Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.13.7.
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/**
   3 * mft.c - NTFS kernel mft record operations. Part of the Linux-NTFS project.
   4 *
   5 * Copyright (c) 2001-2012 Anton Altaparmakov and Tuxera Inc.
   6 * Copyright (c) 2002 Richard Russon
   7 */
   8
   9#include <linux/buffer_head.h>
  10#include <linux/slab.h>
  11#include <linux/swap.h>
  12#include <linux/bio.h>
  13
  14#include "attrib.h"
  15#include "aops.h"
  16#include "bitmap.h"
  17#include "debug.h"
  18#include "dir.h"
  19#include "lcnalloc.h"
  20#include "malloc.h"
  21#include "mft.h"
  22#include "ntfs.h"
  23
  24#define MAX_BHS	(PAGE_SIZE / NTFS_BLOCK_SIZE)
  25
  26/**
  27 * map_mft_record_page - map the page in which a specific mft record resides
  28 * @ni:		ntfs inode whose mft record page to map
  29 *
  30 * This maps the page in which the mft record of the ntfs inode @ni is situated
  31 * and returns a pointer to the mft record within the mapped page.
  32 *
  33 * Return value needs to be checked with IS_ERR() and if that is true PTR_ERR()
  34 * contains the negative error code returned.
  35 */
  36static inline MFT_RECORD *map_mft_record_page(ntfs_inode *ni)
  37{
  38	loff_t i_size;
  39	ntfs_volume *vol = ni->vol;
  40	struct inode *mft_vi = vol->mft_ino;
  41	struct page *page;
  42	unsigned long index, end_index;
  43	unsigned ofs;
  44
  45	BUG_ON(ni->page);
  46	/*
  47	 * The index into the page cache and the offset within the page cache
  48	 * page of the wanted mft record. FIXME: We need to check for
  49	 * overflowing the unsigned long, but I don't think we would ever get
  50	 * here if the volume was that big...
  51	 */
  52	index = (u64)ni->mft_no << vol->mft_record_size_bits >>
  53			PAGE_SHIFT;
  54	ofs = (ni->mft_no << vol->mft_record_size_bits) & ~PAGE_MASK;
  55
  56	i_size = i_size_read(mft_vi);
  57	/* The maximum valid index into the page cache for $MFT's data. */
  58	end_index = i_size >> PAGE_SHIFT;
  59
  60	/* If the wanted index is out of bounds the mft record doesn't exist. */
  61	if (unlikely(index >= end_index)) {
  62		if (index > end_index || (i_size & ~PAGE_MASK) < ofs +
  63				vol->mft_record_size) {
  64			page = ERR_PTR(-ENOENT);
  65			ntfs_error(vol->sb, "Attempt to read mft record 0x%lx, "
  66					"which is beyond the end of the mft.  "
  67					"This is probably a bug in the ntfs "
  68					"driver.", ni->mft_no);
  69			goto err_out;
  70		}
  71	}
  72	/* Read, map, and pin the page. */
  73	page = ntfs_map_page(mft_vi->i_mapping, index);
  74	if (!IS_ERR(page)) {
  75		/* Catch multi sector transfer fixup errors. */
  76		if (likely(ntfs_is_mft_recordp((le32*)(page_address(page) +
  77				ofs)))) {
  78			ni->page = page;
  79			ni->page_ofs = ofs;
  80			return page_address(page) + ofs;
  81		}
  82		ntfs_error(vol->sb, "Mft record 0x%lx is corrupt.  "
  83				"Run chkdsk.", ni->mft_no);
  84		ntfs_unmap_page(page);
  85		page = ERR_PTR(-EIO);
  86		NVolSetErrors(vol);
  87	}
  88err_out:
  89	ni->page = NULL;
  90	ni->page_ofs = 0;
  91	return (void*)page;
  92}
  93
  94/**
  95 * map_mft_record - map, pin and lock an mft record
  96 * @ni:		ntfs inode whose MFT record to map
  97 *
  98 * First, take the mrec_lock mutex.  We might now be sleeping, while waiting
  99 * for the mutex if it was already locked by someone else.
 100 *
 101 * The page of the record is mapped using map_mft_record_page() before being
 102 * returned to the caller.
 103 *
 104 * This in turn uses ntfs_map_page() to get the page containing the wanted mft
 105 * record (it in turn calls read_cache_page() which reads it in from disk if
 106 * necessary, increments the use count on the page so that it cannot disappear
 107 * under us and returns a reference to the page cache page).
 108 *
 109 * If read_cache_page() invokes ntfs_readpage() to load the page from disk, it
 110 * sets PG_locked and clears PG_uptodate on the page. Once I/O has completed
 111 * and the post-read mst fixups on each mft record in the page have been
 112 * performed, the page gets PG_uptodate set and PG_locked cleared (this is done
 113 * in our asynchronous I/O completion handler end_buffer_read_mft_async()).
 114 * ntfs_map_page() waits for PG_locked to become clear and checks if
 115 * PG_uptodate is set and returns an error code if not. This provides
 116 * sufficient protection against races when reading/using the page.
 117 *
 118 * However there is the write mapping to think about. Doing the above described
 119 * checking here will be fine, because when initiating the write we will set
 120 * PG_locked and clear PG_uptodate making sure nobody is touching the page
 121 * contents. Doing the locking this way means that the commit to disk code in
 122 * the page cache code paths is automatically sufficiently locked with us as
 123 * we will not touch a page that has been locked or is not uptodate. The only
 124 * locking problem then is them locking the page while we are accessing it.
 125 *
 126 * So that code will end up having to own the mrec_lock of all mft
 127 * records/inodes present in the page before I/O can proceed. In that case we
 128 * wouldn't need to bother with PG_locked and PG_uptodate as nobody will be
 129 * accessing anything without owning the mrec_lock mutex.  But we do need to
 130 * use them because of the read_cache_page() invocation and the code becomes so
 131 * much simpler this way that it is well worth it.
 132 *
 133 * The mft record is now ours and we return a pointer to it. You need to check
 134 * the returned pointer with IS_ERR() and if that is true, PTR_ERR() will return
 135 * the error code.
 136 *
 137 * NOTE: Caller is responsible for setting the mft record dirty before calling
 138 * unmap_mft_record(). This is obviously only necessary if the caller really
 139 * modified the mft record...
 140 * Q: Do we want to recycle one of the VFS inode state bits instead?
 141 * A: No, the inode ones mean we want to change the mft record, not we want to
 142 * write it out.
 143 */
 144MFT_RECORD *map_mft_record(ntfs_inode *ni)
 145{
 146	MFT_RECORD *m;
 147
 148	ntfs_debug("Entering for mft_no 0x%lx.", ni->mft_no);
 149
 150	/* Make sure the ntfs inode doesn't go away. */
 151	atomic_inc(&ni->count);
 152
 153	/* Serialize access to this mft record. */
 154	mutex_lock(&ni->mrec_lock);
 155
 156	m = map_mft_record_page(ni);
 157	if (!IS_ERR(m))
 158		return m;
 159
 160	mutex_unlock(&ni->mrec_lock);
 161	atomic_dec(&ni->count);
 162	ntfs_error(ni->vol->sb, "Failed with error code %lu.", -PTR_ERR(m));
 163	return m;
 164}
 165
 166/**
 167 * unmap_mft_record_page - unmap the page in which a specific mft record resides
 168 * @ni:		ntfs inode whose mft record page to unmap
 169 *
 170 * This unmaps the page in which the mft record of the ntfs inode @ni is
 171 * situated and returns. This is a NOOP if highmem is not configured.
 172 *
 173 * The unmap happens via ntfs_unmap_page() which in turn decrements the use
 174 * count on the page thus releasing it from the pinned state.
 175 *
 176 * We do not actually unmap the page from memory of course, as that will be
 177 * done by the page cache code itself when memory pressure increases or
 178 * whatever.
 179 */
 180static inline void unmap_mft_record_page(ntfs_inode *ni)
 181{
 182	BUG_ON(!ni->page);
 183
 184	// TODO: If dirty, blah...
 185	ntfs_unmap_page(ni->page);
 186	ni->page = NULL;
 187	ni->page_ofs = 0;
 188	return;
 189}
 190
 191/**
 192 * unmap_mft_record - release a mapped mft record
 193 * @ni:		ntfs inode whose MFT record to unmap
 194 *
 195 * We release the page mapping and the mrec_lock mutex which unmaps the mft
 196 * record and releases it for others to get hold of. We also release the ntfs
 197 * inode by decrementing the ntfs inode reference count.
 198 *
 199 * NOTE: If caller has modified the mft record, it is imperative to set the mft
 200 * record dirty BEFORE calling unmap_mft_record().
 201 */
 202void unmap_mft_record(ntfs_inode *ni)
 203{
 204	struct page *page = ni->page;
 205
 206	BUG_ON(!page);
 207
 208	ntfs_debug("Entering for mft_no 0x%lx.", ni->mft_no);
 209
 210	unmap_mft_record_page(ni);
 211	mutex_unlock(&ni->mrec_lock);
 212	atomic_dec(&ni->count);
 213	/*
 214	 * If pure ntfs_inode, i.e. no vfs inode attached, we leave it to
 215	 * ntfs_clear_extent_inode() in the extent inode case, and to the
 216	 * caller in the non-extent, yet pure ntfs inode case, to do the actual
 217	 * tear down of all structures and freeing of all allocated memory.
 218	 */
 219	return;
 220}
 221
 222/**
 223 * map_extent_mft_record - load an extent inode and attach it to its base
 224 * @base_ni:	base ntfs inode
 225 * @mref:	mft reference of the extent inode to load
 226 * @ntfs_ino:	on successful return, pointer to the ntfs_inode structure
 227 *
 228 * Load the extent mft record @mref and attach it to its base inode @base_ni.
 229 * Return the mapped extent mft record if IS_ERR(result) is false.  Otherwise
 230 * PTR_ERR(result) gives the negative error code.
 231 *
 232 * On successful return, @ntfs_ino contains a pointer to the ntfs_inode
 233 * structure of the mapped extent inode.
 234 */
 235MFT_RECORD *map_extent_mft_record(ntfs_inode *base_ni, MFT_REF mref,
 236		ntfs_inode **ntfs_ino)
 237{
 238	MFT_RECORD *m;
 239	ntfs_inode *ni = NULL;
 240	ntfs_inode **extent_nis = NULL;
 241	int i;
 242	unsigned long mft_no = MREF(mref);
 243	u16 seq_no = MSEQNO(mref);
 244	bool destroy_ni = false;
 245
 246	ntfs_debug("Mapping extent mft record 0x%lx (base mft record 0x%lx).",
 247			mft_no, base_ni->mft_no);
 248	/* Make sure the base ntfs inode doesn't go away. */
 249	atomic_inc(&base_ni->count);
 250	/*
 251	 * Check if this extent inode has already been added to the base inode,
 252	 * in which case just return it. If not found, add it to the base
 253	 * inode before returning it.
 254	 */
 255	mutex_lock(&base_ni->extent_lock);
 256	if (base_ni->nr_extents > 0) {
 257		extent_nis = base_ni->ext.extent_ntfs_inos;
 258		for (i = 0; i < base_ni->nr_extents; i++) {
 259			if (mft_no != extent_nis[i]->mft_no)
 260				continue;
 261			ni = extent_nis[i];
 262			/* Make sure the ntfs inode doesn't go away. */
 263			atomic_inc(&ni->count);
 264			break;
 265		}
 266	}
 267	if (likely(ni != NULL)) {
 268		mutex_unlock(&base_ni->extent_lock);
 269		atomic_dec(&base_ni->count);
 270		/* We found the record; just have to map and return it. */
 271		m = map_mft_record(ni);
 272		/* map_mft_record() has incremented this on success. */
 273		atomic_dec(&ni->count);
 274		if (!IS_ERR(m)) {
 275			/* Verify the sequence number. */
 276			if (likely(le16_to_cpu(m->sequence_number) == seq_no)) {
 277				ntfs_debug("Done 1.");
 278				*ntfs_ino = ni;
 279				return m;
 280			}
 281			unmap_mft_record(ni);
 282			ntfs_error(base_ni->vol->sb, "Found stale extent mft "
 283					"reference! Corrupt filesystem. "
 284					"Run chkdsk.");
 285			return ERR_PTR(-EIO);
 286		}
 287map_err_out:
 288		ntfs_error(base_ni->vol->sb, "Failed to map extent "
 289				"mft record, error code %ld.", -PTR_ERR(m));
 290		return m;
 291	}
 292	/* Record wasn't there. Get a new ntfs inode and initialize it. */
 293	ni = ntfs_new_extent_inode(base_ni->vol->sb, mft_no);
 294	if (unlikely(!ni)) {
 295		mutex_unlock(&base_ni->extent_lock);
 296		atomic_dec(&base_ni->count);
 297		return ERR_PTR(-ENOMEM);
 298	}
 299	ni->vol = base_ni->vol;
 300	ni->seq_no = seq_no;
 301	ni->nr_extents = -1;
 302	ni->ext.base_ntfs_ino = base_ni;
 303	/* Now map the record. */
 304	m = map_mft_record(ni);
 305	if (IS_ERR(m)) {
 306		mutex_unlock(&base_ni->extent_lock);
 307		atomic_dec(&base_ni->count);
 308		ntfs_clear_extent_inode(ni);
 309		goto map_err_out;
 310	}
 311	/* Verify the sequence number if it is present. */
 312	if (seq_no && (le16_to_cpu(m->sequence_number) != seq_no)) {
 313		ntfs_error(base_ni->vol->sb, "Found stale extent mft "
 314				"reference! Corrupt filesystem. Run chkdsk.");
 315		destroy_ni = true;
 316		m = ERR_PTR(-EIO);
 317		goto unm_err_out;
 318	}
 319	/* Attach extent inode to base inode, reallocating memory if needed. */
 320	if (!(base_ni->nr_extents & 3)) {
 321		ntfs_inode **tmp;
 322		int new_size = (base_ni->nr_extents + 4) * sizeof(ntfs_inode *);
 323
 324		tmp = kmalloc(new_size, GFP_NOFS);
 325		if (unlikely(!tmp)) {
 326			ntfs_error(base_ni->vol->sb, "Failed to allocate "
 327					"internal buffer.");
 328			destroy_ni = true;
 329			m = ERR_PTR(-ENOMEM);
 330			goto unm_err_out;
 331		}
 332		if (base_ni->nr_extents) {
 333			BUG_ON(!base_ni->ext.extent_ntfs_inos);
 334			memcpy(tmp, base_ni->ext.extent_ntfs_inos, new_size -
 335					4 * sizeof(ntfs_inode *));
 336			kfree(base_ni->ext.extent_ntfs_inos);
 337		}
 338		base_ni->ext.extent_ntfs_inos = tmp;
 339	}
 340	base_ni->ext.extent_ntfs_inos[base_ni->nr_extents++] = ni;
 341	mutex_unlock(&base_ni->extent_lock);
 342	atomic_dec(&base_ni->count);
 343	ntfs_debug("Done 2.");
 344	*ntfs_ino = ni;
 345	return m;
 346unm_err_out:
 347	unmap_mft_record(ni);
 348	mutex_unlock(&base_ni->extent_lock);
 349	atomic_dec(&base_ni->count);
 350	/*
 351	 * If the extent inode was not attached to the base inode we need to
 352	 * release it or we will leak memory.
 353	 */
 354	if (destroy_ni)
 355		ntfs_clear_extent_inode(ni);
 356	return m;
 357}
 358
 359#ifdef NTFS_RW
 360
 361/**
 362 * __mark_mft_record_dirty - set the mft record and the page containing it dirty
 363 * @ni:		ntfs inode describing the mapped mft record
 364 *
 365 * Internal function.  Users should call mark_mft_record_dirty() instead.
 366 *
 367 * Set the mapped (extent) mft record of the (base or extent) ntfs inode @ni,
 368 * as well as the page containing the mft record, dirty.  Also, mark the base
 369 * vfs inode dirty.  This ensures that any changes to the mft record are
 370 * written out to disk.
 371 *
 372 * NOTE:  We only set I_DIRTY_DATASYNC (and not I_DIRTY_PAGES)
 373 * on the base vfs inode, because even though file data may have been modified,
 374 * it is dirty in the inode meta data rather than the data page cache of the
 375 * inode, and thus there are no data pages that need writing out.  Therefore, a
 376 * full mark_inode_dirty() is overkill.  A mark_inode_dirty_sync(), on the
 377 * other hand, is not sufficient, because ->write_inode needs to be called even
 378 * in case of fdatasync. This needs to happen or the file data would not
 379 * necessarily hit the device synchronously, even though the vfs inode has the
 380 * O_SYNC flag set.  Also, I_DIRTY_DATASYNC simply "feels" better than just
 381 * I_DIRTY_SYNC, since the file data has not actually hit the block device yet,
 382 * which is not what I_DIRTY_SYNC on its own would suggest.
 383 */
 384void __mark_mft_record_dirty(ntfs_inode *ni)
 385{
 386	ntfs_inode *base_ni;
 387
 388	ntfs_debug("Entering for inode 0x%lx.", ni->mft_no);
 389	BUG_ON(NInoAttr(ni));
 390	mark_ntfs_record_dirty(ni->page, ni->page_ofs);
 391	/* Determine the base vfs inode and mark it dirty, too. */
 392	mutex_lock(&ni->extent_lock);
 393	if (likely(ni->nr_extents >= 0))
 394		base_ni = ni;
 395	else
 396		base_ni = ni->ext.base_ntfs_ino;
 397	mutex_unlock(&ni->extent_lock);
 398	__mark_inode_dirty(VFS_I(base_ni), I_DIRTY_DATASYNC);
 399}
 400
 401static const char *ntfs_please_email = "Please email "
 402		"linux-ntfs-dev@lists.sourceforge.net and say that you saw "
 403		"this message.  Thank you.";
 404
 405/**
 406 * ntfs_sync_mft_mirror_umount - synchronise an mft record to the mft mirror
 407 * @vol:	ntfs volume on which the mft record to synchronize resides
 408 * @mft_no:	mft record number of mft record to synchronize
 409 * @m:		mapped, mst protected (extent) mft record to synchronize
 410 *
 411 * Write the mapped, mst protected (extent) mft record @m with mft record
 412 * number @mft_no to the mft mirror ($MFTMirr) of the ntfs volume @vol,
 413 * bypassing the page cache and the $MFTMirr inode itself.
 414 *
 415 * This function is only for use at umount time when the mft mirror inode has
 416 * already been disposed off.  We BUG() if we are called while the mft mirror
 417 * inode is still attached to the volume.
 418 *
 419 * On success return 0.  On error return -errno.
 420 *
 421 * NOTE:  This function is not implemented yet as I am not convinced it can
 422 * actually be triggered considering the sequence of commits we do in super.c::
 423 * ntfs_put_super().  But just in case we provide this place holder as the
 424 * alternative would be either to BUG() or to get a NULL pointer dereference
 425 * and Oops.
 426 */
 427static int ntfs_sync_mft_mirror_umount(ntfs_volume *vol,
 428		const unsigned long mft_no, MFT_RECORD *m)
 429{
 430	BUG_ON(vol->mftmirr_ino);
 431	ntfs_error(vol->sb, "Umount time mft mirror syncing is not "
 432			"implemented yet.  %s", ntfs_please_email);
 433	return -EOPNOTSUPP;
 434}
 435
 436/**
 437 * ntfs_sync_mft_mirror - synchronize an mft record to the mft mirror
 438 * @vol:	ntfs volume on which the mft record to synchronize resides
 439 * @mft_no:	mft record number of mft record to synchronize
 440 * @m:		mapped, mst protected (extent) mft record to synchronize
 441 * @sync:	if true, wait for i/o completion
 442 *
 443 * Write the mapped, mst protected (extent) mft record @m with mft record
 444 * number @mft_no to the mft mirror ($MFTMirr) of the ntfs volume @vol.
 445 *
 446 * On success return 0.  On error return -errno and set the volume errors flag
 447 * in the ntfs volume @vol.
 448 *
 449 * NOTE:  We always perform synchronous i/o and ignore the @sync parameter.
 450 *
 451 * TODO:  If @sync is false, want to do truly asynchronous i/o, i.e. just
 452 * schedule i/o via ->writepage or do it via kntfsd or whatever.
 453 */
 454int ntfs_sync_mft_mirror(ntfs_volume *vol, const unsigned long mft_no,
 455		MFT_RECORD *m, int sync)
 456{
 457	struct page *page;
 458	unsigned int blocksize = vol->sb->s_blocksize;
 459	int max_bhs = vol->mft_record_size / blocksize;
 460	struct buffer_head *bhs[MAX_BHS];
 461	struct buffer_head *bh, *head;
 462	u8 *kmirr;
 463	runlist_element *rl;
 464	unsigned int block_start, block_end, m_start, m_end, page_ofs;
 465	int i_bhs, nr_bhs, err = 0;
 466	unsigned char blocksize_bits = vol->sb->s_blocksize_bits;
 467
 468	ntfs_debug("Entering for inode 0x%lx.", mft_no);
 469	BUG_ON(!max_bhs);
 470	if (WARN_ON(max_bhs > MAX_BHS))
 471		return -EINVAL;
 472	if (unlikely(!vol->mftmirr_ino)) {
 473		/* This could happen during umount... */
 474		err = ntfs_sync_mft_mirror_umount(vol, mft_no, m);
 475		if (likely(!err))
 476			return err;
 477		goto err_out;
 478	}
 479	/* Get the page containing the mirror copy of the mft record @m. */
 480	page = ntfs_map_page(vol->mftmirr_ino->i_mapping, mft_no >>
 481			(PAGE_SHIFT - vol->mft_record_size_bits));
 482	if (IS_ERR(page)) {
 483		ntfs_error(vol->sb, "Failed to map mft mirror page.");
 484		err = PTR_ERR(page);
 485		goto err_out;
 486	}
 487	lock_page(page);
 488	BUG_ON(!PageUptodate(page));
 489	ClearPageUptodate(page);
 490	/* Offset of the mft mirror record inside the page. */
 491	page_ofs = (mft_no << vol->mft_record_size_bits) & ~PAGE_MASK;
 492	/* The address in the page of the mirror copy of the mft record @m. */
 493	kmirr = page_address(page) + page_ofs;
 494	/* Copy the mst protected mft record to the mirror. */
 495	memcpy(kmirr, m, vol->mft_record_size);
 496	/* Create uptodate buffers if not present. */
 497	if (unlikely(!page_has_buffers(page))) {
 498		struct buffer_head *tail;
 499
 500		bh = head = alloc_page_buffers(page, blocksize, true);
 501		do {
 502			set_buffer_uptodate(bh);
 503			tail = bh;
 504			bh = bh->b_this_page;
 505		} while (bh);
 506		tail->b_this_page = head;
 507		attach_page_buffers(page, head);
 508	}
 509	bh = head = page_buffers(page);
 510	BUG_ON(!bh);
 511	rl = NULL;
 512	nr_bhs = 0;
 513	block_start = 0;
 514	m_start = kmirr - (u8*)page_address(page);
 515	m_end = m_start + vol->mft_record_size;
 516	do {
 517		block_end = block_start + blocksize;
 518		/* If the buffer is outside the mft record, skip it. */
 519		if (block_end <= m_start)
 520			continue;
 521		if (unlikely(block_start >= m_end))
 522			break;
 523		/* Need to map the buffer if it is not mapped already. */
 524		if (unlikely(!buffer_mapped(bh))) {
 525			VCN vcn;
 526			LCN lcn;
 527			unsigned int vcn_ofs;
 528
 529			bh->b_bdev = vol->sb->s_bdev;
 530			/* Obtain the vcn and offset of the current block. */
 531			vcn = ((VCN)mft_no << vol->mft_record_size_bits) +
 532					(block_start - m_start);
 533			vcn_ofs = vcn & vol->cluster_size_mask;
 534			vcn >>= vol->cluster_size_bits;
 535			if (!rl) {
 536				down_read(&NTFS_I(vol->mftmirr_ino)->
 537						runlist.lock);
 538				rl = NTFS_I(vol->mftmirr_ino)->runlist.rl;
 539				/*
 540				 * $MFTMirr always has the whole of its runlist
 541				 * in memory.
 542				 */
 543				BUG_ON(!rl);
 544			}
 545			/* Seek to element containing target vcn. */
 546			while (rl->length && rl[1].vcn <= vcn)
 547				rl++;
 548			lcn = ntfs_rl_vcn_to_lcn(rl, vcn);
 549			/* For $MFTMirr, only lcn >= 0 is a successful remap. */
 550			if (likely(lcn >= 0)) {
 551				/* Setup buffer head to correct block. */
 552				bh->b_blocknr = ((lcn <<
 553						vol->cluster_size_bits) +
 554						vcn_ofs) >> blocksize_bits;
 555				set_buffer_mapped(bh);
 556			} else {
 557				bh->b_blocknr = -1;
 558				ntfs_error(vol->sb, "Cannot write mft mirror "
 559						"record 0x%lx because its "
 560						"location on disk could not "
 561						"be determined (error code "
 562						"%lli).", mft_no,
 563						(long long)lcn);
 564				err = -EIO;
 565			}
 566		}
 567		BUG_ON(!buffer_uptodate(bh));
 568		BUG_ON(!nr_bhs && (m_start != block_start));
 569		BUG_ON(nr_bhs >= max_bhs);
 570		bhs[nr_bhs++] = bh;
 571		BUG_ON((nr_bhs >= max_bhs) && (m_end != block_end));
 572	} while (block_start = block_end, (bh = bh->b_this_page) != head);
 573	if (unlikely(rl))
 574		up_read(&NTFS_I(vol->mftmirr_ino)->runlist.lock);
 575	if (likely(!err)) {
 576		/* Lock buffers and start synchronous write i/o on them. */
 577		for (i_bhs = 0; i_bhs < nr_bhs; i_bhs++) {
 578			struct buffer_head *tbh = bhs[i_bhs];
 579
 580			if (!trylock_buffer(tbh))
 581				BUG();
 582			BUG_ON(!buffer_uptodate(tbh));
 583			clear_buffer_dirty(tbh);
 584			get_bh(tbh);
 585			tbh->b_end_io = end_buffer_write_sync;
 586			submit_bh(REQ_OP_WRITE, 0, tbh);
 587		}
 588		/* Wait on i/o completion of buffers. */
 589		for (i_bhs = 0; i_bhs < nr_bhs; i_bhs++) {
 590			struct buffer_head *tbh = bhs[i_bhs];
 591
 592			wait_on_buffer(tbh);
 593			if (unlikely(!buffer_uptodate(tbh))) {
 594				err = -EIO;
 595				/*
 596				 * Set the buffer uptodate so the page and
 597				 * buffer states do not become out of sync.
 598				 */
 599				set_buffer_uptodate(tbh);
 600			}
 601		}
 602	} else /* if (unlikely(err)) */ {
 603		/* Clean the buffers. */
 604		for (i_bhs = 0; i_bhs < nr_bhs; i_bhs++)
 605			clear_buffer_dirty(bhs[i_bhs]);
 606	}
 607	/* Current state: all buffers are clean, unlocked, and uptodate. */
 608	/* Remove the mst protection fixups again. */
 609	post_write_mst_fixup((NTFS_RECORD*)kmirr);
 610	flush_dcache_page(page);
 611	SetPageUptodate(page);
 612	unlock_page(page);
 613	ntfs_unmap_page(page);
 614	if (likely(!err)) {
 615		ntfs_debug("Done.");
 616	} else {
 617		ntfs_error(vol->sb, "I/O error while writing mft mirror "
 618				"record 0x%lx!", mft_no);
 619err_out:
 620		ntfs_error(vol->sb, "Failed to synchronize $MFTMirr (error "
 621				"code %i).  Volume will be left marked dirty "
 622				"on umount.  Run ntfsfix on the partition "
 623				"after umounting to correct this.", -err);
 624		NVolSetErrors(vol);
 625	}
 626	return err;
 627}
 628
 629/**
 630 * write_mft_record_nolock - write out a mapped (extent) mft record
 631 * @ni:		ntfs inode describing the mapped (extent) mft record
 632 * @m:		mapped (extent) mft record to write
 633 * @sync:	if true, wait for i/o completion
 634 *
 635 * Write the mapped (extent) mft record @m described by the (regular or extent)
 636 * ntfs inode @ni to backing store.  If the mft record @m has a counterpart in
 637 * the mft mirror, that is also updated.
 638 *
 639 * We only write the mft record if the ntfs inode @ni is dirty and the first
 640 * buffer belonging to its mft record is dirty, too.  We ignore the dirty state
 641 * of subsequent buffers because we could have raced with
 642 * fs/ntfs/aops.c::mark_ntfs_record_dirty().
 643 *
 644 * On success, clean the mft record and return 0.  On error, leave the mft
 645 * record dirty and return -errno.
 646 *
 647 * NOTE:  We always perform synchronous i/o and ignore the @sync parameter.
 648 * However, if the mft record has a counterpart in the mft mirror and @sync is
 649 * true, we write the mft record, wait for i/o completion, and only then write
 650 * the mft mirror copy.  This ensures that if the system crashes either the mft
 651 * or the mft mirror will contain a self-consistent mft record @m.  If @sync is
 652 * false on the other hand, we start i/o on both and then wait for completion
 653 * on them.  This provides a speedup but no longer guarantees that you will end
 654 * up with a self-consistent mft record in the case of a crash but if you asked
 655 * for asynchronous writing you probably do not care about that anyway.
 656 *
 657 * TODO:  If @sync is false, want to do truly asynchronous i/o, i.e. just
 658 * schedule i/o via ->writepage or do it via kntfsd or whatever.
 659 */
 660int write_mft_record_nolock(ntfs_inode *ni, MFT_RECORD *m, int sync)
 661{
 662	ntfs_volume *vol = ni->vol;
 663	struct page *page = ni->page;
 664	unsigned int blocksize = vol->sb->s_blocksize;
 665	unsigned char blocksize_bits = vol->sb->s_blocksize_bits;
 666	int max_bhs = vol->mft_record_size / blocksize;
 667	struct buffer_head *bhs[MAX_BHS];
 668	struct buffer_head *bh, *head;
 669	runlist_element *rl;
 670	unsigned int block_start, block_end, m_start, m_end;
 671	int i_bhs, nr_bhs, err = 0;
 672
 673	ntfs_debug("Entering for inode 0x%lx.", ni->mft_no);
 674	BUG_ON(NInoAttr(ni));
 675	BUG_ON(!max_bhs);
 676	BUG_ON(!PageLocked(page));
 677	if (WARN_ON(max_bhs > MAX_BHS)) {
 678		err = -EINVAL;
 679		goto err_out;
 680	}
 681	/*
 682	 * If the ntfs_inode is clean no need to do anything.  If it is dirty,
 683	 * mark it as clean now so that it can be redirtied later on if needed.
 684	 * There is no danger of races since the caller is holding the locks
 685	 * for the mft record @m and the page it is in.
 686	 */
 687	if (!NInoTestClearDirty(ni))
 688		goto done;
 689	bh = head = page_buffers(page);
 690	BUG_ON(!bh);
 691	rl = NULL;
 692	nr_bhs = 0;
 693	block_start = 0;
 694	m_start = ni->page_ofs;
 695	m_end = m_start + vol->mft_record_size;
 696	do {
 697		block_end = block_start + blocksize;
 698		/* If the buffer is outside the mft record, skip it. */
 699		if (block_end <= m_start)
 700			continue;
 701		if (unlikely(block_start >= m_end))
 702			break;
 703		/*
 704		 * If this block is not the first one in the record, we ignore
 705		 * the buffer's dirty state because we could have raced with a
 706		 * parallel mark_ntfs_record_dirty().
 707		 */
 708		if (block_start == m_start) {
 709			/* This block is the first one in the record. */
 710			if (!buffer_dirty(bh)) {
 711				BUG_ON(nr_bhs);
 712				/* Clean records are not written out. */
 713				break;
 714			}
 715		}
 716		/* Need to map the buffer if it is not mapped already. */
 717		if (unlikely(!buffer_mapped(bh))) {
 718			VCN vcn;
 719			LCN lcn;
 720			unsigned int vcn_ofs;
 721
 722			bh->b_bdev = vol->sb->s_bdev;
 723			/* Obtain the vcn and offset of the current block. */
 724			vcn = ((VCN)ni->mft_no << vol->mft_record_size_bits) +
 725					(block_start - m_start);
 726			vcn_ofs = vcn & vol->cluster_size_mask;
 727			vcn >>= vol->cluster_size_bits;
 728			if (!rl) {
 729				down_read(&NTFS_I(vol->mft_ino)->runlist.lock);
 730				rl = NTFS_I(vol->mft_ino)->runlist.rl;
 731				BUG_ON(!rl);
 732			}
 733			/* Seek to element containing target vcn. */
 734			while (rl->length && rl[1].vcn <= vcn)
 735				rl++;
 736			lcn = ntfs_rl_vcn_to_lcn(rl, vcn);
 737			/* For $MFT, only lcn >= 0 is a successful remap. */
 738			if (likely(lcn >= 0)) {
 739				/* Setup buffer head to correct block. */
 740				bh->b_blocknr = ((lcn <<
 741						vol->cluster_size_bits) +
 742						vcn_ofs) >> blocksize_bits;
 743				set_buffer_mapped(bh);
 744			} else {
 745				bh->b_blocknr = -1;
 746				ntfs_error(vol->sb, "Cannot write mft record "
 747						"0x%lx because its location "
 748						"on disk could not be "
 749						"determined (error code %lli).",
 750						ni->mft_no, (long long)lcn);
 751				err = -EIO;
 752			}
 753		}
 754		BUG_ON(!buffer_uptodate(bh));
 755		BUG_ON(!nr_bhs && (m_start != block_start));
 756		BUG_ON(nr_bhs >= max_bhs);
 757		bhs[nr_bhs++] = bh;
 758		BUG_ON((nr_bhs >= max_bhs) && (m_end != block_end));
 759	} while (block_start = block_end, (bh = bh->b_this_page) != head);
 760	if (unlikely(rl))
 761		up_read(&NTFS_I(vol->mft_ino)->runlist.lock);
 762	if (!nr_bhs)
 763		goto done;
 764	if (unlikely(err))
 765		goto cleanup_out;
 766	/* Apply the mst protection fixups. */
 767	err = pre_write_mst_fixup((NTFS_RECORD*)m, vol->mft_record_size);
 768	if (err) {
 769		ntfs_error(vol->sb, "Failed to apply mst fixups!");
 770		goto cleanup_out;
 771	}
 772	flush_dcache_mft_record_page(ni);
 773	/* Lock buffers and start synchronous write i/o on them. */
 774	for (i_bhs = 0; i_bhs < nr_bhs; i_bhs++) {
 775		struct buffer_head *tbh = bhs[i_bhs];
 776
 777		if (!trylock_buffer(tbh))
 778			BUG();
 779		BUG_ON(!buffer_uptodate(tbh));
 780		clear_buffer_dirty(tbh);
 781		get_bh(tbh);
 782		tbh->b_end_io = end_buffer_write_sync;
 783		submit_bh(REQ_OP_WRITE, 0, tbh);
 784	}
 785	/* Synchronize the mft mirror now if not @sync. */
 786	if (!sync && ni->mft_no < vol->mftmirr_size)
 787		ntfs_sync_mft_mirror(vol, ni->mft_no, m, sync);
 788	/* Wait on i/o completion of buffers. */
 789	for (i_bhs = 0; i_bhs < nr_bhs; i_bhs++) {
 790		struct buffer_head *tbh = bhs[i_bhs];
 791
 792		wait_on_buffer(tbh);
 793		if (unlikely(!buffer_uptodate(tbh))) {
 794			err = -EIO;
 795			/*
 796			 * Set the buffer uptodate so the page and buffer
 797			 * states do not become out of sync.
 798			 */
 799			if (PageUptodate(page))
 800				set_buffer_uptodate(tbh);
 801		}
 802	}
 803	/* If @sync, now synchronize the mft mirror. */
 804	if (sync && ni->mft_no < vol->mftmirr_size)
 805		ntfs_sync_mft_mirror(vol, ni->mft_no, m, sync);
 806	/* Remove the mst protection fixups again. */
 807	post_write_mst_fixup((NTFS_RECORD*)m);
 808	flush_dcache_mft_record_page(ni);
 809	if (unlikely(err)) {
 810		/* I/O error during writing.  This is really bad! */
 811		ntfs_error(vol->sb, "I/O error while writing mft record "
 812				"0x%lx!  Marking base inode as bad.  You "
 813				"should unmount the volume and run chkdsk.",
 814				ni->mft_no);
 815		goto err_out;
 816	}
 817done:
 818	ntfs_debug("Done.");
 819	return 0;
 820cleanup_out:
 821	/* Clean the buffers. */
 822	for (i_bhs = 0; i_bhs < nr_bhs; i_bhs++)
 823		clear_buffer_dirty(bhs[i_bhs]);
 824err_out:
 825	/*
 826	 * Current state: all buffers are clean, unlocked, and uptodate.
 827	 * The caller should mark the base inode as bad so that no more i/o
 828	 * happens.  ->clear_inode() will still be invoked so all extent inodes
 829	 * and other allocated memory will be freed.
 830	 */
 831	if (err == -ENOMEM) {
 832		ntfs_error(vol->sb, "Not enough memory to write mft record.  "
 833				"Redirtying so the write is retried later.");
 834		mark_mft_record_dirty(ni);
 835		err = 0;
 836	} else
 837		NVolSetErrors(vol);
 838	return err;
 839}
 840
 841/**
 842 * ntfs_may_write_mft_record - check if an mft record may be written out
 843 * @vol:	[IN]  ntfs volume on which the mft record to check resides
 844 * @mft_no:	[IN]  mft record number of the mft record to check
 845 * @m:		[IN]  mapped mft record to check
 846 * @locked_ni:	[OUT] caller has to unlock this ntfs inode if one is returned
 847 *
 848 * Check if the mapped (base or extent) mft record @m with mft record number
 849 * @mft_no belonging to the ntfs volume @vol may be written out.  If necessary
 850 * and possible the ntfs inode of the mft record is locked and the base vfs
 851 * inode is pinned.  The locked ntfs inode is then returned in @locked_ni.  The
 852 * caller is responsible for unlocking the ntfs inode and unpinning the base
 853 * vfs inode.
 854 *
 855 * Return 'true' if the mft record may be written out and 'false' if not.
 856 *
 857 * The caller has locked the page and cleared the uptodate flag on it which
 858 * means that we can safely write out any dirty mft records that do not have
 859 * their inodes in icache as determined by ilookup5() as anyone
 860 * opening/creating such an inode would block when attempting to map the mft
 861 * record in read_cache_page() until we are finished with the write out.
 862 *
 863 * Here is a description of the tests we perform:
 864 *
 865 * If the inode is found in icache we know the mft record must be a base mft
 866 * record.  If it is dirty, we do not write it and return 'false' as the vfs
 867 * inode write paths will result in the access times being updated which would
 868 * cause the base mft record to be redirtied and written out again.  (We know
 869 * the access time update will modify the base mft record because Windows
 870 * chkdsk complains if the standard information attribute is not in the base
 871 * mft record.)
 872 *
 873 * If the inode is in icache and not dirty, we attempt to lock the mft record
 874 * and if we find the lock was already taken, it is not safe to write the mft
 875 * record and we return 'false'.
 876 *
 877 * If we manage to obtain the lock we have exclusive access to the mft record,
 878 * which also allows us safe writeout of the mft record.  We then set
 879 * @locked_ni to the locked ntfs inode and return 'true'.
 880 *
 881 * Note we cannot just lock the mft record and sleep while waiting for the lock
 882 * because this would deadlock due to lock reversal (normally the mft record is
 883 * locked before the page is locked but we already have the page locked here
 884 * when we try to lock the mft record).
 885 *
 886 * If the inode is not in icache we need to perform further checks.
 887 *
 888 * If the mft record is not a FILE record or it is a base mft record, we can
 889 * safely write it and return 'true'.
 890 *
 891 * We now know the mft record is an extent mft record.  We check if the inode
 892 * corresponding to its base mft record is in icache and obtain a reference to
 893 * it if it is.  If it is not, we can safely write it and return 'true'.
 894 *
 895 * We now have the base inode for the extent mft record.  We check if it has an
 896 * ntfs inode for the extent mft record attached and if not it is safe to write
 897 * the extent mft record and we return 'true'.
 898 *
 899 * The ntfs inode for the extent mft record is attached to the base inode so we
 900 * attempt to lock the extent mft record and if we find the lock was already
 901 * taken, it is not safe to write the extent mft record and we return 'false'.
 902 *
 903 * If we manage to obtain the lock we have exclusive access to the extent mft
 904 * record, which also allows us safe writeout of the extent mft record.  We
 905 * set the ntfs inode of the extent mft record clean and then set @locked_ni to
 906 * the now locked ntfs inode and return 'true'.
 907 *
 908 * Note, the reason for actually writing dirty mft records here and not just
 909 * relying on the vfs inode dirty code paths is that we can have mft records
 910 * modified without them ever having actual inodes in memory.  Also we can have
 911 * dirty mft records with clean ntfs inodes in memory.  None of the described
 912 * cases would result in the dirty mft records being written out if we only
 913 * relied on the vfs inode dirty code paths.  And these cases can really occur
 914 * during allocation of new mft records and in particular when the
 915 * initialized_size of the $MFT/$DATA attribute is extended and the new space
 916 * is initialized using ntfs_mft_record_format().  The clean inode can then
 917 * appear if the mft record is reused for a new inode before it got written
 918 * out.
 919 */
 920bool ntfs_may_write_mft_record(ntfs_volume *vol, const unsigned long mft_no,
 921		const MFT_RECORD *m, ntfs_inode **locked_ni)
 922{
 923	struct super_block *sb = vol->sb;
 924	struct inode *mft_vi = vol->mft_ino;
 925	struct inode *vi;
 926	ntfs_inode *ni, *eni, **extent_nis;
 927	int i;
 928	ntfs_attr na;
 929
 930	ntfs_debug("Entering for inode 0x%lx.", mft_no);
 931	/*
 932	 * Normally we do not return a locked inode so set @locked_ni to NULL.
 933	 */
 934	BUG_ON(!locked_ni);
 935	*locked_ni = NULL;
 936	/*
 937	 * Check if the inode corresponding to this mft record is in the VFS
 938	 * inode cache and obtain a reference to it if it is.
 939	 */
 940	ntfs_debug("Looking for inode 0x%lx in icache.", mft_no);
 941	na.mft_no = mft_no;
 942	na.name = NULL;
 943	na.name_len = 0;
 944	na.type = AT_UNUSED;
 945	/*
 946	 * Optimize inode 0, i.e. $MFT itself, since we have it in memory and
 947	 * we get here for it rather often.
 948	 */
 949	if (!mft_no) {
 950		/* Balance the below iput(). */
 951		vi = igrab(mft_vi);
 952		BUG_ON(vi != mft_vi);
 953	} else {
 954		/*
 955		 * Have to use ilookup5_nowait() since ilookup5() waits for the
 956		 * inode lock which causes ntfs to deadlock when a concurrent
 957		 * inode write via the inode dirty code paths and the page
 958		 * dirty code path of the inode dirty code path when writing
 959		 * $MFT occurs.
 960		 */
 961		vi = ilookup5_nowait(sb, mft_no, (test_t)ntfs_test_inode, &na);
 962	}
 963	if (vi) {
 964		ntfs_debug("Base inode 0x%lx is in icache.", mft_no);
 965		/* The inode is in icache. */
 966		ni = NTFS_I(vi);
 967		/* Take a reference to the ntfs inode. */
 968		atomic_inc(&ni->count);
 969		/* If the inode is dirty, do not write this record. */
 970		if (NInoDirty(ni)) {
 971			ntfs_debug("Inode 0x%lx is dirty, do not write it.",
 972					mft_no);
 973			atomic_dec(&ni->count);
 974			iput(vi);
 975			return false;
 976		}
 977		ntfs_debug("Inode 0x%lx is not dirty.", mft_no);
 978		/* The inode is not dirty, try to take the mft record lock. */
 979		if (unlikely(!mutex_trylock(&ni->mrec_lock))) {
 980			ntfs_debug("Mft record 0x%lx is already locked, do "
 981					"not write it.", mft_no);
 982			atomic_dec(&ni->count);
 983			iput(vi);
 984			return false;
 985		}
 986		ntfs_debug("Managed to lock mft record 0x%lx, write it.",
 987				mft_no);
 988		/*
 989		 * The write has to occur while we hold the mft record lock so
 990		 * return the locked ntfs inode.
 991		 */
 992		*locked_ni = ni;
 993		return true;
 994	}
 995	ntfs_debug("Inode 0x%lx is not in icache.", mft_no);
 996	/* The inode is not in icache. */
 997	/* Write the record if it is not a mft record (type "FILE"). */
 998	if (!ntfs_is_mft_record(m->magic)) {
 999		ntfs_debug("Mft record 0x%lx is not a FILE record, write it.",
1000				mft_no);
1001		return true;
1002	}
1003	/* Write the mft record if it is a base inode. */
1004	if (!m->base_mft_record) {
1005		ntfs_debug("Mft record 0x%lx is a base record, write it.",
1006				mft_no);
1007		return true;
1008	}
1009	/*
1010	 * This is an extent mft record.  Check if the inode corresponding to
1011	 * its base mft record is in icache and obtain a reference to it if it
1012	 * is.
1013	 */
1014	na.mft_no = MREF_LE(m->base_mft_record);
1015	ntfs_debug("Mft record 0x%lx is an extent record.  Looking for base "
1016			"inode 0x%lx in icache.", mft_no, na.mft_no);
1017	if (!na.mft_no) {
1018		/* Balance the below iput(). */
1019		vi = igrab(mft_vi);
1020		BUG_ON(vi != mft_vi);
1021	} else
1022		vi = ilookup5_nowait(sb, na.mft_no, (test_t)ntfs_test_inode,
1023				&na);
1024	if (!vi) {
1025		/*
1026		 * The base inode is not in icache, write this extent mft
1027		 * record.
1028		 */
1029		ntfs_debug("Base inode 0x%lx is not in icache, write the "
1030				"extent record.", na.mft_no);
1031		return true;
1032	}
1033	ntfs_debug("Base inode 0x%lx is in icache.", na.mft_no);
1034	/*
1035	 * The base inode is in icache.  Check if it has the extent inode
1036	 * corresponding to this extent mft record attached.
1037	 */
1038	ni = NTFS_I(vi);
1039	mutex_lock(&ni->extent_lock);
1040	if (ni->nr_extents <= 0) {
1041		/*
1042		 * The base inode has no attached extent inodes, write this
1043		 * extent mft record.
1044		 */
1045		mutex_unlock(&ni->extent_lock);
1046		iput(vi);
1047		ntfs_debug("Base inode 0x%lx has no attached extent inodes, "
1048				"write the extent record.", na.mft_no);
1049		return true;
1050	}
1051	/* Iterate over the attached extent inodes. */
1052	extent_nis = ni->ext.extent_ntfs_inos;
1053	for (eni = NULL, i = 0; i < ni->nr_extents; ++i) {
1054		if (mft_no == extent_nis[i]->mft_no) {
1055			/*
1056			 * Found the extent inode corresponding to this extent
1057			 * mft record.
1058			 */
1059			eni = extent_nis[i];
1060			break;
1061		}
1062	}
1063	/*
1064	 * If the extent inode was not attached to the base inode, write this
1065	 * extent mft record.
1066	 */
1067	if (!eni) {
1068		mutex_unlock(&ni->extent_lock);
1069		iput(vi);
1070		ntfs_debug("Extent inode 0x%lx is not attached to its base "
1071				"inode 0x%lx, write the extent record.",
1072				mft_no, na.mft_no);
1073		return true;
1074	}
1075	ntfs_debug("Extent inode 0x%lx is attached to its base inode 0x%lx.",
1076			mft_no, na.mft_no);
1077	/* Take a reference to the extent ntfs inode. */
1078	atomic_inc(&eni->count);
1079	mutex_unlock(&ni->extent_lock);
1080	/*
1081	 * Found the extent inode coresponding to this extent mft record.
1082	 * Try to take the mft record lock.
1083	 */
1084	if (unlikely(!mutex_trylock(&eni->mrec_lock))) {
1085		atomic_dec(&eni->count);
1086		iput(vi);
1087		ntfs_debug("Extent mft record 0x%lx is already locked, do "
1088				"not write it.", mft_no);
1089		return false;
1090	}
1091	ntfs_debug("Managed to lock extent mft record 0x%lx, write it.",
1092			mft_no);
1093	if (NInoTestClearDirty(eni))
1094		ntfs_debug("Extent inode 0x%lx is dirty, marking it clean.",
1095				mft_no);
1096	/*
1097	 * The write has to occur while we hold the mft record lock so return
1098	 * the locked extent ntfs inode.
1099	 */
1100	*locked_ni = eni;
1101	return true;
1102}
1103
1104static const char *es = "  Leaving inconsistent metadata.  Unmount and run "
1105		"chkdsk.";
1106
1107/**
1108 * ntfs_mft_bitmap_find_and_alloc_free_rec_nolock - see name
1109 * @vol:	volume on which to search for a free mft record
1110 * @base_ni:	open base inode if allocating an extent mft record or NULL
1111 *
1112 * Search for a free mft record in the mft bitmap attribute on the ntfs volume
1113 * @vol.
1114 *
1115 * If @base_ni is NULL start the search at the default allocator position.
1116 *
1117 * If @base_ni is not NULL start the search at the mft record after the base
1118 * mft record @base_ni.
1119 *
1120 * Return the free mft record on success and -errno on error.  An error code of
1121 * -ENOSPC means that there are no free mft records in the currently
1122 * initialized mft bitmap.
1123 *
1124 * Locking: Caller must hold vol->mftbmp_lock for writing.
1125 */
1126static int ntfs_mft_bitmap_find_and_alloc_free_rec_nolock(ntfs_volume *vol,
1127		ntfs_inode *base_ni)
1128{
1129	s64 pass_end, ll, data_pos, pass_start, ofs, bit;
1130	unsigned long flags;
1131	struct address_space *mftbmp_mapping;
1132	u8 *buf, *byte;
1133	struct page *page;
1134	unsigned int page_ofs, size;
1135	u8 pass, b;
1136
1137	ntfs_debug("Searching for free mft record in the currently "
1138			"initialized mft bitmap.");
1139	mftbmp_mapping = vol->mftbmp_ino->i_mapping;
1140	/*
1141	 * Set the end of the pass making sure we do not overflow the mft
1142	 * bitmap.
1143	 */
1144	read_lock_irqsave(&NTFS_I(vol->mft_ino)->size_lock, flags);
1145	pass_end = NTFS_I(vol->mft_ino)->allocated_size >>
1146			vol->mft_record_size_bits;
1147	read_unlock_irqrestore(&NTFS_I(vol->mft_ino)->size_lock, flags);
1148	read_lock_irqsave(&NTFS_I(vol->mftbmp_ino)->size_lock, flags);
1149	ll = NTFS_I(vol->mftbmp_ino)->initialized_size << 3;
1150	read_unlock_irqrestore(&NTFS_I(vol->mftbmp_ino)->size_lock, flags);
1151	if (pass_end > ll)
1152		pass_end = ll;
1153	pass = 1;
1154	if (!base_ni)
1155		data_pos = vol->mft_data_pos;
1156	else
1157		data_pos = base_ni->mft_no + 1;
1158	if (data_pos < 24)
1159		data_pos = 24;
1160	if (data_pos >= pass_end) {
1161		data_pos = 24;
1162		pass = 2;
1163		/* This happens on a freshly formatted volume. */
1164		if (data_pos >= pass_end)
1165			return -ENOSPC;
1166	}
1167	pass_start = data_pos;
1168	ntfs_debug("Starting bitmap search: pass %u, pass_start 0x%llx, "
1169			"pass_end 0x%llx, data_pos 0x%llx.", pass,
1170			(long long)pass_start, (long long)pass_end,
1171			(long long)data_pos);
1172	/* Loop until a free mft record is found. */
1173	for (; pass <= 2;) {
1174		/* Cap size to pass_end. */
1175		ofs = data_pos >> 3;
1176		page_ofs = ofs & ~PAGE_MASK;
1177		size = PAGE_SIZE - page_ofs;
1178		ll = ((pass_end + 7) >> 3) - ofs;
1179		if (size > ll)
1180			size = ll;
1181		size <<= 3;
1182		/*
1183		 * If we are still within the active pass, search the next page
1184		 * for a zero bit.
1185		 */
1186		if (size) {
1187			page = ntfs_map_page(mftbmp_mapping,
1188					ofs >> PAGE_SHIFT);
1189			if (IS_ERR(page)) {
1190				ntfs_error(vol->sb, "Failed to read mft "
1191						"bitmap, aborting.");
1192				return PTR_ERR(page);
1193			}
1194			buf = (u8*)page_address(page) + page_ofs;
1195			bit = data_pos & 7;
1196			data_pos &= ~7ull;
1197			ntfs_debug("Before inner for loop: size 0x%x, "
1198					"data_pos 0x%llx, bit 0x%llx", size,
1199					(long long)data_pos, (long long)bit);
1200			for (; bit < size && data_pos + bit < pass_end;
1201					bit &= ~7ull, bit += 8) {
1202				byte = buf + (bit >> 3);
1203				if (*byte == 0xff)
1204					continue;
1205				b = ffz((unsigned long)*byte);
1206				if (b < 8 && b >= (bit & 7)) {
1207					ll = data_pos + (bit & ~7ull) + b;
1208					if (unlikely(ll > (1ll << 32))) {
1209						ntfs_unmap_page(page);
1210						return -ENOSPC;
1211					}
1212					*byte |= 1 << b;
1213					flush_dcache_page(page);
1214					set_page_dirty(page);
1215					ntfs_unmap_page(page);
1216					ntfs_debug("Done.  (Found and "
1217							"allocated mft record "
1218							"0x%llx.)",
1219							(long long)ll);
1220					return ll;
1221				}
1222			}
1223			ntfs_debug("After inner for loop: size 0x%x, "
1224					"data_pos 0x%llx, bit 0x%llx", size,
1225					(long long)data_pos, (long long)bit);
1226			data_pos += size;
1227			ntfs_unmap_page(page);
1228			/*
1229			 * If the end of the pass has not been reached yet,
1230			 * continue searching the mft bitmap for a zero bit.
1231			 */
1232			if (data_pos < pass_end)
1233				continue;
1234		}
1235		/* Do the next pass. */
1236		if (++pass == 2) {
1237			/*
1238			 * Starting the second pass, in which we scan the first
1239			 * part of the zone which we omitted earlier.
1240			 */
1241			pass_end = pass_start;
1242			data_pos = pass_start = 24;
1243			ntfs_debug("pass %i, pass_start 0x%llx, pass_end "
1244					"0x%llx.", pass, (long long)pass_start,
1245					(long long)pass_end);
1246			if (data_pos >= pass_end)
1247				break;
1248		}
1249	}
1250	/* No free mft records in currently initialized mft bitmap. */
1251	ntfs_debug("Done.  (No free mft records left in currently initialized "
1252			"mft bitmap.)");
1253	return -ENOSPC;
1254}
1255
1256/**
1257 * ntfs_mft_bitmap_extend_allocation_nolock - extend mft bitmap by a cluster
1258 * @vol:	volume on which to extend the mft bitmap attribute
1259 *
1260 * Extend the mft bitmap attribute on the ntfs volume @vol by one cluster.
1261 *
1262 * Note: Only changes allocated_size, i.e. does not touch initialized_size or
1263 * data_size.
1264 *
1265 * Return 0 on success and -errno on error.
1266 *
1267 * Locking: - Caller must hold vol->mftbmp_lock for writing.
1268 *	    - This function takes NTFS_I(vol->mftbmp_ino)->runlist.lock for
1269 *	      writing and releases it before returning.
1270 *	    - This function takes vol->lcnbmp_lock for writing and releases it
1271 *	      before returning.
1272 */
1273static int ntfs_mft_bitmap_extend_allocation_nolock(ntfs_volume *vol)
1274{
1275	LCN lcn;
1276	s64 ll;
1277	unsigned long flags;
1278	struct page *page;
1279	ntfs_inode *mft_ni, *mftbmp_ni;
1280	runlist_element *rl, *rl2 = NULL;
1281	ntfs_attr_search_ctx *ctx = NULL;
1282	MFT_RECORD *mrec;
1283	ATTR_RECORD *a = NULL;
1284	int ret, mp_size;
1285	u32 old_alen = 0;
1286	u8 *b, tb;
1287	struct {
1288		u8 added_cluster:1;
1289		u8 added_run:1;
1290		u8 mp_rebuilt:1;
1291	} status = { 0, 0, 0 };
1292
1293	ntfs_debug("Extending mft bitmap allocation.");
1294	mft_ni = NTFS_I(vol->mft_ino);
1295	mftbmp_ni = NTFS_I(vol->mftbmp_ino);
1296	/*
1297	 * Determine the last lcn of the mft bitmap.  The allocated size of the
1298	 * mft bitmap cannot be zero so we are ok to do this.
1299	 */
1300	down_write(&mftbmp_ni->runlist.lock);
1301	read_lock_irqsave(&mftbmp_ni->size_lock, flags);
1302	ll = mftbmp_ni->allocated_size;
1303	read_unlock_irqrestore(&mftbmp_ni->size_lock, flags);
1304	rl = ntfs_attr_find_vcn_nolock(mftbmp_ni,
1305			(ll - 1) >> vol->cluster_size_bits, NULL);
1306	if (IS_ERR(rl) || unlikely(!rl->length || rl->lcn < 0)) {
1307		up_write(&mftbmp_ni->runlist.lock);
1308		ntfs_error(vol->sb, "Failed to determine last allocated "
1309				"cluster of mft bitmap attribute.");
1310		if (!IS_ERR(rl))
1311			ret = -EIO;
1312		else
1313			ret = PTR_ERR(rl);
1314		return ret;
1315	}
1316	lcn = rl->lcn + rl->length;
1317	ntfs_debug("Last lcn of mft bitmap attribute is 0x%llx.",
1318			(long long)lcn);
1319	/*
1320	 * Attempt to get the cluster following the last allocated cluster by
1321	 * hand as it may be in the MFT zone so the allocator would not give it
1322	 * to us.
1323	 */
1324	ll = lcn >> 3;
1325	page = ntfs_map_page(vol->lcnbmp_ino->i_mapping,
1326			ll >> PAGE_SHIFT);
1327	if (IS_ERR(page)) {
1328		up_write(&mftbmp_ni->runlist.lock);
1329		ntfs_error(vol->sb, "Failed to read from lcn bitmap.");
1330		return PTR_ERR(page);
1331	}
1332	b = (u8*)page_address(page) + (ll & ~PAGE_MASK);
1333	tb = 1 << (lcn & 7ull);
1334	down_write(&vol->lcnbmp_lock);
1335	if (*b != 0xff && !(*b & tb)) {
1336		/* Next cluster is free, allocate it. */
1337		*b |= tb;
1338		flush_dcache_page(page);
1339		set_page_dirty(page);
1340		up_write(&vol->lcnbmp_lock);
1341		ntfs_unmap_page(page);
1342		/* Update the mft bitmap runlist. */
1343		rl->length++;
1344		rl[1].vcn++;
1345		status.added_cluster = 1;
1346		ntfs_debug("Appending one cluster to mft bitmap.");
1347	} else {
1348		up_write(&vol->lcnbmp_lock);
1349		ntfs_unmap_page(page);
1350		/* Allocate a cluster from the DATA_ZONE. */
1351		rl2 = ntfs_cluster_alloc(vol, rl[1].vcn, 1, lcn, DATA_ZONE,
1352				true);
1353		if (IS_ERR(rl2)) {
1354			up_write(&mftbmp_ni->runlist.lock);
1355			ntfs_error(vol->sb, "Failed to allocate a cluster for "
1356					"the mft bitmap.");
1357			return PTR_ERR(rl2);
1358		}
1359		rl = ntfs_runlists_merge(mftbmp_ni->runlist.rl, rl2);
1360		if (IS_ERR(rl)) {
1361			up_write(&mftbmp_ni->runlist.lock);
1362			ntfs_error(vol->sb, "Failed to merge runlists for mft "
1363					"bitmap.");
1364			if (ntfs_cluster_free_from_rl(vol, rl2)) {
1365				ntfs_error(vol->sb, "Failed to deallocate "
1366						"allocated cluster.%s", es);
1367				NVolSetErrors(vol);
1368			}
1369			ntfs_free(rl2);
1370			return PTR_ERR(rl);
1371		}
1372		mftbmp_ni->runlist.rl = rl;
1373		status.added_run = 1;
1374		ntfs_debug("Adding one run to mft bitmap.");
1375		/* Find the last run in the new runlist. */
1376		for (; rl[1].length; rl++)
1377			;
1378	}
1379	/*
1380	 * Update the attribute record as well.  Note: @rl is the last
1381	 * (non-terminator) runlist element of mft bitmap.
1382	 */
1383	mrec = map_mft_record(mft_ni);
1384	if (IS_ERR(mrec)) {
1385		ntfs_error(vol->sb, "Failed to map mft record.");
1386		ret = PTR_ERR(mrec);
1387		goto undo_alloc;
1388	}
1389	ctx = ntfs_attr_get_search_ctx(mft_ni, mrec);
1390	if (unlikely(!ctx)) {
1391		ntfs_error(vol->sb, "Failed to get search context.");
1392		ret = -ENOMEM;
1393		goto undo_alloc;
1394	}
1395	ret = ntfs_attr_lookup(mftbmp_ni->type, mftbmp_ni->name,
1396			mftbmp_ni->name_len, CASE_SENSITIVE, rl[1].vcn, NULL,
1397			0, ctx);
1398	if (unlikely(ret)) {
1399		ntfs_error(vol->sb, "Failed to find last attribute extent of "
1400				"mft bitmap attribute.");
1401		if (ret == -ENOENT)
1402			ret = -EIO;
1403		goto undo_alloc;
1404	}
1405	a = ctx->attr;
1406	ll = sle64_to_cpu(a->data.non_resident.lowest_vcn);
1407	/* Search back for the previous last allocated cluster of mft bitmap. */
1408	for (rl2 = rl; rl2 > mftbmp_ni->runlist.rl; rl2--) {
1409		if (ll >= rl2->vcn)
1410			break;
1411	}
1412	BUG_ON(ll < rl2->vcn);
1413	BUG_ON(ll >= rl2->vcn + rl2->length);
1414	/* Get the size for the new mapping pairs array for this extent. */
1415	mp_size = ntfs_get_size_for_mapping_pairs(vol, rl2, ll, -1);
1416	if (unlikely(mp_size <= 0)) {
1417		ntfs_error(vol->sb, "Get size for mapping pairs failed for "
1418				"mft bitmap attribute extent.");
1419		ret = mp_size;
1420		if (!ret)
1421			ret = -EIO;
1422		goto undo_alloc;
1423	}
1424	/* Expand the attribute record if necessary. */
1425	old_alen = le32_to_cpu(a->length);
1426	ret = ntfs_attr_record_resize(ctx->mrec, a, mp_size +
1427			le16_to_cpu(a->data.non_resident.mapping_pairs_offset));
1428	if (unlikely(ret)) {
1429		if (ret != -ENOSPC) {
1430			ntfs_error(vol->sb, "Failed to resize attribute "
1431					"record for mft bitmap attribute.");
1432			goto undo_alloc;
1433		}
1434		// TODO: Deal with this by moving this extent to a new mft
1435		// record or by starting a new extent in a new mft record or by
1436		// moving other attributes out of this mft record.
1437		// Note: It will need to be a special mft record and if none of
1438		// those are available it gets rather complicated...
1439		ntfs_error(vol->sb, "Not enough space in this mft record to "
1440				"accommodate extended mft bitmap attribute "
1441				"extent.  Cannot handle this yet.");
1442		ret = -EOPNOTSUPP;
1443		goto undo_alloc;
1444	}
1445	status.mp_rebuilt = 1;
1446	/* Generate the mapping pairs array directly into the attr record. */
1447	ret = ntfs_mapping_pairs_build(vol, (u8*)a +
1448			le16_to_cpu(a->data.non_resident.mapping_pairs_offset),
1449			mp_size, rl2, ll, -1, NULL);
1450	if (unlikely(ret)) {
1451		ntfs_error(vol->sb, "Failed to build mapping pairs array for "
1452				"mft bitmap attribute.");
1453		goto undo_alloc;
1454	}
1455	/* Update the highest_vcn. */
1456	a->data.non_resident.highest_vcn = cpu_to_sle64(rl[1].vcn - 1);
1457	/*
1458	 * We now have extended the mft bitmap allocated_size by one cluster.
1459	 * Reflect this in the ntfs_inode structure and the attribute record.
1460	 */
1461	if (a->data.non_resident.lowest_vcn) {
1462		/*
1463		 * We are not in the first attribute extent, switch to it, but
1464		 * first ensure the changes will make it to disk later.
1465		 */
1466		flush_dcache_mft_record_page(ctx->ntfs_ino);
1467		mark_mft_record_dirty(ctx->ntfs_ino);
1468		ntfs_attr_reinit_search_ctx(ctx);
1469		ret = ntfs_attr_lookup(mftbmp_ni->type, mftbmp_ni->name,
1470				mftbmp_ni->name_len, CASE_SENSITIVE, 0, NULL,
1471				0, ctx);
1472		if (unlikely(ret)) {
1473			ntfs_error(vol->sb, "Failed to find first attribute "
1474					"extent of mft bitmap attribute.");
1475			goto restore_undo_alloc;
1476		}
1477		a = ctx->attr;
1478	}
1479	write_lock_irqsave(&mftbmp_ni->size_lock, flags);
1480	mftbmp_ni->allocated_size += vol->cluster_size;
1481	a->data.non_resident.allocated_size =
1482			cpu_to_sle64(mftbmp_ni->allocated_size);
1483	write_unlock_irqrestore(&mftbmp_ni->size_lock, flags);
1484	/* Ensure the changes make it to disk. */
1485	flush_dcache_mft_record_page(ctx->ntfs_ino);
1486	mark_mft_record_dirty(ctx->ntfs_ino);
1487	ntfs_attr_put_search_ctx(ctx);
1488	unmap_mft_record(mft_ni);
1489	up_write(&mftbmp_ni->runlist.lock);
1490	ntfs_debug("Done.");
1491	return 0;
1492restore_undo_alloc:
1493	ntfs_attr_reinit_search_ctx(ctx);
1494	if (ntfs_attr_lookup(mftbmp_ni->type, mftbmp_ni->name,
1495			mftbmp_ni->name_len, CASE_SENSITIVE, rl[1].vcn, NULL,
1496			0, ctx)) {
1497		ntfs_error(vol->sb, "Failed to find last attribute extent of "
1498				"mft bitmap attribute.%s", es);
1499		write_lock_irqsave(&mftbmp_ni->size_lock, flags);
1500		mftbmp_ni->allocated_size += vol->cluster_size;
1501		write_unlock_irqrestore(&mftbmp_ni->size_lock, flags);
1502		ntfs_attr_put_search_ctx(ctx);
1503		unmap_mft_record(mft_ni);
1504		up_write(&mftbmp_ni->runlist.lock);
1505		/*
1506		 * The only thing that is now wrong is ->allocated_size of the
1507		 * base attribute extent which chkdsk should be able to fix.
1508		 */
1509		NVolSetErrors(vol);
1510		return ret;
1511	}
1512	a = ctx->attr;
1513	a->data.non_resident.highest_vcn = cpu_to_sle64(rl[1].vcn - 2);
1514undo_alloc:
1515	if (status.added_cluster) {
1516		/* Truncate the last run in the runlist by one cluster. */
1517		rl->length--;
1518		rl[1].vcn--;
1519	} else if (status.added_run) {
1520		lcn = rl->lcn;
1521		/* Remove the last run from the runlist. */
1522		rl->lcn = rl[1].lcn;
1523		rl->length = 0;
1524	}
1525	/* Deallocate the cluster. */
1526	down_write(&vol->lcnbmp_lock);
1527	if (ntfs_bitmap_clear_bit(vol->lcnbmp_ino, lcn)) {
1528		ntfs_error(vol->sb, "Failed to free allocated cluster.%s", es);
1529		NVolSetErrors(vol);
1530	}
1531	up_write(&vol->lcnbmp_lock);
1532	if (status.mp_rebuilt) {
1533		if (ntfs_mapping_pairs_build(vol, (u8*)a + le16_to_cpu(
1534				a->data.non_resident.mapping_pairs_offset),
1535				old_alen - le16_to_cpu(
1536				a->data.non_resident.mapping_pairs_offset),
1537				rl2, ll, -1, NULL)) {
1538			ntfs_error(vol->sb, "Failed to restore mapping pairs "
1539					"array.%s", es);
1540			NVolSetErrors(vol);
1541		}
1542		if (ntfs_attr_record_resize(ctx->mrec, a, old_alen)) {
1543			ntfs_error(vol->sb, "Failed to restore attribute "
1544					"record.%s", es);
1545			NVolSetErrors(vol);
1546		}
1547		flush_dcache_mft_record_page(ctx->ntfs_ino);
1548		mark_mft_record_dirty(ctx->ntfs_ino);
1549	}
1550	if (ctx)
1551		ntfs_attr_put_search_ctx(ctx);
1552	if (!IS_ERR(mrec))
1553		unmap_mft_record(mft_ni);
1554	up_write(&mftbmp_ni->runlist.lock);
1555	return ret;
1556}
1557
1558/**
1559 * ntfs_mft_bitmap_extend_initialized_nolock - extend mftbmp initialized data
1560 * @vol:	volume on which to extend the mft bitmap attribute
1561 *
1562 * Extend the initialized portion of the mft bitmap attribute on the ntfs
1563 * volume @vol by 8 bytes.
1564 *
1565 * Note:  Only changes initialized_size and data_size, i.e. requires that
1566 * allocated_size is big enough to fit the new initialized_size.
1567 *
1568 * Return 0 on success and -error on error.
1569 *
1570 * Locking: Caller must hold vol->mftbmp_lock for writing.
1571 */
1572static int ntfs_mft_bitmap_extend_initialized_nolock(ntfs_volume *vol)
1573{
1574	s64 old_data_size, old_initialized_size;
1575	unsigned long flags;
1576	struct inode *mftbmp_vi;
1577	ntfs_inode *mft_ni, *mftbmp_ni;
1578	ntfs_attr_search_ctx *ctx;
1579	MFT_RECORD *mrec;
1580	ATTR_RECORD *a;
1581	int ret;
1582
1583	ntfs_debug("Extending mft bitmap initiailized (and data) size.");
1584	mft_ni = NTFS_I(vol->mft_ino);
1585	mftbmp_vi = vol->mftbmp_ino;
1586	mftbmp_ni = NTFS_I(mftbmp_vi);
1587	/* Get the attribute record. */
1588	mrec = map_mft_record(mft_ni);
1589	if (IS_ERR(mrec)) {
1590		ntfs_error(vol->sb, "Failed to map mft record.");
1591		return PTR_ERR(mrec);
1592	}
1593	ctx = ntfs_attr_get_search_ctx(mft_ni, mrec);
1594	if (unlikely(!ctx)) {
1595		ntfs_error(vol->sb, "Failed to get search context.");
1596		ret = -ENOMEM;
1597		goto unm_err_out;
1598	}
1599	ret = ntfs_attr_lookup(mftbmp_ni->type, mftbmp_ni->name,
1600			mftbmp_ni->name_len, CASE_SENSITIVE, 0, NULL, 0, ctx);
1601	if (unlikely(ret)) {
1602		ntfs_error(vol->sb, "Failed to find first attribute extent of "
1603				"mft bitmap attribute.");
1604		if (ret == -ENOENT)
1605			ret = -EIO;
1606		goto put_err_out;
1607	}
1608	a = ctx->attr;
1609	write_lock_irqsave(&mftbmp_ni->size_lock, flags);
1610	old_data_size = i_size_read(mftbmp_vi);
1611	old_initialized_size = mftbmp_ni->initialized_size;
1612	/*
1613	 * We can simply update the initialized_size before filling the space
1614	 * with zeroes because the caller is holding the mft bitmap lock for
1615	 * writing which ensures that no one else is trying to access the data.
1616	 */
1617	mftbmp_ni->initialized_size += 8;
1618	a->data.non_resident.initialized_size =
1619			cpu_to_sle64(mftbmp_ni->initialized_size);
1620	if (mftbmp_ni->initialized_size > old_data_size) {
1621		i_size_write(mftbmp_vi, mftbmp_ni->initialized_size);
1622		a->data.non_resident.data_size =
1623				cpu_to_sle64(mftbmp_ni->initialized_size);
1624	}
1625	write_unlock_irqrestore(&mftbmp_ni->size_lock, flags);
1626	/* Ensure the changes make it to disk. */
1627	flush_dcache_mft_record_page(ctx->ntfs_ino);
1628	mark_mft_record_dirty(ctx->ntfs_ino);
1629	ntfs_attr_put_search_ctx(ctx);
1630	unmap_mft_record(mft_ni);
1631	/* Initialize the mft bitmap attribute value with zeroes. */
1632	ret = ntfs_attr_set(mftbmp_ni, old_initialized_size, 8, 0);
1633	if (likely(!ret)) {
1634		ntfs_debug("Done.  (Wrote eight initialized bytes to mft "
1635				"bitmap.");
1636		return 0;
1637	}
1638	ntfs_error(vol->sb, "Failed to write to mft bitmap.");
1639	/* Try to recover from the error. */
1640	mrec = map_mft_record(mft_ni);
1641	if (IS_ERR(mrec)) {
1642		ntfs_error(vol->sb, "Failed to map mft record.%s", es);
1643		NVolSetErrors(vol);
1644		return ret;
1645	}
1646	ctx = ntfs_attr_get_search_ctx(mft_ni, mrec);
1647	if (unlikely(!ctx)) {
1648		ntfs_error(vol->sb, "Failed to get search context.%s", es);
1649		NVolSetErrors(vol);
1650		goto unm_err_out;
1651	}
1652	if (ntfs_attr_lookup(mftbmp_ni->type, mftbmp_ni->name,
1653			mftbmp_ni->name_len, CASE_SENSITIVE, 0, NULL, 0, ctx)) {
1654		ntfs_error(vol->sb, "Failed to find first attribute extent of "
1655				"mft bitmap attribute.%s", es);
1656		NVolSetErrors(vol);
1657put_err_out:
1658		ntfs_attr_put_search_ctx(ctx);
1659unm_err_out:
1660		unmap_mft_record(mft_ni);
1661		goto err_out;
1662	}
1663	a = ctx->attr;
1664	write_lock_irqsave(&mftbmp_ni->size_lock, flags);
1665	mftbmp_ni->initialized_size = old_initialized_size;
1666	a->data.non_resident.initialized_size =
1667			cpu_to_sle64(old_initialized_size);
1668	if (i_size_read(mftbmp_vi) != old_data_size) {
1669		i_size_write(mftbmp_vi, old_data_size);
1670		a->data.non_resident.data_size = cpu_to_sle64(old_data_size);
1671	}
1672	write_unlock_irqrestore(&mftbmp_ni->size_lock, flags);
1673	flush_dcache_mft_record_page(ctx->ntfs_ino);
1674	mark_mft_record_dirty(ctx->ntfs_ino);
1675	ntfs_attr_put_search_ctx(ctx);
1676	unmap_mft_record(mft_ni);
1677#ifdef DEBUG
1678	read_lock_irqsave(&mftbmp_ni->size_lock, flags);
1679	ntfs_debug("Restored status of mftbmp: allocated_size 0x%llx, "
1680			"data_size 0x%llx, initialized_size 0x%llx.",
1681			(long long)mftbmp_ni->allocated_size,
1682			(long long)i_size_read(mftbmp_vi),
1683			(long long)mftbmp_ni->initialized_size);
1684	read_unlock_irqrestore(&mftbmp_ni->size_lock, flags);
1685#endif /* DEBUG */
1686err_out:
1687	return ret;
1688}
1689
1690/**
1691 * ntfs_mft_data_extend_allocation_nolock - extend mft data attribute
1692 * @vol:	volume on which to extend the mft data attribute
1693 *
1694 * Extend the mft data attribute on the ntfs volume @vol by 16 mft records
1695 * worth of clusters or if not enough space for this by one mft record worth
1696 * of clusters.
1697 *
1698 * Note:  Only changes allocated_size, i.e. does not touch initialized_size or
1699 * data_size.
1700 *
1701 * Return 0 on success and -errno on error.
1702 *
1703 * Locking: - Caller must hold vol->mftbmp_lock for writing.
1704 *	    - This function takes NTFS_I(vol->mft_ino)->runlist.lock for
1705 *	      writing and releases it before returning.
1706 *	    - This function calls functions which take vol->lcnbmp_lock for
1707 *	      writing and release it before returning.
1708 */
1709static int ntfs_mft_data_extend_allocation_nolock(ntfs_volume *vol)
1710{
1711	LCN lcn;
1712	VCN old_last_vcn;
1713	s64 min_nr, nr, ll;
1714	unsigned long flags;
1715	ntfs_inode *mft_ni;
1716	runlist_element *rl, *rl2;
1717	ntfs_attr_search_ctx *ctx = NULL;
1718	MFT_RECORD *mrec;
1719	ATTR_RECORD *a = NULL;
1720	int ret, mp_size;
1721	u32 old_alen = 0;
1722	bool mp_rebuilt = false;
1723
1724	ntfs_debug("Extending mft data allocation.");
1725	mft_ni = NTFS_I(vol->mft_ino);
1726	/*
1727	 * Determine the preferred allocation location, i.e. the last lcn of
1728	 * the mft data attribute.  The allocated size of the mft data
1729	 * attribute cannot be zero so we are ok to do this.
1730	 */
1731	down_write(&mft_ni->runlist.lock);
1732	read_lock_irqsave(&mft_ni->size_lock, flags);
1733	ll = mft_ni->allocated_size;
1734	read_unlock_irqrestore(&mft_ni->size_lock, flags);
1735	rl = ntfs_attr_find_vcn_nolock(mft_ni,
1736			(ll - 1) >> vol->cluster_size_bits, NULL);
1737	if (IS_ERR(rl) || unlikely(!rl->length || rl->lcn < 0)) {
1738		up_write(&mft_ni->runlist.lock);
1739		ntfs_error(vol->sb, "Failed to determine last allocated "
1740				"cluster of mft data attribute.");
1741		if (!IS_ERR(rl))
1742			ret = -EIO;
1743		else
1744			ret = PTR_ERR(rl);
1745		return ret;
1746	}
1747	lcn = rl->lcn + rl->length;
1748	ntfs_debug("Last lcn of mft data attribute is 0x%llx.", (long long)lcn);
1749	/* Minimum allocation is one mft record worth of clusters. */
1750	min_nr = vol->mft_record_size >> vol->cluster_size_bits;
1751	if (!min_nr)
1752		min_nr = 1;
1753	/* Want to allocate 16 mft records worth of clusters. */
1754	nr = vol->mft_record_size << 4 >> vol->cluster_size_bits;
1755	if (!nr)
1756		nr = min_nr;
1757	/* Ensure we do not go above 2^32-1 mft records. */
1758	read_lock_irqsave(&mft_ni->size_lock, flags);
1759	ll = mft_ni->allocated_size;
1760	read_unlock_irqrestore(&mft_ni->size_lock, flags);
1761	if (unlikely((ll + (nr << vol->cluster_size_bits)) >>
1762			vol->mft_record_size_bits >= (1ll << 32))) {
1763		nr = min_nr;
1764		if (unlikely((ll + (nr << vol->cluster_size_bits)) >>
1765				vol->mft_record_size_bits >= (1ll << 32))) {
1766			ntfs_warning(vol->sb, "Cannot allocate mft record "
1767					"because the maximum number of inodes "
1768					"(2^32) has already been reached.");
1769			up_write(&mft_ni->runlist.lock);
1770			return -ENOSPC;
1771		}
1772	}
1773	ntfs_debug("Trying mft data allocation with %s cluster count %lli.",
1774			nr > min_nr ? "default" : "minimal", (long long)nr);
1775	old_last_vcn = rl[1].vcn;
1776	do {
1777		rl2 = ntfs_cluster_alloc(vol, old_last_vcn, nr, lcn, MFT_ZONE,
1778				true);
1779		if (!IS_ERR(rl2))
1780			break;
1781		if (PTR_ERR(rl2) != -ENOSPC || nr == min_nr) {
1782			ntfs_error(vol->sb, "Failed to allocate the minimal "
1783					"number of clusters (%lli) for the "
1784					"mft data attribute.", (long long)nr);
1785			up_write(&mft_ni->runlist.lock);
1786			return PTR_ERR(rl2);
1787		}
1788		/*
1789		 * There is not enough space to do the allocation, but there
1790		 * might be enough space to do a minimal allocation so try that
1791		 * before failing.
1792		 */
1793		nr = min_nr;
1794		ntfs_debug("Retrying mft data allocation with minimal cluster "
1795				"count %lli.", (long long)nr);
1796	} while (1);
1797	rl = ntfs_runlists_merge(mft_ni->runlist.rl, rl2);
1798	if (IS_ERR(rl)) {
1799		up_write(&mft_ni->runlist.lock);
1800		ntfs_error(vol->sb, "Failed to merge runlists for mft data "
1801				"attribute.");
1802		if (ntfs_cluster_free_from_rl(vol, rl2)) {
1803			ntfs_error(vol->sb, "Failed to deallocate clusters "
1804					"from the mft data attribute.%s", es);
1805			NVolSetErrors(vol);
1806		}
1807		ntfs_free(rl2);
1808		return PTR_ERR(rl);
1809	}
1810	mft_ni->runlist.rl = rl;
1811	ntfs_debug("Allocated %lli clusters.", (long long)nr);
1812	/* Find the last run in the new runlist. */
1813	for (; rl[1].length; rl++)
1814		;
1815	/* Update the attribute record as well. */
1816	mrec = map_mft_record(mft_ni);
1817	if (IS_ERR(mrec)) {
1818		ntfs_error(vol->sb, "Failed to map mft record.");
1819		ret = PTR_ERR(mrec);
1820		goto undo_alloc;
1821	}
1822	ctx = ntfs_attr_get_search_ctx(mft_ni, mrec);
1823	if (unlikely(!ctx)) {
1824		ntfs_error(vol->sb, "Failed to get search context.");
1825		ret = -ENOMEM;
1826		goto undo_alloc;
1827	}
1828	ret = ntfs_attr_lookup(mft_ni->type, mft_ni->name, mft_ni->name_len,
1829			CASE_SENSITIVE, rl[1].vcn, NULL, 0, ctx);
1830	if (unlikely(ret)) {
1831		ntfs_error(vol->sb, "Failed to find last attribute extent of "
1832				"mft data attribute.");
1833		if (ret == -ENOENT)
1834			ret = -EIO;
1835		goto undo_alloc;
1836	}
1837	a = ctx->attr;
1838	ll = sle64_to_cpu(a->data.non_resident.lowest_vcn);
1839	/* Search back for the previous last allocated cluster of mft bitmap. */
1840	for (rl2 = rl; rl2 > mft_ni->runlist.rl; rl2--) {
1841		if (ll >= rl2->vcn)
1842			break;
1843	}
1844	BUG_ON(ll < rl2->vcn);
1845	BUG_ON(ll >= rl2->vcn + rl2->length);
1846	/* Get the size for the new mapping pairs array for this extent. */
1847	mp_size = ntfs_get_size_for_mapping_pairs(vol, rl2, ll, -1);
1848	if (unlikely(mp_size <= 0)) {
1849		ntfs_error(vol->sb, "Get size for mapping pairs failed for "
1850				"mft data attribute extent.");
1851		ret = mp_size;
1852		if (!ret)
1853			ret = -EIO;
1854		goto undo_alloc;
1855	}
1856	/* Expand the attribute record if necessary. */
1857	old_alen = le32_to_cpu(a->length);
1858	ret = ntfs_attr_record_resize(ctx->mrec, a, mp_size +
1859			le16_to_cpu(a->data.non_resident.mapping_pairs_offset));
1860	if (unlikely(ret)) {
1861		if (ret != -ENOSPC) {
1862			ntfs_error(vol->sb, "Failed to resize attribute "
1863					"record for mft data attribute.");
1864			goto undo_alloc;
1865		}
1866		// TODO: Deal with this by moving this extent to a new mft
1867		// record or by starting a new extent in a new mft record or by
1868		// moving other attributes out of this mft record.
1869		// Note: Use the special reserved mft records and ensure that
1870		// this extent is not required to find the mft record in
1871		// question.  If no free special records left we would need to
1872		// move an existing record away, insert ours in its place, and
1873		// then place the moved record into the newly allocated space
1874		// and we would then need to update all references to this mft
1875		// record appropriately.  This is rather complicated...
1876		ntfs_error(vol->sb, "Not enough space in this mft record to "
1877				"accommodate extended mft data attribute "
1878				"extent.  Cannot handle this yet.");
1879		ret = -EOPNOTSUPP;
1880		goto undo_alloc;
1881	}
1882	mp_rebuilt = true;
1883	/* Generate the mapping pairs array directly into the attr record. */
1884	ret = ntfs_mapping_pairs_build(vol, (u8*)a +
1885			le16_to_cpu(a->data.non_resident.mapping_pairs_offset),
1886			mp_size, rl2, ll, -1, NULL);
1887	if (unlikely(ret)) {
1888		ntfs_error(vol->sb, "Failed to build mapping pairs array of "
1889				"mft data attribute.");
1890		goto undo_alloc;
1891	}
1892	/* Update the highest_vcn. */
1893	a->data.non_resident.highest_vcn = cpu_to_sle64(rl[1].vcn - 1);
1894	/*
1895	 * We now have extended the mft data allocated_size by nr clusters.
1896	 * Reflect this in the ntfs_inode structure and the attribute record.
1897	 * @rl is the last (non-terminator) runlist element of mft data
1898	 * attribute.
1899	 */
1900	if (a->data.non_resident.lowest_vcn) {
1901		/*
1902		 * We are not in the first attribute extent, switch to it, but
1903		 * first ensure the changes will make it to disk later.
1904		 */
1905		flush_dcache_mft_record_page(ctx->ntfs_ino);
1906		mark_mft_record_dirty(ctx->ntfs_ino);
1907		ntfs_attr_reinit_search_ctx(ctx);
1908		ret = ntfs_attr_lookup(mft_ni->type, mft_ni->name,
1909				mft_ni->name_len, CASE_SENSITIVE, 0, NULL, 0,
1910				ctx);
1911		if (unlikely(ret)) {
1912			ntfs_error(vol->sb, "Failed to find first attribute "
1913					"extent of mft data attribute.");
1914			goto restore_undo_alloc;
1915		}
1916		a = ctx->attr;
1917	}
1918	write_lock_irqsave(&mft_ni->size_lock, flags);
1919	mft_ni->allocated_size += nr << vol->cluster_size_bits;
1920	a->data.non_resident.allocated_size =
1921			cpu_to_sle64(mft_ni->allocated_size);
1922	write_unlock_irqrestore(&mft_ni->size_lock, flags);
1923	/* Ensure the changes make it to disk. */
1924	flush_dcache_mft_record_page(ctx->ntfs_ino);
1925	mark_mft_record_dirty(ctx->ntfs_ino);
1926	ntfs_attr_put_search_ctx(ctx);
1927	unmap_mft_record(mft_ni);
1928	up_write(&mft_ni->runlist.lock);
1929	ntfs_debug("Done.");
1930	return 0;
1931restore_undo_alloc:
1932	ntfs_attr_reinit_search_ctx(ctx);
1933	if (ntfs_attr_lookup(mft_ni->type, mft_ni->name, mft_ni->name_len,
1934			CASE_SENSITIVE, rl[1].vcn, NULL, 0, ctx)) {
1935		ntfs_error(vol->sb, "Failed to find last attribute extent of "
1936				"mft data attribute.%s", es);
1937		write_lock_irqsave(&mft_ni->size_lock, flags);
1938		mft_ni->allocated_size += nr << vol->cluster_size_bits;
1939		write_unlock_irqrestore(&mft_ni->size_lock, flags);
1940		ntfs_attr_put_search_ctx(ctx);
1941		unmap_mft_record(mft_ni);
1942		up_write(&mft_ni->runlist.lock);
1943		/*
1944		 * The only thing that is now wrong is ->allocated_size of the
1945		 * base attribute extent which chkdsk should be able to fix.
1946		 */
1947		NVolSetErrors(vol);
1948		return ret;
1949	}
1950	ctx->attr->data.non_resident.highest_vcn =
1951			cpu_to_sle64(old_last_vcn - 1);
1952undo_alloc:
1953	if (ntfs_cluster_free(mft_ni, old_last_vcn, -1, ctx) < 0) {
1954		ntfs_error(vol->sb, "Failed to free clusters from mft data "
1955				"attribute.%s", es);
1956		NVolSetErrors(vol);
1957	}
1958	a = ctx->attr;
1959	if (ntfs_rl_truncate_nolock(vol, &mft_ni->runlist, old_last_vcn)) {
1960		ntfs_error(vol->sb, "Failed to truncate mft data attribute "
1961				"runlist.%s", es);
1962		NVolSetErrors(vol);
1963	}
1964	if (mp_rebuilt && !IS_ERR(ctx->mrec)) {
1965		if (ntfs_mapping_pairs_build(vol, (u8*)a + le16_to_cpu(
1966				a->data.non_resident.mapping_pairs_offset),
1967				old_alen - le16_to_cpu(
1968				a->data.non_resident.mapping_pairs_offset),
1969				rl2, ll, -1, NULL)) {
1970			ntfs_error(vol->sb, "Failed to restore mapping pairs "
1971					"array.%s", es);
1972			NVolSetErrors(vol);
1973		}
1974		if (ntfs_attr_record_resize(ctx->mrec, a, old_alen)) {
1975			ntfs_error(vol->sb, "Failed to restore attribute "
1976					"record.%s", es);
1977			NVolSetErrors(vol);
1978		}
1979		flush_dcache_mft_record_page(ctx->ntfs_ino);
1980		mark_mft_record_dirty(ctx->ntfs_ino);
1981	} else if (IS_ERR(ctx->mrec)) {
1982		ntfs_error(vol->sb, "Failed to restore attribute search "
1983				"context.%s", es);
1984		NVolSetErrors(vol);
1985	}
1986	if (ctx)
1987		ntfs_attr_put_search_ctx(ctx);
1988	if (!IS_ERR(mrec))
1989		unmap_mft_record(mft_ni);
1990	up_write(&mft_ni->runlist.lock);
1991	return ret;
1992}
1993
1994/**
1995 * ntfs_mft_record_layout - layout an mft record into a memory buffer
1996 * @vol:	volume to which the mft record will belong
1997 * @mft_no:	mft reference specifying the mft record number
1998 * @m:		destination buffer of size >= @vol->mft_record_size bytes
1999 *
2000 * Layout an empty, unused mft record with the mft record number @mft_no into
2001 * the buffer @m.  The volume @vol is needed because the mft record structure
2002 * was modified in NTFS 3.1 so we need to know which volume version this mft
2003 * record will be used on.
2004 *
2005 * Return 0 on success and -errno on error.
2006 */
2007static int ntfs_mft_record_layout(const ntfs_volume *vol, const s64 mft_no,
2008		MFT_RECORD *m)
2009{
2010	ATTR_RECORD *a;
2011
2012	ntfs_debug("Entering for mft record 0x%llx.", (long long)mft_no);
2013	if (mft_no >= (1ll << 32)) {
2014		ntfs_error(vol->sb, "Mft record number 0x%llx exceeds "
2015				"maximum of 2^32.", (long long)mft_no);
2016		return -ERANGE;
2017	}
2018	/* Start by clearing the whole mft record to gives us a clean slate. */
2019	memset(m, 0, vol->mft_record_size);
2020	/* Aligned to 2-byte boundary. */
2021	if (vol->major_ver < 3 || (vol->major_ver == 3 && !vol->minor_ver))
2022		m->usa_ofs = cpu_to_le16((sizeof(MFT_RECORD_OLD) + 1) & ~1);
2023	else {
2024		m->usa_ofs = cpu_to_le16((sizeof(MFT_RECORD) + 1) & ~1);
2025		/*
2026		 * Set the NTFS 3.1+ specific fields while we know that the
2027		 * volume version is 3.1+.
2028		 */
2029		m->reserved = 0;
2030		m->mft_record_number = cpu_to_le32((u32)mft_no);
2031	}
2032	m->magic = magic_FILE;
2033	if (vol->mft_record_size >= NTFS_BLOCK_SIZE)
2034		m->usa_count = cpu_to_le16(vol->mft_record_size /
2035				NTFS_BLOCK_SIZE + 1);
2036	else {
2037		m->usa_count = cpu_to_le16(1);
2038		ntfs_warning(vol->sb, "Sector size is bigger than mft record "
2039				"size.  Setting usa_count to 1.  If chkdsk "
2040				"reports this as corruption, please email "
2041				"linux-ntfs-dev@lists.sourceforge.net stating "
2042				"that you saw this message and that the "
2043				"modified filesystem created was corrupt.  "
2044				"Thank you.");
2045	}
2046	/* Set the update sequence number to 1. */
2047	*(le16*)((u8*)m + le16_to_cpu(m->usa_ofs)) = cpu_to_le16(1);
2048	m->lsn = 0;
2049	m->sequence_number = cpu_to_le16(1);
2050	m->link_count = 0;
2051	/*
2052	 * Place the attributes straight after the update sequence array,
2053	 * aligned to 8-byte boundary.
2054	 */
2055	m->attrs_offset = cpu_to_le16((le16_to_cpu(m->usa_ofs) +
2056			(le16_to_cpu(m->usa_count) << 1) + 7) & ~7);
2057	m->flags = 0;
2058	/*
2059	 * Using attrs_offset plus eight bytes (for the termination attribute).
2060	 * attrs_offset is already aligned to 8-byte boundary, so no need to
2061	 * align again.
2062	 */
2063	m->bytes_in_use = cpu_to_le32(le16_to_cpu(m->attrs_offset) + 8);
2064	m->bytes_allocated = cpu_to_le32(vol->mft_record_size);
2065	m->base_mft_record = 0;
2066	m->next_attr_instance = 0;
2067	/* Add the termination attribute. */
2068	a = (ATTR_RECORD*)((u8*)m + le16_to_cpu(m->attrs_offset));
2069	a->type = AT_END;
2070	a->length = 0;
2071	ntfs_debug("Done.");
2072	return 0;
2073}
2074
2075/**
2076 * ntfs_mft_record_format - format an mft record on an ntfs volume
2077 * @vol:	volume on which to format the mft record
2078 * @mft_no:	mft record number to format
2079 *
2080 * Format the mft record @mft_no in $MFT/$DATA, i.e. lay out an empty, unused
2081 * mft record into the appropriate place of the mft data attribute.  This is
2082 * used when extending the mft data attribute.
2083 *
2084 * Return 0 on success and -errno on error.
2085 */
2086static int ntfs_mft_record_format(const ntfs_volume *vol, const s64 mft_no)
2087{
2088	loff_t i_size;
2089	struct inode *mft_vi = vol->mft_ino;
2090	struct page *page;
2091	MFT_RECORD *m;
2092	pgoff_t index, end_index;
2093	unsigned int ofs;
2094	int err;
2095
2096	ntfs_debug("Entering for mft record 0x%llx.", (long long)mft_no);
2097	/*
2098	 * The index into the page cache and the offset within the page cache
2099	 * page of the wanted mft record.
2100	 */
2101	index = mft_no << vol->mft_record_size_bits >> PAGE_SHIFT;
2102	ofs = (mft_no << vol->mft_record_size_bits) & ~PAGE_MASK;
2103	/* The maximum valid index into the page cache for $MFT's data. */
2104	i_size = i_size_read(mft_vi);
2105	end_index = i_size >> PAGE_SHIFT;
2106	if (unlikely(index >= end_index)) {
2107		if (unlikely(index > end_index || ofs + vol->mft_record_size >=
2108				(i_size & ~PAGE_MASK))) {
2109			ntfs_error(vol->sb, "Tried to format non-existing mft "
2110					"record 0x%llx.", (long long)mft_no);
2111			return -ENOENT;
2112		}
2113	}
2114	/* Read, map, and pin the page containing the mft record. */
2115	page = ntfs_map_page(mft_vi->i_mapping, index);
2116	if (IS_ERR(page)) {
2117		ntfs_error(vol->sb, "Failed to map page containing mft record "
2118				"to format 0x%llx.", (long long)mft_no);
2119		return PTR_ERR(page);
2120	}
2121	lock_page(page);
2122	BUG_ON(!PageUptodate(page));
2123	ClearPageUptodate(page);
2124	m = (MFT_RECORD*)((u8*)page_address(page) + ofs);
2125	err = ntfs_mft_record_layout(vol, mft_no, m);
2126	if (unlikely(err)) {
2127		ntfs_error(vol->sb, "Failed to layout mft record 0x%llx.",
2128				(long long)mft_no);
2129		SetPageUptodate(page);
2130		unlock_page(page);
2131		ntfs_unmap_page(page);
2132		return err;
2133	}
2134	flush_dcache_page(page);
2135	SetPageUptodate(page);
2136	unlock_page(page);
2137	/*
2138	 * Make sure the mft record is written out to disk.  We could use
2139	 * ilookup5() to check if an inode is in icache and so on but this is
2140	 * unnecessary as ntfs_writepage() will write the dirty record anyway.
2141	 */
2142	mark_ntfs_record_dirty(page, ofs);
2143	ntfs_unmap_page(page);
2144	ntfs_debug("Done.");
2145	return 0;
2146}
2147
2148/**
2149 * ntfs_mft_record_alloc - allocate an mft record on an ntfs volume
2150 * @vol:	[IN]  volume on which to allocate the mft record
2151 * @mode:	[IN]  mode if want a file or directory, i.e. base inode or 0
2152 * @base_ni:	[IN]  open base inode if allocating an extent mft record or NULL
2153 * @mrec:	[OUT] on successful return this is the mapped mft record
2154 *
2155 * Allocate an mft record in $MFT/$DATA of an open ntfs volume @vol.
2156 *
2157 * If @base_ni is NULL make the mft record a base mft record, i.e. a file or
2158 * direvctory inode, and allocate it at the default allocator position.  In
2159 * this case @mode is the file mode as given to us by the caller.  We in
2160 * particular use @mode to distinguish whether a file or a directory is being
2161 * created (S_IFDIR(mode) and S_IFREG(mode), respectively).
2162 *
2163 * If @base_ni is not NULL make the allocated mft record an extent record,
2164 * allocate it starting at the mft record after the base mft record and attach
2165 * the allocated and opened ntfs inode to the base inode @base_ni.  In this
2166 * case @mode must be 0 as it is meaningless for extent inodes.
2167 *
2168 * You need to check the return value with IS_ERR().  If false, the function
2169 * was successful and the return value is the now opened ntfs inode of the
2170 * allocated mft record.  *@mrec is then set to the allocated, mapped, pinned,
2171 * and locked mft record.  If IS_ERR() is true, the function failed and the
2172 * error code is obtained from PTR_ERR(return value).  *@mrec is undefined in
2173 * this case.
2174 *
2175 * Allocation strategy:
2176 *
2177 * To find a free mft record, we scan the mft bitmap for a zero bit.  To
2178 * optimize this we start scanning at the place specified by @base_ni or if
2179 * @base_ni is NULL we start where we last stopped and we perform wrap around
2180 * when we reach the end.  Note, we do not try to allocate mft records below
2181 * number 24 because numbers 0 to 15 are the defined system files anyway and 16
2182 * to 24 are special in that they are used for storing extension mft records
2183 * for the $DATA attribute of $MFT.  This is required to avoid the possibility
2184 * of creating a runlist with a circular dependency which once written to disk
2185 * can never be read in again.  Windows will only use records 16 to 24 for
2186 * normal files if the volume is completely out of space.  We never use them
2187 * which means that when the volume is really out of space we cannot create any
2188 * more files while Windows can still create up to 8 small files.  We can start
2189 * doing this at some later time, it does not matter much for now.
2190 *
2191 * When scanning the mft bitmap, we only search up to the last allocated mft
2192 * record.  If there are no free records left in the range 24 to number of
2193 * allocated mft records, then we extend the $MFT/$DATA attribute in order to
2194 * create free mft records.  We extend the allocated size of $MFT/$DATA by 16
2195 * records at a time or one cluster, if cluster size is above 16kiB.  If there
2196 * is not sufficient space to do this, we try to extend by a single mft record
2197 * or one cluster, if cluster size is above the mft record size.
2198 *
2199 * No matter how many mft records we allocate, we initialize only the first
2200 * allocated mft record, incrementing mft data size and initialized size
2201 * accordingly, open an ntfs_inode for it and return it to the caller, unless
2202 * there are less than 24 mft records, in which case we allocate and initialize
2203 * mft records until we reach record 24 which we consider as the first free mft
2204 * record for use by normal files.
2205 *
2206 * If during any stage we overflow the initialized data in the mft bitmap, we
2207 * extend the initialized size (and data size) by 8 bytes, allocating another
2208 * cluster if required.  The bitmap data size has to be at least equal to the
2209 * number of mft records in the mft, but it can be bigger, in which case the
2210 * superflous bits are padded with zeroes.
2211 *
2212 * Thus, when we return successfully (IS_ERR() is false), we will have:
2213 *	- initialized / extended the mft bitmap if necessary,
2214 *	- initialized / extended the mft data if necessary,
2215 *	- set the bit corresponding to the mft record being allocated in the
2216 *	  mft bitmap,
2217 *	- opened an ntfs_inode for the allocated mft record, and we will have
2218 *	- returned the ntfs_inode as well as the allocated mapped, pinned, and
2219 *	  locked mft record.
2220 *
2221 * On error, the volume will be left in a consistent state and no record will
2222 * be allocated.  If rolling back a partial operation fails, we may leave some
2223 * inconsistent metadata in which case we set NVolErrors() so the volume is
2224 * left dirty when unmounted.
2225 *
2226 * Note, this function cannot make use of most of the normal functions, like
2227 * for example for attribute resizing, etc, because when the run list overflows
2228 * the base mft record and an attribute list is used, it is very important that
2229 * the extension mft records used to store the $DATA attribute of $MFT can be
2230 * reached without having to read the information contained inside them, as
2231 * this would make it impossible to find them in the first place after the
2232 * volume is unmounted.  $MFT/$BITMAP probably does not need to follow this
2233 * rule because the bitmap is not essential for finding the mft records, but on
2234 * the other hand, handling the bitmap in this special way would make life
2235 * easier because otherwise there might be circular invocations of functions
2236 * when reading the bitmap.
2237 */
2238ntfs_inode *ntfs_mft_record_alloc(ntfs_volume *vol, const int mode,
2239		ntfs_inode *base_ni, MFT_RECORD **mrec)
2240{
2241	s64 ll, bit, old_data_initialized, old_data_size;
2242	unsigned long flags;
2243	struct inode *vi;
2244	struct page *page;
2245	ntfs_inode *mft_ni, *mftbmp_ni, *ni;
2246	ntfs_attr_search_ctx *ctx;
2247	MFT_RECORD *m;
2248	ATTR_RECORD *a;
2249	pgoff_t index;
2250	unsigned int ofs;
2251	int err;
2252	le16 seq_no, usn;
2253	bool record_formatted = false;
2254
2255	if (base_ni) {
2256		ntfs_debug("Entering (allocating an extent mft record for "
2257				"base mft record 0x%llx).",
2258				(long long)base_ni->mft_no);
2259		/* @mode and @base_ni are mutually exclusive. */
2260		BUG_ON(mode);
2261	} else
2262		ntfs_debug("Entering (allocating a base mft record).");
2263	if (mode) {
2264		/* @mode and @base_ni are mutually exclusive. */
2265		BUG_ON(base_ni);
2266		/* We only support creation of normal files and directories. */
2267		if (!S_ISREG(mode) && !S_ISDIR(mode))
2268			return ERR_PTR(-EOPNOTSUPP);
2269	}
2270	BUG_ON(!mrec);
2271	mft_ni = NTFS_I(vol->mft_ino);
2272	mftbmp_ni = NTFS_I(vol->mftbmp_ino);
2273	down_write(&vol->mftbmp_lock);
2274	bit = ntfs_mft_bitmap_find_and_alloc_free_rec_nolock(vol, base_ni);
2275	if (bit >= 0) {
2276		ntfs_debug("Found and allocated free record (#1), bit 0x%llx.",
2277				(long long)bit);
2278		goto have_alloc_rec;
2279	}
2280	if (bit != -ENOSPC) {
2281		up_write(&vol->mftbmp_lock);
2282		return ERR_PTR(bit);
2283	}
2284	/*
2285	 * No free mft records left.  If the mft bitmap already covers more
2286	 * than the currently used mft records, the next records are all free,
2287	 * so we can simply allocate the first unused mft record.
2288	 * Note: We also have to make sure that the mft bitmap at least covers
2289	 * the first 24 mft records as they are special and whilst they may not
2290	 * be in use, we do not allocate from them.
2291	 */
2292	read_lock_irqsave(&mft_ni->size_lock, flags);
2293	ll = mft_ni->initialized_size >> vol->mft_record_size_bits;
2294	read_unlock_irqrestore(&mft_ni->size_lock, flags);
2295	read_lock_irqsave(&mftbmp_ni->size_lock, flags);
2296	old_data_initialized = mftbmp_ni->initialized_size;
2297	read_unlock_irqrestore(&mftbmp_ni->size_lock, flags);
2298	if (old_data_initialized << 3 > ll && old_data_initialized > 3) {
2299		bit = ll;
2300		if (bit < 24)
2301			bit = 24;
2302		if (unlikely(bit >= (1ll << 32)))
2303			goto max_err_out;
2304		ntfs_debug("Found free record (#2), bit 0x%llx.",
2305				(long long)bit);
2306		goto found_free_rec;
2307	}
2308	/*
2309	 * The mft bitmap needs to be expanded until it covers the first unused
2310	 * mft record that we can allocate.
2311	 * Note: The smallest mft record we allocate is mft record 24.
2312	 */
2313	bit = old_data_initialized << 3;
2314	if (unlikely(bit >= (1ll << 32)))
2315		goto max_err_out;
2316	read_lock_irqsave(&mftbmp_ni->size_lock, flags);
2317	old_data_size = mftbmp_ni->allocated_size;
2318	ntfs_debug("Status of mftbmp before extension: allocated_size 0x%llx, "
2319			"data_size 0x%llx, initialized_size 0x%llx.",
2320			(long long)old_data_size,
2321			(long long)i_size_read(vol->mftbmp_ino),
2322			(long long)old_data_initialized);
2323	read_unlock_irqrestore(&mftbmp_ni->size_lock, flags);
2324	if (old_data_initialized + 8 > old_data_size) {
2325		/* Need to extend bitmap by one more cluster. */
2326		ntfs_debug("mftbmp: initialized_size + 8 > allocated_size.");
2327		err = ntfs_mft_bitmap_extend_allocation_nolock(vol);
2328		if (unlikely(err)) {
2329			up_write(&vol->mftbmp_lock);
2330			goto err_out;
2331		}
2332#ifdef DEBUG
2333		read_lock_irqsave(&mftbmp_ni->size_lock, flags);
2334		ntfs_debug("Status of mftbmp after allocation extension: "
2335				"allocated_size 0x%llx, data_size 0x%llx, "
2336				"initialized_size 0x%llx.",
2337				(long long)mftbmp_ni->allocated_size,
2338				(long long)i_size_read(vol->mftbmp_ino),
2339				(long long)mftbmp_ni->initialized_size);
2340		read_unlock_irqrestore(&mftbmp_ni->size_lock, flags);
2341#endif /* DEBUG */
2342	}
2343	/*
2344	 * We now have sufficient allocated space, extend the initialized_size
2345	 * as well as the data_size if necessary and fill the new space with
2346	 * zeroes.
2347	 */
2348	err = ntfs_mft_bitmap_extend_initialized_nolock(vol);
2349	if (unlikely(err)) {
2350		up_write(&vol->mftbmp_lock);
2351		goto err_out;
2352	}
2353#ifdef DEBUG
2354	read_lock_irqsave(&mftbmp_ni->size_lock, flags);
2355	ntfs_debug("Status of mftbmp after initialized extension: "
2356			"allocated_size 0x%llx, data_size 0x%llx, "
2357			"initialized_size 0x%llx.",
2358			(long long)mftbmp_ni->allocated_size,
2359			(long long)i_size_read(vol->mftbmp_ino),
2360			(long long)mftbmp_ni->initialized_size);
2361	read_unlock_irqrestore(&mftbmp_ni->size_lock, flags);
2362#endif /* DEBUG */
2363	ntfs_debug("Found free record (#3), bit 0x%llx.", (long long)bit);
2364found_free_rec:
2365	/* @bit is the found free mft record, allocate it in the mft bitmap. */
2366	ntfs_debug("At found_free_rec.");
2367	err = ntfs_bitmap_set_bit(vol->mftbmp_ino, bit);
2368	if (unlikely(err)) {
2369		ntfs_error(vol->sb, "Failed to allocate bit in mft bitmap.");
2370		up_write(&vol->mftbmp_lock);
2371		goto err_out;
2372	}
2373	ntfs_debug("Set bit 0x%llx in mft bitmap.", (long long)bit);
2374have_alloc_rec:
2375	/*
2376	 * The mft bitmap is now uptodate.  Deal with mft data attribute now.
2377	 * Note, we keep hold of the mft bitmap lock for writing until all
2378	 * modifications to the mft data attribute are complete, too, as they
2379	 * will impact decisions for mft bitmap and mft record allocation done
2380	 * by a parallel allocation and if the lock is not maintained a
2381	 * parallel allocation could allocate the same mft record as this one.
2382	 */
2383	ll = (bit + 1) << vol->mft_record_size_bits;
2384	read_lock_irqsave(&mft_ni->size_lock, flags);
2385	old_data_initialized = mft_ni->initialized_size;
2386	read_unlock_irqrestore(&mft_ni->size_lock, flags);
2387	if (ll <= old_data_initialized) {
2388		ntfs_debug("Allocated mft record already initialized.");
2389		goto mft_rec_already_initialized;
2390	}
2391	ntfs_debug("Initializing allocated mft record.");
2392	/*
2393	 * The mft record is outside the initialized data.  Extend the mft data
2394	 * attribute until it covers the allocated record.  The loop is only
2395	 * actually traversed more than once when a freshly formatted volume is
2396	 * first written to so it optimizes away nicely in the common case.
2397	 */
2398	read_lock_irqsave(&mft_ni->size_lock, flags);
2399	ntfs_debug("Status of mft data before extension: "
2400			"allocated_size 0x%llx, data_size 0x%llx, "
2401			"initialized_size 0x%llx.",
2402			(long long)mft_ni->allocated_size,
2403			(long long)i_size_read(vol->mft_ino),
2404			(long long)mft_ni->initialized_size);
2405	while (ll > mft_ni->allocated_size) {
2406		read_unlock_irqrestore(&mft_ni->size_lock, flags);
2407		err = ntfs_mft_data_extend_allocation_nolock(vol);
2408		if (unlikely(err)) {
2409			ntfs_error(vol->sb, "Failed to extend mft data "
2410					"allocation.");
2411			goto undo_mftbmp_alloc_nolock;
2412		}
2413		read_lock_irqsave(&mft_ni->size_lock, flags);
2414		ntfs_debug("Status of mft data after allocation extension: "
2415				"allocated_size 0x%llx, data_size 0x%llx, "
2416				"initialized_size 0x%llx.",
2417				(long long)mft_ni->allocated_size,
2418				(long long)i_size_read(vol->mft_ino),
2419				(long long)mft_ni->initialized_size);
2420	}
2421	read_unlock_irqrestore(&mft_ni->size_lock, flags);
2422	/*
2423	 * Extend mft data initialized size (and data size of course) to reach
2424	 * the allocated mft record, formatting the mft records allong the way.
2425	 * Note: We only modify the ntfs_inode structure as that is all that is
2426	 * needed by ntfs_mft_record_format().  We will update the attribute
2427	 * record itself in one fell swoop later on.
2428	 */
2429	write_lock_irqsave(&mft_ni->size_lock, flags);
2430	old_data_initialized = mft_ni->initialized_size;
2431	old_data_size = vol->mft_ino->i_size;
2432	while (ll > mft_ni->initialized_size) {
2433		s64 new_initialized_size, mft_no;
2434		
2435		new_initialized_size = mft_ni->initialized_size +
2436				vol->mft_record_size;
2437		mft_no = mft_ni->initialized_size >> vol->mft_record_size_bits;
2438		if (new_initialized_size > i_size_read(vol->mft_ino))
2439			i_size_write(vol->mft_ino, new_initialized_size);
2440		write_unlock_irqrestore(&mft_ni->size_lock, flags);
2441		ntfs_debug("Initializing mft record 0x%llx.",
2442				(long long)mft_no);
2443		err = ntfs_mft_record_format(vol, mft_no);
2444		if (unlikely(err)) {
2445			ntfs_error(vol->sb, "Failed to format mft record.");
2446			goto undo_data_init;
2447		}
2448		write_lock_irqsave(&mft_ni->size_lock, flags);
2449		mft_ni->initialized_size = new_initialized_size;
2450	}
2451	write_unlock_irqrestore(&mft_ni->size_lock, flags);
2452	record_formatted = true;
2453	/* Update the mft data attribute record to reflect the new sizes. */
2454	m = map_mft_record(mft_ni);
2455	if (IS_ERR(m)) {
2456		ntfs_error(vol->sb, "Failed to map mft record.");
2457		err = PTR_ERR(m);
2458		goto undo_data_init;
2459	}
2460	ctx = ntfs_attr_get_search_ctx(mft_ni, m);
2461	if (unlikely(!ctx)) {
2462		ntfs_error(vol->sb, "Failed to get search context.");
2463		err = -ENOMEM;
2464		unmap_mft_record(mft_ni);
2465		goto undo_data_init;
2466	}
2467	err = ntfs_attr_lookup(mft_ni->type, mft_ni->name, mft_ni->name_len,
2468			CASE_SENSITIVE, 0, NULL, 0, ctx);
2469	if (unlikely(err)) {
2470		ntfs_error(vol->sb, "Failed to find first attribute extent of "
2471				"mft data attribute.");
2472		ntfs_attr_put_search_ctx(ctx);
2473		unmap_mft_record(mft_ni);
2474		goto undo_data_init;
2475	}
2476	a = ctx->attr;
2477	read_lock_irqsave(&mft_ni->size_lock, flags);
2478	a->data.non_resident.initialized_size =
2479			cpu_to_sle64(mft_ni->initialized_size);
2480	a->data.non_resident.data_size =
2481			cpu_to_sle64(i_size_read(vol->mft_ino));
2482	read_unlock_irqrestore(&mft_ni->size_lock, flags);
2483	/* Ensure the changes make it to disk. */
2484	flush_dcache_mft_record_page(ctx->ntfs_ino);
2485	mark_mft_record_dirty(ctx->ntfs_ino);
2486	ntfs_attr_put_search_ctx(ctx);
2487	unmap_mft_record(mft_ni);
2488	read_lock_irqsave(&mft_ni->size_lock, flags);
2489	ntfs_debug("Status of mft data after mft record initialization: "
2490			"allocated_size 0x%llx, data_size 0x%llx, "
2491			"initialized_size 0x%llx.",
2492			(long long)mft_ni->allocated_size,
2493			(long long)i_size_read(vol->mft_ino),
2494			(long long)mft_ni->initialized_size);
2495	BUG_ON(i_size_read(vol->mft_ino) > mft_ni->allocated_size);
2496	BUG_ON(mft_ni->initialized_size > i_size_read(vol->mft_ino));
2497	read_unlock_irqrestore(&mft_ni->size_lock, flags);
2498mft_rec_already_initialized:
2499	/*
2500	 * We can finally drop the mft bitmap lock as the mft data attribute
2501	 * has been fully updated.  The only disparity left is that the
2502	 * allocated mft record still needs to be marked as in use to match the
2503	 * set bit in the mft bitmap but this is actually not a problem since
2504	 * this mft record is not referenced from anywhere yet and the fact
2505	 * that it is allocated in the mft bitmap means that no-one will try to
2506	 * allocate it either.
2507	 */
2508	up_write(&vol->mftbmp_lock);
2509	/*
2510	 * We now have allocated and initialized the mft record.  Calculate the
2511	 * index of and the offset within the page cache page the record is in.
2512	 */
2513	index = bit << vol->mft_record_size_bits >> PAGE_SHIFT;
2514	ofs = (bit << vol->mft_record_size_bits) & ~PAGE_MASK;
2515	/* Read, map, and pin the page containing the mft record. */
2516	page = ntfs_map_page(vol->mft_ino->i_mapping, index);
2517	if (IS_ERR(page)) {
2518		ntfs_error(vol->sb, "Failed to map page containing allocated "
2519				"mft record 0x%llx.", (long long)bit);
2520		err = PTR_ERR(page);
2521		goto undo_mftbmp_alloc;
2522	}
2523	lock_page(page);
2524	BUG_ON(!PageUptodate(page));
2525	ClearPageUptodate(page);
2526	m = (MFT_RECORD*)((u8*)page_address(page) + ofs);
2527	/* If we just formatted the mft record no need to do it again. */
2528	if (!record_formatted) {
2529		/* Sanity check that the mft record is really not in use. */
2530		if (ntfs_is_file_record(m->magic) &&
2531				(m->flags & MFT_RECORD_IN_USE)) {
2532			ntfs_error(vol->sb, "Mft record 0x%llx was marked "
2533					"free in mft bitmap but is marked "
2534					"used itself.  Corrupt filesystem.  "
2535					"Unmount and run chkdsk.",
2536					(long long)bit);
2537			err = -EIO;
2538			SetPageUptodate(page);
2539			unlock_page(page);
2540			ntfs_unmap_page(page);
2541			NVolSetErrors(vol);
2542			goto undo_mftbmp_alloc;
2543		}
2544		/*
2545		 * We need to (re-)format the mft record, preserving the
2546		 * sequence number if it is not zero as well as the update
2547		 * sequence number if it is not zero or -1 (0xffff).  This
2548		 * means we do not need to care whether or not something went
2549		 * wrong with the previous mft record.
2550		 */
2551		seq_no = m->sequence_number;
2552		usn = *(le16*)((u8*)m + le16_to_cpu(m->usa_ofs));
2553		err = ntfs_mft_record_layout(vol, bit, m);
2554		if (unlikely(err)) {
2555			ntfs_error(vol->sb, "Failed to layout allocated mft "
2556					"record 0x%llx.", (long long)bit);
2557			SetPageUptodate(page);
2558			unlock_page(page);
2559			ntfs_unmap_page(page);
2560			goto undo_mftbmp_alloc;
2561		}
2562		if (seq_no)
2563			m->sequence_number = seq_no;
2564		if (usn && le16_to_cpu(usn) != 0xffff)
2565			*(le16*)((u8*)m + le16_to_cpu(m->usa_ofs)) = usn;
2566	}
2567	/* Set the mft record itself in use. */
2568	m->flags |= MFT_RECORD_IN_USE;
2569	if (S_ISDIR(mode))
2570		m->flags |= MFT_RECORD_IS_DIRECTORY;
2571	flush_dcache_page(page);
2572	SetPageUptodate(page);
2573	if (base_ni) {
2574		MFT_RECORD *m_tmp;
2575
2576		/*
2577		 * Setup the base mft record in the extent mft record.  This
2578		 * completes initialization of the allocated extent mft record
2579		 * and we can simply use it with map_extent_mft_record().
2580		 */
2581		m->base_mft_record = MK_LE_MREF(base_ni->mft_no,
2582				base_ni->seq_no);
2583		/*
2584		 * Allocate an extent inode structure for the new mft record,
2585		 * attach it to the base inode @base_ni and map, pin, and lock
2586		 * its, i.e. the allocated, mft record.
2587		 */
2588		m_tmp = map_extent_mft_record(base_ni, bit, &ni);
2589		if (IS_ERR(m_tmp)) {
2590			ntfs_error(vol->sb, "Failed to map allocated extent "
2591					"mft record 0x%llx.", (long long)bit);
2592			err = PTR_ERR(m_tmp);
2593			/* Set the mft record itself not in use. */
2594			m->flags &= cpu_to_le16(
2595					~le16_to_cpu(MFT_RECORD_IN_USE));
2596			flush_dcache_page(page);
2597			/* Make sure the mft record is written out to disk. */
2598			mark_ntfs_record_dirty(page, ofs);
2599			unlock_page(page);
2600			ntfs_unmap_page(page);
2601			goto undo_mftbmp_alloc;
2602		}
2603		BUG_ON(m != m_tmp);
2604		/*
2605		 * Make sure the allocated mft record is written out to disk.
2606		 * No need to set the inode dirty because the caller is going
2607		 * to do that anyway after finishing with the new extent mft
2608		 * record (e.g. at a minimum a new attribute will be added to
2609		 * the mft record.
2610		 */
2611		mark_ntfs_record_dirty(page, ofs);
2612		unlock_page(page);
2613		/*
2614		 * Need to unmap the page since map_extent_mft_record() mapped
2615		 * it as well so we have it mapped twice at the moment.
2616		 */
2617		ntfs_unmap_page(page);
2618	} else {
2619		/*
2620		 * Allocate a new VFS inode and set it up.  NOTE: @vi->i_nlink
2621		 * is set to 1 but the mft record->link_count is 0.  The caller
2622		 * needs to bear this in mind.
2623		 */
2624		vi = new_inode(vol->sb);
2625		if (unlikely(!vi)) {
2626			err = -ENOMEM;
2627			/* Set the mft record itself not in use. */
2628			m->flags &= cpu_to_le16(
2629					~le16_to_cpu(MFT_RECORD_IN_USE));
2630			flush_dcache_page(page);
2631			/* Make sure the mft record is written out to disk. */
2632			mark_ntfs_record_dirty(page, ofs);
2633			unlock_page(page);
2634			ntfs_unmap_page(page);
2635			goto undo_mftbmp_alloc;
2636		}
2637		vi->i_ino = bit;
2638
2639		/* The owner and group come from the ntfs volume. */
2640		vi->i_uid = vol->uid;
2641		vi->i_gid = vol->gid;
2642
2643		/* Initialize the ntfs specific part of @vi. */
2644		ntfs_init_big_inode(vi);
2645		ni = NTFS_I(vi);
2646		/*
2647		 * Set the appropriate mode, attribute type, and name.  For
2648		 * directories, also setup the index values to the defaults.
2649		 */
2650		if (S_ISDIR(mode)) {
2651			vi->i_mode = S_IFDIR | S_IRWXUGO;
2652			vi->i_mode &= ~vol->dmask;
2653
2654			NInoSetMstProtected(ni);
2655			ni->type = AT_INDEX_ALLOCATION;
2656			ni->name = I30;
2657			ni->name_len = 4;
2658
2659			ni->itype.index.block_size = 4096;
2660			ni->itype.index.block_size_bits = ntfs_ffs(4096) - 1;
2661			ni->itype.index.collation_rule = COLLATION_FILE_NAME;
2662			if (vol->cluster_size <= ni->itype.index.block_size) {
2663				ni->itype.index.vcn_size = vol->cluster_size;
2664				ni->itype.index.vcn_size_bits =
2665						vol->cluster_size_bits;
2666			} else {
2667				ni->itype.index.vcn_size = vol->sector_size;
2668				ni->itype.index.vcn_size_bits =
2669						vol->sector_size_bits;
2670			}
2671		} else {
2672			vi->i_mode = S_IFREG | S_IRWXUGO;
2673			vi->i_mode &= ~vol->fmask;
2674
2675			ni->type = AT_DATA;
2676			ni->name = NULL;
2677			ni->name_len = 0;
2678		}
2679		if (IS_RDONLY(vi))
2680			vi->i_mode &= ~S_IWUGO;
2681
2682		/* Set the inode times to the current time. */
2683		vi->i_atime = vi->i_mtime = vi->i_ctime =
2684			current_time(vi);
2685		/*
2686		 * Set the file size to 0, the ntfs inode sizes are set to 0 by
2687		 * the call to ntfs_init_big_inode() below.
2688		 */
2689		vi->i_size = 0;
2690		vi->i_blocks = 0;
2691
2692		/* Set the sequence number. */
2693		vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number);
2694		/*
2695		 * Manually map, pin, and lock the mft record as we already
2696		 * have its page mapped and it is very easy to do.
2697		 */
2698		atomic_inc(&ni->count);
2699		mutex_lock(&ni->mrec_lock);
2700		ni->page = page;
2701		ni->page_ofs = ofs;
2702		/*
2703		 * Make sure the allocated mft record is written out to disk.
2704		 * NOTE: We do not set the ntfs inode dirty because this would
2705		 * fail in ntfs_write_inode() because the inode does not have a
2706		 * standard information attribute yet.  Also, there is no need
2707		 * to set the inode dirty because the caller is going to do
2708		 * that anyway after finishing with the new mft record (e.g. at
2709		 * a minimum some new attributes will be added to the mft
2710		 * record.
2711		 */
2712		mark_ntfs_record_dirty(page, ofs);
2713		unlock_page(page);
2714
2715		/* Add the inode to the inode hash for the superblock. */
2716		insert_inode_hash(vi);
2717
2718		/* Update the default mft allocation position. */
2719		vol->mft_data_pos = bit + 1;
2720	}
2721	/*
2722	 * Return the opened, allocated inode of the allocated mft record as
2723	 * well as the mapped, pinned, and locked mft record.
2724	 */
2725	ntfs_debug("Returning opened, allocated %sinode 0x%llx.",
2726			base_ni ? "extent " : "", (long long)bit);
2727	*mrec = m;
2728	return ni;
2729undo_data_init:
2730	write_lock_irqsave(&mft_ni->size_lock, flags);
2731	mft_ni->initialized_size = old_data_initialized;
2732	i_size_write(vol->mft_ino, old_data_size);
2733	write_unlock_irqrestore(&mft_ni->size_lock, flags);
2734	goto undo_mftbmp_alloc_nolock;
2735undo_mftbmp_alloc:
2736	down_write(&vol->mftbmp_lock);
2737undo_mftbmp_alloc_nolock:
2738	if (ntfs_bitmap_clear_bit(vol->mftbmp_ino, bit)) {
2739		ntfs_error(vol->sb, "Failed to clear bit in mft bitmap.%s", es);
2740		NVolSetErrors(vol);
2741	}
2742	up_write(&vol->mftbmp_lock);
2743err_out:
2744	return ERR_PTR(err);
2745max_err_out:
2746	ntfs_warning(vol->sb, "Cannot allocate mft record because the maximum "
2747			"number of inodes (2^32) has already been reached.");
2748	up_write(&vol->mftbmp_lock);
2749	return ERR_PTR(-ENOSPC);
2750}
2751
2752/**
2753 * ntfs_extent_mft_record_free - free an extent mft record on an ntfs volume
2754 * @ni:		ntfs inode of the mapped extent mft record to free
2755 * @m:		mapped extent mft record of the ntfs inode @ni
2756 *
2757 * Free the mapped extent mft record @m of the extent ntfs inode @ni.
2758 *
2759 * Note that this function unmaps the mft record and closes and destroys @ni
2760 * internally and hence you cannot use either @ni nor @m any more after this
2761 * function returns success.
2762 *
2763 * On success return 0 and on error return -errno.  @ni and @m are still valid
2764 * in this case and have not been freed.
2765 *
2766 * For some errors an error message is displayed and the success code 0 is
2767 * returned and the volume is then left dirty on umount.  This makes sense in
2768 * case we could not rollback the changes that were already done since the
2769 * caller no longer wants to reference this mft record so it does not matter to
2770 * the caller if something is wrong with it as long as it is properly detached
2771 * from the base inode.
2772 */
2773int ntfs_extent_mft_record_free(ntfs_inode *ni, MFT_RECORD *m)
2774{
2775	unsigned long mft_no = ni->mft_no;
2776	ntfs_volume *vol = ni->vol;
2777	ntfs_inode *base_ni;
2778	ntfs_inode **extent_nis;
2779	int i, err;
2780	le16 old_seq_no;
2781	u16 seq_no;
2782	
2783	BUG_ON(NInoAttr(ni));
2784	BUG_ON(ni->nr_extents != -1);
2785
2786	mutex_lock(&ni->extent_lock);
2787	base_ni = ni->ext.base_ntfs_ino;
2788	mutex_unlock(&ni->extent_lock);
2789
2790	BUG_ON(base_ni->nr_extents <= 0);
2791
2792	ntfs_debug("Entering for extent inode 0x%lx, base inode 0x%lx.\n",
2793			mft_no, base_ni->mft_no);
2794
2795	mutex_lock(&base_ni->extent_lock);
2796
2797	/* Make sure we are holding the only reference to the extent inode. */
2798	if (atomic_read(&ni->count) > 2) {
2799		ntfs_error(vol->sb, "Tried to free busy extent inode 0x%lx, "
2800				"not freeing.", base_ni->mft_no);
2801		mutex_unlock(&base_ni->extent_lock);
2802		return -EBUSY;
2803	}
2804
2805	/* Dissociate the ntfs inode from the base inode. */
2806	extent_nis = base_ni->ext.extent_ntfs_inos;
2807	err = -ENOENT;
2808	for (i = 0; i < base_ni->nr_extents; i++) {
2809		if (ni != extent_nis[i])
2810			continue;
2811		extent_nis += i;
2812		base_ni->nr_extents--;
2813		memmove(extent_nis, extent_nis + 1, (base_ni->nr_extents - i) *
2814				sizeof(ntfs_inode*));
2815		err = 0;
2816		break;
2817	}
2818
2819	mutex_unlock(&base_ni->extent_lock);
2820
2821	if (unlikely(err)) {
2822		ntfs_error(vol->sb, "Extent inode 0x%lx is not attached to "
2823				"its base inode 0x%lx.", mft_no,
2824				base_ni->mft_no);
2825		BUG();
2826	}
2827
2828	/*
2829	 * The extent inode is no longer attached to the base inode so no one
2830	 * can get a reference to it any more.
2831	 */
2832
2833	/* Mark the mft record as not in use. */
2834	m->flags &= ~MFT_RECORD_IN_USE;
2835
2836	/* Increment the sequence number, skipping zero, if it is not zero. */
2837	old_seq_no = m->sequence_number;
2838	seq_no = le16_to_cpu(old_seq_no);
2839	if (seq_no == 0xffff)
2840		seq_no = 1;
2841	else if (seq_no)
2842		seq_no++;
2843	m->sequence_number = cpu_to_le16(seq_no);
2844
2845	/*
2846	 * Set the ntfs inode dirty and write it out.  We do not need to worry
2847	 * about the base inode here since whatever caused the extent mft
2848	 * record to be freed is guaranteed to do it already.
2849	 */
2850	NInoSetDirty(ni);
2851	err = write_mft_record(ni, m, 0);
2852	if (unlikely(err)) {
2853		ntfs_error(vol->sb, "Failed to write mft record 0x%lx, not "
2854				"freeing.", mft_no);
2855		goto rollback;
2856	}
2857rollback_error:
2858	/* Unmap and throw away the now freed extent inode. */
2859	unmap_extent_mft_record(ni);
2860	ntfs_clear_extent_inode(ni);
2861
2862	/* Clear the bit in the $MFT/$BITMAP corresponding to this record. */
2863	down_write(&vol->mftbmp_lock);
2864	err = ntfs_bitmap_clear_bit(vol->mftbmp_ino, mft_no);
2865	up_write(&vol->mftbmp_lock);
2866	if (unlikely(err)) {
2867		/*
2868		 * The extent inode is gone but we failed to deallocate it in
2869		 * the mft bitmap.  Just emit a warning and leave the volume
2870		 * dirty on umount.
2871		 */
2872		ntfs_error(vol->sb, "Failed to clear bit in mft bitmap.%s", es);
2873		NVolSetErrors(vol);
2874	}
2875	return 0;
2876rollback:
2877	/* Rollback what we did... */
2878	mutex_lock(&base_ni->extent_lock);
2879	extent_nis = base_ni->ext.extent_ntfs_inos;
2880	if (!(base_ni->nr_extents & 3)) {
2881		int new_size = (base_ni->nr_extents + 4) * sizeof(ntfs_inode*);
2882
2883		extent_nis = kmalloc(new_size, GFP_NOFS);
2884		if (unlikely(!extent_nis)) {
2885			ntfs_error(vol->sb, "Failed to allocate internal "
2886					"buffer during rollback.%s", es);
2887			mutex_unlock(&base_ni->extent_lock);
2888			NVolSetErrors(vol);
2889			goto rollback_error;
2890		}
2891		if (base_ni->nr_extents) {
2892			BUG_ON(!base_ni->ext.extent_ntfs_inos);
2893			memcpy(extent_nis, base_ni->ext.extent_ntfs_inos,
2894					new_size - 4 * sizeof(ntfs_inode*));
2895			kfree(base_ni->ext.extent_ntfs_inos);
2896		}
2897		base_ni->ext.extent_ntfs_inos = extent_nis;
2898	}
2899	m->flags |= MFT_RECORD_IN_USE;
2900	m->sequence_number = old_seq_no;
2901	extent_nis[base_ni->nr_extents++] = ni;
2902	mutex_unlock(&base_ni->extent_lock);
2903	mark_mft_record_dirty(ni);
2904	return err;
2905}
2906#endif /* NTFS_RW */