ctx->sk_proto->close(sk, timeout);
331
332	if (free_ctx)
333		tls_ctx_free(sk, ctx);
334}
335
336static int do_tls_getsockopt_tx(struct sock *sk, char __user *optval,
337				int __user *optlen)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
338{
339	int rc = 0;
 
340	struct tls_context *ctx = tls_get_ctx(sk);
341	struct tls_crypto_info *crypto_info;
 
342	int len;
343
344	if (get_user(len, optlen))
345		return -EFAULT;
346
347	if (!optval || (len < sizeof(*crypto_info))) {
348		rc = -EINVAL;
349		goto out;
350	}
351
352	if (!ctx) {
353		rc = -EBUSY;
354		goto out;
355	}
356
357	/* get user crypto info */
358	crypto_info = &ctx->crypto_send.info;
 
 
 
 
 
 
359
360	if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
361		rc = -EBUSY;
362		goto out;
363	}
364
365	if (len == sizeof(*crypto_info)) {
366		if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
367			rc = -EFAULT;
368		goto out;
369	}
370
371	switch (crypto_info->cipher_type) {
372	case TLS_CIPHER_AES_GCM_128: {
373		struct tls12_crypto_info_aes_gcm_128 *
374		  crypto_info_aes_gcm_128 =
375		  container_of(crypto_info,
376			       struct tls12_crypto_info_aes_gcm_128,
377			       info);
378
379		if (len != sizeof(*crypto_info_aes_gcm_128)) {
380			rc = -EINVAL;
381			goto out;
382		}
383		lock_sock(sk);
384		memcpy(crypto_info_aes_gcm_128->iv,
385		       ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
386		       TLS_CIPHER_AES_GCM_128_IV_SIZE);
387		memcpy(crypto_info_aes_gcm_128->rec_seq, ctx->tx.rec_seq,
388		       TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE);
389		release_sock(sk);
390		if (copy_to_user(optval,
391				 crypto_info_aes_gcm_128,
392				 sizeof(*crypto_info_aes_gcm_128)))
393			rc = -EFAULT;
394		break;
395	}
396	case TLS_CIPHER_AES_GCM_256: {
397		struct tls12_crypto_info_aes_gcm_256 *
398		  crypto_info_aes_gcm_256 =
399		  container_of(crypto_info,
400			       struct tls12_crypto_info_aes_gcm_256,
401			       info);
402
403		if (len != sizeof(*crypto_info_aes_gcm_256)) {
404			rc = -EINVAL;
405			goto out;
406		}
407		lock_sock(sk);
408		memcpy(crypto_info_aes_gcm_256->iv,
409		       ctx->tx.iv + TLS_CIPHER_AES_GCM_256_SALT_SIZE,
410		       TLS_CIPHER_AES_GCM_256_IV_SIZE);
411		memcpy(crypto_info_aes_gcm_256->rec_seq, ctx->tx.rec_seq,
412		       TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE);
413		release_sock(sk);
414		if (copy_to_user(optval,
415				 crypto_info_aes_gcm_256,
416				 sizeof(*crypto_info_aes_gcm_256)))
417			rc = -EFAULT;
418		break;
419	}
420	default:
421		rc = -EINVAL;
 
422	}
423
 
 
 
 
 
 
 
 
424out:
425	return rc;
426}
427
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
428static int do_tls_getsockopt(struct sock *sk, int optname,
429			     char __user *optval, int __user *optlen)
430{
431	int rc = 0;
432
 
 
433	switch (optname) {
434	case TLS_TX:
435		rc = do_tls_getsockopt_tx(sk, optval, optlen);
 
 
 
 
 
 
 
 
436		break;
437	default:
438		rc = -ENOPROTOOPT;
439		break;
440	}
 
 
 
441	return rc;
442}
443
444static int tls_getsockopt(struct sock *sk, int level, int optname,
445			  char __user *optval, int __user *optlen)
446{
447	struct tls_context *ctx = tls_get_ctx(sk);
448
449	if (level != SOL_TLS)
450		return ctx->sk_proto->getsockopt(sk, level,
451						 optname, optval, optlen);
452
453	return do_tls_getsockopt(sk, optname, optval, optlen);
454}
455
456static int do_tls_setsockopt_conf(struct sock *sk, char __user *optval,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
457				  unsigned int optlen, int tx)
458{
459	struct tls_crypto_info *crypto_info;
460	struct tls_crypto_info *alt_crypto_info;
461	struct tls_context *ctx = tls_get_ctx(sk);
462	size_t optsize;
 
463	int rc = 0;
464	int conf;
465
466	if (!optval || (optlen < sizeof(*crypto_info))) {
467		rc = -EINVAL;
468		goto out;
469	}
470
471	if (tx) {
472		crypto_info = &ctx->crypto_send.info;
473		alt_crypto_info = &ctx->crypto_recv.info;
474	} else {
475		crypto_info = &ctx->crypto_recv.info;
476		alt_crypto_info = &ctx->crypto_send.info;
477	}
478
 
 
479	/* Currently we don't support set crypto info more than one time */
480	if (TLS_CRYPTO_INFO_READY(crypto_info)) {
481		rc = -EBUSY;
482		goto out;
483	}
484
485	rc = copy_from_user(crypto_info, optval, sizeof(*crypto_info));
486	if (rc) {
487		rc = -EFAULT;
488		goto err_crypto_info;
489	}
490
491	/* check version */
492	if (crypto_info->version != TLS_1_2_VERSION &&
493	    crypto_info->version != TLS_1_3_VERSION) {
494		rc = -ENOTSUPP;
495		goto err_crypto_info;
496	}
497
498	/* Ensure that TLS version and ciphers are same in both directions */
499	if (TLS_CRYPTO_INFO_READY(alt_crypto_info)) {
500		if (alt_crypto_info->version != crypto_info->version ||
501		    alt_crypto_info->cipher_type != crypto_info->cipher_type) {
502			rc = -EINVAL;
503			goto err_crypto_info;
504		}
505	}
506
507	switch (crypto_info->cipher_type) {
508	case TLS_CIPHER_AES_GCM_128:
509		optsize = sizeof(struct tls12_crypto_info_aes_gcm_128);
510		break;
511	case TLS_CIPHER_AES_GCM_256: {
512		optsize = sizeof(struct tls12_crypto_info_aes_gcm_256);
513		break;
514	}
515	case TLS_CIPHER_AES_CCM_128:
516		optsize = sizeof(struct tls12_crypto_info_aes_ccm_128);
517		break;
518	default:
519		rc = -EINVAL;
520		goto err_crypto_info;
521	}
522
523	if (optlen != optsize) {
524		rc = -EINVAL;
525		goto err_crypto_info;
526	}
527
528	rc = copy_from_user(crypto_info + 1, optval + sizeof(*crypto_info),
529			    optlen - sizeof(*crypto_info));
 
530	if (rc) {
531		rc = -EFAULT;
532		goto err_crypto_info;
533	}
534
535	if (tx) {
536		rc = tls_set_device_offload(sk, ctx);
537		conf = TLS_HW;
538		if (rc) {
539			rc = tls_set_sw_offload(sk, ctx, 1);
 
 
 
540			if (rc)
541				goto err_crypto_info;
 
 
542			conf = TLS_SW;
543		}
544	} else {
545		rc = tls_set_device_offload_rx(sk, ctx);
546		conf = TLS_HW;
547		if (rc) {
548			rc = tls_set_sw_offload(sk, ctx, 0);
 
 
 
549			if (rc)
550				goto err_crypto_info;
 
 
551			conf = TLS_SW;
552		}
553		tls_sw_strparser_arm(sk, ctx);
554	}
555
556	if (tx)
557		ctx->tx_conf = conf;
558	else
559		ctx->rx_conf = conf;
560	update_sk_prot(sk, ctx);
561	if (tx) {
562		ctx->sk_write_space = sk->sk_write_space;
563		sk->sk_write_space = tls_write_space;
564	} else {
565		sk->sk_socket->ops = &tls_sw_proto_ops;
 
 
566	}
567	goto out;
568
569err_crypto_info:
570	memzero_explicit(crypto_info, sizeof(union tls_crypto_context));
571out:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
572	return rc;
573}
574
575static int do_tls_setsockopt(struct sock *sk, int optname,
576			     char __user *optval, unsigned int optlen)
577{
578	int rc = 0;
579
580	switch (optname) {
581	case TLS_TX:
582	case TLS_RX:
583		lock_sock(sk);
584		rc = do_tls_setsockopt_conf(sk, optval, optlen,
585					    optname == TLS_TX);
586		release_sock(sk);
587		break;
 
 
 
 
 
 
 
 
588	default:
589		rc = -ENOPROTOOPT;
590		break;
591	}
592	return rc;
593}
594
595static int tls_setsockopt(struct sock *sk, int level, int optname,
596			  char __user *optval, unsigned int optlen)
597{
598	struct tls_context *ctx = tls_get_ctx(sk);
599
600	if (level != SOL_TLS)
601		return ctx->sk_proto->setsockopt(sk, level, optname, optval,
602						 optlen);
603
604	return do_tls_setsockopt(sk, optname, optval, optlen);
605}
606
607static struct tls_context *create_ctx(struct sock *sk)
608{
609	struct inet_connection_sock *icsk = inet_csk(sk);
610	struct tls_context *ctx;
611
612	ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC);
613	if (!ctx)
614		return NULL;
615
616	mutex_init(&ctx->tx_lock);
 
 
 
 
 
 
 
 
 
 
617	rcu_assign_pointer(icsk->icsk_ulp_data, ctx);
618	ctx->sk_proto = sk->sk_prot;
619	return ctx;
620}
621
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
622static void tls_build_proto(struct sock *sk)
623{
624	int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
 
625
626	/* Build IPv6 TLS whenever the address of tcpv6 _prot changes */
627	if (ip_ver == TLSV6 &&
628	    unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv6_prot))) {
629		mutex_lock(&tcpv6_prot_mutex);
630		if (likely(sk->sk_prot != saved_tcpv6_prot)) {
631			build_protos(tls_prots[TLSV6], sk->sk_prot);
632			smp_store_release(&saved_tcpv6_prot, sk->sk_prot);
 
 
633		}
634		mutex_unlock(&tcpv6_prot_mutex);
635	}
636
637	if (ip_ver == TLSV4 &&
638	    unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv4_prot))) {
639		mutex_lock(&tcpv4_prot_mutex);
640		if (likely(sk->sk_prot != saved_tcpv4_prot)) {
641			build_protos(tls_prots[TLSV4], sk->sk_prot);
642			smp_store_release(&saved_tcpv4_prot, sk->sk_prot);
 
 
643		}
644		mutex_unlock(&tcpv4_prot_mutex);
645	}
646}
647
648static void tls_hw_sk_destruct(struct sock *sk)
649{
650	struct tls_context *ctx = tls_get_ctx(sk);
651	struct inet_connection_sock *icsk = inet_csk(sk);
652
653	ctx->sk_destruct(sk);
654	/* Free ctx */
655	rcu_assign_pointer(icsk->icsk_ulp_data, NULL);
656	tls_ctx_free(sk, ctx);
657}
658
659static int tls_hw_prot(struct sock *sk)
660{
661	struct tls_context *ctx;
662	struct tls_device *dev;
663	int rc = 0;
664
665	spin_lock_bh(&device_spinlock);
666	list_for_each_entry(dev, &device_list, dev_list) {
667		if (dev->feature && dev->feature(dev)) {
668			ctx = create_ctx(sk);
669			if (!ctx)
670				goto out;
671
672			spin_unlock_bh(&device_spinlock);
673			tls_build_proto(sk);
674			ctx->sk_destruct = sk->sk_destruct;
675			sk->sk_destruct = tls_hw_sk_destruct;
676			ctx->rx_conf = TLS_HW_RECORD;
677			ctx->tx_conf = TLS_HW_RECORD;
678			update_sk_prot(sk, ctx);
679			spin_lock_bh(&device_spinlock);
680			rc = 1;
681			break;
682		}
683	}
684out:
685	spin_unlock_bh(&device_spinlock);
686	return rc;
687}
688
689static void tls_hw_unhash(struct sock *sk)
690{
691	struct tls_context *ctx = tls_get_ctx(sk);
692	struct tls_device *dev;
693
694	spin_lock_bh(&device_spinlock);
695	list_for_each_entry(dev, &device_list, dev_list) {
696		if (dev->unhash) {
697			kref_get(&dev->kref);
698			spin_unlock_bh(&device_spinlock);
699			dev->unhash(dev, sk);
700			kref_put(&dev->kref, dev->release);
701			spin_lock_bh(&device_spinlock);
702		}
703	}
704	spin_unlock_bh(&device_spinlock);
705	ctx->sk_proto->unhash(sk);
706}
707
708static int tls_hw_hash(struct sock *sk)
709{
710	struct tls_context *ctx = tls_get_ctx(sk);
711	struct tls_device *dev;
712	int err;
713
714	err = ctx->sk_proto->hash(sk);
715	spin_lock_bh(&device_spinlock);
716	list_for_each_entry(dev, &device_list, dev_list) {
717		if (dev->hash) {
718			kref_get(&dev->kref);
719			spin_unlock_bh(&device_spinlock);
720			err |= dev->hash(dev, sk);
721			kref_put(&dev->kref, dev->release);
722			spin_lock_bh(&device_spinlock);
723		}
724	}
725	spin_unlock_bh(&device_spinlock);
726
727	if (err)
728		tls_hw_unhash(sk);
729	return err;
730}
731
732static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
733			 struct proto *base)
734{
735	prot[TLS_BASE][TLS_BASE] = *base;
736	prot[TLS_BASE][TLS_BASE].setsockopt	= tls_setsockopt;
737	prot[TLS_BASE][TLS_BASE].getsockopt	= tls_getsockopt;
738	prot[TLS_BASE][TLS_BASE].close		= tls_sk_proto_close;
739
740	prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
741	prot[TLS_SW][TLS_BASE].sendmsg		= tls_sw_sendmsg;
742	prot[TLS_SW][TLS_BASE].sendpage		= tls_sw_sendpage;
743
744	prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE];
745	prot[TLS_BASE][TLS_SW].recvmsg		  = tls_sw_recvmsg;
746	prot[TLS_BASE][TLS_SW].stream_memory_read = tls_sw_stream_read;
747	prot[TLS_BASE][TLS_SW].close		  = tls_sk_proto_close;
748
749	prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE];
750	prot[TLS_SW][TLS_SW].recvmsg		= tls_sw_recvmsg;
751	prot[TLS_SW][TLS_SW].stream_memory_read	= tls_sw_stream_read;
752	prot[TLS_SW][TLS_SW].close		= tls_sk_proto_close;
753
754#ifdef CONFIG_TLS_DEVICE
755	prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
756	prot[TLS_HW][TLS_BASE].sendmsg		= tls_device_sendmsg;
757	prot[TLS_HW][TLS_BASE].sendpage		= tls_device_sendpage;
758
759	prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW];
760	prot[TLS_HW][TLS_SW].sendmsg		= tls_device_sendmsg;
761	prot[TLS_HW][TLS_SW].sendpage		= tls_device_sendpage;
762
763	prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW];
764
765	prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW];
766
767	prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW];
768#endif
769
770	prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
771	prot[TLS_HW_RECORD][TLS_HW_RECORD].hash		= tls_hw_hash;
772	prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash	= tls_hw_unhash;
 
773}
774
775static int tls_init(struct sock *sk)
776{
777	struct tls_context *ctx;
778	int rc = 0;
779
780	if (tls_hw_prot(sk))
 
 
 
781		return 0;
 
782
783	/* The TLS ulp is currently supported only for TCP sockets
784	 * in ESTABLISHED state.
785	 * Supporting sockets in LISTEN state will require us
786	 * to modify the accept implementation to clone rather then
787	 * share the ulp context.
788	 */
789	if (sk->sk_state != TCP_ESTABLISHED)
790		return -ENOTSUPP;
791
792	tls_build_proto(sk);
793
794	/* allocate tls context */
795	write_lock_bh(&sk->sk_callback_lock);
796	ctx = create_ctx(sk);
797	if (!ctx) {
798		rc = -ENOMEM;
799		goto out;
800	}
801
802	ctx->tx_conf = TLS_BASE;
803	ctx->rx_conf = TLS_BASE;
804	update_sk_prot(sk, ctx);
805out:
806	write_unlock_bh(&sk->sk_callback_lock);
807	return rc;
808}
809
810static void tls_update(struct sock *sk, struct proto *p)
 
811{
812	struct tls_context *ctx;
813
 
 
814	ctx = tls_get_ctx(sk);
815	if (likely(ctx))
 
816		ctx->sk_proto = p;
817	else
818		sk->sk_prot = p;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
819}
820
821static int tls_get_info(const struct sock *sk, struct sk_buff *skb)
822{
823	u16 version, cipher_type;
824	struct tls_context *ctx;
825	struct nlattr *start;
826	int err;
827
828	start = nla_nest_start_noflag(skb, INET_ULP_INFO_TLS);
829	if (!start)
830		return -EMSGSIZE;
831
832	rcu_read_lock();
833	ctx = rcu_dereference(inet_csk(sk)->icsk_ulp_data);
834	if (!ctx) {
835		err = 0;
836		goto nla_failure;
837	}
838	version = ctx->prot_info.version;
839	if (version) {
840		err = nla_put_u16(skb, TLS_INFO_VERSION, version);
841		if (err)
842			goto nla_failure;
843	}
844	cipher_type = ctx->prot_info.cipher_type;
845	if (cipher_type) {
846		err = nla_put_u16(skb, TLS_INFO_CIPHER, cipher_type);
847		if (err)
848			goto nla_failure;
849	}
850	err = nla_put_u16(skb, TLS_INFO_TXCONF, tls_user_config(ctx, true));
851	if (err)
852		goto nla_failure;
853
854	err = nla_put_u16(skb, TLS_INFO_RXCONF, tls_user_config(ctx, false));
855	if (err)
856		goto nla_failure;
857
 
 
 
 
 
 
 
 
 
 
 
858	rcu_read_unlock();
859	nla_nest_end(skb, start);
860	return 0;
861
862nla_failure:
863	rcu_read_unlock();
864	nla_nest_cancel(skb, start);
865	return err;
866}
867
868static size_t tls_get_info_size(const struct sock *sk)
869{
870	size_t size = 0;
871
872	size += nla_total_size(0) +		/* INET_ULP_INFO_TLS */
873		nla_total_size(sizeof(u16)) +	/* TLS_INFO_VERSION */
874		nla_total_size(sizeof(u16)) +	/* TLS_INFO_CIPHER */
875		nla_total_size(sizeof(u16)) +	/* TLS_INFO_RXCONF */
876		nla_total_size(sizeof(u16)) +	/* TLS_INFO_TXCONF */
 
 
877		0;
878
879	return size;
880}
881
882void tls_register_device(struct tls_device *device)
883{
884	spin_lock_bh(&device_spinlock);
885	list_add_tail(&device->dev_list, &device_list);
886	spin_unlock_bh(&device_spinlock);
 
 
 
 
 
 
 
 
 
 
 
887}
888EXPORT_SYMBOL(tls_register_device);
889
890void tls_unregister_device(struct tls_device *device)
891{
892	spin_lock_bh(&device_spinlock);
893	list_del(&device->dev_list);
894	spin_unlock_bh(&device_spinlock);
895}
896EXPORT_SYMBOL(tls_unregister_device);
 
 
 
 
897
898static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
899	.name			= "tls",
900	.owner			= THIS_MODULE,
901	.init			= tls_init,
902	.update			= tls_update,
903	.get_info		= tls_get_info,
904	.get_info_size		= tls_get_info_size,
905};
906
907static int __init tls_register(void)
908{
909	tls_sw_proto_ops = inet_stream_ops;
910	tls_sw_proto_ops.splice_read = tls_sw_splice_read;
911	tls_sw_proto_ops.sendpage_locked   = tls_sw_sendpage_locked,
 
 
 
 
 
 
 
 
 
 
912
913	tls_device_init();
914	tcp_register_ulp(&tcp_tls_ulp_ops);
915
916	return 0;
 
 
 
 
 
917}
918
919static void __exit tls_unregister(void)
920{
921	tcp_unregister_ulp(&tcp_tls_ulp_ops);
 
922	tls_device_cleanup();
 
923}
924
925module_init(tls_register);
926module_exit(tls_unregister);