Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Deadline Scheduling Class (SCHED_DEADLINE)
   4 *
   5 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
   6 *
   7 * Tasks that periodically executes their instances for less than their
   8 * runtime won't miss any of their deadlines.
   9 * Tasks that are not periodic or sporadic or that tries to execute more
  10 * than their reserved bandwidth will be slowed down (and may potentially
  11 * miss some of their deadlines), and won't affect any other task.
  12 *
  13 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
  14 *                    Juri Lelli <juri.lelli@gmail.com>,
  15 *                    Michael Trimarchi <michael@amarulasolutions.com>,
  16 *                    Fabio Checconi <fchecconi@gmail.com>
  17 */
 
 
  18
  19#include <linux/cpuset.h>
  20
  21/*
  22 * Default limits for DL period; on the top end we guard against small util
  23 * tasks still getting ridiculously long effective runtimes, on the bottom end we
  24 * guard against timer DoS.
  25 */
  26static unsigned int sysctl_sched_dl_period_max = 1 << 22; /* ~4 seconds */
  27static unsigned int sysctl_sched_dl_period_min = 100;     /* 100 us */
  28#ifdef CONFIG_SYSCTL
  29static struct ctl_table sched_dl_sysctls[] = {
  30	{
  31		.procname       = "sched_deadline_period_max_us",
  32		.data           = &sysctl_sched_dl_period_max,
  33		.maxlen         = sizeof(unsigned int),
  34		.mode           = 0644,
  35		.proc_handler   = proc_douintvec_minmax,
  36		.extra1         = (void *)&sysctl_sched_dl_period_min,
  37	},
  38	{
  39		.procname       = "sched_deadline_period_min_us",
  40		.data           = &sysctl_sched_dl_period_min,
  41		.maxlen         = sizeof(unsigned int),
  42		.mode           = 0644,
  43		.proc_handler   = proc_douintvec_minmax,
  44		.extra2         = (void *)&sysctl_sched_dl_period_max,
  45	},
  46};
  47
  48static int __init sched_dl_sysctl_init(void)
  49{
  50	register_sysctl_init("kernel", sched_dl_sysctls);
  51	return 0;
  52}
  53late_initcall(sched_dl_sysctl_init);
  54#endif
  55
  56static bool dl_server(struct sched_dl_entity *dl_se)
  57{
  58	return dl_se->dl_server;
  59}
  60
  61static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
  62{
  63	BUG_ON(dl_server(dl_se));
  64	return container_of(dl_se, struct task_struct, dl);
  65}
  66
  67static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
  68{
  69	return container_of(dl_rq, struct rq, dl);
  70}
  71
  72static inline struct rq *rq_of_dl_se(struct sched_dl_entity *dl_se)
  73{
  74	struct rq *rq = dl_se->rq;
  75
  76	if (!dl_server(dl_se))
  77		rq = task_rq(dl_task_of(dl_se));
  78
  79	return rq;
  80}
  81
  82static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
  83{
  84	return &rq_of_dl_se(dl_se)->dl;
 
 
 
  85}
  86
  87static inline int on_dl_rq(struct sched_dl_entity *dl_se)
  88{
  89	return !RB_EMPTY_NODE(&dl_se->rb_node);
  90}
  91
  92#ifdef CONFIG_RT_MUTEXES
  93static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se)
  94{
  95	return dl_se->pi_se;
  96}
  97
  98static inline bool is_dl_boosted(struct sched_dl_entity *dl_se)
  99{
 100	return pi_of(dl_se) != dl_se;
 101}
 102#else
 103static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se)
 104{
 105	return dl_se;
 106}
 107
 108static inline bool is_dl_boosted(struct sched_dl_entity *dl_se)
 109{
 110	return false;
 111}
 112#endif
 113
 114#ifdef CONFIG_SMP
 115static inline struct dl_bw *dl_bw_of(int i)
 116{
 117	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
 118			 "sched RCU must be held");
 119	return &cpu_rq(i)->rd->dl_bw;
 120}
 121
 122static inline int dl_bw_cpus(int i)
 123{
 124	struct root_domain *rd = cpu_rq(i)->rd;
 125	int cpus;
 126
 127	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
 128			 "sched RCU must be held");
 129
 130	if (cpumask_subset(rd->span, cpu_active_mask))
 131		return cpumask_weight(rd->span);
 132
 133	cpus = 0;
 134
 135	for_each_cpu_and(i, rd->span, cpu_active_mask)
 136		cpus++;
 137
 138	return cpus;
 139}
 140
 141static inline unsigned long __dl_bw_capacity(const struct cpumask *mask)
 142{
 143	unsigned long cap = 0;
 144	int i;
 145
 146	for_each_cpu_and(i, mask, cpu_active_mask)
 147		cap += arch_scale_cpu_capacity(i);
 148
 149	return cap;
 150}
 151
 152/*
 153 * XXX Fix: If 'rq->rd == def_root_domain' perform AC against capacity
 154 * of the CPU the task is running on rather rd's \Sum CPU capacity.
 155 */
 156static inline unsigned long dl_bw_capacity(int i)
 157{
 158	if (!sched_asym_cpucap_active() &&
 159	    arch_scale_cpu_capacity(i) == SCHED_CAPACITY_SCALE) {
 160		return dl_bw_cpus(i) << SCHED_CAPACITY_SHIFT;
 161	} else {
 162		RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
 163				 "sched RCU must be held");
 164
 165		return __dl_bw_capacity(cpu_rq(i)->rd->span);
 166	}
 167}
 168
 169static inline bool dl_bw_visited(int cpu, u64 gen)
 170{
 171	struct root_domain *rd = cpu_rq(cpu)->rd;
 172
 173	if (rd->visit_gen == gen)
 174		return true;
 175
 176	rd->visit_gen = gen;
 177	return false;
 178}
 179
 180static inline
 181void __dl_update(struct dl_bw *dl_b, s64 bw)
 182{
 183	struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw);
 184	int i;
 185
 186	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
 187			 "sched RCU must be held");
 188	for_each_cpu_and(i, rd->span, cpu_active_mask) {
 189		struct rq *rq = cpu_rq(i);
 190
 191		rq->dl.extra_bw += bw;
 192	}
 193}
 194#else
 195static inline struct dl_bw *dl_bw_of(int i)
 196{
 197	return &cpu_rq(i)->dl.dl_bw;
 198}
 199
 200static inline int dl_bw_cpus(int i)
 201{
 202	return 1;
 203}
 204
 205static inline unsigned long dl_bw_capacity(int i)
 206{
 207	return SCHED_CAPACITY_SCALE;
 208}
 209
 210static inline bool dl_bw_visited(int cpu, u64 gen)
 211{
 212	return false;
 213}
 214
 215static inline
 216void __dl_update(struct dl_bw *dl_b, s64 bw)
 217{
 218	struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw);
 219
 220	dl->extra_bw += bw;
 221}
 222#endif
 223
 224static inline
 225void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
 226{
 227	dl_b->total_bw -= tsk_bw;
 228	__dl_update(dl_b, (s32)tsk_bw / cpus);
 229}
 230
 231static inline
 232void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
 233{
 234	dl_b->total_bw += tsk_bw;
 235	__dl_update(dl_b, -((s32)tsk_bw / cpus));
 236}
 237
 238static inline bool
 239__dl_overflow(struct dl_bw *dl_b, unsigned long cap, u64 old_bw, u64 new_bw)
 240{
 241	return dl_b->bw != -1 &&
 242	       cap_scale(dl_b->bw, cap) < dl_b->total_bw - old_bw + new_bw;
 243}
 244
 245static inline
 246void __add_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
 247{
 248	u64 old = dl_rq->running_bw;
 249
 250	lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
 251	dl_rq->running_bw += dl_bw;
 252	SCHED_WARN_ON(dl_rq->running_bw < old); /* overflow */
 253	SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
 254	/* kick cpufreq (see the comment in kernel/sched/sched.h). */
 255	cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
 256}
 257
 258static inline
 259void __sub_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
 260{
 261	u64 old = dl_rq->running_bw;
 262
 263	lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
 264	dl_rq->running_bw -= dl_bw;
 265	SCHED_WARN_ON(dl_rq->running_bw > old); /* underflow */
 266	if (dl_rq->running_bw > old)
 267		dl_rq->running_bw = 0;
 268	/* kick cpufreq (see the comment in kernel/sched/sched.h). */
 269	cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
 270}
 271
 272static inline
 273void __add_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
 274{
 275	u64 old = dl_rq->this_bw;
 276
 277	lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
 278	dl_rq->this_bw += dl_bw;
 279	SCHED_WARN_ON(dl_rq->this_bw < old); /* overflow */
 280}
 281
 282static inline
 283void __sub_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
 284{
 285	u64 old = dl_rq->this_bw;
 286
 287	lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
 288	dl_rq->this_bw -= dl_bw;
 289	SCHED_WARN_ON(dl_rq->this_bw > old); /* underflow */
 290	if (dl_rq->this_bw > old)
 291		dl_rq->this_bw = 0;
 292	SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
 293}
 294
 295static inline
 296void add_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 297{
 298	if (!dl_entity_is_special(dl_se))
 299		__add_rq_bw(dl_se->dl_bw, dl_rq);
 300}
 301
 302static inline
 303void sub_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 304{
 305	if (!dl_entity_is_special(dl_se))
 306		__sub_rq_bw(dl_se->dl_bw, dl_rq);
 307}
 308
 309static inline
 310void add_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 311{
 312	if (!dl_entity_is_special(dl_se))
 313		__add_running_bw(dl_se->dl_bw, dl_rq);
 314}
 315
 316static inline
 317void sub_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 318{
 319	if (!dl_entity_is_special(dl_se))
 320		__sub_running_bw(dl_se->dl_bw, dl_rq);
 321}
 322
 323static void dl_rq_change_utilization(struct rq *rq, struct sched_dl_entity *dl_se, u64 new_bw)
 324{
 325	if (dl_se->dl_non_contending) {
 326		sub_running_bw(dl_se, &rq->dl);
 327		dl_se->dl_non_contending = 0;
 328
 
 
 
 
 
 
 
 
 
 329		/*
 330		 * If the timer handler is currently running and the
 331		 * timer cannot be canceled, inactive_task_timer()
 332		 * will see that dl_not_contending is not set, and
 333		 * will not touch the rq's active utilization,
 334		 * so we are still safe.
 335		 */
 336		if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1) {
 337			if (!dl_server(dl_se))
 338				put_task_struct(dl_task_of(dl_se));
 339		}
 340	}
 341	__sub_rq_bw(dl_se->dl_bw, &rq->dl);
 342	__add_rq_bw(new_bw, &rq->dl);
 343}
 344
 345static void dl_change_utilization(struct task_struct *p, u64 new_bw)
 346{
 347	WARN_ON_ONCE(p->dl.flags & SCHED_FLAG_SUGOV);
 348
 349	if (task_on_rq_queued(p))
 350		return;
 351
 352	dl_rq_change_utilization(task_rq(p), &p->dl, new_bw);
 353}
 354
 355static void __dl_clear_params(struct sched_dl_entity *dl_se);
 356
 357/*
 358 * The utilization of a task cannot be immediately removed from
 359 * the rq active utilization (running_bw) when the task blocks.
 360 * Instead, we have to wait for the so called "0-lag time".
 361 *
 362 * If a task blocks before the "0-lag time", a timer (the inactive
 363 * timer) is armed, and running_bw is decreased when the timer
 364 * fires.
 365 *
 366 * If the task wakes up again before the inactive timer fires,
 367 * the timer is canceled, whereas if the task wakes up after the
 368 * inactive timer fired (and running_bw has been decreased) the
 369 * task's utilization has to be added to running_bw again.
 370 * A flag in the deadline scheduling entity (dl_non_contending)
 371 * is used to avoid race conditions between the inactive timer handler
 372 * and task wakeups.
 373 *
 374 * The following diagram shows how running_bw is updated. A task is
 375 * "ACTIVE" when its utilization contributes to running_bw; an
 376 * "ACTIVE contending" task is in the TASK_RUNNING state, while an
 377 * "ACTIVE non contending" task is a blocked task for which the "0-lag time"
 378 * has not passed yet. An "INACTIVE" task is a task for which the "0-lag"
 379 * time already passed, which does not contribute to running_bw anymore.
 380 *                              +------------------+
 381 *             wakeup           |    ACTIVE        |
 382 *          +------------------>+   contending     |
 383 *          | add_running_bw    |                  |
 384 *          |                   +----+------+------+
 385 *          |                        |      ^
 386 *          |                dequeue |      |
 387 * +--------+-------+                |      |
 388 * |                |   t >= 0-lag   |      | wakeup
 389 * |    INACTIVE    |<---------------+      |
 390 * |                | sub_running_bw |      |
 391 * +--------+-------+                |      |
 392 *          ^                        |      |
 393 *          |              t < 0-lag |      |
 394 *          |                        |      |
 395 *          |                        V      |
 396 *          |                   +----+------+------+
 397 *          | sub_running_bw    |    ACTIVE        |
 398 *          +-------------------+                  |
 399 *            inactive timer    |  non contending  |
 400 *            fired             +------------------+
 401 *
 402 * The task_non_contending() function is invoked when a task
 403 * blocks, and checks if the 0-lag time already passed or
 404 * not (in the first case, it directly updates running_bw;
 405 * in the second case, it arms the inactive timer).
 406 *
 407 * The task_contending() function is invoked when a task wakes
 408 * up, and checks if the task is still in the "ACTIVE non contending"
 409 * state or not (in the second case, it updates running_bw).
 410 */
 411static void task_non_contending(struct sched_dl_entity *dl_se)
 412{
 
 413	struct hrtimer *timer = &dl_se->inactive_timer;
 414	struct rq *rq = rq_of_dl_se(dl_se);
 415	struct dl_rq *dl_rq = &rq->dl;
 416	s64 zerolag_time;
 417
 418	/*
 419	 * If this is a non-deadline task that has been boosted,
 420	 * do nothing
 421	 */
 422	if (dl_se->dl_runtime == 0)
 423		return;
 424
 425	if (dl_entity_is_special(dl_se))
 426		return;
 427
 428	WARN_ON(dl_se->dl_non_contending);
 429
 430	zerolag_time = dl_se->deadline -
 431		 div64_long((dl_se->runtime * dl_se->dl_period),
 432			dl_se->dl_runtime);
 433
 434	/*
 435	 * Using relative times instead of the absolute "0-lag time"
 436	 * allows to simplify the code
 437	 */
 438	zerolag_time -= rq_clock(rq);
 439
 440	/*
 441	 * If the "0-lag time" already passed, decrease the active
 442	 * utilization now, instead of starting a timer
 443	 */
 444	if ((zerolag_time < 0) || hrtimer_active(&dl_se->inactive_timer)) {
 445		if (dl_server(dl_se)) {
 446			sub_running_bw(dl_se, dl_rq);
 447		} else {
 448			struct task_struct *p = dl_task_of(dl_se);
 449
 450			if (dl_task(p))
 451				sub_running_bw(dl_se, dl_rq);
 452
 453			if (!dl_task(p) || READ_ONCE(p->__state) == TASK_DEAD) {
 454				struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
 455
 456				if (READ_ONCE(p->__state) == TASK_DEAD)
 457					sub_rq_bw(dl_se, &rq->dl);
 458				raw_spin_lock(&dl_b->lock);
 459				__dl_sub(dl_b, dl_se->dl_bw, dl_bw_cpus(task_cpu(p)));
 460				raw_spin_unlock(&dl_b->lock);
 461				__dl_clear_params(dl_se);
 462			}
 463		}
 464
 465		return;
 466	}
 467
 468	dl_se->dl_non_contending = 1;
 469	if (!dl_server(dl_se))
 470		get_task_struct(dl_task_of(dl_se));
 471
 472	hrtimer_start(timer, ns_to_ktime(zerolag_time), HRTIMER_MODE_REL_HARD);
 473}
 474
 475static void task_contending(struct sched_dl_entity *dl_se, int flags)
 476{
 477	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
 478
 479	/*
 480	 * If this is a non-deadline task that has been boosted,
 481	 * do nothing
 482	 */
 483	if (dl_se->dl_runtime == 0)
 484		return;
 485
 486	if (flags & ENQUEUE_MIGRATED)
 487		add_rq_bw(dl_se, dl_rq);
 488
 489	if (dl_se->dl_non_contending) {
 490		dl_se->dl_non_contending = 0;
 491		/*
 492		 * If the timer handler is currently running and the
 493		 * timer cannot be canceled, inactive_task_timer()
 494		 * will see that dl_not_contending is not set, and
 495		 * will not touch the rq's active utilization,
 496		 * so we are still safe.
 497		 */
 498		if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1) {
 499			if (!dl_server(dl_se))
 500				put_task_struct(dl_task_of(dl_se));
 501		}
 502	} else {
 503		/*
 504		 * Since "dl_non_contending" is not set, the
 505		 * task's utilization has already been removed from
 506		 * active utilization (either when the task blocked,
 507		 * when the "inactive timer" fired).
 508		 * So, add it back.
 509		 */
 510		add_running_bw(dl_se, dl_rq);
 511	}
 512}
 513
 514static inline int is_leftmost(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 515{
 516	return rb_first_cached(&dl_rq->root) == &dl_se->rb_node;
 
 
 517}
 518
 519static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq);
 
 
 
 
 
 520
 521void init_dl_bw(struct dl_bw *dl_b)
 522{
 523	raw_spin_lock_init(&dl_b->lock);
 
 524	if (global_rt_runtime() == RUNTIME_INF)
 525		dl_b->bw = -1;
 526	else
 527		dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
 
 528	dl_b->total_bw = 0;
 529}
 530
 531void init_dl_rq(struct dl_rq *dl_rq)
 532{
 533	dl_rq->root = RB_ROOT_CACHED;
 534
 535#ifdef CONFIG_SMP
 536	/* zero means no -deadline tasks */
 537	dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
 538
 
 539	dl_rq->overloaded = 0;
 540	dl_rq->pushable_dl_tasks_root = RB_ROOT_CACHED;
 541#else
 542	init_dl_bw(&dl_rq->dl_bw);
 543#endif
 544
 545	dl_rq->running_bw = 0;
 546	dl_rq->this_bw = 0;
 547	init_dl_rq_bw_ratio(dl_rq);
 548}
 549
 550#ifdef CONFIG_SMP
 551
 552static inline int dl_overloaded(struct rq *rq)
 553{
 554	return atomic_read(&rq->rd->dlo_count);
 555}
 556
 557static inline void dl_set_overload(struct rq *rq)
 558{
 559	if (!rq->online)
 560		return;
 561
 562	cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
 563	/*
 564	 * Must be visible before the overload count is
 565	 * set (as in sched_rt.c).
 566	 *
 567	 * Matched by the barrier in pull_dl_task().
 568	 */
 569	smp_wmb();
 570	atomic_inc(&rq->rd->dlo_count);
 571}
 572
 573static inline void dl_clear_overload(struct rq *rq)
 574{
 575	if (!rq->online)
 576		return;
 577
 578	atomic_dec(&rq->rd->dlo_count);
 579	cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
 580}
 581
 582#define __node_2_pdl(node) \
 583	rb_entry((node), struct task_struct, pushable_dl_tasks)
 
 
 
 
 
 
 
 
 
 
 584
 585static inline bool __pushable_less(struct rb_node *a, const struct rb_node *b)
 586{
 587	return dl_entity_preempt(&__node_2_pdl(a)->dl, &__node_2_pdl(b)->dl);
 
 
 
 
 
 588}
 589
 590static inline int has_pushable_dl_tasks(struct rq *rq)
 591{
 592	return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root.rb_root);
 
 
 
 
 
 593}
 594
 595/*
 596 * The list of pushable -deadline task is not a plist, like in
 597 * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
 598 */
 599static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
 600{
 601	struct rb_node *leftmost;
 602
 603	WARN_ON_ONCE(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 604
 605	leftmost = rb_add_cached(&p->pushable_dl_tasks,
 606				 &rq->dl.pushable_dl_tasks_root,
 607				 __pushable_less);
 608	if (leftmost)
 609		rq->dl.earliest_dl.next = p->dl.deadline;
 610
 611	if (!rq->dl.overloaded) {
 612		dl_set_overload(rq);
 613		rq->dl.overloaded = 1;
 614	}
 615}
 616
 617static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
 618{
 619	struct dl_rq *dl_rq = &rq->dl;
 620	struct rb_root_cached *root = &dl_rq->pushable_dl_tasks_root;
 621	struct rb_node *leftmost;
 622
 623	if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
 624		return;
 625
 626	leftmost = rb_erase_cached(&p->pushable_dl_tasks, root);
 627	if (leftmost)
 628		dl_rq->earliest_dl.next = __node_2_pdl(leftmost)->dl.deadline;
 
 
 
 
 
 
 629
 
 630	RB_CLEAR_NODE(&p->pushable_dl_tasks);
 
 631
 632	if (!has_pushable_dl_tasks(rq) && rq->dl.overloaded) {
 633		dl_clear_overload(rq);
 634		rq->dl.overloaded = 0;
 635	}
 636}
 637
 638static int push_dl_task(struct rq *rq);
 639
 640static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
 641{
 642	return rq->online && dl_task(prev);
 643}
 644
 645static DEFINE_PER_CPU(struct balance_callback, dl_push_head);
 646static DEFINE_PER_CPU(struct balance_callback, dl_pull_head);
 647
 648static void push_dl_tasks(struct rq *);
 649static void pull_dl_task(struct rq *);
 650
 651static inline void deadline_queue_push_tasks(struct rq *rq)
 652{
 653	if (!has_pushable_dl_tasks(rq))
 654		return;
 655
 656	queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks);
 657}
 658
 659static inline void deadline_queue_pull_task(struct rq *rq)
 660{
 661	queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task);
 662}
 663
 664static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq);
 665
 666static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p)
 667{
 668	struct rq *later_rq = NULL;
 669	struct dl_bw *dl_b;
 670
 671	later_rq = find_lock_later_rq(p, rq);
 672	if (!later_rq) {
 673		int cpu;
 674
 675		/*
 676		 * If we cannot preempt any rq, fall back to pick any
 677		 * online CPU:
 678		 */
 679		cpu = cpumask_any_and(cpu_active_mask, p->cpus_ptr);
 680		if (cpu >= nr_cpu_ids) {
 681			/*
 682			 * Failed to find any suitable CPU.
 683			 * The task will never come back!
 684			 */
 685			WARN_ON_ONCE(dl_bandwidth_enabled());
 686
 687			/*
 688			 * If admission control is disabled we
 689			 * try a little harder to let the task
 690			 * run.
 691			 */
 692			cpu = cpumask_any(cpu_active_mask);
 693		}
 694		later_rq = cpu_rq(cpu);
 695		double_lock_balance(rq, later_rq);
 696	}
 697
 698	if (p->dl.dl_non_contending || p->dl.dl_throttled) {
 699		/*
 700		 * Inactive timer is armed (or callback is running, but
 701		 * waiting for us to release rq locks). In any case, when it
 702		 * will fire (or continue), it will see running_bw of this
 703		 * task migrated to later_rq (and correctly handle it).
 704		 */
 705		sub_running_bw(&p->dl, &rq->dl);
 706		sub_rq_bw(&p->dl, &rq->dl);
 707
 708		add_rq_bw(&p->dl, &later_rq->dl);
 709		add_running_bw(&p->dl, &later_rq->dl);
 710	} else {
 711		sub_rq_bw(&p->dl, &rq->dl);
 712		add_rq_bw(&p->dl, &later_rq->dl);
 713	}
 714
 715	/*
 716	 * And we finally need to fix up root_domain(s) bandwidth accounting,
 717	 * since p is still hanging out in the old (now moved to default) root
 718	 * domain.
 719	 */
 720	dl_b = &rq->rd->dl_bw;
 721	raw_spin_lock(&dl_b->lock);
 722	__dl_sub(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
 723	raw_spin_unlock(&dl_b->lock);
 724
 725	dl_b = &later_rq->rd->dl_bw;
 726	raw_spin_lock(&dl_b->lock);
 727	__dl_add(dl_b, p->dl.dl_bw, cpumask_weight(later_rq->rd->span));
 728	raw_spin_unlock(&dl_b->lock);
 729
 730	set_task_cpu(p, later_rq->cpu);
 731	double_unlock_balance(later_rq, rq);
 732
 733	return later_rq;
 734}
 735
 736#else
 737
 738static inline
 739void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
 740{
 741}
 742
 743static inline
 744void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
 745{
 746}
 747
 748static inline
 749void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 750{
 751}
 752
 753static inline
 754void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 755{
 756}
 757
 
 
 
 
 
 
 
 
 
 758static inline void deadline_queue_push_tasks(struct rq *rq)
 759{
 760}
 761
 762static inline void deadline_queue_pull_task(struct rq *rq)
 763{
 764}
 765#endif /* CONFIG_SMP */
 766
 767static void
 768enqueue_dl_entity(struct sched_dl_entity *dl_se, int flags);
 769static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
 770static void dequeue_dl_entity(struct sched_dl_entity *dl_se, int flags);
 771static void wakeup_preempt_dl(struct rq *rq, struct task_struct *p, int flags);
 772
 773static inline void replenish_dl_new_period(struct sched_dl_entity *dl_se,
 774					    struct rq *rq)
 775{
 776	/* for non-boosted task, pi_of(dl_se) == dl_se */
 777	dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline;
 778	dl_se->runtime = pi_of(dl_se)->dl_runtime;
 779
 780	/*
 781	 * If it is a deferred reservation, and the server
 782	 * is not handling an starvation case, defer it.
 783	 */
 784	if (dl_se->dl_defer && !dl_se->dl_defer_running) {
 785		dl_se->dl_throttled = 1;
 786		dl_se->dl_defer_armed = 1;
 787	}
 788}
 789
 790/*
 791 * We are being explicitly informed that a new instance is starting,
 792 * and this means that:
 793 *  - the absolute deadline of the entity has to be placed at
 794 *    current time + relative deadline;
 795 *  - the runtime of the entity has to be set to the maximum value.
 796 *
 797 * The capability of specifying such event is useful whenever a -deadline
 798 * entity wants to (try to!) synchronize its behaviour with the scheduler's
 799 * one, and to (try to!) reconcile itself with its own scheduling
 800 * parameters.
 801 */
 802static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se)
 803{
 804	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
 805	struct rq *rq = rq_of_dl_rq(dl_rq);
 806
 807	WARN_ON(is_dl_boosted(dl_se));
 808	WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline));
 809
 810	/*
 811	 * We are racing with the deadline timer. So, do nothing because
 812	 * the deadline timer handler will take care of properly recharging
 813	 * the runtime and postponing the deadline
 814	 */
 815	if (dl_se->dl_throttled)
 816		return;
 817
 818	/*
 819	 * We use the regular wall clock time to set deadlines in the
 820	 * future; in fact, we must consider execution overheads (time
 821	 * spent on hardirq context, etc.).
 822	 */
 823	replenish_dl_new_period(dl_se, rq);
 
 824}
 825
 826static int start_dl_timer(struct sched_dl_entity *dl_se);
 827static bool dl_entity_overflow(struct sched_dl_entity *dl_se, u64 t);
 828
 829/*
 830 * Pure Earliest Deadline First (EDF) scheduling does not deal with the
 831 * possibility of a entity lasting more than what it declared, and thus
 832 * exhausting its runtime.
 833 *
 834 * Here we are interested in making runtime overrun possible, but we do
 835 * not want a entity which is misbehaving to affect the scheduling of all
 836 * other entities.
 837 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
 838 * is used, in order to confine each entity within its own bandwidth.
 839 *
 840 * This function deals exactly with that, and ensures that when the runtime
 841 * of a entity is replenished, its deadline is also postponed. That ensures
 842 * the overrunning entity can't interfere with other entity in the system and
 843 * can't make them miss their deadlines. Reasons why this kind of overruns
 844 * could happen are, typically, a entity voluntarily trying to overcome its
 845 * runtime, or it just underestimated it during sched_setattr().
 846 */
 847static void replenish_dl_entity(struct sched_dl_entity *dl_se)
 
 848{
 849	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
 850	struct rq *rq = rq_of_dl_rq(dl_rq);
 851
 852	WARN_ON_ONCE(pi_of(dl_se)->dl_runtime <= 0);
 853
 854	/*
 855	 * This could be the case for a !-dl task that is boosted.
 856	 * Just go with full inherited parameters.
 857	 *
 858	 * Or, it could be the case of a deferred reservation that
 859	 * was not able to consume its runtime in background and
 860	 * reached this point with current u > U.
 861	 *
 862	 * In both cases, set a new period.
 863	 */
 864	if (dl_se->dl_deadline == 0 ||
 865	    (dl_se->dl_defer_armed && dl_entity_overflow(dl_se, rq_clock(rq)))) {
 866		dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline;
 867		dl_se->runtime = pi_of(dl_se)->dl_runtime;
 868	}
 869
 870	if (dl_se->dl_yielded && dl_se->runtime > 0)
 871		dl_se->runtime = 0;
 872
 873	/*
 874	 * We keep moving the deadline away until we get some
 875	 * available runtime for the entity. This ensures correct
 876	 * handling of situations where the runtime overrun is
 877	 * arbitrary large.
 878	 */
 879	while (dl_se->runtime <= 0) {
 880		dl_se->deadline += pi_of(dl_se)->dl_period;
 881		dl_se->runtime += pi_of(dl_se)->dl_runtime;
 882	}
 883
 884	/*
 885	 * At this point, the deadline really should be "in
 886	 * the future" with respect to rq->clock. If it's
 887	 * not, we are, for some reason, lagging too much!
 888	 * Anyway, after having warn userspace abut that,
 889	 * we still try to keep the things running by
 890	 * resetting the deadline and the budget of the
 891	 * entity.
 892	 */
 893	if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
 894		printk_deferred_once("sched: DL replenish lagged too much\n");
 895		replenish_dl_new_period(dl_se, rq);
 
 896	}
 897
 898	if (dl_se->dl_yielded)
 899		dl_se->dl_yielded = 0;
 900	if (dl_se->dl_throttled)
 901		dl_se->dl_throttled = 0;
 902
 903	/*
 904	 * If this is the replenishment of a deferred reservation,
 905	 * clear the flag and return.
 906	 */
 907	if (dl_se->dl_defer_armed) {
 908		dl_se->dl_defer_armed = 0;
 909		return;
 910	}
 911
 912	/*
 913	 * A this point, if the deferred server is not armed, and the deadline
 914	 * is in the future, if it is not running already, throttle the server
 915	 * and arm the defer timer.
 916	 */
 917	if (dl_se->dl_defer && !dl_se->dl_defer_running &&
 918	    dl_time_before(rq_clock(dl_se->rq), dl_se->deadline - dl_se->runtime)) {
 919		if (!is_dl_boosted(dl_se) && dl_se->server_has_tasks(dl_se)) {
 920
 921			/*
 922			 * Set dl_se->dl_defer_armed and dl_throttled variables to
 923			 * inform the start_dl_timer() that this is a deferred
 924			 * activation.
 925			 */
 926			dl_se->dl_defer_armed = 1;
 927			dl_se->dl_throttled = 1;
 928			if (!start_dl_timer(dl_se)) {
 929				/*
 930				 * If for whatever reason (delays), a previous timer was
 931				 * queued but not serviced, cancel it and clean the
 932				 * deferrable server variables intended for start_dl_timer().
 933				 */
 934				hrtimer_try_to_cancel(&dl_se->dl_timer);
 935				dl_se->dl_defer_armed = 0;
 936				dl_se->dl_throttled = 0;
 937			}
 938		}
 939	}
 940}
 941
 942/*
 943 * Here we check if --at time t-- an entity (which is probably being
 944 * [re]activated or, in general, enqueued) can use its remaining runtime
 945 * and its current deadline _without_ exceeding the bandwidth it is
 946 * assigned (function returns true if it can't). We are in fact applying
 947 * one of the CBS rules: when a task wakes up, if the residual runtime
 948 * over residual deadline fits within the allocated bandwidth, then we
 949 * can keep the current (absolute) deadline and residual budget without
 950 * disrupting the schedulability of the system. Otherwise, we should
 951 * refill the runtime and set the deadline a period in the future,
 952 * because keeping the current (absolute) deadline of the task would
 953 * result in breaking guarantees promised to other tasks (refer to
 954 * Documentation/scheduler/sched-deadline.rst for more information).
 955 *
 956 * This function returns true if:
 957 *
 958 *   runtime / (deadline - t) > dl_runtime / dl_deadline ,
 959 *
 960 * IOW we can't recycle current parameters.
 961 *
 962 * Notice that the bandwidth check is done against the deadline. For
 963 * task with deadline equal to period this is the same of using
 964 * dl_period instead of dl_deadline in the equation above.
 965 */
 966static bool dl_entity_overflow(struct sched_dl_entity *dl_se, u64 t)
 
 967{
 968	u64 left, right;
 969
 970	/*
 971	 * left and right are the two sides of the equation above,
 972	 * after a bit of shuffling to use multiplications instead
 973	 * of divisions.
 974	 *
 975	 * Note that none of the time values involved in the two
 976	 * multiplications are absolute: dl_deadline and dl_runtime
 977	 * are the relative deadline and the maximum runtime of each
 978	 * instance, runtime is the runtime left for the last instance
 979	 * and (deadline - t), since t is rq->clock, is the time left
 980	 * to the (absolute) deadline. Even if overflowing the u64 type
 981	 * is very unlikely to occur in both cases, here we scale down
 982	 * as we want to avoid that risk at all. Scaling down by 10
 983	 * means that we reduce granularity to 1us. We are fine with it,
 984	 * since this is only a true/false check and, anyway, thinking
 985	 * of anything below microseconds resolution is actually fiction
 986	 * (but still we want to give the user that illusion >;).
 987	 */
 988	left = (pi_of(dl_se)->dl_deadline >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
 989	right = ((dl_se->deadline - t) >> DL_SCALE) *
 990		(pi_of(dl_se)->dl_runtime >> DL_SCALE);
 991
 992	return dl_time_before(right, left);
 993}
 994
 995/*
 996 * Revised wakeup rule [1]: For self-suspending tasks, rather then
 997 * re-initializing task's runtime and deadline, the revised wakeup
 998 * rule adjusts the task's runtime to avoid the task to overrun its
 999 * density.
1000 *
1001 * Reasoning: a task may overrun the density if:
1002 *    runtime / (deadline - t) > dl_runtime / dl_deadline
1003 *
1004 * Therefore, runtime can be adjusted to:
1005 *     runtime = (dl_runtime / dl_deadline) * (deadline - t)
1006 *
1007 * In such way that runtime will be equal to the maximum density
1008 * the task can use without breaking any rule.
1009 *
1010 * [1] Luca Abeni, Giuseppe Lipari, and Juri Lelli. 2015. Constant
1011 * bandwidth server revisited. SIGBED Rev. 11, 4 (January 2015), 19-24.
1012 */
1013static void
1014update_dl_revised_wakeup(struct sched_dl_entity *dl_se, struct rq *rq)
1015{
1016	u64 laxity = dl_se->deadline - rq_clock(rq);
1017
1018	/*
1019	 * If the task has deadline < period, and the deadline is in the past,
1020	 * it should already be throttled before this check.
1021	 *
1022	 * See update_dl_entity() comments for further details.
1023	 */
1024	WARN_ON(dl_time_before(dl_se->deadline, rq_clock(rq)));
1025
1026	dl_se->runtime = (dl_se->dl_density * laxity) >> BW_SHIFT;
1027}
1028
1029/*
1030 * Regarding the deadline, a task with implicit deadline has a relative
1031 * deadline == relative period. A task with constrained deadline has a
1032 * relative deadline <= relative period.
1033 *
1034 * We support constrained deadline tasks. However, there are some restrictions
1035 * applied only for tasks which do not have an implicit deadline. See
1036 * update_dl_entity() to know more about such restrictions.
1037 *
1038 * The dl_is_implicit() returns true if the task has an implicit deadline.
1039 */
1040static inline bool dl_is_implicit(struct sched_dl_entity *dl_se)
1041{
1042	return dl_se->dl_deadline == dl_se->dl_period;
1043}
1044
1045/*
1046 * When a deadline entity is placed in the runqueue, its runtime and deadline
1047 * might need to be updated. This is done by a CBS wake up rule. There are two
1048 * different rules: 1) the original CBS; and 2) the Revisited CBS.
1049 *
1050 * When the task is starting a new period, the Original CBS is used. In this
1051 * case, the runtime is replenished and a new absolute deadline is set.
1052 *
1053 * When a task is queued before the begin of the next period, using the
1054 * remaining runtime and deadline could make the entity to overflow, see
1055 * dl_entity_overflow() to find more about runtime overflow. When such case
1056 * is detected, the runtime and deadline need to be updated.
1057 *
1058 * If the task has an implicit deadline, i.e., deadline == period, the Original
1059 * CBS is applied. The runtime is replenished and a new absolute deadline is
1060 * set, as in the previous cases.
1061 *
1062 * However, the Original CBS does not work properly for tasks with
1063 * deadline < period, which are said to have a constrained deadline. By
1064 * applying the Original CBS, a constrained deadline task would be able to run
1065 * runtime/deadline in a period. With deadline < period, the task would
1066 * overrun the runtime/period allowed bandwidth, breaking the admission test.
1067 *
1068 * In order to prevent this misbehave, the Revisited CBS is used for
1069 * constrained deadline tasks when a runtime overflow is detected. In the
1070 * Revisited CBS, rather than replenishing & setting a new absolute deadline,
1071 * the remaining runtime of the task is reduced to avoid runtime overflow.
1072 * Please refer to the comments update_dl_revised_wakeup() function to find
1073 * more about the Revised CBS rule.
1074 */
1075static void update_dl_entity(struct sched_dl_entity *dl_se)
 
1076{
1077	struct rq *rq = rq_of_dl_se(dl_se);
 
1078
1079	if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
1080	    dl_entity_overflow(dl_se, rq_clock(rq))) {
1081
1082		if (unlikely(!dl_is_implicit(dl_se) &&
1083			     !dl_time_before(dl_se->deadline, rq_clock(rq)) &&
1084			     !is_dl_boosted(dl_se))) {
1085			update_dl_revised_wakeup(dl_se, rq);
1086			return;
1087		}
1088
1089		replenish_dl_new_period(dl_se, rq);
1090	} else if (dl_server(dl_se) && dl_se->dl_defer) {
1091		/*
1092		 * The server can still use its previous deadline, so check if
1093		 * it left the dl_defer_running state.
1094		 */
1095		if (!dl_se->dl_defer_running) {
1096			dl_se->dl_defer_armed = 1;
1097			dl_se->dl_throttled = 1;
1098		}
1099	}
1100}
1101
1102static inline u64 dl_next_period(struct sched_dl_entity *dl_se)
1103{
1104	return dl_se->deadline - dl_se->dl_deadline + dl_se->dl_period;
1105}
1106
1107/*
1108 * If the entity depleted all its runtime, and if we want it to sleep
1109 * while waiting for some new execution time to become available, we
1110 * set the bandwidth replenishment timer to the replenishment instant
1111 * and try to activate it.
1112 *
1113 * Notice that it is important for the caller to know if the timer
1114 * actually started or not (i.e., the replenishment instant is in
1115 * the future or in the past).
1116 */
1117static int start_dl_timer(struct sched_dl_entity *dl_se)
1118{
 
1119	struct hrtimer *timer = &dl_se->dl_timer;
1120	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1121	struct rq *rq = rq_of_dl_rq(dl_rq);
1122	ktime_t now, act;
1123	s64 delta;
1124
1125	lockdep_assert_rq_held(rq);
1126
1127	/*
1128	 * We want the timer to fire at the deadline, but considering
1129	 * that it is actually coming from rq->clock and not from
1130	 * hrtimer's time base reading.
1131	 *
1132	 * The deferred reservation will have its timer set to
1133	 * (deadline - runtime). At that point, the CBS rule will decide
1134	 * if the current deadline can be used, or if a replenishment is
1135	 * required to avoid add too much pressure on the system
1136	 * (current u > U).
1137	 */
1138	if (dl_se->dl_defer_armed) {
1139		WARN_ON_ONCE(!dl_se->dl_throttled);
1140		act = ns_to_ktime(dl_se->deadline - dl_se->runtime);
1141	} else {
1142		/* act = deadline - rel-deadline + period */
1143		act = ns_to_ktime(dl_next_period(dl_se));
1144	}
1145
1146	now = hrtimer_cb_get_time(timer);
1147	delta = ktime_to_ns(now) - rq_clock(rq);
1148	act = ktime_add_ns(act, delta);
1149
1150	/*
1151	 * If the expiry time already passed, e.g., because the value
1152	 * chosen as the deadline is too small, don't even try to
1153	 * start the timer in the past!
1154	 */
1155	if (ktime_us_delta(act, now) < 0)
1156		return 0;
1157
1158	/*
1159	 * !enqueued will guarantee another callback; even if one is already in
1160	 * progress. This ensures a balanced {get,put}_task_struct().
1161	 *
1162	 * The race against __run_timer() clearing the enqueued state is
1163	 * harmless because we're holding task_rq()->lock, therefore the timer
1164	 * expiring after we've done the check will wait on its task_rq_lock()
1165	 * and observe our state.
1166	 */
1167	if (!hrtimer_is_queued(timer)) {
1168		if (!dl_server(dl_se))
1169			get_task_struct(dl_task_of(dl_se));
1170		hrtimer_start(timer, act, HRTIMER_MODE_ABS_HARD);
1171	}
1172
1173	return 1;
1174}
1175
1176static void __push_dl_task(struct rq *rq, struct rq_flags *rf)
1177{
1178#ifdef CONFIG_SMP
1179	/*
1180	 * Queueing this task back might have overloaded rq, check if we need
1181	 * to kick someone away.
1182	 */
1183	if (has_pushable_dl_tasks(rq)) {
1184		/*
1185		 * Nothing relies on rq->lock after this, so its safe to drop
1186		 * rq->lock.
1187		 */
1188		rq_unpin_lock(rq, rf);
1189		push_dl_task(rq);
1190		rq_repin_lock(rq, rf);
1191	}
1192#endif
1193}
1194
1195/* a defer timer will not be reset if the runtime consumed was < dl_server_min_res */
1196static const u64 dl_server_min_res = 1 * NSEC_PER_MSEC;
1197
1198static enum hrtimer_restart dl_server_timer(struct hrtimer *timer, struct sched_dl_entity *dl_se)
1199{
1200	struct rq *rq = rq_of_dl_se(dl_se);
1201	u64 fw;
1202
1203	scoped_guard (rq_lock, rq) {
1204		struct rq_flags *rf = &scope.rf;
1205
1206		if (!dl_se->dl_throttled || !dl_se->dl_runtime)
1207			return HRTIMER_NORESTART;
1208
1209		sched_clock_tick();
1210		update_rq_clock(rq);
1211
1212		if (!dl_se->dl_runtime)
1213			return HRTIMER_NORESTART;
1214
1215		if (!dl_se->server_has_tasks(dl_se)) {
1216			replenish_dl_entity(dl_se);
1217			return HRTIMER_NORESTART;
1218		}
1219
1220		if (dl_se->dl_defer_armed) {
1221			/*
1222			 * First check if the server could consume runtime in background.
1223			 * If so, it is possible to push the defer timer for this amount
1224			 * of time. The dl_server_min_res serves as a limit to avoid
1225			 * forwarding the timer for a too small amount of time.
1226			 */
1227			if (dl_time_before(rq_clock(dl_se->rq),
1228					   (dl_se->deadline - dl_se->runtime - dl_server_min_res))) {
1229
1230				/* reset the defer timer */
1231				fw = dl_se->deadline - rq_clock(dl_se->rq) - dl_se->runtime;
1232
1233				hrtimer_forward_now(timer, ns_to_ktime(fw));
1234				return HRTIMER_RESTART;
1235			}
1236
1237			dl_se->dl_defer_running = 1;
1238		}
1239
1240		enqueue_dl_entity(dl_se, ENQUEUE_REPLENISH);
1241
1242		if (!dl_task(dl_se->rq->curr) || dl_entity_preempt(dl_se, &dl_se->rq->curr->dl))
1243			resched_curr(rq);
1244
1245		__push_dl_task(rq, rf);
1246	}
1247
1248	return HRTIMER_NORESTART;
1249}
1250
1251/*
1252 * This is the bandwidth enforcement timer callback. If here, we know
1253 * a task is not on its dl_rq, since the fact that the timer was running
1254 * means the task is throttled and needs a runtime replenishment.
1255 *
1256 * However, what we actually do depends on the fact the task is active,
1257 * (it is on its rq) or has been removed from there by a call to
1258 * dequeue_task_dl(). In the former case we must issue the runtime
1259 * replenishment and add the task back to the dl_rq; in the latter, we just
1260 * do nothing but clearing dl_throttled, so that runtime and deadline
1261 * updating (and the queueing back to dl_rq) will be done by the
1262 * next call to enqueue_task_dl().
1263 */
1264static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
1265{
1266	struct sched_dl_entity *dl_se = container_of(timer,
1267						     struct sched_dl_entity,
1268						     dl_timer);
1269	struct task_struct *p;
1270	struct rq_flags rf;
1271	struct rq *rq;
1272
1273	if (dl_server(dl_se))
1274		return dl_server_timer(timer, dl_se);
1275
1276	p = dl_task_of(dl_se);
1277	rq = task_rq_lock(p, &rf);
1278
1279	/*
1280	 * The task might have changed its scheduling policy to something
1281	 * different than SCHED_DEADLINE (through switched_from_dl()).
1282	 */
1283	if (!dl_task(p))
1284		goto unlock;
1285
1286	/*
1287	 * The task might have been boosted by someone else and might be in the
1288	 * boosting/deboosting path, its not throttled.
1289	 */
1290	if (is_dl_boosted(dl_se))
1291		goto unlock;
1292
1293	/*
1294	 * Spurious timer due to start_dl_timer() race; or we already received
1295	 * a replenishment from rt_mutex_setprio().
1296	 */
1297	if (!dl_se->dl_throttled)
1298		goto unlock;
1299
1300	sched_clock_tick();
1301	update_rq_clock(rq);
1302
1303	/*
1304	 * If the throttle happened during sched-out; like:
1305	 *
1306	 *   schedule()
1307	 *     deactivate_task()
1308	 *       dequeue_task_dl()
1309	 *         update_curr_dl()
1310	 *           start_dl_timer()
1311	 *         __dequeue_task_dl()
1312	 *     prev->on_rq = 0;
1313	 *
1314	 * We can be both throttled and !queued. Replenish the counter
1315	 * but do not enqueue -- wait for our wakeup to do that.
1316	 */
1317	if (!task_on_rq_queued(p)) {
1318		replenish_dl_entity(dl_se);
1319		goto unlock;
1320	}
1321
1322#ifdef CONFIG_SMP
1323	if (unlikely(!rq->online)) {
1324		/*
1325		 * If the runqueue is no longer available, migrate the
1326		 * task elsewhere. This necessarily changes rq.
1327		 */
1328		lockdep_unpin_lock(__rq_lockp(rq), rf.cookie);
1329		rq = dl_task_offline_migration(rq, p);
1330		rf.cookie = lockdep_pin_lock(__rq_lockp(rq));
1331		update_rq_clock(rq);
1332
1333		/*
1334		 * Now that the task has been migrated to the new RQ and we
1335		 * have that locked, proceed as normal and enqueue the task
1336		 * there.
1337		 */
1338	}
1339#endif
1340
1341	enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
1342	if (dl_task(rq->donor))
1343		wakeup_preempt_dl(rq, p, 0);
1344	else
1345		resched_curr(rq);
1346
1347	__push_dl_task(rq, &rf);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1348
1349unlock:
1350	task_rq_unlock(rq, p, &rf);
1351
1352	/*
1353	 * This can free the task_struct, including this hrtimer, do not touch
1354	 * anything related to that after this.
1355	 */
1356	put_task_struct(p);
1357
1358	return HRTIMER_NORESTART;
1359}
1360
1361static void init_dl_task_timer(struct sched_dl_entity *dl_se)
1362{
1363	struct hrtimer *timer = &dl_se->dl_timer;
1364
1365	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
1366	timer->function = dl_task_timer;
1367}
1368
1369/*
1370 * During the activation, CBS checks if it can reuse the current task's
1371 * runtime and period. If the deadline of the task is in the past, CBS
1372 * cannot use the runtime, and so it replenishes the task. This rule
1373 * works fine for implicit deadline tasks (deadline == period), and the
1374 * CBS was designed for implicit deadline tasks. However, a task with
1375 * constrained deadline (deadline < period) might be awakened after the
1376 * deadline, but before the next period. In this case, replenishing the
1377 * task would allow it to run for runtime / deadline. As in this case
1378 * deadline < period, CBS enables a task to run for more than the
1379 * runtime / period. In a very loaded system, this can cause a domino
1380 * effect, making other tasks miss their deadlines.
1381 *
1382 * To avoid this problem, in the activation of a constrained deadline
1383 * task after the deadline but before the next period, throttle the
1384 * task and set the replenishing timer to the begin of the next period,
1385 * unless it is boosted.
1386 */
1387static inline void dl_check_constrained_dl(struct sched_dl_entity *dl_se)
1388{
1389	struct rq *rq = rq_of_dl_se(dl_se);
 
1390
1391	if (dl_time_before(dl_se->deadline, rq_clock(rq)) &&
1392	    dl_time_before(rq_clock(rq), dl_next_period(dl_se))) {
1393		if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(dl_se)))
1394			return;
1395		dl_se->dl_throttled = 1;
1396		if (dl_se->runtime > 0)
1397			dl_se->runtime = 0;
1398	}
1399}
1400
1401static
1402int dl_runtime_exceeded(struct sched_dl_entity *dl_se)
1403{
1404	return (dl_se->runtime <= 0);
1405}
1406
 
 
1407/*
1408 * This function implements the GRUB accounting rule. According to the
1409 * GRUB reclaiming algorithm, the runtime is not decreased as "dq = -dt",
1410 * but as "dq = -(max{u, (Umax - Uinact - Uextra)} / Umax) dt",
 
1411 * where u is the utilization of the task, Umax is the maximum reclaimable
1412 * utilization, Uinact is the (per-runqueue) inactive utilization, computed
1413 * as the difference between the "total runqueue utilization" and the
1414 * "runqueue active utilization", and Uextra is the (per runqueue) extra
1415 * reclaimable utilization.
1416 * Since rq->dl.running_bw and rq->dl.this_bw contain utilizations multiplied
1417 * by 2^BW_SHIFT, the result has to be shifted right by BW_SHIFT.
1418 * Since rq->dl.bw_ratio contains 1 / Umax multiplied by 2^RATIO_SHIFT, dl_bw
1419 * is multiplied by rq->dl.bw_ratio and shifted right by RATIO_SHIFT.
1420 * Since delta is a 64 bit variable, to have an overflow its value should be
1421 * larger than 2^(64 - 20 - 8), which is more than 64 seconds. So, overflow is
1422 * not an issue here.
 
1423 */
1424static u64 grub_reclaim(u64 delta, struct rq *rq, struct sched_dl_entity *dl_se)
1425{
1426	u64 u_act;
1427	u64 u_inact = rq->dl.this_bw - rq->dl.running_bw; /* Utot - Uact */
 
 
1428
1429	/*
1430	 * Instead of computing max{u, (u_max - u_inact - u_extra)}, we
1431	 * compare u_inact + u_extra with u_max - u, because u_inact + u_extra
1432	 * can be larger than u_max. So, u_max - u_inact - u_extra would be
1433	 * negative leading to wrong results.
 
 
1434	 */
1435	if (u_inact + rq->dl.extra_bw > rq->dl.max_bw - dl_se->dl_bw)
1436		u_act = dl_se->dl_bw;
1437	else
1438		u_act = rq->dl.max_bw - u_inact - rq->dl.extra_bw;
1439
1440	u_act = (u_act * rq->dl.bw_ratio) >> RATIO_SHIFT;
1441	return (delta * u_act) >> BW_SHIFT;
1442}
1443
1444s64 dl_scaled_delta_exec(struct rq *rq, struct sched_dl_entity *dl_se, s64 delta_exec)
 
 
 
 
1445{
1446	s64 scaled_delta_exec;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1447
1448	/*
1449	 * For tasks that participate in GRUB, we implement GRUB-PA: the
1450	 * spare reclaimed bandwidth is used to clock down frequency.
1451	 *
1452	 * For the others, we still need to scale reservation parameters
1453	 * according to current frequency and CPU maximum capacity.
1454	 */
1455	if (unlikely(dl_se->flags & SCHED_FLAG_RECLAIM)) {
1456		scaled_delta_exec = grub_reclaim(delta_exec, rq, dl_se);
 
 
1457	} else {
1458		int cpu = cpu_of(rq);
1459		unsigned long scale_freq = arch_scale_freq_capacity(cpu);
1460		unsigned long scale_cpu = arch_scale_cpu_capacity(cpu);
1461
1462		scaled_delta_exec = cap_scale(delta_exec, scale_freq);
1463		scaled_delta_exec = cap_scale(scaled_delta_exec, scale_cpu);
1464	}
1465
1466	return scaled_delta_exec;
1467}
1468
1469static inline void
1470update_stats_dequeue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se,
1471			int flags);
1472static void update_curr_dl_se(struct rq *rq, struct sched_dl_entity *dl_se, s64 delta_exec)
1473{
1474	s64 scaled_delta_exec;
1475
1476	if (unlikely(delta_exec <= 0)) {
1477		if (unlikely(dl_se->dl_yielded))
1478			goto throttle;
1479		return;
1480	}
1481
1482	if (dl_server(dl_se) && dl_se->dl_throttled && !dl_se->dl_defer)
1483		return;
1484
1485	if (dl_entity_is_special(dl_se))
1486		return;
1487
1488	scaled_delta_exec = dl_scaled_delta_exec(rq, dl_se, delta_exec);
1489
1490	dl_se->runtime -= scaled_delta_exec;
1491
1492	/*
1493	 * The fair server can consume its runtime while throttled (not queued/
1494	 * running as regular CFS).
1495	 *
1496	 * If the server consumes its entire runtime in this state. The server
1497	 * is not required for the current period. Thus, reset the server by
1498	 * starting a new period, pushing the activation.
1499	 */
1500	if (dl_se->dl_defer && dl_se->dl_throttled && dl_runtime_exceeded(dl_se)) {
1501		/*
1502		 * If the server was previously activated - the starving condition
1503		 * took place, it this point it went away because the fair scheduler
1504		 * was able to get runtime in background. So return to the initial
1505		 * state.
1506		 */
1507		dl_se->dl_defer_running = 0;
1508
1509		hrtimer_try_to_cancel(&dl_se->dl_timer);
1510
1511		replenish_dl_new_period(dl_se, dl_se->rq);
1512
1513		/*
1514		 * Not being able to start the timer seems problematic. If it could not
1515		 * be started for whatever reason, we need to "unthrottle" the DL server
1516		 * and queue right away. Otherwise nothing might queue it. That's similar
1517		 * to what enqueue_dl_entity() does on start_dl_timer==0. For now, just warn.
1518		 */
1519		WARN_ON_ONCE(!start_dl_timer(dl_se));
1520
1521		return;
1522	}
1523
1524throttle:
1525	if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) {
1526		dl_se->dl_throttled = 1;
1527
1528		/* If requested, inform the user about runtime overruns. */
1529		if (dl_runtime_exceeded(dl_se) &&
1530		    (dl_se->flags & SCHED_FLAG_DL_OVERRUN))
1531			dl_se->dl_overrun = 1;
1532
1533		dequeue_dl_entity(dl_se, 0);
1534		if (!dl_server(dl_se)) {
1535			update_stats_dequeue_dl(&rq->dl, dl_se, 0);
1536			dequeue_pushable_dl_task(rq, dl_task_of(dl_se));
1537		}
1538
1539		if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(dl_se))) {
1540			if (dl_server(dl_se))
1541				enqueue_dl_entity(dl_se, ENQUEUE_REPLENISH);
1542			else
1543				enqueue_task_dl(rq, dl_task_of(dl_se), ENQUEUE_REPLENISH);
1544		}
1545
1546		if (!is_leftmost(dl_se, &rq->dl))
1547			resched_curr(rq);
1548	}
1549
1550	/*
1551	 * The fair server (sole dl_server) does not account for real-time
1552	 * workload because it is running fair work.
1553	 */
1554	if (dl_se == &rq->fair_server)
1555		return;
1556
1557#ifdef CONFIG_RT_GROUP_SCHED
1558	/*
1559	 * Because -- for now -- we share the rt bandwidth, we need to
1560	 * account our runtime there too, otherwise actual rt tasks
1561	 * would be able to exceed the shared quota.
1562	 *
1563	 * Account to the root rt group for now.
1564	 *
1565	 * The solution we're working towards is having the RT groups scheduled
1566	 * using deadline servers -- however there's a few nasties to figure
1567	 * out before that can happen.
1568	 */
1569	if (rt_bandwidth_enabled()) {
1570		struct rt_rq *rt_rq = &rq->rt;
1571
1572		raw_spin_lock(&rt_rq->rt_runtime_lock);
1573		/*
1574		 * We'll let actual RT tasks worry about the overflow here, we
1575		 * have our own CBS to keep us inline; only account when RT
1576		 * bandwidth is relevant.
1577		 */
1578		if (sched_rt_bandwidth_account(rt_rq))
1579			rt_rq->rt_time += delta_exec;
1580		raw_spin_unlock(&rt_rq->rt_runtime_lock);
1581	}
1582#endif
1583}
1584
1585/*
1586 * In the non-defer mode, the idle time is not accounted, as the
1587 * server provides a guarantee.
1588 *
1589 * If the dl_server is in defer mode, the idle time is also considered
1590 * as time available for the fair server, avoiding a penalty for the
1591 * rt scheduler that did not consumed that time.
1592 */
1593void dl_server_update_idle_time(struct rq *rq, struct task_struct *p)
1594{
1595	s64 delta_exec, scaled_delta_exec;
1596
1597	if (!rq->fair_server.dl_defer)
1598		return;
1599
1600	/* no need to discount more */
1601	if (rq->fair_server.runtime < 0)
1602		return;
1603
1604	delta_exec = rq_clock_task(rq) - p->se.exec_start;
1605	if (delta_exec < 0)
1606		return;
1607
1608	scaled_delta_exec = dl_scaled_delta_exec(rq, &rq->fair_server, delta_exec);
1609
1610	rq->fair_server.runtime -= scaled_delta_exec;
1611
1612	if (rq->fair_server.runtime < 0) {
1613		rq->fair_server.dl_defer_running = 0;
1614		rq->fair_server.runtime = 0;
1615	}
1616
1617	p->se.exec_start = rq_clock_task(rq);
1618}
1619
1620void dl_server_update(struct sched_dl_entity *dl_se, s64 delta_exec)
1621{
1622	/* 0 runtime = fair server disabled */
1623	if (dl_se->dl_runtime)
1624		update_curr_dl_se(dl_se->rq, dl_se, delta_exec);
1625}
1626
1627void dl_server_start(struct sched_dl_entity *dl_se)
1628{
1629	struct rq *rq = dl_se->rq;
1630
1631	/*
1632	 * XXX: the apply do not work fine at the init phase for the
1633	 * fair server because things are not yet set. We need to improve
1634	 * this before getting generic.
1635	 */
1636	if (!dl_server(dl_se)) {
1637		u64 runtime =  50 * NSEC_PER_MSEC;
1638		u64 period = 1000 * NSEC_PER_MSEC;
1639
1640		dl_server_apply_params(dl_se, runtime, period, 1);
1641
1642		dl_se->dl_server = 1;
1643		dl_se->dl_defer = 1;
1644		setup_new_dl_entity(dl_se);
1645	}
1646
1647	if (!dl_se->dl_runtime)
1648		return;
1649
1650	dl_se->dl_server_active = 1;
1651	enqueue_dl_entity(dl_se, ENQUEUE_WAKEUP);
1652	if (!dl_task(dl_se->rq->curr) || dl_entity_preempt(dl_se, &rq->curr->dl))
1653		resched_curr(dl_se->rq);
1654}
1655
1656void dl_server_stop(struct sched_dl_entity *dl_se)
1657{
1658	if (!dl_se->dl_runtime)
1659		return;
1660
1661	dequeue_dl_entity(dl_se, DEQUEUE_SLEEP);
1662	hrtimer_try_to_cancel(&dl_se->dl_timer);
1663	dl_se->dl_defer_armed = 0;
1664	dl_se->dl_throttled = 0;
1665	dl_se->dl_server_active = 0;
1666}
1667
1668void dl_server_init(struct sched_dl_entity *dl_se, struct rq *rq,
1669		    dl_server_has_tasks_f has_tasks,
1670		    dl_server_pick_f pick_task)
1671{
1672	dl_se->rq = rq;
1673	dl_se->server_has_tasks = has_tasks;
1674	dl_se->server_pick_task = pick_task;
1675}
1676
1677void __dl_server_attach_root(struct sched_dl_entity *dl_se, struct rq *rq)
1678{
1679	u64 new_bw = dl_se->dl_bw;
1680	int cpu = cpu_of(rq);
1681	struct dl_bw *dl_b;
1682
1683	dl_b = dl_bw_of(cpu_of(rq));
1684	guard(raw_spinlock)(&dl_b->lock);
1685
1686	if (!dl_bw_cpus(cpu))
1687		return;
1688
1689	__dl_add(dl_b, new_bw, dl_bw_cpus(cpu));
1690}
1691
1692int dl_server_apply_params(struct sched_dl_entity *dl_se, u64 runtime, u64 period, bool init)
1693{
1694	u64 old_bw = init ? 0 : to_ratio(dl_se->dl_period, dl_se->dl_runtime);
1695	u64 new_bw = to_ratio(period, runtime);
1696	struct rq *rq = dl_se->rq;
1697	int cpu = cpu_of(rq);
1698	struct dl_bw *dl_b;
1699	unsigned long cap;
1700	int retval = 0;
1701	int cpus;
1702
1703	dl_b = dl_bw_of(cpu);
1704	guard(raw_spinlock)(&dl_b->lock);
1705
1706	cpus = dl_bw_cpus(cpu);
1707	cap = dl_bw_capacity(cpu);
1708
1709	if (__dl_overflow(dl_b, cap, old_bw, new_bw))
1710		return -EBUSY;
1711
1712	if (init) {
1713		__add_rq_bw(new_bw, &rq->dl);
1714		__dl_add(dl_b, new_bw, cpus);
1715	} else {
1716		__dl_sub(dl_b, dl_se->dl_bw, cpus);
1717		__dl_add(dl_b, new_bw, cpus);
1718
1719		dl_rq_change_utilization(rq, dl_se, new_bw);
1720	}
1721
1722	dl_se->dl_runtime = runtime;
1723	dl_se->dl_deadline = period;
1724	dl_se->dl_period = period;
1725
1726	dl_se->runtime = 0;
1727	dl_se->deadline = 0;
1728
1729	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
1730	dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime);
1731
1732	return retval;
1733}
1734
1735/*
1736 * Update the current task's runtime statistics (provided it is still
1737 * a -deadline task and has not been removed from the dl_rq).
1738 */
1739static void update_curr_dl(struct rq *rq)
1740{
1741	struct task_struct *donor = rq->donor;
1742	struct sched_dl_entity *dl_se = &donor->dl;
1743	s64 delta_exec;
1744
1745	if (!dl_task(donor) || !on_dl_rq(dl_se))
1746		return;
1747
1748	/*
1749	 * Consumed budget is computed considering the time as
1750	 * observed by schedulable tasks (excluding time spent
1751	 * in hardirq context, etc.). Deadlines are instead
1752	 * computed using hard walltime. This seems to be the more
1753	 * natural solution, but the full ramifications of this
1754	 * approach need further study.
1755	 */
1756	delta_exec = update_curr_common(rq);
1757	update_curr_dl_se(rq, dl_se, delta_exec);
1758}
1759
1760static enum hrtimer_restart inactive_task_timer(struct hrtimer *timer)
1761{
1762	struct sched_dl_entity *dl_se = container_of(timer,
1763						     struct sched_dl_entity,
1764						     inactive_timer);
1765	struct task_struct *p = NULL;
1766	struct rq_flags rf;
1767	struct rq *rq;
1768
1769	if (!dl_server(dl_se)) {
1770		p = dl_task_of(dl_se);
1771		rq = task_rq_lock(p, &rf);
1772	} else {
1773		rq = dl_se->rq;
1774		rq_lock(rq, &rf);
1775	}
1776
1777	sched_clock_tick();
1778	update_rq_clock(rq);
1779
1780	if (dl_server(dl_se))
1781		goto no_task;
1782
1783	if (!dl_task(p) || READ_ONCE(p->__state) == TASK_DEAD) {
1784		struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1785
1786		if (READ_ONCE(p->__state) == TASK_DEAD && dl_se->dl_non_contending) {
1787			sub_running_bw(&p->dl, dl_rq_of_se(&p->dl));
1788			sub_rq_bw(&p->dl, dl_rq_of_se(&p->dl));
1789			dl_se->dl_non_contending = 0;
1790		}
1791
1792		raw_spin_lock(&dl_b->lock);
1793		__dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
1794		raw_spin_unlock(&dl_b->lock);
1795		__dl_clear_params(dl_se);
1796
1797		goto unlock;
1798	}
1799
1800no_task:
1801	if (dl_se->dl_non_contending == 0)
1802		goto unlock;
1803
1804	sub_running_bw(dl_se, &rq->dl);
1805	dl_se->dl_non_contending = 0;
1806unlock:
1807
1808	if (!dl_server(dl_se)) {
1809		task_rq_unlock(rq, p, &rf);
1810		put_task_struct(p);
1811	} else {
1812		rq_unlock(rq, &rf);
1813	}
1814
1815	return HRTIMER_NORESTART;
1816}
1817
1818static void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se)
1819{
1820	struct hrtimer *timer = &dl_se->inactive_timer;
1821
1822	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
1823	timer->function = inactive_task_timer;
1824}
1825
1826#define __node_2_dle(node) \
1827	rb_entry((node), struct sched_dl_entity, rb_node)
1828
1829#ifdef CONFIG_SMP
1830
1831static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1832{
1833	struct rq *rq = rq_of_dl_rq(dl_rq);
1834
1835	if (dl_rq->earliest_dl.curr == 0 ||
1836	    dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
1837		if (dl_rq->earliest_dl.curr == 0)
1838			cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_HIGHER);
1839		dl_rq->earliest_dl.curr = deadline;
1840		cpudl_set(&rq->rd->cpudl, rq->cpu, deadline);
1841	}
1842}
1843
1844static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1845{
1846	struct rq *rq = rq_of_dl_rq(dl_rq);
1847
1848	/*
1849	 * Since we may have removed our earliest (and/or next earliest)
1850	 * task we must recompute them.
1851	 */
1852	if (!dl_rq->dl_nr_running) {
1853		dl_rq->earliest_dl.curr = 0;
1854		dl_rq->earliest_dl.next = 0;
1855		cpudl_clear(&rq->rd->cpudl, rq->cpu);
1856		cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
1857	} else {
1858		struct rb_node *leftmost = rb_first_cached(&dl_rq->root);
1859		struct sched_dl_entity *entry = __node_2_dle(leftmost);
1860
 
1861		dl_rq->earliest_dl.curr = entry->deadline;
1862		cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline);
1863	}
1864}
1865
1866#else
1867
1868static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
1869static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
1870
1871#endif /* CONFIG_SMP */
1872
1873static inline
1874void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1875{
 
1876	u64 deadline = dl_se->deadline;
1877
 
1878	dl_rq->dl_nr_running++;
1879	add_nr_running(rq_of_dl_rq(dl_rq), 1);
1880
1881	inc_dl_deadline(dl_rq, deadline);
 
1882}
1883
1884static inline
1885void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1886{
 
 
 
1887	WARN_ON(!dl_rq->dl_nr_running);
1888	dl_rq->dl_nr_running--;
1889	sub_nr_running(rq_of_dl_rq(dl_rq), 1);
1890
1891	dec_dl_deadline(dl_rq, dl_se->deadline);
1892}
1893
1894static inline bool __dl_less(struct rb_node *a, const struct rb_node *b)
1895{
1896	return dl_time_before(__node_2_dle(a)->deadline, __node_2_dle(b)->deadline);
1897}
1898
1899static __always_inline struct sched_statistics *
1900__schedstats_from_dl_se(struct sched_dl_entity *dl_se)
1901{
1902	if (!schedstat_enabled())
1903		return NULL;
1904
1905	if (dl_server(dl_se))
1906		return NULL;
1907
1908	return &dl_task_of(dl_se)->stats;
1909}
1910
1911static inline void
1912update_stats_wait_start_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
1913{
1914	struct sched_statistics *stats = __schedstats_from_dl_se(dl_se);
1915	if (stats)
1916		__update_stats_wait_start(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
1917}
1918
1919static inline void
1920update_stats_wait_end_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
1921{
1922	struct sched_statistics *stats = __schedstats_from_dl_se(dl_se);
1923	if (stats)
1924		__update_stats_wait_end(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
1925}
1926
1927static inline void
1928update_stats_enqueue_sleeper_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
1929{
1930	struct sched_statistics *stats = __schedstats_from_dl_se(dl_se);
1931	if (stats)
1932		__update_stats_enqueue_sleeper(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
1933}
1934
1935static inline void
1936update_stats_enqueue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se,
1937			int flags)
1938{
1939	if (!schedstat_enabled())
1940		return;
1941
1942	if (flags & ENQUEUE_WAKEUP)
1943		update_stats_enqueue_sleeper_dl(dl_rq, dl_se);
1944}
1945
1946static inline void
1947update_stats_dequeue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se,
1948			int flags)
1949{
1950	struct task_struct *p = dl_task_of(dl_se);
1951
1952	if (!schedstat_enabled())
1953		return;
1954
1955	if ((flags & DEQUEUE_SLEEP)) {
1956		unsigned int state;
1957
1958		state = READ_ONCE(p->__state);
1959		if (state & TASK_INTERRUPTIBLE)
1960			__schedstat_set(p->stats.sleep_start,
1961					rq_clock(rq_of_dl_rq(dl_rq)));
1962
1963		if (state & TASK_UNINTERRUPTIBLE)
1964			__schedstat_set(p->stats.block_start,
1965					rq_clock(rq_of_dl_rq(dl_rq)));
1966	}
1967}
1968
1969static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
1970{
1971	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1972
1973	WARN_ON_ONCE(!RB_EMPTY_NODE(&dl_se->rb_node));
1974
1975	rb_add_cached(&dl_se->rb_node, &dl_rq->root, __dl_less);
1976
1977	inc_dl_tasks(dl_se, dl_rq);
1978}
1979
1980static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
1981{
1982	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1983
1984	if (RB_EMPTY_NODE(&dl_se->rb_node))
1985		return;
1986
1987	rb_erase_cached(&dl_se->rb_node, &dl_rq->root);
1988
1989	RB_CLEAR_NODE(&dl_se->rb_node);
1990
1991	dec_dl_tasks(dl_se, dl_rq);
1992}
1993
1994static void
1995enqueue_dl_entity(struct sched_dl_entity *dl_se, int flags)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1996{
1997	WARN_ON_ONCE(on_dl_rq(dl_se));
 
1998
1999	update_stats_enqueue_dl(dl_rq_of_se(dl_se), dl_se, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2000
2001	/*
2002	 * Check if a constrained deadline task was activated
2003	 * after the deadline but before the next period.
2004	 * If that is the case, the task will be throttled and
2005	 * the replenishment timer will be set to the next period.
2006	 */
2007	if (!dl_se->dl_throttled && !dl_is_implicit(dl_se))
2008		dl_check_constrained_dl(dl_se);
2009
2010	if (flags & (ENQUEUE_RESTORE|ENQUEUE_MIGRATING)) {
2011		struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
2012
2013		add_rq_bw(dl_se, dl_rq);
2014		add_running_bw(dl_se, dl_rq);
 
2015	}
2016
2017	/*
2018	 * If p is throttled, we do not enqueue it. In fact, if it exhausted
2019	 * its budget it needs a replenishment and, since it now is on
2020	 * its rq, the bandwidth timer callback (which clearly has not
2021	 * run yet) will take care of this.
2022	 * However, the active utilization does not depend on the fact
2023	 * that the task is on the runqueue or not (but depends on the
2024	 * task's state - in GRUB parlance, "inactive" vs "active contending").
2025	 * In other words, even if a task is throttled its utilization must
2026	 * be counted in the active utilization; hence, we need to call
2027	 * add_running_bw().
2028	 */
2029	if (!dl_se->dl_defer && dl_se->dl_throttled && !(flags & ENQUEUE_REPLENISH)) {
2030		if (flags & ENQUEUE_WAKEUP)
2031			task_contending(dl_se, flags);
2032
2033		return;
2034	}
2035
2036	/*
2037	 * If this is a wakeup or a new instance, the scheduling
2038	 * parameters of the task might need updating. Otherwise,
2039	 * we want a replenishment of its runtime.
2040	 */
2041	if (flags & ENQUEUE_WAKEUP) {
2042		task_contending(dl_se, flags);
2043		update_dl_entity(dl_se);
2044	} else if (flags & ENQUEUE_REPLENISH) {
2045		replenish_dl_entity(dl_se);
2046	} else if ((flags & ENQUEUE_RESTORE) &&
2047		   !is_dl_boosted(dl_se) &&
2048		   dl_time_before(dl_se->deadline, rq_clock(rq_of_dl_se(dl_se)))) {
2049		setup_new_dl_entity(dl_se);
2050	}
2051
2052	/*
2053	 * If the reservation is still throttled, e.g., it got replenished but is a
2054	 * deferred task and still got to wait, don't enqueue.
2055	 */
2056	if (dl_se->dl_throttled && start_dl_timer(dl_se))
2057		return;
2058
2059	/*
2060	 * We're about to enqueue, make sure we're not ->dl_throttled!
2061	 * In case the timer was not started, say because the defer time
2062	 * has passed, mark as not throttled and mark unarmed.
2063	 * Also cancel earlier timers, since letting those run is pointless.
2064	 */
2065	if (dl_se->dl_throttled) {
2066		hrtimer_try_to_cancel(&dl_se->dl_timer);
2067		dl_se->dl_defer_armed = 0;
2068		dl_se->dl_throttled = 0;
2069	}
2070
2071	__enqueue_dl_entity(dl_se);
2072}
2073
2074static void dequeue_dl_entity(struct sched_dl_entity *dl_se, int flags)
2075{
2076	__dequeue_dl_entity(dl_se);
 
 
2077
2078	if (flags & (DEQUEUE_SAVE|DEQUEUE_MIGRATING)) {
2079		struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
 
 
2080
2081		sub_running_bw(dl_se, dl_rq);
2082		sub_rq_bw(dl_se, dl_rq);
 
2083	}
2084
2085	/*
2086	 * This check allows to start the inactive timer (or to immediately
2087	 * decrease the active utilization, if needed) in two cases:
2088	 * when the task blocks and when it is terminating
2089	 * (p->state == TASK_DEAD). We can handle the two cases in the same
2090	 * way, because from GRUB's point of view the same thing is happening
2091	 * (the task moves from "active contending" to "active non contending"
2092	 * or "inactive")
2093	 */
2094	if (flags & DEQUEUE_SLEEP)
2095		task_non_contending(dl_se);
2096}
2097
2098static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
2099{
2100	if (is_dl_boosted(&p->dl)) {
2101		/*
2102		 * Because of delays in the detection of the overrun of a
2103		 * thread's runtime, it might be the case that a thread
2104		 * goes to sleep in a rt mutex with negative runtime. As
2105		 * a consequence, the thread will be throttled.
2106		 *
2107		 * While waiting for the mutex, this thread can also be
2108		 * boosted via PI, resulting in a thread that is throttled
2109		 * and boosted at the same time.
2110		 *
2111		 * In this case, the boost overrides the throttle.
2112		 */
2113		if (p->dl.dl_throttled) {
2114			/*
2115			 * The replenish timer needs to be canceled. No
2116			 * problem if it fires concurrently: boosted threads
2117			 * are ignored in dl_task_timer().
2118			 *
2119			 * If the timer callback was running (hrtimer_try_to_cancel == -1),
2120			 * it will eventually call put_task_struct().
2121			 */
2122			if (hrtimer_try_to_cancel(&p->dl.dl_timer) == 1 &&
2123			    !dl_server(&p->dl))
2124				put_task_struct(p);
2125			p->dl.dl_throttled = 0;
2126		}
2127	} else if (!dl_prio(p->normal_prio)) {
2128		/*
2129		 * Special case in which we have a !SCHED_DEADLINE task that is going
2130		 * to be deboosted, but exceeds its runtime while doing so. No point in
2131		 * replenishing it, as it's going to return back to its original
2132		 * scheduling class after this. If it has been throttled, we need to
2133		 * clear the flag, otherwise the task may wake up as throttled after
2134		 * being boosted again with no means to replenish the runtime and clear
2135		 * the throttle.
2136		 */
2137		p->dl.dl_throttled = 0;
2138		if (!(flags & ENQUEUE_REPLENISH))
2139			printk_deferred_once("sched: DL de-boosted task PID %d: REPLENISH flag missing\n",
2140					     task_pid_nr(p));
2141
2142		return;
2143	}
2144
2145	check_schedstat_required();
2146	update_stats_wait_start_dl(dl_rq_of_se(&p->dl), &p->dl);
2147
2148	if (p->on_rq == TASK_ON_RQ_MIGRATING)
2149		flags |= ENQUEUE_MIGRATING;
2150
2151	enqueue_dl_entity(&p->dl, flags);
2152
2153	if (dl_server(&p->dl))
2154		return;
2155
2156	if (!task_current(rq, p) && !p->dl.dl_throttled && p->nr_cpus_allowed > 1)
2157		enqueue_pushable_dl_task(rq, p);
2158}
2159
2160static bool dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
2161{
2162	update_curr_dl(rq);
2163
2164	if (p->on_rq == TASK_ON_RQ_MIGRATING)
2165		flags |= DEQUEUE_MIGRATING;
2166
2167	dequeue_dl_entity(&p->dl, flags);
2168	if (!p->dl.dl_throttled && !dl_server(&p->dl))
2169		dequeue_pushable_dl_task(rq, p);
2170
2171	return true;
2172}
2173
2174/*
2175 * Yield task semantic for -deadline tasks is:
2176 *
2177 *   get off from the CPU until our next instance, with
2178 *   a new runtime. This is of little use now, since we
2179 *   don't have a bandwidth reclaiming mechanism. Anyway,
2180 *   bandwidth reclaiming is planned for the future, and
2181 *   yield_task_dl will indicate that some spare budget
2182 *   is available for other task instances to use it.
2183 */
2184static void yield_task_dl(struct rq *rq)
2185{
2186	/*
2187	 * We make the task go to sleep until its current deadline by
2188	 * forcing its runtime to zero. This way, update_curr_dl() stops
2189	 * it and the bandwidth timer will wake it up and will give it
2190	 * new scheduling parameters (thanks to dl_yielded=1).
2191	 */
2192	rq->curr->dl.dl_yielded = 1;
2193
2194	update_rq_clock(rq);
2195	update_curr_dl(rq);
2196	/*
2197	 * Tell update_rq_clock() that we've just updated,
2198	 * so we don't do microscopic update in schedule()
2199	 * and double the fastpath cost.
2200	 */
2201	rq_clock_skip_update(rq);
2202}
2203
2204#ifdef CONFIG_SMP
2205
2206static inline bool dl_task_is_earliest_deadline(struct task_struct *p,
2207						 struct rq *rq)
2208{
2209	return (!rq->dl.dl_nr_running ||
2210		dl_time_before(p->dl.deadline,
2211			       rq->dl.earliest_dl.curr));
2212}
2213
2214static int find_later_rq(struct task_struct *task);
2215
2216static int
2217select_task_rq_dl(struct task_struct *p, int cpu, int flags)
2218{
2219	struct task_struct *curr, *donor;
2220	bool select_rq;
2221	struct rq *rq;
2222
2223	if (!(flags & WF_TTWU))
2224		goto out;
2225
2226	rq = cpu_rq(cpu);
2227
2228	rcu_read_lock();
2229	curr = READ_ONCE(rq->curr); /* unlocked access */
2230	donor = READ_ONCE(rq->donor);
2231
2232	/*
2233	 * If we are dealing with a -deadline task, we must
2234	 * decide where to wake it up.
2235	 * If it has a later deadline and the current task
2236	 * on this rq can't move (provided the waking task
2237	 * can!) we prefer to send it somewhere else. On the
2238	 * other hand, if it has a shorter deadline, we
2239	 * try to make it stay here, it might be important.
2240	 */
2241	select_rq = unlikely(dl_task(donor)) &&
2242		    (curr->nr_cpus_allowed < 2 ||
2243		     !dl_entity_preempt(&p->dl, &donor->dl)) &&
2244		    p->nr_cpus_allowed > 1;
2245
2246	/*
2247	 * Take the capacity of the CPU into account to
2248	 * ensure it fits the requirement of the task.
2249	 */
2250	if (sched_asym_cpucap_active())
2251		select_rq |= !dl_task_fits_capacity(p, cpu);
2252
2253	if (select_rq) {
2254		int target = find_later_rq(p);
2255
2256		if (target != -1 &&
2257		    dl_task_is_earliest_deadline(p, cpu_rq(target)))
 
 
2258			cpu = target;
2259	}
2260	rcu_read_unlock();
2261
2262out:
2263	return cpu;
2264}
2265
2266static void migrate_task_rq_dl(struct task_struct *p, int new_cpu __maybe_unused)
2267{
2268	struct rq_flags rf;
2269	struct rq *rq;
2270
2271	if (READ_ONCE(p->__state) != TASK_WAKING)
2272		return;
2273
2274	rq = task_rq(p);
2275	/*
2276	 * Since p->state == TASK_WAKING, set_task_cpu() has been called
2277	 * from try_to_wake_up(). Hence, p->pi_lock is locked, but
2278	 * rq->lock is not... So, lock it
2279	 */
2280	rq_lock(rq, &rf);
2281	if (p->dl.dl_non_contending) {
2282		update_rq_clock(rq);
2283		sub_running_bw(&p->dl, &rq->dl);
2284		p->dl.dl_non_contending = 0;
2285		/*
2286		 * If the timer handler is currently running and the
2287		 * timer cannot be canceled, inactive_task_timer()
2288		 * will see that dl_not_contending is not set, and
2289		 * will not touch the rq's active utilization,
2290		 * so we are still safe.
2291		 */
2292		if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
2293			put_task_struct(p);
2294	}
2295	sub_rq_bw(&p->dl, &rq->dl);
2296	rq_unlock(rq, &rf);
2297}
2298
2299static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
2300{
2301	/*
2302	 * Current can't be migrated, useless to reschedule,
2303	 * let's hope p can move out.
2304	 */
2305	if (rq->curr->nr_cpus_allowed == 1 ||
2306	    !cpudl_find(&rq->rd->cpudl, rq->donor, NULL))
2307		return;
2308
2309	/*
2310	 * p is migratable, so let's not schedule it and
2311	 * see if it is pushed or pulled somewhere else.
2312	 */
2313	if (p->nr_cpus_allowed != 1 &&
2314	    cpudl_find(&rq->rd->cpudl, p, NULL))
2315		return;
2316
2317	resched_curr(rq);
2318}
2319
2320static int balance_dl(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
2321{
2322	if (!on_dl_rq(&p->dl) && need_pull_dl_task(rq, p)) {
2323		/*
2324		 * This is OK, because current is on_cpu, which avoids it being
2325		 * picked for load-balance and preemption/IRQs are still
2326		 * disabled avoiding further scheduler activity on it and we've
2327		 * not yet started the picking loop.
2328		 */
2329		rq_unpin_lock(rq, rf);
2330		pull_dl_task(rq);
2331		rq_repin_lock(rq, rf);
2332	}
2333
2334	return sched_stop_runnable(rq) || sched_dl_runnable(rq);
2335}
2336#endif /* CONFIG_SMP */
2337
2338/*
2339 * Only called when both the current and waking task are -deadline
2340 * tasks.
2341 */
2342static void wakeup_preempt_dl(struct rq *rq, struct task_struct *p,
2343				  int flags)
2344{
2345	if (dl_entity_preempt(&p->dl, &rq->donor->dl)) {
2346		resched_curr(rq);
2347		return;
2348	}
2349
2350#ifdef CONFIG_SMP
2351	/*
2352	 * In the unlikely case current and p have the same deadline
2353	 * let us try to decide what's the best thing to do...
2354	 */
2355	if ((p->dl.deadline == rq->donor->dl.deadline) &&
2356	    !test_tsk_need_resched(rq->curr))
2357		check_preempt_equal_dl(rq, p);
2358#endif /* CONFIG_SMP */
2359}
2360
2361#ifdef CONFIG_SCHED_HRTICK
2362static void start_hrtick_dl(struct rq *rq, struct sched_dl_entity *dl_se)
2363{
2364	hrtick_start(rq, dl_se->runtime);
2365}
2366#else /* !CONFIG_SCHED_HRTICK */
2367static void start_hrtick_dl(struct rq *rq, struct sched_dl_entity *dl_se)
2368{
2369}
2370#endif
2371
2372static void set_next_task_dl(struct rq *rq, struct task_struct *p, bool first)
2373{
2374	struct sched_dl_entity *dl_se = &p->dl;
2375	struct dl_rq *dl_rq = &rq->dl;
2376
2377	p->se.exec_start = rq_clock_task(rq);
2378	if (on_dl_rq(&p->dl))
2379		update_stats_wait_end_dl(dl_rq, dl_se);
2380
2381	/* You can't push away the running task */
2382	dequeue_pushable_dl_task(rq, p);
2383
2384	if (!first)
2385		return;
2386
2387	if (rq->donor->sched_class != &dl_sched_class)
2388		update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0);
2389
2390	deadline_queue_push_tasks(rq);
2391
2392	if (hrtick_enabled_dl(rq))
2393		start_hrtick_dl(rq, &p->dl);
2394}
2395
2396static struct sched_dl_entity *pick_next_dl_entity(struct dl_rq *dl_rq)
 
2397{
2398	struct rb_node *left = rb_first_cached(&dl_rq->root);
2399
2400	if (!left)
2401		return NULL;
2402
2403	return __node_2_dle(left);
2404}
2405
2406/*
2407 * __pick_next_task_dl - Helper to pick the next -deadline task to run.
2408 * @rq: The runqueue to pick the next task from.
2409 */
2410static struct task_struct *__pick_task_dl(struct rq *rq)
2411{
2412	struct sched_dl_entity *dl_se;
2413	struct dl_rq *dl_rq = &rq->dl;
2414	struct task_struct *p;
2415
2416again:
 
2417	if (!sched_dl_runnable(rq))
2418		return NULL;
2419
2420	dl_se = pick_next_dl_entity(dl_rq);
2421	WARN_ON_ONCE(!dl_se);
2422
2423	if (dl_server(dl_se)) {
2424		p = dl_se->server_pick_task(dl_se);
2425		if (!p) {
2426			if (dl_server_active(dl_se)) {
2427				dl_se->dl_yielded = 1;
2428				update_curr_dl_se(rq, dl_se, 0);
2429			}
2430			goto again;
2431		}
2432		rq->dl_server = dl_se;
2433	} else {
2434		p = dl_task_of(dl_se);
2435	}
2436
2437	return p;
2438}
2439
2440static struct task_struct *pick_task_dl(struct rq *rq)
2441{
2442	return __pick_task_dl(rq);
2443}
2444
2445static void put_prev_task_dl(struct rq *rq, struct task_struct *p, struct task_struct *next)
2446{
2447	struct sched_dl_entity *dl_se = &p->dl;
2448	struct dl_rq *dl_rq = &rq->dl;
2449
2450	if (on_dl_rq(&p->dl))
2451		update_stats_wait_start_dl(dl_rq, dl_se);
2452
2453	update_curr_dl(rq);
2454
2455	update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2456	if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
2457		enqueue_pushable_dl_task(rq, p);
2458}
2459
2460/*
2461 * scheduler tick hitting a task of our scheduling class.
2462 *
2463 * NOTE: This function can be called remotely by the tick offload that
2464 * goes along full dynticks. Therefore no local assumption can be made
2465 * and everything must be accessed through the @rq and @curr passed in
2466 * parameters.
2467 */
2468static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
2469{
2470	update_curr_dl(rq);
2471
2472	update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2473	/*
2474	 * Even when we have runtime, update_curr_dl() might have resulted in us
2475	 * not being the leftmost task anymore. In that case NEED_RESCHED will
2476	 * be set and schedule() will start a new hrtick for the next task.
2477	 */
2478	if (hrtick_enabled_dl(rq) && queued && p->dl.runtime > 0 &&
2479	    is_leftmost(&p->dl, &rq->dl))
2480		start_hrtick_dl(rq, &p->dl);
2481}
2482
2483static void task_fork_dl(struct task_struct *p)
2484{
2485	/*
2486	 * SCHED_DEADLINE tasks cannot fork and this is achieved through
2487	 * sched_fork()
2488	 */
2489}
2490
2491#ifdef CONFIG_SMP
2492
2493/* Only try algorithms three times */
2494#define DL_MAX_TRIES 3
2495
 
 
 
 
 
 
 
 
2496/*
2497 * Return the earliest pushable rq's task, which is suitable to be executed
2498 * on the CPU, NULL otherwise:
2499 */
2500static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu)
2501{
 
2502	struct task_struct *p = NULL;
2503	struct rb_node *next_node;
2504
2505	if (!has_pushable_dl_tasks(rq))
2506		return NULL;
2507
2508	next_node = rb_first_cached(&rq->dl.pushable_dl_tasks_root);
2509
2510next_node:
2511	if (next_node) {
2512		p = __node_2_pdl(next_node);
2513
2514		if (task_is_pushable(rq, p, cpu))
2515			return p;
2516
2517		next_node = rb_next(next_node);
2518		goto next_node;
2519	}
2520
2521	return NULL;
2522}
2523
2524static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
2525
2526static int find_later_rq(struct task_struct *task)
2527{
2528	struct sched_domain *sd;
2529	struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl);
2530	int this_cpu = smp_processor_id();
2531	int cpu = task_cpu(task);
2532
2533	/* Make sure the mask is initialized first */
2534	if (unlikely(!later_mask))
2535		return -1;
2536
2537	if (task->nr_cpus_allowed == 1)
2538		return -1;
2539
2540	/*
2541	 * We have to consider system topology and task affinity
2542	 * first, then we can look for a suitable CPU.
2543	 */
2544	if (!cpudl_find(&task_rq(task)->rd->cpudl, task, later_mask))
2545		return -1;
2546
2547	/*
2548	 * If we are here, some targets have been found, including
2549	 * the most suitable which is, among the runqueues where the
2550	 * current tasks have later deadlines than the task's one, the
2551	 * rq with the latest possible one.
2552	 *
2553	 * Now we check how well this matches with task's
2554	 * affinity and system topology.
2555	 *
2556	 * The last CPU where the task run is our first
2557	 * guess, since it is most likely cache-hot there.
2558	 */
2559	if (cpumask_test_cpu(cpu, later_mask))
2560		return cpu;
2561	/*
2562	 * Check if this_cpu is to be skipped (i.e., it is
2563	 * not in the mask) or not.
2564	 */
2565	if (!cpumask_test_cpu(this_cpu, later_mask))
2566		this_cpu = -1;
2567
2568	rcu_read_lock();
2569	for_each_domain(cpu, sd) {
2570		if (sd->flags & SD_WAKE_AFFINE) {
2571			int best_cpu;
2572
2573			/*
2574			 * If possible, preempting this_cpu is
2575			 * cheaper than migrating.
2576			 */
2577			if (this_cpu != -1 &&
2578			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
2579				rcu_read_unlock();
2580				return this_cpu;
2581			}
2582
2583			best_cpu = cpumask_any_and_distribute(later_mask,
2584							      sched_domain_span(sd));
2585			/*
2586			 * Last chance: if a CPU being in both later_mask
2587			 * and current sd span is valid, that becomes our
2588			 * choice. Of course, the latest possible CPU is
2589			 * already under consideration through later_mask.
2590			 */
2591			if (best_cpu < nr_cpu_ids) {
2592				rcu_read_unlock();
2593				return best_cpu;
2594			}
2595		}
2596	}
2597	rcu_read_unlock();
2598
2599	/*
2600	 * At this point, all our guesses failed, we just return
2601	 * 'something', and let the caller sort the things out.
2602	 */
2603	if (this_cpu != -1)
2604		return this_cpu;
2605
2606	cpu = cpumask_any_distribute(later_mask);
2607	if (cpu < nr_cpu_ids)
2608		return cpu;
2609
2610	return -1;
2611}
2612
2613/* Locks the rq it finds */
2614static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
2615{
2616	struct rq *later_rq = NULL;
2617	int tries;
2618	int cpu;
2619
2620	for (tries = 0; tries < DL_MAX_TRIES; tries++) {
2621		cpu = find_later_rq(task);
2622
2623		if ((cpu == -1) || (cpu == rq->cpu))
2624			break;
2625
2626		later_rq = cpu_rq(cpu);
2627
2628		if (!dl_task_is_earliest_deadline(task, later_rq)) {
 
 
2629			/*
2630			 * Target rq has tasks of equal or earlier deadline,
2631			 * retrying does not release any lock and is unlikely
2632			 * to yield a different result.
2633			 */
2634			later_rq = NULL;
2635			break;
2636		}
2637
2638		/* Retry if something changed. */
2639		if (double_lock_balance(rq, later_rq)) {
2640			if (unlikely(task_rq(task) != rq ||
2641				     !cpumask_test_cpu(later_rq->cpu, &task->cpus_mask) ||
2642				     task_on_cpu(rq, task) ||
2643				     !dl_task(task) ||
2644				     is_migration_disabled(task) ||
2645				     !task_on_rq_queued(task))) {
2646				double_unlock_balance(rq, later_rq);
2647				later_rq = NULL;
2648				break;
2649			}
2650		}
2651
2652		/*
2653		 * If the rq we found has no -deadline task, or
2654		 * its earliest one has a later deadline than our
2655		 * task, the rq is a good one.
2656		 */
2657		if (dl_task_is_earliest_deadline(task, later_rq))
 
 
2658			break;
2659
2660		/* Otherwise we try again. */
2661		double_unlock_balance(rq, later_rq);
2662		later_rq = NULL;
2663	}
2664
2665	return later_rq;
2666}
2667
2668static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
2669{
2670	struct task_struct *p;
2671
2672	if (!has_pushable_dl_tasks(rq))
2673		return NULL;
2674
2675	p = __node_2_pdl(rb_first_cached(&rq->dl.pushable_dl_tasks_root));
 
2676
2677	WARN_ON_ONCE(rq->cpu != task_cpu(p));
2678	WARN_ON_ONCE(task_current(rq, p));
2679	WARN_ON_ONCE(p->nr_cpus_allowed <= 1);
2680
2681	WARN_ON_ONCE(!task_on_rq_queued(p));
2682	WARN_ON_ONCE(!dl_task(p));
2683
2684	return p;
2685}
2686
2687/*
2688 * See if the non running -deadline tasks on this rq
2689 * can be sent to some other CPU where they can preempt
2690 * and start executing.
2691 */
2692static int push_dl_task(struct rq *rq)
2693{
2694	struct task_struct *next_task;
2695	struct rq *later_rq;
2696	int ret = 0;
2697
 
 
 
2698	next_task = pick_next_pushable_dl_task(rq);
2699	if (!next_task)
2700		return 0;
2701
2702retry:
 
 
 
2703	/*
2704	 * If next_task preempts rq->curr, and rq->curr
2705	 * can move away, it makes sense to just reschedule
2706	 * without going further in pushing next_task.
2707	 */
2708	if (dl_task(rq->donor) &&
2709	    dl_time_before(next_task->dl.deadline, rq->donor->dl.deadline) &&
2710	    rq->curr->nr_cpus_allowed > 1) {
2711		resched_curr(rq);
2712		return 0;
2713	}
2714
2715	if (is_migration_disabled(next_task))
2716		return 0;
2717
2718	if (WARN_ON(next_task == rq->curr))
2719		return 0;
2720
2721	/* We might release rq lock */
2722	get_task_struct(next_task);
2723
2724	/* Will lock the rq it'll find */
2725	later_rq = find_lock_later_rq(next_task, rq);
2726	if (!later_rq) {
2727		struct task_struct *task;
2728
2729		/*
2730		 * We must check all this again, since
2731		 * find_lock_later_rq releases rq->lock and it is
2732		 * then possible that next_task has migrated.
2733		 */
2734		task = pick_next_pushable_dl_task(rq);
2735		if (task == next_task) {
2736			/*
2737			 * The task is still there. We don't try
2738			 * again, some other CPU will pull it when ready.
2739			 */
2740			goto out;
2741		}
2742
2743		if (!task)
2744			/* No more tasks */
2745			goto out;
2746
2747		put_task_struct(next_task);
2748		next_task = task;
2749		goto retry;
2750	}
2751
2752	move_queued_task_locked(rq, later_rq, next_task);
 
 
 
 
 
 
 
 
2753	ret = 1;
2754
2755	resched_curr(later_rq);
2756
2757	double_unlock_balance(rq, later_rq);
2758
2759out:
2760	put_task_struct(next_task);
2761
2762	return ret;
2763}
2764
2765static void push_dl_tasks(struct rq *rq)
2766{
2767	/* push_dl_task() will return true if it moved a -deadline task */
2768	while (push_dl_task(rq))
2769		;
2770}
2771
2772static void pull_dl_task(struct rq *this_rq)
2773{
2774	int this_cpu = this_rq->cpu, cpu;
2775	struct task_struct *p, *push_task;
2776	bool resched = false;
2777	struct rq *src_rq;
2778	u64 dmin = LONG_MAX;
2779
2780	if (likely(!dl_overloaded(this_rq)))
2781		return;
2782
2783	/*
2784	 * Match the barrier from dl_set_overloaded; this guarantees that if we
2785	 * see overloaded we must also see the dlo_mask bit.
2786	 */
2787	smp_rmb();
2788
2789	for_each_cpu(cpu, this_rq->rd->dlo_mask) {
2790		if (this_cpu == cpu)
2791			continue;
2792
2793		src_rq = cpu_rq(cpu);
2794
2795		/*
2796		 * It looks racy, and it is! However, as in sched_rt.c,
2797		 * we are fine with this.
2798		 */
2799		if (this_rq->dl.dl_nr_running &&
2800		    dl_time_before(this_rq->dl.earliest_dl.curr,
2801				   src_rq->dl.earliest_dl.next))
2802			continue;
2803
2804		/* Might drop this_rq->lock */
2805		push_task = NULL;
2806		double_lock_balance(this_rq, src_rq);
2807
2808		/*
2809		 * If there are no more pullable tasks on the
2810		 * rq, we're done with it.
2811		 */
2812		if (src_rq->dl.dl_nr_running <= 1)
2813			goto skip;
2814
2815		p = pick_earliest_pushable_dl_task(src_rq, this_cpu);
2816
2817		/*
2818		 * We found a task to be pulled if:
2819		 *  - it preempts our current (if there's one),
2820		 *  - it will preempt the last one we pulled (if any).
2821		 */
2822		if (p && dl_time_before(p->dl.deadline, dmin) &&
2823		    dl_task_is_earliest_deadline(p, this_rq)) {
 
 
2824			WARN_ON(p == src_rq->curr);
2825			WARN_ON(!task_on_rq_queued(p));
2826
2827			/*
2828			 * Then we pull iff p has actually an earlier
2829			 * deadline than the current task of its runqueue.
2830			 */
2831			if (dl_time_before(p->dl.deadline,
2832					   src_rq->donor->dl.deadline))
2833				goto skip;
2834
2835			if (is_migration_disabled(p)) {
2836				push_task = get_push_task(src_rq);
2837			} else {
2838				move_queued_task_locked(src_rq, this_rq, p);
2839				dmin = p->dl.deadline;
2840				resched = true;
2841			}
2842
2843			/* Is there any other task even earlier? */
2844		}
2845skip:
2846		double_unlock_balance(this_rq, src_rq);
2847
2848		if (push_task) {
2849			preempt_disable();
2850			raw_spin_rq_unlock(this_rq);
2851			stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop,
2852					    push_task, &src_rq->push_work);
2853			preempt_enable();
2854			raw_spin_rq_lock(this_rq);
2855		}
2856	}
2857
2858	if (resched)
2859		resched_curr(this_rq);
2860}
2861
2862/*
2863 * Since the task is not running and a reschedule is not going to happen
2864 * anytime soon on its runqueue, we try pushing it away now.
2865 */
2866static void task_woken_dl(struct rq *rq, struct task_struct *p)
2867{
2868	if (!task_on_cpu(rq, p) &&
2869	    !test_tsk_need_resched(rq->curr) &&
2870	    p->nr_cpus_allowed > 1 &&
2871	    dl_task(rq->donor) &&
2872	    (rq->curr->nr_cpus_allowed < 2 ||
2873	     !dl_entity_preempt(&p->dl, &rq->donor->dl))) {
2874		push_dl_tasks(rq);
2875	}
2876}
2877
2878static void set_cpus_allowed_dl(struct task_struct *p,
2879				struct affinity_context *ctx)
2880{
2881	struct root_domain *src_rd;
2882	struct rq *rq;
2883
2884	WARN_ON_ONCE(!dl_task(p));
2885
2886	rq = task_rq(p);
2887	src_rd = rq->rd;
2888	/*
2889	 * Migrating a SCHED_DEADLINE task between exclusive
2890	 * cpusets (different root_domains) entails a bandwidth
2891	 * update. We already made space for us in the destination
2892	 * domain (see cpuset_can_attach()).
2893	 */
2894	if (!cpumask_intersects(src_rd->span, ctx->new_mask)) {
2895		struct dl_bw *src_dl_b;
2896
2897		src_dl_b = dl_bw_of(cpu_of(rq));
2898		/*
2899		 * We now free resources of the root_domain we are migrating
2900		 * off. In the worst case, sched_setattr() may temporary fail
2901		 * until we complete the update.
2902		 */
2903		raw_spin_lock(&src_dl_b->lock);
2904		__dl_sub(src_dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
2905		raw_spin_unlock(&src_dl_b->lock);
2906	}
2907
2908	set_cpus_allowed_common(p, ctx);
2909}
2910
2911/* Assumes rq->lock is held */
2912static void rq_online_dl(struct rq *rq)
2913{
2914	if (rq->dl.overloaded)
2915		dl_set_overload(rq);
2916
2917	cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu);
2918	if (rq->dl.dl_nr_running > 0)
2919		cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr);
2920}
2921
2922/* Assumes rq->lock is held */
2923static void rq_offline_dl(struct rq *rq)
2924{
2925	if (rq->dl.overloaded)
2926		dl_clear_overload(rq);
2927
2928	cpudl_clear(&rq->rd->cpudl, rq->cpu);
2929	cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu);
2930}
2931
2932void __init init_sched_dl_class(void)
2933{
2934	unsigned int i;
2935
2936	for_each_possible_cpu(i)
2937		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
2938					GFP_KERNEL, cpu_to_node(i));
2939}
2940
2941void dl_add_task_root_domain(struct task_struct *p)
2942{
2943	struct rq_flags rf;
2944	struct rq *rq;
2945	struct dl_bw *dl_b;
2946
2947	raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2948	if (!dl_task(p)) {
2949		raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
2950		return;
2951	}
2952
2953	rq = __task_rq_lock(p, &rf);
2954
2955	dl_b = &rq->rd->dl_bw;
2956	raw_spin_lock(&dl_b->lock);
2957
2958	__dl_add(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
2959
2960	raw_spin_unlock(&dl_b->lock);
2961
 
2962	task_rq_unlock(rq, p, &rf);
2963}
2964
2965void dl_clear_root_domain(struct root_domain *rd)
2966{
2967	unsigned long flags;
2968
2969	raw_spin_lock_irqsave(&rd->dl_bw.lock, flags);
2970	rd->dl_bw.total_bw = 0;
2971	raw_spin_unlock_irqrestore(&rd->dl_bw.lock, flags);
2972}
2973
2974#endif /* CONFIG_SMP */
2975
2976static void switched_from_dl(struct rq *rq, struct task_struct *p)
2977{
2978	/*
2979	 * task_non_contending() can start the "inactive timer" (if the 0-lag
2980	 * time is in the future). If the task switches back to dl before
2981	 * the "inactive timer" fires, it can continue to consume its current
2982	 * runtime using its current deadline. If it stays outside of
2983	 * SCHED_DEADLINE until the 0-lag time passes, inactive_task_timer()
2984	 * will reset the task parameters.
2985	 */
2986	if (task_on_rq_queued(p) && p->dl.dl_runtime)
2987		task_non_contending(&p->dl);
2988
2989	/*
2990	 * In case a task is setscheduled out from SCHED_DEADLINE we need to
2991	 * keep track of that on its cpuset (for correct bandwidth tracking).
2992	 */
2993	dec_dl_tasks_cs(p);
2994
2995	if (!task_on_rq_queued(p)) {
2996		/*
2997		 * Inactive timer is armed. However, p is leaving DEADLINE and
2998		 * might migrate away from this rq while continuing to run on
2999		 * some other class. We need to remove its contribution from
3000		 * this rq running_bw now, or sub_rq_bw (below) will complain.
3001		 */
3002		if (p->dl.dl_non_contending)
3003			sub_running_bw(&p->dl, &rq->dl);
3004		sub_rq_bw(&p->dl, &rq->dl);
3005	}
3006
3007	/*
3008	 * We cannot use inactive_task_timer() to invoke sub_running_bw()
3009	 * at the 0-lag time, because the task could have been migrated
3010	 * while SCHED_OTHER in the meanwhile.
3011	 */
3012	if (p->dl.dl_non_contending)
3013		p->dl.dl_non_contending = 0;
3014
3015	/*
3016	 * Since this might be the only -deadline task on the rq,
3017	 * this is the right place to try to pull some other one
3018	 * from an overloaded CPU, if any.
3019	 */
3020	if (!task_on_rq_queued(p) || rq->dl.dl_nr_running)
3021		return;
3022
3023	deadline_queue_pull_task(rq);
3024}
3025
3026/*
3027 * When switching to -deadline, we may overload the rq, then
3028 * we try to push someone off, if possible.
3029 */
3030static void switched_to_dl(struct rq *rq, struct task_struct *p)
3031{
3032	if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
3033		put_task_struct(p);
3034
3035	/*
3036	 * In case a task is setscheduled to SCHED_DEADLINE we need to keep
3037	 * track of that on its cpuset (for correct bandwidth tracking).
3038	 */
3039	inc_dl_tasks_cs(p);
3040
3041	/* If p is not queued we will update its parameters at next wakeup. */
3042	if (!task_on_rq_queued(p)) {
3043		add_rq_bw(&p->dl, &rq->dl);
3044
3045		return;
3046	}
3047
3048	if (rq->donor != p) {
3049#ifdef CONFIG_SMP
3050		if (p->nr_cpus_allowed > 1 && rq->dl.overloaded)
3051			deadline_queue_push_tasks(rq);
3052#endif
3053		if (dl_task(rq->donor))
3054			wakeup_preempt_dl(rq, p, 0);
3055		else
3056			resched_curr(rq);
3057	} else {
3058		update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0);
3059	}
3060}
3061
3062/*
3063 * If the scheduling parameters of a -deadline task changed,
3064 * a push or pull operation might be needed.
3065 */
3066static void prio_changed_dl(struct rq *rq, struct task_struct *p,
3067			    int oldprio)
3068{
3069	if (!task_on_rq_queued(p))
3070		return;
3071
3072#ifdef CONFIG_SMP
3073	/*
3074	 * This might be too much, but unfortunately
3075	 * we don't have the old deadline value, and
3076	 * we can't argue if the task is increasing
3077	 * or lowering its prio, so...
3078	 */
3079	if (!rq->dl.overloaded)
3080		deadline_queue_pull_task(rq);
3081
3082	if (task_current_donor(rq, p)) {
3083		/*
3084		 * If we now have a earlier deadline task than p,
3085		 * then reschedule, provided p is still on this
3086		 * runqueue.
3087		 */
3088		if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline))
3089			resched_curr(rq);
3090	} else {
3091		/*
3092		 * Current may not be deadline in case p was throttled but we
3093		 * have just replenished it (e.g. rt_mutex_setprio()).
3094		 *
3095		 * Otherwise, if p was given an earlier deadline, reschedule.
3096		 */
3097		if (!dl_task(rq->curr) ||
3098		    dl_time_before(p->dl.deadline, rq->curr->dl.deadline))
3099			resched_curr(rq);
3100	}
3101#else
3102	/*
3103	 * We don't know if p has a earlier or later deadline, so let's blindly
3104	 * set a (maybe not needed) rescheduling point.
3105	 */
3106	resched_curr(rq);
3107#endif
3108}
3109
3110#ifdef CONFIG_SCHED_CORE
3111static int task_is_throttled_dl(struct task_struct *p, int cpu)
3112{
3113	return p->dl.dl_throttled;
3114}
3115#endif
3116
3117DEFINE_SCHED_CLASS(dl) = {
3118
3119	.enqueue_task		= enqueue_task_dl,
3120	.dequeue_task		= dequeue_task_dl,
3121	.yield_task		= yield_task_dl,
3122
3123	.wakeup_preempt		= wakeup_preempt_dl,
3124
3125	.pick_task		= pick_task_dl,
3126	.put_prev_task		= put_prev_task_dl,
3127	.set_next_task		= set_next_task_dl,
3128
3129#ifdef CONFIG_SMP
3130	.balance		= balance_dl,
3131	.select_task_rq		= select_task_rq_dl,
3132	.migrate_task_rq	= migrate_task_rq_dl,
3133	.set_cpus_allowed       = set_cpus_allowed_dl,
3134	.rq_online              = rq_online_dl,
3135	.rq_offline             = rq_offline_dl,
3136	.task_woken		= task_woken_dl,
3137	.find_lock_rq		= find_lock_later_rq,
3138#endif
3139
3140	.task_tick		= task_tick_dl,
3141	.task_fork              = task_fork_dl,
3142
3143	.prio_changed           = prio_changed_dl,
3144	.switched_from		= switched_from_dl,
3145	.switched_to		= switched_to_dl,
3146
3147	.update_curr		= update_curr_dl,
3148#ifdef CONFIG_SCHED_CORE
3149	.task_is_throttled	= task_is_throttled_dl,
3150#endif
3151};
3152
3153/* Used for dl_bw check and update, used under sched_rt_handler()::mutex */
3154static u64 dl_generation;
3155
3156int sched_dl_global_validate(void)
3157{
3158	u64 runtime = global_rt_runtime();
3159	u64 period = global_rt_period();
3160	u64 new_bw = to_ratio(period, runtime);
3161	u64 gen = ++dl_generation;
3162	struct dl_bw *dl_b;
3163	int cpu, cpus, ret = 0;
3164	unsigned long flags;
3165
3166	/*
3167	 * Here we want to check the bandwidth not being set to some
3168	 * value smaller than the currently allocated bandwidth in
3169	 * any of the root_domains.
 
 
 
 
3170	 */
3171	for_each_possible_cpu(cpu) {
3172		rcu_read_lock_sched();
3173
3174		if (dl_bw_visited(cpu, gen))
3175			goto next;
3176
3177		dl_b = dl_bw_of(cpu);
3178		cpus = dl_bw_cpus(cpu);
3179
3180		raw_spin_lock_irqsave(&dl_b->lock, flags);
3181		if (new_bw * cpus < dl_b->total_bw)
3182			ret = -EBUSY;
3183		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3184
3185next:
3186		rcu_read_unlock_sched();
3187
3188		if (ret)
3189			break;
3190	}
3191
3192	return ret;
3193}
3194
3195static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq)
3196{
3197	if (global_rt_runtime() == RUNTIME_INF) {
3198		dl_rq->bw_ratio = 1 << RATIO_SHIFT;
3199		dl_rq->max_bw = dl_rq->extra_bw = 1 << BW_SHIFT;
3200	} else {
3201		dl_rq->bw_ratio = to_ratio(global_rt_runtime(),
3202			  global_rt_period()) >> (BW_SHIFT - RATIO_SHIFT);
3203		dl_rq->max_bw = dl_rq->extra_bw =
3204			to_ratio(global_rt_period(), global_rt_runtime());
3205	}
3206}
3207
3208void sched_dl_do_global(void)
3209{
3210	u64 new_bw = -1;
3211	u64 gen = ++dl_generation;
3212	struct dl_bw *dl_b;
3213	int cpu;
3214	unsigned long flags;
3215
 
 
 
3216	if (global_rt_runtime() != RUNTIME_INF)
3217		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
3218
 
 
 
3219	for_each_possible_cpu(cpu) {
3220		rcu_read_lock_sched();
3221
3222		if (dl_bw_visited(cpu, gen)) {
3223			rcu_read_unlock_sched();
3224			continue;
3225		}
3226
3227		dl_b = dl_bw_of(cpu);
3228
3229		raw_spin_lock_irqsave(&dl_b->lock, flags);
3230		dl_b->bw = new_bw;
3231		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3232
3233		rcu_read_unlock_sched();
3234		init_dl_rq_bw_ratio(&cpu_rq(cpu)->dl);
3235	}
3236}
3237
3238/*
3239 * We must be sure that accepting a new task (or allowing changing the
3240 * parameters of an existing one) is consistent with the bandwidth
3241 * constraints. If yes, this function also accordingly updates the currently
3242 * allocated bandwidth to reflect the new situation.
3243 *
3244 * This function is called while holding p's rq->lock.
3245 */
3246int sched_dl_overflow(struct task_struct *p, int policy,
3247		      const struct sched_attr *attr)
3248{
 
3249	u64 period = attr->sched_period ?: attr->sched_deadline;
3250	u64 runtime = attr->sched_runtime;
3251	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
3252	int cpus, err = -1, cpu = task_cpu(p);
3253	struct dl_bw *dl_b = dl_bw_of(cpu);
3254	unsigned long cap;
3255
3256	if (attr->sched_flags & SCHED_FLAG_SUGOV)
3257		return 0;
3258
3259	/* !deadline task may carry old deadline bandwidth */
3260	if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
3261		return 0;
3262
3263	/*
3264	 * Either if a task, enters, leave, or stays -deadline but changes
3265	 * its parameters, we may need to update accordingly the total
3266	 * allocated bandwidth of the container.
3267	 */
3268	raw_spin_lock(&dl_b->lock);
3269	cpus = dl_bw_cpus(cpu);
3270	cap = dl_bw_capacity(cpu);
3271
3272	if (dl_policy(policy) && !task_has_dl_policy(p) &&
3273	    !__dl_overflow(dl_b, cap, 0, new_bw)) {
3274		if (hrtimer_active(&p->dl.inactive_timer))
3275			__dl_sub(dl_b, p->dl.dl_bw, cpus);
3276		__dl_add(dl_b, new_bw, cpus);
3277		err = 0;
3278	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
3279		   !__dl_overflow(dl_b, cap, p->dl.dl_bw, new_bw)) {
3280		/*
3281		 * XXX this is slightly incorrect: when the task
3282		 * utilization decreases, we should delay the total
3283		 * utilization change until the task's 0-lag point.
3284		 * But this would require to set the task's "inactive
3285		 * timer" when the task is not inactive.
3286		 */
3287		__dl_sub(dl_b, p->dl.dl_bw, cpus);
3288		__dl_add(dl_b, new_bw, cpus);
3289		dl_change_utilization(p, new_bw);
3290		err = 0;
3291	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
3292		/*
3293		 * Do not decrease the total deadline utilization here,
3294		 * switched_from_dl() will take care to do it at the correct
3295		 * (0-lag) time.
3296		 */
3297		err = 0;
3298	}
3299	raw_spin_unlock(&dl_b->lock);
3300
3301	return err;
3302}
3303
3304/*
3305 * This function initializes the sched_dl_entity of a newly becoming
3306 * SCHED_DEADLINE task.
3307 *
3308 * Only the static values are considered here, the actual runtime and the
3309 * absolute deadline will be properly calculated when the task is enqueued
3310 * for the first time with its new policy.
3311 */
3312void __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3313{
3314	struct sched_dl_entity *dl_se = &p->dl;
3315
3316	dl_se->dl_runtime = attr->sched_runtime;
3317	dl_se->dl_deadline = attr->sched_deadline;
3318	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3319	dl_se->flags = attr->sched_flags & SCHED_DL_FLAGS;
3320	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3321	dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime);
3322}
3323
3324void __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3325{
3326	struct sched_dl_entity *dl_se = &p->dl;
3327
3328	attr->sched_priority = p->rt_priority;
3329	attr->sched_runtime = dl_se->dl_runtime;
3330	attr->sched_deadline = dl_se->dl_deadline;
3331	attr->sched_period = dl_se->dl_period;
3332	attr->sched_flags &= ~SCHED_DL_FLAGS;
3333	attr->sched_flags |= dl_se->flags;
3334}
3335
3336/*
3337 * This function validates the new parameters of a -deadline task.
3338 * We ask for the deadline not being zero, and greater or equal
3339 * than the runtime, as well as the period of being zero or
3340 * greater than deadline. Furthermore, we have to be sure that
3341 * user parameters are above the internal resolution of 1us (we
3342 * check sched_runtime only since it is always the smaller one) and
3343 * below 2^63 ns (we have to check both sched_deadline and
3344 * sched_period, as the latter can be zero).
3345 */
3346bool __checkparam_dl(const struct sched_attr *attr)
3347{
3348	u64 period, max, min;
3349
3350	/* special dl tasks don't actually use any parameter */
3351	if (attr->sched_flags & SCHED_FLAG_SUGOV)
3352		return true;
3353
3354	/* deadline != 0 */
3355	if (attr->sched_deadline == 0)
3356		return false;
3357
3358	/*
3359	 * Since we truncate DL_SCALE bits, make sure we're at least
3360	 * that big.
3361	 */
3362	if (attr->sched_runtime < (1ULL << DL_SCALE))
3363		return false;
3364
3365	/*
3366	 * Since we use the MSB for wrap-around and sign issues, make
3367	 * sure it's not set (mind that period can be equal to zero).
3368	 */
3369	if (attr->sched_deadline & (1ULL << 63) ||
3370	    attr->sched_period & (1ULL << 63))
3371		return false;
3372
3373	period = attr->sched_period;
3374	if (!period)
3375		period = attr->sched_deadline;
3376
3377	/* runtime <= deadline <= period (if period != 0) */
3378	if (period < attr->sched_deadline ||
 
3379	    attr->sched_deadline < attr->sched_runtime)
3380		return false;
3381
3382	max = (u64)READ_ONCE(sysctl_sched_dl_period_max) * NSEC_PER_USEC;
3383	min = (u64)READ_ONCE(sysctl_sched_dl_period_min) * NSEC_PER_USEC;
3384
3385	if (period < min || period > max)
3386		return false;
3387
3388	return true;
3389}
3390
3391/*
3392 * This function clears the sched_dl_entity static params.
3393 */
3394static void __dl_clear_params(struct sched_dl_entity *dl_se)
3395{
 
 
3396	dl_se->dl_runtime		= 0;
3397	dl_se->dl_deadline		= 0;
3398	dl_se->dl_period		= 0;
3399	dl_se->flags			= 0;
3400	dl_se->dl_bw			= 0;
3401	dl_se->dl_density		= 0;
3402
3403	dl_se->dl_throttled		= 0;
3404	dl_se->dl_yielded		= 0;
3405	dl_se->dl_non_contending	= 0;
3406	dl_se->dl_overrun		= 0;
3407	dl_se->dl_server		= 0;
3408
3409#ifdef CONFIG_RT_MUTEXES
3410	dl_se->pi_se			= dl_se;
3411#endif
3412}
3413
3414void init_dl_entity(struct sched_dl_entity *dl_se)
3415{
3416	RB_CLEAR_NODE(&dl_se->rb_node);
3417	init_dl_task_timer(dl_se);
3418	init_dl_inactive_task_timer(dl_se);
3419	__dl_clear_params(dl_se);
3420}
3421
3422bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr)
3423{
3424	struct sched_dl_entity *dl_se = &p->dl;
3425
3426	if (dl_se->dl_runtime != attr->sched_runtime ||
3427	    dl_se->dl_deadline != attr->sched_deadline ||
3428	    dl_se->dl_period != attr->sched_period ||
3429	    dl_se->flags != (attr->sched_flags & SCHED_DL_FLAGS))
3430		return true;
3431
3432	return false;
3433}
3434
3435#ifdef CONFIG_SMP
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3436int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur,
3437				 const struct cpumask *trial)
3438{
3439	unsigned long flags, cap;
3440	struct dl_bw *cur_dl_b;
3441	int ret = 1;
3442
3443	rcu_read_lock_sched();
3444	cur_dl_b = dl_bw_of(cpumask_any(cur));
3445	cap = __dl_bw_capacity(trial);
 
3446	raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
3447	if (__dl_overflow(cur_dl_b, cap, 0, 0))
 
3448		ret = 0;
3449	raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
3450	rcu_read_unlock_sched();
3451
3452	return ret;
3453}
3454
3455enum dl_bw_request {
3456	dl_bw_req_check_overflow = 0,
3457	dl_bw_req_alloc,
3458	dl_bw_req_free
3459};
3460
3461static int dl_bw_manage(enum dl_bw_request req, int cpu, u64 dl_bw)
3462{
3463	unsigned long flags;
3464	struct dl_bw *dl_b;
3465	bool overflow = 0;
 
3466
3467	rcu_read_lock_sched();
3468	dl_b = dl_bw_of(cpu);
3469	raw_spin_lock_irqsave(&dl_b->lock, flags);
3470
3471	if (req == dl_bw_req_free) {
3472		__dl_sub(dl_b, dl_bw, dl_bw_cpus(cpu));
3473	} else {
3474		unsigned long cap = dl_bw_capacity(cpu);
3475
3476		overflow = __dl_overflow(dl_b, cap, 0, dl_bw);
3477
3478		if (req == dl_bw_req_alloc && !overflow) {
3479			/*
3480			 * We reserve space in the destination
3481			 * root_domain, as we can't fail after this point.
3482			 * We will free resources in the source root_domain
3483			 * later on (see set_cpus_allowed_dl()).
3484			 */
3485			__dl_add(dl_b, dl_bw, dl_bw_cpus(cpu));
3486		}
3487	}
3488
3489	raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3490	rcu_read_unlock_sched();
3491
3492	return overflow ? -EBUSY : 0;
3493}
3494
3495int dl_bw_check_overflow(int cpu)
3496{
3497	return dl_bw_manage(dl_bw_req_check_overflow, cpu, 0);
3498}
3499
3500int dl_bw_alloc(int cpu, u64 dl_bw)
3501{
3502	return dl_bw_manage(dl_bw_req_alloc, cpu, dl_bw);
3503}
3504
3505void dl_bw_free(int cpu, u64 dl_bw)
3506{
3507	dl_bw_manage(dl_bw_req_free, cpu, dl_bw);
3508}
3509#endif
3510
3511#ifdef CONFIG_SCHED_DEBUG
3512void print_dl_stats(struct seq_file *m, int cpu)
3513{
3514	print_dl_rq(m, cpu, &cpu_rq(cpu)->dl);
3515}
3516#endif /* CONFIG_SCHED_DEBUG */
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Deadline Scheduling Class (SCHED_DEADLINE)
   4 *
   5 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
   6 *
   7 * Tasks that periodically executes their instances for less than their
   8 * runtime won't miss any of their deadlines.
   9 * Tasks that are not periodic or sporadic or that tries to execute more
  10 * than their reserved bandwidth will be slowed down (and may potentially
  11 * miss some of their deadlines), and won't affect any other task.
  12 *
  13 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
  14 *                    Juri Lelli <juri.lelli@gmail.com>,
  15 *                    Michael Trimarchi <michael@amarulasolutions.com>,
  16 *                    Fabio Checconi <fchecconi@gmail.com>
  17 */
  18#include "sched.h"
  19#include "pelt.h"
  20
  21struct dl_bandwidth def_dl_bandwidth;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  22
  23static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
  24{
 
  25	return container_of(dl_se, struct task_struct, dl);
  26}
  27
  28static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
  29{
  30	return container_of(dl_rq, struct rq, dl);
  31}
  32
 
 
 
 
 
 
 
 
 
 
  33static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
  34{
  35	struct task_struct *p = dl_task_of(dl_se);
  36	struct rq *rq = task_rq(p);
  37
  38	return &rq->dl;
  39}
  40
  41static inline int on_dl_rq(struct sched_dl_entity *dl_se)
  42{
  43	return !RB_EMPTY_NODE(&dl_se->rb_node);
  44}
  45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  46#ifdef CONFIG_SMP
  47static inline struct dl_bw *dl_bw_of(int i)
  48{
  49	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
  50			 "sched RCU must be held");
  51	return &cpu_rq(i)->rd->dl_bw;
  52}
  53
  54static inline int dl_bw_cpus(int i)
  55{
  56	struct root_domain *rd = cpu_rq(i)->rd;
  57	int cpus = 0;
  58
  59	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
  60			 "sched RCU must be held");
 
 
 
 
 
 
  61	for_each_cpu_and(i, rd->span, cpu_active_mask)
  62		cpus++;
  63
  64	return cpus;
  65}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  66#else
  67static inline struct dl_bw *dl_bw_of(int i)
  68{
  69	return &cpu_rq(i)->dl.dl_bw;
  70}
  71
  72static inline int dl_bw_cpus(int i)
  73{
  74	return 1;
  75}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  76#endif
  77
  78static inline
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  79void __add_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
  80{
  81	u64 old = dl_rq->running_bw;
  82
  83	lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
  84	dl_rq->running_bw += dl_bw;
  85	SCHED_WARN_ON(dl_rq->running_bw < old); /* overflow */
  86	SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
  87	/* kick cpufreq (see the comment in kernel/sched/sched.h). */
  88	cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
  89}
  90
  91static inline
  92void __sub_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
  93{
  94	u64 old = dl_rq->running_bw;
  95
  96	lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
  97	dl_rq->running_bw -= dl_bw;
  98	SCHED_WARN_ON(dl_rq->running_bw > old); /* underflow */
  99	if (dl_rq->running_bw > old)
 100		dl_rq->running_bw = 0;
 101	/* kick cpufreq (see the comment in kernel/sched/sched.h). */
 102	cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
 103}
 104
 105static inline
 106void __add_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
 107{
 108	u64 old = dl_rq->this_bw;
 109
 110	lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
 111	dl_rq->this_bw += dl_bw;
 112	SCHED_WARN_ON(dl_rq->this_bw < old); /* overflow */
 113}
 114
 115static inline
 116void __sub_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
 117{
 118	u64 old = dl_rq->this_bw;
 119
 120	lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
 121	dl_rq->this_bw -= dl_bw;
 122	SCHED_WARN_ON(dl_rq->this_bw > old); /* underflow */
 123	if (dl_rq->this_bw > old)
 124		dl_rq->this_bw = 0;
 125	SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
 126}
 127
 128static inline
 129void add_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 130{
 131	if (!dl_entity_is_special(dl_se))
 132		__add_rq_bw(dl_se->dl_bw, dl_rq);
 133}
 134
 135static inline
 136void sub_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 137{
 138	if (!dl_entity_is_special(dl_se))
 139		__sub_rq_bw(dl_se->dl_bw, dl_rq);
 140}
 141
 142static inline
 143void add_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 144{
 145	if (!dl_entity_is_special(dl_se))
 146		__add_running_bw(dl_se->dl_bw, dl_rq);
 147}
 148
 149static inline
 150void sub_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 151{
 152	if (!dl_entity_is_special(dl_se))
 153		__sub_running_bw(dl_se->dl_bw, dl_rq);
 154}
 155
 156void dl_change_utilization(struct task_struct *p, u64 new_bw)
 157{
 158	struct rq *rq;
 
 
 159
 160	BUG_ON(p->dl.flags & SCHED_FLAG_SUGOV);
 161
 162	if (task_on_rq_queued(p))
 163		return;
 164
 165	rq = task_rq(p);
 166	if (p->dl.dl_non_contending) {
 167		sub_running_bw(&p->dl, &rq->dl);
 168		p->dl.dl_non_contending = 0;
 169		/*
 170		 * If the timer handler is currently running and the
 171		 * timer cannot be cancelled, inactive_task_timer()
 172		 * will see that dl_not_contending is not set, and
 173		 * will not touch the rq's active utilization,
 174		 * so we are still safe.
 175		 */
 176		if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
 177			put_task_struct(p);
 
 
 178	}
 179	__sub_rq_bw(p->dl.dl_bw, &rq->dl);
 180	__add_rq_bw(new_bw, &rq->dl);
 181}
 182
 
 
 
 
 
 
 
 
 
 
 
 
 183/*
 184 * The utilization of a task cannot be immediately removed from
 185 * the rq active utilization (running_bw) when the task blocks.
 186 * Instead, we have to wait for the so called "0-lag time".
 187 *
 188 * If a task blocks before the "0-lag time", a timer (the inactive
 189 * timer) is armed, and running_bw is decreased when the timer
 190 * fires.
 191 *
 192 * If the task wakes up again before the inactive timer fires,
 193 * the timer is cancelled, whereas if the task wakes up after the
 194 * inactive timer fired (and running_bw has been decreased) the
 195 * task's utilization has to be added to running_bw again.
 196 * A flag in the deadline scheduling entity (dl_non_contending)
 197 * is used to avoid race conditions between the inactive timer handler
 198 * and task wakeups.
 199 *
 200 * The following diagram shows how running_bw is updated. A task is
 201 * "ACTIVE" when its utilization contributes to running_bw; an
 202 * "ACTIVE contending" task is in the TASK_RUNNING state, while an
 203 * "ACTIVE non contending" task is a blocked task for which the "0-lag time"
 204 * has not passed yet. An "INACTIVE" task is a task for which the "0-lag"
 205 * time already passed, which does not contribute to running_bw anymore.
 206 *                              +------------------+
 207 *             wakeup           |    ACTIVE        |
 208 *          +------------------>+   contending     |
 209 *          | add_running_bw    |                  |
 210 *          |                   +----+------+------+
 211 *          |                        |      ^
 212 *          |                dequeue |      |
 213 * +--------+-------+                |      |
 214 * |                |   t >= 0-lag   |      | wakeup
 215 * |    INACTIVE    |<---------------+      |
 216 * |                | sub_running_bw |      |
 217 * +--------+-------+                |      |
 218 *          ^                        |      |
 219 *          |              t < 0-lag |      |
 220 *          |                        |      |
 221 *          |                        V      |
 222 *          |                   +----+------+------+
 223 *          | sub_running_bw    |    ACTIVE        |
 224 *          +-------------------+                  |
 225 *            inactive timer    |  non contending  |
 226 *            fired             +------------------+
 227 *
 228 * The task_non_contending() function is invoked when a task
 229 * blocks, and checks if the 0-lag time already passed or
 230 * not (in the first case, it directly updates running_bw;
 231 * in the second case, it arms the inactive timer).
 232 *
 233 * The task_contending() function is invoked when a task wakes
 234 * up, and checks if the task is still in the "ACTIVE non contending"
 235 * state or not (in the second case, it updates running_bw).
 236 */
 237static void task_non_contending(struct task_struct *p)
 238{
 239	struct sched_dl_entity *dl_se = &p->dl;
 240	struct hrtimer *timer = &dl_se->inactive_timer;
 241	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
 242	struct rq *rq = rq_of_dl_rq(dl_rq);
 243	s64 zerolag_time;
 244
 245	/*
 246	 * If this is a non-deadline task that has been boosted,
 247	 * do nothing
 248	 */
 249	if (dl_se->dl_runtime == 0)
 250		return;
 251
 252	if (dl_entity_is_special(dl_se))
 253		return;
 254
 255	WARN_ON(dl_se->dl_non_contending);
 256
 257	zerolag_time = dl_se->deadline -
 258		 div64_long((dl_se->runtime * dl_se->dl_period),
 259			dl_se->dl_runtime);
 260
 261	/*
 262	 * Using relative times instead of the absolute "0-lag time"
 263	 * allows to simplify the code
 264	 */
 265	zerolag_time -= rq_clock(rq);
 266
 267	/*
 268	 * If the "0-lag time" already passed, decrease the active
 269	 * utilization now, instead of starting a timer
 270	 */
 271	if ((zerolag_time < 0) || hrtimer_active(&dl_se->inactive_timer)) {
 272		if (dl_task(p))
 273			sub_running_bw(dl_se, dl_rq);
 274		if (!dl_task(p) || p->state == TASK_DEAD) {
 275			struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
 276
 277			if (p->state == TASK_DEAD)
 278				sub_rq_bw(&p->dl, &rq->dl);
 279			raw_spin_lock(&dl_b->lock);
 280			__dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
 281			__dl_clear_params(p);
 282			raw_spin_unlock(&dl_b->lock);
 
 
 
 
 
 
 
 283		}
 284
 285		return;
 286	}
 287
 288	dl_se->dl_non_contending = 1;
 289	get_task_struct(p);
 
 
 290	hrtimer_start(timer, ns_to_ktime(zerolag_time), HRTIMER_MODE_REL_HARD);
 291}
 292
 293static void task_contending(struct sched_dl_entity *dl_se, int flags)
 294{
 295	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
 296
 297	/*
 298	 * If this is a non-deadline task that has been boosted,
 299	 * do nothing
 300	 */
 301	if (dl_se->dl_runtime == 0)
 302		return;
 303
 304	if (flags & ENQUEUE_MIGRATED)
 305		add_rq_bw(dl_se, dl_rq);
 306
 307	if (dl_se->dl_non_contending) {
 308		dl_se->dl_non_contending = 0;
 309		/*
 310		 * If the timer handler is currently running and the
 311		 * timer cannot be cancelled, inactive_task_timer()
 312		 * will see that dl_not_contending is not set, and
 313		 * will not touch the rq's active utilization,
 314		 * so we are still safe.
 315		 */
 316		if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1)
 317			put_task_struct(dl_task_of(dl_se));
 
 
 318	} else {
 319		/*
 320		 * Since "dl_non_contending" is not set, the
 321		 * task's utilization has already been removed from
 322		 * active utilization (either when the task blocked,
 323		 * when the "inactive timer" fired).
 324		 * So, add it back.
 325		 */
 326		add_running_bw(dl_se, dl_rq);
 327	}
 328}
 329
 330static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq)
 331{
 332	struct sched_dl_entity *dl_se = &p->dl;
 333
 334	return dl_rq->root.rb_leftmost == &dl_se->rb_node;
 335}
 336
 337void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime)
 338{
 339	raw_spin_lock_init(&dl_b->dl_runtime_lock);
 340	dl_b->dl_period = period;
 341	dl_b->dl_runtime = runtime;
 342}
 343
 344void init_dl_bw(struct dl_bw *dl_b)
 345{
 346	raw_spin_lock_init(&dl_b->lock);
 347	raw_spin_lock(&def_dl_bandwidth.dl_runtime_lock);
 348	if (global_rt_runtime() == RUNTIME_INF)
 349		dl_b->bw = -1;
 350	else
 351		dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
 352	raw_spin_unlock(&def_dl_bandwidth.dl_runtime_lock);
 353	dl_b->total_bw = 0;
 354}
 355
 356void init_dl_rq(struct dl_rq *dl_rq)
 357{
 358	dl_rq->root = RB_ROOT_CACHED;
 359
 360#ifdef CONFIG_SMP
 361	/* zero means no -deadline tasks */
 362	dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
 363
 364	dl_rq->dl_nr_migratory = 0;
 365	dl_rq->overloaded = 0;
 366	dl_rq->pushable_dl_tasks_root = RB_ROOT_CACHED;
 367#else
 368	init_dl_bw(&dl_rq->dl_bw);
 369#endif
 370
 371	dl_rq->running_bw = 0;
 372	dl_rq->this_bw = 0;
 373	init_dl_rq_bw_ratio(dl_rq);
 374}
 375
 376#ifdef CONFIG_SMP
 377
 378static inline int dl_overloaded(struct rq *rq)
 379{
 380	return atomic_read(&rq->rd->dlo_count);
 381}
 382
 383static inline void dl_set_overload(struct rq *rq)
 384{
 385	if (!rq->online)
 386		return;
 387
 388	cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
 389	/*
 390	 * Must be visible before the overload count is
 391	 * set (as in sched_rt.c).
 392	 *
 393	 * Matched by the barrier in pull_dl_task().
 394	 */
 395	smp_wmb();
 396	atomic_inc(&rq->rd->dlo_count);
 397}
 398
 399static inline void dl_clear_overload(struct rq *rq)
 400{
 401	if (!rq->online)
 402		return;
 403
 404	atomic_dec(&rq->rd->dlo_count);
 405	cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
 406}
 407
 408static void update_dl_migration(struct dl_rq *dl_rq)
 409{
 410	if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) {
 411		if (!dl_rq->overloaded) {
 412			dl_set_overload(rq_of_dl_rq(dl_rq));
 413			dl_rq->overloaded = 1;
 414		}
 415	} else if (dl_rq->overloaded) {
 416		dl_clear_overload(rq_of_dl_rq(dl_rq));
 417		dl_rq->overloaded = 0;
 418	}
 419}
 420
 421static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 422{
 423	struct task_struct *p = dl_task_of(dl_se);
 424
 425	if (p->nr_cpus_allowed > 1)
 426		dl_rq->dl_nr_migratory++;
 427
 428	update_dl_migration(dl_rq);
 429}
 430
 431static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 432{
 433	struct task_struct *p = dl_task_of(dl_se);
 434
 435	if (p->nr_cpus_allowed > 1)
 436		dl_rq->dl_nr_migratory--;
 437
 438	update_dl_migration(dl_rq);
 439}
 440
 441/*
 442 * The list of pushable -deadline task is not a plist, like in
 443 * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
 444 */
 445static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
 446{
 447	struct dl_rq *dl_rq = &rq->dl;
 448	struct rb_node **link = &dl_rq->pushable_dl_tasks_root.rb_root.rb_node;
 449	struct rb_node *parent = NULL;
 450	struct task_struct *entry;
 451	bool leftmost = true;
 452
 453	BUG_ON(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
 454
 455	while (*link) {
 456		parent = *link;
 457		entry = rb_entry(parent, struct task_struct,
 458				 pushable_dl_tasks);
 459		if (dl_entity_preempt(&p->dl, &entry->dl))
 460			link = &parent->rb_left;
 461		else {
 462			link = &parent->rb_right;
 463			leftmost = false;
 464		}
 465	}
 466
 
 
 
 467	if (leftmost)
 468		dl_rq->earliest_dl.next = p->dl.deadline;
 469
 470	rb_link_node(&p->pushable_dl_tasks, parent, link);
 471	rb_insert_color_cached(&p->pushable_dl_tasks,
 472			       &dl_rq->pushable_dl_tasks_root, leftmost);
 
 473}
 474
 475static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
 476{
 477	struct dl_rq *dl_rq = &rq->dl;
 
 
 478
 479	if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
 480		return;
 481
 482	if (dl_rq->pushable_dl_tasks_root.rb_leftmost == &p->pushable_dl_tasks) {
 483		struct rb_node *next_node;
 484
 485		next_node = rb_next(&p->pushable_dl_tasks);
 486		if (next_node) {
 487			dl_rq->earliest_dl.next = rb_entry(next_node,
 488				struct task_struct, pushable_dl_tasks)->dl.deadline;
 489		}
 490	}
 491
 492	rb_erase_cached(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
 493	RB_CLEAR_NODE(&p->pushable_dl_tasks);
 494}
 495
 496static inline int has_pushable_dl_tasks(struct rq *rq)
 497{
 498	return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root.rb_root);
 
 499}
 500
 501static int push_dl_task(struct rq *rq);
 502
 503static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
 504{
 505	return dl_task(prev);
 506}
 507
 508static DEFINE_PER_CPU(struct callback_head, dl_push_head);
 509static DEFINE_PER_CPU(struct callback_head, dl_pull_head);
 510
 511static void push_dl_tasks(struct rq *);
 512static void pull_dl_task(struct rq *);
 513
 514static inline void deadline_queue_push_tasks(struct rq *rq)
 515{
 516	if (!has_pushable_dl_tasks(rq))
 517		return;
 518
 519	queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks);
 520}
 521
 522static inline void deadline_queue_pull_task(struct rq *rq)
 523{
 524	queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task);
 525}
 526
 527static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq);
 528
 529static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p)
 530{
 531	struct rq *later_rq = NULL;
 532	struct dl_bw *dl_b;
 533
 534	later_rq = find_lock_later_rq(p, rq);
 535	if (!later_rq) {
 536		int cpu;
 537
 538		/*
 539		 * If we cannot preempt any rq, fall back to pick any
 540		 * online CPU:
 541		 */
 542		cpu = cpumask_any_and(cpu_active_mask, p->cpus_ptr);
 543		if (cpu >= nr_cpu_ids) {
 544			/*
 545			 * Failed to find any suitable CPU.
 546			 * The task will never come back!
 547			 */
 548			BUG_ON(dl_bandwidth_enabled());
 549
 550			/*
 551			 * If admission control is disabled we
 552			 * try a little harder to let the task
 553			 * run.
 554			 */
 555			cpu = cpumask_any(cpu_active_mask);
 556		}
 557		later_rq = cpu_rq(cpu);
 558		double_lock_balance(rq, later_rq);
 559	}
 560
 561	if (p->dl.dl_non_contending || p->dl.dl_throttled) {
 562		/*
 563		 * Inactive timer is armed (or callback is running, but
 564		 * waiting for us to release rq locks). In any case, when it
 565		 * will fire (or continue), it will see running_bw of this
 566		 * task migrated to later_rq (and correctly handle it).
 567		 */
 568		sub_running_bw(&p->dl, &rq->dl);
 569		sub_rq_bw(&p->dl, &rq->dl);
 570
 571		add_rq_bw(&p->dl, &later_rq->dl);
 572		add_running_bw(&p->dl, &later_rq->dl);
 573	} else {
 574		sub_rq_bw(&p->dl, &rq->dl);
 575		add_rq_bw(&p->dl, &later_rq->dl);
 576	}
 577
 578	/*
 579	 * And we finally need to fixup root_domain(s) bandwidth accounting,
 580	 * since p is still hanging out in the old (now moved to default) root
 581	 * domain.
 582	 */
 583	dl_b = &rq->rd->dl_bw;
 584	raw_spin_lock(&dl_b->lock);
 585	__dl_sub(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
 586	raw_spin_unlock(&dl_b->lock);
 587
 588	dl_b = &later_rq->rd->dl_bw;
 589	raw_spin_lock(&dl_b->lock);
 590	__dl_add(dl_b, p->dl.dl_bw, cpumask_weight(later_rq->rd->span));
 591	raw_spin_unlock(&dl_b->lock);
 592
 593	set_task_cpu(p, later_rq->cpu);
 594	double_unlock_balance(later_rq, rq);
 595
 596	return later_rq;
 597}
 598
 599#else
 600
 601static inline
 602void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
 603{
 604}
 605
 606static inline
 607void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
 608{
 609}
 610
 611static inline
 612void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 613{
 614}
 615
 616static inline
 617void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 618{
 619}
 620
 621static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
 622{
 623	return false;
 624}
 625
 626static inline void pull_dl_task(struct rq *rq)
 627{
 628}
 629
 630static inline void deadline_queue_push_tasks(struct rq *rq)
 631{
 632}
 633
 634static inline void deadline_queue_pull_task(struct rq *rq)
 635{
 636}
 637#endif /* CONFIG_SMP */
 638
 
 
 639static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
 640static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags);
 641static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p, int flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 642
 643/*
 644 * We are being explicitly informed that a new instance is starting,
 645 * and this means that:
 646 *  - the absolute deadline of the entity has to be placed at
 647 *    current time + relative deadline;
 648 *  - the runtime of the entity has to be set to the maximum value.
 649 *
 650 * The capability of specifying such event is useful whenever a -deadline
 651 * entity wants to (try to!) synchronize its behaviour with the scheduler's
 652 * one, and to (try to!) reconcile itself with its own scheduling
 653 * parameters.
 654 */
 655static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se)
 656{
 657	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
 658	struct rq *rq = rq_of_dl_rq(dl_rq);
 659
 660	WARN_ON(dl_se->dl_boosted);
 661	WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline));
 662
 663	/*
 664	 * We are racing with the deadline timer. So, do nothing because
 665	 * the deadline timer handler will take care of properly recharging
 666	 * the runtime and postponing the deadline
 667	 */
 668	if (dl_se->dl_throttled)
 669		return;
 670
 671	/*
 672	 * We use the regular wall clock time to set deadlines in the
 673	 * future; in fact, we must consider execution overheads (time
 674	 * spent on hardirq context, etc.).
 675	 */
 676	dl_se->deadline = rq_clock(rq) + dl_se->dl_deadline;
 677	dl_se->runtime = dl_se->dl_runtime;
 678}
 679
 
 
 
 680/*
 681 * Pure Earliest Deadline First (EDF) scheduling does not deal with the
 682 * possibility of a entity lasting more than what it declared, and thus
 683 * exhausting its runtime.
 684 *
 685 * Here we are interested in making runtime overrun possible, but we do
 686 * not want a entity which is misbehaving to affect the scheduling of all
 687 * other entities.
 688 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
 689 * is used, in order to confine each entity within its own bandwidth.
 690 *
 691 * This function deals exactly with that, and ensures that when the runtime
 692 * of a entity is replenished, its deadline is also postponed. That ensures
 693 * the overrunning entity can't interfere with other entity in the system and
 694 * can't make them miss their deadlines. Reasons why this kind of overruns
 695 * could happen are, typically, a entity voluntarily trying to overcome its
 696 * runtime, or it just underestimated it during sched_setattr().
 697 */
 698static void replenish_dl_entity(struct sched_dl_entity *dl_se,
 699				struct sched_dl_entity *pi_se)
 700{
 701	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
 702	struct rq *rq = rq_of_dl_rq(dl_rq);
 703
 704	BUG_ON(pi_se->dl_runtime <= 0);
 705
 706	/*
 707	 * This could be the case for a !-dl task that is boosted.
 708	 * Just go with full inherited parameters.
 
 
 
 
 
 
 709	 */
 710	if (dl_se->dl_deadline == 0) {
 711		dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
 712		dl_se->runtime = pi_se->dl_runtime;
 
 713	}
 714
 715	if (dl_se->dl_yielded && dl_se->runtime > 0)
 716		dl_se->runtime = 0;
 717
 718	/*
 719	 * We keep moving the deadline away until we get some
 720	 * available runtime for the entity. This ensures correct
 721	 * handling of situations where the runtime overrun is
 722	 * arbitrary large.
 723	 */
 724	while (dl_se->runtime <= 0) {
 725		dl_se->deadline += pi_se->dl_period;
 726		dl_se->runtime += pi_se->dl_runtime;
 727	}
 728
 729	/*
 730	 * At this point, the deadline really should be "in
 731	 * the future" with respect to rq->clock. If it's
 732	 * not, we are, for some reason, lagging too much!
 733	 * Anyway, after having warn userspace abut that,
 734	 * we still try to keep the things running by
 735	 * resetting the deadline and the budget of the
 736	 * entity.
 737	 */
 738	if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
 739		printk_deferred_once("sched: DL replenish lagged too much\n");
 740		dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
 741		dl_se->runtime = pi_se->dl_runtime;
 742	}
 743
 744	if (dl_se->dl_yielded)
 745		dl_se->dl_yielded = 0;
 746	if (dl_se->dl_throttled)
 747		dl_se->dl_throttled = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 748}
 749
 750/*
 751 * Here we check if --at time t-- an entity (which is probably being
 752 * [re]activated or, in general, enqueued) can use its remaining runtime
 753 * and its current deadline _without_ exceeding the bandwidth it is
 754 * assigned (function returns true if it can't). We are in fact applying
 755 * one of the CBS rules: when a task wakes up, if the residual runtime
 756 * over residual deadline fits within the allocated bandwidth, then we
 757 * can keep the current (absolute) deadline and residual budget without
 758 * disrupting the schedulability of the system. Otherwise, we should
 759 * refill the runtime and set the deadline a period in the future,
 760 * because keeping the current (absolute) deadline of the task would
 761 * result in breaking guarantees promised to other tasks (refer to
 762 * Documentation/scheduler/sched-deadline.rst for more information).
 763 *
 764 * This function returns true if:
 765 *
 766 *   runtime / (deadline - t) > dl_runtime / dl_deadline ,
 767 *
 768 * IOW we can't recycle current parameters.
 769 *
 770 * Notice that the bandwidth check is done against the deadline. For
 771 * task with deadline equal to period this is the same of using
 772 * dl_period instead of dl_deadline in the equation above.
 773 */
 774static bool dl_entity_overflow(struct sched_dl_entity *dl_se,
 775			       struct sched_dl_entity *pi_se, u64 t)
 776{
 777	u64 left, right;
 778
 779	/*
 780	 * left and right are the two sides of the equation above,
 781	 * after a bit of shuffling to use multiplications instead
 782	 * of divisions.
 783	 *
 784	 * Note that none of the time values involved in the two
 785	 * multiplications are absolute: dl_deadline and dl_runtime
 786	 * are the relative deadline and the maximum runtime of each
 787	 * instance, runtime is the runtime left for the last instance
 788	 * and (deadline - t), since t is rq->clock, is the time left
 789	 * to the (absolute) deadline. Even if overflowing the u64 type
 790	 * is very unlikely to occur in both cases, here we scale down
 791	 * as we want to avoid that risk at all. Scaling down by 10
 792	 * means that we reduce granularity to 1us. We are fine with it,
 793	 * since this is only a true/false check and, anyway, thinking
 794	 * of anything below microseconds resolution is actually fiction
 795	 * (but still we want to give the user that illusion >;).
 796	 */
 797	left = (pi_se->dl_deadline >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
 798	right = ((dl_se->deadline - t) >> DL_SCALE) *
 799		(pi_se->dl_runtime >> DL_SCALE);
 800
 801	return dl_time_before(right, left);
 802}
 803
 804/*
 805 * Revised wakeup rule [1]: For self-suspending tasks, rather then
 806 * re-initializing task's runtime and deadline, the revised wakeup
 807 * rule adjusts the task's runtime to avoid the task to overrun its
 808 * density.
 809 *
 810 * Reasoning: a task may overrun the density if:
 811 *    runtime / (deadline - t) > dl_runtime / dl_deadline
 812 *
 813 * Therefore, runtime can be adjusted to:
 814 *     runtime = (dl_runtime / dl_deadline) * (deadline - t)
 815 *
 816 * In such way that runtime will be equal to the maximum density
 817 * the task can use without breaking any rule.
 818 *
 819 * [1] Luca Abeni, Giuseppe Lipari, and Juri Lelli. 2015. Constant
 820 * bandwidth server revisited. SIGBED Rev. 11, 4 (January 2015), 19-24.
 821 */
 822static void
 823update_dl_revised_wakeup(struct sched_dl_entity *dl_se, struct rq *rq)
 824{
 825	u64 laxity = dl_se->deadline - rq_clock(rq);
 826
 827	/*
 828	 * If the task has deadline < period, and the deadline is in the past,
 829	 * it should already be throttled before this check.
 830	 *
 831	 * See update_dl_entity() comments for further details.
 832	 */
 833	WARN_ON(dl_time_before(dl_se->deadline, rq_clock(rq)));
 834
 835	dl_se->runtime = (dl_se->dl_density * laxity) >> BW_SHIFT;
 836}
 837
 838/*
 839 * Regarding the deadline, a task with implicit deadline has a relative
 840 * deadline == relative period. A task with constrained deadline has a
 841 * relative deadline <= relative period.
 842 *
 843 * We support constrained deadline tasks. However, there are some restrictions
 844 * applied only for tasks which do not have an implicit deadline. See
 845 * update_dl_entity() to know more about such restrictions.
 846 *
 847 * The dl_is_implicit() returns true if the task has an implicit deadline.
 848 */
 849static inline bool dl_is_implicit(struct sched_dl_entity *dl_se)
 850{
 851	return dl_se->dl_deadline == dl_se->dl_period;
 852}
 853
 854/*
 855 * When a deadline entity is placed in the runqueue, its runtime and deadline
 856 * might need to be updated. This is done by a CBS wake up rule. There are two
 857 * different rules: 1) the original CBS; and 2) the Revisited CBS.
 858 *
 859 * When the task is starting a new period, the Original CBS is used. In this
 860 * case, the runtime is replenished and a new absolute deadline is set.
 861 *
 862 * When a task is queued before the begin of the next period, using the
 863 * remaining runtime and deadline could make the entity to overflow, see
 864 * dl_entity_overflow() to find more about runtime overflow. When such case
 865 * is detected, the runtime and deadline need to be updated.
 866 *
 867 * If the task has an implicit deadline, i.e., deadline == period, the Original
 868 * CBS is applied. the runtime is replenished and a new absolute deadline is
 869 * set, as in the previous cases.
 870 *
 871 * However, the Original CBS does not work properly for tasks with
 872 * deadline < period, which are said to have a constrained deadline. By
 873 * applying the Original CBS, a constrained deadline task would be able to run
 874 * runtime/deadline in a period. With deadline < period, the task would
 875 * overrun the runtime/period allowed bandwidth, breaking the admission test.
 876 *
 877 * In order to prevent this misbehave, the Revisited CBS is used for
 878 * constrained deadline tasks when a runtime overflow is detected. In the
 879 * Revisited CBS, rather than replenishing & setting a new absolute deadline,
 880 * the remaining runtime of the task is reduced to avoid runtime overflow.
 881 * Please refer to the comments update_dl_revised_wakeup() function to find
 882 * more about the Revised CBS rule.
 883 */
 884static void update_dl_entity(struct sched_dl_entity *dl_se,
 885			     struct sched_dl_entity *pi_se)
 886{
 887	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
 888	struct rq *rq = rq_of_dl_rq(dl_rq);
 889
 890	if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
 891	    dl_entity_overflow(dl_se, pi_se, rq_clock(rq))) {
 892
 893		if (unlikely(!dl_is_implicit(dl_se) &&
 894			     !dl_time_before(dl_se->deadline, rq_clock(rq)) &&
 895			     !dl_se->dl_boosted)){
 896			update_dl_revised_wakeup(dl_se, rq);
 897			return;
 898		}
 899
 900		dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
 901		dl_se->runtime = pi_se->dl_runtime;
 
 
 
 
 
 
 
 
 902	}
 903}
 904
 905static inline u64 dl_next_period(struct sched_dl_entity *dl_se)
 906{
 907	return dl_se->deadline - dl_se->dl_deadline + dl_se->dl_period;
 908}
 909
 910/*
 911 * If the entity depleted all its runtime, and if we want it to sleep
 912 * while waiting for some new execution time to become available, we
 913 * set the bandwidth replenishment timer to the replenishment instant
 914 * and try to activate it.
 915 *
 916 * Notice that it is important for the caller to know if the timer
 917 * actually started or not (i.e., the replenishment instant is in
 918 * the future or in the past).
 919 */
 920static int start_dl_timer(struct task_struct *p)
 921{
 922	struct sched_dl_entity *dl_se = &p->dl;
 923	struct hrtimer *timer = &dl_se->dl_timer;
 924	struct rq *rq = task_rq(p);
 
 925	ktime_t now, act;
 926	s64 delta;
 927
 928	lockdep_assert_held(&rq->lock);
 929
 930	/*
 931	 * We want the timer to fire at the deadline, but considering
 932	 * that it is actually coming from rq->clock and not from
 933	 * hrtimer's time base reading.
 934	 */
 935	act = ns_to_ktime(dl_next_period(dl_se));
 
 
 
 
 
 
 
 
 
 
 
 
 
 936	now = hrtimer_cb_get_time(timer);
 937	delta = ktime_to_ns(now) - rq_clock(rq);
 938	act = ktime_add_ns(act, delta);
 939
 940	/*
 941	 * If the expiry time already passed, e.g., because the value
 942	 * chosen as the deadline is too small, don't even try to
 943	 * start the timer in the past!
 944	 */
 945	if (ktime_us_delta(act, now) < 0)
 946		return 0;
 947
 948	/*
 949	 * !enqueued will guarantee another callback; even if one is already in
 950	 * progress. This ensures a balanced {get,put}_task_struct().
 951	 *
 952	 * The race against __run_timer() clearing the enqueued state is
 953	 * harmless because we're holding task_rq()->lock, therefore the timer
 954	 * expiring after we've done the check will wait on its task_rq_lock()
 955	 * and observe our state.
 956	 */
 957	if (!hrtimer_is_queued(timer)) {
 958		get_task_struct(p);
 
 959		hrtimer_start(timer, act, HRTIMER_MODE_ABS_HARD);
 960	}
 961
 962	return 1;
 963}
 964
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 965/*
 966 * This is the bandwidth enforcement timer callback. If here, we know
 967 * a task is not on its dl_rq, since the fact that the timer was running
 968 * means the task is throttled and needs a runtime replenishment.
 969 *
 970 * However, what we actually do depends on the fact the task is active,
 971 * (it is on its rq) or has been removed from there by a call to
 972 * dequeue_task_dl(). In the former case we must issue the runtime
 973 * replenishment and add the task back to the dl_rq; in the latter, we just
 974 * do nothing but clearing dl_throttled, so that runtime and deadline
 975 * updating (and the queueing back to dl_rq) will be done by the
 976 * next call to enqueue_task_dl().
 977 */
 978static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
 979{
 980	struct sched_dl_entity *dl_se = container_of(timer,
 981						     struct sched_dl_entity,
 982						     dl_timer);
 983	struct task_struct *p = dl_task_of(dl_se);
 984	struct rq_flags rf;
 985	struct rq *rq;
 986
 
 
 
 
 987	rq = task_rq_lock(p, &rf);
 988
 989	/*
 990	 * The task might have changed its scheduling policy to something
 991	 * different than SCHED_DEADLINE (through switched_from_dl()).
 992	 */
 993	if (!dl_task(p))
 994		goto unlock;
 995
 996	/*
 997	 * The task might have been boosted by someone else and might be in the
 998	 * boosting/deboosting path, its not throttled.
 999	 */
1000	if (dl_se->dl_boosted)
1001		goto unlock;
1002
1003	/*
1004	 * Spurious timer due to start_dl_timer() race; or we already received
1005	 * a replenishment from rt_mutex_setprio().
1006	 */
1007	if (!dl_se->dl_throttled)
1008		goto unlock;
1009
1010	sched_clock_tick();
1011	update_rq_clock(rq);
1012
1013	/*
1014	 * If the throttle happened during sched-out; like:
1015	 *
1016	 *   schedule()
1017	 *     deactivate_task()
1018	 *       dequeue_task_dl()
1019	 *         update_curr_dl()
1020	 *           start_dl_timer()
1021	 *         __dequeue_task_dl()
1022	 *     prev->on_rq = 0;
1023	 *
1024	 * We can be both throttled and !queued. Replenish the counter
1025	 * but do not enqueue -- wait for our wakeup to do that.
1026	 */
1027	if (!task_on_rq_queued(p)) {
1028		replenish_dl_entity(dl_se, dl_se);
1029		goto unlock;
1030	}
1031
1032#ifdef CONFIG_SMP
1033	if (unlikely(!rq->online)) {
1034		/*
1035		 * If the runqueue is no longer available, migrate the
1036		 * task elsewhere. This necessarily changes rq.
1037		 */
1038		lockdep_unpin_lock(&rq->lock, rf.cookie);
1039		rq = dl_task_offline_migration(rq, p);
1040		rf.cookie = lockdep_pin_lock(&rq->lock);
1041		update_rq_clock(rq);
1042
1043		/*
1044		 * Now that the task has been migrated to the new RQ and we
1045		 * have that locked, proceed as normal and enqueue the task
1046		 * there.
1047		 */
1048	}
1049#endif
1050
1051	enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
1052	if (dl_task(rq->curr))
1053		check_preempt_curr_dl(rq, p, 0);
1054	else
1055		resched_curr(rq);
1056
1057#ifdef CONFIG_SMP
1058	/*
1059	 * Queueing this task back might have overloaded rq, check if we need
1060	 * to kick someone away.
1061	 */
1062	if (has_pushable_dl_tasks(rq)) {
1063		/*
1064		 * Nothing relies on rq->lock after this, so its safe to drop
1065		 * rq->lock.
1066		 */
1067		rq_unpin_lock(rq, &rf);
1068		push_dl_task(rq);
1069		rq_repin_lock(rq, &rf);
1070	}
1071#endif
1072
1073unlock:
1074	task_rq_unlock(rq, p, &rf);
1075
1076	/*
1077	 * This can free the task_struct, including this hrtimer, do not touch
1078	 * anything related to that after this.
1079	 */
1080	put_task_struct(p);
1081
1082	return HRTIMER_NORESTART;
1083}
1084
1085void init_dl_task_timer(struct sched_dl_entity *dl_se)
1086{
1087	struct hrtimer *timer = &dl_se->dl_timer;
1088
1089	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
1090	timer->function = dl_task_timer;
1091}
1092
1093/*
1094 * During the activation, CBS checks if it can reuse the current task's
1095 * runtime and period. If the deadline of the task is in the past, CBS
1096 * cannot use the runtime, and so it replenishes the task. This rule
1097 * works fine for implicit deadline tasks (deadline == period), and the
1098 * CBS was designed for implicit deadline tasks. However, a task with
1099 * constrained deadline (deadine < period) might be awakened after the
1100 * deadline, but before the next period. In this case, replenishing the
1101 * task would allow it to run for runtime / deadline. As in this case
1102 * deadline < period, CBS enables a task to run for more than the
1103 * runtime / period. In a very loaded system, this can cause a domino
1104 * effect, making other tasks miss their deadlines.
1105 *
1106 * To avoid this problem, in the activation of a constrained deadline
1107 * task after the deadline but before the next period, throttle the
1108 * task and set the replenishing timer to the begin of the next period,
1109 * unless it is boosted.
1110 */
1111static inline void dl_check_constrained_dl(struct sched_dl_entity *dl_se)
1112{
1113	struct task_struct *p = dl_task_of(dl_se);
1114	struct rq *rq = rq_of_dl_rq(dl_rq_of_se(dl_se));
1115
1116	if (dl_time_before(dl_se->deadline, rq_clock(rq)) &&
1117	    dl_time_before(rq_clock(rq), dl_next_period(dl_se))) {
1118		if (unlikely(dl_se->dl_boosted || !start_dl_timer(p)))
1119			return;
1120		dl_se->dl_throttled = 1;
1121		if (dl_se->runtime > 0)
1122			dl_se->runtime = 0;
1123	}
1124}
1125
1126static
1127int dl_runtime_exceeded(struct sched_dl_entity *dl_se)
1128{
1129	return (dl_se->runtime <= 0);
1130}
1131
1132extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
1133
1134/*
1135 * This function implements the GRUB accounting rule:
1136 * according to the GRUB reclaiming algorithm, the runtime is
1137 * not decreased as "dq = -dt", but as
1138 * "dq = -max{u / Umax, (1 - Uinact - Uextra)} dt",
1139 * where u is the utilization of the task, Umax is the maximum reclaimable
1140 * utilization, Uinact is the (per-runqueue) inactive utilization, computed
1141 * as the difference between the "total runqueue utilization" and the
1142 * runqueue active utilization, and Uextra is the (per runqueue) extra
1143 * reclaimable utilization.
1144 * Since rq->dl.running_bw and rq->dl.this_bw contain utilizations
1145 * multiplied by 2^BW_SHIFT, the result has to be shifted right by
1146 * BW_SHIFT.
1147 * Since rq->dl.bw_ratio contains 1 / Umax multipled by 2^RATIO_SHIFT,
1148 * dl_bw is multiped by rq->dl.bw_ratio and shifted right by RATIO_SHIFT.
1149 * Since delta is a 64 bit variable, to have an overflow its value
1150 * should be larger than 2^(64 - 20 - 8), which is more than 64 seconds.
1151 * So, overflow is not an issue here.
1152 */
1153static u64 grub_reclaim(u64 delta, struct rq *rq, struct sched_dl_entity *dl_se)
1154{
 
1155	u64 u_inact = rq->dl.this_bw - rq->dl.running_bw; /* Utot - Uact */
1156	u64 u_act;
1157	u64 u_act_min = (dl_se->dl_bw * rq->dl.bw_ratio) >> RATIO_SHIFT;
1158
1159	/*
1160	 * Instead of computing max{u * bw_ratio, (1 - u_inact - u_extra)},
1161	 * we compare u_inact + rq->dl.extra_bw with
1162	 * 1 - (u * rq->dl.bw_ratio >> RATIO_SHIFT), because
1163	 * u_inact + rq->dl.extra_bw can be larger than
1164	 * 1 * (so, 1 - u_inact - rq->dl.extra_bw would be negative
1165	 * leading to wrong results)
1166	 */
1167	if (u_inact + rq->dl.extra_bw > BW_UNIT - u_act_min)
1168		u_act = u_act_min;
1169	else
1170		u_act = BW_UNIT - u_inact - rq->dl.extra_bw;
1171
 
1172	return (delta * u_act) >> BW_SHIFT;
1173}
1174
1175/*
1176 * Update the current task's runtime statistics (provided it is still
1177 * a -deadline task and has not been removed from the dl_rq).
1178 */
1179static void update_curr_dl(struct rq *rq)
1180{
1181	struct task_struct *curr = rq->curr;
1182	struct sched_dl_entity *dl_se = &curr->dl;
1183	u64 delta_exec, scaled_delta_exec;
1184	int cpu = cpu_of(rq);
1185	u64 now;
1186
1187	if (!dl_task(curr) || !on_dl_rq(dl_se))
1188		return;
1189
1190	/*
1191	 * Consumed budget is computed considering the time as
1192	 * observed by schedulable tasks (excluding time spent
1193	 * in hardirq context, etc.). Deadlines are instead
1194	 * computed using hard walltime. This seems to be the more
1195	 * natural solution, but the full ramifications of this
1196	 * approach need further study.
1197	 */
1198	now = rq_clock_task(rq);
1199	delta_exec = now - curr->se.exec_start;
1200	if (unlikely((s64)delta_exec <= 0)) {
1201		if (unlikely(dl_se->dl_yielded))
1202			goto throttle;
1203		return;
1204	}
1205
1206	schedstat_set(curr->se.statistics.exec_max,
1207		      max(curr->se.statistics.exec_max, delta_exec));
1208
1209	curr->se.sum_exec_runtime += delta_exec;
1210	account_group_exec_runtime(curr, delta_exec);
1211
1212	curr->se.exec_start = now;
1213	cgroup_account_cputime(curr, delta_exec);
1214
1215	if (dl_entity_is_special(dl_se))
1216		return;
1217
1218	/*
1219	 * For tasks that participate in GRUB, we implement GRUB-PA: the
1220	 * spare reclaimed bandwidth is used to clock down frequency.
1221	 *
1222	 * For the others, we still need to scale reservation parameters
1223	 * according to current frequency and CPU maximum capacity.
1224	 */
1225	if (unlikely(dl_se->flags & SCHED_FLAG_RECLAIM)) {
1226		scaled_delta_exec = grub_reclaim(delta_exec,
1227						 rq,
1228						 &curr->dl);
1229	} else {
 
1230		unsigned long scale_freq = arch_scale_freq_capacity(cpu);
1231		unsigned long scale_cpu = arch_scale_cpu_capacity(cpu);
1232
1233		scaled_delta_exec = cap_scale(delta_exec, scale_freq);
1234		scaled_delta_exec = cap_scale(scaled_delta_exec, scale_cpu);
1235	}
1236
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1237	dl_se->runtime -= scaled_delta_exec;
1238
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1239throttle:
1240	if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) {
1241		dl_se->dl_throttled = 1;
1242
1243		/* If requested, inform the user about runtime overruns. */
1244		if (dl_runtime_exceeded(dl_se) &&
1245		    (dl_se->flags & SCHED_FLAG_DL_OVERRUN))
1246			dl_se->dl_overrun = 1;
1247
1248		__dequeue_task_dl(rq, curr, 0);
1249		if (unlikely(dl_se->dl_boosted || !start_dl_timer(curr)))
1250			enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH);
 
 
 
 
 
 
 
 
 
1251
1252		if (!is_leftmost(curr, &rq->dl))
1253			resched_curr(rq);
1254	}
1255
1256	/*
 
 
 
 
 
 
 
 
1257	 * Because -- for now -- we share the rt bandwidth, we need to
1258	 * account our runtime there too, otherwise actual rt tasks
1259	 * would be able to exceed the shared quota.
1260	 *
1261	 * Account to the root rt group for now.
1262	 *
1263	 * The solution we're working towards is having the RT groups scheduled
1264	 * using deadline servers -- however there's a few nasties to figure
1265	 * out before that can happen.
1266	 */
1267	if (rt_bandwidth_enabled()) {
1268		struct rt_rq *rt_rq = &rq->rt;
1269
1270		raw_spin_lock(&rt_rq->rt_runtime_lock);
1271		/*
1272		 * We'll let actual RT tasks worry about the overflow here, we
1273		 * have our own CBS to keep us inline; only account when RT
1274		 * bandwidth is relevant.
1275		 */
1276		if (sched_rt_bandwidth_account(rt_rq))
1277			rt_rq->rt_time += delta_exec;
1278		raw_spin_unlock(&rt_rq->rt_runtime_lock);
1279	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1280}
1281
1282static enum hrtimer_restart inactive_task_timer(struct hrtimer *timer)
1283{
1284	struct sched_dl_entity *dl_se = container_of(timer,
1285						     struct sched_dl_entity,
1286						     inactive_timer);
1287	struct task_struct *p = dl_task_of(dl_se);
1288	struct rq_flags rf;
1289	struct rq *rq;
1290
1291	rq = task_rq_lock(p, &rf);
 
 
 
 
 
 
1292
1293	sched_clock_tick();
1294	update_rq_clock(rq);
1295
1296	if (!dl_task(p) || p->state == TASK_DEAD) {
 
 
 
1297		struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1298
1299		if (p->state == TASK_DEAD && dl_se->dl_non_contending) {
1300			sub_running_bw(&p->dl, dl_rq_of_se(&p->dl));
1301			sub_rq_bw(&p->dl, dl_rq_of_se(&p->dl));
1302			dl_se->dl_non_contending = 0;
1303		}
1304
1305		raw_spin_lock(&dl_b->lock);
1306		__dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
1307		raw_spin_unlock(&dl_b->lock);
1308		__dl_clear_params(p);
1309
1310		goto unlock;
1311	}
 
 
1312	if (dl_se->dl_non_contending == 0)
1313		goto unlock;
1314
1315	sub_running_bw(dl_se, &rq->dl);
1316	dl_se->dl_non_contending = 0;
1317unlock:
1318	task_rq_unlock(rq, p, &rf);
1319	put_task_struct(p);
 
 
 
 
 
1320
1321	return HRTIMER_NORESTART;
1322}
1323
1324void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se)
1325{
1326	struct hrtimer *timer = &dl_se->inactive_timer;
1327
1328	hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
1329	timer->function = inactive_task_timer;
1330}
1331
 
 
 
1332#ifdef CONFIG_SMP
1333
1334static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1335{
1336	struct rq *rq = rq_of_dl_rq(dl_rq);
1337
1338	if (dl_rq->earliest_dl.curr == 0 ||
1339	    dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
 
 
1340		dl_rq->earliest_dl.curr = deadline;
1341		cpudl_set(&rq->rd->cpudl, rq->cpu, deadline);
1342	}
1343}
1344
1345static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1346{
1347	struct rq *rq = rq_of_dl_rq(dl_rq);
1348
1349	/*
1350	 * Since we may have removed our earliest (and/or next earliest)
1351	 * task we must recompute them.
1352	 */
1353	if (!dl_rq->dl_nr_running) {
1354		dl_rq->earliest_dl.curr = 0;
1355		dl_rq->earliest_dl.next = 0;
1356		cpudl_clear(&rq->rd->cpudl, rq->cpu);
 
1357	} else {
1358		struct rb_node *leftmost = dl_rq->root.rb_leftmost;
1359		struct sched_dl_entity *entry;
1360
1361		entry = rb_entry(leftmost, struct sched_dl_entity, rb_node);
1362		dl_rq->earliest_dl.curr = entry->deadline;
1363		cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline);
1364	}
1365}
1366
1367#else
1368
1369static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
1370static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
1371
1372#endif /* CONFIG_SMP */
1373
1374static inline
1375void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1376{
1377	int prio = dl_task_of(dl_se)->prio;
1378	u64 deadline = dl_se->deadline;
1379
1380	WARN_ON(!dl_prio(prio));
1381	dl_rq->dl_nr_running++;
1382	add_nr_running(rq_of_dl_rq(dl_rq), 1);
1383
1384	inc_dl_deadline(dl_rq, deadline);
1385	inc_dl_migration(dl_se, dl_rq);
1386}
1387
1388static inline
1389void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1390{
1391	int prio = dl_task_of(dl_se)->prio;
1392
1393	WARN_ON(!dl_prio(prio));
1394	WARN_ON(!dl_rq->dl_nr_running);
1395	dl_rq->dl_nr_running--;
1396	sub_nr_running(rq_of_dl_rq(dl_rq), 1);
1397
1398	dec_dl_deadline(dl_rq, dl_se->deadline);
1399	dec_dl_migration(dl_se, dl_rq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1400}
1401
1402static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
1403{
1404	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1405	struct rb_node **link = &dl_rq->root.rb_root.rb_node;
1406	struct rb_node *parent = NULL;
1407	struct sched_dl_entity *entry;
1408	int leftmost = 1;
1409
1410	BUG_ON(!RB_EMPTY_NODE(&dl_se->rb_node));
1411
1412	while (*link) {
1413		parent = *link;
1414		entry = rb_entry(parent, struct sched_dl_entity, rb_node);
1415		if (dl_time_before(dl_se->deadline, entry->deadline))
1416			link = &parent->rb_left;
1417		else {
1418			link = &parent->rb_right;
1419			leftmost = 0;
1420		}
1421	}
1422
1423	rb_link_node(&dl_se->rb_node, parent, link);
1424	rb_insert_color_cached(&dl_se->rb_node, &dl_rq->root, leftmost);
 
1425
1426	inc_dl_tasks(dl_se, dl_rq);
1427}
1428
1429static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
1430{
1431	struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1432
1433	if (RB_EMPTY_NODE(&dl_se->rb_node))
1434		return;
1435
1436	rb_erase_cached(&dl_se->rb_node, &dl_rq->root);
 
1437	RB_CLEAR_NODE(&dl_se->rb_node);
1438
1439	dec_dl_tasks(dl_se, dl_rq);
1440}
1441
1442static void
1443enqueue_dl_entity(struct sched_dl_entity *dl_se,
1444		  struct sched_dl_entity *pi_se, int flags)
1445{
1446	BUG_ON(on_dl_rq(dl_se));
1447
1448	/*
1449	 * If this is a wakeup or a new instance, the scheduling
1450	 * parameters of the task might need updating. Otherwise,
1451	 * we want a replenishment of its runtime.
1452	 */
1453	if (flags & ENQUEUE_WAKEUP) {
1454		task_contending(dl_se, flags);
1455		update_dl_entity(dl_se, pi_se);
1456	} else if (flags & ENQUEUE_REPLENISH) {
1457		replenish_dl_entity(dl_se, pi_se);
1458	} else if ((flags & ENQUEUE_RESTORE) &&
1459		  dl_time_before(dl_se->deadline,
1460				 rq_clock(rq_of_dl_rq(dl_rq_of_se(dl_se))))) {
1461		setup_new_dl_entity(dl_se);
1462	}
1463
1464	__enqueue_dl_entity(dl_se);
1465}
1466
1467static void dequeue_dl_entity(struct sched_dl_entity *dl_se)
1468{
1469	__dequeue_dl_entity(dl_se);
1470}
1471
1472static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1473{
1474	struct task_struct *pi_task = rt_mutex_get_top_task(p);
1475	struct sched_dl_entity *pi_se = &p->dl;
1476
1477	/*
1478	 * Use the scheduling parameters of the top pi-waiter task if:
1479	 * - we have a top pi-waiter which is a SCHED_DEADLINE task AND
1480	 * - our dl_boosted is set (i.e. the pi-waiter's (absolute) deadline is
1481	 *   smaller than our deadline OR we are a !SCHED_DEADLINE task getting
1482	 *   boosted due to a SCHED_DEADLINE pi-waiter).
1483	 * Otherwise we keep our runtime and deadline.
1484	 */
1485	if (pi_task && dl_prio(pi_task->normal_prio) && p->dl.dl_boosted) {
1486		pi_se = &pi_task->dl;
1487	} else if (!dl_prio(p->normal_prio)) {
1488		/*
1489		 * Special case in which we have a !SCHED_DEADLINE task
1490		 * that is going to be deboosted, but exceeds its
1491		 * runtime while doing so. No point in replenishing
1492		 * it, as it's going to return back to its original
1493		 * scheduling class after this.
1494		 */
1495		BUG_ON(!p->dl.dl_boosted || flags != ENQUEUE_REPLENISH);
1496		return;
1497	}
1498
1499	/*
1500	 * Check if a constrained deadline task was activated
1501	 * after the deadline but before the next period.
1502	 * If that is the case, the task will be throttled and
1503	 * the replenishment timer will be set to the next period.
1504	 */
1505	if (!p->dl.dl_throttled && !dl_is_implicit(&p->dl))
1506		dl_check_constrained_dl(&p->dl);
 
 
 
1507
1508	if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & ENQUEUE_RESTORE) {
1509		add_rq_bw(&p->dl, &rq->dl);
1510		add_running_bw(&p->dl, &rq->dl);
1511	}
1512
1513	/*
1514	 * If p is throttled, we do not enqueue it. In fact, if it exhausted
1515	 * its budget it needs a replenishment and, since it now is on
1516	 * its rq, the bandwidth timer callback (which clearly has not
1517	 * run yet) will take care of this.
1518	 * However, the active utilization does not depend on the fact
1519	 * that the task is on the runqueue or not (but depends on the
1520	 * task's state - in GRUB parlance, "inactive" vs "active contending").
1521	 * In other words, even if a task is throttled its utilization must
1522	 * be counted in the active utilization; hence, we need to call
1523	 * add_running_bw().
1524	 */
1525	if (p->dl.dl_throttled && !(flags & ENQUEUE_REPLENISH)) {
1526		if (flags & ENQUEUE_WAKEUP)
1527			task_contending(&p->dl, flags);
1528
1529		return;
1530	}
1531
1532	enqueue_dl_entity(&p->dl, pi_se, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1533
1534	if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1535		enqueue_pushable_dl_task(rq, p);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1536}
1537
1538static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1539{
1540	dequeue_dl_entity(&p->dl);
1541	dequeue_pushable_dl_task(rq, p);
1542}
1543
1544static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1545{
1546	update_curr_dl(rq);
1547	__dequeue_task_dl(rq, p, flags);
1548
1549	if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & DEQUEUE_SAVE) {
1550		sub_running_bw(&p->dl, &rq->dl);
1551		sub_rq_bw(&p->dl, &rq->dl);
1552	}
1553
1554	/*
1555	 * This check allows to start the inactive timer (or to immediately
1556	 * decrease the active utilization, if needed) in two cases:
1557	 * when the task blocks and when it is terminating
1558	 * (p->state == TASK_DEAD). We can handle the two cases in the same
1559	 * way, because from GRUB's point of view the same thing is happening
1560	 * (the task moves from "active contending" to "active non contending"
1561	 * or "inactive")
1562	 */
1563	if (flags & DEQUEUE_SLEEP)
1564		task_non_contending(p);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1565}
1566
1567/*
1568 * Yield task semantic for -deadline tasks is:
1569 *
1570 *   get off from the CPU until our next instance, with
1571 *   a new runtime. This is of little use now, since we
1572 *   don't have a bandwidth reclaiming mechanism. Anyway,
1573 *   bandwidth reclaiming is planned for the future, and
1574 *   yield_task_dl will indicate that some spare budget
1575 *   is available for other task instances to use it.
1576 */
1577static void yield_task_dl(struct rq *rq)
1578{
1579	/*
1580	 * We make the task go to sleep until its current deadline by
1581	 * forcing its runtime to zero. This way, update_curr_dl() stops
1582	 * it and the bandwidth timer will wake it up and will give it
1583	 * new scheduling parameters (thanks to dl_yielded=1).
1584	 */
1585	rq->curr->dl.dl_yielded = 1;
1586
1587	update_rq_clock(rq);
1588	update_curr_dl(rq);
1589	/*
1590	 * Tell update_rq_clock() that we've just updated,
1591	 * so we don't do microscopic update in schedule()
1592	 * and double the fastpath cost.
1593	 */
1594	rq_clock_skip_update(rq);
1595}
1596
1597#ifdef CONFIG_SMP
1598
 
 
 
 
 
 
 
 
1599static int find_later_rq(struct task_struct *task);
1600
1601static int
1602select_task_rq_dl(struct task_struct *p, int cpu, int sd_flag, int flags)
1603{
1604	struct task_struct *curr;
 
1605	struct rq *rq;
1606
1607	if (sd_flag != SD_BALANCE_WAKE)
1608		goto out;
1609
1610	rq = cpu_rq(cpu);
1611
1612	rcu_read_lock();
1613	curr = READ_ONCE(rq->curr); /* unlocked access */
 
1614
1615	/*
1616	 * If we are dealing with a -deadline task, we must
1617	 * decide where to wake it up.
1618	 * If it has a later deadline and the current task
1619	 * on this rq can't move (provided the waking task
1620	 * can!) we prefer to send it somewhere else. On the
1621	 * other hand, if it has a shorter deadline, we
1622	 * try to make it stay here, it might be important.
1623	 */
1624	if (unlikely(dl_task(curr)) &&
1625	    (curr->nr_cpus_allowed < 2 ||
1626	     !dl_entity_preempt(&p->dl, &curr->dl)) &&
1627	    (p->nr_cpus_allowed > 1)) {
 
 
 
 
 
 
 
 
 
1628		int target = find_later_rq(p);
1629
1630		if (target != -1 &&
1631				(dl_time_before(p->dl.deadline,
1632					cpu_rq(target)->dl.earliest_dl.curr) ||
1633				(cpu_rq(target)->dl.dl_nr_running == 0)))
1634			cpu = target;
1635	}
1636	rcu_read_unlock();
1637
1638out:
1639	return cpu;
1640}
1641
1642static void migrate_task_rq_dl(struct task_struct *p, int new_cpu __maybe_unused)
1643{
 
1644	struct rq *rq;
1645
1646	if (p->state != TASK_WAKING)
1647		return;
1648
1649	rq = task_rq(p);
1650	/*
1651	 * Since p->state == TASK_WAKING, set_task_cpu() has been called
1652	 * from try_to_wake_up(). Hence, p->pi_lock is locked, but
1653	 * rq->lock is not... So, lock it
1654	 */
1655	raw_spin_lock(&rq->lock);
1656	if (p->dl.dl_non_contending) {
 
1657		sub_running_bw(&p->dl, &rq->dl);
1658		p->dl.dl_non_contending = 0;
1659		/*
1660		 * If the timer handler is currently running and the
1661		 * timer cannot be cancelled, inactive_task_timer()
1662		 * will see that dl_not_contending is not set, and
1663		 * will not touch the rq's active utilization,
1664		 * so we are still safe.
1665		 */
1666		if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
1667			put_task_struct(p);
1668	}
1669	sub_rq_bw(&p->dl, &rq->dl);
1670	raw_spin_unlock(&rq->lock);
1671}
1672
1673static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
1674{
1675	/*
1676	 * Current can't be migrated, useless to reschedule,
1677	 * let's hope p can move out.
1678	 */
1679	if (rq->curr->nr_cpus_allowed == 1 ||
1680	    !cpudl_find(&rq->rd->cpudl, rq->curr, NULL))
1681		return;
1682
1683	/*
1684	 * p is migratable, so let's not schedule it and
1685	 * see if it is pushed or pulled somewhere else.
1686	 */
1687	if (p->nr_cpus_allowed != 1 &&
1688	    cpudl_find(&rq->rd->cpudl, p, NULL))
1689		return;
1690
1691	resched_curr(rq);
1692}
1693
1694static int balance_dl(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1695{
1696	if (!on_dl_rq(&p->dl) && need_pull_dl_task(rq, p)) {
1697		/*
1698		 * This is OK, because current is on_cpu, which avoids it being
1699		 * picked for load-balance and preemption/IRQs are still
1700		 * disabled avoiding further scheduler activity on it and we've
1701		 * not yet started the picking loop.
1702		 */
1703		rq_unpin_lock(rq, rf);
1704		pull_dl_task(rq);
1705		rq_repin_lock(rq, rf);
1706	}
1707
1708	return sched_stop_runnable(rq) || sched_dl_runnable(rq);
1709}
1710#endif /* CONFIG_SMP */
1711
1712/*
1713 * Only called when both the current and waking task are -deadline
1714 * tasks.
1715 */
1716static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
1717				  int flags)
1718{
1719	if (dl_entity_preempt(&p->dl, &rq->curr->dl)) {
1720		resched_curr(rq);
1721		return;
1722	}
1723
1724#ifdef CONFIG_SMP
1725	/*
1726	 * In the unlikely case current and p have the same deadline
1727	 * let us try to decide what's the best thing to do...
1728	 */
1729	if ((p->dl.deadline == rq->curr->dl.deadline) &&
1730	    !test_tsk_need_resched(rq->curr))
1731		check_preempt_equal_dl(rq, p);
1732#endif /* CONFIG_SMP */
1733}
1734
1735#ifdef CONFIG_SCHED_HRTICK
1736static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1737{
1738	hrtick_start(rq, p->dl.runtime);
1739}
1740#else /* !CONFIG_SCHED_HRTICK */
1741static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1742{
1743}
1744#endif
1745
1746static void set_next_task_dl(struct rq *rq, struct task_struct *p)
1747{
 
 
 
1748	p->se.exec_start = rq_clock_task(rq);
 
 
1749
1750	/* You can't push away the running task */
1751	dequeue_pushable_dl_task(rq, p);
1752
1753	if (hrtick_enabled(rq))
1754		start_hrtick_dl(rq, p);
1755
1756	if (rq->curr->sched_class != &dl_sched_class)
1757		update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0);
1758
1759	deadline_queue_push_tasks(rq);
 
 
 
1760}
1761
1762static struct sched_dl_entity *pick_next_dl_entity(struct rq *rq,
1763						   struct dl_rq *dl_rq)
1764{
1765	struct rb_node *left = rb_first_cached(&dl_rq->root);
1766
1767	if (!left)
1768		return NULL;
1769
1770	return rb_entry(left, struct sched_dl_entity, rb_node);
1771}
1772
1773static struct task_struct *
1774pick_next_task_dl(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
 
 
 
1775{
1776	struct sched_dl_entity *dl_se;
1777	struct dl_rq *dl_rq = &rq->dl;
1778	struct task_struct *p;
1779
1780	WARN_ON_ONCE(prev || rf);
1781
1782	if (!sched_dl_runnable(rq))
1783		return NULL;
1784
1785	dl_se = pick_next_dl_entity(rq, dl_rq);
1786	BUG_ON(!dl_se);
1787	p = dl_task_of(dl_se);
1788	set_next_task_dl(rq, p);
 
 
 
 
 
 
 
 
 
 
 
 
 
1789	return p;
1790}
1791
1792static void put_prev_task_dl(struct rq *rq, struct task_struct *p)
1793{
 
 
 
 
 
 
 
 
 
 
 
1794	update_curr_dl(rq);
1795
1796	update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
1797	if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
1798		enqueue_pushable_dl_task(rq, p);
1799}
1800
1801/*
1802 * scheduler tick hitting a task of our scheduling class.
1803 *
1804 * NOTE: This function can be called remotely by the tick offload that
1805 * goes along full dynticks. Therefore no local assumption can be made
1806 * and everything must be accessed through the @rq and @curr passed in
1807 * parameters.
1808 */
1809static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
1810{
1811	update_curr_dl(rq);
1812
1813	update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
1814	/*
1815	 * Even when we have runtime, update_curr_dl() might have resulted in us
1816	 * not being the leftmost task anymore. In that case NEED_RESCHED will
1817	 * be set and schedule() will start a new hrtick for the next task.
1818	 */
1819	if (hrtick_enabled(rq) && queued && p->dl.runtime > 0 &&
1820	    is_leftmost(p, &rq->dl))
1821		start_hrtick_dl(rq, p);
1822}
1823
1824static void task_fork_dl(struct task_struct *p)
1825{
1826	/*
1827	 * SCHED_DEADLINE tasks cannot fork and this is achieved through
1828	 * sched_fork()
1829	 */
1830}
1831
1832#ifdef CONFIG_SMP
1833
1834/* Only try algorithms three times */
1835#define DL_MAX_TRIES 3
1836
1837static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu)
1838{
1839	if (!task_running(rq, p) &&
1840	    cpumask_test_cpu(cpu, p->cpus_ptr))
1841		return 1;
1842	return 0;
1843}
1844
1845/*
1846 * Return the earliest pushable rq's task, which is suitable to be executed
1847 * on the CPU, NULL otherwise:
1848 */
1849static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu)
1850{
1851	struct rb_node *next_node = rq->dl.pushable_dl_tasks_root.rb_leftmost;
1852	struct task_struct *p = NULL;
 
1853
1854	if (!has_pushable_dl_tasks(rq))
1855		return NULL;
1856
 
 
1857next_node:
1858	if (next_node) {
1859		p = rb_entry(next_node, struct task_struct, pushable_dl_tasks);
1860
1861		if (pick_dl_task(rq, p, cpu))
1862			return p;
1863
1864		next_node = rb_next(next_node);
1865		goto next_node;
1866	}
1867
1868	return NULL;
1869}
1870
1871static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
1872
1873static int find_later_rq(struct task_struct *task)
1874{
1875	struct sched_domain *sd;
1876	struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl);
1877	int this_cpu = smp_processor_id();
1878	int cpu = task_cpu(task);
1879
1880	/* Make sure the mask is initialized first */
1881	if (unlikely(!later_mask))
1882		return -1;
1883
1884	if (task->nr_cpus_allowed == 1)
1885		return -1;
1886
1887	/*
1888	 * We have to consider system topology and task affinity
1889	 * first, then we can look for a suitable CPU.
1890	 */
1891	if (!cpudl_find(&task_rq(task)->rd->cpudl, task, later_mask))
1892		return -1;
1893
1894	/*
1895	 * If we are here, some targets have been found, including
1896	 * the most suitable which is, among the runqueues where the
1897	 * current tasks have later deadlines than the task's one, the
1898	 * rq with the latest possible one.
1899	 *
1900	 * Now we check how well this matches with task's
1901	 * affinity and system topology.
1902	 *
1903	 * The last CPU where the task run is our first
1904	 * guess, since it is most likely cache-hot there.
1905	 */
1906	if (cpumask_test_cpu(cpu, later_mask))
1907		return cpu;
1908	/*
1909	 * Check if this_cpu is to be skipped (i.e., it is
1910	 * not in the mask) or not.
1911	 */
1912	if (!cpumask_test_cpu(this_cpu, later_mask))
1913		this_cpu = -1;
1914
1915	rcu_read_lock();
1916	for_each_domain(cpu, sd) {
1917		if (sd->flags & SD_WAKE_AFFINE) {
1918			int best_cpu;
1919
1920			/*
1921			 * If possible, preempting this_cpu is
1922			 * cheaper than migrating.
1923			 */
1924			if (this_cpu != -1 &&
1925			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1926				rcu_read_unlock();
1927				return this_cpu;
1928			}
1929
1930			best_cpu = cpumask_first_and(later_mask,
1931							sched_domain_span(sd));
1932			/*
1933			 * Last chance: if a CPU being in both later_mask
1934			 * and current sd span is valid, that becomes our
1935			 * choice. Of course, the latest possible CPU is
1936			 * already under consideration through later_mask.
1937			 */
1938			if (best_cpu < nr_cpu_ids) {
1939				rcu_read_unlock();
1940				return best_cpu;
1941			}
1942		}
1943	}
1944	rcu_read_unlock();
1945
1946	/*
1947	 * At this point, all our guesses failed, we just return
1948	 * 'something', and let the caller sort the things out.
1949	 */
1950	if (this_cpu != -1)
1951		return this_cpu;
1952
1953	cpu = cpumask_any(later_mask);
1954	if (cpu < nr_cpu_ids)
1955		return cpu;
1956
1957	return -1;
1958}
1959
1960/* Locks the rq it finds */
1961static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
1962{
1963	struct rq *later_rq = NULL;
1964	int tries;
1965	int cpu;
1966
1967	for (tries = 0; tries < DL_MAX_TRIES; tries++) {
1968		cpu = find_later_rq(task);
1969
1970		if ((cpu == -1) || (cpu == rq->cpu))
1971			break;
1972
1973		later_rq = cpu_rq(cpu);
1974
1975		if (later_rq->dl.dl_nr_running &&
1976		    !dl_time_before(task->dl.deadline,
1977					later_rq->dl.earliest_dl.curr)) {
1978			/*
1979			 * Target rq has tasks of equal or earlier deadline,
1980			 * retrying does not release any lock and is unlikely
1981			 * to yield a different result.
1982			 */
1983			later_rq = NULL;
1984			break;
1985		}
1986
1987		/* Retry if something changed. */
1988		if (double_lock_balance(rq, later_rq)) {
1989			if (unlikely(task_rq(task) != rq ||
1990				     !cpumask_test_cpu(later_rq->cpu, task->cpus_ptr) ||
1991				     task_running(rq, task) ||
1992				     !dl_task(task) ||
 
1993				     !task_on_rq_queued(task))) {
1994				double_unlock_balance(rq, later_rq);
1995				later_rq = NULL;
1996				break;
1997			}
1998		}
1999
2000		/*
2001		 * If the rq we found has no -deadline task, or
2002		 * its earliest one has a later deadline than our
2003		 * task, the rq is a good one.
2004		 */
2005		if (!later_rq->dl.dl_nr_running ||
2006		    dl_time_before(task->dl.deadline,
2007				   later_rq->dl.earliest_dl.curr))
2008			break;
2009
2010		/* Otherwise we try again. */
2011		double_unlock_balance(rq, later_rq);
2012		later_rq = NULL;
2013	}
2014
2015	return later_rq;
2016}
2017
2018static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
2019{
2020	struct task_struct *p;
2021
2022	if (!has_pushable_dl_tasks(rq))
2023		return NULL;
2024
2025	p = rb_entry(rq->dl.pushable_dl_tasks_root.rb_leftmost,
2026		     struct task_struct, pushable_dl_tasks);
2027
2028	BUG_ON(rq->cpu != task_cpu(p));
2029	BUG_ON(task_current(rq, p));
2030	BUG_ON(p->nr_cpus_allowed <= 1);
2031
2032	BUG_ON(!task_on_rq_queued(p));
2033	BUG_ON(!dl_task(p));
2034
2035	return p;
2036}
2037
2038/*
2039 * See if the non running -deadline tasks on this rq
2040 * can be sent to some other CPU where they can preempt
2041 * and start executing.
2042 */
2043static int push_dl_task(struct rq *rq)
2044{
2045	struct task_struct *next_task;
2046	struct rq *later_rq;
2047	int ret = 0;
2048
2049	if (!rq->dl.overloaded)
2050		return 0;
2051
2052	next_task = pick_next_pushable_dl_task(rq);
2053	if (!next_task)
2054		return 0;
2055
2056retry:
2057	if (WARN_ON(next_task == rq->curr))
2058		return 0;
2059
2060	/*
2061	 * If next_task preempts rq->curr, and rq->curr
2062	 * can move away, it makes sense to just reschedule
2063	 * without going further in pushing next_task.
2064	 */
2065	if (dl_task(rq->curr) &&
2066	    dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) &&
2067	    rq->curr->nr_cpus_allowed > 1) {
2068		resched_curr(rq);
2069		return 0;
2070	}
2071
 
 
 
 
 
 
2072	/* We might release rq lock */
2073	get_task_struct(next_task);
2074
2075	/* Will lock the rq it'll find */
2076	later_rq = find_lock_later_rq(next_task, rq);
2077	if (!later_rq) {
2078		struct task_struct *task;
2079
2080		/*
2081		 * We must check all this again, since
2082		 * find_lock_later_rq releases rq->lock and it is
2083		 * then possible that next_task has migrated.
2084		 */
2085		task = pick_next_pushable_dl_task(rq);
2086		if (task == next_task) {
2087			/*
2088			 * The task is still there. We don't try
2089			 * again, some other CPU will pull it when ready.
2090			 */
2091			goto out;
2092		}
2093
2094		if (!task)
2095			/* No more tasks */
2096			goto out;
2097
2098		put_task_struct(next_task);
2099		next_task = task;
2100		goto retry;
2101	}
2102
2103	deactivate_task(rq, next_task, 0);
2104	set_task_cpu(next_task, later_rq->cpu);
2105
2106	/*
2107	 * Update the later_rq clock here, because the clock is used
2108	 * by the cpufreq_update_util() inside __add_running_bw().
2109	 */
2110	update_rq_clock(later_rq);
2111	activate_task(later_rq, next_task, ENQUEUE_NOCLOCK);
2112	ret = 1;
2113
2114	resched_curr(later_rq);
2115
2116	double_unlock_balance(rq, later_rq);
2117
2118out:
2119	put_task_struct(next_task);
2120
2121	return ret;
2122}
2123
2124static void push_dl_tasks(struct rq *rq)
2125{
2126	/* push_dl_task() will return true if it moved a -deadline task */
2127	while (push_dl_task(rq))
2128		;
2129}
2130
2131static void pull_dl_task(struct rq *this_rq)
2132{
2133	int this_cpu = this_rq->cpu, cpu;
2134	struct task_struct *p;
2135	bool resched = false;
2136	struct rq *src_rq;
2137	u64 dmin = LONG_MAX;
2138
2139	if (likely(!dl_overloaded(this_rq)))
2140		return;
2141
2142	/*
2143	 * Match the barrier from dl_set_overloaded; this guarantees that if we
2144	 * see overloaded we must also see the dlo_mask bit.
2145	 */
2146	smp_rmb();
2147
2148	for_each_cpu(cpu, this_rq->rd->dlo_mask) {
2149		if (this_cpu == cpu)
2150			continue;
2151
2152		src_rq = cpu_rq(cpu);
2153
2154		/*
2155		 * It looks racy, abd it is! However, as in sched_rt.c,
2156		 * we are fine with this.
2157		 */
2158		if (this_rq->dl.dl_nr_running &&
2159		    dl_time_before(this_rq->dl.earliest_dl.curr,
2160				   src_rq->dl.earliest_dl.next))
2161			continue;
2162
2163		/* Might drop this_rq->lock */
 
2164		double_lock_balance(this_rq, src_rq);
2165
2166		/*
2167		 * If there are no more pullable tasks on the
2168		 * rq, we're done with it.
2169		 */
2170		if (src_rq->dl.dl_nr_running <= 1)
2171			goto skip;
2172
2173		p = pick_earliest_pushable_dl_task(src_rq, this_cpu);
2174
2175		/*
2176		 * We found a task to be pulled if:
2177		 *  - it preempts our current (if there's one),
2178		 *  - it will preempt the last one we pulled (if any).
2179		 */
2180		if (p && dl_time_before(p->dl.deadline, dmin) &&
2181		    (!this_rq->dl.dl_nr_running ||
2182		     dl_time_before(p->dl.deadline,
2183				    this_rq->dl.earliest_dl.curr))) {
2184			WARN_ON(p == src_rq->curr);
2185			WARN_ON(!task_on_rq_queued(p));
2186
2187			/*
2188			 * Then we pull iff p has actually an earlier
2189			 * deadline than the current task of its runqueue.
2190			 */
2191			if (dl_time_before(p->dl.deadline,
2192					   src_rq->curr->dl.deadline))
2193				goto skip;
2194
2195			resched = true;
2196
2197			deactivate_task(src_rq, p, 0);
2198			set_task_cpu(p, this_cpu);
2199			activate_task(this_rq, p, 0);
2200			dmin = p->dl.deadline;
 
2201
2202			/* Is there any other task even earlier? */
2203		}
2204skip:
2205		double_unlock_balance(this_rq, src_rq);
 
 
 
 
 
 
 
 
 
2206	}
2207
2208	if (resched)
2209		resched_curr(this_rq);
2210}
2211
2212/*
2213 * Since the task is not running and a reschedule is not going to happen
2214 * anytime soon on its runqueue, we try pushing it away now.
2215 */
2216static void task_woken_dl(struct rq *rq, struct task_struct *p)
2217{
2218	if (!task_running(rq, p) &&
2219	    !test_tsk_need_resched(rq->curr) &&
2220	    p->nr_cpus_allowed > 1 &&
2221	    dl_task(rq->curr) &&
2222	    (rq->curr->nr_cpus_allowed < 2 ||
2223	     !dl_entity_preempt(&p->dl, &rq->curr->dl))) {
2224		push_dl_tasks(rq);
2225	}
2226}
2227
2228static void set_cpus_allowed_dl(struct task_struct *p,
2229				const struct cpumask *new_mask)
2230{
2231	struct root_domain *src_rd;
2232	struct rq *rq;
2233
2234	BUG_ON(!dl_task(p));
2235
2236	rq = task_rq(p);
2237	src_rd = rq->rd;
2238	/*
2239	 * Migrating a SCHED_DEADLINE task between exclusive
2240	 * cpusets (different root_domains) entails a bandwidth
2241	 * update. We already made space for us in the destination
2242	 * domain (see cpuset_can_attach()).
2243	 */
2244	if (!cpumask_intersects(src_rd->span, new_mask)) {
2245		struct dl_bw *src_dl_b;
2246
2247		src_dl_b = dl_bw_of(cpu_of(rq));
2248		/*
2249		 * We now free resources of the root_domain we are migrating
2250		 * off. In the worst case, sched_setattr() may temporary fail
2251		 * until we complete the update.
2252		 */
2253		raw_spin_lock(&src_dl_b->lock);
2254		__dl_sub(src_dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
2255		raw_spin_unlock(&src_dl_b->lock);
2256	}
2257
2258	set_cpus_allowed_common(p, new_mask);
2259}
2260
2261/* Assumes rq->lock is held */
2262static void rq_online_dl(struct rq *rq)
2263{
2264	if (rq->dl.overloaded)
2265		dl_set_overload(rq);
2266
2267	cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu);
2268	if (rq->dl.dl_nr_running > 0)
2269		cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr);
2270}
2271
2272/* Assumes rq->lock is held */
2273static void rq_offline_dl(struct rq *rq)
2274{
2275	if (rq->dl.overloaded)
2276		dl_clear_overload(rq);
2277
2278	cpudl_clear(&rq->rd->cpudl, rq->cpu);
2279	cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu);
2280}
2281
2282void __init init_sched_dl_class(void)
2283{
2284	unsigned int i;
2285
2286	for_each_possible_cpu(i)
2287		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
2288					GFP_KERNEL, cpu_to_node(i));
2289}
2290
2291void dl_add_task_root_domain(struct task_struct *p)
2292{
2293	struct rq_flags rf;
2294	struct rq *rq;
2295	struct dl_bw *dl_b;
2296
2297	rq = task_rq_lock(p, &rf);
2298	if (!dl_task(p))
2299		goto unlock;
 
 
 
 
2300
2301	dl_b = &rq->rd->dl_bw;
2302	raw_spin_lock(&dl_b->lock);
2303
2304	__dl_add(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
2305
2306	raw_spin_unlock(&dl_b->lock);
2307
2308unlock:
2309	task_rq_unlock(rq, p, &rf);
2310}
2311
2312void dl_clear_root_domain(struct root_domain *rd)
2313{
2314	unsigned long flags;
2315
2316	raw_spin_lock_irqsave(&rd->dl_bw.lock, flags);
2317	rd->dl_bw.total_bw = 0;
2318	raw_spin_unlock_irqrestore(&rd->dl_bw.lock, flags);
2319}
2320
2321#endif /* CONFIG_SMP */
2322
2323static void switched_from_dl(struct rq *rq, struct task_struct *p)
2324{
2325	/*
2326	 * task_non_contending() can start the "inactive timer" (if the 0-lag
2327	 * time is in the future). If the task switches back to dl before
2328	 * the "inactive timer" fires, it can continue to consume its current
2329	 * runtime using its current deadline. If it stays outside of
2330	 * SCHED_DEADLINE until the 0-lag time passes, inactive_task_timer()
2331	 * will reset the task parameters.
2332	 */
2333	if (task_on_rq_queued(p) && p->dl.dl_runtime)
2334		task_non_contending(p);
 
 
 
 
 
 
2335
2336	if (!task_on_rq_queued(p)) {
2337		/*
2338		 * Inactive timer is armed. However, p is leaving DEADLINE and
2339		 * might migrate away from this rq while continuing to run on
2340		 * some other class. We need to remove its contribution from
2341		 * this rq running_bw now, or sub_rq_bw (below) will complain.
2342		 */
2343		if (p->dl.dl_non_contending)
2344			sub_running_bw(&p->dl, &rq->dl);
2345		sub_rq_bw(&p->dl, &rq->dl);
2346	}
2347
2348	/*
2349	 * We cannot use inactive_task_timer() to invoke sub_running_bw()
2350	 * at the 0-lag time, because the task could have been migrated
2351	 * while SCHED_OTHER in the meanwhile.
2352	 */
2353	if (p->dl.dl_non_contending)
2354		p->dl.dl_non_contending = 0;
2355
2356	/*
2357	 * Since this might be the only -deadline task on the rq,
2358	 * this is the right place to try to pull some other one
2359	 * from an overloaded CPU, if any.
2360	 */
2361	if (!task_on_rq_queued(p) || rq->dl.dl_nr_running)
2362		return;
2363
2364	deadline_queue_pull_task(rq);
2365}
2366
2367/*
2368 * When switching to -deadline, we may overload the rq, then
2369 * we try to push someone off, if possible.
2370 */
2371static void switched_to_dl(struct rq *rq, struct task_struct *p)
2372{
2373	if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
2374		put_task_struct(p);
2375
 
 
 
 
 
 
2376	/* If p is not queued we will update its parameters at next wakeup. */
2377	if (!task_on_rq_queued(p)) {
2378		add_rq_bw(&p->dl, &rq->dl);
2379
2380		return;
2381	}
2382
2383	if (rq->curr != p) {
2384#ifdef CONFIG_SMP
2385		if (p->nr_cpus_allowed > 1 && rq->dl.overloaded)
2386			deadline_queue_push_tasks(rq);
2387#endif
2388		if (dl_task(rq->curr))
2389			check_preempt_curr_dl(rq, p, 0);
2390		else
2391			resched_curr(rq);
 
 
2392	}
2393}
2394
2395/*
2396 * If the scheduling parameters of a -deadline task changed,
2397 * a push or pull operation might be needed.
2398 */
2399static void prio_changed_dl(struct rq *rq, struct task_struct *p,
2400			    int oldprio)
2401{
2402	if (task_on_rq_queued(p) || rq->curr == p) {
 
 
2403#ifdef CONFIG_SMP
2404		/*
2405		 * This might be too much, but unfortunately
2406		 * we don't have the old deadline value, and
2407		 * we can't argue if the task is increasing
2408		 * or lowering its prio, so...
2409		 */
2410		if (!rq->dl.overloaded)
2411			deadline_queue_pull_task(rq);
2412
 
2413		/*
2414		 * If we now have a earlier deadline task than p,
2415		 * then reschedule, provided p is still on this
2416		 * runqueue.
2417		 */
2418		if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline))
2419			resched_curr(rq);
2420#else
2421		/*
2422		 * Again, we don't know if p has a earlier
2423		 * or later deadline, so let's blindly set a
2424		 * (maybe not needed) rescheduling point.
 
2425		 */
2426		resched_curr(rq);
2427#endif /* CONFIG_SMP */
 
2428	}
 
 
 
 
 
 
 
2429}
2430
2431const struct sched_class dl_sched_class = {
2432	.next			= &rt_sched_class,
 
 
 
 
 
 
 
2433	.enqueue_task		= enqueue_task_dl,
2434	.dequeue_task		= dequeue_task_dl,
2435	.yield_task		= yield_task_dl,
2436
2437	.check_preempt_curr	= check_preempt_curr_dl,
2438
2439	.pick_next_task		= pick_next_task_dl,
2440	.put_prev_task		= put_prev_task_dl,
2441	.set_next_task		= set_next_task_dl,
2442
2443#ifdef CONFIG_SMP
2444	.balance		= balance_dl,
2445	.select_task_rq		= select_task_rq_dl,
2446	.migrate_task_rq	= migrate_task_rq_dl,
2447	.set_cpus_allowed       = set_cpus_allowed_dl,
2448	.rq_online              = rq_online_dl,
2449	.rq_offline             = rq_offline_dl,
2450	.task_woken		= task_woken_dl,
 
2451#endif
2452
2453	.task_tick		= task_tick_dl,
2454	.task_fork              = task_fork_dl,
2455
2456	.prio_changed           = prio_changed_dl,
2457	.switched_from		= switched_from_dl,
2458	.switched_to		= switched_to_dl,
2459
2460	.update_curr		= update_curr_dl,
 
 
 
2461};
2462
 
 
 
2463int sched_dl_global_validate(void)
2464{
2465	u64 runtime = global_rt_runtime();
2466	u64 period = global_rt_period();
2467	u64 new_bw = to_ratio(period, runtime);
 
2468	struct dl_bw *dl_b;
2469	int cpu, ret = 0;
2470	unsigned long flags;
2471
2472	/*
2473	 * Here we want to check the bandwidth not being set to some
2474	 * value smaller than the currently allocated bandwidth in
2475	 * any of the root_domains.
2476	 *
2477	 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
2478	 * cycling on root_domains... Discussion on different/better
2479	 * solutions is welcome!
2480	 */
2481	for_each_possible_cpu(cpu) {
2482		rcu_read_lock_sched();
 
 
 
 
2483		dl_b = dl_bw_of(cpu);
 
2484
2485		raw_spin_lock_irqsave(&dl_b->lock, flags);
2486		if (new_bw < dl_b->total_bw)
2487			ret = -EBUSY;
2488		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2489
 
2490		rcu_read_unlock_sched();
2491
2492		if (ret)
2493			break;
2494	}
2495
2496	return ret;
2497}
2498
2499void init_dl_rq_bw_ratio(struct dl_rq *dl_rq)
2500{
2501	if (global_rt_runtime() == RUNTIME_INF) {
2502		dl_rq->bw_ratio = 1 << RATIO_SHIFT;
2503		dl_rq->extra_bw = 1 << BW_SHIFT;
2504	} else {
2505		dl_rq->bw_ratio = to_ratio(global_rt_runtime(),
2506			  global_rt_period()) >> (BW_SHIFT - RATIO_SHIFT);
2507		dl_rq->extra_bw = to_ratio(global_rt_period(),
2508						    global_rt_runtime());
2509	}
2510}
2511
2512void sched_dl_do_global(void)
2513{
2514	u64 new_bw = -1;
 
2515	struct dl_bw *dl_b;
2516	int cpu;
2517	unsigned long flags;
2518
2519	def_dl_bandwidth.dl_period = global_rt_period();
2520	def_dl_bandwidth.dl_runtime = global_rt_runtime();
2521
2522	if (global_rt_runtime() != RUNTIME_INF)
2523		new_bw = to_ratio(global_rt_period(), global_rt_runtime());
2524
2525	/*
2526	 * FIXME: As above...
2527	 */
2528	for_each_possible_cpu(cpu) {
2529		rcu_read_lock_sched();
 
 
 
 
 
 
2530		dl_b = dl_bw_of(cpu);
2531
2532		raw_spin_lock_irqsave(&dl_b->lock, flags);
2533		dl_b->bw = new_bw;
2534		raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2535
2536		rcu_read_unlock_sched();
2537		init_dl_rq_bw_ratio(&cpu_rq(cpu)->dl);
2538	}
2539}
2540
2541/*
2542 * We must be sure that accepting a new task (or allowing changing the
2543 * parameters of an existing one) is consistent with the bandwidth
2544 * constraints. If yes, this function also accordingly updates the currently
2545 * allocated bandwidth to reflect the new situation.
2546 *
2547 * This function is called while holding p's rq->lock.
2548 */
2549int sched_dl_overflow(struct task_struct *p, int policy,
2550		      const struct sched_attr *attr)
2551{
2552	struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2553	u64 period = attr->sched_period ?: attr->sched_deadline;
2554	u64 runtime = attr->sched_runtime;
2555	u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2556	int cpus, err = -1;
 
 
2557
2558	if (attr->sched_flags & SCHED_FLAG_SUGOV)
2559		return 0;
2560
2561	/* !deadline task may carry old deadline bandwidth */
2562	if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
2563		return 0;
2564
2565	/*
2566	 * Either if a task, enters, leave, or stays -deadline but changes
2567	 * its parameters, we may need to update accordingly the total
2568	 * allocated bandwidth of the container.
2569	 */
2570	raw_spin_lock(&dl_b->lock);
2571	cpus = dl_bw_cpus(task_cpu(p));
 
 
2572	if (dl_policy(policy) && !task_has_dl_policy(p) &&
2573	    !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2574		if (hrtimer_active(&p->dl.inactive_timer))
2575			__dl_sub(dl_b, p->dl.dl_bw, cpus);
2576		__dl_add(dl_b, new_bw, cpus);
2577		err = 0;
2578	} else if (dl_policy(policy) && task_has_dl_policy(p) &&
2579		   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2580		/*
2581		 * XXX this is slightly incorrect: when the task
2582		 * utilization decreases, we should delay the total
2583		 * utilization change until the task's 0-lag point.
2584		 * But this would require to set the task's "inactive
2585		 * timer" when the task is not inactive.
2586		 */
2587		__dl_sub(dl_b, p->dl.dl_bw, cpus);
2588		__dl_add(dl_b, new_bw, cpus);
2589		dl_change_utilization(p, new_bw);
2590		err = 0;
2591	} else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2592		/*
2593		 * Do not decrease the total deadline utilization here,
2594		 * switched_from_dl() will take care to do it at the correct
2595		 * (0-lag) time.
2596		 */
2597		err = 0;
2598	}
2599	raw_spin_unlock(&dl_b->lock);
2600
2601	return err;
2602}
2603
2604/*
2605 * This function initializes the sched_dl_entity of a newly becoming
2606 * SCHED_DEADLINE task.
2607 *
2608 * Only the static values are considered here, the actual runtime and the
2609 * absolute deadline will be properly calculated when the task is enqueued
2610 * for the first time with its new policy.
2611 */
2612void __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
2613{
2614	struct sched_dl_entity *dl_se = &p->dl;
2615
2616	dl_se->dl_runtime = attr->sched_runtime;
2617	dl_se->dl_deadline = attr->sched_deadline;
2618	dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
2619	dl_se->flags = attr->sched_flags;
2620	dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
2621	dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime);
2622}
2623
2624void __getparam_dl(struct task_struct *p, struct sched_attr *attr)
2625{
2626	struct sched_dl_entity *dl_se = &p->dl;
2627
2628	attr->sched_priority = p->rt_priority;
2629	attr->sched_runtime = dl_se->dl_runtime;
2630	attr->sched_deadline = dl_se->dl_deadline;
2631	attr->sched_period = dl_se->dl_period;
2632	attr->sched_flags = dl_se->flags;
 
2633}
2634
2635/*
2636 * This function validates the new parameters of a -deadline task.
2637 * We ask for the deadline not being zero, and greater or equal
2638 * than the runtime, as well as the period of being zero or
2639 * greater than deadline. Furthermore, we have to be sure that
2640 * user parameters are above the internal resolution of 1us (we
2641 * check sched_runtime only since it is always the smaller one) and
2642 * below 2^63 ns (we have to check both sched_deadline and
2643 * sched_period, as the latter can be zero).
2644 */
2645bool __checkparam_dl(const struct sched_attr *attr)
2646{
 
 
2647	/* special dl tasks don't actually use any parameter */
2648	if (attr->sched_flags & SCHED_FLAG_SUGOV)
2649		return true;
2650
2651	/* deadline != 0 */
2652	if (attr->sched_deadline == 0)
2653		return false;
2654
2655	/*
2656	 * Since we truncate DL_SCALE bits, make sure we're at least
2657	 * that big.
2658	 */
2659	if (attr->sched_runtime < (1ULL << DL_SCALE))
2660		return false;
2661
2662	/*
2663	 * Since we use the MSB for wrap-around and sign issues, make
2664	 * sure it's not set (mind that period can be equal to zero).
2665	 */
2666	if (attr->sched_deadline & (1ULL << 63) ||
2667	    attr->sched_period & (1ULL << 63))
2668		return false;
2669
 
 
 
 
2670	/* runtime <= deadline <= period (if period != 0) */
2671	if ((attr->sched_period != 0 &&
2672	     attr->sched_period < attr->sched_deadline) ||
2673	    attr->sched_deadline < attr->sched_runtime)
2674		return false;
2675
 
 
 
 
 
 
2676	return true;
2677}
2678
2679/*
2680 * This function clears the sched_dl_entity static params.
2681 */
2682void __dl_clear_params(struct task_struct *p)
2683{
2684	struct sched_dl_entity *dl_se = &p->dl;
2685
2686	dl_se->dl_runtime		= 0;
2687	dl_se->dl_deadline		= 0;
2688	dl_se->dl_period		= 0;
2689	dl_se->flags			= 0;
2690	dl_se->dl_bw			= 0;
2691	dl_se->dl_density		= 0;
2692
2693	dl_se->dl_throttled		= 0;
2694	dl_se->dl_yielded		= 0;
2695	dl_se->dl_non_contending	= 0;
2696	dl_se->dl_overrun		= 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
2697}
2698
2699bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr)
2700{
2701	struct sched_dl_entity *dl_se = &p->dl;
2702
2703	if (dl_se->dl_runtime != attr->sched_runtime ||
2704	    dl_se->dl_deadline != attr->sched_deadline ||
2705	    dl_se->dl_period != attr->sched_period ||
2706	    dl_se->flags != attr->sched_flags)
2707		return true;
2708
2709	return false;
2710}
2711
2712#ifdef CONFIG_SMP
2713int dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed)
2714{
2715	unsigned int dest_cpu;
2716	struct dl_bw *dl_b;
2717	bool overflow;
2718	int cpus, ret;
2719	unsigned long flags;
2720
2721	dest_cpu = cpumask_any_and(cpu_active_mask, cs_cpus_allowed);
2722
2723	rcu_read_lock_sched();
2724	dl_b = dl_bw_of(dest_cpu);
2725	raw_spin_lock_irqsave(&dl_b->lock, flags);
2726	cpus = dl_bw_cpus(dest_cpu);
2727	overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
2728	if (overflow) {
2729		ret = -EBUSY;
2730	} else {
2731		/*
2732		 * We reserve space for this task in the destination
2733		 * root_domain, as we can't fail after this point.
2734		 * We will free resources in the source root_domain
2735		 * later on (see set_cpus_allowed_dl()).
2736		 */
2737		__dl_add(dl_b, p->dl.dl_bw, cpus);
2738		ret = 0;
2739	}
2740	raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2741	rcu_read_unlock_sched();
2742
2743	return ret;
2744}
2745
2746int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur,
2747				 const struct cpumask *trial)
2748{
2749	int ret = 1, trial_cpus;
2750	struct dl_bw *cur_dl_b;
2751	unsigned long flags;
2752
2753	rcu_read_lock_sched();
2754	cur_dl_b = dl_bw_of(cpumask_any(cur));
2755	trial_cpus = cpumask_weight(trial);
2756
2757	raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
2758	if (cur_dl_b->bw != -1 &&
2759	    cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
2760		ret = 0;
2761	raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
2762	rcu_read_unlock_sched();
2763
2764	return ret;
2765}
2766
2767bool dl_cpu_busy(unsigned int cpu)
 
 
 
 
 
 
2768{
2769	unsigned long flags;
2770	struct dl_bw *dl_b;
2771	bool overflow;
2772	int cpus;
2773
2774	rcu_read_lock_sched();
2775	dl_b = dl_bw_of(cpu);
2776	raw_spin_lock_irqsave(&dl_b->lock, flags);
2777	cpus = dl_bw_cpus(cpu);
2778	overflow = __dl_overflow(dl_b, cpus, 0, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2779	raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2780	rcu_read_unlock_sched();
2781
2782	return overflow;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2783}
2784#endif
2785
2786#ifdef CONFIG_SCHED_DEBUG
2787void print_dl_stats(struct seq_file *m, int cpu)
2788{
2789	print_dl_rq(m, cpu, &cpu_rq(cpu)->dl);
2790}
2791#endif /* CONFIG_SCHED_DEBUG */