Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   4 * All Rights Reserved.
   5 */
   6#include "xfs.h"
   7#include "xfs_fs.h"
   8#include "xfs_shared.h"
   9#include "xfs_format.h"
  10#include "xfs_log_format.h"
  11#include "xfs_trans_resv.h"
 
  12#include "xfs_mount.h"
  13#include "xfs_inode.h"
  14#include "xfs_trans.h"
  15#include "xfs_trans_priv.h"
  16#include "xfs_inode_item.h"
  17#include "xfs_quota.h"
  18#include "xfs_trace.h"
  19#include "xfs_icache.h"
  20#include "xfs_bmap_util.h"
  21#include "xfs_dquot_item.h"
  22#include "xfs_dquot.h"
  23#include "xfs_reflink.h"
  24#include "xfs_ialloc.h"
  25#include "xfs_ag.h"
  26#include "xfs_log_priv.h"
  27#include "xfs_health.h"
  28#include "xfs_da_format.h"
  29#include "xfs_dir2.h"
  30#include "xfs_metafile.h"
  31
  32#include <linux/iversion.h>
  33
  34/* Radix tree tags for incore inode tree. */
  35
  36/* inode is to be reclaimed */
  37#define XFS_ICI_RECLAIM_TAG	0
  38/* Inode has speculative preallocations (posteof or cow) to clean. */
  39#define XFS_ICI_BLOCKGC_TAG	1
  40
  41/*
  42 * The goal for walking incore inodes.  These can correspond with incore inode
  43 * radix tree tags when convenient.  Avoid existing XFS_IWALK namespace.
  44 */
  45enum xfs_icwalk_goal {
  46	/* Goals directly associated with tagged inodes. */
  47	XFS_ICWALK_BLOCKGC	= XFS_ICI_BLOCKGC_TAG,
  48	XFS_ICWALK_RECLAIM	= XFS_ICI_RECLAIM_TAG,
  49};
  50
  51static int xfs_icwalk(struct xfs_mount *mp,
  52		enum xfs_icwalk_goal goal, struct xfs_icwalk *icw);
  53static int xfs_icwalk_ag(struct xfs_perag *pag,
  54		enum xfs_icwalk_goal goal, struct xfs_icwalk *icw);
  55
  56/*
  57 * Private inode cache walk flags for struct xfs_icwalk.  Must not
  58 * coincide with XFS_ICWALK_FLAGS_VALID.
  59 */
  60
  61/* Stop scanning after icw_scan_limit inodes. */
  62#define XFS_ICWALK_FLAG_SCAN_LIMIT	(1U << 28)
  63
  64#define XFS_ICWALK_FLAG_RECLAIM_SICK	(1U << 27)
  65#define XFS_ICWALK_FLAG_UNION		(1U << 26) /* union filter algorithm */
  66
  67#define XFS_ICWALK_PRIVATE_FLAGS	(XFS_ICWALK_FLAG_SCAN_LIMIT | \
  68					 XFS_ICWALK_FLAG_RECLAIM_SICK | \
  69					 XFS_ICWALK_FLAG_UNION)
  70
  71/* Marks for the perag xarray */
  72#define XFS_PERAG_RECLAIM_MARK	XA_MARK_0
  73#define XFS_PERAG_BLOCKGC_MARK	XA_MARK_1
  74
  75static inline xa_mark_t ici_tag_to_mark(unsigned int tag)
  76{
  77	if (tag == XFS_ICI_RECLAIM_TAG)
  78		return XFS_PERAG_RECLAIM_MARK;
  79	ASSERT(tag == XFS_ICI_BLOCKGC_TAG);
  80	return XFS_PERAG_BLOCKGC_MARK;
  81}
  82
  83/*
  84 * Allocate and initialise an xfs_inode.
  85 */
  86struct xfs_inode *
  87xfs_inode_alloc(
  88	struct xfs_mount	*mp,
  89	xfs_ino_t		ino)
  90{
  91	struct xfs_inode	*ip;
  92
  93	/*
  94	 * XXX: If this didn't occur in transactions, we could drop GFP_NOFAIL
  95	 * and return NULL here on ENOMEM.
 
  96	 */
  97	ip = alloc_inode_sb(mp->m_super, xfs_inode_cache, GFP_KERNEL | __GFP_NOFAIL);
  98
 
  99	if (inode_init_always(mp->m_super, VFS_I(ip))) {
 100		kmem_cache_free(xfs_inode_cache, ip);
 101		return NULL;
 102	}
 103
 104	/* VFS doesn't initialise i_mode! */
 105	VFS_I(ip)->i_mode = 0;
 106	mapping_set_folio_min_order(VFS_I(ip)->i_mapping,
 107				    M_IGEO(mp)->min_folio_order);
 108
 109	XFS_STATS_INC(mp, vn_active);
 110	ASSERT(atomic_read(&ip->i_pincount) == 0);
 
 111	ASSERT(ip->i_ino == 0);
 112
 113	/* initialise the xfs inode */
 114	ip->i_ino = ino;
 115	ip->i_mount = mp;
 116	memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
 
 117	ip->i_cowfp = NULL;
 118	memset(&ip->i_af, 0, sizeof(ip->i_af));
 119	ip->i_af.if_format = XFS_DINODE_FMT_EXTENTS;
 120	memset(&ip->i_df, 0, sizeof(ip->i_df));
 121	ip->i_flags = 0;
 122	ip->i_delayed_blks = 0;
 123	ip->i_diflags2 = mp->m_ino_geo.new_diflags2;
 124	ip->i_nblocks = 0;
 125	ip->i_forkoff = 0;
 126	ip->i_sick = 0;
 127	ip->i_checked = 0;
 128	INIT_WORK(&ip->i_ioend_work, xfs_end_io);
 129	INIT_LIST_HEAD(&ip->i_ioend_list);
 130	spin_lock_init(&ip->i_ioend_lock);
 131	ip->i_next_unlinked = NULLAGINO;
 132	ip->i_prev_unlinked = 0;
 133
 134	return ip;
 135}
 136
 137STATIC void
 138xfs_inode_free_callback(
 139	struct rcu_head		*head)
 140{
 141	struct inode		*inode = container_of(head, struct inode, i_rcu);
 142	struct xfs_inode	*ip = XFS_I(inode);
 143
 144	switch (VFS_I(ip)->i_mode & S_IFMT) {
 145	case S_IFREG:
 146	case S_IFDIR:
 147	case S_IFLNK:
 148		xfs_idestroy_fork(&ip->i_df);
 149		break;
 150	}
 151
 152	xfs_ifork_zap_attr(ip);
 
 
 
 153
 154	if (ip->i_cowfp) {
 155		xfs_idestroy_fork(ip->i_cowfp);
 156		kmem_cache_free(xfs_ifork_cache, ip->i_cowfp);
 157	}
 158	if (ip->i_itemp) {
 159		ASSERT(!test_bit(XFS_LI_IN_AIL,
 160				 &ip->i_itemp->ili_item.li_flags));
 161		xfs_inode_item_destroy(ip);
 162		ip->i_itemp = NULL;
 163	}
 164
 165	kmem_cache_free(xfs_inode_cache, ip);
 166}
 167
 168static void
 169__xfs_inode_free(
 170	struct xfs_inode	*ip)
 171{
 172	/* asserts to verify all state is correct here */
 173	ASSERT(atomic_read(&ip->i_pincount) == 0);
 174	ASSERT(!ip->i_itemp || list_empty(&ip->i_itemp->ili_item.li_bio_list));
 175	XFS_STATS_DEC(ip->i_mount, vn_active);
 176
 177	call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
 178}
 179
 180void
 181xfs_inode_free(
 182	struct xfs_inode	*ip)
 183{
 184	ASSERT(!xfs_iflags_test(ip, XFS_IFLUSHING));
 185
 186	/*
 187	 * Because we use RCU freeing we need to ensure the inode always
 188	 * appears to be reclaimed with an invalid inode number when in the
 189	 * free state. The ip->i_flags_lock provides the barrier against lookup
 190	 * races.
 191	 */
 192	spin_lock(&ip->i_flags_lock);
 193	ip->i_flags = XFS_IRECLAIM;
 194	ip->i_ino = 0;
 195	spin_unlock(&ip->i_flags_lock);
 196
 197	__xfs_inode_free(ip);
 198}
 199
 200/*
 201 * Queue background inode reclaim work if there are reclaimable inodes and there
 202 * isn't reclaim work already scheduled or in progress.
 
 
 
 203 */
 204static void
 205xfs_reclaim_work_queue(
 206	struct xfs_mount        *mp)
 207{
 208
 209	rcu_read_lock();
 210	if (xfs_group_marked(mp, XG_TYPE_AG, XFS_PERAG_RECLAIM_MARK)) {
 211		queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
 212			msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
 213	}
 214	rcu_read_unlock();
 215}
 216
 217/*
 218 * Background scanning to trim preallocated space. This is queued based on the
 219 * 'speculative_prealloc_lifetime' tunable (5m by default).
 
 
 
 220 */
 221static inline void
 222xfs_blockgc_queue(
 223	struct xfs_perag	*pag)
 224{
 225	struct xfs_mount	*mp = pag_mount(pag);
 226
 227	if (!xfs_is_blockgc_enabled(mp))
 228		return;
 229
 230	rcu_read_lock();
 231	if (radix_tree_tagged(&pag->pag_ici_root, XFS_ICI_BLOCKGC_TAG))
 232		queue_delayed_work(mp->m_blockgc_wq, &pag->pag_blockgc_work,
 233				   msecs_to_jiffies(xfs_blockgc_secs * 1000));
 234	rcu_read_unlock();
 235}
 236
 237/* Set a tag on both the AG incore inode tree and the AG radix tree. */
 238static void
 239xfs_perag_set_inode_tag(
 240	struct xfs_perag	*pag,
 241	xfs_agino_t		agino,
 242	unsigned int		tag)
 243{
 244	bool			was_tagged;
 245
 246	lockdep_assert_held(&pag->pag_ici_lock);
 247
 248	was_tagged = radix_tree_tagged(&pag->pag_ici_root, tag);
 249	radix_tree_tag_set(&pag->pag_ici_root, agino, tag);
 250
 251	if (tag == XFS_ICI_RECLAIM_TAG)
 252		pag->pag_ici_reclaimable++;
 253
 254	if (was_tagged)
 255		return;
 256
 257	/* propagate the tag up into the pag xarray tree */
 258	xfs_group_set_mark(pag_group(pag), ici_tag_to_mark(tag));
 
 
 
 259
 260	/* start background work */
 261	switch (tag) {
 262	case XFS_ICI_RECLAIM_TAG:
 263		xfs_reclaim_work_queue(pag_mount(pag));
 264		break;
 265	case XFS_ICI_BLOCKGC_TAG:
 266		xfs_blockgc_queue(pag);
 267		break;
 268	}
 269
 270	trace_xfs_perag_set_inode_tag(pag, _RET_IP_);
 271}
 272
 273/* Clear a tag on both the AG incore inode tree and the AG radix tree. */
 274static void
 275xfs_perag_clear_inode_tag(
 276	struct xfs_perag	*pag,
 277	xfs_agino_t		agino,
 278	unsigned int		tag)
 279{
 280	lockdep_assert_held(&pag->pag_ici_lock);
 281
 282	/*
 283	 * Reclaim can signal (with a null agino) that it cleared its own tag
 284	 * by removing the inode from the radix tree.
 285	 */
 286	if (agino != NULLAGINO)
 287		radix_tree_tag_clear(&pag->pag_ici_root, agino, tag);
 288	else
 289		ASSERT(tag == XFS_ICI_RECLAIM_TAG);
 290
 291	if (tag == XFS_ICI_RECLAIM_TAG)
 292		pag->pag_ici_reclaimable--;
 293
 294	if (radix_tree_tagged(&pag->pag_ici_root, tag))
 295		return;
 296
 297	/* clear the tag from the pag xarray */
 298	xfs_group_clear_mark(pag_group(pag), ici_tag_to_mark(tag));
 299	trace_xfs_perag_clear_inode_tag(pag, _RET_IP_);
 
 
 
 300}
 301
 
 302/*
 303 * Find the next AG after @pag, or the first AG if @pag is NULL.
 
 
 304 */
 305static struct xfs_perag *
 306xfs_perag_grab_next_tag(
 307	struct xfs_mount	*mp,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 308	struct xfs_perag	*pag,
 309	int			tag)
 310{
 311	return to_perag(xfs_group_grab_next_mark(mp,
 312			pag ? pag_group(pag) : NULL,
 313			ici_tag_to_mark(tag), XG_TYPE_AG));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 314}
 315
 316/*
 317 * When we recycle a reclaimable inode, we need to re-initialise the VFS inode
 318 * part of the structure. This is made more complex by the fact we store
 319 * information about the on-disk values in the VFS inode and so we can't just
 320 * overwrite the values unconditionally. Hence we save the parameters we
 321 * need to retain across reinitialisation, and rewrite them into the VFS inode
 322 * after reinitialisation even if it fails.
 323 */
 324static int
 325xfs_reinit_inode(
 326	struct xfs_mount	*mp,
 327	struct inode		*inode)
 328{
 329	int			error;
 330	uint32_t		nlink = inode->i_nlink;
 331	uint32_t		generation = inode->i_generation;
 332	uint64_t		version = inode_peek_iversion(inode);
 333	umode_t			mode = inode->i_mode;
 334	dev_t			dev = inode->i_rdev;
 335	kuid_t			uid = inode->i_uid;
 336	kgid_t			gid = inode->i_gid;
 337	unsigned long		state = inode->i_state;
 338
 339	error = inode_init_always(mp->m_super, inode);
 340
 341	set_nlink(inode, nlink);
 342	inode->i_generation = generation;
 343	inode_set_iversion_queried(inode, version);
 344	inode->i_mode = mode;
 345	inode->i_rdev = dev;
 346	inode->i_uid = uid;
 347	inode->i_gid = gid;
 348	inode->i_state = state;
 349	mapping_set_folio_min_order(inode->i_mapping,
 350				    M_IGEO(mp)->min_folio_order);
 351	return error;
 352}
 353
 354/*
 355 * Carefully nudge an inode whose VFS state has been torn down back into a
 356 * usable state.  Drops the i_flags_lock and the rcu read lock.
 357 */
 358static int
 359xfs_iget_recycle(
 360	struct xfs_perag	*pag,
 361	struct xfs_inode	*ip) __releases(&ip->i_flags_lock)
 362{
 363	struct xfs_mount	*mp = ip->i_mount;
 364	struct inode		*inode = VFS_I(ip);
 365	int			error;
 366
 367	trace_xfs_iget_recycle(ip);
 368
 369	if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL))
 370		return -EAGAIN;
 371
 372	/*
 373	 * We need to make it look like the inode is being reclaimed to prevent
 374	 * the actual reclaim workers from stomping over us while we recycle
 375	 * the inode.  We can't clear the radix tree tag yet as it requires
 376	 * pag_ici_lock to be held exclusive.
 377	 */
 378	ip->i_flags |= XFS_IRECLAIM;
 379
 380	spin_unlock(&ip->i_flags_lock);
 381	rcu_read_unlock();
 382
 383	ASSERT(!rwsem_is_locked(&inode->i_rwsem));
 384	error = xfs_reinit_inode(mp, inode);
 385	xfs_iunlock(ip, XFS_ILOCK_EXCL);
 386	if (error) {
 387		/*
 388		 * Re-initializing the inode failed, and we are in deep
 389		 * trouble.  Try to re-add it to the reclaim list.
 390		 */
 391		rcu_read_lock();
 392		spin_lock(&ip->i_flags_lock);
 393		ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM);
 394		ASSERT(ip->i_flags & XFS_IRECLAIMABLE);
 395		spin_unlock(&ip->i_flags_lock);
 396		rcu_read_unlock();
 397
 398		trace_xfs_iget_recycle_fail(ip);
 399		return error;
 400	}
 401
 402	spin_lock(&pag->pag_ici_lock);
 403	spin_lock(&ip->i_flags_lock);
 404
 405	/*
 406	 * Clear the per-lifetime state in the inode as we are now effectively
 407	 * a new inode and need to return to the initial state before reuse
 408	 * occurs.
 409	 */
 410	ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
 411	ip->i_flags |= XFS_INEW;
 412	xfs_perag_clear_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
 413			XFS_ICI_RECLAIM_TAG);
 414	inode->i_state = I_NEW;
 415	spin_unlock(&ip->i_flags_lock);
 416	spin_unlock(&pag->pag_ici_lock);
 417
 418	return 0;
 419}
 420
 421/*
 422 * If we are allocating a new inode, then check what was returned is
 423 * actually a free, empty inode. If we are not allocating an inode,
 424 * then check we didn't find a free inode.
 425 *
 426 * Returns:
 427 *	0		if the inode free state matches the lookup context
 428 *	-ENOENT		if the inode is free and we are not allocating
 429 *	-EFSCORRUPTED	if there is any state mismatch at all
 430 */
 431static int
 432xfs_iget_check_free_state(
 433	struct xfs_inode	*ip,
 434	int			flags)
 435{
 436	if (flags & XFS_IGET_CREATE) {
 437		/* should be a free inode */
 438		if (VFS_I(ip)->i_mode != 0) {
 439			xfs_warn(ip->i_mount,
 440"Corruption detected! Free inode 0x%llx not marked free! (mode 0x%x)",
 441				ip->i_ino, VFS_I(ip)->i_mode);
 442			xfs_agno_mark_sick(ip->i_mount,
 443					XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
 444					XFS_SICK_AG_INOBT);
 445			return -EFSCORRUPTED;
 446		}
 447
 448		if (ip->i_nblocks != 0) {
 449			xfs_warn(ip->i_mount,
 450"Corruption detected! Free inode 0x%llx has blocks allocated!",
 451				ip->i_ino);
 452			xfs_agno_mark_sick(ip->i_mount,
 453					XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
 454					XFS_SICK_AG_INOBT);
 455			return -EFSCORRUPTED;
 456		}
 457		return 0;
 458	}
 459
 460	/* should be an allocated inode */
 461	if (VFS_I(ip)->i_mode == 0)
 462		return -ENOENT;
 463
 464	return 0;
 465}
 466
 467/* Make all pending inactivation work start immediately. */
 468static bool
 469xfs_inodegc_queue_all(
 470	struct xfs_mount	*mp)
 471{
 472	struct xfs_inodegc	*gc;
 473	int			cpu;
 474	bool			ret = false;
 475
 476	for_each_cpu(cpu, &mp->m_inodegc_cpumask) {
 477		gc = per_cpu_ptr(mp->m_inodegc, cpu);
 478		if (!llist_empty(&gc->list)) {
 479			mod_delayed_work_on(cpu, mp->m_inodegc_wq, &gc->work, 0);
 480			ret = true;
 481		}
 482	}
 483
 484	return ret;
 485}
 486
 487/* Wait for all queued work and collect errors */
 488static int
 489xfs_inodegc_wait_all(
 490	struct xfs_mount	*mp)
 491{
 492	int			cpu;
 493	int			error = 0;
 494
 495	flush_workqueue(mp->m_inodegc_wq);
 496	for_each_cpu(cpu, &mp->m_inodegc_cpumask) {
 497		struct xfs_inodegc	*gc;
 498
 499		gc = per_cpu_ptr(mp->m_inodegc, cpu);
 500		if (gc->error && !error)
 501			error = gc->error;
 502		gc->error = 0;
 503	}
 504
 505	return error;
 506}
 507
 508/*
 509 * Check the validity of the inode we just found it the cache
 510 */
 511static int
 512xfs_iget_cache_hit(
 513	struct xfs_perag	*pag,
 514	struct xfs_inode	*ip,
 515	xfs_ino_t		ino,
 516	int			flags,
 517	int			lock_flags) __releases(RCU)
 518{
 519	struct inode		*inode = VFS_I(ip);
 520	struct xfs_mount	*mp = ip->i_mount;
 521	int			error;
 522
 523	/*
 524	 * check for re-use of an inode within an RCU grace period due to the
 525	 * radix tree nodes not being updated yet. We monitor for this by
 526	 * setting the inode number to zero before freeing the inode structure.
 527	 * If the inode has been reallocated and set up, then the inode number
 528	 * will not match, so check for that, too.
 529	 */
 530	spin_lock(&ip->i_flags_lock);
 531	if (ip->i_ino != ino)
 532		goto out_skip;
 
 
 
 
 
 533
 534	/*
 535	 * If we are racing with another cache hit that is currently
 536	 * instantiating this inode or currently recycling it out of
 537	 * reclaimable state, wait for the initialisation to complete
 538	 * before continuing.
 539	 *
 540	 * If we're racing with the inactivation worker we also want to wait.
 541	 * If we're creating a new file, it's possible that the worker
 542	 * previously marked the inode as free on disk but hasn't finished
 543	 * updating the incore state yet.  The AGI buffer will be dirty and
 544	 * locked to the icreate transaction, so a synchronous push of the
 545	 * inodegc workers would result in deadlock.  For a regular iget, the
 546	 * worker is running already, so we might as well wait.
 547	 *
 548	 * XXX(hch): eventually we should do something equivalent to
 549	 *	     wait_on_inode to wait for these flags to be cleared
 550	 *	     instead of polling for it.
 551	 */
 552	if (ip->i_flags & (XFS_INEW | XFS_IRECLAIM | XFS_INACTIVATING))
 553		goto out_skip;
 554
 555	if (ip->i_flags & XFS_NEED_INACTIVE) {
 556		/* Unlinked inodes cannot be re-grabbed. */
 557		if (VFS_I(ip)->i_nlink == 0) {
 558			error = -ENOENT;
 559			goto out_error;
 560		}
 561		goto out_inodegc_flush;
 562	}
 563
 564	/*
 565	 * Check the inode free state is valid. This also detects lookup
 566	 * racing with unlinks.
 567	 */
 568	error = xfs_iget_check_free_state(ip, flags);
 569	if (error)
 570		goto out_error;
 571
 572	/* Skip inodes that have no vfs state. */
 573	if ((flags & XFS_IGET_INCORE) &&
 574	    (ip->i_flags & XFS_IRECLAIMABLE))
 575		goto out_skip;
 576
 577	/* The inode fits the selection criteria; process it. */
 578	if (ip->i_flags & XFS_IRECLAIMABLE) {
 579		/* Drops i_flags_lock and RCU read lock. */
 580		error = xfs_iget_recycle(pag, ip);
 581		if (error == -EAGAIN)
 582			goto out_skip;
 583		if (error)
 584			return error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 585	} else {
 586		/* If the VFS inode is being torn down, pause and try again. */
 587		if (!igrab(inode))
 588			goto out_skip;
 
 
 
 589
 590		/* We've got a live one. */
 591		spin_unlock(&ip->i_flags_lock);
 592		rcu_read_unlock();
 593		trace_xfs_iget_hit(ip);
 594	}
 595
 596	if (lock_flags != 0)
 597		xfs_ilock(ip, lock_flags);
 598
 599	if (!(flags & XFS_IGET_INCORE))
 600		xfs_iflags_clear(ip, XFS_ISTALE);
 601	XFS_STATS_INC(mp, xs_ig_found);
 602
 603	return 0;
 604
 605out_skip:
 606	trace_xfs_iget_skip(ip);
 607	XFS_STATS_INC(mp, xs_ig_frecycle);
 608	error = -EAGAIN;
 609out_error:
 610	spin_unlock(&ip->i_flags_lock);
 611	rcu_read_unlock();
 612	return error;
 613
 614out_inodegc_flush:
 615	spin_unlock(&ip->i_flags_lock);
 616	rcu_read_unlock();
 617	/*
 618	 * Do not wait for the workers, because the caller could hold an AGI
 619	 * buffer lock.  We're just going to sleep in a loop anyway.
 620	 */
 621	if (xfs_is_inodegc_enabled(mp))
 622		xfs_inodegc_queue_all(mp);
 623	return -EAGAIN;
 624}
 625
 
 626static int
 627xfs_iget_cache_miss(
 628	struct xfs_mount	*mp,
 629	struct xfs_perag	*pag,
 630	xfs_trans_t		*tp,
 631	xfs_ino_t		ino,
 632	struct xfs_inode	**ipp,
 633	int			flags,
 634	int			lock_flags)
 635{
 636	struct xfs_inode	*ip;
 637	int			error;
 638	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ino);
 
 639
 640	ip = xfs_inode_alloc(mp, ino);
 641	if (!ip)
 642		return -ENOMEM;
 643
 644	error = xfs_imap(pag, tp, ip->i_ino, &ip->i_imap, flags);
 645	if (error)
 646		goto out_destroy;
 647
 648	/*
 649	 * For version 5 superblocks, if we are initialising a new inode and we
 650	 * are not utilising the XFS_FEAT_IKEEP inode cluster mode, we can
 651	 * simply build the new inode core with a random generation number.
 652	 *
 653	 * For version 4 (and older) superblocks, log recovery is dependent on
 654	 * the i_flushiter field being initialised from the current on-disk
 655	 * value and hence we must also read the inode off disk even when
 656	 * initializing new inodes.
 657	 */
 658	if (xfs_has_v3inodes(mp) &&
 659	    (flags & XFS_IGET_CREATE) && !xfs_has_ikeep(mp)) {
 660		VFS_I(ip)->i_generation = get_random_u32();
 661	} else {
 662		struct xfs_buf		*bp;
 663
 664		error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp);
 665		if (error)
 666			goto out_destroy;
 667
 668		error = xfs_inode_from_disk(ip,
 669				xfs_buf_offset(bp, ip->i_imap.im_boffset));
 670		if (!error)
 671			xfs_buf_set_ref(bp, XFS_INO_REF);
 672		else
 673			xfs_inode_mark_sick(ip, XFS_SICK_INO_CORE);
 674		xfs_trans_brelse(tp, bp);
 675
 676		if (error)
 677			goto out_destroy;
 678	}
 679
 680	trace_xfs_iget_miss(ip);
 681
 
 682	/*
 683	 * Check the inode free state is valid. This also detects lookup
 684	 * racing with unlinks.
 685	 */
 686	error = xfs_iget_check_free_state(ip, flags);
 687	if (error)
 688		goto out_destroy;
 689
 690	/*
 691	 * Preload the radix tree so we can insert safely under the
 692	 * write spinlock. Note that we cannot sleep inside the preload
 693	 * region.
 
 694	 */
 695	if (radix_tree_preload(GFP_KERNEL | __GFP_NOLOCKDEP)) {
 696		error = -EAGAIN;
 697		goto out_destroy;
 698	}
 699
 700	/*
 701	 * Because the inode hasn't been added to the radix-tree yet it can't
 702	 * be found by another thread, so we can do the non-sleeping lock here.
 703	 */
 704	if (lock_flags) {
 705		if (!xfs_ilock_nowait(ip, lock_flags))
 706			BUG();
 707	}
 708
 709	/*
 710	 * These values must be set before inserting the inode into the radix
 711	 * tree as the moment it is inserted a concurrent lookup (allowed by the
 712	 * RCU locking mechanism) can find it and that lookup must see that this
 713	 * is an inode currently under construction (i.e. that XFS_INEW is set).
 714	 * The ip->i_flags_lock that protects the XFS_INEW flag forms the
 715	 * memory barrier that ensures this detection works correctly at lookup
 716	 * time.
 717	 */
 
 718	if (flags & XFS_IGET_DONTCACHE)
 719		d_mark_dontcache(VFS_I(ip));
 720	ip->i_udquot = NULL;
 721	ip->i_gdquot = NULL;
 722	ip->i_pdquot = NULL;
 723	xfs_iflags_set(ip, XFS_INEW);
 724
 725	/* insert the new inode */
 726	spin_lock(&pag->pag_ici_lock);
 727	error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
 728	if (unlikely(error)) {
 729		WARN_ON(error != -EEXIST);
 730		XFS_STATS_INC(mp, xs_ig_dup);
 731		error = -EAGAIN;
 732		goto out_preload_end;
 733	}
 734	spin_unlock(&pag->pag_ici_lock);
 735	radix_tree_preload_end();
 736
 737	*ipp = ip;
 738	return 0;
 739
 740out_preload_end:
 741	spin_unlock(&pag->pag_ici_lock);
 742	radix_tree_preload_end();
 743	if (lock_flags)
 744		xfs_iunlock(ip, lock_flags);
 745out_destroy:
 746	__destroy_inode(VFS_I(ip));
 747	xfs_inode_free(ip);
 748	return error;
 749}
 750
 751/*
 752 * Look up an inode by number in the given file system.  The inode is looked up
 753 * in the cache held in each AG.  If the inode is found in the cache, initialise
 754 * the vfs inode if necessary.
 
 755 *
 756 * If it is not in core, read it in from the file system's device, add it to the
 757 * cache and initialise the vfs inode.
 758 *
 759 * The inode is locked according to the value of the lock_flags parameter.
 760 * Inode lookup is only done during metadata operations and not as part of the
 761 * data IO path. Hence we only allow locking of the XFS_ILOCK during lookup.
 
 
 
 
 
 
 
 
 
 762 */
 763int
 764xfs_iget(
 765	struct xfs_mount	*mp,
 766	struct xfs_trans	*tp,
 767	xfs_ino_t		ino,
 768	uint			flags,
 769	uint			lock_flags,
 770	struct xfs_inode	**ipp)
 771{
 772	struct xfs_inode	*ip;
 773	struct xfs_perag	*pag;
 774	xfs_agino_t		agino;
 775	int			error;
 776
 
 
 
 
 
 
 
 777	ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0);
 778
 779	/* reject inode numbers outside existing AGs */
 780	if (!xfs_verify_ino(mp, ino))
 781		return -EINVAL;
 782
 783	XFS_STATS_INC(mp, xs_ig_attempts);
 784
 785	/* get the perag structure and ensure that it's inode capable */
 786	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
 787	agino = XFS_INO_TO_AGINO(mp, ino);
 788
 789again:
 790	error = 0;
 791	rcu_read_lock();
 792	ip = radix_tree_lookup(&pag->pag_ici_root, agino);
 793
 794	if (ip) {
 795		error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags);
 796		if (error)
 797			goto out_error_or_again;
 798	} else {
 799		rcu_read_unlock();
 800		if (flags & XFS_IGET_INCORE) {
 801			error = -ENODATA;
 802			goto out_error_or_again;
 803		}
 804		XFS_STATS_INC(mp, xs_ig_missed);
 805
 806		error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip,
 807							flags, lock_flags);
 808		if (error)
 809			goto out_error_or_again;
 810	}
 811	xfs_perag_put(pag);
 812
 813	*ipp = ip;
 814
 815	/*
 816	 * If we have a real type for an on-disk inode, we can setup the inode
 817	 * now.	 If it's a new inode being created, xfs_init_new_inode will
 818	 * handle it.
 819	 */
 820	if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0)
 821		xfs_setup_existing_inode(ip);
 822	return 0;
 823
 824out_error_or_again:
 825	if (!(flags & (XFS_IGET_INCORE | XFS_IGET_NORETRY)) &&
 826	    error == -EAGAIN) {
 827		delay(1);
 828		goto again;
 829	}
 830	xfs_perag_put(pag);
 831	return error;
 832}
 833
 834/*
 835 * Get a metadata inode.
 
 
 
 
 
 
 
 
 
 
 
 
 
 836 *
 837 * The metafile type must match the file mode exactly, and for files in the
 838 * metadata directory tree, it must match the inode's metatype exactly.
 839 */
 840int
 841xfs_trans_metafile_iget(
 
 842	struct xfs_trans	*tp,
 843	xfs_ino_t		ino,
 844	enum xfs_metafile_type	metafile_type,
 845	struct xfs_inode	**ipp)
 846{
 847	struct xfs_mount	*mp = tp->t_mountp;
 848	struct xfs_inode	*ip;
 849	umode_t			mode;
 850	int			error;
 851
 852	error = xfs_iget(mp, tp, ino, 0, 0, &ip);
 853	if (error == -EFSCORRUPTED || error == -EINVAL)
 854		goto whine;
 855	if (error)
 856		return error;
 857
 858	if (VFS_I(ip)->i_nlink == 0)
 859		goto bad_rele;
 
 
 860
 861	if (metafile_type == XFS_METAFILE_DIR)
 862		mode = S_IFDIR;
 863	else
 864		mode = S_IFREG;
 865	if (inode_wrong_type(VFS_I(ip), mode))
 866		goto bad_rele;
 867	if (xfs_has_metadir(mp)) {
 868		if (!xfs_is_metadir_inode(ip))
 869			goto bad_rele;
 870		if (metafile_type != ip->i_metatype)
 871			goto bad_rele;
 872	}
 873
 874	*ipp = ip;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 875	return 0;
 876bad_rele:
 877	xfs_irele(ip);
 878whine:
 879	xfs_err(mp, "metadata inode 0x%llx type %u is corrupt", ino,
 880			metafile_type);
 881	xfs_fs_mark_sick(mp, XFS_SICK_FS_METADIR);
 882	return -EFSCORRUPTED;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 883}
 884
 885/* Grab a metadata file if the caller doesn't already have a transaction. */
 886int
 887xfs_metafile_iget(
 888	struct xfs_mount	*mp,
 889	xfs_ino_t		ino,
 890	enum xfs_metafile_type	metafile_type,
 891	struct xfs_inode	**ipp)
 
 
 892{
 893	struct xfs_trans	*tp;
 894	int			error;
 
 
 895
 896	error = xfs_trans_alloc_empty(mp, &tp);
 897	if (error)
 898		return error;
 
 
 
 
 
 
 
 
 
 
 
 899
 900	error = xfs_trans_metafile_iget(tp, ino, metafile_type, ipp);
 901	xfs_trans_cancel(tp);
 902	return error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 903}
 904
 905/*
 906 * Grab the inode for reclaim exclusively.
 907 *
 908 * We have found this inode via a lookup under RCU, so the inode may have
 909 * already been freed, or it may be in the process of being recycled by
 910 * xfs_iget(). In both cases, the inode will have XFS_IRECLAIM set. If the inode
 911 * has been fully recycled by the time we get the i_flags_lock, XFS_IRECLAIMABLE
 912 * will not be set. Hence we need to check for both these flag conditions to
 913 * avoid inodes that are no longer reclaim candidates.
 914 *
 915 * Note: checking for other state flags here, under the i_flags_lock or not, is
 916 * racy and should be avoided. Those races should be resolved only after we have
 917 * ensured that we are able to reclaim this inode and the world can see that we
 918 * are going to reclaim it.
 919 *
 920 * Return true if we grabbed it, false otherwise.
 921 */
 922static bool
 923xfs_reclaim_igrab(
 924	struct xfs_inode	*ip,
 925	struct xfs_icwalk	*icw)
 926{
 927	ASSERT(rcu_read_lock_held());
 928
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 929	spin_lock(&ip->i_flags_lock);
 930	if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
 931	    __xfs_iflags_test(ip, XFS_IRECLAIM)) {
 932		/* not a reclaim candidate. */
 933		spin_unlock(&ip->i_flags_lock);
 934		return false;
 935	}
 936
 937	/* Don't reclaim a sick inode unless the caller asked for it. */
 938	if (ip->i_sick &&
 939	    (!icw || !(icw->icw_flags & XFS_ICWALK_FLAG_RECLAIM_SICK))) {
 940		spin_unlock(&ip->i_flags_lock);
 941		return false;
 942	}
 943
 944	__xfs_iflags_set(ip, XFS_IRECLAIM);
 945	spin_unlock(&ip->i_flags_lock);
 946	return true;
 947}
 948
 949/*
 950 * Inode reclaim is non-blocking, so the default action if progress cannot be
 951 * made is to "requeue" the inode for reclaim by unlocking it and clearing the
 952 * XFS_IRECLAIM flag.  If we are in a shutdown state, we don't care about
 953 * blocking anymore and hence we can wait for the inode to be able to reclaim
 954 * it.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 955 *
 956 * We do no IO here - if callers require inodes to be cleaned they must push the
 957 * AIL first to trigger writeback of dirty inodes.  This enables writeback to be
 958 * done in the background in a non-blocking manner, and enables memory reclaim
 959 * to make progress without blocking.
 
 
 
 
 
 
 
 
 
 
 
 
 960 */
 961static void
 962xfs_reclaim_inode(
 963	struct xfs_inode	*ip,
 964	struct xfs_perag	*pag)
 
 965{
 
 966	xfs_ino_t		ino = ip->i_ino; /* for radix_tree_delete */
 
 967
 968	if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL))
 969		goto out;
 970	if (xfs_iflags_test_and_set(ip, XFS_IFLUSHING))
 971		goto out_iunlock;
 
 
 
 
 972
 973	/*
 974	 * Check for log shutdown because aborting the inode can move the log
 975	 * tail and corrupt in memory state. This is fine if the log is shut
 976	 * down, but if the log is still active and only the mount is shut down
 977	 * then the in-memory log tail movement caused by the abort can be
 978	 * incorrectly propagated to disk.
 979	 */
 980	if (xlog_is_shutdown(ip->i_mount->m_log)) {
 981		xfs_iunpin_wait(ip);
 982		xfs_iflush_shutdown_abort(ip);
 
 983		goto reclaim;
 984	}
 985	if (xfs_ipincount(ip))
 986		goto out_clear_flush;
 987	if (!xfs_inode_clean(ip))
 988		goto out_clear_flush;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 989
 990	xfs_iflags_clear(ip, XFS_IFLUSHING);
 991reclaim:
 992	trace_xfs_inode_reclaiming(ip);
 993
 994	/*
 995	 * Because we use RCU freeing we need to ensure the inode always appears
 996	 * to be reclaimed with an invalid inode number when in the free state.
 997	 * We do this as early as possible under the ILOCK so that
 998	 * xfs_iflush_cluster() and xfs_ifree_cluster() can be guaranteed to
 999	 * detect races with us here. By doing this, we guarantee that once
1000	 * xfs_iflush_cluster() or xfs_ifree_cluster() has locked XFS_ILOCK that
1001	 * it will see either a valid inode that will serialise correctly, or it
1002	 * will see an invalid inode that it can skip.
1003	 */
1004	spin_lock(&ip->i_flags_lock);
1005	ip->i_flags = XFS_IRECLAIM;
1006	ip->i_ino = 0;
1007	ip->i_sick = 0;
1008	ip->i_checked = 0;
1009	spin_unlock(&ip->i_flags_lock);
1010
1011	ASSERT(!ip->i_itemp || ip->i_itemp->ili_item.li_buf == NULL);
1012	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1013
1014	XFS_STATS_INC(ip->i_mount, xs_ig_reclaims);
1015	/*
1016	 * Remove the inode from the per-AG radix tree.
1017	 *
1018	 * Because radix_tree_delete won't complain even if the item was never
1019	 * added to the tree assert that it's been there before to catch
1020	 * problems with the inode life time early on.
1021	 */
1022	spin_lock(&pag->pag_ici_lock);
1023	if (!radix_tree_delete(&pag->pag_ici_root,
1024				XFS_INO_TO_AGINO(ip->i_mount, ino)))
1025		ASSERT(0);
1026	xfs_perag_clear_inode_tag(pag, NULLAGINO, XFS_ICI_RECLAIM_TAG);
1027	spin_unlock(&pag->pag_ici_lock);
1028
1029	/*
1030	 * Here we do an (almost) spurious inode lock in order to coordinate
1031	 * with inode cache radix tree lookups.  This is because the lookup
1032	 * can reference the inodes in the cache without taking references.
1033	 *
1034	 * We make that OK here by ensuring that we wait until the inode is
1035	 * unlocked after the lookup before we go ahead and free it.
1036	 */
1037	xfs_ilock(ip, XFS_ILOCK_EXCL);
1038	ASSERT(!ip->i_udquot && !ip->i_gdquot && !ip->i_pdquot);
1039	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1040	ASSERT(xfs_inode_clean(ip));
1041
1042	__xfs_inode_free(ip);
1043	return;
1044
1045out_clear_flush:
1046	xfs_iflags_clear(ip, XFS_IFLUSHING);
1047out_iunlock:
1048	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1049out:
1050	xfs_iflags_clear(ip, XFS_IRECLAIM);
 
 
 
 
 
 
 
 
 
1051}
1052
1053/* Reclaim sick inodes if we're unmounting or the fs went down. */
1054static inline bool
1055xfs_want_reclaim_sick(
1056	struct xfs_mount	*mp)
 
 
 
 
 
 
 
1057{
1058	return xfs_is_unmounting(mp) || xfs_has_norecovery(mp) ||
1059	       xfs_is_shutdown(mp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1060}
1061
1062void
1063xfs_reclaim_inodes(
1064	struct xfs_mount	*mp)
 
1065{
1066	struct xfs_icwalk	icw = {
1067		.icw_flags	= 0,
1068	};
1069
1070	if (xfs_want_reclaim_sick(mp))
1071		icw.icw_flags |= XFS_ICWALK_FLAG_RECLAIM_SICK;
1072
1073	while (xfs_group_marked(mp, XG_TYPE_AG, XFS_PERAG_RECLAIM_MARK)) {
1074		xfs_ail_push_all_sync(mp->m_ail);
1075		xfs_icwalk(mp, XFS_ICWALK_RECLAIM, &icw);
1076	}
1077}
1078
1079/*
1080 * The shrinker infrastructure determines how many inodes we should scan for
1081 * reclaim. We want as many clean inodes ready to reclaim as possible, so we
1082 * push the AIL here. We also want to proactively free up memory if we can to
1083 * minimise the amount of work memory reclaim has to do so we kick the
1084 * background reclaim if it isn't already scheduled.
 
 
1085 */
1086long
1087xfs_reclaim_inodes_nr(
1088	struct xfs_mount	*mp,
1089	unsigned long		nr_to_scan)
1090{
1091	struct xfs_icwalk	icw = {
1092		.icw_flags	= XFS_ICWALK_FLAG_SCAN_LIMIT,
1093		.icw_scan_limit	= min_t(unsigned long, LONG_MAX, nr_to_scan),
1094	};
1095
1096	if (xfs_want_reclaim_sick(mp))
1097		icw.icw_flags |= XFS_ICWALK_FLAG_RECLAIM_SICK;
1098
1099	/* kick background reclaimer and push the AIL */
1100	xfs_reclaim_work_queue(mp);
1101	xfs_ail_push_all(mp->m_ail);
1102
1103	xfs_icwalk(mp, XFS_ICWALK_RECLAIM, &icw);
1104	return 0;
1105}
1106
1107/*
1108 * Return the number of reclaimable inodes in the filesystem for
1109 * the shrinker to determine how much to reclaim.
1110 */
1111long
1112xfs_reclaim_inodes_count(
1113	struct xfs_mount	*mp)
1114{
1115	XA_STATE		(xas, &mp->m_groups[XG_TYPE_AG].xa, 0);
1116	long			reclaimable = 0;
1117	struct xfs_perag	*pag;
 
 
1118
1119	rcu_read_lock();
1120	xas_for_each_marked(&xas, pag, ULONG_MAX, XFS_PERAG_RECLAIM_MARK) {
1121		trace_xfs_reclaim_inodes_count(pag, _THIS_IP_);
1122		reclaimable += pag->pag_ici_reclaimable;
 
1123	}
1124	rcu_read_unlock();
1125
1126	return reclaimable;
1127}
1128
1129STATIC bool
1130xfs_icwalk_match_id(
1131	struct xfs_inode	*ip,
1132	struct xfs_icwalk	*icw)
1133{
1134	if ((icw->icw_flags & XFS_ICWALK_FLAG_UID) &&
1135	    !uid_eq(VFS_I(ip)->i_uid, icw->icw_uid))
1136		return false;
1137
1138	if ((icw->icw_flags & XFS_ICWALK_FLAG_GID) &&
1139	    !gid_eq(VFS_I(ip)->i_gid, icw->icw_gid))
1140		return false;
1141
1142	if ((icw->icw_flags & XFS_ICWALK_FLAG_PRID) &&
1143	    ip->i_projid != icw->icw_prid)
1144		return false;
1145
1146	return true;
1147}
1148
1149/*
1150 * A union-based inode filtering algorithm. Process the inode if any of the
1151 * criteria match. This is for global/internal scans only.
1152 */
1153STATIC bool
1154xfs_icwalk_match_id_union(
1155	struct xfs_inode	*ip,
1156	struct xfs_icwalk	*icw)
1157{
1158	if ((icw->icw_flags & XFS_ICWALK_FLAG_UID) &&
1159	    uid_eq(VFS_I(ip)->i_uid, icw->icw_uid))
1160		return true;
1161
1162	if ((icw->icw_flags & XFS_ICWALK_FLAG_GID) &&
1163	    gid_eq(VFS_I(ip)->i_gid, icw->icw_gid))
1164		return true;
1165
1166	if ((icw->icw_flags & XFS_ICWALK_FLAG_PRID) &&
1167	    ip->i_projid == icw->icw_prid)
1168		return true;
1169
1170	return false;
1171}
1172
1173/*
1174 * Is this inode @ip eligible for eof/cow block reclamation, given some
1175 * filtering parameters @icw?  The inode is eligible if @icw is null or
1176 * if the predicate functions match.
1177 */
1178static bool
1179xfs_icwalk_match(
1180	struct xfs_inode	*ip,
1181	struct xfs_icwalk	*icw)
1182{
1183	bool			match;
 
 
 
 
 
 
 
 
 
 
1184
1185	if (!icw)
1186		return true;
1187
1188	if (icw->icw_flags & XFS_ICWALK_FLAG_UNION)
1189		match = xfs_icwalk_match_id_union(ip, icw);
1190	else
1191		match = xfs_icwalk_match_id(ip, icw);
1192	if (!match)
1193		return false;
1194
1195	/* skip the inode if the file size is too small */
1196	if ((icw->icw_flags & XFS_ICWALK_FLAG_MINFILESIZE) &&
1197	    XFS_ISIZE(ip) < icw->icw_min_file_size)
1198		return false;
1199
1200	return true;
1201}
1202
1203/*
1204 * This is a fast pass over the inode cache to try to get reclaim moving on as
1205 * many inodes as possible in a short period of time. It kicks itself every few
1206 * seconds, as well as being kicked by the inode cache shrinker when memory
1207 * goes low.
1208 */
1209void
1210xfs_reclaim_worker(
1211	struct work_struct *work)
1212{
1213	struct xfs_mount *mp = container_of(to_delayed_work(work),
1214					struct xfs_mount, m_reclaim_work);
1215
1216	xfs_icwalk(mp, XFS_ICWALK_RECLAIM, NULL);
1217	xfs_reclaim_work_queue(mp);
1218}
1219
1220STATIC int
1221xfs_inode_free_eofblocks(
1222	struct xfs_inode	*ip,
1223	struct xfs_icwalk	*icw,
1224	unsigned int		*lockflags)
1225{
1226	bool			wait;
1227
1228	wait = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC);
1229
1230	if (!xfs_iflags_test(ip, XFS_IEOFBLOCKS))
 
 
 
1231		return 0;
 
1232
1233	/*
1234	 * If the mapping is dirty the operation can block and wait for some
1235	 * time. Unless we are waiting, skip it.
1236	 */
1237	if (!wait && mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY))
 
1238		return 0;
1239
1240	if (!xfs_icwalk_match(ip, icw))
1241		return 0;
 
 
 
 
 
 
 
 
 
 
 
1242
1243	/*
1244	 * If the caller is waiting, return -EAGAIN to keep the background
1245	 * scanner moving and revisit the inode in a subsequent pass.
1246	 */
1247	if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1248		if (wait)
1249			return -EAGAIN;
1250		return 0;
1251	}
1252	*lockflags |= XFS_IOLOCK_EXCL;
 
1253
1254	if (xfs_can_free_eofblocks(ip))
1255		return xfs_free_eofblocks(ip);
1256
1257	/* inode could be preallocated */
1258	trace_xfs_inode_free_eofblocks_invalid(ip);
1259	xfs_inode_clear_eofblocks_tag(ip);
1260	return 0;
 
 
 
 
 
 
 
 
 
 
 
1261}
1262
1263static void
1264xfs_blockgc_set_iflag(
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1265	struct xfs_inode	*ip,
1266	unsigned long		iflag)
 
1267{
1268	struct xfs_mount	*mp = ip->i_mount;
1269	struct xfs_perag	*pag;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1270
1271	ASSERT((iflag & ~(XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1272
1273	/*
1274	 * Don't bother locking the AG and looking up in the radix trees
1275	 * if we already know that we have the tag set.
1276	 */
1277	if (ip->i_flags & iflag)
1278		return;
1279	spin_lock(&ip->i_flags_lock);
1280	ip->i_flags |= iflag;
1281	spin_unlock(&ip->i_flags_lock);
1282
1283	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1284	spin_lock(&pag->pag_ici_lock);
1285
1286	xfs_perag_set_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
1287			XFS_ICI_BLOCKGC_TAG);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1288
1289	spin_unlock(&pag->pag_ici_lock);
1290	xfs_perag_put(pag);
1291}
1292
1293void
1294xfs_inode_set_eofblocks_tag(
1295	xfs_inode_t	*ip)
1296{
1297	trace_xfs_inode_set_eofblocks_tag(ip);
1298	return xfs_blockgc_set_iflag(ip, XFS_IEOFBLOCKS);
 
 
1299}
1300
1301static void
1302xfs_blockgc_clear_iflag(
1303	struct xfs_inode	*ip,
1304	unsigned long		iflag)
 
 
1305{
1306	struct xfs_mount	*mp = ip->i_mount;
1307	struct xfs_perag	*pag;
1308	bool			clear_tag;
1309
1310	ASSERT((iflag & ~(XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0);
1311
1312	spin_lock(&ip->i_flags_lock);
1313	ip->i_flags &= ~iflag;
1314	clear_tag = (ip->i_flags & (XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0;
1315	spin_unlock(&ip->i_flags_lock);
1316
1317	if (!clear_tag)
1318		return;
1319
1320	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1321	spin_lock(&pag->pag_ici_lock);
1322
1323	xfs_perag_clear_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
1324			XFS_ICI_BLOCKGC_TAG);
 
 
 
 
 
 
 
 
 
1325
1326	spin_unlock(&pag->pag_ici_lock);
1327	xfs_perag_put(pag);
1328}
1329
1330void
1331xfs_inode_clear_eofblocks_tag(
1332	xfs_inode_t	*ip)
1333{
1334	trace_xfs_inode_clear_eofblocks_tag(ip);
1335	return xfs_blockgc_clear_iflag(ip, XFS_IEOFBLOCKS);
 
1336}
1337
1338/*
1339 * Prepare to free COW fork blocks from an inode.
 
 
1340 */
1341static bool
1342xfs_prep_free_cowblocks(
1343	struct xfs_inode	*ip,
1344	struct xfs_icwalk	*icw)
1345{
1346	bool			sync;
1347
1348	sync = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC);
1349
1350	/*
1351	 * Just clear the tag if we have an empty cow fork or none at all. It's
1352	 * possible the inode was fully unshared since it was originally tagged.
1353	 */
1354	if (!xfs_inode_has_cow_data(ip)) {
1355		trace_xfs_inode_free_cowblocks_invalid(ip);
1356		xfs_inode_clear_cowblocks_tag(ip);
1357		return false;
1358	}
1359
1360	/*
1361	 * A cowblocks trim of an inode can have a significant effect on
1362	 * fragmentation even when a reasonable COW extent size hint is set.
1363	 * Therefore, we prefer to not process cowblocks unless they are clean
1364	 * and idle. We can never process a cowblocks inode that is dirty or has
1365	 * in-flight I/O under any circumstances, because outstanding writeback
1366	 * or dio expects targeted COW fork blocks exist through write
1367	 * completion where they can be remapped into the data fork.
1368	 *
1369	 * Therefore, the heuristic used here is to never process inodes
1370	 * currently opened for write from background (i.e. non-sync) scans. For
1371	 * sync scans, use the pagecache/dio state of the inode to ensure we
1372	 * never free COW fork blocks out from under pending I/O.
1373	 */
1374	if (!sync && inode_is_open_for_write(VFS_I(ip)))
 
 
 
1375		return false;
1376	return xfs_can_free_cowblocks(ip);
 
1377}
1378
1379/*
1380 * Automatic CoW Reservation Freeing
1381 *
1382 * These functions automatically garbage collect leftover CoW reservations
1383 * that were made on behalf of a cowextsize hint when we start to run out
1384 * of quota or when the reservations sit around for too long.  If the file
1385 * has dirty pages or is undergoing writeback, its CoW reservations will
1386 * be retained.
1387 *
1388 * The actual garbage collection piggybacks off the same code that runs
1389 * the speculative EOF preallocation garbage collector.
1390 */
1391STATIC int
1392xfs_inode_free_cowblocks(
1393	struct xfs_inode	*ip,
1394	struct xfs_icwalk	*icw,
1395	unsigned int		*lockflags)
1396{
1397	bool			wait;
 
1398	int			ret = 0;
1399
1400	wait = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC);
1401
1402	if (!xfs_iflags_test(ip, XFS_ICOWBLOCKS))
1403		return 0;
1404
1405	if (!xfs_prep_free_cowblocks(ip, icw))
1406		return 0;
1407
1408	if (!xfs_icwalk_match(ip, icw))
1409		return 0;
1410
1411	/*
1412	 * If the caller is waiting, return -EAGAIN to keep the background
1413	 * scanner moving and revisit the inode in a subsequent pass.
1414	 */
1415	if (!(*lockflags & XFS_IOLOCK_EXCL) &&
1416	    !xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1417		if (wait)
1418			return -EAGAIN;
1419		return 0;
 
 
 
1420	}
1421	*lockflags |= XFS_IOLOCK_EXCL;
1422
1423	if (!xfs_ilock_nowait(ip, XFS_MMAPLOCK_EXCL)) {
1424		if (wait)
1425			return -EAGAIN;
1426		return 0;
1427	}
1428	*lockflags |= XFS_MMAPLOCK_EXCL;
1429
1430	/*
1431	 * Check again, nobody else should be able to dirty blocks or change
1432	 * the reflink iflag now that we have the first two locks held.
1433	 */
1434	if (xfs_prep_free_cowblocks(ip, icw))
1435		ret = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, false);
1436	return ret;
1437}
1438
1439void
1440xfs_inode_set_cowblocks_tag(
1441	xfs_inode_t	*ip)
1442{
1443	trace_xfs_inode_set_cowblocks_tag(ip);
1444	return xfs_blockgc_set_iflag(ip, XFS_ICOWBLOCKS);
1445}
1446
1447void
1448xfs_inode_clear_cowblocks_tag(
1449	xfs_inode_t	*ip)
1450{
1451	trace_xfs_inode_clear_cowblocks_tag(ip);
1452	return xfs_blockgc_clear_iflag(ip, XFS_ICOWBLOCKS);
1453}
1454
1455/* Disable post-EOF and CoW block auto-reclamation. */
1456void
1457xfs_blockgc_stop(
1458	struct xfs_mount	*mp)
1459{
1460	struct xfs_perag	*pag = NULL;
1461
1462	if (!xfs_clear_blockgc_enabled(mp))
1463		return;
1464
1465	while ((pag = xfs_perag_next(mp, pag)))
1466		cancel_delayed_work_sync(&pag->pag_blockgc_work);
1467	trace_xfs_blockgc_stop(mp, __return_address);
1468}
1469
1470/* Enable post-EOF and CoW block auto-reclamation. */
1471void
1472xfs_blockgc_start(
1473	struct xfs_mount	*mp)
1474{
1475	struct xfs_perag	*pag = NULL;
1476
1477	if (xfs_set_blockgc_enabled(mp))
1478		return;
1479
1480	trace_xfs_blockgc_start(mp, __return_address);
1481	while ((pag = xfs_perag_grab_next_tag(mp, pag, XFS_ICI_BLOCKGC_TAG)))
1482		xfs_blockgc_queue(pag);
1483}
1484
1485/* Don't try to run block gc on an inode that's in any of these states. */
1486#define XFS_BLOCKGC_NOGRAB_IFLAGS	(XFS_INEW | \
1487					 XFS_NEED_INACTIVE | \
1488					 XFS_INACTIVATING | \
1489					 XFS_IRECLAIMABLE | \
1490					 XFS_IRECLAIM)
1491/*
1492 * Decide if the given @ip is eligible for garbage collection of speculative
1493 * preallocations, and grab it if so.  Returns true if it's ready to go or
1494 * false if we should just ignore it.
1495 */
1496static bool
1497xfs_blockgc_igrab(
1498	struct xfs_inode	*ip)
1499{
1500	struct inode		*inode = VFS_I(ip);
1501
1502	ASSERT(rcu_read_lock_held());
1503
1504	/* Check for stale RCU freed inode */
1505	spin_lock(&ip->i_flags_lock);
1506	if (!ip->i_ino)
1507		goto out_unlock_noent;
1508
1509	if (ip->i_flags & XFS_BLOCKGC_NOGRAB_IFLAGS)
1510		goto out_unlock_noent;
1511	spin_unlock(&ip->i_flags_lock);
1512
1513	/* nothing to sync during shutdown */
1514	if (xfs_is_shutdown(ip->i_mount))
1515		return false;
1516
1517	/* If we can't grab the inode, it must on it's way to reclaim. */
1518	if (!igrab(inode))
1519		return false;
1520
1521	/* inode is valid */
1522	return true;
1523
1524out_unlock_noent:
1525	spin_unlock(&ip->i_flags_lock);
1526	return false;
1527}
1528
1529/* Scan one incore inode for block preallocations that we can remove. */
1530static int
1531xfs_blockgc_scan_inode(
1532	struct xfs_inode	*ip,
1533	struct xfs_icwalk	*icw)
1534{
1535	unsigned int		lockflags = 0;
1536	int			error;
1537
1538	error = xfs_inode_free_eofblocks(ip, icw, &lockflags);
1539	if (error)
1540		goto unlock;
1541
1542	error = xfs_inode_free_cowblocks(ip, icw, &lockflags);
1543unlock:
1544	if (lockflags)
1545		xfs_iunlock(ip, lockflags);
1546	xfs_irele(ip);
1547	return error;
1548}
1549
1550/* Background worker that trims preallocated space. */
1551void
1552xfs_blockgc_worker(
1553	struct work_struct	*work)
1554{
1555	struct xfs_perag	*pag = container_of(to_delayed_work(work),
1556					struct xfs_perag, pag_blockgc_work);
1557	struct xfs_mount	*mp = pag_mount(pag);
1558	int			error;
1559
1560	trace_xfs_blockgc_worker(mp, __return_address);
1561
1562	error = xfs_icwalk_ag(pag, XFS_ICWALK_BLOCKGC, NULL);
1563	if (error)
1564		xfs_info(mp, "AG %u preallocation gc worker failed, err=%d",
1565				pag_agno(pag), error);
1566	xfs_blockgc_queue(pag);
1567}
1568
1569/*
1570 * Try to free space in the filesystem by purging inactive inodes, eofblocks
1571 * and cowblocks.
1572 */
1573int
1574xfs_blockgc_free_space(
1575	struct xfs_mount	*mp,
1576	struct xfs_icwalk	*icw)
1577{
1578	int			error;
1579
1580	trace_xfs_blockgc_free_space(mp, icw, _RET_IP_);
1581
1582	error = xfs_icwalk(mp, XFS_ICWALK_BLOCKGC, icw);
1583	if (error)
1584		return error;
1585
1586	return xfs_inodegc_flush(mp);
1587}
1588
1589/*
1590 * Reclaim all the free space that we can by scheduling the background blockgc
1591 * and inodegc workers immediately and waiting for them all to clear.
1592 */
1593int
1594xfs_blockgc_flush_all(
1595	struct xfs_mount	*mp)
1596{
1597	struct xfs_perag	*pag = NULL;
1598
1599	trace_xfs_blockgc_flush_all(mp, __return_address);
1600
1601	/*
1602	 * For each blockgc worker, move its queue time up to now.  If it wasn't
1603	 * queued, it will not be requeued.  Then flush whatever is left.
1604	 */
1605	while ((pag = xfs_perag_grab_next_tag(mp, pag, XFS_ICI_BLOCKGC_TAG)))
1606		mod_delayed_work(mp->m_blockgc_wq, &pag->pag_blockgc_work, 0);
1607
1608	while ((pag = xfs_perag_grab_next_tag(mp, pag, XFS_ICI_BLOCKGC_TAG)))
1609		flush_delayed_work(&pag->pag_blockgc_work);
1610
1611	return xfs_inodegc_flush(mp);
1612}
1613
1614/*
1615 * Run cow/eofblocks scans on the supplied dquots.  We don't know exactly which
1616 * quota caused an allocation failure, so we make a best effort by including
1617 * each quota under low free space conditions (less than 1% free space) in the
1618 * scan.
1619 *
1620 * Callers must not hold any inode's ILOCK.  If requesting a synchronous scan
1621 * (XFS_ICWALK_FLAG_SYNC), the caller also must not hold any inode's IOLOCK or
1622 * MMAPLOCK.
1623 */
1624int
1625xfs_blockgc_free_dquots(
1626	struct xfs_mount	*mp,
1627	struct xfs_dquot	*udqp,
1628	struct xfs_dquot	*gdqp,
1629	struct xfs_dquot	*pdqp,
1630	unsigned int		iwalk_flags)
1631{
1632	struct xfs_icwalk	icw = {0};
1633	bool			do_work = false;
1634
1635	if (!udqp && !gdqp && !pdqp)
1636		return 0;
1637
1638	/*
1639	 * Run a scan to free blocks using the union filter to cover all
1640	 * applicable quotas in a single scan.
1641	 */
1642	icw.icw_flags = XFS_ICWALK_FLAG_UNION | iwalk_flags;
1643
1644	if (XFS_IS_UQUOTA_ENFORCED(mp) && udqp && xfs_dquot_lowsp(udqp)) {
1645		icw.icw_uid = make_kuid(mp->m_super->s_user_ns, udqp->q_id);
1646		icw.icw_flags |= XFS_ICWALK_FLAG_UID;
1647		do_work = true;
1648	}
1649
1650	if (XFS_IS_UQUOTA_ENFORCED(mp) && gdqp && xfs_dquot_lowsp(gdqp)) {
1651		icw.icw_gid = make_kgid(mp->m_super->s_user_ns, gdqp->q_id);
1652		icw.icw_flags |= XFS_ICWALK_FLAG_GID;
1653		do_work = true;
1654	}
1655
1656	if (XFS_IS_PQUOTA_ENFORCED(mp) && pdqp && xfs_dquot_lowsp(pdqp)) {
1657		icw.icw_prid = pdqp->q_id;
1658		icw.icw_flags |= XFS_ICWALK_FLAG_PRID;
1659		do_work = true;
1660	}
1661
1662	if (!do_work)
1663		return 0;
1664
1665	return xfs_blockgc_free_space(mp, &icw);
1666}
1667
1668/* Run cow/eofblocks scans on the quotas attached to the inode. */
1669int
1670xfs_blockgc_free_quota(
1671	struct xfs_inode	*ip,
1672	unsigned int		iwalk_flags)
1673{
1674	return xfs_blockgc_free_dquots(ip->i_mount,
1675			xfs_inode_dquot(ip, XFS_DQTYPE_USER),
1676			xfs_inode_dquot(ip, XFS_DQTYPE_GROUP),
1677			xfs_inode_dquot(ip, XFS_DQTYPE_PROJ), iwalk_flags);
1678}
1679
1680/* XFS Inode Cache Walking Code */
1681
1682/*
1683 * The inode lookup is done in batches to keep the amount of lock traffic and
1684 * radix tree lookups to a minimum. The batch size is a trade off between
1685 * lookup reduction and stack usage. This is in the reclaim path, so we can't
1686 * be too greedy.
1687 */
1688#define XFS_LOOKUP_BATCH	32
1689
1690
1691/*
1692 * Decide if we want to grab this inode in anticipation of doing work towards
1693 * the goal.
1694 */
1695static inline bool
1696xfs_icwalk_igrab(
1697	enum xfs_icwalk_goal	goal,
1698	struct xfs_inode	*ip,
1699	struct xfs_icwalk	*icw)
1700{
1701	switch (goal) {
1702	case XFS_ICWALK_BLOCKGC:
1703		return xfs_blockgc_igrab(ip);
1704	case XFS_ICWALK_RECLAIM:
1705		return xfs_reclaim_igrab(ip, icw);
1706	default:
1707		return false;
1708	}
1709}
1710
1711/*
1712 * Process an inode.  Each processing function must handle any state changes
1713 * made by the icwalk igrab function.  Return -EAGAIN to skip an inode.
1714 */
1715static inline int
1716xfs_icwalk_process_inode(
1717	enum xfs_icwalk_goal	goal,
1718	struct xfs_inode	*ip,
1719	struct xfs_perag	*pag,
1720	struct xfs_icwalk	*icw)
1721{
1722	int			error = 0;
1723
1724	switch (goal) {
1725	case XFS_ICWALK_BLOCKGC:
1726		error = xfs_blockgc_scan_inode(ip, icw);
1727		break;
1728	case XFS_ICWALK_RECLAIM:
1729		xfs_reclaim_inode(ip, pag);
1730		break;
1731	}
1732	return error;
1733}
1734
1735/*
1736 * For a given per-AG structure @pag and a goal, grab qualifying inodes and
1737 * process them in some manner.
1738 */
1739static int
1740xfs_icwalk_ag(
1741	struct xfs_perag	*pag,
1742	enum xfs_icwalk_goal	goal,
1743	struct xfs_icwalk	*icw)
1744{
1745	struct xfs_mount	*mp = pag_mount(pag);
1746	uint32_t		first_index;
1747	int			last_error = 0;
1748	int			skipped;
1749	bool			done;
1750	int			nr_found;
1751
1752restart:
1753	done = false;
1754	skipped = 0;
1755	if (goal == XFS_ICWALK_RECLAIM)
1756		first_index = READ_ONCE(pag->pag_ici_reclaim_cursor);
1757	else
1758		first_index = 0;
1759	nr_found = 0;
1760	do {
1761		struct xfs_inode *batch[XFS_LOOKUP_BATCH];
1762		int		error = 0;
1763		int		i;
1764
1765		rcu_read_lock();
1766
1767		nr_found = radix_tree_gang_lookup_tag(&pag->pag_ici_root,
1768				(void **) batch, first_index,
1769				XFS_LOOKUP_BATCH, goal);
1770		if (!nr_found) {
1771			done = true;
1772			rcu_read_unlock();
1773			break;
1774		}
1775
1776		/*
1777		 * Grab the inodes before we drop the lock. if we found
1778		 * nothing, nr == 0 and the loop will be skipped.
1779		 */
1780		for (i = 0; i < nr_found; i++) {
1781			struct xfs_inode *ip = batch[i];
1782
1783			if (done || !xfs_icwalk_igrab(goal, ip, icw))
1784				batch[i] = NULL;
1785
1786			/*
1787			 * Update the index for the next lookup. Catch
1788			 * overflows into the next AG range which can occur if
1789			 * we have inodes in the last block of the AG and we
1790			 * are currently pointing to the last inode.
1791			 *
1792			 * Because we may see inodes that are from the wrong AG
1793			 * due to RCU freeing and reallocation, only update the
1794			 * index if it lies in this AG. It was a race that lead
1795			 * us to see this inode, so another lookup from the
1796			 * same index will not find it again.
1797			 */
1798			if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag_agno(pag))
1799				continue;
1800			first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
1801			if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
1802				done = true;
1803		}
1804
1805		/* unlock now we've grabbed the inodes. */
1806		rcu_read_unlock();
1807
1808		for (i = 0; i < nr_found; i++) {
1809			if (!batch[i])
1810				continue;
1811			error = xfs_icwalk_process_inode(goal, batch[i], pag,
1812					icw);
1813			if (error == -EAGAIN) {
1814				skipped++;
1815				continue;
1816			}
1817			if (error && last_error != -EFSCORRUPTED)
1818				last_error = error;
1819		}
1820
1821		/* bail out if the filesystem is corrupted.  */
1822		if (error == -EFSCORRUPTED)
1823			break;
1824
1825		cond_resched();
1826
1827		if (icw && (icw->icw_flags & XFS_ICWALK_FLAG_SCAN_LIMIT)) {
1828			icw->icw_scan_limit -= XFS_LOOKUP_BATCH;
1829			if (icw->icw_scan_limit <= 0)
1830				break;
1831		}
1832	} while (nr_found && !done);
1833
1834	if (goal == XFS_ICWALK_RECLAIM) {
1835		if (done)
1836			first_index = 0;
1837		WRITE_ONCE(pag->pag_ici_reclaim_cursor, first_index);
1838	}
1839
1840	if (skipped) {
1841		delay(1);
1842		goto restart;
1843	}
1844	return last_error;
1845}
1846
1847/* Walk all incore inodes to achieve a given goal. */
1848static int
1849xfs_icwalk(
1850	struct xfs_mount	*mp,
1851	enum xfs_icwalk_goal	goal,
1852	struct xfs_icwalk	*icw)
1853{
1854	struct xfs_perag	*pag = NULL;
1855	int			error = 0;
1856	int			last_error = 0;
1857
1858	while ((pag = xfs_perag_grab_next_tag(mp, pag, goal))) {
1859		error = xfs_icwalk_ag(pag, goal, icw);
1860		if (error) {
1861			last_error = error;
1862			if (error == -EFSCORRUPTED) {
1863				xfs_perag_rele(pag);
1864				break;
1865			}
1866		}
1867	}
1868	return last_error;
1869	BUILD_BUG_ON(XFS_ICWALK_PRIVATE_FLAGS & XFS_ICWALK_FLAGS_VALID);
1870}
1871
1872#ifdef DEBUG
1873static void
1874xfs_check_delalloc(
1875	struct xfs_inode	*ip,
1876	int			whichfork)
1877{
1878	struct xfs_ifork	*ifp = xfs_ifork_ptr(ip, whichfork);
1879	struct xfs_bmbt_irec	got;
1880	struct xfs_iext_cursor	icur;
1881
1882	if (!ifp || !xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got))
1883		return;
1884	do {
1885		if (isnullstartblock(got.br_startblock)) {
1886			xfs_warn(ip->i_mount,
1887	"ino %llx %s fork has delalloc extent at [0x%llx:0x%llx]",
1888				ip->i_ino,
1889				whichfork == XFS_DATA_FORK ? "data" : "cow",
1890				got.br_startoff, got.br_blockcount);
1891		}
1892	} while (xfs_iext_next_extent(ifp, &icur, &got));
1893}
1894#else
1895#define xfs_check_delalloc(ip, whichfork)	do { } while (0)
1896#endif
1897
1898/* Schedule the inode for reclaim. */
1899static void
1900xfs_inodegc_set_reclaimable(
1901	struct xfs_inode	*ip)
1902{
1903	struct xfs_mount	*mp = ip->i_mount;
1904	struct xfs_perag	*pag;
1905
1906	if (!xfs_is_shutdown(mp) && ip->i_delayed_blks) {
1907		xfs_check_delalloc(ip, XFS_DATA_FORK);
1908		xfs_check_delalloc(ip, XFS_COW_FORK);
1909		ASSERT(0);
1910	}
1911
1912	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1913	spin_lock(&pag->pag_ici_lock);
1914	spin_lock(&ip->i_flags_lock);
1915
1916	trace_xfs_inode_set_reclaimable(ip);
1917	ip->i_flags &= ~(XFS_NEED_INACTIVE | XFS_INACTIVATING);
1918	ip->i_flags |= XFS_IRECLAIMABLE;
1919	xfs_perag_set_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
1920			XFS_ICI_RECLAIM_TAG);
1921
1922	spin_unlock(&ip->i_flags_lock);
1923	spin_unlock(&pag->pag_ici_lock);
1924	xfs_perag_put(pag);
1925}
1926
1927/*
1928 * Free all speculative preallocations and possibly even the inode itself.
1929 * This is the last chance to make changes to an otherwise unreferenced file
1930 * before incore reclamation happens.
1931 */
1932static int
1933xfs_inodegc_inactivate(
1934	struct xfs_inode	*ip)
1935{
1936	int			error;
1937
1938	trace_xfs_inode_inactivating(ip);
1939	error = xfs_inactive(ip);
1940	xfs_inodegc_set_reclaimable(ip);
1941	return error;
1942
1943}
1944
1945void
1946xfs_inodegc_worker(
1947	struct work_struct	*work)
1948{
1949	struct xfs_inodegc	*gc = container_of(to_delayed_work(work),
1950						struct xfs_inodegc, work);
1951	struct llist_node	*node = llist_del_all(&gc->list);
1952	struct xfs_inode	*ip, *n;
1953	struct xfs_mount	*mp = gc->mp;
1954	unsigned int		nofs_flag;
1955
1956	/*
1957	 * Clear the cpu mask bit and ensure that we have seen the latest
1958	 * update of the gc structure associated with this CPU. This matches
1959	 * with the release semantics used when setting the cpumask bit in
1960	 * xfs_inodegc_queue.
1961	 */
1962	cpumask_clear_cpu(gc->cpu, &mp->m_inodegc_cpumask);
1963	smp_mb__after_atomic();
1964
1965	WRITE_ONCE(gc->items, 0);
1966
1967	if (!node)
1968		return;
1969
1970	/*
1971	 * We can allocate memory here while doing writeback on behalf of
1972	 * memory reclaim.  To avoid memory allocation deadlocks set the
1973	 * task-wide nofs context for the following operations.
1974	 */
1975	nofs_flag = memalloc_nofs_save();
1976
1977	ip = llist_entry(node, struct xfs_inode, i_gclist);
1978	trace_xfs_inodegc_worker(mp, READ_ONCE(gc->shrinker_hits));
1979
1980	WRITE_ONCE(gc->shrinker_hits, 0);
1981	llist_for_each_entry_safe(ip, n, node, i_gclist) {
1982		int	error;
1983
1984		xfs_iflags_set(ip, XFS_INACTIVATING);
1985		error = xfs_inodegc_inactivate(ip);
1986		if (error && !gc->error)
1987			gc->error = error;
1988	}
1989
1990	memalloc_nofs_restore(nofs_flag);
1991}
1992
1993/*
1994 * Expedite all pending inodegc work to run immediately. This does not wait for
1995 * completion of the work.
1996 */
1997void
1998xfs_inodegc_push(
1999	struct xfs_mount	*mp)
2000{
2001	if (!xfs_is_inodegc_enabled(mp))
2002		return;
2003	trace_xfs_inodegc_push(mp, __return_address);
2004	xfs_inodegc_queue_all(mp);
2005}
2006
2007/*
2008 * Force all currently queued inode inactivation work to run immediately and
2009 * wait for the work to finish.
2010 */
2011int
2012xfs_inodegc_flush(
2013	struct xfs_mount	*mp)
2014{
2015	xfs_inodegc_push(mp);
2016	trace_xfs_inodegc_flush(mp, __return_address);
2017	return xfs_inodegc_wait_all(mp);
 
2018}
2019
2020/*
2021 * Flush all the pending work and then disable the inode inactivation background
2022 * workers and wait for them to stop.  Caller must hold sb->s_umount to
2023 * coordinate changes in the inodegc_enabled state.
2024 */
2025void
2026xfs_inodegc_stop(
2027	struct xfs_mount	*mp)
2028{
2029	bool			rerun;
2030
2031	if (!xfs_clear_inodegc_enabled(mp))
2032		return;
2033
2034	/*
2035	 * Drain all pending inodegc work, including inodes that could be
2036	 * queued by racing xfs_inodegc_queue or xfs_inodegc_shrinker_scan
2037	 * threads that sample the inodegc state just prior to us clearing it.
2038	 * The inodegc flag state prevents new threads from queuing more
2039	 * inodes, so we queue pending work items and flush the workqueue until
2040	 * all inodegc lists are empty.  IOWs, we cannot use drain_workqueue
2041	 * here because it does not allow other unserialized mechanisms to
2042	 * reschedule inodegc work while this draining is in progress.
2043	 */
2044	xfs_inodegc_queue_all(mp);
2045	do {
2046		flush_workqueue(mp->m_inodegc_wq);
2047		rerun = xfs_inodegc_queue_all(mp);
2048	} while (rerun);
2049
2050	trace_xfs_inodegc_stop(mp, __return_address);
2051}
2052
2053/*
2054 * Enable the inode inactivation background workers and schedule deferred inode
2055 * inactivation work if there is any.  Caller must hold sb->s_umount to
2056 * coordinate changes in the inodegc_enabled state.
2057 */
2058void
2059xfs_inodegc_start(
2060	struct xfs_mount	*mp)
2061{
2062	if (xfs_set_inodegc_enabled(mp))
2063		return;
2064
2065	trace_xfs_inodegc_start(mp, __return_address);
2066	xfs_inodegc_queue_all(mp);
2067}
2068
2069#ifdef CONFIG_XFS_RT
2070static inline bool
2071xfs_inodegc_want_queue_rt_file(
2072	struct xfs_inode	*ip)
2073{
2074	struct xfs_mount	*mp = ip->i_mount;
2075
2076	if (!XFS_IS_REALTIME_INODE(ip))
2077		return false;
2078
2079	if (__percpu_counter_compare(&mp->m_frextents,
2080				mp->m_low_rtexts[XFS_LOWSP_5_PCNT],
2081				XFS_FDBLOCKS_BATCH) < 0)
2082		return true;
2083
2084	return false;
2085}
2086#else
2087# define xfs_inodegc_want_queue_rt_file(ip)	(false)
2088#endif /* CONFIG_XFS_RT */
2089
2090/*
2091 * Schedule the inactivation worker when:
2092 *
2093 *  - We've accumulated more than one inode cluster buffer's worth of inodes.
2094 *  - There is less than 5% free space left.
2095 *  - Any of the quotas for this inode are near an enforcement limit.
2096 */
2097static inline bool
2098xfs_inodegc_want_queue_work(
2099	struct xfs_inode	*ip,
2100	unsigned int		items)
2101{
2102	struct xfs_mount	*mp = ip->i_mount;
2103
2104	if (items > mp->m_ino_geo.inodes_per_cluster)
2105		return true;
2106
2107	if (__percpu_counter_compare(&mp->m_fdblocks,
2108				mp->m_low_space[XFS_LOWSP_5_PCNT],
2109				XFS_FDBLOCKS_BATCH) < 0)
2110		return true;
2111
2112	if (xfs_inodegc_want_queue_rt_file(ip))
2113		return true;
2114
2115	if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_USER))
2116		return true;
2117
2118	if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_GROUP))
2119		return true;
2120
2121	if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_PROJ))
2122		return true;
2123
2124	return false;
2125}
2126
2127/*
2128 * Upper bound on the number of inodes in each AG that can be queued for
2129 * inactivation at any given time, to avoid monopolizing the workqueue.
2130 */
2131#define XFS_INODEGC_MAX_BACKLOG		(4 * XFS_INODES_PER_CHUNK)
2132
2133/*
2134 * Make the frontend wait for inactivations when:
2135 *
2136 *  - Memory shrinkers queued the inactivation worker and it hasn't finished.
2137 *  - The queue depth exceeds the maximum allowable percpu backlog.
2138 *
2139 * Note: If we are in a NOFS context here (e.g. current thread is running a
2140 * transaction) the we don't want to block here as inodegc progress may require
2141 * filesystem resources we hold to make progress and that could result in a
2142 * deadlock. Hence we skip out of here if we are in a scoped NOFS context.
2143 */
2144static inline bool
2145xfs_inodegc_want_flush_work(
2146	struct xfs_inode	*ip,
2147	unsigned int		items,
2148	unsigned int		shrinker_hits)
2149{
2150	if (current->flags & PF_MEMALLOC_NOFS)
2151		return false;
2152
2153	if (shrinker_hits > 0)
2154		return true;
2155
2156	if (items > XFS_INODEGC_MAX_BACKLOG)
2157		return true;
2158
2159	return false;
2160}
2161
2162/*
2163 * Queue a background inactivation worker if there are inodes that need to be
2164 * inactivated and higher level xfs code hasn't disabled the background
2165 * workers.
2166 */
2167static void
2168xfs_inodegc_queue(
2169	struct xfs_inode	*ip)
2170{
2171	struct xfs_mount	*mp = ip->i_mount;
2172	struct xfs_inodegc	*gc;
2173	int			items;
2174	unsigned int		shrinker_hits;
2175	unsigned int		cpu_nr;
2176	unsigned long		queue_delay = 1;
2177
2178	trace_xfs_inode_set_need_inactive(ip);
2179	spin_lock(&ip->i_flags_lock);
2180	ip->i_flags |= XFS_NEED_INACTIVE;
2181	spin_unlock(&ip->i_flags_lock);
2182
2183	cpu_nr = get_cpu();
2184	gc = this_cpu_ptr(mp->m_inodegc);
2185	llist_add(&ip->i_gclist, &gc->list);
2186	items = READ_ONCE(gc->items);
2187	WRITE_ONCE(gc->items, items + 1);
2188	shrinker_hits = READ_ONCE(gc->shrinker_hits);
2189
2190	/*
2191	 * Ensure the list add is always seen by anyone who finds the cpumask
2192	 * bit set. This effectively gives the cpumask bit set operation
2193	 * release ordering semantics.
2194	 */
2195	smp_mb__before_atomic();
2196	if (!cpumask_test_cpu(cpu_nr, &mp->m_inodegc_cpumask))
2197		cpumask_test_and_set_cpu(cpu_nr, &mp->m_inodegc_cpumask);
2198
2199	/*
2200	 * We queue the work while holding the current CPU so that the work
2201	 * is scheduled to run on this CPU.
2202	 */
2203	if (!xfs_is_inodegc_enabled(mp)) {
2204		put_cpu();
2205		return;
2206	}
2207
2208	if (xfs_inodegc_want_queue_work(ip, items))
2209		queue_delay = 0;
2210
2211	trace_xfs_inodegc_queue(mp, __return_address);
2212	mod_delayed_work_on(current_cpu(), mp->m_inodegc_wq, &gc->work,
2213			queue_delay);
2214	put_cpu();
2215
2216	if (xfs_inodegc_want_flush_work(ip, items, shrinker_hits)) {
2217		trace_xfs_inodegc_throttle(mp, __return_address);
2218		flush_delayed_work(&gc->work);
2219	}
2220}
2221
2222/*
2223 * We set the inode flag atomically with the radix tree tag.  Once we get tag
2224 * lookups on the radix tree, this inode flag can go away.
2225 *
2226 * We always use background reclaim here because even if the inode is clean, it
2227 * still may be under IO and hence we have wait for IO completion to occur
2228 * before we can reclaim the inode. The background reclaim path handles this
2229 * more efficiently than we can here, so simply let background reclaim tear down
2230 * all inodes.
2231 */
2232void
2233xfs_inode_mark_reclaimable(
2234	struct xfs_inode	*ip)
2235{
2236	struct xfs_mount	*mp = ip->i_mount;
2237	bool			need_inactive;
2238
2239	XFS_STATS_INC(mp, vn_reclaim);
2240
2241	/*
2242	 * We should never get here with any of the reclaim flags already set.
2243	 */
2244	ASSERT_ALWAYS(!xfs_iflags_test(ip, XFS_ALL_IRECLAIM_FLAGS));
2245
2246	need_inactive = xfs_inode_needs_inactive(ip);
2247	if (need_inactive) {
2248		xfs_inodegc_queue(ip);
2249		return;
2250	}
2251
2252	/* Going straight to reclaim, so drop the dquots. */
2253	xfs_qm_dqdetach(ip);
2254	xfs_inodegc_set_reclaimable(ip);
2255}
2256
2257/*
2258 * Register a phony shrinker so that we can run background inodegc sooner when
2259 * there's memory pressure.  Inactivation does not itself free any memory but
2260 * it does make inodes reclaimable, which eventually frees memory.
2261 *
2262 * The count function, seek value, and batch value are crafted to trigger the
2263 * scan function during the second round of scanning.  Hopefully this means
2264 * that we reclaimed enough memory that initiating metadata transactions won't
2265 * make things worse.
2266 */
2267#define XFS_INODEGC_SHRINKER_COUNT	(1UL << DEF_PRIORITY)
2268#define XFS_INODEGC_SHRINKER_BATCH	((XFS_INODEGC_SHRINKER_COUNT / 2) + 1)
2269
2270static unsigned long
2271xfs_inodegc_shrinker_count(
2272	struct shrinker		*shrink,
2273	struct shrink_control	*sc)
2274{
2275	struct xfs_mount	*mp = shrink->private_data;
2276	struct xfs_inodegc	*gc;
2277	int			cpu;
2278
2279	if (!xfs_is_inodegc_enabled(mp))
2280		return 0;
2281
2282	for_each_cpu(cpu, &mp->m_inodegc_cpumask) {
2283		gc = per_cpu_ptr(mp->m_inodegc, cpu);
2284		if (!llist_empty(&gc->list))
2285			return XFS_INODEGC_SHRINKER_COUNT;
2286	}
2287
2288	return 0;
2289}
2290
2291static unsigned long
2292xfs_inodegc_shrinker_scan(
2293	struct shrinker		*shrink,
2294	struct shrink_control	*sc)
2295{
2296	struct xfs_mount	*mp = shrink->private_data;
2297	struct xfs_inodegc	*gc;
2298	int			cpu;
2299	bool			no_items = true;
2300
2301	if (!xfs_is_inodegc_enabled(mp))
2302		return SHRINK_STOP;
2303
2304	trace_xfs_inodegc_shrinker_scan(mp, sc, __return_address);
2305
2306	for_each_cpu(cpu, &mp->m_inodegc_cpumask) {
2307		gc = per_cpu_ptr(mp->m_inodegc, cpu);
2308		if (!llist_empty(&gc->list)) {
2309			unsigned int	h = READ_ONCE(gc->shrinker_hits);
2310
2311			WRITE_ONCE(gc->shrinker_hits, h + 1);
2312			mod_delayed_work_on(cpu, mp->m_inodegc_wq, &gc->work, 0);
2313			no_items = false;
2314		}
2315	}
2316
2317	/*
2318	 * If there are no inodes to inactivate, we don't want the shrinker
2319	 * to think there's deferred work to call us back about.
2320	 */
2321	if (no_items)
2322		return LONG_MAX;
2323
2324	return SHRINK_STOP;
2325}
2326
2327/* Register a shrinker so we can accelerate inodegc and throttle queuing. */
2328int
2329xfs_inodegc_register_shrinker(
2330	struct xfs_mount	*mp)
2331{
2332	mp->m_inodegc_shrinker = shrinker_alloc(SHRINKER_NONSLAB,
2333						"xfs-inodegc:%s",
2334						mp->m_super->s_id);
2335	if (!mp->m_inodegc_shrinker)
2336		return -ENOMEM;
2337
2338	mp->m_inodegc_shrinker->count_objects = xfs_inodegc_shrinker_count;
2339	mp->m_inodegc_shrinker->scan_objects = xfs_inodegc_shrinker_scan;
2340	mp->m_inodegc_shrinker->seeks = 0;
2341	mp->m_inodegc_shrinker->batch = XFS_INODEGC_SHRINKER_BATCH;
2342	mp->m_inodegc_shrinker->private_data = mp;
2343
2344	shrinker_register(mp->m_inodegc_shrinker);
2345
2346	return 0;
2347}
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   4 * All Rights Reserved.
   5 */
   6#include "xfs.h"
   7#include "xfs_fs.h"
   8#include "xfs_shared.h"
   9#include "xfs_format.h"
  10#include "xfs_log_format.h"
  11#include "xfs_trans_resv.h"
  12#include "xfs_sb.h"
  13#include "xfs_mount.h"
  14#include "xfs_inode.h"
  15#include "xfs_trans.h"
  16#include "xfs_trans_priv.h"
  17#include "xfs_inode_item.h"
  18#include "xfs_quota.h"
  19#include "xfs_trace.h"
  20#include "xfs_icache.h"
  21#include "xfs_bmap_util.h"
  22#include "xfs_dquot_item.h"
  23#include "xfs_dquot.h"
  24#include "xfs_reflink.h"
 
 
 
 
 
 
 
  25
  26#include <linux/iversion.h>
  27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  28/*
  29 * Allocate and initialise an xfs_inode.
  30 */
  31struct xfs_inode *
  32xfs_inode_alloc(
  33	struct xfs_mount	*mp,
  34	xfs_ino_t		ino)
  35{
  36	struct xfs_inode	*ip;
  37
  38	/*
  39	 * if this didn't occur in transactions, we could use
  40	 * KM_MAYFAIL and return NULL here on ENOMEM. Set the
  41	 * code up to do this anyway.
  42	 */
  43	ip = kmem_zone_alloc(xfs_inode_zone, 0);
  44	if (!ip)
  45		return NULL;
  46	if (inode_init_always(mp->m_super, VFS_I(ip))) {
  47		kmem_zone_free(xfs_inode_zone, ip);
  48		return NULL;
  49	}
  50
  51	/* VFS doesn't initialise i_mode! */
  52	VFS_I(ip)->i_mode = 0;
 
 
  53
  54	XFS_STATS_INC(mp, vn_active);
  55	ASSERT(atomic_read(&ip->i_pincount) == 0);
  56	ASSERT(!xfs_isiflocked(ip));
  57	ASSERT(ip->i_ino == 0);
  58
  59	/* initialise the xfs inode */
  60	ip->i_ino = ino;
  61	ip->i_mount = mp;
  62	memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
  63	ip->i_afp = NULL;
  64	ip->i_cowfp = NULL;
  65	ip->i_cnextents = 0;
  66	ip->i_cformat = XFS_DINODE_FMT_EXTENTS;
  67	memset(&ip->i_df, 0, sizeof(ip->i_df));
  68	ip->i_flags = 0;
  69	ip->i_delayed_blks = 0;
  70	memset(&ip->i_d, 0, sizeof(ip->i_d));
 
 
  71	ip->i_sick = 0;
  72	ip->i_checked = 0;
  73	INIT_WORK(&ip->i_ioend_work, xfs_end_io);
  74	INIT_LIST_HEAD(&ip->i_ioend_list);
  75	spin_lock_init(&ip->i_ioend_lock);
 
 
  76
  77	return ip;
  78}
  79
  80STATIC void
  81xfs_inode_free_callback(
  82	struct rcu_head		*head)
  83{
  84	struct inode		*inode = container_of(head, struct inode, i_rcu);
  85	struct xfs_inode	*ip = XFS_I(inode);
  86
  87	switch (VFS_I(ip)->i_mode & S_IFMT) {
  88	case S_IFREG:
  89	case S_IFDIR:
  90	case S_IFLNK:
  91		xfs_idestroy_fork(ip, XFS_DATA_FORK);
  92		break;
  93	}
  94
  95	if (ip->i_afp)
  96		xfs_idestroy_fork(ip, XFS_ATTR_FORK);
  97	if (ip->i_cowfp)
  98		xfs_idestroy_fork(ip, XFS_COW_FORK);
  99
 
 
 
 
 100	if (ip->i_itemp) {
 101		ASSERT(!test_bit(XFS_LI_IN_AIL,
 102				 &ip->i_itemp->ili_item.li_flags));
 103		xfs_inode_item_destroy(ip);
 104		ip->i_itemp = NULL;
 105	}
 106
 107	kmem_zone_free(xfs_inode_zone, ip);
 108}
 109
 110static void
 111__xfs_inode_free(
 112	struct xfs_inode	*ip)
 113{
 114	/* asserts to verify all state is correct here */
 115	ASSERT(atomic_read(&ip->i_pincount) == 0);
 
 116	XFS_STATS_DEC(ip->i_mount, vn_active);
 117
 118	call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
 119}
 120
 121void
 122xfs_inode_free(
 123	struct xfs_inode	*ip)
 124{
 125	ASSERT(!xfs_isiflocked(ip));
 126
 127	/*
 128	 * Because we use RCU freeing we need to ensure the inode always
 129	 * appears to be reclaimed with an invalid inode number when in the
 130	 * free state. The ip->i_flags_lock provides the barrier against lookup
 131	 * races.
 132	 */
 133	spin_lock(&ip->i_flags_lock);
 134	ip->i_flags = XFS_IRECLAIM;
 135	ip->i_ino = 0;
 136	spin_unlock(&ip->i_flags_lock);
 137
 138	__xfs_inode_free(ip);
 139}
 140
 141/*
 142 * Queue a new inode reclaim pass if there are reclaimable inodes and there
 143 * isn't a reclaim pass already in progress. By default it runs every 5s based
 144 * on the xfs periodic sync default of 30s. Perhaps this should have it's own
 145 * tunable, but that can be done if this method proves to be ineffective or too
 146 * aggressive.
 147 */
 148static void
 149xfs_reclaim_work_queue(
 150	struct xfs_mount        *mp)
 151{
 152
 153	rcu_read_lock();
 154	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
 155		queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
 156			msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
 157	}
 158	rcu_read_unlock();
 159}
 160
 161/*
 162 * This is a fast pass over the inode cache to try to get reclaim moving on as
 163 * many inodes as possible in a short period of time. It kicks itself every few
 164 * seconds, as well as being kicked by the inode cache shrinker when memory
 165 * goes low. It scans as quickly as possible avoiding locked inodes or those
 166 * already being flushed, and once done schedules a future pass.
 167 */
 168void
 169xfs_reclaim_worker(
 170	struct work_struct *work)
 171{
 172	struct xfs_mount *mp = container_of(to_delayed_work(work),
 173					struct xfs_mount, m_reclaim_work);
 
 
 174
 175	xfs_reclaim_inodes(mp, SYNC_TRYLOCK);
 176	xfs_reclaim_work_queue(mp);
 
 
 
 177}
 178
 
 179static void
 180xfs_perag_set_reclaim_tag(
 181	struct xfs_perag	*pag)
 
 
 182{
 183	struct xfs_mount	*mp = pag->pag_mount;
 184
 185	lockdep_assert_held(&pag->pag_ici_lock);
 186	if (pag->pag_ici_reclaimable++)
 
 
 
 
 
 
 
 187		return;
 188
 189	/* propagate the reclaim tag up into the perag radix tree */
 190	spin_lock(&mp->m_perag_lock);
 191	radix_tree_tag_set(&mp->m_perag_tree, pag->pag_agno,
 192			   XFS_ICI_RECLAIM_TAG);
 193	spin_unlock(&mp->m_perag_lock);
 194
 195	/* schedule periodic background inode reclaim */
 196	xfs_reclaim_work_queue(mp);
 
 
 
 
 
 
 
 197
 198	trace_xfs_perag_set_reclaim(mp, pag->pag_agno, -1, _RET_IP_);
 199}
 200
 
 201static void
 202xfs_perag_clear_reclaim_tag(
 203	struct xfs_perag	*pag)
 
 
 204{
 205	struct xfs_mount	*mp = pag->pag_mount;
 
 
 
 
 
 
 
 
 
 206
 207	lockdep_assert_held(&pag->pag_ici_lock);
 208	if (--pag->pag_ici_reclaimable)
 
 
 209		return;
 210
 211	/* clear the reclaim tag from the perag radix tree */
 212	spin_lock(&mp->m_perag_lock);
 213	radix_tree_tag_clear(&mp->m_perag_tree, pag->pag_agno,
 214			     XFS_ICI_RECLAIM_TAG);
 215	spin_unlock(&mp->m_perag_lock);
 216	trace_xfs_perag_clear_reclaim(mp, pag->pag_agno, -1, _RET_IP_);
 217}
 218
 219
 220/*
 221 * We set the inode flag atomically with the radix tree tag.
 222 * Once we get tag lookups on the radix tree, this inode flag
 223 * can go away.
 224 */
 225void
 226xfs_inode_set_reclaim_tag(
 227	struct xfs_inode	*ip)
 228{
 229	struct xfs_mount	*mp = ip->i_mount;
 230	struct xfs_perag	*pag;
 231
 232	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
 233	spin_lock(&pag->pag_ici_lock);
 234	spin_lock(&ip->i_flags_lock);
 235
 236	radix_tree_tag_set(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, ip->i_ino),
 237			   XFS_ICI_RECLAIM_TAG);
 238	xfs_perag_set_reclaim_tag(pag);
 239	__xfs_iflags_set(ip, XFS_IRECLAIMABLE);
 240
 241	spin_unlock(&ip->i_flags_lock);
 242	spin_unlock(&pag->pag_ici_lock);
 243	xfs_perag_put(pag);
 244}
 245
 246STATIC void
 247xfs_inode_clear_reclaim_tag(
 248	struct xfs_perag	*pag,
 249	xfs_ino_t		ino)
 250{
 251	radix_tree_tag_clear(&pag->pag_ici_root,
 252			     XFS_INO_TO_AGINO(pag->pag_mount, ino),
 253			     XFS_ICI_RECLAIM_TAG);
 254	xfs_perag_clear_reclaim_tag(pag);
 255}
 256
 257static void
 258xfs_inew_wait(
 259	struct xfs_inode	*ip)
 260{
 261	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_INEW_BIT);
 262	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_INEW_BIT);
 263
 264	do {
 265		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
 266		if (!xfs_iflags_test(ip, XFS_INEW))
 267			break;
 268		schedule();
 269	} while (true);
 270	finish_wait(wq, &wait.wq_entry);
 271}
 272
 273/*
 274 * When we recycle a reclaimable inode, we need to re-initialise the VFS inode
 275 * part of the structure. This is made more complex by the fact we store
 276 * information about the on-disk values in the VFS inode and so we can't just
 277 * overwrite the values unconditionally. Hence we save the parameters we
 278 * need to retain across reinitialisation, and rewrite them into the VFS inode
 279 * after reinitialisation even if it fails.
 280 */
 281static int
 282xfs_reinit_inode(
 283	struct xfs_mount	*mp,
 284	struct inode		*inode)
 285{
 286	int		error;
 287	uint32_t	nlink = inode->i_nlink;
 288	uint32_t	generation = inode->i_generation;
 289	uint64_t	version = inode_peek_iversion(inode);
 290	umode_t		mode = inode->i_mode;
 291	dev_t		dev = inode->i_rdev;
 
 
 
 292
 293	error = inode_init_always(mp->m_super, inode);
 294
 295	set_nlink(inode, nlink);
 296	inode->i_generation = generation;
 297	inode_set_iversion_queried(inode, version);
 298	inode->i_mode = mode;
 299	inode->i_rdev = dev;
 
 
 
 
 
 300	return error;
 301}
 302
 303/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 304 * If we are allocating a new inode, then check what was returned is
 305 * actually a free, empty inode. If we are not allocating an inode,
 306 * then check we didn't find a free inode.
 307 *
 308 * Returns:
 309 *	0		if the inode free state matches the lookup context
 310 *	-ENOENT		if the inode is free and we are not allocating
 311 *	-EFSCORRUPTED	if there is any state mismatch at all
 312 */
 313static int
 314xfs_iget_check_free_state(
 315	struct xfs_inode	*ip,
 316	int			flags)
 317{
 318	if (flags & XFS_IGET_CREATE) {
 319		/* should be a free inode */
 320		if (VFS_I(ip)->i_mode != 0) {
 321			xfs_warn(ip->i_mount,
 322"Corruption detected! Free inode 0x%llx not marked free! (mode 0x%x)",
 323				ip->i_ino, VFS_I(ip)->i_mode);
 
 
 
 324			return -EFSCORRUPTED;
 325		}
 326
 327		if (ip->i_d.di_nblocks != 0) {
 328			xfs_warn(ip->i_mount,
 329"Corruption detected! Free inode 0x%llx has blocks allocated!",
 330				ip->i_ino);
 
 
 
 331			return -EFSCORRUPTED;
 332		}
 333		return 0;
 334	}
 335
 336	/* should be an allocated inode */
 337	if (VFS_I(ip)->i_mode == 0)
 338		return -ENOENT;
 339
 340	return 0;
 341}
 342
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 343/*
 344 * Check the validity of the inode we just found it the cache
 345 */
 346static int
 347xfs_iget_cache_hit(
 348	struct xfs_perag	*pag,
 349	struct xfs_inode	*ip,
 350	xfs_ino_t		ino,
 351	int			flags,
 352	int			lock_flags) __releases(RCU)
 353{
 354	struct inode		*inode = VFS_I(ip);
 355	struct xfs_mount	*mp = ip->i_mount;
 356	int			error;
 357
 358	/*
 359	 * check for re-use of an inode within an RCU grace period due to the
 360	 * radix tree nodes not being updated yet. We monitor for this by
 361	 * setting the inode number to zero before freeing the inode structure.
 362	 * If the inode has been reallocated and set up, then the inode number
 363	 * will not match, so check for that, too.
 364	 */
 365	spin_lock(&ip->i_flags_lock);
 366	if (ip->i_ino != ino) {
 367		trace_xfs_iget_skip(ip);
 368		XFS_STATS_INC(mp, xs_ig_frecycle);
 369		error = -EAGAIN;
 370		goto out_error;
 371	}
 372
 373
 374	/*
 375	 * If we are racing with another cache hit that is currently
 376	 * instantiating this inode or currently recycling it out of
 377	 * reclaimabe state, wait for the initialisation to complete
 378	 * before continuing.
 379	 *
 
 
 
 
 
 
 
 
 380	 * XXX(hch): eventually we should do something equivalent to
 381	 *	     wait_on_inode to wait for these flags to be cleared
 382	 *	     instead of polling for it.
 383	 */
 384	if (ip->i_flags & (XFS_INEW|XFS_IRECLAIM)) {
 385		trace_xfs_iget_skip(ip);
 386		XFS_STATS_INC(mp, xs_ig_frecycle);
 387		error = -EAGAIN;
 388		goto out_error;
 
 
 
 
 
 389	}
 390
 391	/*
 392	 * Check the inode free state is valid. This also detects lookup
 393	 * racing with unlinks.
 394	 */
 395	error = xfs_iget_check_free_state(ip, flags);
 396	if (error)
 397		goto out_error;
 398
 399	/*
 400	 * If IRECLAIMABLE is set, we've torn down the VFS inode already.
 401	 * Need to carefully get it back into useable state.
 402	 */
 
 
 403	if (ip->i_flags & XFS_IRECLAIMABLE) {
 404		trace_xfs_iget_reclaim(ip);
 405
 406		if (flags & XFS_IGET_INCORE) {
 407			error = -EAGAIN;
 408			goto out_error;
 409		}
 410
 411		/*
 412		 * We need to set XFS_IRECLAIM to prevent xfs_reclaim_inode
 413		 * from stomping over us while we recycle the inode.  We can't
 414		 * clear the radix tree reclaimable tag yet as it requires
 415		 * pag_ici_lock to be held exclusive.
 416		 */
 417		ip->i_flags |= XFS_IRECLAIM;
 418
 419		spin_unlock(&ip->i_flags_lock);
 420		rcu_read_unlock();
 421
 422		error = xfs_reinit_inode(mp, inode);
 423		if (error) {
 424			bool wake;
 425			/*
 426			 * Re-initializing the inode failed, and we are in deep
 427			 * trouble.  Try to re-add it to the reclaim list.
 428			 */
 429			rcu_read_lock();
 430			spin_lock(&ip->i_flags_lock);
 431			wake = !!__xfs_iflags_test(ip, XFS_INEW);
 432			ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM);
 433			if (wake)
 434				wake_up_bit(&ip->i_flags, __XFS_INEW_BIT);
 435			ASSERT(ip->i_flags & XFS_IRECLAIMABLE);
 436			trace_xfs_iget_reclaim_fail(ip);
 437			goto out_error;
 438		}
 439
 440		spin_lock(&pag->pag_ici_lock);
 441		spin_lock(&ip->i_flags_lock);
 442
 443		/*
 444		 * Clear the per-lifetime state in the inode as we are now
 445		 * effectively a new inode and need to return to the initial
 446		 * state before reuse occurs.
 447		 */
 448		ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
 449		ip->i_flags |= XFS_INEW;
 450		xfs_inode_clear_reclaim_tag(pag, ip->i_ino);
 451		inode->i_state = I_NEW;
 452		ip->i_sick = 0;
 453		ip->i_checked = 0;
 454
 455		ASSERT(!rwsem_is_locked(&inode->i_rwsem));
 456		init_rwsem(&inode->i_rwsem);
 457
 458		spin_unlock(&ip->i_flags_lock);
 459		spin_unlock(&pag->pag_ici_lock);
 460	} else {
 461		/* If the VFS inode is being torn down, pause and try again. */
 462		if (!igrab(inode)) {
 463			trace_xfs_iget_skip(ip);
 464			error = -EAGAIN;
 465			goto out_error;
 466		}
 467
 468		/* We've got a live one. */
 469		spin_unlock(&ip->i_flags_lock);
 470		rcu_read_unlock();
 471		trace_xfs_iget_hit(ip);
 472	}
 473
 474	if (lock_flags != 0)
 475		xfs_ilock(ip, lock_flags);
 476
 477	if (!(flags & XFS_IGET_INCORE))
 478		xfs_iflags_clear(ip, XFS_ISTALE | XFS_IDONTCACHE);
 479	XFS_STATS_INC(mp, xs_ig_found);
 480
 481	return 0;
 482
 
 
 
 
 483out_error:
 484	spin_unlock(&ip->i_flags_lock);
 485	rcu_read_unlock();
 486	return error;
 
 
 
 
 
 
 
 
 
 
 
 487}
 488
 489
 490static int
 491xfs_iget_cache_miss(
 492	struct xfs_mount	*mp,
 493	struct xfs_perag	*pag,
 494	xfs_trans_t		*tp,
 495	xfs_ino_t		ino,
 496	struct xfs_inode	**ipp,
 497	int			flags,
 498	int			lock_flags)
 499{
 500	struct xfs_inode	*ip;
 501	int			error;
 502	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ino);
 503	int			iflags;
 504
 505	ip = xfs_inode_alloc(mp, ino);
 506	if (!ip)
 507		return -ENOMEM;
 508
 509	error = xfs_iread(mp, tp, ip, flags);
 510	if (error)
 511		goto out_destroy;
 512
 513	if (!xfs_inode_verify_forks(ip)) {
 514		error = -EFSCORRUPTED;
 515		goto out_destroy;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 516	}
 517
 518	trace_xfs_iget_miss(ip);
 519
 520
 521	/*
 522	 * Check the inode free state is valid. This also detects lookup
 523	 * racing with unlinks.
 524	 */
 525	error = xfs_iget_check_free_state(ip, flags);
 526	if (error)
 527		goto out_destroy;
 528
 529	/*
 530	 * Preload the radix tree so we can insert safely under the
 531	 * write spinlock. Note that we cannot sleep inside the preload
 532	 * region. Since we can be called from transaction context, don't
 533	 * recurse into the file system.
 534	 */
 535	if (radix_tree_preload(GFP_NOFS)) {
 536		error = -EAGAIN;
 537		goto out_destroy;
 538	}
 539
 540	/*
 541	 * Because the inode hasn't been added to the radix-tree yet it can't
 542	 * be found by another thread, so we can do the non-sleeping lock here.
 543	 */
 544	if (lock_flags) {
 545		if (!xfs_ilock_nowait(ip, lock_flags))
 546			BUG();
 547	}
 548
 549	/*
 550	 * These values must be set before inserting the inode into the radix
 551	 * tree as the moment it is inserted a concurrent lookup (allowed by the
 552	 * RCU locking mechanism) can find it and that lookup must see that this
 553	 * is an inode currently under construction (i.e. that XFS_INEW is set).
 554	 * The ip->i_flags_lock that protects the XFS_INEW flag forms the
 555	 * memory barrier that ensures this detection works correctly at lookup
 556	 * time.
 557	 */
 558	iflags = XFS_INEW;
 559	if (flags & XFS_IGET_DONTCACHE)
 560		iflags |= XFS_IDONTCACHE;
 561	ip->i_udquot = NULL;
 562	ip->i_gdquot = NULL;
 563	ip->i_pdquot = NULL;
 564	xfs_iflags_set(ip, iflags);
 565
 566	/* insert the new inode */
 567	spin_lock(&pag->pag_ici_lock);
 568	error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
 569	if (unlikely(error)) {
 570		WARN_ON(error != -EEXIST);
 571		XFS_STATS_INC(mp, xs_ig_dup);
 572		error = -EAGAIN;
 573		goto out_preload_end;
 574	}
 575	spin_unlock(&pag->pag_ici_lock);
 576	radix_tree_preload_end();
 577
 578	*ipp = ip;
 579	return 0;
 580
 581out_preload_end:
 582	spin_unlock(&pag->pag_ici_lock);
 583	radix_tree_preload_end();
 584	if (lock_flags)
 585		xfs_iunlock(ip, lock_flags);
 586out_destroy:
 587	__destroy_inode(VFS_I(ip));
 588	xfs_inode_free(ip);
 589	return error;
 590}
 591
 592/*
 593 * Look up an inode by number in the given file system.
 594 * The inode is looked up in the cache held in each AG.
 595 * If the inode is found in the cache, initialise the vfs inode
 596 * if necessary.
 597 *
 598 * If it is not in core, read it in from the file system's device,
 599 * add it to the cache and initialise the vfs inode.
 600 *
 601 * The inode is locked according to the value of the lock_flags parameter.
 602 * This flag parameter indicates how and if the inode's IO lock and inode lock
 603 * should be taken.
 604 *
 605 * mp -- the mount point structure for the current file system.  It points
 606 *       to the inode hash table.
 607 * tp -- a pointer to the current transaction if there is one.  This is
 608 *       simply passed through to the xfs_iread() call.
 609 * ino -- the number of the inode desired.  This is the unique identifier
 610 *        within the file system for the inode being requested.
 611 * lock_flags -- flags indicating how to lock the inode.  See the comment
 612 *		 for xfs_ilock() for a list of valid values.
 613 */
 614int
 615xfs_iget(
 616	xfs_mount_t	*mp,
 617	xfs_trans_t	*tp,
 618	xfs_ino_t	ino,
 619	uint		flags,
 620	uint		lock_flags,
 621	xfs_inode_t	**ipp)
 622{
 623	xfs_inode_t	*ip;
 624	int		error;
 625	xfs_perag_t	*pag;
 626	xfs_agino_t	agino;
 627
 628	/*
 629	 * xfs_reclaim_inode() uses the ILOCK to ensure an inode
 630	 * doesn't get freed while it's being referenced during a
 631	 * radix tree traversal here.  It assumes this function
 632	 * aqcuires only the ILOCK (and therefore it has no need to
 633	 * involve the IOLOCK in this synchronization).
 634	 */
 635	ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0);
 636
 637	/* reject inode numbers outside existing AGs */
 638	if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount)
 639		return -EINVAL;
 640
 641	XFS_STATS_INC(mp, xs_ig_attempts);
 642
 643	/* get the perag structure and ensure that it's inode capable */
 644	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
 645	agino = XFS_INO_TO_AGINO(mp, ino);
 646
 647again:
 648	error = 0;
 649	rcu_read_lock();
 650	ip = radix_tree_lookup(&pag->pag_ici_root, agino);
 651
 652	if (ip) {
 653		error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags);
 654		if (error)
 655			goto out_error_or_again;
 656	} else {
 657		rcu_read_unlock();
 658		if (flags & XFS_IGET_INCORE) {
 659			error = -ENODATA;
 660			goto out_error_or_again;
 661		}
 662		XFS_STATS_INC(mp, xs_ig_missed);
 663
 664		error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip,
 665							flags, lock_flags);
 666		if (error)
 667			goto out_error_or_again;
 668	}
 669	xfs_perag_put(pag);
 670
 671	*ipp = ip;
 672
 673	/*
 674	 * If we have a real type for an on-disk inode, we can setup the inode
 675	 * now.	 If it's a new inode being created, xfs_ialloc will handle it.
 
 676	 */
 677	if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0)
 678		xfs_setup_existing_inode(ip);
 679	return 0;
 680
 681out_error_or_again:
 682	if (!(flags & XFS_IGET_INCORE) && error == -EAGAIN) {
 
 683		delay(1);
 684		goto again;
 685	}
 686	xfs_perag_put(pag);
 687	return error;
 688}
 689
 690/*
 691 * "Is this a cached inode that's also allocated?"
 692 *
 693 * Look up an inode by number in the given file system.  If the inode is
 694 * in cache and isn't in purgatory, return 1 if the inode is allocated
 695 * and 0 if it is not.  For all other cases (not in cache, being torn
 696 * down, etc.), return a negative error code.
 697 *
 698 * The caller has to prevent inode allocation and freeing activity,
 699 * presumably by locking the AGI buffer.   This is to ensure that an
 700 * inode cannot transition from allocated to freed until the caller is
 701 * ready to allow that.  If the inode is in an intermediate state (new,
 702 * reclaimable, or being reclaimed), -EAGAIN will be returned; if the
 703 * inode is not in the cache, -ENOENT will be returned.  The caller must
 704 * deal with these scenarios appropriately.
 705 *
 706 * This is a specialized use case for the online scrubber; if you're
 707 * reading this, you probably want xfs_iget.
 708 */
 709int
 710xfs_icache_inode_is_allocated(
 711	struct xfs_mount	*mp,
 712	struct xfs_trans	*tp,
 713	xfs_ino_t		ino,
 714	bool			*inuse)
 
 715{
 
 716	struct xfs_inode	*ip;
 
 717	int			error;
 718
 719	error = xfs_iget(mp, tp, ino, XFS_IGET_INCORE, 0, &ip);
 
 
 720	if (error)
 721		return error;
 722
 723	*inuse = !!(VFS_I(ip)->i_mode);
 724	xfs_irele(ip);
 725	return 0;
 726}
 727
 728/*
 729 * The inode lookup is done in batches to keep the amount of lock traffic and
 730 * radix tree lookups to a minimum. The batch size is a trade off between
 731 * lookup reduction and stack usage. This is in the reclaim path, so we can't
 732 * be too greedy.
 733 */
 734#define XFS_LOOKUP_BATCH	32
 
 
 
 
 
 735
 736STATIC int
 737xfs_inode_ag_walk_grab(
 738	struct xfs_inode	*ip,
 739	int			flags)
 740{
 741	struct inode		*inode = VFS_I(ip);
 742	bool			newinos = !!(flags & XFS_AGITER_INEW_WAIT);
 743
 744	ASSERT(rcu_read_lock_held());
 745
 746	/*
 747	 * check for stale RCU freed inode
 748	 *
 749	 * If the inode has been reallocated, it doesn't matter if it's not in
 750	 * the AG we are walking - we are walking for writeback, so if it
 751	 * passes all the "valid inode" checks and is dirty, then we'll write
 752	 * it back anyway.  If it has been reallocated and still being
 753	 * initialised, the XFS_INEW check below will catch it.
 754	 */
 755	spin_lock(&ip->i_flags_lock);
 756	if (!ip->i_ino)
 757		goto out_unlock_noent;
 758
 759	/* avoid new or reclaimable inodes. Leave for reclaim code to flush */
 760	if ((!newinos && __xfs_iflags_test(ip, XFS_INEW)) ||
 761	    __xfs_iflags_test(ip, XFS_IRECLAIMABLE | XFS_IRECLAIM))
 762		goto out_unlock_noent;
 763	spin_unlock(&ip->i_flags_lock);
 764
 765	/* nothing to sync during shutdown */
 766	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
 767		return -EFSCORRUPTED;
 768
 769	/* If we can't grab the inode, it must on it's way to reclaim. */
 770	if (!igrab(inode))
 771		return -ENOENT;
 772
 773	/* inode is valid */
 774	return 0;
 775
 776out_unlock_noent:
 777	spin_unlock(&ip->i_flags_lock);
 778	return -ENOENT;
 779}
 780
 781STATIC int
 782xfs_inode_ag_walk(
 783	struct xfs_mount	*mp,
 784	struct xfs_perag	*pag,
 785	int			(*execute)(struct xfs_inode *ip, int flags,
 786					   void *args),
 787	int			flags,
 788	void			*args,
 789	int			tag,
 790	int			iter_flags)
 791{
 792	uint32_t		first_index;
 793	int			last_error = 0;
 794	int			skipped;
 795	int			done;
 796	int			nr_found;
 797
 798restart:
 799	done = 0;
 800	skipped = 0;
 801	first_index = 0;
 802	nr_found = 0;
 803	do {
 804		struct xfs_inode *batch[XFS_LOOKUP_BATCH];
 805		int		error = 0;
 806		int		i;
 807
 808		rcu_read_lock();
 809
 810		if (tag == -1)
 811			nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
 812					(void **)batch, first_index,
 813					XFS_LOOKUP_BATCH);
 814		else
 815			nr_found = radix_tree_gang_lookup_tag(
 816					&pag->pag_ici_root,
 817					(void **) batch, first_index,
 818					XFS_LOOKUP_BATCH, tag);
 819
 820		if (!nr_found) {
 821			rcu_read_unlock();
 822			break;
 823		}
 824
 825		/*
 826		 * Grab the inodes before we drop the lock. if we found
 827		 * nothing, nr == 0 and the loop will be skipped.
 828		 */
 829		for (i = 0; i < nr_found; i++) {
 830			struct xfs_inode *ip = batch[i];
 831
 832			if (done || xfs_inode_ag_walk_grab(ip, iter_flags))
 833				batch[i] = NULL;
 834
 835			/*
 836			 * Update the index for the next lookup. Catch
 837			 * overflows into the next AG range which can occur if
 838			 * we have inodes in the last block of the AG and we
 839			 * are currently pointing to the last inode.
 840			 *
 841			 * Because we may see inodes that are from the wrong AG
 842			 * due to RCU freeing and reallocation, only update the
 843			 * index if it lies in this AG. It was a race that lead
 844			 * us to see this inode, so another lookup from the
 845			 * same index will not find it again.
 846			 */
 847			if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
 848				continue;
 849			first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
 850			if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
 851				done = 1;
 852		}
 853
 854		/* unlock now we've grabbed the inodes. */
 855		rcu_read_unlock();
 856
 857		for (i = 0; i < nr_found; i++) {
 858			if (!batch[i])
 859				continue;
 860			if ((iter_flags & XFS_AGITER_INEW_WAIT) &&
 861			    xfs_iflags_test(batch[i], XFS_INEW))
 862				xfs_inew_wait(batch[i]);
 863			error = execute(batch[i], flags, args);
 864			xfs_irele(batch[i]);
 865			if (error == -EAGAIN) {
 866				skipped++;
 867				continue;
 868			}
 869			if (error && last_error != -EFSCORRUPTED)
 870				last_error = error;
 871		}
 872
 873		/* bail out if the filesystem is corrupted.  */
 874		if (error == -EFSCORRUPTED)
 875			break;
 876
 877		cond_resched();
 878
 879	} while (nr_found && !done);
 880
 881	if (skipped) {
 882		delay(1);
 883		goto restart;
 884	}
 885	return last_error;
 886}
 887
 888/*
 889 * Background scanning to trim post-EOF preallocated space. This is queued
 890 * based on the 'speculative_prealloc_lifetime' tunable (5m by default).
 891 */
 892void
 893xfs_queue_eofblocks(
 894	struct xfs_mount *mp)
 895{
 896	rcu_read_lock();
 897	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_EOFBLOCKS_TAG))
 898		queue_delayed_work(mp->m_eofblocks_workqueue,
 899				   &mp->m_eofblocks_work,
 900				   msecs_to_jiffies(xfs_eofb_secs * 1000));
 901	rcu_read_unlock();
 902}
 903
 904void
 905xfs_eofblocks_worker(
 906	struct work_struct *work)
 907{
 908	struct xfs_mount *mp = container_of(to_delayed_work(work),
 909				struct xfs_mount, m_eofblocks_work);
 910	xfs_icache_free_eofblocks(mp, NULL);
 911	xfs_queue_eofblocks(mp);
 912}
 913
 914/*
 915 * Background scanning to trim preallocated CoW space. This is queued
 916 * based on the 'speculative_cow_prealloc_lifetime' tunable (5m by default).
 917 * (We'll just piggyback on the post-EOF prealloc space workqueue.)
 918 */
 919void
 920xfs_queue_cowblocks(
 921	struct xfs_mount *mp)
 922{
 923	rcu_read_lock();
 924	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_COWBLOCKS_TAG))
 925		queue_delayed_work(mp->m_eofblocks_workqueue,
 926				   &mp->m_cowblocks_work,
 927				   msecs_to_jiffies(xfs_cowb_secs * 1000));
 928	rcu_read_unlock();
 929}
 930
 931void
 932xfs_cowblocks_worker(
 933	struct work_struct *work)
 934{
 935	struct xfs_mount *mp = container_of(to_delayed_work(work),
 936				struct xfs_mount, m_cowblocks_work);
 937	xfs_icache_free_cowblocks(mp, NULL);
 938	xfs_queue_cowblocks(mp);
 939}
 940
 
 941int
 942xfs_inode_ag_iterator_flags(
 943	struct xfs_mount	*mp,
 944	int			(*execute)(struct xfs_inode *ip, int flags,
 945					   void *args),
 946	int			flags,
 947	void			*args,
 948	int			iter_flags)
 949{
 950	struct xfs_perag	*pag;
 951	int			error = 0;
 952	int			last_error = 0;
 953	xfs_agnumber_t		ag;
 954
 955	ag = 0;
 956	while ((pag = xfs_perag_get(mp, ag))) {
 957		ag = pag->pag_agno + 1;
 958		error = xfs_inode_ag_walk(mp, pag, execute, flags, args, -1,
 959					  iter_flags);
 960		xfs_perag_put(pag);
 961		if (error) {
 962			last_error = error;
 963			if (error == -EFSCORRUPTED)
 964				break;
 965		}
 966	}
 967	return last_error;
 968}
 969
 970int
 971xfs_inode_ag_iterator(
 972	struct xfs_mount	*mp,
 973	int			(*execute)(struct xfs_inode *ip, int flags,
 974					   void *args),
 975	int			flags,
 976	void			*args)
 977{
 978	return xfs_inode_ag_iterator_flags(mp, execute, flags, args, 0);
 979}
 980
 981int
 982xfs_inode_ag_iterator_tag(
 983	struct xfs_mount	*mp,
 984	int			(*execute)(struct xfs_inode *ip, int flags,
 985					   void *args),
 986	int			flags,
 987	void			*args,
 988	int			tag)
 989{
 990	struct xfs_perag	*pag;
 991	int			error = 0;
 992	int			last_error = 0;
 993	xfs_agnumber_t		ag;
 994
 995	ag = 0;
 996	while ((pag = xfs_perag_get_tag(mp, ag, tag))) {
 997		ag = pag->pag_agno + 1;
 998		error = xfs_inode_ag_walk(mp, pag, execute, flags, args, tag,
 999					  0);
1000		xfs_perag_put(pag);
1001		if (error) {
1002			last_error = error;
1003			if (error == -EFSCORRUPTED)
1004				break;
1005		}
1006	}
1007	return last_error;
1008}
1009
1010/*
1011 * Grab the inode for reclaim exclusively.
1012 * Return 0 if we grabbed it, non-zero otherwise.
 
 
 
 
 
 
 
 
 
 
 
 
 
1013 */
1014STATIC int
1015xfs_reclaim_inode_grab(
1016	struct xfs_inode	*ip,
1017	int			flags)
1018{
1019	ASSERT(rcu_read_lock_held());
1020
1021	/* quick check for stale RCU freed inode */
1022	if (!ip->i_ino)
1023		return 1;
1024
1025	/*
1026	 * If we are asked for non-blocking operation, do unlocked checks to
1027	 * see if the inode already is being flushed or in reclaim to avoid
1028	 * lock traffic.
1029	 */
1030	if ((flags & SYNC_TRYLOCK) &&
1031	    __xfs_iflags_test(ip, XFS_IFLOCK | XFS_IRECLAIM))
1032		return 1;
1033
1034	/*
1035	 * The radix tree lock here protects a thread in xfs_iget from racing
1036	 * with us starting reclaim on the inode.  Once we have the
1037	 * XFS_IRECLAIM flag set it will not touch us.
1038	 *
1039	 * Due to RCU lookup, we may find inodes that have been freed and only
1040	 * have XFS_IRECLAIM set.  Indeed, we may see reallocated inodes that
1041	 * aren't candidates for reclaim at all, so we must check the
1042	 * XFS_IRECLAIMABLE is set first before proceeding to reclaim.
1043	 */
1044	spin_lock(&ip->i_flags_lock);
1045	if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
1046	    __xfs_iflags_test(ip, XFS_IRECLAIM)) {
1047		/* not a reclaim candidate. */
1048		spin_unlock(&ip->i_flags_lock);
1049		return 1;
1050	}
 
 
 
 
 
 
 
 
1051	__xfs_iflags_set(ip, XFS_IRECLAIM);
1052	spin_unlock(&ip->i_flags_lock);
1053	return 0;
1054}
1055
1056/*
1057 * Inodes in different states need to be treated differently. The following
1058 * table lists the inode states and the reclaim actions necessary:
1059 *
1060 *	inode state	     iflush ret		required action
1061 *      ---------------      ----------         ---------------
1062 *	bad			-		reclaim
1063 *	shutdown		EIO		unpin and reclaim
1064 *	clean, unpinned		0		reclaim
1065 *	stale, unpinned		0		reclaim
1066 *	clean, pinned(*)	0		requeue
1067 *	stale, pinned		EAGAIN		requeue
1068 *	dirty, async		-		requeue
1069 *	dirty, sync		0		reclaim
1070 *
1071 * (*) dgc: I don't think the clean, pinned state is possible but it gets
1072 * handled anyway given the order of checks implemented.
1073 *
1074 * Also, because we get the flush lock first, we know that any inode that has
1075 * been flushed delwri has had the flush completed by the time we check that
1076 * the inode is clean.
1077 *
1078 * Note that because the inode is flushed delayed write by AIL pushing, the
1079 * flush lock may already be held here and waiting on it can result in very
1080 * long latencies.  Hence for sync reclaims, where we wait on the flush lock,
1081 * the caller should push the AIL first before trying to reclaim inodes to
1082 * minimise the amount of time spent waiting.  For background relaim, we only
1083 * bother to reclaim clean inodes anyway.
1084 *
1085 * Hence the order of actions after gaining the locks should be:
1086 *	bad		=> reclaim
1087 *	shutdown	=> unpin and reclaim
1088 *	pinned, async	=> requeue
1089 *	pinned, sync	=> unpin
1090 *	stale		=> reclaim
1091 *	clean		=> reclaim
1092 *	dirty, async	=> requeue
1093 *	dirty, sync	=> flush, wait and reclaim
1094 */
1095STATIC int
1096xfs_reclaim_inode(
1097	struct xfs_inode	*ip,
1098	struct xfs_perag	*pag,
1099	int			sync_mode)
1100{
1101	struct xfs_buf		*bp = NULL;
1102	xfs_ino_t		ino = ip->i_ino; /* for radix_tree_delete */
1103	int			error;
1104
1105restart:
1106	error = 0;
1107	xfs_ilock(ip, XFS_ILOCK_EXCL);
1108	if (!xfs_iflock_nowait(ip)) {
1109		if (!(sync_mode & SYNC_WAIT))
1110			goto out;
1111		xfs_iflock(ip);
1112	}
1113
1114	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
 
 
 
 
 
 
 
1115		xfs_iunpin_wait(ip);
1116		/* xfs_iflush_abort() drops the flush lock */
1117		xfs_iflush_abort(ip, false);
1118		goto reclaim;
1119	}
1120	if (xfs_ipincount(ip)) {
1121		if (!(sync_mode & SYNC_WAIT))
1122			goto out_ifunlock;
1123		xfs_iunpin_wait(ip);
1124	}
1125	if (xfs_iflags_test(ip, XFS_ISTALE) || xfs_inode_clean(ip)) {
1126		xfs_ifunlock(ip);
1127		goto reclaim;
1128	}
1129
1130	/*
1131	 * Never flush out dirty data during non-blocking reclaim, as it would
1132	 * just contend with AIL pushing trying to do the same job.
1133	 */
1134	if (!(sync_mode & SYNC_WAIT))
1135		goto out_ifunlock;
1136
1137	/*
1138	 * Now we have an inode that needs flushing.
1139	 *
1140	 * Note that xfs_iflush will never block on the inode buffer lock, as
1141	 * xfs_ifree_cluster() can lock the inode buffer before it locks the
1142	 * ip->i_lock, and we are doing the exact opposite here.  As a result,
1143	 * doing a blocking xfs_imap_to_bp() to get the cluster buffer would
1144	 * result in an ABBA deadlock with xfs_ifree_cluster().
1145	 *
1146	 * As xfs_ifree_cluser() must gather all inodes that are active in the
1147	 * cache to mark them stale, if we hit this case we don't actually want
1148	 * to do IO here - we want the inode marked stale so we can simply
1149	 * reclaim it.  Hence if we get an EAGAIN error here,  just unlock the
1150	 * inode, back off and try again.  Hopefully the next pass through will
1151	 * see the stale flag set on the inode.
1152	 */
1153	error = xfs_iflush(ip, &bp);
1154	if (error == -EAGAIN) {
1155		xfs_iunlock(ip, XFS_ILOCK_EXCL);
1156		/* backoff longer than in xfs_ifree_cluster */
1157		delay(2);
1158		goto restart;
1159	}
1160
1161	if (!error) {
1162		error = xfs_bwrite(bp);
1163		xfs_buf_relse(bp);
1164	}
1165
 
1166reclaim:
1167	ASSERT(!xfs_isiflocked(ip));
1168
1169	/*
1170	 * Because we use RCU freeing we need to ensure the inode always appears
1171	 * to be reclaimed with an invalid inode number when in the free state.
1172	 * We do this as early as possible under the ILOCK so that
1173	 * xfs_iflush_cluster() and xfs_ifree_cluster() can be guaranteed to
1174	 * detect races with us here. By doing this, we guarantee that once
1175	 * xfs_iflush_cluster() or xfs_ifree_cluster() has locked XFS_ILOCK that
1176	 * it will see either a valid inode that will serialise correctly, or it
1177	 * will see an invalid inode that it can skip.
1178	 */
1179	spin_lock(&ip->i_flags_lock);
1180	ip->i_flags = XFS_IRECLAIM;
1181	ip->i_ino = 0;
 
 
1182	spin_unlock(&ip->i_flags_lock);
1183
 
1184	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1185
1186	XFS_STATS_INC(ip->i_mount, xs_ig_reclaims);
1187	/*
1188	 * Remove the inode from the per-AG radix tree.
1189	 *
1190	 * Because radix_tree_delete won't complain even if the item was never
1191	 * added to the tree assert that it's been there before to catch
1192	 * problems with the inode life time early on.
1193	 */
1194	spin_lock(&pag->pag_ici_lock);
1195	if (!radix_tree_delete(&pag->pag_ici_root,
1196				XFS_INO_TO_AGINO(ip->i_mount, ino)))
1197		ASSERT(0);
1198	xfs_perag_clear_reclaim_tag(pag);
1199	spin_unlock(&pag->pag_ici_lock);
1200
1201	/*
1202	 * Here we do an (almost) spurious inode lock in order to coordinate
1203	 * with inode cache radix tree lookups.  This is because the lookup
1204	 * can reference the inodes in the cache without taking references.
1205	 *
1206	 * We make that OK here by ensuring that we wait until the inode is
1207	 * unlocked after the lookup before we go ahead and free it.
1208	 */
1209	xfs_ilock(ip, XFS_ILOCK_EXCL);
1210	xfs_qm_dqdetach(ip);
1211	xfs_iunlock(ip, XFS_ILOCK_EXCL);
 
1212
1213	__xfs_inode_free(ip);
1214	return error;
1215
1216out_ifunlock:
1217	xfs_ifunlock(ip);
 
 
1218out:
1219	xfs_iflags_clear(ip, XFS_IRECLAIM);
1220	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1221	/*
1222	 * We could return -EAGAIN here to make reclaim rescan the inode tree in
1223	 * a short while. However, this just burns CPU time scanning the tree
1224	 * waiting for IO to complete and the reclaim work never goes back to
1225	 * the idle state. Instead, return 0 to let the next scheduled
1226	 * background reclaim attempt to reclaim the inode again.
1227	 */
1228	return 0;
1229}
1230
1231/*
1232 * Walk the AGs and reclaim the inodes in them. Even if the filesystem is
1233 * corrupted, we still want to try to reclaim all the inodes. If we don't,
1234 * then a shut down during filesystem unmount reclaim walk leak all the
1235 * unreclaimed inodes.
1236 */
1237STATIC int
1238xfs_reclaim_inodes_ag(
1239	struct xfs_mount	*mp,
1240	int			flags,
1241	int			*nr_to_scan)
1242{
1243	struct xfs_perag	*pag;
1244	int			error = 0;
1245	int			last_error = 0;
1246	xfs_agnumber_t		ag;
1247	int			trylock = flags & SYNC_TRYLOCK;
1248	int			skipped;
1249
1250restart:
1251	ag = 0;
1252	skipped = 0;
1253	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1254		unsigned long	first_index = 0;
1255		int		done = 0;
1256		int		nr_found = 0;
1257
1258		ag = pag->pag_agno + 1;
1259
1260		if (trylock) {
1261			if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) {
1262				skipped++;
1263				xfs_perag_put(pag);
1264				continue;
1265			}
1266			first_index = pag->pag_ici_reclaim_cursor;
1267		} else
1268			mutex_lock(&pag->pag_ici_reclaim_lock);
1269
1270		do {
1271			struct xfs_inode *batch[XFS_LOOKUP_BATCH];
1272			int	i;
1273
1274			rcu_read_lock();
1275			nr_found = radix_tree_gang_lookup_tag(
1276					&pag->pag_ici_root,
1277					(void **)batch, first_index,
1278					XFS_LOOKUP_BATCH,
1279					XFS_ICI_RECLAIM_TAG);
1280			if (!nr_found) {
1281				done = 1;
1282				rcu_read_unlock();
1283				break;
1284			}
1285
1286			/*
1287			 * Grab the inodes before we drop the lock. if we found
1288			 * nothing, nr == 0 and the loop will be skipped.
1289			 */
1290			for (i = 0; i < nr_found; i++) {
1291				struct xfs_inode *ip = batch[i];
1292
1293				if (done || xfs_reclaim_inode_grab(ip, flags))
1294					batch[i] = NULL;
1295
1296				/*
1297				 * Update the index for the next lookup. Catch
1298				 * overflows into the next AG range which can
1299				 * occur if we have inodes in the last block of
1300				 * the AG and we are currently pointing to the
1301				 * last inode.
1302				 *
1303				 * Because we may see inodes that are from the
1304				 * wrong AG due to RCU freeing and
1305				 * reallocation, only update the index if it
1306				 * lies in this AG. It was a race that lead us
1307				 * to see this inode, so another lookup from
1308				 * the same index will not find it again.
1309				 */
1310				if (XFS_INO_TO_AGNO(mp, ip->i_ino) !=
1311								pag->pag_agno)
1312					continue;
1313				first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
1314				if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
1315					done = 1;
1316			}
1317
1318			/* unlock now we've grabbed the inodes. */
1319			rcu_read_unlock();
1320
1321			for (i = 0; i < nr_found; i++) {
1322				if (!batch[i])
1323					continue;
1324				error = xfs_reclaim_inode(batch[i], pag, flags);
1325				if (error && last_error != -EFSCORRUPTED)
1326					last_error = error;
1327			}
1328
1329			*nr_to_scan -= XFS_LOOKUP_BATCH;
1330
1331			cond_resched();
1332
1333		} while (nr_found && !done && *nr_to_scan > 0);
1334
1335		if (trylock && !done)
1336			pag->pag_ici_reclaim_cursor = first_index;
1337		else
1338			pag->pag_ici_reclaim_cursor = 0;
1339		mutex_unlock(&pag->pag_ici_reclaim_lock);
1340		xfs_perag_put(pag);
1341	}
1342
1343	/*
1344	 * if we skipped any AG, and we still have scan count remaining, do
1345	 * another pass this time using blocking reclaim semantics (i.e
1346	 * waiting on the reclaim locks and ignoring the reclaim cursors). This
1347	 * ensure that when we get more reclaimers than AGs we block rather
1348	 * than spin trying to execute reclaim.
1349	 */
1350	if (skipped && (flags & SYNC_WAIT) && *nr_to_scan > 0) {
1351		trylock = 0;
1352		goto restart;
1353	}
1354	return last_error;
1355}
1356
1357int
1358xfs_reclaim_inodes(
1359	xfs_mount_t	*mp,
1360	int		mode)
1361{
1362	int		nr_to_scan = INT_MAX;
 
 
1363
1364	return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan);
 
 
 
 
 
 
1365}
1366
1367/*
1368 * Scan a certain number of inodes for reclaim.
1369 *
1370 * When called we make sure that there is a background (fast) inode reclaim in
1371 * progress, while we will throttle the speed of reclaim via doing synchronous
1372 * reclaim of inodes. That means if we come across dirty inodes, we wait for
1373 * them to be cleaned, which we hope will not be very long due to the
1374 * background walker having already kicked the IO off on those dirty inodes.
1375 */
1376long
1377xfs_reclaim_inodes_nr(
1378	struct xfs_mount	*mp,
1379	int			nr_to_scan)
1380{
 
 
 
 
 
 
 
 
1381	/* kick background reclaimer and push the AIL */
1382	xfs_reclaim_work_queue(mp);
1383	xfs_ail_push_all(mp->m_ail);
1384
1385	return xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan);
 
1386}
1387
1388/*
1389 * Return the number of reclaimable inodes in the filesystem for
1390 * the shrinker to determine how much to reclaim.
1391 */
1392int
1393xfs_reclaim_inodes_count(
1394	struct xfs_mount	*mp)
1395{
 
 
1396	struct xfs_perag	*pag;
1397	xfs_agnumber_t		ag = 0;
1398	int			reclaimable = 0;
1399
1400	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1401		ag = pag->pag_agno + 1;
 
1402		reclaimable += pag->pag_ici_reclaimable;
1403		xfs_perag_put(pag);
1404	}
 
 
1405	return reclaimable;
1406}
1407
1408STATIC int
1409xfs_inode_match_id(
1410	struct xfs_inode	*ip,
1411	struct xfs_eofblocks	*eofb)
1412{
1413	if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
1414	    !uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
1415		return 0;
1416
1417	if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
1418	    !gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
1419		return 0;
1420
1421	if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
1422	    xfs_get_projid(ip) != eofb->eof_prid)
1423		return 0;
1424
1425	return 1;
1426}
1427
1428/*
1429 * A union-based inode filtering algorithm. Process the inode if any of the
1430 * criteria match. This is for global/internal scans only.
1431 */
1432STATIC int
1433xfs_inode_match_id_union(
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1434	struct xfs_inode	*ip,
1435	struct xfs_eofblocks	*eofb)
1436{
1437	if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
1438	    uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
1439		return 1;
1440
1441	if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
1442	    gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
1443		return 1;
1444
1445	if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
1446	    xfs_get_projid(ip) == eofb->eof_prid)
1447		return 1;
1448
1449	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1450}
1451
1452STATIC int
1453xfs_inode_free_eofblocks(
1454	struct xfs_inode	*ip,
1455	int			flags,
1456	void			*args)
1457{
1458	int ret = 0;
1459	struct xfs_eofblocks *eofb = args;
1460	int match;
1461
1462	if (!xfs_can_free_eofblocks(ip, false)) {
1463		/* inode could be preallocated or append-only */
1464		trace_xfs_inode_free_eofblocks_invalid(ip);
1465		xfs_inode_clear_eofblocks_tag(ip);
1466		return 0;
1467	}
1468
1469	/*
1470	 * If the mapping is dirty the operation can block and wait for some
1471	 * time. Unless we are waiting, skip it.
1472	 */
1473	if (!(flags & SYNC_WAIT) &&
1474	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY))
1475		return 0;
1476
1477	if (eofb) {
1478		if (eofb->eof_flags & XFS_EOF_FLAGS_UNION)
1479			match = xfs_inode_match_id_union(ip, eofb);
1480		else
1481			match = xfs_inode_match_id(ip, eofb);
1482		if (!match)
1483			return 0;
1484
1485		/* skip the inode if the file size is too small */
1486		if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE &&
1487		    XFS_ISIZE(ip) < eofb->eof_min_file_size)
1488			return 0;
1489	}
1490
1491	/*
1492	 * If the caller is waiting, return -EAGAIN to keep the background
1493	 * scanner moving and revisit the inode in a subsequent pass.
1494	 */
1495	if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1496		if (flags & SYNC_WAIT)
1497			ret = -EAGAIN;
1498		return ret;
1499	}
1500	ret = xfs_free_eofblocks(ip);
1501	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1502
1503	return ret;
1504}
1505
1506static int
1507__xfs_icache_free_eofblocks(
1508	struct xfs_mount	*mp,
1509	struct xfs_eofblocks	*eofb,
1510	int			(*execute)(struct xfs_inode *ip, int flags,
1511					   void *args),
1512	int			tag)
1513{
1514	int flags = SYNC_TRYLOCK;
1515
1516	if (eofb && (eofb->eof_flags & XFS_EOF_FLAGS_SYNC))
1517		flags = SYNC_WAIT;
1518
1519	return xfs_inode_ag_iterator_tag(mp, execute, flags,
1520					 eofb, tag);
1521}
1522
1523int
1524xfs_icache_free_eofblocks(
1525	struct xfs_mount	*mp,
1526	struct xfs_eofblocks	*eofb)
1527{
1528	return __xfs_icache_free_eofblocks(mp, eofb, xfs_inode_free_eofblocks,
1529			XFS_ICI_EOFBLOCKS_TAG);
1530}
1531
1532/*
1533 * Run eofblocks scans on the quotas applicable to the inode. For inodes with
1534 * multiple quotas, we don't know exactly which quota caused an allocation
1535 * failure. We make a best effort by including each quota under low free space
1536 * conditions (less than 1% free space) in the scan.
1537 */
1538static int
1539__xfs_inode_free_quota_eofblocks(
1540	struct xfs_inode	*ip,
1541	int			(*execute)(struct xfs_mount *mp,
1542					   struct xfs_eofblocks	*eofb))
1543{
1544	int scan = 0;
1545	struct xfs_eofblocks eofb = {0};
1546	struct xfs_dquot *dq;
1547
1548	/*
1549	 * Run a sync scan to increase effectiveness and use the union filter to
1550	 * cover all applicable quotas in a single scan.
1551	 */
1552	eofb.eof_flags = XFS_EOF_FLAGS_UNION|XFS_EOF_FLAGS_SYNC;
1553
1554	if (XFS_IS_UQUOTA_ENFORCED(ip->i_mount)) {
1555		dq = xfs_inode_dquot(ip, XFS_DQ_USER);
1556		if (dq && xfs_dquot_lowsp(dq)) {
1557			eofb.eof_uid = VFS_I(ip)->i_uid;
1558			eofb.eof_flags |= XFS_EOF_FLAGS_UID;
1559			scan = 1;
1560		}
1561	}
1562
1563	if (XFS_IS_GQUOTA_ENFORCED(ip->i_mount)) {
1564		dq = xfs_inode_dquot(ip, XFS_DQ_GROUP);
1565		if (dq && xfs_dquot_lowsp(dq)) {
1566			eofb.eof_gid = VFS_I(ip)->i_gid;
1567			eofb.eof_flags |= XFS_EOF_FLAGS_GID;
1568			scan = 1;
1569		}
1570	}
1571
1572	if (scan)
1573		execute(ip->i_mount, &eofb);
1574
1575	return scan;
1576}
1577
1578int
1579xfs_inode_free_quota_eofblocks(
1580	struct xfs_inode *ip)
1581{
1582	return __xfs_inode_free_quota_eofblocks(ip, xfs_icache_free_eofblocks);
1583}
1584
1585static inline unsigned long
1586xfs_iflag_for_tag(
1587	int		tag)
1588{
1589	switch (tag) {
1590	case XFS_ICI_EOFBLOCKS_TAG:
1591		return XFS_IEOFBLOCKS;
1592	case XFS_ICI_COWBLOCKS_TAG:
1593		return XFS_ICOWBLOCKS;
1594	default:
1595		ASSERT(0);
1596		return 0;
1597	}
1598}
1599
1600static void
1601__xfs_inode_set_blocks_tag(
1602	xfs_inode_t	*ip,
1603	void		(*execute)(struct xfs_mount *mp),
1604	void		(*set_tp)(struct xfs_mount *mp, xfs_agnumber_t agno,
1605				  int error, unsigned long caller_ip),
1606	int		tag)
1607{
1608	struct xfs_mount *mp = ip->i_mount;
1609	struct xfs_perag *pag;
1610	int tagged;
1611
1612	/*
1613	 * Don't bother locking the AG and looking up in the radix trees
1614	 * if we already know that we have the tag set.
1615	 */
1616	if (ip->i_flags & xfs_iflag_for_tag(tag))
1617		return;
1618	spin_lock(&ip->i_flags_lock);
1619	ip->i_flags |= xfs_iflag_for_tag(tag);
1620	spin_unlock(&ip->i_flags_lock);
1621
1622	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1623	spin_lock(&pag->pag_ici_lock);
1624
1625	tagged = radix_tree_tagged(&pag->pag_ici_root, tag);
1626	radix_tree_tag_set(&pag->pag_ici_root,
1627			   XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), tag);
1628	if (!tagged) {
1629		/* propagate the eofblocks tag up into the perag radix tree */
1630		spin_lock(&ip->i_mount->m_perag_lock);
1631		radix_tree_tag_set(&ip->i_mount->m_perag_tree,
1632				   XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1633				   tag);
1634		spin_unlock(&ip->i_mount->m_perag_lock);
1635
1636		/* kick off background trimming */
1637		execute(ip->i_mount);
1638
1639		set_tp(ip->i_mount, pag->pag_agno, -1, _RET_IP_);
1640	}
1641
1642	spin_unlock(&pag->pag_ici_lock);
1643	xfs_perag_put(pag);
1644}
1645
1646void
1647xfs_inode_set_eofblocks_tag(
1648	xfs_inode_t	*ip)
1649{
1650	trace_xfs_inode_set_eofblocks_tag(ip);
1651	return __xfs_inode_set_blocks_tag(ip, xfs_queue_eofblocks,
1652			trace_xfs_perag_set_eofblocks,
1653			XFS_ICI_EOFBLOCKS_TAG);
1654}
1655
1656static void
1657__xfs_inode_clear_blocks_tag(
1658	xfs_inode_t	*ip,
1659	void		(*clear_tp)(struct xfs_mount *mp, xfs_agnumber_t agno,
1660				    int error, unsigned long caller_ip),
1661	int		tag)
1662{
1663	struct xfs_mount *mp = ip->i_mount;
1664	struct xfs_perag *pag;
 
 
 
1665
1666	spin_lock(&ip->i_flags_lock);
1667	ip->i_flags &= ~xfs_iflag_for_tag(tag);
 
1668	spin_unlock(&ip->i_flags_lock);
1669
 
 
 
1670	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1671	spin_lock(&pag->pag_ici_lock);
1672
1673	radix_tree_tag_clear(&pag->pag_ici_root,
1674			     XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), tag);
1675	if (!radix_tree_tagged(&pag->pag_ici_root, tag)) {
1676		/* clear the eofblocks tag from the perag radix tree */
1677		spin_lock(&ip->i_mount->m_perag_lock);
1678		radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
1679				     XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1680				     tag);
1681		spin_unlock(&ip->i_mount->m_perag_lock);
1682		clear_tp(ip->i_mount, pag->pag_agno, -1, _RET_IP_);
1683	}
1684
1685	spin_unlock(&pag->pag_ici_lock);
1686	xfs_perag_put(pag);
1687}
1688
1689void
1690xfs_inode_clear_eofblocks_tag(
1691	xfs_inode_t	*ip)
1692{
1693	trace_xfs_inode_clear_eofblocks_tag(ip);
1694	return __xfs_inode_clear_blocks_tag(ip,
1695			trace_xfs_perag_clear_eofblocks, XFS_ICI_EOFBLOCKS_TAG);
1696}
1697
1698/*
1699 * Set ourselves up to free CoW blocks from this file.  If it's already clean
1700 * then we can bail out quickly, but otherwise we must back off if the file
1701 * is undergoing some kind of write.
1702 */
1703static bool
1704xfs_prep_free_cowblocks(
1705	struct xfs_inode	*ip)
 
1706{
 
 
 
 
1707	/*
1708	 * Just clear the tag if we have an empty cow fork or none at all. It's
1709	 * possible the inode was fully unshared since it was originally tagged.
1710	 */
1711	if (!xfs_inode_has_cow_data(ip)) {
1712		trace_xfs_inode_free_cowblocks_invalid(ip);
1713		xfs_inode_clear_cowblocks_tag(ip);
1714		return false;
1715	}
1716
1717	/*
1718	 * If the mapping is dirty or under writeback we cannot touch the
1719	 * CoW fork.  Leave it alone if we're in the midst of a directio.
 
 
 
 
 
 
 
 
 
 
1720	 */
1721	if ((VFS_I(ip)->i_state & I_DIRTY_PAGES) ||
1722	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY) ||
1723	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_WRITEBACK) ||
1724	    atomic_read(&VFS_I(ip)->i_dio_count))
1725		return false;
1726
1727	return true;
1728}
1729
1730/*
1731 * Automatic CoW Reservation Freeing
1732 *
1733 * These functions automatically garbage collect leftover CoW reservations
1734 * that were made on behalf of a cowextsize hint when we start to run out
1735 * of quota or when the reservations sit around for too long.  If the file
1736 * has dirty pages or is undergoing writeback, its CoW reservations will
1737 * be retained.
1738 *
1739 * The actual garbage collection piggybacks off the same code that runs
1740 * the speculative EOF preallocation garbage collector.
1741 */
1742STATIC int
1743xfs_inode_free_cowblocks(
1744	struct xfs_inode	*ip,
1745	int			flags,
1746	void			*args)
1747{
1748	struct xfs_eofblocks	*eofb = args;
1749	int			match;
1750	int			ret = 0;
1751
1752	if (!xfs_prep_free_cowblocks(ip))
 
 
 
 
 
 
 
 
1753		return 0;
1754
1755	if (eofb) {
1756		if (eofb->eof_flags & XFS_EOF_FLAGS_UNION)
1757			match = xfs_inode_match_id_union(ip, eofb);
1758		else
1759			match = xfs_inode_match_id(ip, eofb);
1760		if (!match)
1761			return 0;
1762
1763		/* skip the inode if the file size is too small */
1764		if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE &&
1765		    XFS_ISIZE(ip) < eofb->eof_min_file_size)
1766			return 0;
1767	}
 
1768
1769	/* Free the CoW blocks */
1770	xfs_ilock(ip, XFS_IOLOCK_EXCL);
1771	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
 
 
 
1772
1773	/*
1774	 * Check again, nobody else should be able to dirty blocks or change
1775	 * the reflink iflag now that we have the first two locks held.
1776	 */
1777	if (xfs_prep_free_cowblocks(ip))
1778		ret = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, false);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1779
1780	xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
1781	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1782
1783	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1784}
1785
 
 
 
 
 
 
 
 
 
 
1786int
1787xfs_icache_free_cowblocks(
1788	struct xfs_mount	*mp,
1789	struct xfs_eofblocks	*eofb)
 
 
 
1790{
1791	return __xfs_icache_free_eofblocks(mp, eofb, xfs_inode_free_cowblocks,
1792			XFS_ICI_COWBLOCKS_TAG);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1793}
1794
 
1795int
1796xfs_inode_free_quota_cowblocks(
1797	struct xfs_inode *ip)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1798{
1799	return __xfs_inode_free_quota_eofblocks(ip, xfs_icache_free_cowblocks);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1800}
1801
 
 
 
 
1802void
1803xfs_inode_set_cowblocks_tag(
1804	xfs_inode_t	*ip)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1805{
1806	trace_xfs_inode_set_cowblocks_tag(ip);
1807	return __xfs_inode_set_blocks_tag(ip, xfs_queue_cowblocks,
1808			trace_xfs_perag_set_cowblocks,
1809			XFS_ICI_COWBLOCKS_TAG);
1810}
1811
 
 
 
 
 
1812void
1813xfs_inode_clear_cowblocks_tag(
1814	xfs_inode_t	*ip)
1815{
1816	trace_xfs_inode_clear_cowblocks_tag(ip);
1817	return __xfs_inode_clear_blocks_tag(ip,
1818			trace_xfs_perag_clear_cowblocks, XFS_ICI_COWBLOCKS_TAG);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1819}
1820
1821/* Disable post-EOF and CoW block auto-reclamation. */
 
 
 
 
1822void
1823xfs_stop_block_reaping(
1824	struct xfs_mount	*mp)
1825{
1826	cancel_delayed_work_sync(&mp->m_eofblocks_work);
1827	cancel_delayed_work_sync(&mp->m_cowblocks_work);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1828}
1829
1830/* Enable post-EOF and CoW block auto-reclamation. */
 
 
 
 
 
 
 
 
 
1831void
1832xfs_start_block_reaping(
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1833	struct xfs_mount	*mp)
1834{
1835	xfs_queue_eofblocks(mp);
1836	xfs_queue_cowblocks(mp);
 
 
 
 
 
 
 
 
 
 
 
 
 
1837}