Linux Audio

Check our new training course

Linux debugging, profiling, tracing and performance analysis training

Apr 14-17, 2025
Register
Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * fs/f2fs/file.c
   4 *
   5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
   6 *             http://www.samsung.com/
   7 */
   8#include <linux/fs.h>
   9#include <linux/f2fs_fs.h>
  10#include <linux/stat.h>
 
  11#include <linux/writeback.h>
  12#include <linux/blkdev.h>
  13#include <linux/falloc.h>
  14#include <linux/types.h>
  15#include <linux/compat.h>
  16#include <linux/uaccess.h>
  17#include <linux/mount.h>
  18#include <linux/pagevec.h>
  19#include <linux/uio.h>
  20#include <linux/uuid.h>
  21#include <linux/file.h>
  22#include <linux/nls.h>
  23#include <linux/sched/signal.h>
  24#include <linux/fileattr.h>
  25#include <linux/fadvise.h>
  26#include <linux/iomap.h>
  27
  28#include "f2fs.h"
  29#include "node.h"
  30#include "segment.h"
  31#include "xattr.h"
  32#include "acl.h"
  33#include "gc.h"
  34#include "iostat.h"
  35#include <trace/events/f2fs.h>
  36#include <uapi/linux/f2fs.h>
  37
  38static vm_fault_t f2fs_filemap_fault(struct vm_fault *vmf)
  39{
  40	struct inode *inode = file_inode(vmf->vma->vm_file);
  41	vm_flags_t flags = vmf->vma->vm_flags;
  42	vm_fault_t ret;
  43
 
  44	ret = filemap_fault(vmf);
  45	if (ret & VM_FAULT_LOCKED)
  46		f2fs_update_iostat(F2FS_I_SB(inode), inode,
  47					APP_MAPPED_READ_IO, F2FS_BLKSIZE);
  48
  49	trace_f2fs_filemap_fault(inode, vmf->pgoff, flags, ret);
  50
  51	return ret;
  52}
  53
  54static vm_fault_t f2fs_vm_page_mkwrite(struct vm_fault *vmf)
  55{
  56	struct folio *folio = page_folio(vmf->page);
  57	struct inode *inode = file_inode(vmf->vma->vm_file);
  58	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  59	struct dnode_of_data dn;
  60	bool need_alloc = !f2fs_is_pinned_file(inode);
  61	int err = 0;
  62	vm_fault_t ret;
  63
  64	if (unlikely(IS_IMMUTABLE(inode)))
  65		return VM_FAULT_SIGBUS;
  66
  67	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
  68		err = -EIO;
  69		goto out;
  70	}
  71
  72	if (unlikely(f2fs_cp_error(sbi))) {
  73		err = -EIO;
  74		goto out;
  75	}
  76
  77	if (!f2fs_is_checkpoint_ready(sbi)) {
  78		err = -ENOSPC;
  79		goto out;
  80	}
  81
  82	err = f2fs_convert_inline_inode(inode);
  83	if (err)
  84		goto out;
  85
  86#ifdef CONFIG_F2FS_FS_COMPRESSION
  87	if (f2fs_compressed_file(inode)) {
  88		int ret = f2fs_is_compressed_cluster(inode, folio->index);
  89
  90		if (ret < 0) {
  91			err = ret;
  92			goto out;
  93		} else if (ret) {
  94			need_alloc = false;
  95		}
  96	}
  97#endif
  98	/* should do out of any locked page */
  99	if (need_alloc)
 100		f2fs_balance_fs(sbi, true);
 101
 102	sb_start_pagefault(inode->i_sb);
 103
 104	f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
 105
 106	file_update_time(vmf->vma->vm_file);
 107	filemap_invalidate_lock_shared(inode->i_mapping);
 108	folio_lock(folio);
 109	if (unlikely(folio->mapping != inode->i_mapping ||
 110			folio_pos(folio) > i_size_read(inode) ||
 111			!folio_test_uptodate(folio))) {
 112		folio_unlock(folio);
 113		err = -EFAULT;
 114		goto out_sem;
 115	}
 116
 
 
 117	set_new_dnode(&dn, inode, NULL, NULL, 0);
 118	if (need_alloc) {
 119		/* block allocation */
 120		err = f2fs_get_block_locked(&dn, folio->index);
 121	} else {
 122		err = f2fs_get_dnode_of_data(&dn, folio->index, LOOKUP_NODE);
 123		f2fs_put_dnode(&dn);
 124		if (f2fs_is_pinned_file(inode) &&
 125		    !__is_valid_data_blkaddr(dn.data_blkaddr))
 126			err = -EIO;
 127	}
 128
 129	if (err) {
 130		folio_unlock(folio);
 131		goto out_sem;
 132	}
 133
 134	f2fs_wait_on_page_writeback(folio_page(folio, 0), DATA, false, true);
 
 135
 136	/* wait for GCed page writeback via META_MAPPING */
 137	f2fs_wait_on_block_writeback(inode, dn.data_blkaddr);
 138
 139	/*
 140	 * check to see if the page is mapped already (no holes)
 141	 */
 142	if (folio_test_mappedtodisk(folio))
 143		goto out_sem;
 144
 145	/* page is wholly or partially inside EOF */
 146	if (((loff_t)(folio->index + 1) << PAGE_SHIFT) >
 147						i_size_read(inode)) {
 148		loff_t offset;
 149
 150		offset = i_size_read(inode) & ~PAGE_MASK;
 151		folio_zero_segment(folio, offset, folio_size(folio));
 152	}
 153	folio_mark_dirty(folio);
 
 
 154
 155	f2fs_update_iostat(sbi, inode, APP_MAPPED_IO, F2FS_BLKSIZE);
 156	f2fs_update_time(sbi, REQ_TIME);
 157
 
 158out_sem:
 159	filemap_invalidate_unlock_shared(inode->i_mapping);
 160
 161	sb_end_pagefault(inode->i_sb);
 162out:
 163	ret = vmf_fs_error(err);
 164
 165	trace_f2fs_vm_page_mkwrite(inode, folio->index, vmf->vma->vm_flags, ret);
 166	return ret;
 
 167}
 168
 169static const struct vm_operations_struct f2fs_file_vm_ops = {
 170	.fault		= f2fs_filemap_fault,
 171	.map_pages	= filemap_map_pages,
 172	.page_mkwrite	= f2fs_vm_page_mkwrite,
 173};
 174
 175static int get_parent_ino(struct inode *inode, nid_t *pino)
 176{
 177	struct dentry *dentry;
 178
 179	/*
 180	 * Make sure to get the non-deleted alias.  The alias associated with
 181	 * the open file descriptor being fsync()'ed may be deleted already.
 182	 */
 183	dentry = d_find_alias(inode);
 184	if (!dentry)
 185		return 0;
 186
 187	*pino = d_parent_ino(dentry);
 188	dput(dentry);
 189	return 1;
 190}
 191
 192static inline enum cp_reason_type need_do_checkpoint(struct inode *inode)
 193{
 194	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 195	enum cp_reason_type cp_reason = CP_NO_NEEDED;
 196
 197	if (!S_ISREG(inode->i_mode))
 198		cp_reason = CP_NON_REGULAR;
 199	else if (f2fs_compressed_file(inode))
 200		cp_reason = CP_COMPRESSED;
 201	else if (inode->i_nlink != 1)
 202		cp_reason = CP_HARDLINK;
 203	else if (is_sbi_flag_set(sbi, SBI_NEED_CP))
 204		cp_reason = CP_SB_NEED_CP;
 205	else if (file_wrong_pino(inode))
 206		cp_reason = CP_WRONG_PINO;
 207	else if (!f2fs_space_for_roll_forward(sbi))
 208		cp_reason = CP_NO_SPC_ROLL;
 209	else if (!f2fs_is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
 210		cp_reason = CP_NODE_NEED_CP;
 211	else if (test_opt(sbi, FASTBOOT))
 212		cp_reason = CP_FASTBOOT_MODE;
 213	else if (F2FS_OPTION(sbi).active_logs == 2)
 214		cp_reason = CP_SPEC_LOG_NUM;
 215	else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT &&
 216		f2fs_need_dentry_mark(sbi, inode->i_ino) &&
 217		f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino,
 218							TRANS_DIR_INO))
 219		cp_reason = CP_RECOVER_DIR;
 220	else if (f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino,
 221							XATTR_DIR_INO))
 222		cp_reason = CP_XATTR_DIR;
 223
 224	return cp_reason;
 225}
 226
 227static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
 228{
 229	struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
 230	bool ret = false;
 231	/* But we need to avoid that there are some inode updates */
 232	if ((i && PageDirty(i)) || f2fs_need_inode_block_update(sbi, ino))
 233		ret = true;
 234	f2fs_put_page(i, 0);
 235	return ret;
 236}
 237
 238static void try_to_fix_pino(struct inode *inode)
 239{
 240	struct f2fs_inode_info *fi = F2FS_I(inode);
 241	nid_t pino;
 242
 243	f2fs_down_write(&fi->i_sem);
 244	if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
 245			get_parent_ino(inode, &pino)) {
 246		f2fs_i_pino_write(inode, pino);
 247		file_got_pino(inode);
 248	}
 249	f2fs_up_write(&fi->i_sem);
 250}
 251
 252static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
 253						int datasync, bool atomic)
 254{
 255	struct inode *inode = file->f_mapping->host;
 256	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 257	nid_t ino = inode->i_ino;
 258	int ret = 0;
 259	enum cp_reason_type cp_reason = 0;
 260	struct writeback_control wbc = {
 261		.sync_mode = WB_SYNC_ALL,
 262		.nr_to_write = LONG_MAX,
 263		.for_reclaim = 0,
 264	};
 265	unsigned int seq_id = 0;
 266
 267	if (unlikely(f2fs_readonly(inode->i_sb)))
 
 268		return 0;
 269
 270	trace_f2fs_sync_file_enter(inode);
 271
 272	if (S_ISDIR(inode->i_mode))
 273		goto go_write;
 274
 275	/* if fdatasync is triggered, let's do in-place-update */
 276	if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
 277		set_inode_flag(inode, FI_NEED_IPU);
 278	ret = file_write_and_wait_range(file, start, end);
 279	clear_inode_flag(inode, FI_NEED_IPU);
 280
 281	if (ret || is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
 282		trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
 283		return ret;
 284	}
 285
 286	/* if the inode is dirty, let's recover all the time */
 287	if (!f2fs_skip_inode_update(inode, datasync)) {
 288		f2fs_write_inode(inode, NULL);
 289		goto go_write;
 290	}
 291
 292	/*
 293	 * if there is no written data, don't waste time to write recovery info.
 294	 */
 295	if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
 296			!f2fs_exist_written_data(sbi, ino, APPEND_INO)) {
 297
 298		/* it may call write_inode just prior to fsync */
 299		if (need_inode_page_update(sbi, ino))
 300			goto go_write;
 301
 302		if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
 303				f2fs_exist_written_data(sbi, ino, UPDATE_INO))
 304			goto flush_out;
 305		goto out;
 306	} else {
 307		/*
 308		 * for OPU case, during fsync(), node can be persisted before
 309		 * data when lower device doesn't support write barrier, result
 310		 * in data corruption after SPO.
 311		 * So for strict fsync mode, force to use atomic write semantics
 312		 * to keep write order in between data/node and last node to
 313		 * avoid potential data corruption.
 314		 */
 315		if (F2FS_OPTION(sbi).fsync_mode ==
 316				FSYNC_MODE_STRICT && !atomic)
 317			atomic = true;
 318	}
 319go_write:
 320	/*
 321	 * Both of fdatasync() and fsync() are able to be recovered from
 322	 * sudden-power-off.
 323	 */
 324	f2fs_down_read(&F2FS_I(inode)->i_sem);
 325	cp_reason = need_do_checkpoint(inode);
 326	f2fs_up_read(&F2FS_I(inode)->i_sem);
 327
 328	if (cp_reason) {
 329		/* all the dirty node pages should be flushed for POR */
 330		ret = f2fs_sync_fs(inode->i_sb, 1);
 331
 332		/*
 333		 * We've secured consistency through sync_fs. Following pino
 334		 * will be used only for fsynced inodes after checkpoint.
 335		 */
 336		try_to_fix_pino(inode);
 337		clear_inode_flag(inode, FI_APPEND_WRITE);
 338		clear_inode_flag(inode, FI_UPDATE_WRITE);
 339		goto out;
 340	}
 341sync_nodes:
 342	atomic_inc(&sbi->wb_sync_req[NODE]);
 343	ret = f2fs_fsync_node_pages(sbi, inode, &wbc, atomic, &seq_id);
 344	atomic_dec(&sbi->wb_sync_req[NODE]);
 345	if (ret)
 346		goto out;
 347
 348	/* if cp_error was enabled, we should avoid infinite loop */
 349	if (unlikely(f2fs_cp_error(sbi))) {
 350		ret = -EIO;
 351		goto out;
 352	}
 353
 354	if (f2fs_need_inode_block_update(sbi, ino)) {
 355		f2fs_mark_inode_dirty_sync(inode, true);
 356		f2fs_write_inode(inode, NULL);
 357		goto sync_nodes;
 358	}
 359
 360	/*
 361	 * If it's atomic_write, it's just fine to keep write ordering. So
 362	 * here we don't need to wait for node write completion, since we use
 363	 * node chain which serializes node blocks. If one of node writes are
 364	 * reordered, we can see simply broken chain, resulting in stopping
 365	 * roll-forward recovery. It means we'll recover all or none node blocks
 366	 * given fsync mark.
 367	 */
 368	if (!atomic) {
 369		ret = f2fs_wait_on_node_pages_writeback(sbi, seq_id);
 370		if (ret)
 371			goto out;
 372	}
 373
 374	/* once recovery info is written, don't need to tack this */
 375	f2fs_remove_ino_entry(sbi, ino, APPEND_INO);
 376	clear_inode_flag(inode, FI_APPEND_WRITE);
 377flush_out:
 378	if (!atomic && F2FS_OPTION(sbi).fsync_mode != FSYNC_MODE_NOBARRIER)
 379		ret = f2fs_issue_flush(sbi, inode->i_ino);
 380	if (!ret) {
 381		f2fs_remove_ino_entry(sbi, ino, UPDATE_INO);
 382		clear_inode_flag(inode, FI_UPDATE_WRITE);
 383		f2fs_remove_ino_entry(sbi, ino, FLUSH_INO);
 384	}
 385	f2fs_update_time(sbi, REQ_TIME);
 386out:
 387	trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
 
 388	return ret;
 389}
 390
 391int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
 392{
 393	if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
 394		return -EIO;
 395	return f2fs_do_sync_file(file, start, end, datasync, false);
 396}
 397
 398static bool __found_offset(struct address_space *mapping,
 399		struct dnode_of_data *dn, pgoff_t index, int whence)
 400{
 401	block_t blkaddr = f2fs_data_blkaddr(dn);
 402	struct inode *inode = mapping->host;
 403	bool compressed_cluster = false;
 404
 405	if (f2fs_compressed_file(inode)) {
 406		block_t first_blkaddr = data_blkaddr(dn->inode, dn->node_page,
 407		    ALIGN_DOWN(dn->ofs_in_node, F2FS_I(inode)->i_cluster_size));
 408
 409		compressed_cluster = first_blkaddr == COMPRESS_ADDR;
 410	}
 
 
 
 
 
 
 
 
 
 
 411
 
 
 
 412	switch (whence) {
 413	case SEEK_DATA:
 414		if (__is_valid_data_blkaddr(blkaddr))
 415			return true;
 416		if (blkaddr == NEW_ADDR &&
 417		    xa_get_mark(&mapping->i_pages, index, PAGECACHE_TAG_DIRTY))
 418			return true;
 419		if (compressed_cluster)
 420			return true;
 421		break;
 422	case SEEK_HOLE:
 423		if (compressed_cluster)
 424			return false;
 425		if (blkaddr == NULL_ADDR)
 426			return true;
 427		break;
 428	}
 429	return false;
 430}
 431
 432static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
 433{
 434	struct inode *inode = file->f_mapping->host;
 435	loff_t maxbytes = F2FS_BLK_TO_BYTES(max_file_blocks(inode));
 436	struct dnode_of_data dn;
 437	pgoff_t pgofs, end_offset;
 438	loff_t data_ofs = offset;
 439	loff_t isize;
 440	int err = 0;
 441
 442	inode_lock_shared(inode);
 443
 444	isize = i_size_read(inode);
 445	if (offset >= isize)
 446		goto fail;
 447
 448	/* handle inline data case */
 449	if (f2fs_has_inline_data(inode)) {
 450		if (whence == SEEK_HOLE) {
 451			data_ofs = isize;
 452			goto found;
 453		} else if (whence == SEEK_DATA) {
 454			data_ofs = offset;
 455			goto found;
 456		}
 457	}
 458
 459	pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
 460
 
 
 461	for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
 462		set_new_dnode(&dn, inode, NULL, NULL, 0);
 463		err = f2fs_get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
 464		if (err && err != -ENOENT) {
 465			goto fail;
 466		} else if (err == -ENOENT) {
 467			/* direct node does not exists */
 468			if (whence == SEEK_DATA) {
 469				pgofs = f2fs_get_next_page_offset(&dn, pgofs);
 470				continue;
 471			} else {
 472				goto found;
 473			}
 474		}
 475
 476		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
 477
 478		/* find data/hole in dnode block */
 479		for (; dn.ofs_in_node < end_offset;
 480				dn.ofs_in_node++, pgofs++,
 481				data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
 482			block_t blkaddr;
 483
 484			blkaddr = f2fs_data_blkaddr(&dn);
 
 485
 486			if (__is_valid_data_blkaddr(blkaddr) &&
 487				!f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
 488					blkaddr, DATA_GENERIC_ENHANCE)) {
 489				f2fs_put_dnode(&dn);
 490				goto fail;
 491			}
 492
 493			if (__found_offset(file->f_mapping, &dn,
 494							pgofs, whence)) {
 495				f2fs_put_dnode(&dn);
 496				goto found;
 497			}
 498		}
 499		f2fs_put_dnode(&dn);
 500	}
 501
 502	if (whence == SEEK_DATA)
 503		goto fail;
 504found:
 505	if (whence == SEEK_HOLE && data_ofs > isize)
 506		data_ofs = isize;
 507	inode_unlock_shared(inode);
 508	return vfs_setpos(file, data_ofs, maxbytes);
 509fail:
 510	inode_unlock_shared(inode);
 511	return -ENXIO;
 512}
 513
 514static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
 515{
 516	struct inode *inode = file->f_mapping->host;
 517	loff_t maxbytes = F2FS_BLK_TO_BYTES(max_file_blocks(inode));
 518
 519	switch (whence) {
 520	case SEEK_SET:
 521	case SEEK_CUR:
 522	case SEEK_END:
 523		return generic_file_llseek_size(file, offset, whence,
 524						maxbytes, i_size_read(inode));
 525	case SEEK_DATA:
 526	case SEEK_HOLE:
 527		if (offset < 0)
 528			return -ENXIO;
 529		return f2fs_seek_block(file, offset, whence);
 530	}
 531
 532	return -EINVAL;
 533}
 534
 535static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
 536{
 537	struct inode *inode = file_inode(file);
 
 538
 539	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
 540		return -EIO;
 541
 542	if (!f2fs_is_compress_backend_ready(inode))
 543		return -EOPNOTSUPP;
 
 
 544
 545	file_accessed(file);
 546	vma->vm_ops = &f2fs_file_vm_ops;
 547
 548	f2fs_down_read(&F2FS_I(inode)->i_sem);
 549	set_inode_flag(inode, FI_MMAP_FILE);
 550	f2fs_up_read(&F2FS_I(inode)->i_sem);
 551
 552	return 0;
 553}
 554
 555static int finish_preallocate_blocks(struct inode *inode)
 556{
 557	int ret;
 558
 559	inode_lock(inode);
 560	if (is_inode_flag_set(inode, FI_OPENED_FILE)) {
 561		inode_unlock(inode);
 562		return 0;
 563	}
 564
 565	if (!file_should_truncate(inode)) {
 566		set_inode_flag(inode, FI_OPENED_FILE);
 567		inode_unlock(inode);
 568		return 0;
 569	}
 570
 571	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
 572	filemap_invalidate_lock(inode->i_mapping);
 573
 574	truncate_setsize(inode, i_size_read(inode));
 575	ret = f2fs_truncate(inode);
 576
 577	filemap_invalidate_unlock(inode->i_mapping);
 578	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
 579
 580	if (!ret)
 581		set_inode_flag(inode, FI_OPENED_FILE);
 582
 583	inode_unlock(inode);
 584	if (ret)
 585		return ret;
 586
 587	file_dont_truncate(inode);
 588	return 0;
 589}
 590
 591static int f2fs_file_open(struct inode *inode, struct file *filp)
 592{
 593	int err = fscrypt_file_open(inode, filp);
 594
 595	if (err)
 596		return err;
 597
 598	if (!f2fs_is_compress_backend_ready(inode))
 599		return -EOPNOTSUPP;
 600
 601	err = fsverity_file_open(inode, filp);
 602	if (err)
 603		return err;
 604
 605	filp->f_mode |= FMODE_NOWAIT;
 606	filp->f_mode |= FMODE_CAN_ODIRECT;
 607
 608	err = dquot_file_open(inode, filp);
 609	if (err)
 610		return err;
 611
 612	return finish_preallocate_blocks(inode);
 613}
 614
 615void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count)
 616{
 617	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
 
 618	int nr_free = 0, ofs = dn->ofs_in_node, len = count;
 619	__le32 *addr;
 620	bool compressed_cluster = false;
 621	int cluster_index = 0, valid_blocks = 0;
 622	int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
 623	bool released = !atomic_read(&F2FS_I(dn->inode)->i_compr_blocks);
 624
 625	addr = get_dnode_addr(dn->inode, dn->node_page) + ofs;
 
 626
 627	/* Assumption: truncation starts with cluster */
 628	for (; count > 0; count--, addr++, dn->ofs_in_node++, cluster_index++) {
 629		block_t blkaddr = le32_to_cpu(*addr);
 630
 631		if (f2fs_compressed_file(dn->inode) &&
 632					!(cluster_index & (cluster_size - 1))) {
 633			if (compressed_cluster)
 634				f2fs_i_compr_blocks_update(dn->inode,
 635							valid_blocks, false);
 636			compressed_cluster = (blkaddr == COMPRESS_ADDR);
 637			valid_blocks = 0;
 638		}
 639
 640		if (blkaddr == NULL_ADDR)
 641			continue;
 642
 643		f2fs_set_data_blkaddr(dn, NULL_ADDR);
 
 644
 645		if (__is_valid_data_blkaddr(blkaddr)) {
 646			if (time_to_inject(sbi, FAULT_BLKADDR_CONSISTENCE))
 647				continue;
 648			if (!f2fs_is_valid_blkaddr_raw(sbi, blkaddr,
 649						DATA_GENERIC_ENHANCE))
 650				continue;
 651			if (compressed_cluster)
 652				valid_blocks++;
 653		}
 654
 655		f2fs_invalidate_blocks(sbi, blkaddr);
 656
 657		if (!released || blkaddr != COMPRESS_ADDR)
 658			nr_free++;
 659	}
 660
 661	if (compressed_cluster)
 662		f2fs_i_compr_blocks_update(dn->inode, valid_blocks, false);
 663
 664	if (nr_free) {
 665		pgoff_t fofs;
 666		/*
 667		 * once we invalidate valid blkaddr in range [ofs, ofs + count],
 668		 * we will invalidate all blkaddr in the whole range.
 669		 */
 670		fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page),
 671							dn->inode) + ofs;
 672		f2fs_update_read_extent_cache_range(dn, fofs, 0, len);
 673		f2fs_update_age_extent_cache_range(dn, fofs, len);
 674		dec_valid_block_count(sbi, dn->inode, nr_free);
 675	}
 676	dn->ofs_in_node = ofs;
 677
 678	f2fs_update_time(sbi, REQ_TIME);
 679	trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
 680					 dn->ofs_in_node, nr_free);
 681}
 682
 
 
 
 
 
 683static int truncate_partial_data_page(struct inode *inode, u64 from,
 684								bool cache_only)
 685{
 686	loff_t offset = from & (PAGE_SIZE - 1);
 687	pgoff_t index = from >> PAGE_SHIFT;
 688	struct address_space *mapping = inode->i_mapping;
 689	struct page *page;
 690
 691	if (!offset && !cache_only)
 692		return 0;
 693
 694	if (cache_only) {
 695		page = find_lock_page(mapping, index);
 696		if (page && PageUptodate(page))
 697			goto truncate_out;
 698		f2fs_put_page(page, 1);
 699		return 0;
 700	}
 701
 702	page = f2fs_get_lock_data_page(inode, index, true);
 703	if (IS_ERR(page))
 704		return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page);
 705truncate_out:
 706	f2fs_wait_on_page_writeback(page, DATA, true, true);
 707	zero_user(page, offset, PAGE_SIZE - offset);
 708
 709	/* An encrypted inode should have a key and truncate the last page. */
 710	f2fs_bug_on(F2FS_I_SB(inode), cache_only && IS_ENCRYPTED(inode));
 711	if (!cache_only)
 712		set_page_dirty(page);
 713	f2fs_put_page(page, 1);
 714	return 0;
 715}
 716
 717int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock)
 718{
 719	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 720	struct dnode_of_data dn;
 721	pgoff_t free_from;
 722	int count = 0, err = 0;
 723	struct page *ipage;
 724	bool truncate_page = false;
 725
 726	trace_f2fs_truncate_blocks_enter(inode, from);
 727
 728	if (IS_DEVICE_ALIASING(inode) && from) {
 729		err = -EINVAL;
 730		goto out_err;
 731	}
 732
 733	free_from = (pgoff_t)F2FS_BLK_ALIGN(from);
 734
 735	if (free_from >= max_file_blocks(inode))
 736		goto free_partial;
 737
 738	if (lock)
 739		f2fs_lock_op(sbi);
 740
 741	ipage = f2fs_get_node_page(sbi, inode->i_ino);
 742	if (IS_ERR(ipage)) {
 743		err = PTR_ERR(ipage);
 744		goto out;
 745	}
 746
 747	if (IS_DEVICE_ALIASING(inode)) {
 748		struct extent_tree *et = F2FS_I(inode)->extent_tree[EX_READ];
 749		struct extent_info ei = et->largest;
 750		unsigned int i;
 751
 752		for (i = 0; i < ei.len; i++)
 753			f2fs_invalidate_blocks(sbi, ei.blk + i);
 754
 755		dec_valid_block_count(sbi, inode, ei.len);
 756		f2fs_update_time(sbi, REQ_TIME);
 757
 758		f2fs_put_page(ipage, 1);
 759		goto out;
 760	}
 761
 762	if (f2fs_has_inline_data(inode)) {
 763		f2fs_truncate_inline_inode(inode, ipage, from);
 764		f2fs_put_page(ipage, 1);
 765		truncate_page = true;
 766		goto out;
 767	}
 768
 769	set_new_dnode(&dn, inode, ipage, NULL, 0);
 770	err = f2fs_get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
 771	if (err) {
 772		if (err == -ENOENT)
 773			goto free_next;
 774		goto out;
 775	}
 776
 777	count = ADDRS_PER_PAGE(dn.node_page, inode);
 778
 779	count -= dn.ofs_in_node;
 780	f2fs_bug_on(sbi, count < 0);
 781
 782	if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
 783		f2fs_truncate_data_blocks_range(&dn, count);
 784		free_from += count;
 785	}
 786
 787	f2fs_put_dnode(&dn);
 788free_next:
 789	err = f2fs_truncate_inode_blocks(inode, free_from);
 790out:
 791	if (lock)
 792		f2fs_unlock_op(sbi);
 793free_partial:
 794	/* lastly zero out the first data page */
 795	if (!err)
 796		err = truncate_partial_data_page(inode, from, truncate_page);
 797out_err:
 798	trace_f2fs_truncate_blocks_exit(inode, err);
 799	return err;
 800}
 801
 802int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock)
 803{
 804	u64 free_from = from;
 805	int err;
 806
 807#ifdef CONFIG_F2FS_FS_COMPRESSION
 808	/*
 809	 * for compressed file, only support cluster size
 810	 * aligned truncation.
 811	 */
 812	if (f2fs_compressed_file(inode))
 813		free_from = round_up(from,
 814				F2FS_I(inode)->i_cluster_size << PAGE_SHIFT);
 815#endif
 816
 817	err = f2fs_do_truncate_blocks(inode, free_from, lock);
 818	if (err)
 819		return err;
 820
 821#ifdef CONFIG_F2FS_FS_COMPRESSION
 822	/*
 823	 * For compressed file, after release compress blocks, don't allow write
 824	 * direct, but we should allow write direct after truncate to zero.
 825	 */
 826	if (f2fs_compressed_file(inode) && !free_from
 827			&& is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
 828		clear_inode_flag(inode, FI_COMPRESS_RELEASED);
 829
 830	if (from != free_from) {
 831		err = f2fs_truncate_partial_cluster(inode, from, lock);
 832		if (err)
 833			return err;
 834	}
 835#endif
 836
 837	return 0;
 838}
 839
 840int f2fs_truncate(struct inode *inode)
 841{
 842	int err;
 843
 844	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
 845		return -EIO;
 846
 847	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
 848				S_ISLNK(inode->i_mode)))
 849		return 0;
 850
 851	trace_f2fs_truncate(inode);
 852
 853	if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE))
 
 854		return -EIO;
 855
 856	err = f2fs_dquot_initialize(inode);
 857	if (err)
 858		return err;
 859
 860	/* we should check inline_data size */
 861	if (!f2fs_may_inline_data(inode)) {
 862		err = f2fs_convert_inline_inode(inode);
 863		if (err)
 864			return err;
 865	}
 866
 867	err = f2fs_truncate_blocks(inode, i_size_read(inode), true);
 868	if (err)
 869		return err;
 870
 871	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
 872	f2fs_mark_inode_dirty_sync(inode, false);
 873	return 0;
 874}
 875
 876static bool f2fs_force_buffered_io(struct inode *inode, int rw)
 877{
 878	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 879
 880	if (!fscrypt_dio_supported(inode))
 881		return true;
 882	if (fsverity_active(inode))
 883		return true;
 884	if (f2fs_compressed_file(inode))
 885		return true;
 886	/*
 887	 * only force direct read to use buffered IO, for direct write,
 888	 * it expects inline data conversion before committing IO.
 889	 */
 890	if (f2fs_has_inline_data(inode) && rw == READ)
 891		return true;
 892
 893	/* disallow direct IO if any of devices has unaligned blksize */
 894	if (f2fs_is_multi_device(sbi) && !sbi->aligned_blksize)
 895		return true;
 896	/*
 897	 * for blkzoned device, fallback direct IO to buffered IO, so
 898	 * all IOs can be serialized by log-structured write.
 899	 */
 900	if (f2fs_sb_has_blkzoned(sbi) && (rw == WRITE) &&
 901	    !f2fs_is_pinned_file(inode))
 902		return true;
 903	if (is_sbi_flag_set(sbi, SBI_CP_DISABLED))
 904		return true;
 905
 906	return false;
 907}
 908
 909int f2fs_getattr(struct mnt_idmap *idmap, const struct path *path,
 910		 struct kstat *stat, u32 request_mask, unsigned int query_flags)
 911{
 912	struct inode *inode = d_inode(path->dentry);
 913	struct f2fs_inode_info *fi = F2FS_I(inode);
 914	struct f2fs_inode *ri = NULL;
 915	unsigned int flags;
 916
 917	if (f2fs_has_extra_attr(inode) &&
 918			f2fs_sb_has_inode_crtime(F2FS_I_SB(inode)) &&
 919			F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) {
 920		stat->result_mask |= STATX_BTIME;
 921		stat->btime.tv_sec = fi->i_crtime.tv_sec;
 922		stat->btime.tv_nsec = fi->i_crtime.tv_nsec;
 923	}
 924
 925	/*
 926	 * Return the DIO alignment restrictions if requested.  We only return
 927	 * this information when requested, since on encrypted files it might
 928	 * take a fair bit of work to get if the file wasn't opened recently.
 929	 *
 930	 * f2fs sometimes supports DIO reads but not DIO writes.  STATX_DIOALIGN
 931	 * cannot represent that, so in that case we report no DIO support.
 932	 */
 933	if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) {
 934		unsigned int bsize = i_blocksize(inode);
 935
 936		stat->result_mask |= STATX_DIOALIGN;
 937		if (!f2fs_force_buffered_io(inode, WRITE)) {
 938			stat->dio_mem_align = bsize;
 939			stat->dio_offset_align = bsize;
 940		}
 941	}
 942
 943	flags = fi->i_flags;
 944	if (flags & F2FS_COMPR_FL)
 945		stat->attributes |= STATX_ATTR_COMPRESSED;
 946	if (flags & F2FS_APPEND_FL)
 947		stat->attributes |= STATX_ATTR_APPEND;
 948	if (IS_ENCRYPTED(inode))
 949		stat->attributes |= STATX_ATTR_ENCRYPTED;
 950	if (flags & F2FS_IMMUTABLE_FL)
 951		stat->attributes |= STATX_ATTR_IMMUTABLE;
 952	if (flags & F2FS_NODUMP_FL)
 953		stat->attributes |= STATX_ATTR_NODUMP;
 954	if (IS_VERITY(inode))
 955		stat->attributes |= STATX_ATTR_VERITY;
 956
 957	stat->attributes_mask |= (STATX_ATTR_COMPRESSED |
 958				  STATX_ATTR_APPEND |
 959				  STATX_ATTR_ENCRYPTED |
 960				  STATX_ATTR_IMMUTABLE |
 961				  STATX_ATTR_NODUMP |
 962				  STATX_ATTR_VERITY);
 963
 964	generic_fillattr(idmap, request_mask, inode, stat);
 965
 966	/* we need to show initial sectors used for inline_data/dentries */
 967	if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) ||
 968					f2fs_has_inline_dentry(inode))
 969		stat->blocks += (stat->size + 511) >> 9;
 970
 971	return 0;
 972}
 973
 974#ifdef CONFIG_F2FS_FS_POSIX_ACL
 975static void __setattr_copy(struct mnt_idmap *idmap,
 976			   struct inode *inode, const struct iattr *attr)
 977{
 978	unsigned int ia_valid = attr->ia_valid;
 979
 980	i_uid_update(idmap, attr, inode);
 981	i_gid_update(idmap, attr, inode);
 982	if (ia_valid & ATTR_ATIME)
 983		inode_set_atime_to_ts(inode, attr->ia_atime);
 984	if (ia_valid & ATTR_MTIME)
 985		inode_set_mtime_to_ts(inode, attr->ia_mtime);
 986	if (ia_valid & ATTR_CTIME)
 987		inode_set_ctime_to_ts(inode, attr->ia_ctime);
 
 
 
 
 
 
 
 
 988	if (ia_valid & ATTR_MODE) {
 989		umode_t mode = attr->ia_mode;
 990
 991		if (!in_group_or_capable(idmap, inode, i_gid_into_vfsgid(idmap, inode)))
 992			mode &= ~S_ISGID;
 993		set_acl_inode(inode, mode);
 994	}
 995}
 996#else
 997#define __setattr_copy setattr_copy
 998#endif
 999
1000int f2fs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
1001		 struct iattr *attr)
1002{
1003	struct inode *inode = d_inode(dentry);
1004	struct f2fs_inode_info *fi = F2FS_I(inode);
1005	int err;
1006
1007	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
1008		return -EIO;
1009
1010	if (unlikely(IS_IMMUTABLE(inode)))
1011		return -EPERM;
1012
1013	if (unlikely(IS_APPEND(inode) &&
1014			(attr->ia_valid & (ATTR_MODE | ATTR_UID |
1015				  ATTR_GID | ATTR_TIMES_SET))))
1016		return -EPERM;
1017
1018	if ((attr->ia_valid & ATTR_SIZE)) {
1019		if (!f2fs_is_compress_backend_ready(inode) ||
1020				IS_DEVICE_ALIASING(inode))
1021			return -EOPNOTSUPP;
1022		if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED) &&
1023			!IS_ALIGNED(attr->ia_size,
1024			F2FS_BLK_TO_BYTES(fi->i_cluster_size)))
1025			return -EINVAL;
1026	}
1027
1028	err = setattr_prepare(idmap, dentry, attr);
1029	if (err)
1030		return err;
1031
1032	err = fscrypt_prepare_setattr(dentry, attr);
1033	if (err)
1034		return err;
1035
1036	err = fsverity_prepare_setattr(dentry, attr);
1037	if (err)
1038		return err;
1039
1040	if (is_quota_modification(idmap, inode, attr)) {
1041		err = f2fs_dquot_initialize(inode);
1042		if (err)
1043			return err;
1044	}
1045	if (i_uid_needs_update(idmap, attr, inode) ||
1046	    i_gid_needs_update(idmap, attr, inode)) {
 
 
1047		f2fs_lock_op(F2FS_I_SB(inode));
1048		err = dquot_transfer(idmap, inode, attr);
1049		if (err) {
1050			set_sbi_flag(F2FS_I_SB(inode),
1051					SBI_QUOTA_NEED_REPAIR);
1052			f2fs_unlock_op(F2FS_I_SB(inode));
1053			return err;
1054		}
1055		/*
1056		 * update uid/gid under lock_op(), so that dquot and inode can
1057		 * be updated atomically.
1058		 */
1059		i_uid_update(idmap, attr, inode);
1060		i_gid_update(idmap, attr, inode);
 
 
1061		f2fs_mark_inode_dirty_sync(inode, true);
1062		f2fs_unlock_op(F2FS_I_SB(inode));
1063	}
1064
1065	if (attr->ia_valid & ATTR_SIZE) {
1066		loff_t old_size = i_size_read(inode);
1067
1068		if (attr->ia_size > MAX_INLINE_DATA(inode)) {
1069			/*
1070			 * should convert inline inode before i_size_write to
1071			 * keep smaller than inline_data size with inline flag.
1072			 */
1073			err = f2fs_convert_inline_inode(inode);
1074			if (err)
1075				return err;
1076		}
1077
1078		/*
1079		 * wait for inflight dio, blocks should be removed after
1080		 * IO completion.
1081		 */
1082		if (attr->ia_size < old_size)
1083			inode_dio_wait(inode);
1084
1085		f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
1086		filemap_invalidate_lock(inode->i_mapping);
1087
1088		truncate_setsize(inode, attr->ia_size);
1089
1090		if (attr->ia_size <= old_size)
1091			err = f2fs_truncate(inode);
1092		/*
1093		 * do not trim all blocks after i_size if target size is
1094		 * larger than i_size.
1095		 */
1096		filemap_invalidate_unlock(inode->i_mapping);
1097		f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
1098		if (err)
1099			return err;
1100
1101		spin_lock(&fi->i_size_lock);
1102		inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1103		fi->last_disk_size = i_size_read(inode);
1104		spin_unlock(&fi->i_size_lock);
1105	}
1106
1107	__setattr_copy(idmap, inode, attr);
1108
1109	if (attr->ia_valid & ATTR_MODE) {
1110		err = posix_acl_chmod(idmap, dentry, f2fs_get_inode_mode(inode));
1111
1112		if (is_inode_flag_set(inode, FI_ACL_MODE)) {
1113			if (!err)
1114				inode->i_mode = fi->i_acl_mode;
1115			clear_inode_flag(inode, FI_ACL_MODE);
1116		}
1117	}
1118
1119	/* file size may changed here */
1120	f2fs_mark_inode_dirty_sync(inode, true);
1121
1122	/* inode change will produce dirty node pages flushed by checkpoint */
1123	f2fs_balance_fs(F2FS_I_SB(inode), true);
1124
1125	return err;
1126}
1127
1128const struct inode_operations f2fs_file_inode_operations = {
1129	.getattr	= f2fs_getattr,
1130	.setattr	= f2fs_setattr,
1131	.get_inode_acl	= f2fs_get_acl,
1132	.set_acl	= f2fs_set_acl,
 
1133	.listxattr	= f2fs_listxattr,
 
1134	.fiemap		= f2fs_fiemap,
1135	.fileattr_get	= f2fs_fileattr_get,
1136	.fileattr_set	= f2fs_fileattr_set,
1137};
1138
1139static int fill_zero(struct inode *inode, pgoff_t index,
1140					loff_t start, loff_t len)
1141{
1142	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1143	struct page *page;
1144
1145	if (!len)
1146		return 0;
1147
1148	f2fs_balance_fs(sbi, true);
1149
1150	f2fs_lock_op(sbi);
1151	page = f2fs_get_new_data_page(inode, NULL, index, false);
1152	f2fs_unlock_op(sbi);
1153
1154	if (IS_ERR(page))
1155		return PTR_ERR(page);
1156
1157	f2fs_wait_on_page_writeback(page, DATA, true, true);
1158	zero_user(page, start, len);
1159	set_page_dirty(page);
1160	f2fs_put_page(page, 1);
1161	return 0;
1162}
1163
1164int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
1165{
1166	int err;
1167
1168	while (pg_start < pg_end) {
1169		struct dnode_of_data dn;
1170		pgoff_t end_offset, count;
1171
1172		set_new_dnode(&dn, inode, NULL, NULL, 0);
1173		err = f2fs_get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
1174		if (err) {
1175			if (err == -ENOENT) {
1176				pg_start = f2fs_get_next_page_offset(&dn,
1177								pg_start);
1178				continue;
1179			}
1180			return err;
1181		}
1182
1183		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1184		count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
1185
1186		f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
1187
1188		f2fs_truncate_data_blocks_range(&dn, count);
1189		f2fs_put_dnode(&dn);
1190
1191		pg_start += count;
1192	}
1193	return 0;
1194}
1195
1196static int f2fs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
1197{
1198	pgoff_t pg_start, pg_end;
1199	loff_t off_start, off_end;
1200	int ret;
1201
1202	ret = f2fs_convert_inline_inode(inode);
1203	if (ret)
1204		return ret;
1205
1206	pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1207	pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1208
1209	off_start = offset & (PAGE_SIZE - 1);
1210	off_end = (offset + len) & (PAGE_SIZE - 1);
1211
1212	if (pg_start == pg_end) {
1213		ret = fill_zero(inode, pg_start, off_start,
1214						off_end - off_start);
1215		if (ret)
1216			return ret;
1217	} else {
1218		if (off_start) {
1219			ret = fill_zero(inode, pg_start++, off_start,
1220						PAGE_SIZE - off_start);
1221			if (ret)
1222				return ret;
1223		}
1224		if (off_end) {
1225			ret = fill_zero(inode, pg_end, 0, off_end);
1226			if (ret)
1227				return ret;
1228		}
1229
1230		if (pg_start < pg_end) {
 
1231			loff_t blk_start, blk_end;
1232			struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1233
1234			f2fs_balance_fs(sbi, true);
1235
1236			blk_start = (loff_t)pg_start << PAGE_SHIFT;
1237			blk_end = (loff_t)pg_end << PAGE_SHIFT;
1238
1239			f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1240			filemap_invalidate_lock(inode->i_mapping);
1241
1242			truncate_pagecache_range(inode, blk_start, blk_end - 1);
 
1243
1244			f2fs_lock_op(sbi);
1245			ret = f2fs_truncate_hole(inode, pg_start, pg_end);
1246			f2fs_unlock_op(sbi);
1247
1248			filemap_invalidate_unlock(inode->i_mapping);
1249			f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1250		}
1251	}
1252
1253	return ret;
1254}
1255
1256static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
1257				int *do_replace, pgoff_t off, pgoff_t len)
1258{
1259	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1260	struct dnode_of_data dn;
1261	int ret, done, i;
1262
1263next_dnode:
1264	set_new_dnode(&dn, inode, NULL, NULL, 0);
1265	ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
1266	if (ret && ret != -ENOENT) {
1267		return ret;
1268	} else if (ret == -ENOENT) {
1269		if (dn.max_level == 0)
1270			return -ENOENT;
1271		done = min((pgoff_t)ADDRS_PER_BLOCK(inode) -
1272						dn.ofs_in_node, len);
1273		blkaddr += done;
1274		do_replace += done;
1275		goto next;
1276	}
1277
1278	done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) -
1279							dn.ofs_in_node, len);
1280	for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
1281		*blkaddr = f2fs_data_blkaddr(&dn);
 
1282
1283		if (__is_valid_data_blkaddr(*blkaddr) &&
1284			!f2fs_is_valid_blkaddr(sbi, *blkaddr,
1285					DATA_GENERIC_ENHANCE)) {
1286			f2fs_put_dnode(&dn);
1287			return -EFSCORRUPTED;
1288		}
1289
1290		if (!f2fs_is_checkpointed_data(sbi, *blkaddr)) {
1291
1292			if (f2fs_lfs_mode(sbi)) {
1293				f2fs_put_dnode(&dn);
1294				return -EOPNOTSUPP;
1295			}
1296
1297			/* do not invalidate this block address */
1298			f2fs_update_data_blkaddr(&dn, NULL_ADDR);
1299			*do_replace = 1;
1300		}
1301	}
1302	f2fs_put_dnode(&dn);
1303next:
1304	len -= done;
1305	off += done;
1306	if (len)
1307		goto next_dnode;
1308	return 0;
1309}
1310
1311static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
1312				int *do_replace, pgoff_t off, int len)
1313{
1314	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1315	struct dnode_of_data dn;
1316	int ret, i;
1317
1318	for (i = 0; i < len; i++, do_replace++, blkaddr++) {
1319		if (*do_replace == 0)
1320			continue;
1321
1322		set_new_dnode(&dn, inode, NULL, NULL, 0);
1323		ret = f2fs_get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
1324		if (ret) {
1325			dec_valid_block_count(sbi, inode, 1);
1326			f2fs_invalidate_blocks(sbi, *blkaddr);
1327		} else {
1328			f2fs_update_data_blkaddr(&dn, *blkaddr);
1329		}
1330		f2fs_put_dnode(&dn);
1331	}
1332	return 0;
1333}
1334
1335static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
1336			block_t *blkaddr, int *do_replace,
1337			pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
1338{
1339	struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
1340	pgoff_t i = 0;
1341	int ret;
1342
1343	while (i < len) {
1344		if (blkaddr[i] == NULL_ADDR && !full) {
1345			i++;
1346			continue;
1347		}
1348
1349		if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
1350			struct dnode_of_data dn;
1351			struct node_info ni;
1352			size_t new_size;
1353			pgoff_t ilen;
1354
1355			set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
1356			ret = f2fs_get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
1357			if (ret)
1358				return ret;
1359
1360			ret = f2fs_get_node_info(sbi, dn.nid, &ni, false);
1361			if (ret) {
1362				f2fs_put_dnode(&dn);
1363				return ret;
1364			}
1365
1366			ilen = min((pgoff_t)
1367				ADDRS_PER_PAGE(dn.node_page, dst_inode) -
1368						dn.ofs_in_node, len - i);
1369			do {
1370				dn.data_blkaddr = f2fs_data_blkaddr(&dn);
 
1371				f2fs_truncate_data_blocks_range(&dn, 1);
1372
1373				if (do_replace[i]) {
1374					f2fs_i_blocks_write(src_inode,
1375							1, false, false);
1376					f2fs_i_blocks_write(dst_inode,
1377							1, true, false);
1378					f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
1379					blkaddr[i], ni.version, true, false);
1380
1381					do_replace[i] = 0;
1382				}
1383				dn.ofs_in_node++;
1384				i++;
1385				new_size = (loff_t)(dst + i) << PAGE_SHIFT;
1386				if (dst_inode->i_size < new_size)
1387					f2fs_i_size_write(dst_inode, new_size);
1388			} while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR));
1389
1390			f2fs_put_dnode(&dn);
1391		} else {
1392			struct page *psrc, *pdst;
1393
1394			psrc = f2fs_get_lock_data_page(src_inode,
1395							src + i, true);
1396			if (IS_ERR(psrc))
1397				return PTR_ERR(psrc);
1398			pdst = f2fs_get_new_data_page(dst_inode, NULL, dst + i,
1399								true);
1400			if (IS_ERR(pdst)) {
1401				f2fs_put_page(psrc, 1);
1402				return PTR_ERR(pdst);
1403			}
1404
1405			f2fs_wait_on_page_writeback(pdst, DATA, true, true);
1406
1407			memcpy_page(pdst, 0, psrc, 0, PAGE_SIZE);
1408			set_page_dirty(pdst);
1409			set_page_private_gcing(pdst);
1410			f2fs_put_page(pdst, 1);
1411			f2fs_put_page(psrc, 1);
1412
1413			ret = f2fs_truncate_hole(src_inode,
1414						src + i, src + i + 1);
1415			if (ret)
1416				return ret;
1417			i++;
1418		}
1419	}
1420	return 0;
1421}
1422
1423static int __exchange_data_block(struct inode *src_inode,
1424			struct inode *dst_inode, pgoff_t src, pgoff_t dst,
1425			pgoff_t len, bool full)
1426{
1427	block_t *src_blkaddr;
1428	int *do_replace;
1429	pgoff_t olen;
1430	int ret;
1431
1432	while (len) {
1433		olen = min((pgoff_t)4 * ADDRS_PER_BLOCK(src_inode), len);
1434
1435		src_blkaddr = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1436					array_size(olen, sizeof(block_t)),
1437					GFP_NOFS);
1438		if (!src_blkaddr)
1439			return -ENOMEM;
1440
1441		do_replace = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1442					array_size(olen, sizeof(int)),
1443					GFP_NOFS);
1444		if (!do_replace) {
1445			kvfree(src_blkaddr);
1446			return -ENOMEM;
1447		}
1448
1449		ret = __read_out_blkaddrs(src_inode, src_blkaddr,
1450					do_replace, src, olen);
1451		if (ret)
1452			goto roll_back;
1453
1454		ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
1455					do_replace, src, dst, olen, full);
1456		if (ret)
1457			goto roll_back;
1458
1459		src += olen;
1460		dst += olen;
1461		len -= olen;
1462
1463		kvfree(src_blkaddr);
1464		kvfree(do_replace);
1465	}
1466	return 0;
1467
1468roll_back:
1469	__roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, olen);
1470	kvfree(src_blkaddr);
1471	kvfree(do_replace);
1472	return ret;
1473}
1474
1475static int f2fs_do_collapse(struct inode *inode, loff_t offset, loff_t len)
1476{
1477	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1478	pgoff_t nrpages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1479	pgoff_t start = offset >> PAGE_SHIFT;
1480	pgoff_t end = (offset + len) >> PAGE_SHIFT;
1481	int ret;
1482
1483	f2fs_balance_fs(sbi, true);
1484
1485	/* avoid gc operation during block exchange */
1486	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1487	filemap_invalidate_lock(inode->i_mapping);
1488
1489	f2fs_lock_op(sbi);
1490	f2fs_drop_extent_tree(inode);
1491	truncate_pagecache(inode, offset);
1492	ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
1493	f2fs_unlock_op(sbi);
1494
1495	filemap_invalidate_unlock(inode->i_mapping);
1496	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1497	return ret;
1498}
1499
1500static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
1501{
1502	loff_t new_size;
1503	int ret;
1504
1505	if (offset + len >= i_size_read(inode))
1506		return -EINVAL;
1507
1508	/* collapse range should be aligned to block size of f2fs. */
1509	if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1510		return -EINVAL;
1511
1512	ret = f2fs_convert_inline_inode(inode);
1513	if (ret)
1514		return ret;
1515
1516	/* write out all dirty pages from offset */
1517	ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1518	if (ret)
1519		return ret;
1520
1521	ret = f2fs_do_collapse(inode, offset, len);
1522	if (ret)
1523		return ret;
1524
1525	/* write out all moved pages, if possible */
1526	filemap_invalidate_lock(inode->i_mapping);
1527	filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1528	truncate_pagecache(inode, offset);
1529
1530	new_size = i_size_read(inode) - len;
 
 
1531	ret = f2fs_truncate_blocks(inode, new_size, true);
1532	filemap_invalidate_unlock(inode->i_mapping);
1533	if (!ret)
1534		f2fs_i_size_write(inode, new_size);
1535	return ret;
1536}
1537
1538static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
1539								pgoff_t end)
1540{
1541	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1542	pgoff_t index = start;
1543	unsigned int ofs_in_node = dn->ofs_in_node;
1544	blkcnt_t count = 0;
1545	int ret;
1546
1547	for (; index < end; index++, dn->ofs_in_node++) {
1548		if (f2fs_data_blkaddr(dn) == NULL_ADDR)
 
1549			count++;
1550	}
1551
1552	dn->ofs_in_node = ofs_in_node;
1553	ret = f2fs_reserve_new_blocks(dn, count);
1554	if (ret)
1555		return ret;
1556
1557	dn->ofs_in_node = ofs_in_node;
1558	for (index = start; index < end; index++, dn->ofs_in_node++) {
1559		dn->data_blkaddr = f2fs_data_blkaddr(dn);
 
1560		/*
1561		 * f2fs_reserve_new_blocks will not guarantee entire block
1562		 * allocation.
1563		 */
1564		if (dn->data_blkaddr == NULL_ADDR) {
1565			ret = -ENOSPC;
1566			break;
1567		}
1568
1569		if (dn->data_blkaddr == NEW_ADDR)
1570			continue;
1571
1572		if (!f2fs_is_valid_blkaddr(sbi, dn->data_blkaddr,
1573					DATA_GENERIC_ENHANCE)) {
1574			ret = -EFSCORRUPTED;
1575			break;
1576		}
1577
1578		f2fs_invalidate_blocks(sbi, dn->data_blkaddr);
1579		f2fs_set_data_blkaddr(dn, NEW_ADDR);
1580	}
1581
1582	f2fs_update_read_extent_cache_range(dn, start, 0, index - start);
1583	f2fs_update_age_extent_cache_range(dn, start, index - start);
1584
1585	return ret;
1586}
1587
1588static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
1589								int mode)
1590{
1591	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1592	struct address_space *mapping = inode->i_mapping;
1593	pgoff_t index, pg_start, pg_end;
1594	loff_t new_size = i_size_read(inode);
1595	loff_t off_start, off_end;
1596	int ret = 0;
1597
1598	ret = inode_newsize_ok(inode, (len + offset));
1599	if (ret)
1600		return ret;
1601
1602	ret = f2fs_convert_inline_inode(inode);
1603	if (ret)
1604		return ret;
1605
1606	ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
1607	if (ret)
1608		return ret;
1609
1610	pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1611	pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1612
1613	off_start = offset & (PAGE_SIZE - 1);
1614	off_end = (offset + len) & (PAGE_SIZE - 1);
1615
1616	if (pg_start == pg_end) {
1617		ret = fill_zero(inode, pg_start, off_start,
1618						off_end - off_start);
1619		if (ret)
1620			return ret;
1621
1622		new_size = max_t(loff_t, new_size, offset + len);
1623	} else {
1624		if (off_start) {
1625			ret = fill_zero(inode, pg_start++, off_start,
1626						PAGE_SIZE - off_start);
1627			if (ret)
1628				return ret;
1629
1630			new_size = max_t(loff_t, new_size,
1631					(loff_t)pg_start << PAGE_SHIFT);
1632		}
1633
1634		for (index = pg_start; index < pg_end;) {
1635			struct dnode_of_data dn;
1636			unsigned int end_offset;
1637			pgoff_t end;
1638
1639			f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1640			filemap_invalidate_lock(mapping);
1641
1642			truncate_pagecache_range(inode,
1643				(loff_t)index << PAGE_SHIFT,
1644				((loff_t)pg_end << PAGE_SHIFT) - 1);
1645
1646			f2fs_lock_op(sbi);
1647
1648			set_new_dnode(&dn, inode, NULL, NULL, 0);
1649			ret = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE);
1650			if (ret) {
1651				f2fs_unlock_op(sbi);
1652				filemap_invalidate_unlock(mapping);
1653				f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1654				goto out;
1655			}
1656
1657			end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1658			end = min(pg_end, end_offset - dn.ofs_in_node + index);
1659
1660			ret = f2fs_do_zero_range(&dn, index, end);
1661			f2fs_put_dnode(&dn);
1662
1663			f2fs_unlock_op(sbi);
1664			filemap_invalidate_unlock(mapping);
1665			f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1666
1667			f2fs_balance_fs(sbi, dn.node_changed);
1668
1669			if (ret)
1670				goto out;
1671
1672			index = end;
1673			new_size = max_t(loff_t, new_size,
1674					(loff_t)index << PAGE_SHIFT);
1675		}
1676
1677		if (off_end) {
1678			ret = fill_zero(inode, pg_end, 0, off_end);
1679			if (ret)
1680				goto out;
1681
1682			new_size = max_t(loff_t, new_size, offset + len);
1683		}
1684	}
1685
1686out:
1687	if (new_size > i_size_read(inode)) {
1688		if (mode & FALLOC_FL_KEEP_SIZE)
1689			file_set_keep_isize(inode);
1690		else
1691			f2fs_i_size_write(inode, new_size);
1692	}
1693	return ret;
1694}
1695
1696static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
1697{
1698	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1699	struct address_space *mapping = inode->i_mapping;
1700	pgoff_t nr, pg_start, pg_end, delta, idx;
1701	loff_t new_size;
1702	int ret = 0;
1703
1704	new_size = i_size_read(inode) + len;
1705	ret = inode_newsize_ok(inode, new_size);
1706	if (ret)
1707		return ret;
1708
1709	if (offset >= i_size_read(inode))
1710		return -EINVAL;
1711
1712	/* insert range should be aligned to block size of f2fs. */
1713	if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1714		return -EINVAL;
1715
1716	ret = f2fs_convert_inline_inode(inode);
1717	if (ret)
1718		return ret;
1719
1720	f2fs_balance_fs(sbi, true);
1721
1722	filemap_invalidate_lock(mapping);
1723	ret = f2fs_truncate_blocks(inode, i_size_read(inode), true);
1724	filemap_invalidate_unlock(mapping);
1725	if (ret)
1726		return ret;
1727
1728	/* write out all dirty pages from offset */
1729	ret = filemap_write_and_wait_range(mapping, offset, LLONG_MAX);
1730	if (ret)
1731		return ret;
1732
1733	pg_start = offset >> PAGE_SHIFT;
1734	pg_end = (offset + len) >> PAGE_SHIFT;
1735	delta = pg_end - pg_start;
1736	idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1737
1738	/* avoid gc operation during block exchange */
1739	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1740	filemap_invalidate_lock(mapping);
1741	truncate_pagecache(inode, offset);
1742
1743	while (!ret && idx > pg_start) {
1744		nr = idx - pg_start;
1745		if (nr > delta)
1746			nr = delta;
1747		idx -= nr;
1748
1749		f2fs_lock_op(sbi);
1750		f2fs_drop_extent_tree(inode);
1751
1752		ret = __exchange_data_block(inode, inode, idx,
1753					idx + delta, nr, false);
1754		f2fs_unlock_op(sbi);
1755	}
1756	filemap_invalidate_unlock(mapping);
1757	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1758	if (ret)
1759		return ret;
1760
1761	/* write out all moved pages, if possible */
1762	filemap_invalidate_lock(mapping);
1763	ret = filemap_write_and_wait_range(mapping, offset, LLONG_MAX);
1764	truncate_pagecache(inode, offset);
1765	filemap_invalidate_unlock(mapping);
1766
1767	if (!ret)
1768		f2fs_i_size_write(inode, new_size);
1769	return ret;
1770}
1771
1772static int f2fs_expand_inode_data(struct inode *inode, loff_t offset,
1773					loff_t len, int mode)
1774{
1775	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1776	struct f2fs_map_blocks map = { .m_next_pgofs = NULL,
1777			.m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE,
1778			.m_may_create = true };
1779	struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO,
1780			.init_gc_type = FG_GC,
1781			.should_migrate_blocks = false,
1782			.err_gc_skipped = true,
1783			.nr_free_secs = 0 };
1784	pgoff_t pg_start, pg_end;
1785	loff_t new_size;
1786	loff_t off_end;
1787	block_t expanded = 0;
1788	int err;
1789
1790	err = inode_newsize_ok(inode, (len + offset));
1791	if (err)
1792		return err;
1793
1794	err = f2fs_convert_inline_inode(inode);
1795	if (err)
1796		return err;
1797
1798	f2fs_balance_fs(sbi, true);
1799
1800	pg_start = ((unsigned long long)offset) >> PAGE_SHIFT;
1801	pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
1802	off_end = (offset + len) & (PAGE_SIZE - 1);
1803
1804	map.m_lblk = pg_start;
1805	map.m_len = pg_end - pg_start;
1806	if (off_end)
1807		map.m_len++;
1808
1809	if (!map.m_len)
1810		return 0;
1811
1812	if (f2fs_is_pinned_file(inode)) {
1813		block_t sec_blks = CAP_BLKS_PER_SEC(sbi);
1814		block_t sec_len = roundup(map.m_len, sec_blks);
1815
1816		map.m_len = sec_blks;
1817next_alloc:
1818		if (has_not_enough_free_secs(sbi, 0, f2fs_sb_has_blkzoned(sbi) ?
1819			ZONED_PIN_SEC_REQUIRED_COUNT :
1820			GET_SEC_FROM_SEG(sbi, overprovision_segments(sbi)))) {
1821			f2fs_down_write(&sbi->gc_lock);
1822			stat_inc_gc_call_count(sbi, FOREGROUND);
1823			err = f2fs_gc(sbi, &gc_control);
1824			if (err && err != -ENODATA)
1825				goto out_err;
1826		}
1827
1828		f2fs_down_write(&sbi->pin_sem);
1829
1830		err = f2fs_allocate_pinning_section(sbi);
1831		if (err) {
1832			f2fs_up_write(&sbi->pin_sem);
1833			goto out_err;
1834		}
1835
1836		map.m_seg_type = CURSEG_COLD_DATA_PINNED;
1837		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRE_DIO);
1838		file_dont_truncate(inode);
1839
1840		f2fs_up_write(&sbi->pin_sem);
1841
1842		expanded += map.m_len;
1843		sec_len -= map.m_len;
1844		map.m_lblk += map.m_len;
1845		if (!err && sec_len)
1846			goto next_alloc;
1847
1848		map.m_len = expanded;
1849	} else {
1850		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRE_AIO);
1851		expanded = map.m_len;
1852	}
1853out_err:
1854	if (err) {
1855		pgoff_t last_off;
1856
1857		if (!expanded)
1858			return err;
1859
1860		last_off = pg_start + expanded - 1;
1861
1862		/* update new size to the failed position */
1863		new_size = (last_off == pg_end) ? offset + len :
1864					(loff_t)(last_off + 1) << PAGE_SHIFT;
1865	} else {
1866		new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
1867	}
1868
1869	if (new_size > i_size_read(inode)) {
1870		if (mode & FALLOC_FL_KEEP_SIZE)
1871			file_set_keep_isize(inode);
1872		else
1873			f2fs_i_size_write(inode, new_size);
1874	}
1875
1876	return err;
1877}
1878
1879static long f2fs_fallocate(struct file *file, int mode,
1880				loff_t offset, loff_t len)
1881{
1882	struct inode *inode = file_inode(file);
1883	long ret = 0;
1884
1885	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
1886		return -EIO;
1887	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
1888		return -ENOSPC;
1889	if (!f2fs_is_compress_backend_ready(inode) || IS_DEVICE_ALIASING(inode))
1890		return -EOPNOTSUPP;
1891
1892	/* f2fs only support ->fallocate for regular file */
1893	if (!S_ISREG(inode->i_mode))
1894		return -EINVAL;
1895
1896	if (IS_ENCRYPTED(inode) &&
1897		(mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
1898		return -EOPNOTSUPP;
1899
1900	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
1901			FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
1902			FALLOC_FL_INSERT_RANGE))
1903		return -EOPNOTSUPP;
1904
1905	inode_lock(inode);
1906
1907	/*
1908	 * Pinned file should not support partial truncation since the block
1909	 * can be used by applications.
1910	 */
1911	if ((f2fs_compressed_file(inode) || f2fs_is_pinned_file(inode)) &&
1912		(mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_COLLAPSE_RANGE |
1913			FALLOC_FL_ZERO_RANGE | FALLOC_FL_INSERT_RANGE))) {
1914		ret = -EOPNOTSUPP;
1915		goto out;
1916	}
1917
1918	ret = file_modified(file);
1919	if (ret)
1920		goto out;
1921
1922	/*
1923	 * wait for inflight dio, blocks should be removed after IO
1924	 * completion.
1925	 */
1926	inode_dio_wait(inode);
1927
1928	if (mode & FALLOC_FL_PUNCH_HOLE) {
1929		if (offset >= inode->i_size)
1930			goto out;
1931
1932		ret = f2fs_punch_hole(inode, offset, len);
1933	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
1934		ret = f2fs_collapse_range(inode, offset, len);
1935	} else if (mode & FALLOC_FL_ZERO_RANGE) {
1936		ret = f2fs_zero_range(inode, offset, len, mode);
1937	} else if (mode & FALLOC_FL_INSERT_RANGE) {
1938		ret = f2fs_insert_range(inode, offset, len);
1939	} else {
1940		ret = f2fs_expand_inode_data(inode, offset, len, mode);
1941	}
1942
1943	if (!ret) {
1944		inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1945		f2fs_mark_inode_dirty_sync(inode, false);
1946		f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1947	}
1948
1949out:
1950	inode_unlock(inode);
1951
1952	trace_f2fs_fallocate(inode, mode, offset, len, ret);
1953	return ret;
1954}
1955
1956static int f2fs_release_file(struct inode *inode, struct file *filp)
1957{
1958	/*
1959	 * f2fs_release_file is called at every close calls. So we should
1960	 * not drop any inmemory pages by close called by other process.
1961	 */
1962	if (!(filp->f_mode & FMODE_WRITE) ||
1963			atomic_read(&inode->i_writecount) != 1)
1964		return 0;
1965
1966	inode_lock(inode);
1967	f2fs_abort_atomic_write(inode, true);
1968	inode_unlock(inode);
1969
 
 
 
 
 
 
1970	return 0;
1971}
1972
1973static int f2fs_file_flush(struct file *file, fl_owner_t id)
1974{
1975	struct inode *inode = file_inode(file);
1976
1977	/*
1978	 * If the process doing a transaction is crashed, we should do
1979	 * roll-back. Otherwise, other reader/write can see corrupted database
1980	 * until all the writers close its file. Since this should be done
1981	 * before dropping file lock, it needs to do in ->flush.
1982	 */
1983	if (F2FS_I(inode)->atomic_write_task == current &&
1984				(current->flags & PF_EXITING)) {
1985		inode_lock(inode);
1986		f2fs_abort_atomic_write(inode, true);
1987		inode_unlock(inode);
1988	}
1989
1990	return 0;
1991}
1992
1993static int f2fs_setflags_common(struct inode *inode, u32 iflags, u32 mask)
1994{
1995	struct f2fs_inode_info *fi = F2FS_I(inode);
1996	u32 masked_flags = fi->i_flags & mask;
1997
1998	/* mask can be shrunk by flags_valid selector */
1999	iflags &= mask;
2000
2001	/* Is it quota file? Do not allow user to mess with it */
2002	if (IS_NOQUOTA(inode))
2003		return -EPERM;
2004
2005	if ((iflags ^ masked_flags) & F2FS_CASEFOLD_FL) {
2006		if (!f2fs_sb_has_casefold(F2FS_I_SB(inode)))
2007			return -EOPNOTSUPP;
2008		if (!f2fs_empty_dir(inode))
2009			return -ENOTEMPTY;
2010	}
2011
2012	if (iflags & (F2FS_COMPR_FL | F2FS_NOCOMP_FL)) {
2013		if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
2014			return -EOPNOTSUPP;
2015		if ((iflags & F2FS_COMPR_FL) && (iflags & F2FS_NOCOMP_FL))
2016			return -EINVAL;
2017	}
2018
2019	if ((iflags ^ masked_flags) & F2FS_COMPR_FL) {
2020		if (masked_flags & F2FS_COMPR_FL) {
2021			if (!f2fs_disable_compressed_file(inode))
2022				return -EINVAL;
2023		} else {
2024			/* try to convert inline_data to support compression */
2025			int err = f2fs_convert_inline_inode(inode);
2026			if (err)
2027				return err;
2028
2029			f2fs_down_write(&fi->i_sem);
2030			if (!f2fs_may_compress(inode) ||
2031					(S_ISREG(inode->i_mode) &&
2032					F2FS_HAS_BLOCKS(inode))) {
2033				f2fs_up_write(&fi->i_sem);
2034				return -EINVAL;
2035			}
2036			err = set_compress_context(inode);
2037			f2fs_up_write(&fi->i_sem);
2038
2039			if (err)
2040				return err;
2041		}
2042	}
2043
2044	fi->i_flags = iflags | (fi->i_flags & ~mask);
2045	f2fs_bug_on(F2FS_I_SB(inode), (fi->i_flags & F2FS_COMPR_FL) &&
2046					(fi->i_flags & F2FS_NOCOMP_FL));
2047
2048	if (fi->i_flags & F2FS_PROJINHERIT_FL)
2049		set_inode_flag(inode, FI_PROJ_INHERIT);
2050	else
2051		clear_inode_flag(inode, FI_PROJ_INHERIT);
2052
2053	inode_set_ctime_current(inode);
2054	f2fs_set_inode_flags(inode);
2055	f2fs_mark_inode_dirty_sync(inode, true);
2056	return 0;
2057}
2058
2059/* FS_IOC_[GS]ETFLAGS and FS_IOC_FS[GS]ETXATTR support */
2060
2061/*
2062 * To make a new on-disk f2fs i_flag gettable via FS_IOC_GETFLAGS, add an entry
2063 * for it to f2fs_fsflags_map[], and add its FS_*_FL equivalent to
2064 * F2FS_GETTABLE_FS_FL.  To also make it settable via FS_IOC_SETFLAGS, also add
2065 * its FS_*_FL equivalent to F2FS_SETTABLE_FS_FL.
2066 *
2067 * Translating flags to fsx_flags value used by FS_IOC_FSGETXATTR and
2068 * FS_IOC_FSSETXATTR is done by the VFS.
2069 */
2070
2071static const struct {
2072	u32 iflag;
2073	u32 fsflag;
2074} f2fs_fsflags_map[] = {
2075	{ F2FS_COMPR_FL,	FS_COMPR_FL },
2076	{ F2FS_SYNC_FL,		FS_SYNC_FL },
2077	{ F2FS_IMMUTABLE_FL,	FS_IMMUTABLE_FL },
2078	{ F2FS_APPEND_FL,	FS_APPEND_FL },
2079	{ F2FS_NODUMP_FL,	FS_NODUMP_FL },
2080	{ F2FS_NOATIME_FL,	FS_NOATIME_FL },
2081	{ F2FS_NOCOMP_FL,	FS_NOCOMP_FL },
2082	{ F2FS_INDEX_FL,	FS_INDEX_FL },
2083	{ F2FS_DIRSYNC_FL,	FS_DIRSYNC_FL },
2084	{ F2FS_PROJINHERIT_FL,	FS_PROJINHERIT_FL },
2085	{ F2FS_CASEFOLD_FL,	FS_CASEFOLD_FL },
2086};
2087
2088#define F2FS_GETTABLE_FS_FL (		\
2089		FS_COMPR_FL |		\
2090		FS_SYNC_FL |		\
2091		FS_IMMUTABLE_FL |	\
2092		FS_APPEND_FL |		\
2093		FS_NODUMP_FL |		\
2094		FS_NOATIME_FL |		\
2095		FS_NOCOMP_FL |		\
2096		FS_INDEX_FL |		\
2097		FS_DIRSYNC_FL |		\
2098		FS_PROJINHERIT_FL |	\
2099		FS_ENCRYPT_FL |		\
2100		FS_INLINE_DATA_FL |	\
2101		FS_NOCOW_FL |		\
2102		FS_VERITY_FL |		\
2103		FS_CASEFOLD_FL)
2104
2105#define F2FS_SETTABLE_FS_FL (		\
2106		FS_COMPR_FL |		\
2107		FS_SYNC_FL |		\
2108		FS_IMMUTABLE_FL |	\
2109		FS_APPEND_FL |		\
2110		FS_NODUMP_FL |		\
2111		FS_NOATIME_FL |		\
2112		FS_NOCOMP_FL |		\
2113		FS_DIRSYNC_FL |		\
2114		FS_PROJINHERIT_FL |	\
2115		FS_CASEFOLD_FL)
2116
2117/* Convert f2fs on-disk i_flags to FS_IOC_{GET,SET}FLAGS flags */
2118static inline u32 f2fs_iflags_to_fsflags(u32 iflags)
2119{
2120	u32 fsflags = 0;
2121	int i;
2122
2123	for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
2124		if (iflags & f2fs_fsflags_map[i].iflag)
2125			fsflags |= f2fs_fsflags_map[i].fsflag;
2126
2127	return fsflags;
2128}
2129
2130/* Convert FS_IOC_{GET,SET}FLAGS flags to f2fs on-disk i_flags */
2131static inline u32 f2fs_fsflags_to_iflags(u32 fsflags)
2132{
2133	u32 iflags = 0;
2134	int i;
2135
2136	for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
2137		if (fsflags & f2fs_fsflags_map[i].fsflag)
2138			iflags |= f2fs_fsflags_map[i].iflag;
2139
2140	return iflags;
2141}
2142
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2143static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
2144{
2145	struct inode *inode = file_inode(filp);
2146
2147	return put_user(inode->i_generation, (int __user *)arg);
2148}
2149
2150static int f2fs_ioc_start_atomic_write(struct file *filp, bool truncate)
2151{
2152	struct inode *inode = file_inode(filp);
2153	struct mnt_idmap *idmap = file_mnt_idmap(filp);
2154	struct f2fs_inode_info *fi = F2FS_I(inode);
2155	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2156	loff_t isize;
2157	int ret;
2158
2159	if (!(filp->f_mode & FMODE_WRITE))
2160		return -EBADF;
2161
2162	if (!inode_owner_or_capable(idmap, inode))
2163		return -EACCES;
2164
2165	if (!S_ISREG(inode->i_mode))
2166		return -EINVAL;
2167
2168	if (filp->f_flags & O_DIRECT)
2169		return -EINVAL;
2170
2171	ret = mnt_want_write_file(filp);
2172	if (ret)
2173		return ret;
2174
2175	inode_lock(inode);
2176
2177	if (!f2fs_disable_compressed_file(inode) ||
2178			f2fs_is_pinned_file(inode)) {
2179		ret = -EINVAL;
2180		goto out;
2181	}
2182
2183	if (f2fs_is_atomic_file(inode))
2184		goto out;
2185
2186	ret = f2fs_convert_inline_inode(inode);
2187	if (ret)
2188		goto out;
2189
2190	f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
2191	f2fs_down_write(&fi->i_gc_rwsem[READ]);
2192
2193	/*
2194	 * Should wait end_io to count F2FS_WB_CP_DATA correctly by
2195	 * f2fs_is_atomic_file.
2196	 */
2197	if (get_dirty_pages(inode))
2198		f2fs_warn(sbi, "Unexpected flush for atomic writes: ino=%lu, npages=%u",
2199			  inode->i_ino, get_dirty_pages(inode));
2200	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
2201	if (ret)
2202		goto out_unlock;
 
 
2203
2204	/* Check if the inode already has a COW inode */
2205	if (fi->cow_inode == NULL) {
2206		/* Create a COW inode for atomic write */
2207		struct dentry *dentry = file_dentry(filp);
2208		struct inode *dir = d_inode(dentry->d_parent);
2209
2210		ret = f2fs_get_tmpfile(idmap, dir, &fi->cow_inode);
2211		if (ret)
2212			goto out_unlock;
 
2213
2214		set_inode_flag(fi->cow_inode, FI_COW_FILE);
2215		clear_inode_flag(fi->cow_inode, FI_INLINE_DATA);
 
 
 
 
 
 
 
2216
2217		/* Set the COW inode's atomic_inode to the atomic inode */
2218		F2FS_I(fi->cow_inode)->atomic_inode = inode;
2219	} else {
2220		/* Reuse the already created COW inode */
2221		f2fs_bug_on(sbi, get_dirty_pages(fi->cow_inode));
 
 
 
 
 
 
 
 
 
 
2222
2223		invalidate_mapping_pages(fi->cow_inode->i_mapping, 0, -1);
 
 
 
2224
2225		ret = f2fs_do_truncate_blocks(fi->cow_inode, 0, true);
 
2226		if (ret)
2227			goto out_unlock;
 
 
 
 
 
 
 
 
 
 
 
2228	}
 
 
 
 
2229
2230	f2fs_write_inode(inode, NULL);
 
 
 
2231
2232	stat_inc_atomic_inode(inode);
 
2233
2234	set_inode_flag(inode, FI_ATOMIC_FILE);
 
2235
2236	isize = i_size_read(inode);
2237	fi->original_i_size = isize;
2238	if (truncate) {
2239		set_inode_flag(inode, FI_ATOMIC_REPLACE);
2240		truncate_inode_pages_final(inode->i_mapping);
2241		f2fs_i_size_write(inode, 0);
2242		isize = 0;
2243	}
2244	f2fs_i_size_write(fi->cow_inode, isize);
2245
2246out_unlock:
2247	f2fs_up_write(&fi->i_gc_rwsem[READ]);
2248	f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
 
 
 
2249	if (ret)
2250		goto out;
2251
2252	f2fs_update_time(sbi, REQ_TIME);
2253	fi->atomic_write_task = current;
2254	stat_update_max_atomic_write(inode);
2255	fi->atomic_write_cnt = 0;
 
2256out:
2257	inode_unlock(inode);
2258	mnt_drop_write_file(filp);
2259	return ret;
2260}
2261
2262static int f2fs_ioc_commit_atomic_write(struct file *filp)
2263{
2264	struct inode *inode = file_inode(filp);
2265	struct mnt_idmap *idmap = file_mnt_idmap(filp);
2266	int ret;
2267
2268	if (!(filp->f_mode & FMODE_WRITE))
2269		return -EBADF;
2270
2271	if (!inode_owner_or_capable(idmap, inode))
2272		return -EACCES;
2273
2274	ret = mnt_want_write_file(filp);
2275	if (ret)
2276		return ret;
2277
2278	f2fs_balance_fs(F2FS_I_SB(inode), true);
2279
2280	inode_lock(inode);
2281
2282	if (f2fs_is_atomic_file(inode)) {
2283		ret = f2fs_commit_atomic_write(inode);
2284		if (!ret)
2285			ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
2286
2287		f2fs_abort_atomic_write(inode, ret);
2288	} else {
2289		ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false);
2290	}
2291
 
 
2292	inode_unlock(inode);
2293	mnt_drop_write_file(filp);
2294	return ret;
2295}
2296
2297static int f2fs_ioc_abort_atomic_write(struct file *filp)
2298{
2299	struct inode *inode = file_inode(filp);
2300	struct mnt_idmap *idmap = file_mnt_idmap(filp);
2301	int ret;
2302
2303	if (!(filp->f_mode & FMODE_WRITE))
2304		return -EBADF;
2305
2306	if (!inode_owner_or_capable(idmap, inode))
2307		return -EACCES;
2308
2309	ret = mnt_want_write_file(filp);
2310	if (ret)
2311		return ret;
2312
2313	inode_lock(inode);
2314
2315	f2fs_abort_atomic_write(inode, true);
 
 
 
 
 
 
 
 
2316
2317	inode_unlock(inode);
2318
2319	mnt_drop_write_file(filp);
2320	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2321	return ret;
2322}
2323
2324int f2fs_do_shutdown(struct f2fs_sb_info *sbi, unsigned int flag,
2325						bool readonly, bool need_lock)
2326{
 
 
2327	struct super_block *sb = sbi->sb;
 
2328	int ret = 0;
2329
2330	switch (flag) {
2331	case F2FS_GOING_DOWN_FULLSYNC:
2332		ret = bdev_freeze(sb->s_bdev);
 
 
 
 
 
2333		if (ret)
 
 
 
 
 
 
 
 
2334			goto out;
2335		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2336		bdev_thaw(sb->s_bdev);
 
 
 
 
2337		break;
2338	case F2FS_GOING_DOWN_METASYNC:
2339		/* do checkpoint only */
2340		ret = f2fs_sync_fs(sb, 1);
2341		if (ret) {
2342			if (ret == -EIO)
2343				ret = 0;
2344			goto out;
2345		}
2346		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
2347		break;
2348	case F2FS_GOING_DOWN_NOSYNC:
2349		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
 
2350		break;
2351	case F2FS_GOING_DOWN_METAFLUSH:
2352		f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO);
2353		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_SHUTDOWN);
 
2354		break;
2355	case F2FS_GOING_DOWN_NEED_FSCK:
2356		set_sbi_flag(sbi, SBI_NEED_FSCK);
2357		set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
2358		set_sbi_flag(sbi, SBI_IS_DIRTY);
2359		/* do checkpoint only */
2360		ret = f2fs_sync_fs(sb, 1);
2361		if (ret == -EIO)
2362			ret = 0;
2363		goto out;
2364	default:
2365		ret = -EINVAL;
2366		goto out;
2367	}
2368
2369	if (readonly)
2370		goto out;
2371
2372	/*
2373	 * grab sb->s_umount to avoid racing w/ remount() and other shutdown
2374	 * paths.
2375	 */
2376	if (need_lock)
2377		down_write(&sbi->sb->s_umount);
2378
2379	f2fs_stop_gc_thread(sbi);
2380	f2fs_stop_discard_thread(sbi);
2381
2382	f2fs_drop_discard_cmd(sbi);
2383	clear_opt(sbi, DISCARD);
2384
2385	if (need_lock)
2386		up_write(&sbi->sb->s_umount);
2387
2388	f2fs_update_time(sbi, REQ_TIME);
2389out:
2390
2391	trace_f2fs_shutdown(sbi, flag, ret);
2392
2393	return ret;
2394}
2395
2396static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
2397{
2398	struct inode *inode = file_inode(filp);
2399	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2400	__u32 in;
2401	int ret;
2402	bool need_drop = false, readonly = false;
2403
2404	if (!capable(CAP_SYS_ADMIN))
2405		return -EPERM;
2406
2407	if (get_user(in, (__u32 __user *)arg))
2408		return -EFAULT;
2409
2410	if (in != F2FS_GOING_DOWN_FULLSYNC) {
2411		ret = mnt_want_write_file(filp);
2412		if (ret) {
2413			if (ret != -EROFS)
2414				return ret;
2415
2416			/* fallback to nosync shutdown for readonly fs */
2417			in = F2FS_GOING_DOWN_NOSYNC;
2418			readonly = true;
2419		} else {
2420			need_drop = true;
2421		}
2422	}
2423
2424	ret = f2fs_do_shutdown(sbi, in, readonly, true);
2425
2426	if (need_drop)
2427		mnt_drop_write_file(filp);
2428
 
 
2429	return ret;
2430}
2431
2432static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
2433{
2434	struct inode *inode = file_inode(filp);
2435	struct super_block *sb = inode->i_sb;
 
2436	struct fstrim_range range;
2437	int ret;
2438
2439	if (!capable(CAP_SYS_ADMIN))
2440		return -EPERM;
2441
2442	if (!f2fs_hw_support_discard(F2FS_SB(sb)))
2443		return -EOPNOTSUPP;
2444
2445	if (copy_from_user(&range, (struct fstrim_range __user *)arg,
2446				sizeof(range)))
2447		return -EFAULT;
2448
2449	ret = mnt_want_write_file(filp);
2450	if (ret)
2451		return ret;
2452
2453	range.minlen = max((unsigned int)range.minlen,
2454			   bdev_discard_granularity(sb->s_bdev));
2455	ret = f2fs_trim_fs(F2FS_SB(sb), &range);
2456	mnt_drop_write_file(filp);
2457	if (ret < 0)
2458		return ret;
2459
2460	if (copy_to_user((struct fstrim_range __user *)arg, &range,
2461				sizeof(range)))
2462		return -EFAULT;
2463	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2464	return 0;
2465}
2466
2467static bool uuid_is_nonzero(__u8 u[16])
2468{
2469	int i;
2470
2471	for (i = 0; i < 16; i++)
2472		if (u[i])
2473			return true;
2474	return false;
2475}
2476
2477static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
2478{
2479	struct inode *inode = file_inode(filp);
2480	int ret;
2481
2482	if (!f2fs_sb_has_encrypt(F2FS_I_SB(inode)))
2483		return -EOPNOTSUPP;
2484
2485	ret = fscrypt_ioctl_set_policy(filp, (const void __user *)arg);
2486	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2487	return ret;
 
2488}
2489
2490static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
2491{
2492	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2493		return -EOPNOTSUPP;
2494	return fscrypt_ioctl_get_policy(filp, (void __user *)arg);
2495}
2496
2497static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
2498{
2499	struct inode *inode = file_inode(filp);
2500	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2501	u8 encrypt_pw_salt[16];
2502	int err;
2503
2504	if (!f2fs_sb_has_encrypt(sbi))
2505		return -EOPNOTSUPP;
2506
2507	err = mnt_want_write_file(filp);
2508	if (err)
2509		return err;
2510
2511	f2fs_down_write(&sbi->sb_lock);
2512
2513	if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
2514		goto got_it;
2515
2516	/* update superblock with uuid */
2517	generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
2518
2519	err = f2fs_commit_super(sbi, false);
2520	if (err) {
2521		/* undo new data */
2522		memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
2523		goto out_err;
2524	}
2525got_it:
2526	memcpy(encrypt_pw_salt, sbi->raw_super->encrypt_pw_salt, 16);
 
 
2527out_err:
2528	f2fs_up_write(&sbi->sb_lock);
2529	mnt_drop_write_file(filp);
2530
2531	if (!err && copy_to_user((__u8 __user *)arg, encrypt_pw_salt, 16))
2532		err = -EFAULT;
2533
2534	return err;
2535}
2536
2537static int f2fs_ioc_get_encryption_policy_ex(struct file *filp,
2538					     unsigned long arg)
2539{
2540	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2541		return -EOPNOTSUPP;
2542
2543	return fscrypt_ioctl_get_policy_ex(filp, (void __user *)arg);
2544}
2545
2546static int f2fs_ioc_add_encryption_key(struct file *filp, unsigned long arg)
2547{
2548	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2549		return -EOPNOTSUPP;
2550
2551	return fscrypt_ioctl_add_key(filp, (void __user *)arg);
2552}
2553
2554static int f2fs_ioc_remove_encryption_key(struct file *filp, unsigned long arg)
2555{
2556	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2557		return -EOPNOTSUPP;
2558
2559	return fscrypt_ioctl_remove_key(filp, (void __user *)arg);
2560}
2561
2562static int f2fs_ioc_remove_encryption_key_all_users(struct file *filp,
2563						    unsigned long arg)
2564{
2565	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2566		return -EOPNOTSUPP;
2567
2568	return fscrypt_ioctl_remove_key_all_users(filp, (void __user *)arg);
2569}
2570
2571static int f2fs_ioc_get_encryption_key_status(struct file *filp,
2572					      unsigned long arg)
2573{
2574	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2575		return -EOPNOTSUPP;
2576
2577	return fscrypt_ioctl_get_key_status(filp, (void __user *)arg);
2578}
2579
2580static int f2fs_ioc_get_encryption_nonce(struct file *filp, unsigned long arg)
2581{
2582	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2583		return -EOPNOTSUPP;
2584
2585	return fscrypt_ioctl_get_nonce(filp, (void __user *)arg);
2586}
2587
2588static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
2589{
2590	struct inode *inode = file_inode(filp);
2591	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2592	struct f2fs_gc_control gc_control = { .victim_segno = NULL_SEGNO,
2593			.no_bg_gc = false,
2594			.should_migrate_blocks = false,
2595			.nr_free_secs = 0 };
2596	__u32 sync;
2597	int ret;
2598
2599	if (!capable(CAP_SYS_ADMIN))
2600		return -EPERM;
2601
2602	if (get_user(sync, (__u32 __user *)arg))
2603		return -EFAULT;
2604
2605	if (f2fs_readonly(sbi->sb))
2606		return -EROFS;
2607
2608	ret = mnt_want_write_file(filp);
2609	if (ret)
2610		return ret;
2611
2612	if (!sync) {
2613		if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
2614			ret = -EBUSY;
2615			goto out;
2616		}
2617	} else {
2618		f2fs_down_write(&sbi->gc_lock);
2619	}
2620
2621	gc_control.init_gc_type = sync ? FG_GC : BG_GC;
2622	gc_control.err_gc_skipped = sync;
2623	stat_inc_gc_call_count(sbi, FOREGROUND);
2624	ret = f2fs_gc(sbi, &gc_control);
2625out:
2626	mnt_drop_write_file(filp);
2627	return ret;
2628}
2629
2630static int __f2fs_ioc_gc_range(struct file *filp, struct f2fs_gc_range *range)
2631{
2632	struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
2633	struct f2fs_gc_control gc_control = {
2634			.init_gc_type = range->sync ? FG_GC : BG_GC,
2635			.no_bg_gc = false,
2636			.should_migrate_blocks = false,
2637			.err_gc_skipped = range->sync,
2638			.nr_free_secs = 0 };
2639	u64 end;
2640	int ret;
2641
2642	if (!capable(CAP_SYS_ADMIN))
2643		return -EPERM;
 
 
 
 
 
2644	if (f2fs_readonly(sbi->sb))
2645		return -EROFS;
2646
2647	end = range->start + range->len;
2648	if (end < range->start || range->start < MAIN_BLKADDR(sbi) ||
2649					end >= MAX_BLKADDR(sbi))
2650		return -EINVAL;
2651
2652	ret = mnt_want_write_file(filp);
2653	if (ret)
2654		return ret;
2655
2656do_more:
2657	if (!range->sync) {
2658		if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
2659			ret = -EBUSY;
2660			goto out;
2661		}
2662	} else {
2663		f2fs_down_write(&sbi->gc_lock);
2664	}
2665
2666	gc_control.victim_segno = GET_SEGNO(sbi, range->start);
2667	stat_inc_gc_call_count(sbi, FOREGROUND);
2668	ret = f2fs_gc(sbi, &gc_control);
2669	if (ret) {
2670		if (ret == -EBUSY)
2671			ret = -EAGAIN;
2672		goto out;
2673	}
2674	range->start += CAP_BLKS_PER_SEC(sbi);
2675	if (range->start <= end)
2676		goto do_more;
2677out:
2678	mnt_drop_write_file(filp);
2679	return ret;
2680}
2681
2682static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg)
2683{
2684	struct f2fs_gc_range range;
2685
2686	if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg,
2687							sizeof(range)))
2688		return -EFAULT;
2689	return __f2fs_ioc_gc_range(filp, &range);
2690}
2691
2692static int f2fs_ioc_write_checkpoint(struct file *filp)
2693{
2694	struct inode *inode = file_inode(filp);
2695	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2696	int ret;
2697
2698	if (!capable(CAP_SYS_ADMIN))
2699		return -EPERM;
2700
2701	if (f2fs_readonly(sbi->sb))
2702		return -EROFS;
2703
2704	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2705		f2fs_info(sbi, "Skipping Checkpoint. Checkpoints currently disabled.");
2706		return -EINVAL;
2707	}
2708
2709	ret = mnt_want_write_file(filp);
2710	if (ret)
2711		return ret;
2712
2713	ret = f2fs_sync_fs(sbi->sb, 1);
2714
2715	mnt_drop_write_file(filp);
2716	return ret;
2717}
2718
2719static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
2720					struct file *filp,
2721					struct f2fs_defragment *range)
2722{
2723	struct inode *inode = file_inode(filp);
2724	struct f2fs_map_blocks map = { .m_next_extent = NULL,
2725					.m_seg_type = NO_CHECK_TYPE,
2726					.m_may_create = false };
2727	struct extent_info ei = {};
2728	pgoff_t pg_start, pg_end, next_pgofs;
 
2729	unsigned int total = 0, sec_num;
2730	block_t blk_end = 0;
2731	bool fragmented = false;
2732	int err;
2733
2734	f2fs_balance_fs(sbi, true);
 
 
2735
2736	inode_lock(inode);
2737	pg_start = range->start >> PAGE_SHIFT;
2738	pg_end = min_t(pgoff_t,
2739				(range->start + range->len) >> PAGE_SHIFT,
2740				DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE));
2741
2742	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED) ||
2743		f2fs_is_atomic_file(inode)) {
2744		err = -EINVAL;
2745		goto unlock_out;
2746	}
2747
2748	/* if in-place-update policy is enabled, don't waste time here */
2749	set_inode_flag(inode, FI_OPU_WRITE);
2750	if (f2fs_should_update_inplace(inode, NULL)) {
2751		err = -EINVAL;
2752		goto out;
2753	}
2754
2755	/* writeback all dirty pages in the range */
2756	err = filemap_write_and_wait_range(inode->i_mapping,
2757						pg_start << PAGE_SHIFT,
2758						(pg_end << PAGE_SHIFT) - 1);
2759	if (err)
2760		goto out;
2761
2762	/*
2763	 * lookup mapping info in extent cache, skip defragmenting if physical
2764	 * block addresses are continuous.
2765	 */
2766	if (f2fs_lookup_read_extent_cache(inode, pg_start, &ei)) {
2767		if ((pgoff_t)ei.fofs + ei.len >= pg_end)
2768			goto out;
2769	}
2770
2771	map.m_lblk = pg_start;
2772	map.m_next_pgofs = &next_pgofs;
2773
2774	/*
2775	 * lookup mapping info in dnode page cache, skip defragmenting if all
2776	 * physical block addresses are continuous even if there are hole(s)
2777	 * in logical blocks.
2778	 */
2779	while (map.m_lblk < pg_end) {
2780		map.m_len = pg_end - map.m_lblk;
2781		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT);
2782		if (err)
2783			goto out;
2784
2785		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2786			map.m_lblk = next_pgofs;
2787			continue;
2788		}
2789
2790		if (blk_end && blk_end != map.m_pblk)
2791			fragmented = true;
2792
2793		/* record total count of block that we're going to move */
2794		total += map.m_len;
2795
2796		blk_end = map.m_pblk + map.m_len;
2797
2798		map.m_lblk += map.m_len;
2799	}
2800
2801	if (!fragmented) {
2802		total = 0;
2803		goto out;
2804	}
2805
2806	sec_num = DIV_ROUND_UP(total, CAP_BLKS_PER_SEC(sbi));
2807
2808	/*
2809	 * make sure there are enough free section for LFS allocation, this can
2810	 * avoid defragment running in SSR mode when free section are allocated
2811	 * intensively
2812	 */
2813	if (has_not_enough_free_secs(sbi, 0, sec_num)) {
2814		err = -EAGAIN;
2815		goto out;
2816	}
2817
2818	map.m_lblk = pg_start;
2819	map.m_len = pg_end - pg_start;
2820	total = 0;
2821
2822	while (map.m_lblk < pg_end) {
2823		pgoff_t idx;
2824		int cnt = 0;
2825
2826do_map:
2827		map.m_len = pg_end - map.m_lblk;
2828		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT);
2829		if (err)
2830			goto clear_out;
2831
2832		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2833			map.m_lblk = next_pgofs;
2834			goto check;
2835		}
2836
2837		set_inode_flag(inode, FI_SKIP_WRITES);
2838
2839		idx = map.m_lblk;
2840		while (idx < map.m_lblk + map.m_len &&
2841						cnt < BLKS_PER_SEG(sbi)) {
2842			struct page *page;
2843
2844			page = f2fs_get_lock_data_page(inode, idx, true);
2845			if (IS_ERR(page)) {
2846				err = PTR_ERR(page);
2847				goto clear_out;
2848			}
2849
2850			f2fs_wait_on_page_writeback(page, DATA, true, true);
2851
2852			set_page_dirty(page);
2853			set_page_private_gcing(page);
2854			f2fs_put_page(page, 1);
2855
2856			idx++;
2857			cnt++;
2858			total++;
2859		}
2860
2861		map.m_lblk = idx;
2862check:
2863		if (map.m_lblk < pg_end && cnt < BLKS_PER_SEG(sbi))
2864			goto do_map;
2865
2866		clear_inode_flag(inode, FI_SKIP_WRITES);
2867
2868		err = filemap_fdatawrite(inode->i_mapping);
2869		if (err)
2870			goto out;
2871	}
2872clear_out:
2873	clear_inode_flag(inode, FI_SKIP_WRITES);
2874out:
2875	clear_inode_flag(inode, FI_OPU_WRITE);
2876unlock_out:
2877	inode_unlock(inode);
2878	if (!err)
2879		range->len = (u64)total << PAGE_SHIFT;
2880	return err;
2881}
2882
2883static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
2884{
2885	struct inode *inode = file_inode(filp);
2886	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2887	struct f2fs_defragment range;
2888	int err;
2889
2890	if (!capable(CAP_SYS_ADMIN))
2891		return -EPERM;
2892
2893	if (!S_ISREG(inode->i_mode))
2894		return -EINVAL;
2895
2896	if (f2fs_readonly(sbi->sb))
2897		return -EROFS;
2898
2899	if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
2900							sizeof(range)))
2901		return -EFAULT;
2902
2903	/* verify alignment of offset & size */
2904	if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1))
2905		return -EINVAL;
2906
2907	if (unlikely((range.start + range.len) >> PAGE_SHIFT >
2908					max_file_blocks(inode)))
2909		return -EINVAL;
2910
2911	err = mnt_want_write_file(filp);
2912	if (err)
2913		return err;
2914
2915	err = f2fs_defragment_range(sbi, filp, &range);
2916	mnt_drop_write_file(filp);
2917
2918	if (range.len)
2919		f2fs_update_time(sbi, REQ_TIME);
2920	if (err < 0)
2921		return err;
2922
2923	if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
2924							sizeof(range)))
2925		return -EFAULT;
2926
2927	return 0;
2928}
2929
2930static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
2931			struct file *file_out, loff_t pos_out, size_t len)
2932{
2933	struct inode *src = file_inode(file_in);
2934	struct inode *dst = file_inode(file_out);
2935	struct f2fs_sb_info *sbi = F2FS_I_SB(src);
2936	size_t olen = len, dst_max_i_size = 0;
2937	size_t dst_osize;
2938	int ret;
2939
2940	if (file_in->f_path.mnt != file_out->f_path.mnt ||
2941				src->i_sb != dst->i_sb)
2942		return -EXDEV;
2943
2944	if (unlikely(f2fs_readonly(src->i_sb)))
2945		return -EROFS;
2946
2947	if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode))
2948		return -EINVAL;
2949
2950	if (IS_ENCRYPTED(src) || IS_ENCRYPTED(dst))
2951		return -EOPNOTSUPP;
2952
2953	if (pos_out < 0 || pos_in < 0)
2954		return -EINVAL;
2955
2956	if (src == dst) {
2957		if (pos_in == pos_out)
2958			return 0;
2959		if (pos_out > pos_in && pos_out < pos_in + len)
2960			return -EINVAL;
2961	}
2962
2963	inode_lock(src);
2964	if (src != dst) {
2965		ret = -EBUSY;
2966		if (!inode_trylock(dst))
2967			goto out;
2968	}
2969
2970	if (f2fs_compressed_file(src) || f2fs_compressed_file(dst) ||
2971		f2fs_is_pinned_file(src) || f2fs_is_pinned_file(dst)) {
2972		ret = -EOPNOTSUPP;
2973		goto out_unlock;
2974	}
2975
2976	if (f2fs_is_atomic_file(src) || f2fs_is_atomic_file(dst)) {
2977		ret = -EINVAL;
2978		goto out_unlock;
2979	}
2980
2981	ret = -EINVAL;
2982	if (pos_in + len > src->i_size || pos_in + len < pos_in)
2983		goto out_unlock;
2984	if (len == 0)
2985		olen = len = src->i_size - pos_in;
2986	if (pos_in + len == src->i_size)
2987		len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
2988	if (len == 0) {
2989		ret = 0;
2990		goto out_unlock;
2991	}
2992
2993	dst_osize = dst->i_size;
2994	if (pos_out + olen > dst->i_size)
2995		dst_max_i_size = pos_out + olen;
2996
2997	/* verify the end result is block aligned */
2998	if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
2999			!IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
3000			!IS_ALIGNED(pos_out, F2FS_BLKSIZE))
3001		goto out_unlock;
3002
3003	ret = f2fs_convert_inline_inode(src);
3004	if (ret)
3005		goto out_unlock;
3006
3007	ret = f2fs_convert_inline_inode(dst);
3008	if (ret)
3009		goto out_unlock;
3010
3011	/* write out all dirty pages from offset */
3012	ret = filemap_write_and_wait_range(src->i_mapping,
3013					pos_in, pos_in + len);
3014	if (ret)
3015		goto out_unlock;
3016
3017	ret = filemap_write_and_wait_range(dst->i_mapping,
3018					pos_out, pos_out + len);
3019	if (ret)
3020		goto out_unlock;
3021
3022	f2fs_balance_fs(sbi, true);
3023
3024	f2fs_down_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
3025	if (src != dst) {
3026		ret = -EBUSY;
3027		if (!f2fs_down_write_trylock(&F2FS_I(dst)->i_gc_rwsem[WRITE]))
3028			goto out_src;
3029	}
3030
3031	f2fs_lock_op(sbi);
3032	ret = __exchange_data_block(src, dst, F2FS_BYTES_TO_BLK(pos_in),
3033				F2FS_BYTES_TO_BLK(pos_out),
3034				F2FS_BYTES_TO_BLK(len), false);
3035
3036	if (!ret) {
3037		if (dst_max_i_size)
3038			f2fs_i_size_write(dst, dst_max_i_size);
3039		else if (dst_osize != dst->i_size)
3040			f2fs_i_size_write(dst, dst_osize);
3041	}
3042	f2fs_unlock_op(sbi);
3043
3044	if (src != dst)
3045		f2fs_up_write(&F2FS_I(dst)->i_gc_rwsem[WRITE]);
3046out_src:
3047	f2fs_up_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
3048	if (ret)
3049		goto out_unlock;
3050
3051	inode_set_mtime_to_ts(src, inode_set_ctime_current(src));
3052	f2fs_mark_inode_dirty_sync(src, false);
3053	if (src != dst) {
3054		inode_set_mtime_to_ts(dst, inode_set_ctime_current(dst));
3055		f2fs_mark_inode_dirty_sync(dst, false);
3056	}
3057	f2fs_update_time(sbi, REQ_TIME);
3058
3059out_unlock:
3060	if (src != dst)
3061		inode_unlock(dst);
3062out:
3063	inode_unlock(src);
3064	return ret;
3065}
3066
3067static int __f2fs_ioc_move_range(struct file *filp,
3068				struct f2fs_move_range *range)
3069{
 
 
3070	int err;
3071
3072	if (!(filp->f_mode & FMODE_READ) ||
3073			!(filp->f_mode & FMODE_WRITE))
3074		return -EBADF;
3075
3076	CLASS(fd, dst)(range->dst_fd);
3077	if (fd_empty(dst))
3078		return -EBADF;
3079
3080	if (!(fd_file(dst)->f_mode & FMODE_WRITE))
 
3081		return -EBADF;
3082
 
 
 
 
 
3083	err = mnt_want_write_file(filp);
3084	if (err)
3085		return err;
3086
3087	err = f2fs_move_file_range(filp, range->pos_in, fd_file(dst),
3088					range->pos_out, range->len);
3089
3090	mnt_drop_write_file(filp);
3091	return err;
3092}
3093
3094static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
3095{
3096	struct f2fs_move_range range;
3097
3098	if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
3099							sizeof(range)))
3100		return -EFAULT;
3101	return __f2fs_ioc_move_range(filp, &range);
 
 
3102}
3103
3104static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg)
3105{
3106	struct inode *inode = file_inode(filp);
3107	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3108	struct sit_info *sm = SIT_I(sbi);
3109	unsigned int start_segno = 0, end_segno = 0;
3110	unsigned int dev_start_segno = 0, dev_end_segno = 0;
3111	struct f2fs_flush_device range;
3112	struct f2fs_gc_control gc_control = {
3113			.init_gc_type = FG_GC,
3114			.should_migrate_blocks = true,
3115			.err_gc_skipped = true,
3116			.nr_free_secs = 0 };
3117	int ret;
3118
3119	if (!capable(CAP_SYS_ADMIN))
3120		return -EPERM;
3121
3122	if (f2fs_readonly(sbi->sb))
3123		return -EROFS;
3124
3125	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
3126		return -EINVAL;
3127
3128	if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg,
3129							sizeof(range)))
3130		return -EFAULT;
3131
3132	if (!f2fs_is_multi_device(sbi) || sbi->s_ndevs - 1 <= range.dev_num ||
3133			__is_large_section(sbi)) {
3134		f2fs_warn(sbi, "Can't flush %u in %d for SEGS_PER_SEC %u != 1",
3135			  range.dev_num, sbi->s_ndevs, SEGS_PER_SEC(sbi));
3136		return -EINVAL;
3137	}
3138
3139	ret = mnt_want_write_file(filp);
3140	if (ret)
3141		return ret;
3142
3143	if (range.dev_num != 0)
3144		dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk);
3145	dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk);
3146
3147	start_segno = sm->last_victim[FLUSH_DEVICE];
3148	if (start_segno < dev_start_segno || start_segno >= dev_end_segno)
3149		start_segno = dev_start_segno;
3150	end_segno = min(start_segno + range.segments, dev_end_segno);
3151
3152	while (start_segno < end_segno) {
3153		if (!f2fs_down_write_trylock(&sbi->gc_lock)) {
3154			ret = -EBUSY;
3155			goto out;
3156		}
3157		sm->last_victim[GC_CB] = end_segno + 1;
3158		sm->last_victim[GC_GREEDY] = end_segno + 1;
3159		sm->last_victim[ALLOC_NEXT] = end_segno + 1;
3160
3161		gc_control.victim_segno = start_segno;
3162		stat_inc_gc_call_count(sbi, FOREGROUND);
3163		ret = f2fs_gc(sbi, &gc_control);
3164		if (ret == -EAGAIN)
3165			ret = 0;
3166		else if (ret < 0)
3167			break;
3168		start_segno++;
3169	}
3170out:
3171	mnt_drop_write_file(filp);
3172	return ret;
3173}
3174
3175static int f2fs_ioc_get_features(struct file *filp, unsigned long arg)
3176{
3177	struct inode *inode = file_inode(filp);
3178	u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature);
3179
3180	/* Must validate to set it with SQLite behavior in Android. */
3181	sb_feature |= F2FS_FEATURE_ATOMIC_WRITE;
3182
3183	return put_user(sb_feature, (u32 __user *)arg);
3184}
3185
3186#ifdef CONFIG_QUOTA
3187int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
3188{
3189	struct dquot *transfer_to[MAXQUOTAS] = {};
3190	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3191	struct super_block *sb = sbi->sb;
3192	int err;
3193
3194	transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid));
3195	if (IS_ERR(transfer_to[PRJQUOTA]))
3196		return PTR_ERR(transfer_to[PRJQUOTA]);
3197
3198	err = __dquot_transfer(inode, transfer_to);
3199	if (err)
3200		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
3201	dqput(transfer_to[PRJQUOTA]);
3202	return err;
3203}
3204
3205static int f2fs_ioc_setproject(struct inode *inode, __u32 projid)
3206{
 
3207	struct f2fs_inode_info *fi = F2FS_I(inode);
3208	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3209	struct f2fs_inode *ri = NULL;
3210	kprojid_t kprojid;
3211	int err;
3212
3213	if (!f2fs_sb_has_project_quota(sbi)) {
3214		if (projid != F2FS_DEF_PROJID)
3215			return -EOPNOTSUPP;
3216		else
3217			return 0;
3218	}
3219
3220	if (!f2fs_has_extra_attr(inode))
3221		return -EOPNOTSUPP;
3222
3223	kprojid = make_kprojid(&init_user_ns, (projid_t)projid);
3224
3225	if (projid_eq(kprojid, fi->i_projid))
3226		return 0;
3227
3228	err = -EPERM;
3229	/* Is it quota file? Do not allow user to mess with it */
3230	if (IS_NOQUOTA(inode))
3231		return err;
3232
3233	if (!F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_projid))
3234		return -EOVERFLOW;
 
 
 
 
 
 
 
 
 
3235
3236	err = f2fs_dquot_initialize(inode);
3237	if (err)
3238		return err;
3239
3240	f2fs_lock_op(sbi);
3241	err = f2fs_transfer_project_quota(inode, kprojid);
3242	if (err)
3243		goto out_unlock;
3244
3245	fi->i_projid = kprojid;
3246	inode_set_ctime_current(inode);
3247	f2fs_mark_inode_dirty_sync(inode, true);
3248out_unlock:
3249	f2fs_unlock_op(sbi);
3250	return err;
3251}
3252#else
3253int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
3254{
3255	return 0;
3256}
3257
3258static int f2fs_ioc_setproject(struct inode *inode, __u32 projid)
3259{
3260	if (projid != F2FS_DEF_PROJID)
3261		return -EOPNOTSUPP;
3262	return 0;
3263}
3264#endif
3265
3266int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3267{
3268	struct inode *inode = d_inode(dentry);
3269	struct f2fs_inode_info *fi = F2FS_I(inode);
3270	u32 fsflags = f2fs_iflags_to_fsflags(fi->i_flags);
3271
3272	if (IS_ENCRYPTED(inode))
3273		fsflags |= FS_ENCRYPT_FL;
3274	if (IS_VERITY(inode))
3275		fsflags |= FS_VERITY_FL;
3276	if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode))
3277		fsflags |= FS_INLINE_DATA_FL;
3278	if (is_inode_flag_set(inode, FI_PIN_FILE))
3279		fsflags |= FS_NOCOW_FL;
3280
3281	fileattr_fill_flags(fa, fsflags & F2FS_GETTABLE_FS_FL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3282
3283	if (f2fs_sb_has_project_quota(F2FS_I_SB(inode)))
3284		fa->fsx_projid = from_kprojid(&init_user_ns, fi->i_projid);
 
 
 
 
 
 
3285
 
 
 
 
3286	return 0;
3287}
3288
3289int f2fs_fileattr_set(struct mnt_idmap *idmap,
3290		      struct dentry *dentry, struct fileattr *fa)
3291{
3292	struct inode *inode = d_inode(dentry);
3293	u32 fsflags = fa->flags, mask = F2FS_SETTABLE_FS_FL;
3294	u32 iflags;
3295	int err;
3296
3297	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
3298		return -EIO;
3299	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
3300		return -ENOSPC;
3301	if (fsflags & ~F2FS_GETTABLE_FS_FL)
 
 
 
3302		return -EOPNOTSUPP;
3303	fsflags &= F2FS_SETTABLE_FS_FL;
3304	if (!fa->flags_valid)
3305		mask &= FS_COMMON_FL;
3306
3307	iflags = f2fs_fsflags_to_iflags(fsflags);
3308	if (f2fs_mask_flags(inode->i_mode, iflags) != iflags)
3309		return -EOPNOTSUPP;
3310
3311	err = f2fs_setflags_common(inode, iflags, f2fs_fsflags_to_iflags(mask));
3312	if (!err)
3313		err = f2fs_ioc_setproject(inode, fa->fsx_projid);
 
 
3314
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3315	return err;
3316}
3317
3318int f2fs_pin_file_control(struct inode *inode, bool inc)
3319{
3320	struct f2fs_inode_info *fi = F2FS_I(inode);
3321	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3322
3323	if (IS_DEVICE_ALIASING(inode))
3324		return -EINVAL;
 
 
3325
3326	if (fi->i_gc_failures >= sbi->gc_pin_file_threshold) {
3327		f2fs_warn(sbi, "%s: Enable GC = ino %lx after %x GC trials",
3328			  __func__, inode->i_ino, fi->i_gc_failures);
 
3329		clear_inode_flag(inode, FI_PIN_FILE);
3330		return -EAGAIN;
3331	}
3332
3333	/* Use i_gc_failures for normal file as a risk signal. */
3334	if (inc)
3335		f2fs_i_gc_failures_write(inode, fi->i_gc_failures + 1);
3336
3337	return 0;
3338}
3339
3340static int f2fs_ioc_set_pin_file(struct file *filp, unsigned long arg)
3341{
3342	struct inode *inode = file_inode(filp);
3343	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3344	__u32 pin;
3345	int ret = 0;
3346
3347	if (get_user(pin, (__u32 __user *)arg))
3348		return -EFAULT;
3349
3350	if (!S_ISREG(inode->i_mode))
3351		return -EINVAL;
3352
3353	if (f2fs_readonly(sbi->sb))
3354		return -EROFS;
3355
3356	if (!pin && IS_DEVICE_ALIASING(inode))
3357		return -EOPNOTSUPP;
3358
3359	ret = mnt_want_write_file(filp);
3360	if (ret)
3361		return ret;
3362
3363	inode_lock(inode);
3364
3365	if (f2fs_is_atomic_file(inode)) {
3366		ret = -EINVAL;
3367		goto out;
3368	}
3369
3370	if (!pin) {
3371		clear_inode_flag(inode, FI_PIN_FILE);
3372		f2fs_i_gc_failures_write(inode, 0);
3373		goto done;
3374	} else if (f2fs_is_pinned_file(inode)) {
3375		goto done;
3376	}
3377
3378	if (F2FS_HAS_BLOCKS(inode)) {
3379		ret = -EFBIG;
3380		goto out;
3381	}
3382
3383	/* Let's allow file pinning on zoned device. */
3384	if (!f2fs_sb_has_blkzoned(sbi) &&
3385	    f2fs_should_update_outplace(inode, NULL)) {
3386		ret = -EINVAL;
3387		goto out;
3388	}
3389
3390	if (f2fs_pin_file_control(inode, false)) {
3391		ret = -EAGAIN;
3392		goto out;
3393	}
3394
3395	ret = f2fs_convert_inline_inode(inode);
3396	if (ret)
3397		goto out;
3398
3399	if (!f2fs_disable_compressed_file(inode)) {
3400		ret = -EOPNOTSUPP;
3401		goto out;
3402	}
3403
3404	set_inode_flag(inode, FI_PIN_FILE);
3405	ret = F2FS_I(inode)->i_gc_failures;
3406done:
3407	f2fs_update_time(sbi, REQ_TIME);
3408out:
3409	inode_unlock(inode);
3410	mnt_drop_write_file(filp);
3411	return ret;
3412}
3413
3414static int f2fs_ioc_get_pin_file(struct file *filp, unsigned long arg)
3415{
3416	struct inode *inode = file_inode(filp);
3417	__u32 pin = 0;
3418
3419	if (is_inode_flag_set(inode, FI_PIN_FILE))
3420		pin = F2FS_I(inode)->i_gc_failures;
3421	return put_user(pin, (u32 __user *)arg);
3422}
3423
3424static int f2fs_ioc_get_dev_alias_file(struct file *filp, unsigned long arg)
3425{
3426	return put_user(IS_DEVICE_ALIASING(file_inode(filp)) ? 1 : 0,
3427			(u32 __user *)arg);
3428}
3429
3430int f2fs_precache_extents(struct inode *inode)
3431{
3432	struct f2fs_inode_info *fi = F2FS_I(inode);
3433	struct f2fs_map_blocks map;
3434	pgoff_t m_next_extent;
3435	loff_t end;
3436	int err;
3437
3438	if (is_inode_flag_set(inode, FI_NO_EXTENT))
3439		return -EOPNOTSUPP;
3440
3441	map.m_lblk = 0;
3442	map.m_pblk = 0;
3443	map.m_next_pgofs = NULL;
3444	map.m_next_extent = &m_next_extent;
3445	map.m_seg_type = NO_CHECK_TYPE;
3446	map.m_may_create = false;
3447	end = F2FS_BLK_ALIGN(i_size_read(inode));
3448
3449	while (map.m_lblk < end) {
3450		map.m_len = end - map.m_lblk;
3451
3452		f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
3453		err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_PRECACHE);
3454		f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
3455		if (err || !map.m_len)
3456			return err;
3457
3458		map.m_lblk = m_next_extent;
3459	}
3460
3461	return 0;
3462}
3463
3464static int f2fs_ioc_precache_extents(struct file *filp)
3465{
3466	return f2fs_precache_extents(file_inode(filp));
3467}
3468
3469static int f2fs_ioc_resize_fs(struct file *filp, unsigned long arg)
3470{
3471	struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
3472	__u64 block_count;
 
3473
3474	if (!capable(CAP_SYS_ADMIN))
3475		return -EPERM;
3476
3477	if (f2fs_readonly(sbi->sb))
3478		return -EROFS;
3479
3480	if (copy_from_user(&block_count, (void __user *)arg,
3481			   sizeof(block_count)))
3482		return -EFAULT;
3483
3484	return f2fs_resize_fs(filp, block_count);
 
 
3485}
3486
3487static int f2fs_ioc_enable_verity(struct file *filp, unsigned long arg)
3488{
3489	struct inode *inode = file_inode(filp);
3490
3491	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3492
3493	if (!f2fs_sb_has_verity(F2FS_I_SB(inode))) {
3494		f2fs_warn(F2FS_I_SB(inode),
3495			  "Can't enable fs-verity on inode %lu: the verity feature is not enabled on this filesystem",
3496			  inode->i_ino);
3497		return -EOPNOTSUPP;
3498	}
3499
3500	return fsverity_ioctl_enable(filp, (const void __user *)arg);
3501}
3502
3503static int f2fs_ioc_measure_verity(struct file *filp, unsigned long arg)
3504{
3505	if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3506		return -EOPNOTSUPP;
3507
3508	return fsverity_ioctl_measure(filp, (void __user *)arg);
3509}
3510
3511static int f2fs_ioc_read_verity_metadata(struct file *filp, unsigned long arg)
3512{
3513	if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3514		return -EOPNOTSUPP;
3515
3516	return fsverity_ioctl_read_metadata(filp, (const void __user *)arg);
3517}
3518
3519static int f2fs_ioc_getfslabel(struct file *filp, unsigned long arg)
3520{
3521	struct inode *inode = file_inode(filp);
3522	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3523	char *vbuf;
3524	int count;
3525	int err = 0;
3526
3527	vbuf = f2fs_kzalloc(sbi, MAX_VOLUME_NAME, GFP_KERNEL);
3528	if (!vbuf)
3529		return -ENOMEM;
3530
3531	f2fs_down_read(&sbi->sb_lock);
3532	count = utf16s_to_utf8s(sbi->raw_super->volume_name,
3533			ARRAY_SIZE(sbi->raw_super->volume_name),
3534			UTF16_LITTLE_ENDIAN, vbuf, MAX_VOLUME_NAME);
3535	f2fs_up_read(&sbi->sb_lock);
3536
3537	if (copy_to_user((char __user *)arg, vbuf,
3538				min(FSLABEL_MAX, count)))
3539		err = -EFAULT;
3540
3541	kfree(vbuf);
3542	return err;
3543}
3544
3545static int f2fs_ioc_setfslabel(struct file *filp, unsigned long arg)
3546{
3547	struct inode *inode = file_inode(filp);
3548	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3549	char *vbuf;
3550	int err = 0;
3551
3552	if (!capable(CAP_SYS_ADMIN))
3553		return -EPERM;
3554
3555	vbuf = strndup_user((const char __user *)arg, FSLABEL_MAX);
3556	if (IS_ERR(vbuf))
3557		return PTR_ERR(vbuf);
3558
3559	err = mnt_want_write_file(filp);
3560	if (err)
3561		goto out;
3562
3563	f2fs_down_write(&sbi->sb_lock);
3564
3565	memset(sbi->raw_super->volume_name, 0,
3566			sizeof(sbi->raw_super->volume_name));
3567	utf8s_to_utf16s(vbuf, strlen(vbuf), UTF16_LITTLE_ENDIAN,
3568			sbi->raw_super->volume_name,
3569			ARRAY_SIZE(sbi->raw_super->volume_name));
3570
3571	err = f2fs_commit_super(sbi, false);
3572
3573	f2fs_up_write(&sbi->sb_lock);
3574
3575	mnt_drop_write_file(filp);
3576out:
3577	kfree(vbuf);
3578	return err;
3579}
3580
3581static int f2fs_get_compress_blocks(struct inode *inode, __u64 *blocks)
3582{
3583	if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
3584		return -EOPNOTSUPP;
3585
3586	if (!f2fs_compressed_file(inode))
3587		return -EINVAL;
3588
3589	*blocks = atomic_read(&F2FS_I(inode)->i_compr_blocks);
3590
3591	return 0;
3592}
3593
3594static int f2fs_ioc_get_compress_blocks(struct file *filp, unsigned long arg)
3595{
3596	struct inode *inode = file_inode(filp);
3597	__u64 blocks;
3598	int ret;
3599
3600	ret = f2fs_get_compress_blocks(inode, &blocks);
3601	if (ret < 0)
3602		return ret;
3603
3604	return put_user(blocks, (u64 __user *)arg);
3605}
3606
3607static int release_compress_blocks(struct dnode_of_data *dn, pgoff_t count)
3608{
3609	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3610	unsigned int released_blocks = 0;
3611	int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3612	block_t blkaddr;
3613	int i;
3614
3615	for (i = 0; i < count; i++) {
3616		blkaddr = data_blkaddr(dn->inode, dn->node_page,
3617						dn->ofs_in_node + i);
3618
3619		if (!__is_valid_data_blkaddr(blkaddr))
3620			continue;
3621		if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3622					DATA_GENERIC_ENHANCE)))
3623			return -EFSCORRUPTED;
3624	}
3625
3626	while (count) {
3627		int compr_blocks = 0;
3628
3629		for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
3630			blkaddr = f2fs_data_blkaddr(dn);
3631
3632			if (i == 0) {
3633				if (blkaddr == COMPRESS_ADDR)
3634					continue;
3635				dn->ofs_in_node += cluster_size;
3636				goto next;
3637			}
3638
3639			if (__is_valid_data_blkaddr(blkaddr))
3640				compr_blocks++;
3641
3642			if (blkaddr != NEW_ADDR)
3643				continue;
3644
3645			f2fs_set_data_blkaddr(dn, NULL_ADDR);
3646		}
3647
3648		f2fs_i_compr_blocks_update(dn->inode, compr_blocks, false);
3649		dec_valid_block_count(sbi, dn->inode,
3650					cluster_size - compr_blocks);
3651
3652		released_blocks += cluster_size - compr_blocks;
3653next:
3654		count -= cluster_size;
3655	}
3656
3657	return released_blocks;
3658}
3659
3660static int f2fs_release_compress_blocks(struct file *filp, unsigned long arg)
3661{
3662	struct inode *inode = file_inode(filp);
3663	struct f2fs_inode_info *fi = F2FS_I(inode);
3664	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3665	pgoff_t page_idx = 0, last_idx;
3666	unsigned int released_blocks = 0;
3667	int ret;
3668	int writecount;
3669
3670	if (!f2fs_sb_has_compression(sbi))
3671		return -EOPNOTSUPP;
3672
3673	if (f2fs_readonly(sbi->sb))
3674		return -EROFS;
3675
3676	ret = mnt_want_write_file(filp);
3677	if (ret)
3678		return ret;
3679
3680	f2fs_balance_fs(sbi, true);
3681
3682	inode_lock(inode);
3683
3684	writecount = atomic_read(&inode->i_writecount);
3685	if ((filp->f_mode & FMODE_WRITE && writecount != 1) ||
3686			(!(filp->f_mode & FMODE_WRITE) && writecount)) {
3687		ret = -EBUSY;
3688		goto out;
3689	}
3690
3691	if (!f2fs_compressed_file(inode) ||
3692		is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
3693		ret = -EINVAL;
3694		goto out;
3695	}
3696
3697	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
3698	if (ret)
3699		goto out;
3700
3701	if (!atomic_read(&fi->i_compr_blocks)) {
3702		ret = -EPERM;
3703		goto out;
3704	}
3705
3706	set_inode_flag(inode, FI_COMPRESS_RELEASED);
3707	inode_set_ctime_current(inode);
3708	f2fs_mark_inode_dirty_sync(inode, true);
3709
3710	f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
3711	filemap_invalidate_lock(inode->i_mapping);
3712
3713	last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3714
3715	while (page_idx < last_idx) {
3716		struct dnode_of_data dn;
3717		pgoff_t end_offset, count;
3718
3719		f2fs_lock_op(sbi);
3720
3721		set_new_dnode(&dn, inode, NULL, NULL, 0);
3722		ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
3723		if (ret) {
3724			f2fs_unlock_op(sbi);
3725			if (ret == -ENOENT) {
3726				page_idx = f2fs_get_next_page_offset(&dn,
3727								page_idx);
3728				ret = 0;
3729				continue;
3730			}
3731			break;
3732		}
3733
3734		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3735		count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
3736		count = round_up(count, fi->i_cluster_size);
3737
3738		ret = release_compress_blocks(&dn, count);
3739
3740		f2fs_put_dnode(&dn);
3741
3742		f2fs_unlock_op(sbi);
3743
3744		if (ret < 0)
3745			break;
3746
3747		page_idx += count;
3748		released_blocks += ret;
3749	}
3750
3751	filemap_invalidate_unlock(inode->i_mapping);
3752	f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
3753out:
3754	if (released_blocks)
3755		f2fs_update_time(sbi, REQ_TIME);
3756	inode_unlock(inode);
3757
3758	mnt_drop_write_file(filp);
3759
3760	if (ret >= 0) {
3761		ret = put_user(released_blocks, (u64 __user *)arg);
3762	} else if (released_blocks &&
3763			atomic_read(&fi->i_compr_blocks)) {
3764		set_sbi_flag(sbi, SBI_NEED_FSCK);
3765		f2fs_warn(sbi, "%s: partial blocks were released i_ino=%lx "
3766			"iblocks=%llu, released=%u, compr_blocks=%u, "
3767			"run fsck to fix.",
3768			__func__, inode->i_ino, inode->i_blocks,
3769			released_blocks,
3770			atomic_read(&fi->i_compr_blocks));
3771	}
3772
3773	return ret;
3774}
3775
3776static int reserve_compress_blocks(struct dnode_of_data *dn, pgoff_t count,
3777		unsigned int *reserved_blocks)
3778{
3779	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
3780	int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
3781	block_t blkaddr;
3782	int i;
3783
3784	for (i = 0; i < count; i++) {
3785		blkaddr = data_blkaddr(dn->inode, dn->node_page,
3786						dn->ofs_in_node + i);
3787
3788		if (!__is_valid_data_blkaddr(blkaddr))
3789			continue;
3790		if (unlikely(!f2fs_is_valid_blkaddr(sbi, blkaddr,
3791					DATA_GENERIC_ENHANCE)))
3792			return -EFSCORRUPTED;
3793	}
3794
3795	while (count) {
3796		int compr_blocks = 0;
3797		blkcnt_t reserved = 0;
3798		blkcnt_t to_reserved;
3799		int ret;
3800
3801		for (i = 0; i < cluster_size; i++) {
3802			blkaddr = data_blkaddr(dn->inode, dn->node_page,
3803						dn->ofs_in_node + i);
3804
3805			if (i == 0) {
3806				if (blkaddr != COMPRESS_ADDR) {
3807					dn->ofs_in_node += cluster_size;
3808					goto next;
3809				}
3810				continue;
3811			}
3812
3813			/*
3814			 * compressed cluster was not released due to it
3815			 * fails in release_compress_blocks(), so NEW_ADDR
3816			 * is a possible case.
3817			 */
3818			if (blkaddr == NEW_ADDR) {
3819				reserved++;
3820				continue;
3821			}
3822			if (__is_valid_data_blkaddr(blkaddr)) {
3823				compr_blocks++;
3824				continue;
3825			}
3826		}
3827
3828		to_reserved = cluster_size - compr_blocks - reserved;
3829
3830		/* for the case all blocks in cluster were reserved */
3831		if (reserved && to_reserved == 1) {
3832			dn->ofs_in_node += cluster_size;
3833			goto next;
3834		}
3835
3836		ret = inc_valid_block_count(sbi, dn->inode,
3837						&to_reserved, false);
3838		if (unlikely(ret))
3839			return ret;
3840
3841		for (i = 0; i < cluster_size; i++, dn->ofs_in_node++) {
3842			if (f2fs_data_blkaddr(dn) == NULL_ADDR)
3843				f2fs_set_data_blkaddr(dn, NEW_ADDR);
3844		}
3845
3846		f2fs_i_compr_blocks_update(dn->inode, compr_blocks, true);
3847
3848		*reserved_blocks += to_reserved;
3849next:
3850		count -= cluster_size;
3851	}
3852
3853	return 0;
3854}
3855
3856static int f2fs_reserve_compress_blocks(struct file *filp, unsigned long arg)
3857{
3858	struct inode *inode = file_inode(filp);
3859	struct f2fs_inode_info *fi = F2FS_I(inode);
3860	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3861	pgoff_t page_idx = 0, last_idx;
3862	unsigned int reserved_blocks = 0;
3863	int ret;
3864
3865	if (!f2fs_sb_has_compression(sbi))
3866		return -EOPNOTSUPP;
3867
3868	if (f2fs_readonly(sbi->sb))
3869		return -EROFS;
3870
3871	ret = mnt_want_write_file(filp);
3872	if (ret)
3873		return ret;
3874
3875	f2fs_balance_fs(sbi, true);
3876
3877	inode_lock(inode);
3878
3879	if (!f2fs_compressed_file(inode) ||
3880		!is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
3881		ret = -EINVAL;
3882		goto unlock_inode;
3883	}
3884
3885	if (atomic_read(&fi->i_compr_blocks))
3886		goto unlock_inode;
3887
3888	f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
3889	filemap_invalidate_lock(inode->i_mapping);
3890
3891	last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3892
3893	while (page_idx < last_idx) {
3894		struct dnode_of_data dn;
3895		pgoff_t end_offset, count;
3896
3897		f2fs_lock_op(sbi);
3898
3899		set_new_dnode(&dn, inode, NULL, NULL, 0);
3900		ret = f2fs_get_dnode_of_data(&dn, page_idx, LOOKUP_NODE);
3901		if (ret) {
3902			f2fs_unlock_op(sbi);
3903			if (ret == -ENOENT) {
3904				page_idx = f2fs_get_next_page_offset(&dn,
3905								page_idx);
3906				ret = 0;
3907				continue;
3908			}
3909			break;
3910		}
3911
3912		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
3913		count = min(end_offset - dn.ofs_in_node, last_idx - page_idx);
3914		count = round_up(count, fi->i_cluster_size);
3915
3916		ret = reserve_compress_blocks(&dn, count, &reserved_blocks);
3917
3918		f2fs_put_dnode(&dn);
3919
3920		f2fs_unlock_op(sbi);
3921
3922		if (ret < 0)
3923			break;
3924
3925		page_idx += count;
3926	}
3927
3928	filemap_invalidate_unlock(inode->i_mapping);
3929	f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
3930
3931	if (!ret) {
3932		clear_inode_flag(inode, FI_COMPRESS_RELEASED);
3933		inode_set_ctime_current(inode);
3934		f2fs_mark_inode_dirty_sync(inode, true);
3935	}
3936unlock_inode:
3937	if (reserved_blocks)
3938		f2fs_update_time(sbi, REQ_TIME);
3939	inode_unlock(inode);
3940	mnt_drop_write_file(filp);
3941
3942	if (!ret) {
3943		ret = put_user(reserved_blocks, (u64 __user *)arg);
3944	} else if (reserved_blocks &&
3945			atomic_read(&fi->i_compr_blocks)) {
3946		set_sbi_flag(sbi, SBI_NEED_FSCK);
3947		f2fs_warn(sbi, "%s: partial blocks were reserved i_ino=%lx "
3948			"iblocks=%llu, reserved=%u, compr_blocks=%u, "
3949			"run fsck to fix.",
3950			__func__, inode->i_ino, inode->i_blocks,
3951			reserved_blocks,
3952			atomic_read(&fi->i_compr_blocks));
3953	}
3954
3955	return ret;
3956}
3957
3958static int f2fs_secure_erase(struct block_device *bdev, struct inode *inode,
3959		pgoff_t off, block_t block, block_t len, u32 flags)
3960{
3961	sector_t sector = SECTOR_FROM_BLOCK(block);
3962	sector_t nr_sects = SECTOR_FROM_BLOCK(len);
3963	int ret = 0;
3964
3965	if (flags & F2FS_TRIM_FILE_DISCARD) {
3966		if (bdev_max_secure_erase_sectors(bdev))
3967			ret = blkdev_issue_secure_erase(bdev, sector, nr_sects,
3968					GFP_NOFS);
3969		else
3970			ret = blkdev_issue_discard(bdev, sector, nr_sects,
3971					GFP_NOFS);
3972	}
3973
3974	if (!ret && (flags & F2FS_TRIM_FILE_ZEROOUT)) {
3975		if (IS_ENCRYPTED(inode))
3976			ret = fscrypt_zeroout_range(inode, off, block, len);
3977		else
3978			ret = blkdev_issue_zeroout(bdev, sector, nr_sects,
3979					GFP_NOFS, 0);
3980	}
3981
3982	return ret;
3983}
3984
3985static int f2fs_sec_trim_file(struct file *filp, unsigned long arg)
3986{
3987	struct inode *inode = file_inode(filp);
3988	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3989	struct address_space *mapping = inode->i_mapping;
3990	struct block_device *prev_bdev = NULL;
3991	struct f2fs_sectrim_range range;
3992	pgoff_t index, pg_end, prev_index = 0;
3993	block_t prev_block = 0, len = 0;
3994	loff_t end_addr;
3995	bool to_end = false;
3996	int ret = 0;
3997
3998	if (!(filp->f_mode & FMODE_WRITE))
3999		return -EBADF;
4000
4001	if (copy_from_user(&range, (struct f2fs_sectrim_range __user *)arg,
4002				sizeof(range)))
4003		return -EFAULT;
4004
4005	if (range.flags == 0 || (range.flags & ~F2FS_TRIM_FILE_MASK) ||
4006			!S_ISREG(inode->i_mode))
4007		return -EINVAL;
4008
4009	if (((range.flags & F2FS_TRIM_FILE_DISCARD) &&
4010			!f2fs_hw_support_discard(sbi)) ||
4011			((range.flags & F2FS_TRIM_FILE_ZEROOUT) &&
4012			 IS_ENCRYPTED(inode) && f2fs_is_multi_device(sbi)))
4013		return -EOPNOTSUPP;
4014
4015	ret = mnt_want_write_file(filp);
4016	if (ret)
4017		return ret;
4018	inode_lock(inode);
4019
4020	if (f2fs_is_atomic_file(inode) || f2fs_compressed_file(inode) ||
4021			range.start >= inode->i_size) {
4022		ret = -EINVAL;
4023		goto err;
4024	}
4025
4026	if (range.len == 0)
4027		goto err;
4028
4029	if (inode->i_size - range.start > range.len) {
4030		end_addr = range.start + range.len;
4031	} else {
4032		end_addr = range.len == (u64)-1 ?
4033			sbi->sb->s_maxbytes : inode->i_size;
4034		to_end = true;
4035	}
4036
4037	if (!IS_ALIGNED(range.start, F2FS_BLKSIZE) ||
4038			(!to_end && !IS_ALIGNED(end_addr, F2FS_BLKSIZE))) {
4039		ret = -EINVAL;
4040		goto err;
4041	}
4042
4043	index = F2FS_BYTES_TO_BLK(range.start);
4044	pg_end = DIV_ROUND_UP(end_addr, F2FS_BLKSIZE);
4045
4046	ret = f2fs_convert_inline_inode(inode);
4047	if (ret)
4048		goto err;
4049
4050	f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4051	filemap_invalidate_lock(mapping);
4052
4053	ret = filemap_write_and_wait_range(mapping, range.start,
4054			to_end ? LLONG_MAX : end_addr - 1);
4055	if (ret)
4056		goto out;
4057
4058	truncate_inode_pages_range(mapping, range.start,
4059			to_end ? -1 : end_addr - 1);
4060
4061	while (index < pg_end) {
4062		struct dnode_of_data dn;
4063		pgoff_t end_offset, count;
4064		int i;
4065
4066		set_new_dnode(&dn, inode, NULL, NULL, 0);
4067		ret = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
4068		if (ret) {
4069			if (ret == -ENOENT) {
4070				index = f2fs_get_next_page_offset(&dn, index);
4071				continue;
4072			}
4073			goto out;
4074		}
4075
4076		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
4077		count = min(end_offset - dn.ofs_in_node, pg_end - index);
4078		for (i = 0; i < count; i++, index++, dn.ofs_in_node++) {
4079			struct block_device *cur_bdev;
4080			block_t blkaddr = f2fs_data_blkaddr(&dn);
4081
4082			if (!__is_valid_data_blkaddr(blkaddr))
4083				continue;
4084
4085			if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
4086						DATA_GENERIC_ENHANCE)) {
4087				ret = -EFSCORRUPTED;
4088				f2fs_put_dnode(&dn);
4089				goto out;
4090			}
4091
4092			cur_bdev = f2fs_target_device(sbi, blkaddr, NULL);
4093			if (f2fs_is_multi_device(sbi)) {
4094				int di = f2fs_target_device_index(sbi, blkaddr);
4095
4096				blkaddr -= FDEV(di).start_blk;
4097			}
4098
4099			if (len) {
4100				if (prev_bdev == cur_bdev &&
4101						index == prev_index + len &&
4102						blkaddr == prev_block + len) {
4103					len++;
4104				} else {
4105					ret = f2fs_secure_erase(prev_bdev,
4106						inode, prev_index, prev_block,
4107						len, range.flags);
4108					if (ret) {
4109						f2fs_put_dnode(&dn);
4110						goto out;
4111					}
4112
4113					len = 0;
4114				}
4115			}
4116
4117			if (!len) {
4118				prev_bdev = cur_bdev;
4119				prev_index = index;
4120				prev_block = blkaddr;
4121				len = 1;
4122			}
4123		}
4124
4125		f2fs_put_dnode(&dn);
4126
4127		if (fatal_signal_pending(current)) {
4128			ret = -EINTR;
4129			goto out;
4130		}
4131		cond_resched();
4132	}
4133
4134	if (len)
4135		ret = f2fs_secure_erase(prev_bdev, inode, prev_index,
4136				prev_block, len, range.flags);
4137	f2fs_update_time(sbi, REQ_TIME);
4138out:
4139	filemap_invalidate_unlock(mapping);
4140	f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
4141err:
4142	inode_unlock(inode);
4143	mnt_drop_write_file(filp);
4144
4145	return ret;
4146}
4147
4148static int f2fs_ioc_get_compress_option(struct file *filp, unsigned long arg)
4149{
4150	struct inode *inode = file_inode(filp);
4151	struct f2fs_comp_option option;
4152
4153	if (!f2fs_sb_has_compression(F2FS_I_SB(inode)))
4154		return -EOPNOTSUPP;
4155
4156	inode_lock_shared(inode);
4157
4158	if (!f2fs_compressed_file(inode)) {
4159		inode_unlock_shared(inode);
4160		return -ENODATA;
4161	}
4162
4163	option.algorithm = F2FS_I(inode)->i_compress_algorithm;
4164	option.log_cluster_size = F2FS_I(inode)->i_log_cluster_size;
4165
4166	inode_unlock_shared(inode);
4167
4168	if (copy_to_user((struct f2fs_comp_option __user *)arg, &option,
4169				sizeof(option)))
4170		return -EFAULT;
4171
4172	return 0;
4173}
4174
4175static int f2fs_ioc_set_compress_option(struct file *filp, unsigned long arg)
4176{
4177	struct inode *inode = file_inode(filp);
4178	struct f2fs_inode_info *fi = F2FS_I(inode);
4179	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4180	struct f2fs_comp_option option;
4181	int ret = 0;
4182
4183	if (!f2fs_sb_has_compression(sbi))
4184		return -EOPNOTSUPP;
4185
4186	if (!(filp->f_mode & FMODE_WRITE))
4187		return -EBADF;
4188
4189	if (copy_from_user(&option, (struct f2fs_comp_option __user *)arg,
4190				sizeof(option)))
4191		return -EFAULT;
4192
4193	if (option.log_cluster_size < MIN_COMPRESS_LOG_SIZE ||
4194		option.log_cluster_size > MAX_COMPRESS_LOG_SIZE ||
4195		option.algorithm >= COMPRESS_MAX)
4196		return -EINVAL;
4197
4198	ret = mnt_want_write_file(filp);
4199	if (ret)
4200		return ret;
4201	inode_lock(inode);
4202
4203	f2fs_down_write(&F2FS_I(inode)->i_sem);
4204	if (!f2fs_compressed_file(inode)) {
4205		ret = -EINVAL;
4206		goto out;
4207	}
4208
4209	if (f2fs_is_mmap_file(inode) || get_dirty_pages(inode)) {
4210		ret = -EBUSY;
4211		goto out;
4212	}
4213
4214	if (F2FS_HAS_BLOCKS(inode)) {
4215		ret = -EFBIG;
4216		goto out;
4217	}
4218
4219	fi->i_compress_algorithm = option.algorithm;
4220	fi->i_log_cluster_size = option.log_cluster_size;
4221	fi->i_cluster_size = BIT(option.log_cluster_size);
4222	/* Set default level */
4223	if (fi->i_compress_algorithm == COMPRESS_ZSTD)
4224		fi->i_compress_level = F2FS_ZSTD_DEFAULT_CLEVEL;
4225	else
4226		fi->i_compress_level = 0;
4227	/* Adjust mount option level */
4228	if (option.algorithm == F2FS_OPTION(sbi).compress_algorithm &&
4229	    F2FS_OPTION(sbi).compress_level)
4230		fi->i_compress_level = F2FS_OPTION(sbi).compress_level;
4231	f2fs_mark_inode_dirty_sync(inode, true);
4232
4233	if (!f2fs_is_compress_backend_ready(inode))
4234		f2fs_warn(sbi, "compression algorithm is successfully set, "
4235			"but current kernel doesn't support this algorithm.");
4236out:
4237	f2fs_up_write(&fi->i_sem);
4238	inode_unlock(inode);
4239	mnt_drop_write_file(filp);
4240
4241	return ret;
4242}
4243
4244static int redirty_blocks(struct inode *inode, pgoff_t page_idx, int len)
4245{
4246	DEFINE_READAHEAD(ractl, NULL, NULL, inode->i_mapping, page_idx);
4247	struct address_space *mapping = inode->i_mapping;
4248	struct page *page;
4249	pgoff_t redirty_idx = page_idx;
4250	int i, page_len = 0, ret = 0;
4251
4252	page_cache_ra_unbounded(&ractl, len, 0);
4253
4254	for (i = 0; i < len; i++, page_idx++) {
4255		page = read_cache_page(mapping, page_idx, NULL, NULL);
4256		if (IS_ERR(page)) {
4257			ret = PTR_ERR(page);
4258			break;
4259		}
4260		page_len++;
4261	}
4262
4263	for (i = 0; i < page_len; i++, redirty_idx++) {
4264		page = find_lock_page(mapping, redirty_idx);
4265
4266		/* It will never fail, when page has pinned above */
4267		f2fs_bug_on(F2FS_I_SB(inode), !page);
4268
4269		f2fs_wait_on_page_writeback(page, DATA, true, true);
4270
4271		set_page_dirty(page);
4272		set_page_private_gcing(page);
4273		f2fs_put_page(page, 1);
4274		f2fs_put_page(page, 0);
4275	}
4276
4277	return ret;
4278}
4279
4280static int f2fs_ioc_decompress_file(struct file *filp)
4281{
4282	struct inode *inode = file_inode(filp);
4283	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4284	struct f2fs_inode_info *fi = F2FS_I(inode);
4285	pgoff_t page_idx = 0, last_idx, cluster_idx;
4286	int ret;
4287
4288	if (!f2fs_sb_has_compression(sbi) ||
4289			F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER)
4290		return -EOPNOTSUPP;
4291
4292	if (!(filp->f_mode & FMODE_WRITE))
4293		return -EBADF;
4294
4295	f2fs_balance_fs(sbi, true);
4296
4297	ret = mnt_want_write_file(filp);
4298	if (ret)
4299		return ret;
4300	inode_lock(inode);
4301
4302	if (!f2fs_is_compress_backend_ready(inode)) {
4303		ret = -EOPNOTSUPP;
4304		goto out;
4305	}
4306
4307	if (!f2fs_compressed_file(inode) ||
4308		is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
4309		ret = -EINVAL;
4310		goto out;
4311	}
4312
4313	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
4314	if (ret)
4315		goto out;
4316
4317	if (!atomic_read(&fi->i_compr_blocks))
4318		goto out;
4319
4320	last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
4321	last_idx >>= fi->i_log_cluster_size;
4322
4323	for (cluster_idx = 0; cluster_idx < last_idx; cluster_idx++) {
4324		page_idx = cluster_idx << fi->i_log_cluster_size;
4325
4326		if (!f2fs_is_compressed_cluster(inode, page_idx))
4327			continue;
4328
4329		ret = redirty_blocks(inode, page_idx, fi->i_cluster_size);
4330		if (ret < 0)
4331			break;
4332
4333		if (get_dirty_pages(inode) >= BLKS_PER_SEG(sbi)) {
4334			ret = filemap_fdatawrite(inode->i_mapping);
4335			if (ret < 0)
4336				break;
4337		}
4338
4339		cond_resched();
4340		if (fatal_signal_pending(current)) {
4341			ret = -EINTR;
4342			break;
4343		}
4344	}
4345
4346	if (!ret)
4347		ret = filemap_write_and_wait_range(inode->i_mapping, 0,
4348							LLONG_MAX);
4349
4350	if (ret)
4351		f2fs_warn(sbi, "%s: The file might be partially decompressed (errno=%d). Please delete the file.",
4352			  __func__, ret);
4353	f2fs_update_time(sbi, REQ_TIME);
4354out:
4355	inode_unlock(inode);
4356	mnt_drop_write_file(filp);
4357
4358	return ret;
4359}
4360
4361static int f2fs_ioc_compress_file(struct file *filp)
4362{
4363	struct inode *inode = file_inode(filp);
4364	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4365	struct f2fs_inode_info *fi = F2FS_I(inode);
4366	pgoff_t page_idx = 0, last_idx, cluster_idx;
4367	int ret;
4368
4369	if (!f2fs_sb_has_compression(sbi) ||
4370			F2FS_OPTION(sbi).compress_mode != COMPR_MODE_USER)
4371		return -EOPNOTSUPP;
4372
4373	if (!(filp->f_mode & FMODE_WRITE))
4374		return -EBADF;
4375
4376	f2fs_balance_fs(sbi, true);
4377
4378	ret = mnt_want_write_file(filp);
4379	if (ret)
4380		return ret;
4381	inode_lock(inode);
4382
4383	if (!f2fs_is_compress_backend_ready(inode)) {
4384		ret = -EOPNOTSUPP;
4385		goto out;
4386	}
4387
4388	if (!f2fs_compressed_file(inode) ||
4389		is_inode_flag_set(inode, FI_COMPRESS_RELEASED)) {
4390		ret = -EINVAL;
4391		goto out;
4392	}
4393
4394	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
4395	if (ret)
4396		goto out;
4397
4398	set_inode_flag(inode, FI_ENABLE_COMPRESS);
4399
4400	last_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
4401	last_idx >>= fi->i_log_cluster_size;
4402
4403	for (cluster_idx = 0; cluster_idx < last_idx; cluster_idx++) {
4404		page_idx = cluster_idx << fi->i_log_cluster_size;
4405
4406		if (f2fs_is_sparse_cluster(inode, page_idx))
4407			continue;
4408
4409		ret = redirty_blocks(inode, page_idx, fi->i_cluster_size);
4410		if (ret < 0)
4411			break;
4412
4413		if (get_dirty_pages(inode) >= BLKS_PER_SEG(sbi)) {
4414			ret = filemap_fdatawrite(inode->i_mapping);
4415			if (ret < 0)
4416				break;
4417		}
4418
4419		cond_resched();
4420		if (fatal_signal_pending(current)) {
4421			ret = -EINTR;
4422			break;
4423		}
4424	}
4425
4426	if (!ret)
4427		ret = filemap_write_and_wait_range(inode->i_mapping, 0,
4428							LLONG_MAX);
4429
4430	clear_inode_flag(inode, FI_ENABLE_COMPRESS);
4431
4432	if (ret)
4433		f2fs_warn(sbi, "%s: The file might be partially compressed (errno=%d). Please delete the file.",
4434			  __func__, ret);
4435	f2fs_update_time(sbi, REQ_TIME);
4436out:
4437	inode_unlock(inode);
4438	mnt_drop_write_file(filp);
4439
4440	return ret;
4441}
4442
4443static long __f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
4444{
4445	switch (cmd) {
4446	case FS_IOC_GETVERSION:
 
 
 
 
4447		return f2fs_ioc_getversion(filp, arg);
4448	case F2FS_IOC_START_ATOMIC_WRITE:
4449		return f2fs_ioc_start_atomic_write(filp, false);
4450	case F2FS_IOC_START_ATOMIC_REPLACE:
4451		return f2fs_ioc_start_atomic_write(filp, true);
4452	case F2FS_IOC_COMMIT_ATOMIC_WRITE:
4453		return f2fs_ioc_commit_atomic_write(filp);
4454	case F2FS_IOC_ABORT_ATOMIC_WRITE:
4455		return f2fs_ioc_abort_atomic_write(filp);
4456	case F2FS_IOC_START_VOLATILE_WRITE:
 
4457	case F2FS_IOC_RELEASE_VOLATILE_WRITE:
4458		return -EOPNOTSUPP;
 
 
4459	case F2FS_IOC_SHUTDOWN:
4460		return f2fs_ioc_shutdown(filp, arg);
4461	case FITRIM:
4462		return f2fs_ioc_fitrim(filp, arg);
4463	case FS_IOC_SET_ENCRYPTION_POLICY:
4464		return f2fs_ioc_set_encryption_policy(filp, arg);
4465	case FS_IOC_GET_ENCRYPTION_POLICY:
4466		return f2fs_ioc_get_encryption_policy(filp, arg);
4467	case FS_IOC_GET_ENCRYPTION_PWSALT:
4468		return f2fs_ioc_get_encryption_pwsalt(filp, arg);
4469	case FS_IOC_GET_ENCRYPTION_POLICY_EX:
4470		return f2fs_ioc_get_encryption_policy_ex(filp, arg);
4471	case FS_IOC_ADD_ENCRYPTION_KEY:
4472		return f2fs_ioc_add_encryption_key(filp, arg);
4473	case FS_IOC_REMOVE_ENCRYPTION_KEY:
4474		return f2fs_ioc_remove_encryption_key(filp, arg);
4475	case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
4476		return f2fs_ioc_remove_encryption_key_all_users(filp, arg);
4477	case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
4478		return f2fs_ioc_get_encryption_key_status(filp, arg);
4479	case FS_IOC_GET_ENCRYPTION_NONCE:
4480		return f2fs_ioc_get_encryption_nonce(filp, arg);
4481	case F2FS_IOC_GARBAGE_COLLECT:
4482		return f2fs_ioc_gc(filp, arg);
4483	case F2FS_IOC_GARBAGE_COLLECT_RANGE:
4484		return f2fs_ioc_gc_range(filp, arg);
4485	case F2FS_IOC_WRITE_CHECKPOINT:
4486		return f2fs_ioc_write_checkpoint(filp);
4487	case F2FS_IOC_DEFRAGMENT:
4488		return f2fs_ioc_defragment(filp, arg);
4489	case F2FS_IOC_MOVE_RANGE:
4490		return f2fs_ioc_move_range(filp, arg);
4491	case F2FS_IOC_FLUSH_DEVICE:
4492		return f2fs_ioc_flush_device(filp, arg);
4493	case F2FS_IOC_GET_FEATURES:
4494		return f2fs_ioc_get_features(filp, arg);
 
 
 
 
4495	case F2FS_IOC_GET_PIN_FILE:
4496		return f2fs_ioc_get_pin_file(filp, arg);
4497	case F2FS_IOC_SET_PIN_FILE:
4498		return f2fs_ioc_set_pin_file(filp, arg);
4499	case F2FS_IOC_PRECACHE_EXTENTS:
4500		return f2fs_ioc_precache_extents(filp);
4501	case F2FS_IOC_RESIZE_FS:
4502		return f2fs_ioc_resize_fs(filp, arg);
4503	case FS_IOC_ENABLE_VERITY:
4504		return f2fs_ioc_enable_verity(filp, arg);
4505	case FS_IOC_MEASURE_VERITY:
4506		return f2fs_ioc_measure_verity(filp, arg);
4507	case FS_IOC_READ_VERITY_METADATA:
4508		return f2fs_ioc_read_verity_metadata(filp, arg);
4509	case FS_IOC_GETFSLABEL:
4510		return f2fs_ioc_getfslabel(filp, arg);
4511	case FS_IOC_SETFSLABEL:
4512		return f2fs_ioc_setfslabel(filp, arg);
4513	case F2FS_IOC_GET_COMPRESS_BLOCKS:
4514		return f2fs_ioc_get_compress_blocks(filp, arg);
4515	case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
4516		return f2fs_release_compress_blocks(filp, arg);
4517	case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
4518		return f2fs_reserve_compress_blocks(filp, arg);
4519	case F2FS_IOC_SEC_TRIM_FILE:
4520		return f2fs_sec_trim_file(filp, arg);
4521	case F2FS_IOC_GET_COMPRESS_OPTION:
4522		return f2fs_ioc_get_compress_option(filp, arg);
4523	case F2FS_IOC_SET_COMPRESS_OPTION:
4524		return f2fs_ioc_set_compress_option(filp, arg);
4525	case F2FS_IOC_DECOMPRESS_FILE:
4526		return f2fs_ioc_decompress_file(filp);
4527	case F2FS_IOC_COMPRESS_FILE:
4528		return f2fs_ioc_compress_file(filp);
4529	case F2FS_IOC_GET_DEV_ALIAS_FILE:
4530		return f2fs_ioc_get_dev_alias_file(filp, arg);
4531	default:
4532		return -ENOTTY;
4533	}
4534}
4535
4536long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
4537{
4538	if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp)))))
4539		return -EIO;
4540	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(filp))))
4541		return -ENOSPC;
4542
4543	return __f2fs_ioctl(filp, cmd, arg);
4544}
4545
4546/*
4547 * Return %true if the given read or write request should use direct I/O, or
4548 * %false if it should use buffered I/O.
4549 */
4550static bool f2fs_should_use_dio(struct inode *inode, struct kiocb *iocb,
4551				struct iov_iter *iter)
4552{
4553	unsigned int align;
4554
4555	if (!(iocb->ki_flags & IOCB_DIRECT))
4556		return false;
4557
4558	if (f2fs_force_buffered_io(inode, iov_iter_rw(iter)))
4559		return false;
4560
4561	/*
4562	 * Direct I/O not aligned to the disk's logical_block_size will be
4563	 * attempted, but will fail with -EINVAL.
4564	 *
4565	 * f2fs additionally requires that direct I/O be aligned to the
4566	 * filesystem block size, which is often a stricter requirement.
4567	 * However, f2fs traditionally falls back to buffered I/O on requests
4568	 * that are logical_block_size-aligned but not fs-block aligned.
4569	 *
4570	 * The below logic implements this behavior.
4571	 */
4572	align = iocb->ki_pos | iov_iter_alignment(iter);
4573	if (!IS_ALIGNED(align, i_blocksize(inode)) &&
4574	    IS_ALIGNED(align, bdev_logical_block_size(inode->i_sb->s_bdev)))
4575		return false;
4576
4577	return true;
4578}
4579
4580static int f2fs_dio_read_end_io(struct kiocb *iocb, ssize_t size, int error,
4581				unsigned int flags)
4582{
4583	struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp));
4584
4585	dec_page_count(sbi, F2FS_DIO_READ);
4586	if (error)
4587		return error;
4588	f2fs_update_iostat(sbi, NULL, APP_DIRECT_READ_IO, size);
4589	return 0;
4590}
4591
4592static const struct iomap_dio_ops f2fs_iomap_dio_read_ops = {
4593	.end_io = f2fs_dio_read_end_io,
4594};
4595
4596static ssize_t f2fs_dio_read_iter(struct kiocb *iocb, struct iov_iter *to)
4597{
4598	struct file *file = iocb->ki_filp;
4599	struct inode *inode = file_inode(file);
4600	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4601	struct f2fs_inode_info *fi = F2FS_I(inode);
4602	const loff_t pos = iocb->ki_pos;
4603	const size_t count = iov_iter_count(to);
4604	struct iomap_dio *dio;
4605	ssize_t ret;
4606
4607	if (count == 0)
4608		return 0; /* skip atime update */
4609
4610	trace_f2fs_direct_IO_enter(inode, iocb, count, READ);
4611
4612	if (iocb->ki_flags & IOCB_NOWAIT) {
4613		if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) {
4614			ret = -EAGAIN;
4615			goto out;
4616		}
4617	} else {
4618		f2fs_down_read(&fi->i_gc_rwsem[READ]);
4619	}
4620
4621	/* dio is not compatible w/ atomic file */
4622	if (f2fs_is_atomic_file(inode)) {
4623		f2fs_up_read(&fi->i_gc_rwsem[READ]);
4624		ret = -EOPNOTSUPP;
4625		goto out;
4626	}
4627
4628	/*
4629	 * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of
4630	 * the higher-level function iomap_dio_rw() in order to ensure that the
4631	 * F2FS_DIO_READ counter will be decremented correctly in all cases.
4632	 */
4633	inc_page_count(sbi, F2FS_DIO_READ);
4634	dio = __iomap_dio_rw(iocb, to, &f2fs_iomap_ops,
4635			     &f2fs_iomap_dio_read_ops, 0, NULL, 0);
4636	if (IS_ERR_OR_NULL(dio)) {
4637		ret = PTR_ERR_OR_ZERO(dio);
4638		if (ret != -EIOCBQUEUED)
4639			dec_page_count(sbi, F2FS_DIO_READ);
4640	} else {
4641		ret = iomap_dio_complete(dio);
4642	}
4643
4644	f2fs_up_read(&fi->i_gc_rwsem[READ]);
4645
4646	file_accessed(file);
4647out:
4648	trace_f2fs_direct_IO_exit(inode, pos, count, READ, ret);
4649	return ret;
4650}
4651
4652static void f2fs_trace_rw_file_path(struct file *file, loff_t pos, size_t count,
4653				    int rw)
4654{
4655	struct inode *inode = file_inode(file);
4656	char *buf, *path;
4657
4658	buf = f2fs_getname(F2FS_I_SB(inode));
4659	if (!buf)
4660		return;
4661	path = dentry_path_raw(file_dentry(file), buf, PATH_MAX);
4662	if (IS_ERR(path))
4663		goto free_buf;
4664	if (rw == WRITE)
4665		trace_f2fs_datawrite_start(inode, pos, count,
4666				current->pid, path, current->comm);
4667	else
4668		trace_f2fs_dataread_start(inode, pos, count,
4669				current->pid, path, current->comm);
4670free_buf:
4671	f2fs_putname(buf);
4672}
4673
4674static ssize_t f2fs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
4675{
4676	struct inode *inode = file_inode(iocb->ki_filp);
4677	const loff_t pos = iocb->ki_pos;
4678	ssize_t ret;
4679
4680	if (!f2fs_is_compress_backend_ready(inode))
4681		return -EOPNOTSUPP;
4682
4683	if (trace_f2fs_dataread_start_enabled())
4684		f2fs_trace_rw_file_path(iocb->ki_filp, iocb->ki_pos,
4685					iov_iter_count(to), READ);
4686
4687	/* In LFS mode, if there is inflight dio, wait for its completion */
4688	if (f2fs_lfs_mode(F2FS_I_SB(inode)) &&
4689	    get_pages(F2FS_I_SB(inode), F2FS_DIO_WRITE))
4690		inode_dio_wait(inode);
4691
4692	if (f2fs_should_use_dio(inode, iocb, to)) {
4693		ret = f2fs_dio_read_iter(iocb, to);
4694	} else {
4695		ret = filemap_read(iocb, to, 0);
4696		if (ret > 0)
4697			f2fs_update_iostat(F2FS_I_SB(inode), inode,
4698						APP_BUFFERED_READ_IO, ret);
4699	}
4700	if (trace_f2fs_dataread_end_enabled())
4701		trace_f2fs_dataread_end(inode, pos, ret);
4702	return ret;
4703}
4704
4705static ssize_t f2fs_file_splice_read(struct file *in, loff_t *ppos,
4706				     struct pipe_inode_info *pipe,
4707				     size_t len, unsigned int flags)
4708{
4709	struct inode *inode = file_inode(in);
4710	const loff_t pos = *ppos;
4711	ssize_t ret;
4712
4713	if (!f2fs_is_compress_backend_ready(inode))
4714		return -EOPNOTSUPP;
4715
4716	if (trace_f2fs_dataread_start_enabled())
4717		f2fs_trace_rw_file_path(in, pos, len, READ);
4718
4719	ret = filemap_splice_read(in, ppos, pipe, len, flags);
4720	if (ret > 0)
4721		f2fs_update_iostat(F2FS_I_SB(inode), inode,
4722				   APP_BUFFERED_READ_IO, ret);
4723
4724	if (trace_f2fs_dataread_end_enabled())
4725		trace_f2fs_dataread_end(inode, pos, ret);
4726	return ret;
4727}
4728
4729static ssize_t f2fs_write_checks(struct kiocb *iocb, struct iov_iter *from)
4730{
4731	struct file *file = iocb->ki_filp;
4732	struct inode *inode = file_inode(file);
4733	ssize_t count;
4734	int err;
4735
4736	if (IS_IMMUTABLE(inode))
4737		return -EPERM;
4738
4739	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
4740		return -EPERM;
4741
4742	count = generic_write_checks(iocb, from);
4743	if (count <= 0)
4744		return count;
4745
4746	err = file_modified(file);
4747	if (err)
4748		return err;
4749	return count;
4750}
4751
4752/*
4753 * Preallocate blocks for a write request, if it is possible and helpful to do
4754 * so.  Returns a positive number if blocks may have been preallocated, 0 if no
4755 * blocks were preallocated, or a negative errno value if something went
4756 * seriously wrong.  Also sets FI_PREALLOCATED_ALL on the inode if *all* the
4757 * requested blocks (not just some of them) have been allocated.
4758 */
4759static int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *iter,
4760				   bool dio)
4761{
4762	struct inode *inode = file_inode(iocb->ki_filp);
4763	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4764	const loff_t pos = iocb->ki_pos;
4765	const size_t count = iov_iter_count(iter);
4766	struct f2fs_map_blocks map = {};
4767	int flag;
4768	int ret;
4769
4770	/* If it will be an out-of-place direct write, don't bother. */
4771	if (dio && f2fs_lfs_mode(sbi))
4772		return 0;
4773	/*
4774	 * Don't preallocate holes aligned to DIO_SKIP_HOLES which turns into
4775	 * buffered IO, if DIO meets any holes.
4776	 */
4777	if (dio && i_size_read(inode) &&
4778		(F2FS_BYTES_TO_BLK(pos) < F2FS_BLK_ALIGN(i_size_read(inode))))
4779		return 0;
4780
4781	/* No-wait I/O can't allocate blocks. */
4782	if (iocb->ki_flags & IOCB_NOWAIT)
4783		return 0;
4784
4785	/* If it will be a short write, don't bother. */
4786	if (fault_in_iov_iter_readable(iter, count))
4787		return 0;
4788
4789	if (f2fs_has_inline_data(inode)) {
4790		/* If the data will fit inline, don't bother. */
4791		if (pos + count <= MAX_INLINE_DATA(inode))
4792			return 0;
4793		ret = f2fs_convert_inline_inode(inode);
4794		if (ret)
4795			return ret;
4796	}
4797
4798	/* Do not preallocate blocks that will be written partially in 4KB. */
4799	map.m_lblk = F2FS_BLK_ALIGN(pos);
4800	map.m_len = F2FS_BYTES_TO_BLK(pos + count);
4801	if (map.m_len > map.m_lblk)
4802		map.m_len -= map.m_lblk;
4803	else
4804		return 0;
4805
4806	if (!IS_DEVICE_ALIASING(inode))
4807		map.m_may_create = true;
4808	if (dio) {
4809		map.m_seg_type = f2fs_rw_hint_to_seg_type(sbi,
4810						inode->i_write_hint);
4811		flag = F2FS_GET_BLOCK_PRE_DIO;
4812	} else {
4813		map.m_seg_type = NO_CHECK_TYPE;
4814		flag = F2FS_GET_BLOCK_PRE_AIO;
4815	}
4816
4817	ret = f2fs_map_blocks(inode, &map, flag);
4818	/* -ENOSPC|-EDQUOT are fine to report the number of allocated blocks. */
4819	if (ret < 0 && !((ret == -ENOSPC || ret == -EDQUOT) && map.m_len > 0))
4820		return ret;
4821	if (ret == 0)
4822		set_inode_flag(inode, FI_PREALLOCATED_ALL);
4823	return map.m_len;
4824}
4825
4826static ssize_t f2fs_buffered_write_iter(struct kiocb *iocb,
4827					struct iov_iter *from)
4828{
4829	struct file *file = iocb->ki_filp;
4830	struct inode *inode = file_inode(file);
4831	ssize_t ret;
4832
4833	if (iocb->ki_flags & IOCB_NOWAIT)
4834		return -EOPNOTSUPP;
4835
4836	ret = generic_perform_write(iocb, from);
4837
4838	if (ret > 0) {
4839		f2fs_update_iostat(F2FS_I_SB(inode), inode,
4840						APP_BUFFERED_IO, ret);
4841	}
4842	return ret;
4843}
4844
4845static int f2fs_dio_write_end_io(struct kiocb *iocb, ssize_t size, int error,
4846				 unsigned int flags)
4847{
4848	struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(iocb->ki_filp));
4849
4850	dec_page_count(sbi, F2FS_DIO_WRITE);
4851	if (error)
4852		return error;
4853	f2fs_update_time(sbi, REQ_TIME);
4854	f2fs_update_iostat(sbi, NULL, APP_DIRECT_IO, size);
4855	return 0;
4856}
4857
4858static void f2fs_dio_write_submit_io(const struct iomap_iter *iter,
4859					struct bio *bio, loff_t file_offset)
4860{
4861	struct inode *inode = iter->inode;
4862	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4863	enum log_type type = f2fs_rw_hint_to_seg_type(sbi, inode->i_write_hint);
4864	enum temp_type temp = f2fs_get_segment_temp(sbi, type);
4865
4866	bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi, DATA, temp);
4867	submit_bio(bio);
4868}
4869
4870static const struct iomap_dio_ops f2fs_iomap_dio_write_ops = {
4871	.end_io		= f2fs_dio_write_end_io,
4872	.submit_io	= f2fs_dio_write_submit_io,
4873};
4874
4875static void f2fs_flush_buffered_write(struct address_space *mapping,
4876				      loff_t start_pos, loff_t end_pos)
4877{
4878	int ret;
4879
4880	ret = filemap_write_and_wait_range(mapping, start_pos, end_pos);
4881	if (ret < 0)
4882		return;
4883	invalidate_mapping_pages(mapping,
4884				 start_pos >> PAGE_SHIFT,
4885				 end_pos >> PAGE_SHIFT);
4886}
4887
4888static ssize_t f2fs_dio_write_iter(struct kiocb *iocb, struct iov_iter *from,
4889				   bool *may_need_sync)
4890{
4891	struct file *file = iocb->ki_filp;
4892	struct inode *inode = file_inode(file);
4893	struct f2fs_inode_info *fi = F2FS_I(inode);
4894	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4895	const bool do_opu = f2fs_lfs_mode(sbi);
4896	const loff_t pos = iocb->ki_pos;
4897	const ssize_t count = iov_iter_count(from);
4898	unsigned int dio_flags;
4899	struct iomap_dio *dio;
4900	ssize_t ret;
4901
4902	trace_f2fs_direct_IO_enter(inode, iocb, count, WRITE);
4903
4904	if (iocb->ki_flags & IOCB_NOWAIT) {
4905		/* f2fs_convert_inline_inode() and block allocation can block */
4906		if (f2fs_has_inline_data(inode) ||
4907		    !f2fs_overwrite_io(inode, pos, count)) {
4908			ret = -EAGAIN;
4909			goto out;
4910		}
4911
4912		if (!f2fs_down_read_trylock(&fi->i_gc_rwsem[WRITE])) {
4913			ret = -EAGAIN;
4914			goto out;
4915		}
4916		if (do_opu && !f2fs_down_read_trylock(&fi->i_gc_rwsem[READ])) {
4917			f2fs_up_read(&fi->i_gc_rwsem[WRITE]);
4918			ret = -EAGAIN;
4919			goto out;
4920		}
4921	} else {
4922		ret = f2fs_convert_inline_inode(inode);
4923		if (ret)
4924			goto out;
4925
4926		f2fs_down_read(&fi->i_gc_rwsem[WRITE]);
4927		if (do_opu)
4928			f2fs_down_read(&fi->i_gc_rwsem[READ]);
4929	}
4930
4931	/*
4932	 * We have to use __iomap_dio_rw() and iomap_dio_complete() instead of
4933	 * the higher-level function iomap_dio_rw() in order to ensure that the
4934	 * F2FS_DIO_WRITE counter will be decremented correctly in all cases.
4935	 */
4936	inc_page_count(sbi, F2FS_DIO_WRITE);
4937	dio_flags = 0;
4938	if (pos + count > inode->i_size)
4939		dio_flags |= IOMAP_DIO_FORCE_WAIT;
4940	dio = __iomap_dio_rw(iocb, from, &f2fs_iomap_ops,
4941			     &f2fs_iomap_dio_write_ops, dio_flags, NULL, 0);
4942	if (IS_ERR_OR_NULL(dio)) {
4943		ret = PTR_ERR_OR_ZERO(dio);
4944		if (ret == -ENOTBLK)
4945			ret = 0;
4946		if (ret != -EIOCBQUEUED)
4947			dec_page_count(sbi, F2FS_DIO_WRITE);
4948	} else {
4949		ret = iomap_dio_complete(dio);
4950	}
4951
4952	if (do_opu)
4953		f2fs_up_read(&fi->i_gc_rwsem[READ]);
4954	f2fs_up_read(&fi->i_gc_rwsem[WRITE]);
4955
4956	if (ret < 0)
4957		goto out;
4958	if (pos + ret > inode->i_size)
4959		f2fs_i_size_write(inode, pos + ret);
4960	if (!do_opu)
4961		set_inode_flag(inode, FI_UPDATE_WRITE);
4962
4963	if (iov_iter_count(from)) {
4964		ssize_t ret2;
4965		loff_t bufio_start_pos = iocb->ki_pos;
4966
4967		/*
4968		 * The direct write was partial, so we need to fall back to a
4969		 * buffered write for the remainder.
4970		 */
4971
4972		ret2 = f2fs_buffered_write_iter(iocb, from);
4973		if (iov_iter_count(from))
4974			f2fs_write_failed(inode, iocb->ki_pos);
4975		if (ret2 < 0)
4976			goto out;
4977
4978		/*
4979		 * Ensure that the pagecache pages are written to disk and
4980		 * invalidated to preserve the expected O_DIRECT semantics.
4981		 */
4982		if (ret2 > 0) {
4983			loff_t bufio_end_pos = bufio_start_pos + ret2 - 1;
4984
4985			ret += ret2;
4986
4987			f2fs_flush_buffered_write(file->f_mapping,
4988						  bufio_start_pos,
4989						  bufio_end_pos);
4990		}
4991	} else {
4992		/* iomap_dio_rw() already handled the generic_write_sync(). */
4993		*may_need_sync = false;
4994	}
4995out:
4996	trace_f2fs_direct_IO_exit(inode, pos, count, WRITE, ret);
4997	return ret;
4998}
4999
5000static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
5001{
5002	struct inode *inode = file_inode(iocb->ki_filp);
5003	const loff_t orig_pos = iocb->ki_pos;
5004	const size_t orig_count = iov_iter_count(from);
5005	loff_t target_size;
5006	bool dio;
5007	bool may_need_sync = true;
5008	int preallocated;
5009	const loff_t pos = iocb->ki_pos;
5010	const ssize_t count = iov_iter_count(from);
5011	ssize_t ret;
5012
5013	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
5014		ret = -EIO;
5015		goto out;
5016	}
5017
5018	if (!f2fs_is_compress_backend_ready(inode)) {
5019		ret = -EOPNOTSUPP;
5020		goto out;
5021	}
5022
5023	if (iocb->ki_flags & IOCB_NOWAIT) {
5024		if (!inode_trylock(inode)) {
5025			ret = -EAGAIN;
5026			goto out;
5027		}
5028	} else {
5029		inode_lock(inode);
5030	}
5031
5032	if (f2fs_is_pinned_file(inode) &&
5033	    !f2fs_overwrite_io(inode, pos, count)) {
5034		ret = -EIO;
5035		goto out_unlock;
5036	}
5037
5038	ret = f2fs_write_checks(iocb, from);
5039	if (ret <= 0)
5040		goto out_unlock;
 
 
 
 
 
 
 
 
 
 
 
 
 
5041
5042	/* Determine whether we will do a direct write or a buffered write. */
5043	dio = f2fs_should_use_dio(inode, iocb, from);
 
 
 
 
 
 
 
 
5044
5045	/* dio is not compatible w/ atomic write */
5046	if (dio && f2fs_is_atomic_file(inode)) {
5047		ret = -EOPNOTSUPP;
5048		goto out_unlock;
5049	}
5050
5051	/* Possibly preallocate the blocks for the write. */
5052	target_size = iocb->ki_pos + iov_iter_count(from);
5053	preallocated = f2fs_preallocate_blocks(iocb, from, dio);
5054	if (preallocated < 0) {
5055		ret = preallocated;
5056	} else {
5057		if (trace_f2fs_datawrite_start_enabled())
5058			f2fs_trace_rw_file_path(iocb->ki_filp, iocb->ki_pos,
5059						orig_count, WRITE);
5060
5061		/* Do the actual write. */
5062		ret = dio ?
5063			f2fs_dio_write_iter(iocb, from, &may_need_sync) :
5064			f2fs_buffered_write_iter(iocb, from);
5065
5066		if (trace_f2fs_datawrite_end_enabled())
5067			trace_f2fs_datawrite_end(inode, orig_pos, ret);
5068	}
5069
5070	/* Don't leave any preallocated blocks around past i_size. */
5071	if (preallocated && i_size_read(inode) < target_size) {
5072		f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
5073		filemap_invalidate_lock(inode->i_mapping);
5074		if (!f2fs_truncate(inode))
5075			file_dont_truncate(inode);
5076		filemap_invalidate_unlock(inode->i_mapping);
5077		f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
5078	} else {
5079		file_dont_truncate(inode);
5080	}
5081
5082	clear_inode_flag(inode, FI_PREALLOCATED_ALL);
5083out_unlock:
5084	inode_unlock(inode);
5085out:
5086	trace_f2fs_file_write_iter(inode, orig_pos, orig_count, ret);
5087
5088	if (ret > 0 && may_need_sync)
5089		ret = generic_write_sync(iocb, ret);
5090
5091	/* If buffered IO was forced, flush and drop the data from
5092	 * the page cache to preserve O_DIRECT semantics
5093	 */
5094	if (ret > 0 && !dio && (iocb->ki_flags & IOCB_DIRECT))
5095		f2fs_flush_buffered_write(iocb->ki_filp->f_mapping,
5096					  orig_pos,
5097					  orig_pos + ret - 1);
5098
5099	return ret;
5100}
5101
5102static int f2fs_file_fadvise(struct file *filp, loff_t offset, loff_t len,
5103		int advice)
5104{
5105	struct address_space *mapping;
5106	struct backing_dev_info *bdi;
5107	struct inode *inode = file_inode(filp);
5108	int err;
5109
5110	if (advice == POSIX_FADV_SEQUENTIAL) {
5111		if (S_ISFIFO(inode->i_mode))
5112			return -ESPIPE;
5113
5114		mapping = filp->f_mapping;
5115		if (!mapping || len < 0)
5116			return -EINVAL;
5117
5118		bdi = inode_to_bdi(mapping->host);
5119		filp->f_ra.ra_pages = bdi->ra_pages *
5120			F2FS_I_SB(inode)->seq_file_ra_mul;
5121		spin_lock(&filp->f_lock);
5122		filp->f_mode &= ~FMODE_RANDOM;
5123		spin_unlock(&filp->f_lock);
5124		return 0;
5125	} else if (advice == POSIX_FADV_WILLNEED && offset == 0) {
5126		/* Load extent cache at the first readahead. */
5127		f2fs_precache_extents(inode);
5128	}
5129
5130	err = generic_fadvise(filp, offset, len, advice);
5131	if (!err && advice == POSIX_FADV_DONTNEED &&
5132		test_opt(F2FS_I_SB(inode), COMPRESS_CACHE) &&
5133		f2fs_compressed_file(inode))
5134		f2fs_invalidate_compress_pages(F2FS_I_SB(inode), inode->i_ino);
5135
5136	return err;
5137}
5138
5139#ifdef CONFIG_COMPAT
5140struct compat_f2fs_gc_range {
5141	u32 sync;
5142	compat_u64 start;
5143	compat_u64 len;
5144};
5145#define F2FS_IOC32_GARBAGE_COLLECT_RANGE	_IOW(F2FS_IOCTL_MAGIC, 11,\
5146						struct compat_f2fs_gc_range)
5147
5148static int f2fs_compat_ioc_gc_range(struct file *file, unsigned long arg)
5149{
5150	struct compat_f2fs_gc_range __user *urange;
5151	struct f2fs_gc_range range;
5152	int err;
5153
5154	urange = compat_ptr(arg);
5155	err = get_user(range.sync, &urange->sync);
5156	err |= get_user(range.start, &urange->start);
5157	err |= get_user(range.len, &urange->len);
5158	if (err)
5159		return -EFAULT;
5160
5161	return __f2fs_ioc_gc_range(file, &range);
5162}
5163
5164struct compat_f2fs_move_range {
5165	u32 dst_fd;
5166	compat_u64 pos_in;
5167	compat_u64 pos_out;
5168	compat_u64 len;
5169};
5170#define F2FS_IOC32_MOVE_RANGE		_IOWR(F2FS_IOCTL_MAGIC, 9,	\
5171					struct compat_f2fs_move_range)
5172
5173static int f2fs_compat_ioc_move_range(struct file *file, unsigned long arg)
5174{
5175	struct compat_f2fs_move_range __user *urange;
5176	struct f2fs_move_range range;
5177	int err;
5178
5179	urange = compat_ptr(arg);
5180	err = get_user(range.dst_fd, &urange->dst_fd);
5181	err |= get_user(range.pos_in, &urange->pos_in);
5182	err |= get_user(range.pos_out, &urange->pos_out);
5183	err |= get_user(range.len, &urange->len);
5184	if (err)
5185		return -EFAULT;
5186
5187	return __f2fs_ioc_move_range(file, &range);
5188}
5189
5190long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5191{
5192	if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
5193		return -EIO;
5194	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(file))))
5195		return -ENOSPC;
5196
5197	switch (cmd) {
5198	case FS_IOC32_GETVERSION:
5199		cmd = FS_IOC_GETVERSION;
 
 
 
 
 
 
5200		break;
5201	case F2FS_IOC32_GARBAGE_COLLECT_RANGE:
5202		return f2fs_compat_ioc_gc_range(file, arg);
5203	case F2FS_IOC32_MOVE_RANGE:
5204		return f2fs_compat_ioc_move_range(file, arg);
5205	case F2FS_IOC_START_ATOMIC_WRITE:
5206	case F2FS_IOC_START_ATOMIC_REPLACE:
5207	case F2FS_IOC_COMMIT_ATOMIC_WRITE:
5208	case F2FS_IOC_START_VOLATILE_WRITE:
5209	case F2FS_IOC_RELEASE_VOLATILE_WRITE:
5210	case F2FS_IOC_ABORT_ATOMIC_WRITE:
5211	case F2FS_IOC_SHUTDOWN:
5212	case FITRIM:
5213	case FS_IOC_SET_ENCRYPTION_POLICY:
5214	case FS_IOC_GET_ENCRYPTION_PWSALT:
5215	case FS_IOC_GET_ENCRYPTION_POLICY:
5216	case FS_IOC_GET_ENCRYPTION_POLICY_EX:
5217	case FS_IOC_ADD_ENCRYPTION_KEY:
5218	case FS_IOC_REMOVE_ENCRYPTION_KEY:
5219	case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
5220	case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
5221	case FS_IOC_GET_ENCRYPTION_NONCE:
5222	case F2FS_IOC_GARBAGE_COLLECT:
 
5223	case F2FS_IOC_WRITE_CHECKPOINT:
5224	case F2FS_IOC_DEFRAGMENT:
 
5225	case F2FS_IOC_FLUSH_DEVICE:
5226	case F2FS_IOC_GET_FEATURES:
 
 
5227	case F2FS_IOC_GET_PIN_FILE:
5228	case F2FS_IOC_SET_PIN_FILE:
5229	case F2FS_IOC_PRECACHE_EXTENTS:
5230	case F2FS_IOC_RESIZE_FS:
5231	case FS_IOC_ENABLE_VERITY:
5232	case FS_IOC_MEASURE_VERITY:
5233	case FS_IOC_READ_VERITY_METADATA:
5234	case FS_IOC_GETFSLABEL:
5235	case FS_IOC_SETFSLABEL:
5236	case F2FS_IOC_GET_COMPRESS_BLOCKS:
5237	case F2FS_IOC_RELEASE_COMPRESS_BLOCKS:
5238	case F2FS_IOC_RESERVE_COMPRESS_BLOCKS:
5239	case F2FS_IOC_SEC_TRIM_FILE:
5240	case F2FS_IOC_GET_COMPRESS_OPTION:
5241	case F2FS_IOC_SET_COMPRESS_OPTION:
5242	case F2FS_IOC_DECOMPRESS_FILE:
5243	case F2FS_IOC_COMPRESS_FILE:
5244	case F2FS_IOC_GET_DEV_ALIAS_FILE:
5245		break;
5246	default:
5247		return -ENOIOCTLCMD;
5248	}
5249	return __f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
5250}
5251#endif
5252
5253const struct file_operations f2fs_file_operations = {
5254	.llseek		= f2fs_llseek,
5255	.read_iter	= f2fs_file_read_iter,
5256	.write_iter	= f2fs_file_write_iter,
5257	.iopoll		= iocb_bio_iopoll,
5258	.open		= f2fs_file_open,
5259	.release	= f2fs_release_file,
5260	.mmap		= f2fs_file_mmap,
5261	.flush		= f2fs_file_flush,
5262	.fsync		= f2fs_sync_file,
5263	.fallocate	= f2fs_fallocate,
5264	.unlocked_ioctl	= f2fs_ioctl,
5265#ifdef CONFIG_COMPAT
5266	.compat_ioctl	= f2fs_compat_ioctl,
5267#endif
5268	.splice_read	= f2fs_file_splice_read,
5269	.splice_write	= iter_file_splice_write,
5270	.fadvise	= f2fs_file_fadvise,
5271	.fop_flags	= FOP_BUFFER_RASYNC,
5272};
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * fs/f2fs/file.c
   4 *
   5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
   6 *             http://www.samsung.com/
   7 */
   8#include <linux/fs.h>
   9#include <linux/f2fs_fs.h>
  10#include <linux/stat.h>
  11#include <linux/buffer_head.h>
  12#include <linux/writeback.h>
  13#include <linux/blkdev.h>
  14#include <linux/falloc.h>
  15#include <linux/types.h>
  16#include <linux/compat.h>
  17#include <linux/uaccess.h>
  18#include <linux/mount.h>
  19#include <linux/pagevec.h>
  20#include <linux/uio.h>
  21#include <linux/uuid.h>
  22#include <linux/file.h>
  23#include <linux/nls.h>
 
 
 
 
  24
  25#include "f2fs.h"
  26#include "node.h"
  27#include "segment.h"
  28#include "xattr.h"
  29#include "acl.h"
  30#include "gc.h"
  31#include "trace.h"
  32#include <trace/events/f2fs.h>
 
  33
  34static vm_fault_t f2fs_filemap_fault(struct vm_fault *vmf)
  35{
  36	struct inode *inode = file_inode(vmf->vma->vm_file);
 
  37	vm_fault_t ret;
  38
  39	down_read(&F2FS_I(inode)->i_mmap_sem);
  40	ret = filemap_fault(vmf);
  41	up_read(&F2FS_I(inode)->i_mmap_sem);
 
 
  42
  43	trace_f2fs_filemap_fault(inode, vmf->pgoff, (unsigned long)ret);
  44
  45	return ret;
  46}
  47
  48static vm_fault_t f2fs_vm_page_mkwrite(struct vm_fault *vmf)
  49{
  50	struct page *page = vmf->page;
  51	struct inode *inode = file_inode(vmf->vma->vm_file);
  52	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  53	struct dnode_of_data dn = { .node_changed = false };
  54	int err;
 
 
 
 
 
 
 
 
 
 
  55
  56	if (unlikely(f2fs_cp_error(sbi))) {
  57		err = -EIO;
  58		goto err;
  59	}
  60
  61	if (!f2fs_is_checkpoint_ready(sbi)) {
  62		err = -ENOSPC;
  63		goto err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  64	}
 
 
 
 
  65
  66	sb_start_pagefault(inode->i_sb);
  67
  68	f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
  69
  70	file_update_time(vmf->vma->vm_file);
  71	down_read(&F2FS_I(inode)->i_mmap_sem);
  72	lock_page(page);
  73	if (unlikely(page->mapping != inode->i_mapping ||
  74			page_offset(page) > i_size_read(inode) ||
  75			!PageUptodate(page))) {
  76		unlock_page(page);
  77		err = -EFAULT;
  78		goto out_sem;
  79	}
  80
  81	/* block allocation */
  82	__do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, true);
  83	set_new_dnode(&dn, inode, NULL, NULL, 0);
  84	err = f2fs_get_block(&dn, page->index);
  85	f2fs_put_dnode(&dn);
  86	__do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, false);
 
 
 
 
 
 
 
 
  87	if (err) {
  88		unlock_page(page);
  89		goto out_sem;
  90	}
  91
  92	/* fill the page */
  93	f2fs_wait_on_page_writeback(page, DATA, false, true);
  94
  95	/* wait for GCed page writeback via META_MAPPING */
  96	f2fs_wait_on_block_writeback(inode, dn.data_blkaddr);
  97
  98	/*
  99	 * check to see if the page is mapped already (no holes)
 100	 */
 101	if (PageMappedToDisk(page))
 102		goto out_sem;
 103
 104	/* page is wholly or partially inside EOF */
 105	if (((loff_t)(page->index + 1) << PAGE_SHIFT) >
 106						i_size_read(inode)) {
 107		loff_t offset;
 108
 109		offset = i_size_read(inode) & ~PAGE_MASK;
 110		zero_user_segment(page, offset, PAGE_SIZE);
 111	}
 112	set_page_dirty(page);
 113	if (!PageUptodate(page))
 114		SetPageUptodate(page);
 115
 116	f2fs_update_iostat(sbi, APP_MAPPED_IO, F2FS_BLKSIZE);
 117	f2fs_update_time(sbi, REQ_TIME);
 118
 119	trace_f2fs_vm_page_mkwrite(page, DATA);
 120out_sem:
 121	up_read(&F2FS_I(inode)->i_mmap_sem);
 122
 123	f2fs_balance_fs(sbi, dn.node_changed);
 
 
 124
 125	sb_end_pagefault(inode->i_sb);
 126err:
 127	return block_page_mkwrite_return(err);
 128}
 129
 130static const struct vm_operations_struct f2fs_file_vm_ops = {
 131	.fault		= f2fs_filemap_fault,
 132	.map_pages	= filemap_map_pages,
 133	.page_mkwrite	= f2fs_vm_page_mkwrite,
 134};
 135
 136static int get_parent_ino(struct inode *inode, nid_t *pino)
 137{
 138	struct dentry *dentry;
 139
 140	inode = igrab(inode);
 141	dentry = d_find_any_alias(inode);
 142	iput(inode);
 
 
 143	if (!dentry)
 144		return 0;
 145
 146	*pino = parent_ino(dentry);
 147	dput(dentry);
 148	return 1;
 149}
 150
 151static inline enum cp_reason_type need_do_checkpoint(struct inode *inode)
 152{
 153	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 154	enum cp_reason_type cp_reason = CP_NO_NEEDED;
 155
 156	if (!S_ISREG(inode->i_mode))
 157		cp_reason = CP_NON_REGULAR;
 
 
 158	else if (inode->i_nlink != 1)
 159		cp_reason = CP_HARDLINK;
 160	else if (is_sbi_flag_set(sbi, SBI_NEED_CP))
 161		cp_reason = CP_SB_NEED_CP;
 162	else if (file_wrong_pino(inode))
 163		cp_reason = CP_WRONG_PINO;
 164	else if (!f2fs_space_for_roll_forward(sbi))
 165		cp_reason = CP_NO_SPC_ROLL;
 166	else if (!f2fs_is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
 167		cp_reason = CP_NODE_NEED_CP;
 168	else if (test_opt(sbi, FASTBOOT))
 169		cp_reason = CP_FASTBOOT_MODE;
 170	else if (F2FS_OPTION(sbi).active_logs == 2)
 171		cp_reason = CP_SPEC_LOG_NUM;
 172	else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT &&
 173		f2fs_need_dentry_mark(sbi, inode->i_ino) &&
 174		f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino,
 175							TRANS_DIR_INO))
 176		cp_reason = CP_RECOVER_DIR;
 
 
 
 177
 178	return cp_reason;
 179}
 180
 181static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
 182{
 183	struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
 184	bool ret = false;
 185	/* But we need to avoid that there are some inode updates */
 186	if ((i && PageDirty(i)) || f2fs_need_inode_block_update(sbi, ino))
 187		ret = true;
 188	f2fs_put_page(i, 0);
 189	return ret;
 190}
 191
 192static void try_to_fix_pino(struct inode *inode)
 193{
 194	struct f2fs_inode_info *fi = F2FS_I(inode);
 195	nid_t pino;
 196
 197	down_write(&fi->i_sem);
 198	if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
 199			get_parent_ino(inode, &pino)) {
 200		f2fs_i_pino_write(inode, pino);
 201		file_got_pino(inode);
 202	}
 203	up_write(&fi->i_sem);
 204}
 205
 206static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
 207						int datasync, bool atomic)
 208{
 209	struct inode *inode = file->f_mapping->host;
 210	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 211	nid_t ino = inode->i_ino;
 212	int ret = 0;
 213	enum cp_reason_type cp_reason = 0;
 214	struct writeback_control wbc = {
 215		.sync_mode = WB_SYNC_ALL,
 216		.nr_to_write = LONG_MAX,
 217		.for_reclaim = 0,
 218	};
 219	unsigned int seq_id = 0;
 220
 221	if (unlikely(f2fs_readonly(inode->i_sb) ||
 222				is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
 223		return 0;
 224
 225	trace_f2fs_sync_file_enter(inode);
 226
 227	if (S_ISDIR(inode->i_mode))
 228		goto go_write;
 229
 230	/* if fdatasync is triggered, let's do in-place-update */
 231	if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
 232		set_inode_flag(inode, FI_NEED_IPU);
 233	ret = file_write_and_wait_range(file, start, end);
 234	clear_inode_flag(inode, FI_NEED_IPU);
 235
 236	if (ret) {
 237		trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
 238		return ret;
 239	}
 240
 241	/* if the inode is dirty, let's recover all the time */
 242	if (!f2fs_skip_inode_update(inode, datasync)) {
 243		f2fs_write_inode(inode, NULL);
 244		goto go_write;
 245	}
 246
 247	/*
 248	 * if there is no written data, don't waste time to write recovery info.
 249	 */
 250	if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
 251			!f2fs_exist_written_data(sbi, ino, APPEND_INO)) {
 252
 253		/* it may call write_inode just prior to fsync */
 254		if (need_inode_page_update(sbi, ino))
 255			goto go_write;
 256
 257		if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
 258				f2fs_exist_written_data(sbi, ino, UPDATE_INO))
 259			goto flush_out;
 260		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 261	}
 262go_write:
 263	/*
 264	 * Both of fdatasync() and fsync() are able to be recovered from
 265	 * sudden-power-off.
 266	 */
 267	down_read(&F2FS_I(inode)->i_sem);
 268	cp_reason = need_do_checkpoint(inode);
 269	up_read(&F2FS_I(inode)->i_sem);
 270
 271	if (cp_reason) {
 272		/* all the dirty node pages should be flushed for POR */
 273		ret = f2fs_sync_fs(inode->i_sb, 1);
 274
 275		/*
 276		 * We've secured consistency through sync_fs. Following pino
 277		 * will be used only for fsynced inodes after checkpoint.
 278		 */
 279		try_to_fix_pino(inode);
 280		clear_inode_flag(inode, FI_APPEND_WRITE);
 281		clear_inode_flag(inode, FI_UPDATE_WRITE);
 282		goto out;
 283	}
 284sync_nodes:
 285	atomic_inc(&sbi->wb_sync_req[NODE]);
 286	ret = f2fs_fsync_node_pages(sbi, inode, &wbc, atomic, &seq_id);
 287	atomic_dec(&sbi->wb_sync_req[NODE]);
 288	if (ret)
 289		goto out;
 290
 291	/* if cp_error was enabled, we should avoid infinite loop */
 292	if (unlikely(f2fs_cp_error(sbi))) {
 293		ret = -EIO;
 294		goto out;
 295	}
 296
 297	if (f2fs_need_inode_block_update(sbi, ino)) {
 298		f2fs_mark_inode_dirty_sync(inode, true);
 299		f2fs_write_inode(inode, NULL);
 300		goto sync_nodes;
 301	}
 302
 303	/*
 304	 * If it's atomic_write, it's just fine to keep write ordering. So
 305	 * here we don't need to wait for node write completion, since we use
 306	 * node chain which serializes node blocks. If one of node writes are
 307	 * reordered, we can see simply broken chain, resulting in stopping
 308	 * roll-forward recovery. It means we'll recover all or none node blocks
 309	 * given fsync mark.
 310	 */
 311	if (!atomic) {
 312		ret = f2fs_wait_on_node_pages_writeback(sbi, seq_id);
 313		if (ret)
 314			goto out;
 315	}
 316
 317	/* once recovery info is written, don't need to tack this */
 318	f2fs_remove_ino_entry(sbi, ino, APPEND_INO);
 319	clear_inode_flag(inode, FI_APPEND_WRITE);
 320flush_out:
 321	if (!atomic && F2FS_OPTION(sbi).fsync_mode != FSYNC_MODE_NOBARRIER)
 322		ret = f2fs_issue_flush(sbi, inode->i_ino);
 323	if (!ret) {
 324		f2fs_remove_ino_entry(sbi, ino, UPDATE_INO);
 325		clear_inode_flag(inode, FI_UPDATE_WRITE);
 326		f2fs_remove_ino_entry(sbi, ino, FLUSH_INO);
 327	}
 328	f2fs_update_time(sbi, REQ_TIME);
 329out:
 330	trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
 331	f2fs_trace_ios(NULL, 1);
 332	return ret;
 333}
 334
 335int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
 336{
 337	if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
 338		return -EIO;
 339	return f2fs_do_sync_file(file, start, end, datasync, false);
 340}
 341
 342static pgoff_t __get_first_dirty_index(struct address_space *mapping,
 343						pgoff_t pgofs, int whence)
 344{
 345	struct page *page;
 346	int nr_pages;
 
 
 
 
 
 347
 348	if (whence != SEEK_DATA)
 349		return 0;
 350
 351	/* find first dirty page index */
 352	nr_pages = find_get_pages_tag(mapping, &pgofs, PAGECACHE_TAG_DIRTY,
 353				      1, &page);
 354	if (!nr_pages)
 355		return ULONG_MAX;
 356	pgofs = page->index;
 357	put_page(page);
 358	return pgofs;
 359}
 360
 361static bool __found_offset(struct f2fs_sb_info *sbi, block_t blkaddr,
 362				pgoff_t dirty, pgoff_t pgofs, int whence)
 363{
 364	switch (whence) {
 365	case SEEK_DATA:
 366		if ((blkaddr == NEW_ADDR && dirty == pgofs) ||
 367			__is_valid_data_blkaddr(blkaddr))
 
 
 
 
 368			return true;
 369		break;
 370	case SEEK_HOLE:
 
 
 371		if (blkaddr == NULL_ADDR)
 372			return true;
 373		break;
 374	}
 375	return false;
 376}
 377
 378static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
 379{
 380	struct inode *inode = file->f_mapping->host;
 381	loff_t maxbytes = inode->i_sb->s_maxbytes;
 382	struct dnode_of_data dn;
 383	pgoff_t pgofs, end_offset, dirty;
 384	loff_t data_ofs = offset;
 385	loff_t isize;
 386	int err = 0;
 387
 388	inode_lock(inode);
 389
 390	isize = i_size_read(inode);
 391	if (offset >= isize)
 392		goto fail;
 393
 394	/* handle inline data case */
 395	if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
 396		if (whence == SEEK_HOLE)
 397			data_ofs = isize;
 398		goto found;
 
 
 
 
 399	}
 400
 401	pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
 402
 403	dirty = __get_first_dirty_index(inode->i_mapping, pgofs, whence);
 404
 405	for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
 406		set_new_dnode(&dn, inode, NULL, NULL, 0);
 407		err = f2fs_get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
 408		if (err && err != -ENOENT) {
 409			goto fail;
 410		} else if (err == -ENOENT) {
 411			/* direct node does not exists */
 412			if (whence == SEEK_DATA) {
 413				pgofs = f2fs_get_next_page_offset(&dn, pgofs);
 414				continue;
 415			} else {
 416				goto found;
 417			}
 418		}
 419
 420		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
 421
 422		/* find data/hole in dnode block */
 423		for (; dn.ofs_in_node < end_offset;
 424				dn.ofs_in_node++, pgofs++,
 425				data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
 426			block_t blkaddr;
 427
 428			blkaddr = datablock_addr(dn.inode,
 429					dn.node_page, dn.ofs_in_node);
 430
 431			if (__is_valid_data_blkaddr(blkaddr) &&
 432				!f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
 433					blkaddr, DATA_GENERIC_ENHANCE)) {
 434				f2fs_put_dnode(&dn);
 435				goto fail;
 436			}
 437
 438			if (__found_offset(F2FS_I_SB(inode), blkaddr, dirty,
 439							pgofs, whence)) {
 440				f2fs_put_dnode(&dn);
 441				goto found;
 442			}
 443		}
 444		f2fs_put_dnode(&dn);
 445	}
 446
 447	if (whence == SEEK_DATA)
 448		goto fail;
 449found:
 450	if (whence == SEEK_HOLE && data_ofs > isize)
 451		data_ofs = isize;
 452	inode_unlock(inode);
 453	return vfs_setpos(file, data_ofs, maxbytes);
 454fail:
 455	inode_unlock(inode);
 456	return -ENXIO;
 457}
 458
 459static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
 460{
 461	struct inode *inode = file->f_mapping->host;
 462	loff_t maxbytes = inode->i_sb->s_maxbytes;
 463
 464	switch (whence) {
 465	case SEEK_SET:
 466	case SEEK_CUR:
 467	case SEEK_END:
 468		return generic_file_llseek_size(file, offset, whence,
 469						maxbytes, i_size_read(inode));
 470	case SEEK_DATA:
 471	case SEEK_HOLE:
 472		if (offset < 0)
 473			return -ENXIO;
 474		return f2fs_seek_block(file, offset, whence);
 475	}
 476
 477	return -EINVAL;
 478}
 479
 480static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
 481{
 482	struct inode *inode = file_inode(file);
 483	int err;
 484
 485	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
 486		return -EIO;
 487
 488	/* we don't need to use inline_data strictly */
 489	err = f2fs_convert_inline_inode(inode);
 490	if (err)
 491		return err;
 492
 493	file_accessed(file);
 494	vma->vm_ops = &f2fs_file_vm_ops;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 495	return 0;
 496}
 497
 498static int f2fs_file_open(struct inode *inode, struct file *filp)
 499{
 500	int err = fscrypt_file_open(inode, filp);
 501
 502	if (err)
 503		return err;
 504
 
 
 
 505	err = fsverity_file_open(inode, filp);
 506	if (err)
 507		return err;
 508
 509	filp->f_mode |= FMODE_NOWAIT;
 
 510
 511	return dquot_file_open(inode, filp);
 
 
 
 
 512}
 513
 514void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count)
 515{
 516	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
 517	struct f2fs_node *raw_node;
 518	int nr_free = 0, ofs = dn->ofs_in_node, len = count;
 519	__le32 *addr;
 520	int base = 0;
 
 
 
 521
 522	if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
 523		base = get_extra_isize(dn->inode);
 524
 525	raw_node = F2FS_NODE(dn->node_page);
 526	addr = blkaddr_in_node(raw_node) + base + ofs;
 
 527
 528	for (; count > 0; count--, addr++, dn->ofs_in_node++) {
 529		block_t blkaddr = le32_to_cpu(*addr);
 
 
 
 
 
 
 530
 531		if (blkaddr == NULL_ADDR)
 532			continue;
 533
 534		dn->data_blkaddr = NULL_ADDR;
 535		f2fs_set_data_blkaddr(dn);
 536
 537		if (__is_valid_data_blkaddr(blkaddr) &&
 538			!f2fs_is_valid_blkaddr(sbi, blkaddr,
 539					DATA_GENERIC_ENHANCE))
 540			continue;
 
 
 
 
 
 541
 542		f2fs_invalidate_blocks(sbi, blkaddr);
 543		if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page))
 544			clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN);
 545		nr_free++;
 546	}
 547
 
 
 
 548	if (nr_free) {
 549		pgoff_t fofs;
 550		/*
 551		 * once we invalidate valid blkaddr in range [ofs, ofs + count],
 552		 * we will invalidate all blkaddr in the whole range.
 553		 */
 554		fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page),
 555							dn->inode) + ofs;
 556		f2fs_update_extent_cache_range(dn, fofs, 0, len);
 
 557		dec_valid_block_count(sbi, dn->inode, nr_free);
 558	}
 559	dn->ofs_in_node = ofs;
 560
 561	f2fs_update_time(sbi, REQ_TIME);
 562	trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
 563					 dn->ofs_in_node, nr_free);
 564}
 565
 566void f2fs_truncate_data_blocks(struct dnode_of_data *dn)
 567{
 568	f2fs_truncate_data_blocks_range(dn, ADDRS_PER_BLOCK(dn->inode));
 569}
 570
 571static int truncate_partial_data_page(struct inode *inode, u64 from,
 572								bool cache_only)
 573{
 574	loff_t offset = from & (PAGE_SIZE - 1);
 575	pgoff_t index = from >> PAGE_SHIFT;
 576	struct address_space *mapping = inode->i_mapping;
 577	struct page *page;
 578
 579	if (!offset && !cache_only)
 580		return 0;
 581
 582	if (cache_only) {
 583		page = find_lock_page(mapping, index);
 584		if (page && PageUptodate(page))
 585			goto truncate_out;
 586		f2fs_put_page(page, 1);
 587		return 0;
 588	}
 589
 590	page = f2fs_get_lock_data_page(inode, index, true);
 591	if (IS_ERR(page))
 592		return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page);
 593truncate_out:
 594	f2fs_wait_on_page_writeback(page, DATA, true, true);
 595	zero_user(page, offset, PAGE_SIZE - offset);
 596
 597	/* An encrypted inode should have a key and truncate the last page. */
 598	f2fs_bug_on(F2FS_I_SB(inode), cache_only && IS_ENCRYPTED(inode));
 599	if (!cache_only)
 600		set_page_dirty(page);
 601	f2fs_put_page(page, 1);
 602	return 0;
 603}
 604
 605int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock)
 606{
 607	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 608	struct dnode_of_data dn;
 609	pgoff_t free_from;
 610	int count = 0, err = 0;
 611	struct page *ipage;
 612	bool truncate_page = false;
 613
 614	trace_f2fs_truncate_blocks_enter(inode, from);
 615
 
 
 
 
 
 616	free_from = (pgoff_t)F2FS_BLK_ALIGN(from);
 617
 618	if (free_from >= sbi->max_file_blocks)
 619		goto free_partial;
 620
 621	if (lock)
 622		f2fs_lock_op(sbi);
 623
 624	ipage = f2fs_get_node_page(sbi, inode->i_ino);
 625	if (IS_ERR(ipage)) {
 626		err = PTR_ERR(ipage);
 627		goto out;
 628	}
 629
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 630	if (f2fs_has_inline_data(inode)) {
 631		f2fs_truncate_inline_inode(inode, ipage, from);
 632		f2fs_put_page(ipage, 1);
 633		truncate_page = true;
 634		goto out;
 635	}
 636
 637	set_new_dnode(&dn, inode, ipage, NULL, 0);
 638	err = f2fs_get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
 639	if (err) {
 640		if (err == -ENOENT)
 641			goto free_next;
 642		goto out;
 643	}
 644
 645	count = ADDRS_PER_PAGE(dn.node_page, inode);
 646
 647	count -= dn.ofs_in_node;
 648	f2fs_bug_on(sbi, count < 0);
 649
 650	if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
 651		f2fs_truncate_data_blocks_range(&dn, count);
 652		free_from += count;
 653	}
 654
 655	f2fs_put_dnode(&dn);
 656free_next:
 657	err = f2fs_truncate_inode_blocks(inode, free_from);
 658out:
 659	if (lock)
 660		f2fs_unlock_op(sbi);
 661free_partial:
 662	/* lastly zero out the first data page */
 663	if (!err)
 664		err = truncate_partial_data_page(inode, from, truncate_page);
 665
 666	trace_f2fs_truncate_blocks_exit(inode, err);
 667	return err;
 668}
 669
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 670int f2fs_truncate(struct inode *inode)
 671{
 672	int err;
 673
 674	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
 675		return -EIO;
 676
 677	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
 678				S_ISLNK(inode->i_mode)))
 679		return 0;
 680
 681	trace_f2fs_truncate(inode);
 682
 683	if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE)) {
 684		f2fs_show_injection_info(FAULT_TRUNCATE);
 685		return -EIO;
 686	}
 
 
 
 687
 688	/* we should check inline_data size */
 689	if (!f2fs_may_inline_data(inode)) {
 690		err = f2fs_convert_inline_inode(inode);
 691		if (err)
 692			return err;
 693	}
 694
 695	err = f2fs_truncate_blocks(inode, i_size_read(inode), true);
 696	if (err)
 697		return err;
 698
 699	inode->i_mtime = inode->i_ctime = current_time(inode);
 700	f2fs_mark_inode_dirty_sync(inode, false);
 701	return 0;
 702}
 703
 704int f2fs_getattr(const struct path *path, struct kstat *stat,
 705		 u32 request_mask, unsigned int query_flags)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 706{
 707	struct inode *inode = d_inode(path->dentry);
 708	struct f2fs_inode_info *fi = F2FS_I(inode);
 709	struct f2fs_inode *ri;
 710	unsigned int flags;
 711
 712	if (f2fs_has_extra_attr(inode) &&
 713			f2fs_sb_has_inode_crtime(F2FS_I_SB(inode)) &&
 714			F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) {
 715		stat->result_mask |= STATX_BTIME;
 716		stat->btime.tv_sec = fi->i_crtime.tv_sec;
 717		stat->btime.tv_nsec = fi->i_crtime.tv_nsec;
 718	}
 719
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 720	flags = fi->i_flags;
 
 
 721	if (flags & F2FS_APPEND_FL)
 722		stat->attributes |= STATX_ATTR_APPEND;
 723	if (IS_ENCRYPTED(inode))
 724		stat->attributes |= STATX_ATTR_ENCRYPTED;
 725	if (flags & F2FS_IMMUTABLE_FL)
 726		stat->attributes |= STATX_ATTR_IMMUTABLE;
 727	if (flags & F2FS_NODUMP_FL)
 728		stat->attributes |= STATX_ATTR_NODUMP;
 
 
 729
 730	stat->attributes_mask |= (STATX_ATTR_APPEND |
 
 731				  STATX_ATTR_ENCRYPTED |
 732				  STATX_ATTR_IMMUTABLE |
 733				  STATX_ATTR_NODUMP);
 
 734
 735	generic_fillattr(inode, stat);
 736
 737	/* we need to show initial sectors used for inline_data/dentries */
 738	if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) ||
 739					f2fs_has_inline_dentry(inode))
 740		stat->blocks += (stat->size + 511) >> 9;
 741
 742	return 0;
 743}
 744
 745#ifdef CONFIG_F2FS_FS_POSIX_ACL
 746static void __setattr_copy(struct inode *inode, const struct iattr *attr)
 
 747{
 748	unsigned int ia_valid = attr->ia_valid;
 749
 750	if (ia_valid & ATTR_UID)
 751		inode->i_uid = attr->ia_uid;
 752	if (ia_valid & ATTR_GID)
 753		inode->i_gid = attr->ia_gid;
 754	if (ia_valid & ATTR_ATIME) {
 755		inode->i_atime = timestamp_truncate(attr->ia_atime,
 756						  inode);
 757	}
 758	if (ia_valid & ATTR_MTIME) {
 759		inode->i_mtime = timestamp_truncate(attr->ia_mtime,
 760						  inode);
 761	}
 762	if (ia_valid & ATTR_CTIME) {
 763		inode->i_ctime = timestamp_truncate(attr->ia_ctime,
 764						  inode);
 765	}
 766	if (ia_valid & ATTR_MODE) {
 767		umode_t mode = attr->ia_mode;
 768
 769		if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
 770			mode &= ~S_ISGID;
 771		set_acl_inode(inode, mode);
 772	}
 773}
 774#else
 775#define __setattr_copy setattr_copy
 776#endif
 777
 778int f2fs_setattr(struct dentry *dentry, struct iattr *attr)
 
 779{
 780	struct inode *inode = d_inode(dentry);
 
 781	int err;
 782
 783	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
 784		return -EIO;
 785
 786	err = setattr_prepare(dentry, attr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 787	if (err)
 788		return err;
 789
 790	err = fscrypt_prepare_setattr(dentry, attr);
 791	if (err)
 792		return err;
 793
 794	err = fsverity_prepare_setattr(dentry, attr);
 795	if (err)
 796		return err;
 797
 798	if (is_quota_modification(inode, attr)) {
 799		err = dquot_initialize(inode);
 800		if (err)
 801			return err;
 802	}
 803	if ((attr->ia_valid & ATTR_UID &&
 804		!uid_eq(attr->ia_uid, inode->i_uid)) ||
 805		(attr->ia_valid & ATTR_GID &&
 806		!gid_eq(attr->ia_gid, inode->i_gid))) {
 807		f2fs_lock_op(F2FS_I_SB(inode));
 808		err = dquot_transfer(inode, attr);
 809		if (err) {
 810			set_sbi_flag(F2FS_I_SB(inode),
 811					SBI_QUOTA_NEED_REPAIR);
 812			f2fs_unlock_op(F2FS_I_SB(inode));
 813			return err;
 814		}
 815		/*
 816		 * update uid/gid under lock_op(), so that dquot and inode can
 817		 * be updated atomically.
 818		 */
 819		if (attr->ia_valid & ATTR_UID)
 820			inode->i_uid = attr->ia_uid;
 821		if (attr->ia_valid & ATTR_GID)
 822			inode->i_gid = attr->ia_gid;
 823		f2fs_mark_inode_dirty_sync(inode, true);
 824		f2fs_unlock_op(F2FS_I_SB(inode));
 825	}
 826
 827	if (attr->ia_valid & ATTR_SIZE) {
 828		loff_t old_size = i_size_read(inode);
 829
 830		if (attr->ia_size > MAX_INLINE_DATA(inode)) {
 831			/*
 832			 * should convert inline inode before i_size_write to
 833			 * keep smaller than inline_data size with inline flag.
 834			 */
 835			err = f2fs_convert_inline_inode(inode);
 836			if (err)
 837				return err;
 838		}
 839
 840		down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
 841		down_write(&F2FS_I(inode)->i_mmap_sem);
 
 
 
 
 
 
 
 842
 843		truncate_setsize(inode, attr->ia_size);
 844
 845		if (attr->ia_size <= old_size)
 846			err = f2fs_truncate(inode);
 847		/*
 848		 * do not trim all blocks after i_size if target size is
 849		 * larger than i_size.
 850		 */
 851		up_write(&F2FS_I(inode)->i_mmap_sem);
 852		up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
 853		if (err)
 854			return err;
 855
 856		down_write(&F2FS_I(inode)->i_sem);
 857		inode->i_mtime = inode->i_ctime = current_time(inode);
 858		F2FS_I(inode)->last_disk_size = i_size_read(inode);
 859		up_write(&F2FS_I(inode)->i_sem);
 860	}
 861
 862	__setattr_copy(inode, attr);
 863
 864	if (attr->ia_valid & ATTR_MODE) {
 865		err = posix_acl_chmod(inode, f2fs_get_inode_mode(inode));
 866		if (err || is_inode_flag_set(inode, FI_ACL_MODE)) {
 867			inode->i_mode = F2FS_I(inode)->i_acl_mode;
 
 
 868			clear_inode_flag(inode, FI_ACL_MODE);
 869		}
 870	}
 871
 872	/* file size may changed here */
 873	f2fs_mark_inode_dirty_sync(inode, true);
 874
 875	/* inode change will produce dirty node pages flushed by checkpoint */
 876	f2fs_balance_fs(F2FS_I_SB(inode), true);
 877
 878	return err;
 879}
 880
 881const struct inode_operations f2fs_file_inode_operations = {
 882	.getattr	= f2fs_getattr,
 883	.setattr	= f2fs_setattr,
 884	.get_acl	= f2fs_get_acl,
 885	.set_acl	= f2fs_set_acl,
 886#ifdef CONFIG_F2FS_FS_XATTR
 887	.listxattr	= f2fs_listxattr,
 888#endif
 889	.fiemap		= f2fs_fiemap,
 
 
 890};
 891
 892static int fill_zero(struct inode *inode, pgoff_t index,
 893					loff_t start, loff_t len)
 894{
 895	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 896	struct page *page;
 897
 898	if (!len)
 899		return 0;
 900
 901	f2fs_balance_fs(sbi, true);
 902
 903	f2fs_lock_op(sbi);
 904	page = f2fs_get_new_data_page(inode, NULL, index, false);
 905	f2fs_unlock_op(sbi);
 906
 907	if (IS_ERR(page))
 908		return PTR_ERR(page);
 909
 910	f2fs_wait_on_page_writeback(page, DATA, true, true);
 911	zero_user(page, start, len);
 912	set_page_dirty(page);
 913	f2fs_put_page(page, 1);
 914	return 0;
 915}
 916
 917int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
 918{
 919	int err;
 920
 921	while (pg_start < pg_end) {
 922		struct dnode_of_data dn;
 923		pgoff_t end_offset, count;
 924
 925		set_new_dnode(&dn, inode, NULL, NULL, 0);
 926		err = f2fs_get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
 927		if (err) {
 928			if (err == -ENOENT) {
 929				pg_start = f2fs_get_next_page_offset(&dn,
 930								pg_start);
 931				continue;
 932			}
 933			return err;
 934		}
 935
 936		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
 937		count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
 938
 939		f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
 940
 941		f2fs_truncate_data_blocks_range(&dn, count);
 942		f2fs_put_dnode(&dn);
 943
 944		pg_start += count;
 945	}
 946	return 0;
 947}
 948
 949static int punch_hole(struct inode *inode, loff_t offset, loff_t len)
 950{
 951	pgoff_t pg_start, pg_end;
 952	loff_t off_start, off_end;
 953	int ret;
 954
 955	ret = f2fs_convert_inline_inode(inode);
 956	if (ret)
 957		return ret;
 958
 959	pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
 960	pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
 961
 962	off_start = offset & (PAGE_SIZE - 1);
 963	off_end = (offset + len) & (PAGE_SIZE - 1);
 964
 965	if (pg_start == pg_end) {
 966		ret = fill_zero(inode, pg_start, off_start,
 967						off_end - off_start);
 968		if (ret)
 969			return ret;
 970	} else {
 971		if (off_start) {
 972			ret = fill_zero(inode, pg_start++, off_start,
 973						PAGE_SIZE - off_start);
 974			if (ret)
 975				return ret;
 976		}
 977		if (off_end) {
 978			ret = fill_zero(inode, pg_end, 0, off_end);
 979			if (ret)
 980				return ret;
 981		}
 982
 983		if (pg_start < pg_end) {
 984			struct address_space *mapping = inode->i_mapping;
 985			loff_t blk_start, blk_end;
 986			struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 987
 988			f2fs_balance_fs(sbi, true);
 989
 990			blk_start = (loff_t)pg_start << PAGE_SHIFT;
 991			blk_end = (loff_t)pg_end << PAGE_SHIFT;
 992
 993			down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
 994			down_write(&F2FS_I(inode)->i_mmap_sem);
 995
 996			truncate_inode_pages_range(mapping, blk_start,
 997					blk_end - 1);
 998
 999			f2fs_lock_op(sbi);
1000			ret = f2fs_truncate_hole(inode, pg_start, pg_end);
1001			f2fs_unlock_op(sbi);
1002
1003			up_write(&F2FS_I(inode)->i_mmap_sem);
1004			up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1005		}
1006	}
1007
1008	return ret;
1009}
1010
1011static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
1012				int *do_replace, pgoff_t off, pgoff_t len)
1013{
1014	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1015	struct dnode_of_data dn;
1016	int ret, done, i;
1017
1018next_dnode:
1019	set_new_dnode(&dn, inode, NULL, NULL, 0);
1020	ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
1021	if (ret && ret != -ENOENT) {
1022		return ret;
1023	} else if (ret == -ENOENT) {
1024		if (dn.max_level == 0)
1025			return -ENOENT;
1026		done = min((pgoff_t)ADDRS_PER_BLOCK(inode) - dn.ofs_in_node,
1027									len);
1028		blkaddr += done;
1029		do_replace += done;
1030		goto next;
1031	}
1032
1033	done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) -
1034							dn.ofs_in_node, len);
1035	for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
1036		*blkaddr = datablock_addr(dn.inode,
1037					dn.node_page, dn.ofs_in_node);
1038
1039		if (__is_valid_data_blkaddr(*blkaddr) &&
1040			!f2fs_is_valid_blkaddr(sbi, *blkaddr,
1041					DATA_GENERIC_ENHANCE)) {
1042			f2fs_put_dnode(&dn);
1043			return -EFSCORRUPTED;
1044		}
1045
1046		if (!f2fs_is_checkpointed_data(sbi, *blkaddr)) {
1047
1048			if (test_opt(sbi, LFS)) {
1049				f2fs_put_dnode(&dn);
1050				return -EOPNOTSUPP;
1051			}
1052
1053			/* do not invalidate this block address */
1054			f2fs_update_data_blkaddr(&dn, NULL_ADDR);
1055			*do_replace = 1;
1056		}
1057	}
1058	f2fs_put_dnode(&dn);
1059next:
1060	len -= done;
1061	off += done;
1062	if (len)
1063		goto next_dnode;
1064	return 0;
1065}
1066
1067static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
1068				int *do_replace, pgoff_t off, int len)
1069{
1070	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1071	struct dnode_of_data dn;
1072	int ret, i;
1073
1074	for (i = 0; i < len; i++, do_replace++, blkaddr++) {
1075		if (*do_replace == 0)
1076			continue;
1077
1078		set_new_dnode(&dn, inode, NULL, NULL, 0);
1079		ret = f2fs_get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
1080		if (ret) {
1081			dec_valid_block_count(sbi, inode, 1);
1082			f2fs_invalidate_blocks(sbi, *blkaddr);
1083		} else {
1084			f2fs_update_data_blkaddr(&dn, *blkaddr);
1085		}
1086		f2fs_put_dnode(&dn);
1087	}
1088	return 0;
1089}
1090
1091static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
1092			block_t *blkaddr, int *do_replace,
1093			pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
1094{
1095	struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
1096	pgoff_t i = 0;
1097	int ret;
1098
1099	while (i < len) {
1100		if (blkaddr[i] == NULL_ADDR && !full) {
1101			i++;
1102			continue;
1103		}
1104
1105		if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
1106			struct dnode_of_data dn;
1107			struct node_info ni;
1108			size_t new_size;
1109			pgoff_t ilen;
1110
1111			set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
1112			ret = f2fs_get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
1113			if (ret)
1114				return ret;
1115
1116			ret = f2fs_get_node_info(sbi, dn.nid, &ni);
1117			if (ret) {
1118				f2fs_put_dnode(&dn);
1119				return ret;
1120			}
1121
1122			ilen = min((pgoff_t)
1123				ADDRS_PER_PAGE(dn.node_page, dst_inode) -
1124						dn.ofs_in_node, len - i);
1125			do {
1126				dn.data_blkaddr = datablock_addr(dn.inode,
1127						dn.node_page, dn.ofs_in_node);
1128				f2fs_truncate_data_blocks_range(&dn, 1);
1129
1130				if (do_replace[i]) {
1131					f2fs_i_blocks_write(src_inode,
1132							1, false, false);
1133					f2fs_i_blocks_write(dst_inode,
1134							1, true, false);
1135					f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
1136					blkaddr[i], ni.version, true, false);
1137
1138					do_replace[i] = 0;
1139				}
1140				dn.ofs_in_node++;
1141				i++;
1142				new_size = (dst + i) << PAGE_SHIFT;
1143				if (dst_inode->i_size < new_size)
1144					f2fs_i_size_write(dst_inode, new_size);
1145			} while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR));
1146
1147			f2fs_put_dnode(&dn);
1148		} else {
1149			struct page *psrc, *pdst;
1150
1151			psrc = f2fs_get_lock_data_page(src_inode,
1152							src + i, true);
1153			if (IS_ERR(psrc))
1154				return PTR_ERR(psrc);
1155			pdst = f2fs_get_new_data_page(dst_inode, NULL, dst + i,
1156								true);
1157			if (IS_ERR(pdst)) {
1158				f2fs_put_page(psrc, 1);
1159				return PTR_ERR(pdst);
1160			}
1161			f2fs_copy_page(psrc, pdst);
 
 
 
1162			set_page_dirty(pdst);
 
1163			f2fs_put_page(pdst, 1);
1164			f2fs_put_page(psrc, 1);
1165
1166			ret = f2fs_truncate_hole(src_inode,
1167						src + i, src + i + 1);
1168			if (ret)
1169				return ret;
1170			i++;
1171		}
1172	}
1173	return 0;
1174}
1175
1176static int __exchange_data_block(struct inode *src_inode,
1177			struct inode *dst_inode, pgoff_t src, pgoff_t dst,
1178			pgoff_t len, bool full)
1179{
1180	block_t *src_blkaddr;
1181	int *do_replace;
1182	pgoff_t olen;
1183	int ret;
1184
1185	while (len) {
1186		olen = min((pgoff_t)4 * ADDRS_PER_BLOCK(src_inode), len);
1187
1188		src_blkaddr = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1189					array_size(olen, sizeof(block_t)),
1190					GFP_KERNEL);
1191		if (!src_blkaddr)
1192			return -ENOMEM;
1193
1194		do_replace = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1195					array_size(olen, sizeof(int)),
1196					GFP_KERNEL);
1197		if (!do_replace) {
1198			kvfree(src_blkaddr);
1199			return -ENOMEM;
1200		}
1201
1202		ret = __read_out_blkaddrs(src_inode, src_blkaddr,
1203					do_replace, src, olen);
1204		if (ret)
1205			goto roll_back;
1206
1207		ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
1208					do_replace, src, dst, olen, full);
1209		if (ret)
1210			goto roll_back;
1211
1212		src += olen;
1213		dst += olen;
1214		len -= olen;
1215
1216		kvfree(src_blkaddr);
1217		kvfree(do_replace);
1218	}
1219	return 0;
1220
1221roll_back:
1222	__roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, olen);
1223	kvfree(src_blkaddr);
1224	kvfree(do_replace);
1225	return ret;
1226}
1227
1228static int f2fs_do_collapse(struct inode *inode, loff_t offset, loff_t len)
1229{
1230	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1231	pgoff_t nrpages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1232	pgoff_t start = offset >> PAGE_SHIFT;
1233	pgoff_t end = (offset + len) >> PAGE_SHIFT;
1234	int ret;
1235
1236	f2fs_balance_fs(sbi, true);
1237
1238	/* avoid gc operation during block exchange */
1239	down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1240	down_write(&F2FS_I(inode)->i_mmap_sem);
1241
1242	f2fs_lock_op(sbi);
1243	f2fs_drop_extent_tree(inode);
1244	truncate_pagecache(inode, offset);
1245	ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
1246	f2fs_unlock_op(sbi);
1247
1248	up_write(&F2FS_I(inode)->i_mmap_sem);
1249	up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1250	return ret;
1251}
1252
1253static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
1254{
1255	loff_t new_size;
1256	int ret;
1257
1258	if (offset + len >= i_size_read(inode))
1259		return -EINVAL;
1260
1261	/* collapse range should be aligned to block size of f2fs. */
1262	if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1263		return -EINVAL;
1264
1265	ret = f2fs_convert_inline_inode(inode);
1266	if (ret)
1267		return ret;
1268
1269	/* write out all dirty pages from offset */
1270	ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1271	if (ret)
1272		return ret;
1273
1274	ret = f2fs_do_collapse(inode, offset, len);
1275	if (ret)
1276		return ret;
1277
1278	/* write out all moved pages, if possible */
1279	down_write(&F2FS_I(inode)->i_mmap_sem);
1280	filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1281	truncate_pagecache(inode, offset);
1282
1283	new_size = i_size_read(inode) - len;
1284	truncate_pagecache(inode, new_size);
1285
1286	ret = f2fs_truncate_blocks(inode, new_size, true);
1287	up_write(&F2FS_I(inode)->i_mmap_sem);
1288	if (!ret)
1289		f2fs_i_size_write(inode, new_size);
1290	return ret;
1291}
1292
1293static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
1294								pgoff_t end)
1295{
1296	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1297	pgoff_t index = start;
1298	unsigned int ofs_in_node = dn->ofs_in_node;
1299	blkcnt_t count = 0;
1300	int ret;
1301
1302	for (; index < end; index++, dn->ofs_in_node++) {
1303		if (datablock_addr(dn->inode, dn->node_page,
1304					dn->ofs_in_node) == NULL_ADDR)
1305			count++;
1306	}
1307
1308	dn->ofs_in_node = ofs_in_node;
1309	ret = f2fs_reserve_new_blocks(dn, count);
1310	if (ret)
1311		return ret;
1312
1313	dn->ofs_in_node = ofs_in_node;
1314	for (index = start; index < end; index++, dn->ofs_in_node++) {
1315		dn->data_blkaddr = datablock_addr(dn->inode,
1316					dn->node_page, dn->ofs_in_node);
1317		/*
1318		 * f2fs_reserve_new_blocks will not guarantee entire block
1319		 * allocation.
1320		 */
1321		if (dn->data_blkaddr == NULL_ADDR) {
1322			ret = -ENOSPC;
1323			break;
1324		}
1325		if (dn->data_blkaddr != NEW_ADDR) {
1326			f2fs_invalidate_blocks(sbi, dn->data_blkaddr);
1327			dn->data_blkaddr = NEW_ADDR;
1328			f2fs_set_data_blkaddr(dn);
 
 
 
 
1329		}
 
 
 
1330	}
1331
1332	f2fs_update_extent_cache_range(dn, start, 0, index - start);
 
1333
1334	return ret;
1335}
1336
1337static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
1338								int mode)
1339{
1340	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1341	struct address_space *mapping = inode->i_mapping;
1342	pgoff_t index, pg_start, pg_end;
1343	loff_t new_size = i_size_read(inode);
1344	loff_t off_start, off_end;
1345	int ret = 0;
1346
1347	ret = inode_newsize_ok(inode, (len + offset));
1348	if (ret)
1349		return ret;
1350
1351	ret = f2fs_convert_inline_inode(inode);
1352	if (ret)
1353		return ret;
1354
1355	ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
1356	if (ret)
1357		return ret;
1358
1359	pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1360	pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1361
1362	off_start = offset & (PAGE_SIZE - 1);
1363	off_end = (offset + len) & (PAGE_SIZE - 1);
1364
1365	if (pg_start == pg_end) {
1366		ret = fill_zero(inode, pg_start, off_start,
1367						off_end - off_start);
1368		if (ret)
1369			return ret;
1370
1371		new_size = max_t(loff_t, new_size, offset + len);
1372	} else {
1373		if (off_start) {
1374			ret = fill_zero(inode, pg_start++, off_start,
1375						PAGE_SIZE - off_start);
1376			if (ret)
1377				return ret;
1378
1379			new_size = max_t(loff_t, new_size,
1380					(loff_t)pg_start << PAGE_SHIFT);
1381		}
1382
1383		for (index = pg_start; index < pg_end;) {
1384			struct dnode_of_data dn;
1385			unsigned int end_offset;
1386			pgoff_t end;
1387
1388			down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1389			down_write(&F2FS_I(inode)->i_mmap_sem);
1390
1391			truncate_pagecache_range(inode,
1392				(loff_t)index << PAGE_SHIFT,
1393				((loff_t)pg_end << PAGE_SHIFT) - 1);
1394
1395			f2fs_lock_op(sbi);
1396
1397			set_new_dnode(&dn, inode, NULL, NULL, 0);
1398			ret = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE);
1399			if (ret) {
1400				f2fs_unlock_op(sbi);
1401				up_write(&F2FS_I(inode)->i_mmap_sem);
1402				up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1403				goto out;
1404			}
1405
1406			end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1407			end = min(pg_end, end_offset - dn.ofs_in_node + index);
1408
1409			ret = f2fs_do_zero_range(&dn, index, end);
1410			f2fs_put_dnode(&dn);
1411
1412			f2fs_unlock_op(sbi);
1413			up_write(&F2FS_I(inode)->i_mmap_sem);
1414			up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1415
1416			f2fs_balance_fs(sbi, dn.node_changed);
1417
1418			if (ret)
1419				goto out;
1420
1421			index = end;
1422			new_size = max_t(loff_t, new_size,
1423					(loff_t)index << PAGE_SHIFT);
1424		}
1425
1426		if (off_end) {
1427			ret = fill_zero(inode, pg_end, 0, off_end);
1428			if (ret)
1429				goto out;
1430
1431			new_size = max_t(loff_t, new_size, offset + len);
1432		}
1433	}
1434
1435out:
1436	if (new_size > i_size_read(inode)) {
1437		if (mode & FALLOC_FL_KEEP_SIZE)
1438			file_set_keep_isize(inode);
1439		else
1440			f2fs_i_size_write(inode, new_size);
1441	}
1442	return ret;
1443}
1444
1445static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
1446{
1447	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 
1448	pgoff_t nr, pg_start, pg_end, delta, idx;
1449	loff_t new_size;
1450	int ret = 0;
1451
1452	new_size = i_size_read(inode) + len;
1453	ret = inode_newsize_ok(inode, new_size);
1454	if (ret)
1455		return ret;
1456
1457	if (offset >= i_size_read(inode))
1458		return -EINVAL;
1459
1460	/* insert range should be aligned to block size of f2fs. */
1461	if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1462		return -EINVAL;
1463
1464	ret = f2fs_convert_inline_inode(inode);
1465	if (ret)
1466		return ret;
1467
1468	f2fs_balance_fs(sbi, true);
1469
1470	down_write(&F2FS_I(inode)->i_mmap_sem);
1471	ret = f2fs_truncate_blocks(inode, i_size_read(inode), true);
1472	up_write(&F2FS_I(inode)->i_mmap_sem);
1473	if (ret)
1474		return ret;
1475
1476	/* write out all dirty pages from offset */
1477	ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1478	if (ret)
1479		return ret;
1480
1481	pg_start = offset >> PAGE_SHIFT;
1482	pg_end = (offset + len) >> PAGE_SHIFT;
1483	delta = pg_end - pg_start;
1484	idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1485
1486	/* avoid gc operation during block exchange */
1487	down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1488	down_write(&F2FS_I(inode)->i_mmap_sem);
1489	truncate_pagecache(inode, offset);
1490
1491	while (!ret && idx > pg_start) {
1492		nr = idx - pg_start;
1493		if (nr > delta)
1494			nr = delta;
1495		idx -= nr;
1496
1497		f2fs_lock_op(sbi);
1498		f2fs_drop_extent_tree(inode);
1499
1500		ret = __exchange_data_block(inode, inode, idx,
1501					idx + delta, nr, false);
1502		f2fs_unlock_op(sbi);
1503	}
1504	up_write(&F2FS_I(inode)->i_mmap_sem);
1505	up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
 
 
1506
1507	/* write out all moved pages, if possible */
1508	down_write(&F2FS_I(inode)->i_mmap_sem);
1509	filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1510	truncate_pagecache(inode, offset);
1511	up_write(&F2FS_I(inode)->i_mmap_sem);
1512
1513	if (!ret)
1514		f2fs_i_size_write(inode, new_size);
1515	return ret;
1516}
1517
1518static int expand_inode_data(struct inode *inode, loff_t offset,
1519					loff_t len, int mode)
1520{
1521	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1522	struct f2fs_map_blocks map = { .m_next_pgofs = NULL,
1523			.m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE,
1524			.m_may_create = true };
1525	pgoff_t pg_end;
1526	loff_t new_size = i_size_read(inode);
 
 
 
 
 
1527	loff_t off_end;
 
1528	int err;
1529
1530	err = inode_newsize_ok(inode, (len + offset));
1531	if (err)
1532		return err;
1533
1534	err = f2fs_convert_inline_inode(inode);
1535	if (err)
1536		return err;
1537
1538	f2fs_balance_fs(sbi, true);
1539
 
1540	pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
1541	off_end = (offset + len) & (PAGE_SIZE - 1);
1542
1543	map.m_lblk = ((unsigned long long)offset) >> PAGE_SHIFT;
1544	map.m_len = pg_end - map.m_lblk;
1545	if (off_end)
1546		map.m_len++;
1547
1548	if (f2fs_is_pinned_file(inode))
1549		map.m_seg_type = CURSEG_COLD_DATA;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1550
1551	err = f2fs_map_blocks(inode, &map, 1, (f2fs_is_pinned_file(inode) ?
1552						F2FS_GET_BLOCK_PRE_DIO :
1553						F2FS_GET_BLOCK_PRE_AIO));
 
 
 
1554	if (err) {
1555		pgoff_t last_off;
1556
1557		if (!map.m_len)
1558			return err;
1559
1560		last_off = map.m_lblk + map.m_len - 1;
1561
1562		/* update new size to the failed position */
1563		new_size = (last_off == pg_end) ? offset + len :
1564					(loff_t)(last_off + 1) << PAGE_SHIFT;
1565	} else {
1566		new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
1567	}
1568
1569	if (new_size > i_size_read(inode)) {
1570		if (mode & FALLOC_FL_KEEP_SIZE)
1571			file_set_keep_isize(inode);
1572		else
1573			f2fs_i_size_write(inode, new_size);
1574	}
1575
1576	return err;
1577}
1578
1579static long f2fs_fallocate(struct file *file, int mode,
1580				loff_t offset, loff_t len)
1581{
1582	struct inode *inode = file_inode(file);
1583	long ret = 0;
1584
1585	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
1586		return -EIO;
1587	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
1588		return -ENOSPC;
 
 
1589
1590	/* f2fs only support ->fallocate for regular file */
1591	if (!S_ISREG(inode->i_mode))
1592		return -EINVAL;
1593
1594	if (IS_ENCRYPTED(inode) &&
1595		(mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
1596		return -EOPNOTSUPP;
1597
1598	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
1599			FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
1600			FALLOC_FL_INSERT_RANGE))
1601		return -EOPNOTSUPP;
1602
1603	inode_lock(inode);
1604
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1605	if (mode & FALLOC_FL_PUNCH_HOLE) {
1606		if (offset >= inode->i_size)
1607			goto out;
1608
1609		ret = punch_hole(inode, offset, len);
1610	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
1611		ret = f2fs_collapse_range(inode, offset, len);
1612	} else if (mode & FALLOC_FL_ZERO_RANGE) {
1613		ret = f2fs_zero_range(inode, offset, len, mode);
1614	} else if (mode & FALLOC_FL_INSERT_RANGE) {
1615		ret = f2fs_insert_range(inode, offset, len);
1616	} else {
1617		ret = expand_inode_data(inode, offset, len, mode);
1618	}
1619
1620	if (!ret) {
1621		inode->i_mtime = inode->i_ctime = current_time(inode);
1622		f2fs_mark_inode_dirty_sync(inode, false);
1623		f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1624	}
1625
1626out:
1627	inode_unlock(inode);
1628
1629	trace_f2fs_fallocate(inode, mode, offset, len, ret);
1630	return ret;
1631}
1632
1633static int f2fs_release_file(struct inode *inode, struct file *filp)
1634{
1635	/*
1636	 * f2fs_relase_file is called at every close calls. So we should
1637	 * not drop any inmemory pages by close called by other process.
1638	 */
1639	if (!(filp->f_mode & FMODE_WRITE) ||
1640			atomic_read(&inode->i_writecount) != 1)
1641		return 0;
1642
1643	/* some remained atomic pages should discarded */
1644	if (f2fs_is_atomic_file(inode))
1645		f2fs_drop_inmem_pages(inode);
1646	if (f2fs_is_volatile_file(inode)) {
1647		set_inode_flag(inode, FI_DROP_CACHE);
1648		filemap_fdatawrite(inode->i_mapping);
1649		clear_inode_flag(inode, FI_DROP_CACHE);
1650		clear_inode_flag(inode, FI_VOLATILE_FILE);
1651		stat_dec_volatile_write(inode);
1652	}
1653	return 0;
1654}
1655
1656static int f2fs_file_flush(struct file *file, fl_owner_t id)
1657{
1658	struct inode *inode = file_inode(file);
1659
1660	/*
1661	 * If the process doing a transaction is crashed, we should do
1662	 * roll-back. Otherwise, other reader/write can see corrupted database
1663	 * until all the writers close its file. Since this should be done
1664	 * before dropping file lock, it needs to do in ->flush.
1665	 */
1666	if (f2fs_is_atomic_file(inode) &&
1667			F2FS_I(inode)->inmem_task == current)
1668		f2fs_drop_inmem_pages(inode);
 
 
 
 
1669	return 0;
1670}
1671
1672static int f2fs_setflags_common(struct inode *inode, u32 iflags, u32 mask)
1673{
1674	struct f2fs_inode_info *fi = F2FS_I(inode);
 
 
 
 
1675
1676	/* Is it quota file? Do not allow user to mess with it */
1677	if (IS_NOQUOTA(inode))
1678		return -EPERM;
1679
1680	if ((iflags ^ fi->i_flags) & F2FS_CASEFOLD_FL) {
1681		if (!f2fs_sb_has_casefold(F2FS_I_SB(inode)))
1682			return -EOPNOTSUPP;
1683		if (!f2fs_empty_dir(inode))
1684			return -ENOTEMPTY;
1685	}
1686
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1687	fi->i_flags = iflags | (fi->i_flags & ~mask);
 
 
1688
1689	if (fi->i_flags & F2FS_PROJINHERIT_FL)
1690		set_inode_flag(inode, FI_PROJ_INHERIT);
1691	else
1692		clear_inode_flag(inode, FI_PROJ_INHERIT);
1693
1694	inode->i_ctime = current_time(inode);
1695	f2fs_set_inode_flags(inode);
1696	f2fs_mark_inode_dirty_sync(inode, true);
1697	return 0;
1698}
1699
1700/* FS_IOC_GETFLAGS and FS_IOC_SETFLAGS support */
1701
1702/*
1703 * To make a new on-disk f2fs i_flag gettable via FS_IOC_GETFLAGS, add an entry
1704 * for it to f2fs_fsflags_map[], and add its FS_*_FL equivalent to
1705 * F2FS_GETTABLE_FS_FL.  To also make it settable via FS_IOC_SETFLAGS, also add
1706 * its FS_*_FL equivalent to F2FS_SETTABLE_FS_FL.
 
 
 
1707 */
1708
1709static const struct {
1710	u32 iflag;
1711	u32 fsflag;
1712} f2fs_fsflags_map[] = {
 
1713	{ F2FS_SYNC_FL,		FS_SYNC_FL },
1714	{ F2FS_IMMUTABLE_FL,	FS_IMMUTABLE_FL },
1715	{ F2FS_APPEND_FL,	FS_APPEND_FL },
1716	{ F2FS_NODUMP_FL,	FS_NODUMP_FL },
1717	{ F2FS_NOATIME_FL,	FS_NOATIME_FL },
 
1718	{ F2FS_INDEX_FL,	FS_INDEX_FL },
1719	{ F2FS_DIRSYNC_FL,	FS_DIRSYNC_FL },
1720	{ F2FS_PROJINHERIT_FL,	FS_PROJINHERIT_FL },
1721	{ F2FS_CASEFOLD_FL,	FS_CASEFOLD_FL },
1722};
1723
1724#define F2FS_GETTABLE_FS_FL (		\
 
1725		FS_SYNC_FL |		\
1726		FS_IMMUTABLE_FL |	\
1727		FS_APPEND_FL |		\
1728		FS_NODUMP_FL |		\
1729		FS_NOATIME_FL |		\
 
1730		FS_INDEX_FL |		\
1731		FS_DIRSYNC_FL |		\
1732		FS_PROJINHERIT_FL |	\
1733		FS_ENCRYPT_FL |		\
1734		FS_INLINE_DATA_FL |	\
1735		FS_NOCOW_FL |		\
1736		FS_VERITY_FL |		\
1737		FS_CASEFOLD_FL)
1738
1739#define F2FS_SETTABLE_FS_FL (		\
 
1740		FS_SYNC_FL |		\
1741		FS_IMMUTABLE_FL |	\
1742		FS_APPEND_FL |		\
1743		FS_NODUMP_FL |		\
1744		FS_NOATIME_FL |		\
 
1745		FS_DIRSYNC_FL |		\
1746		FS_PROJINHERIT_FL |	\
1747		FS_CASEFOLD_FL)
1748
1749/* Convert f2fs on-disk i_flags to FS_IOC_{GET,SET}FLAGS flags */
1750static inline u32 f2fs_iflags_to_fsflags(u32 iflags)
1751{
1752	u32 fsflags = 0;
1753	int i;
1754
1755	for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
1756		if (iflags & f2fs_fsflags_map[i].iflag)
1757			fsflags |= f2fs_fsflags_map[i].fsflag;
1758
1759	return fsflags;
1760}
1761
1762/* Convert FS_IOC_{GET,SET}FLAGS flags to f2fs on-disk i_flags */
1763static inline u32 f2fs_fsflags_to_iflags(u32 fsflags)
1764{
1765	u32 iflags = 0;
1766	int i;
1767
1768	for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
1769		if (fsflags & f2fs_fsflags_map[i].fsflag)
1770			iflags |= f2fs_fsflags_map[i].iflag;
1771
1772	return iflags;
1773}
1774
1775static int f2fs_ioc_getflags(struct file *filp, unsigned long arg)
1776{
1777	struct inode *inode = file_inode(filp);
1778	struct f2fs_inode_info *fi = F2FS_I(inode);
1779	u32 fsflags = f2fs_iflags_to_fsflags(fi->i_flags);
1780
1781	if (IS_ENCRYPTED(inode))
1782		fsflags |= FS_ENCRYPT_FL;
1783	if (IS_VERITY(inode))
1784		fsflags |= FS_VERITY_FL;
1785	if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode))
1786		fsflags |= FS_INLINE_DATA_FL;
1787	if (is_inode_flag_set(inode, FI_PIN_FILE))
1788		fsflags |= FS_NOCOW_FL;
1789
1790	fsflags &= F2FS_GETTABLE_FS_FL;
1791
1792	return put_user(fsflags, (int __user *)arg);
1793}
1794
1795static int f2fs_ioc_setflags(struct file *filp, unsigned long arg)
1796{
1797	struct inode *inode = file_inode(filp);
1798	struct f2fs_inode_info *fi = F2FS_I(inode);
1799	u32 fsflags, old_fsflags;
1800	u32 iflags;
1801	int ret;
1802
1803	if (!inode_owner_or_capable(inode))
1804		return -EACCES;
1805
1806	if (get_user(fsflags, (int __user *)arg))
1807		return -EFAULT;
1808
1809	if (fsflags & ~F2FS_GETTABLE_FS_FL)
1810		return -EOPNOTSUPP;
1811	fsflags &= F2FS_SETTABLE_FS_FL;
1812
1813	iflags = f2fs_fsflags_to_iflags(fsflags);
1814	if (f2fs_mask_flags(inode->i_mode, iflags) != iflags)
1815		return -EOPNOTSUPP;
1816
1817	ret = mnt_want_write_file(filp);
1818	if (ret)
1819		return ret;
1820
1821	inode_lock(inode);
1822
1823	old_fsflags = f2fs_iflags_to_fsflags(fi->i_flags);
1824	ret = vfs_ioc_setflags_prepare(inode, old_fsflags, fsflags);
1825	if (ret)
1826		goto out;
1827
1828	ret = f2fs_setflags_common(inode, iflags,
1829			f2fs_fsflags_to_iflags(F2FS_SETTABLE_FS_FL));
1830out:
1831	inode_unlock(inode);
1832	mnt_drop_write_file(filp);
1833	return ret;
1834}
1835
1836static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
1837{
1838	struct inode *inode = file_inode(filp);
1839
1840	return put_user(inode->i_generation, (int __user *)arg);
1841}
1842
1843static int f2fs_ioc_start_atomic_write(struct file *filp)
1844{
1845	struct inode *inode = file_inode(filp);
 
1846	struct f2fs_inode_info *fi = F2FS_I(inode);
1847	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 
1848	int ret;
1849
1850	if (!inode_owner_or_capable(inode))
 
 
 
1851		return -EACCES;
1852
1853	if (!S_ISREG(inode->i_mode))
1854		return -EINVAL;
1855
1856	if (filp->f_flags & O_DIRECT)
1857		return -EINVAL;
1858
1859	ret = mnt_want_write_file(filp);
1860	if (ret)
1861		return ret;
1862
1863	inode_lock(inode);
1864
1865	if (f2fs_is_atomic_file(inode)) {
1866		if (is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST))
1867			ret = -EINVAL;
1868		goto out;
1869	}
1870
 
 
 
1871	ret = f2fs_convert_inline_inode(inode);
1872	if (ret)
1873		goto out;
1874
1875	down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
 
1876
1877	/*
1878	 * Should wait end_io to count F2FS_WB_CP_DATA correctly by
1879	 * f2fs_is_atomic_file.
1880	 */
1881	if (get_dirty_pages(inode))
1882		f2fs_warn(F2FS_I_SB(inode), "Unexpected flush for atomic writes: ino=%lu, npages=%u",
1883			  inode->i_ino, get_dirty_pages(inode));
1884	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
1885	if (ret) {
1886		up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1887		goto out;
1888	}
1889
1890	spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
1891	if (list_empty(&fi->inmem_ilist))
1892		list_add_tail(&fi->inmem_ilist, &sbi->inode_list[ATOMIC_FILE]);
1893	spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
 
1894
1895	/* add inode in inmem_list first and set atomic_file */
1896	set_inode_flag(inode, FI_ATOMIC_FILE);
1897	clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
1898	up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1899
1900	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1901	F2FS_I(inode)->inmem_task = current;
1902	stat_inc_atomic_write(inode);
1903	stat_update_max_atomic_write(inode);
1904out:
1905	inode_unlock(inode);
1906	mnt_drop_write_file(filp);
1907	return ret;
1908}
1909
1910static int f2fs_ioc_commit_atomic_write(struct file *filp)
1911{
1912	struct inode *inode = file_inode(filp);
1913	int ret;
1914
1915	if (!inode_owner_or_capable(inode))
1916		return -EACCES;
1917
1918	ret = mnt_want_write_file(filp);
1919	if (ret)
1920		return ret;
1921
1922	f2fs_balance_fs(F2FS_I_SB(inode), true);
1923
1924	inode_lock(inode);
1925
1926	if (f2fs_is_volatile_file(inode)) {
1927		ret = -EINVAL;
1928		goto err_out;
1929	}
1930
1931	if (f2fs_is_atomic_file(inode)) {
1932		ret = f2fs_commit_inmem_pages(inode);
1933		if (ret)
1934			goto err_out;
1935
1936		ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
1937		if (!ret)
1938			f2fs_drop_inmem_pages(inode);
1939	} else {
1940		ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false);
1941	}
1942err_out:
1943	if (is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) {
1944		clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
1945		ret = -EINVAL;
1946	}
1947	inode_unlock(inode);
1948	mnt_drop_write_file(filp);
1949	return ret;
1950}
1951
1952static int f2fs_ioc_start_volatile_write(struct file *filp)
1953{
1954	struct inode *inode = file_inode(filp);
1955	int ret;
1956
1957	if (!inode_owner_or_capable(inode))
1958		return -EACCES;
1959
1960	if (!S_ISREG(inode->i_mode))
1961		return -EINVAL;
1962
1963	ret = mnt_want_write_file(filp);
1964	if (ret)
1965		return ret;
 
 
 
 
 
 
1966
1967	inode_lock(inode);
1968
1969	if (f2fs_is_volatile_file(inode))
1970		goto out;
1971
1972	ret = f2fs_convert_inline_inode(inode);
1973	if (ret)
1974		goto out;
1975
1976	stat_inc_volatile_write(inode);
1977	stat_update_max_volatile_write(inode);
1978
1979	set_inode_flag(inode, FI_VOLATILE_FILE);
1980	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1981out:
1982	inode_unlock(inode);
1983	mnt_drop_write_file(filp);
1984	return ret;
1985}
1986
1987static int f2fs_ioc_release_volatile_write(struct file *filp)
1988{
1989	struct inode *inode = file_inode(filp);
 
1990	int ret;
1991
1992	if (!inode_owner_or_capable(inode))
 
 
 
1993		return -EACCES;
1994
1995	ret = mnt_want_write_file(filp);
1996	if (ret)
1997		return ret;
1998
 
 
1999	inode_lock(inode);
2000
2001	if (!f2fs_is_volatile_file(inode))
2002		goto out;
 
 
2003
2004	if (!f2fs_is_first_block_written(inode)) {
2005		ret = truncate_partial_data_page(inode, 0, true);
2006		goto out;
2007	}
2008
2009	ret = punch_hole(inode, 0, F2FS_BLKSIZE);
2010out:
2011	inode_unlock(inode);
2012	mnt_drop_write_file(filp);
2013	return ret;
2014}
2015
2016static int f2fs_ioc_abort_volatile_write(struct file *filp)
2017{
2018	struct inode *inode = file_inode(filp);
 
2019	int ret;
2020
2021	if (!inode_owner_or_capable(inode))
 
 
 
2022		return -EACCES;
2023
2024	ret = mnt_want_write_file(filp);
2025	if (ret)
2026		return ret;
2027
2028	inode_lock(inode);
2029
2030	if (f2fs_is_atomic_file(inode))
2031		f2fs_drop_inmem_pages(inode);
2032	if (f2fs_is_volatile_file(inode)) {
2033		clear_inode_flag(inode, FI_VOLATILE_FILE);
2034		stat_dec_volatile_write(inode);
2035		ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
2036	}
2037
2038	clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
2039
2040	inode_unlock(inode);
2041
2042	mnt_drop_write_file(filp);
2043	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2044	return ret;
2045}
2046
2047static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
 
2048{
2049	struct inode *inode = file_inode(filp);
2050	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2051	struct super_block *sb = sbi->sb;
2052	__u32 in;
2053	int ret = 0;
2054
2055	if (!capable(CAP_SYS_ADMIN))
2056		return -EPERM;
2057
2058	if (get_user(in, (__u32 __user *)arg))
2059		return -EFAULT;
2060
2061	if (in != F2FS_GOING_DOWN_FULLSYNC) {
2062		ret = mnt_want_write_file(filp);
2063		if (ret)
2064			return ret;
2065	}
2066
2067	switch (in) {
2068	case F2FS_GOING_DOWN_FULLSYNC:
2069		sb = freeze_bdev(sb->s_bdev);
2070		if (IS_ERR(sb)) {
2071			ret = PTR_ERR(sb);
2072			goto out;
2073		}
2074		if (sb) {
2075			f2fs_stop_checkpoint(sbi, false);
2076			set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2077			thaw_bdev(sb->s_bdev, sb);
2078		}
2079		break;
2080	case F2FS_GOING_DOWN_METASYNC:
2081		/* do checkpoint only */
2082		ret = f2fs_sync_fs(sb, 1);
2083		if (ret)
 
 
2084			goto out;
2085		f2fs_stop_checkpoint(sbi, false);
2086		set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2087		break;
2088	case F2FS_GOING_DOWN_NOSYNC:
2089		f2fs_stop_checkpoint(sbi, false);
2090		set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2091		break;
2092	case F2FS_GOING_DOWN_METAFLUSH:
2093		f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO);
2094		f2fs_stop_checkpoint(sbi, false);
2095		set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2096		break;
2097	case F2FS_GOING_DOWN_NEED_FSCK:
2098		set_sbi_flag(sbi, SBI_NEED_FSCK);
2099		set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
2100		set_sbi_flag(sbi, SBI_IS_DIRTY);
2101		/* do checkpoint only */
2102		ret = f2fs_sync_fs(sb, 1);
 
 
2103		goto out;
2104	default:
2105		ret = -EINVAL;
2106		goto out;
2107	}
2108
 
 
 
 
 
 
 
 
 
 
2109	f2fs_stop_gc_thread(sbi);
2110	f2fs_stop_discard_thread(sbi);
2111
2112	f2fs_drop_discard_cmd(sbi);
2113	clear_opt(sbi, DISCARD);
2114
 
 
 
2115	f2fs_update_time(sbi, REQ_TIME);
2116out:
2117	if (in != F2FS_GOING_DOWN_FULLSYNC)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2118		mnt_drop_write_file(filp);
2119
2120	trace_f2fs_shutdown(sbi, in, ret);
2121
2122	return ret;
2123}
2124
2125static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
2126{
2127	struct inode *inode = file_inode(filp);
2128	struct super_block *sb = inode->i_sb;
2129	struct request_queue *q = bdev_get_queue(sb->s_bdev);
2130	struct fstrim_range range;
2131	int ret;
2132
2133	if (!capable(CAP_SYS_ADMIN))
2134		return -EPERM;
2135
2136	if (!f2fs_hw_support_discard(F2FS_SB(sb)))
2137		return -EOPNOTSUPP;
2138
2139	if (copy_from_user(&range, (struct fstrim_range __user *)arg,
2140				sizeof(range)))
2141		return -EFAULT;
2142
2143	ret = mnt_want_write_file(filp);
2144	if (ret)
2145		return ret;
2146
2147	range.minlen = max((unsigned int)range.minlen,
2148				q->limits.discard_granularity);
2149	ret = f2fs_trim_fs(F2FS_SB(sb), &range);
2150	mnt_drop_write_file(filp);
2151	if (ret < 0)
2152		return ret;
2153
2154	if (copy_to_user((struct fstrim_range __user *)arg, &range,
2155				sizeof(range)))
2156		return -EFAULT;
2157	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2158	return 0;
2159}
2160
2161static bool uuid_is_nonzero(__u8 u[16])
2162{
2163	int i;
2164
2165	for (i = 0; i < 16; i++)
2166		if (u[i])
2167			return true;
2168	return false;
2169}
2170
2171static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
2172{
2173	struct inode *inode = file_inode(filp);
 
2174
2175	if (!f2fs_sb_has_encrypt(F2FS_I_SB(inode)))
2176		return -EOPNOTSUPP;
2177
 
2178	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2179
2180	return fscrypt_ioctl_set_policy(filp, (const void __user *)arg);
2181}
2182
2183static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
2184{
2185	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2186		return -EOPNOTSUPP;
2187	return fscrypt_ioctl_get_policy(filp, (void __user *)arg);
2188}
2189
2190static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
2191{
2192	struct inode *inode = file_inode(filp);
2193	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 
2194	int err;
2195
2196	if (!f2fs_sb_has_encrypt(sbi))
2197		return -EOPNOTSUPP;
2198
2199	err = mnt_want_write_file(filp);
2200	if (err)
2201		return err;
2202
2203	down_write(&sbi->sb_lock);
2204
2205	if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
2206		goto got_it;
2207
2208	/* update superblock with uuid */
2209	generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
2210
2211	err = f2fs_commit_super(sbi, false);
2212	if (err) {
2213		/* undo new data */
2214		memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
2215		goto out_err;
2216	}
2217got_it:
2218	if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt,
2219									16))
2220		err = -EFAULT;
2221out_err:
2222	up_write(&sbi->sb_lock);
2223	mnt_drop_write_file(filp);
 
 
 
 
2224	return err;
2225}
2226
2227static int f2fs_ioc_get_encryption_policy_ex(struct file *filp,
2228					     unsigned long arg)
2229{
2230	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2231		return -EOPNOTSUPP;
2232
2233	return fscrypt_ioctl_get_policy_ex(filp, (void __user *)arg);
2234}
2235
2236static int f2fs_ioc_add_encryption_key(struct file *filp, unsigned long arg)
2237{
2238	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2239		return -EOPNOTSUPP;
2240
2241	return fscrypt_ioctl_add_key(filp, (void __user *)arg);
2242}
2243
2244static int f2fs_ioc_remove_encryption_key(struct file *filp, unsigned long arg)
2245{
2246	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2247		return -EOPNOTSUPP;
2248
2249	return fscrypt_ioctl_remove_key(filp, (void __user *)arg);
2250}
2251
2252static int f2fs_ioc_remove_encryption_key_all_users(struct file *filp,
2253						    unsigned long arg)
2254{
2255	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2256		return -EOPNOTSUPP;
2257
2258	return fscrypt_ioctl_remove_key_all_users(filp, (void __user *)arg);
2259}
2260
2261static int f2fs_ioc_get_encryption_key_status(struct file *filp,
2262					      unsigned long arg)
2263{
2264	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2265		return -EOPNOTSUPP;
2266
2267	return fscrypt_ioctl_get_key_status(filp, (void __user *)arg);
2268}
2269
 
 
 
 
 
 
 
 
2270static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
2271{
2272	struct inode *inode = file_inode(filp);
2273	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 
 
 
 
2274	__u32 sync;
2275	int ret;
2276
2277	if (!capable(CAP_SYS_ADMIN))
2278		return -EPERM;
2279
2280	if (get_user(sync, (__u32 __user *)arg))
2281		return -EFAULT;
2282
2283	if (f2fs_readonly(sbi->sb))
2284		return -EROFS;
2285
2286	ret = mnt_want_write_file(filp);
2287	if (ret)
2288		return ret;
2289
2290	if (!sync) {
2291		if (!mutex_trylock(&sbi->gc_mutex)) {
2292			ret = -EBUSY;
2293			goto out;
2294		}
2295	} else {
2296		mutex_lock(&sbi->gc_mutex);
2297	}
2298
2299	ret = f2fs_gc(sbi, sync, true, NULL_SEGNO);
 
 
 
2300out:
2301	mnt_drop_write_file(filp);
2302	return ret;
2303}
2304
2305static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg)
2306{
2307	struct inode *inode = file_inode(filp);
2308	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2309	struct f2fs_gc_range range;
 
 
 
 
2310	u64 end;
2311	int ret;
2312
2313	if (!capable(CAP_SYS_ADMIN))
2314		return -EPERM;
2315
2316	if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg,
2317							sizeof(range)))
2318		return -EFAULT;
2319
2320	if (f2fs_readonly(sbi->sb))
2321		return -EROFS;
2322
2323	end = range.start + range.len;
2324	if (end < range.start || range.start < MAIN_BLKADDR(sbi) ||
2325					end >= MAX_BLKADDR(sbi))
2326		return -EINVAL;
2327
2328	ret = mnt_want_write_file(filp);
2329	if (ret)
2330		return ret;
2331
2332do_more:
2333	if (!range.sync) {
2334		if (!mutex_trylock(&sbi->gc_mutex)) {
2335			ret = -EBUSY;
2336			goto out;
2337		}
2338	} else {
2339		mutex_lock(&sbi->gc_mutex);
2340	}
2341
2342	ret = f2fs_gc(sbi, range.sync, true, GET_SEGNO(sbi, range.start));
2343	range.start += BLKS_PER_SEC(sbi);
2344	if (range.start <= end)
 
 
 
 
 
 
 
2345		goto do_more;
2346out:
2347	mnt_drop_write_file(filp);
2348	return ret;
2349}
2350
2351static int f2fs_ioc_write_checkpoint(struct file *filp, unsigned long arg)
 
 
 
 
 
 
 
 
 
 
2352{
2353	struct inode *inode = file_inode(filp);
2354	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2355	int ret;
2356
2357	if (!capable(CAP_SYS_ADMIN))
2358		return -EPERM;
2359
2360	if (f2fs_readonly(sbi->sb))
2361		return -EROFS;
2362
2363	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2364		f2fs_info(sbi, "Skipping Checkpoint. Checkpoints currently disabled.");
2365		return -EINVAL;
2366	}
2367
2368	ret = mnt_want_write_file(filp);
2369	if (ret)
2370		return ret;
2371
2372	ret = f2fs_sync_fs(sbi->sb, 1);
2373
2374	mnt_drop_write_file(filp);
2375	return ret;
2376}
2377
2378static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
2379					struct file *filp,
2380					struct f2fs_defragment *range)
2381{
2382	struct inode *inode = file_inode(filp);
2383	struct f2fs_map_blocks map = { .m_next_extent = NULL,
2384					.m_seg_type = NO_CHECK_TYPE ,
2385					.m_may_create = false };
2386	struct extent_info ei = {0, 0, 0};
2387	pgoff_t pg_start, pg_end, next_pgofs;
2388	unsigned int blk_per_seg = sbi->blocks_per_seg;
2389	unsigned int total = 0, sec_num;
2390	block_t blk_end = 0;
2391	bool fragmented = false;
2392	int err;
2393
2394	/* if in-place-update policy is enabled, don't waste time here */
2395	if (f2fs_should_update_inplace(inode, NULL))
2396		return -EINVAL;
2397
 
2398	pg_start = range->start >> PAGE_SHIFT;
2399	pg_end = (range->start + range->len) >> PAGE_SHIFT;
 
 
 
 
 
 
 
 
2400
2401	f2fs_balance_fs(sbi, true);
2402
2403	inode_lock(inode);
 
 
 
2404
2405	/* writeback all dirty pages in the range */
2406	err = filemap_write_and_wait_range(inode->i_mapping, range->start,
2407						range->start + range->len - 1);
 
2408	if (err)
2409		goto out;
2410
2411	/*
2412	 * lookup mapping info in extent cache, skip defragmenting if physical
2413	 * block addresses are continuous.
2414	 */
2415	if (f2fs_lookup_extent_cache(inode, pg_start, &ei)) {
2416		if (ei.fofs + ei.len >= pg_end)
2417			goto out;
2418	}
2419
2420	map.m_lblk = pg_start;
2421	map.m_next_pgofs = &next_pgofs;
2422
2423	/*
2424	 * lookup mapping info in dnode page cache, skip defragmenting if all
2425	 * physical block addresses are continuous even if there are hole(s)
2426	 * in logical blocks.
2427	 */
2428	while (map.m_lblk < pg_end) {
2429		map.m_len = pg_end - map.m_lblk;
2430		err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
2431		if (err)
2432			goto out;
2433
2434		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2435			map.m_lblk = next_pgofs;
2436			continue;
2437		}
2438
2439		if (blk_end && blk_end != map.m_pblk)
2440			fragmented = true;
2441
2442		/* record total count of block that we're going to move */
2443		total += map.m_len;
2444
2445		blk_end = map.m_pblk + map.m_len;
2446
2447		map.m_lblk += map.m_len;
2448	}
2449
2450	if (!fragmented) {
2451		total = 0;
2452		goto out;
2453	}
2454
2455	sec_num = DIV_ROUND_UP(total, BLKS_PER_SEC(sbi));
2456
2457	/*
2458	 * make sure there are enough free section for LFS allocation, this can
2459	 * avoid defragment running in SSR mode when free section are allocated
2460	 * intensively
2461	 */
2462	if (has_not_enough_free_secs(sbi, 0, sec_num)) {
2463		err = -EAGAIN;
2464		goto out;
2465	}
2466
2467	map.m_lblk = pg_start;
2468	map.m_len = pg_end - pg_start;
2469	total = 0;
2470
2471	while (map.m_lblk < pg_end) {
2472		pgoff_t idx;
2473		int cnt = 0;
2474
2475do_map:
2476		map.m_len = pg_end - map.m_lblk;
2477		err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
2478		if (err)
2479			goto clear_out;
2480
2481		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2482			map.m_lblk = next_pgofs;
2483			goto check;
2484		}
2485
2486		set_inode_flag(inode, FI_DO_DEFRAG);
2487
2488		idx = map.m_lblk;
2489		while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) {
 
2490			struct page *page;
2491
2492			page = f2fs_get_lock_data_page(inode, idx, true);
2493			if (IS_ERR(page)) {
2494				err = PTR_ERR(page);
2495				goto clear_out;
2496			}
2497
 
 
2498			set_page_dirty(page);
 
2499			f2fs_put_page(page, 1);
2500
2501			idx++;
2502			cnt++;
2503			total++;
2504		}
2505
2506		map.m_lblk = idx;
2507check:
2508		if (map.m_lblk < pg_end && cnt < blk_per_seg)
2509			goto do_map;
2510
2511		clear_inode_flag(inode, FI_DO_DEFRAG);
2512
2513		err = filemap_fdatawrite(inode->i_mapping);
2514		if (err)
2515			goto out;
2516	}
2517clear_out:
2518	clear_inode_flag(inode, FI_DO_DEFRAG);
2519out:
 
 
2520	inode_unlock(inode);
2521	if (!err)
2522		range->len = (u64)total << PAGE_SHIFT;
2523	return err;
2524}
2525
2526static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
2527{
2528	struct inode *inode = file_inode(filp);
2529	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2530	struct f2fs_defragment range;
2531	int err;
2532
2533	if (!capable(CAP_SYS_ADMIN))
2534		return -EPERM;
2535
2536	if (!S_ISREG(inode->i_mode) || f2fs_is_atomic_file(inode))
2537		return -EINVAL;
2538
2539	if (f2fs_readonly(sbi->sb))
2540		return -EROFS;
2541
2542	if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
2543							sizeof(range)))
2544		return -EFAULT;
2545
2546	/* verify alignment of offset & size */
2547	if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1))
2548		return -EINVAL;
2549
2550	if (unlikely((range.start + range.len) >> PAGE_SHIFT >
2551					sbi->max_file_blocks))
2552		return -EINVAL;
2553
2554	err = mnt_want_write_file(filp);
2555	if (err)
2556		return err;
2557
2558	err = f2fs_defragment_range(sbi, filp, &range);
2559	mnt_drop_write_file(filp);
2560
2561	f2fs_update_time(sbi, REQ_TIME);
 
2562	if (err < 0)
2563		return err;
2564
2565	if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
2566							sizeof(range)))
2567		return -EFAULT;
2568
2569	return 0;
2570}
2571
2572static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
2573			struct file *file_out, loff_t pos_out, size_t len)
2574{
2575	struct inode *src = file_inode(file_in);
2576	struct inode *dst = file_inode(file_out);
2577	struct f2fs_sb_info *sbi = F2FS_I_SB(src);
2578	size_t olen = len, dst_max_i_size = 0;
2579	size_t dst_osize;
2580	int ret;
2581
2582	if (file_in->f_path.mnt != file_out->f_path.mnt ||
2583				src->i_sb != dst->i_sb)
2584		return -EXDEV;
2585
2586	if (unlikely(f2fs_readonly(src->i_sb)))
2587		return -EROFS;
2588
2589	if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode))
2590		return -EINVAL;
2591
2592	if (IS_ENCRYPTED(src) || IS_ENCRYPTED(dst))
2593		return -EOPNOTSUPP;
2594
 
 
 
2595	if (src == dst) {
2596		if (pos_in == pos_out)
2597			return 0;
2598		if (pos_out > pos_in && pos_out < pos_in + len)
2599			return -EINVAL;
2600	}
2601
2602	inode_lock(src);
2603	if (src != dst) {
2604		ret = -EBUSY;
2605		if (!inode_trylock(dst))
2606			goto out;
2607	}
2608
 
 
 
 
 
 
 
 
 
 
 
2609	ret = -EINVAL;
2610	if (pos_in + len > src->i_size || pos_in + len < pos_in)
2611		goto out_unlock;
2612	if (len == 0)
2613		olen = len = src->i_size - pos_in;
2614	if (pos_in + len == src->i_size)
2615		len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
2616	if (len == 0) {
2617		ret = 0;
2618		goto out_unlock;
2619	}
2620
2621	dst_osize = dst->i_size;
2622	if (pos_out + olen > dst->i_size)
2623		dst_max_i_size = pos_out + olen;
2624
2625	/* verify the end result is block aligned */
2626	if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
2627			!IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
2628			!IS_ALIGNED(pos_out, F2FS_BLKSIZE))
2629		goto out_unlock;
2630
2631	ret = f2fs_convert_inline_inode(src);
2632	if (ret)
2633		goto out_unlock;
2634
2635	ret = f2fs_convert_inline_inode(dst);
2636	if (ret)
2637		goto out_unlock;
2638
2639	/* write out all dirty pages from offset */
2640	ret = filemap_write_and_wait_range(src->i_mapping,
2641					pos_in, pos_in + len);
2642	if (ret)
2643		goto out_unlock;
2644
2645	ret = filemap_write_and_wait_range(dst->i_mapping,
2646					pos_out, pos_out + len);
2647	if (ret)
2648		goto out_unlock;
2649
2650	f2fs_balance_fs(sbi, true);
2651
2652	down_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2653	if (src != dst) {
2654		ret = -EBUSY;
2655		if (!down_write_trylock(&F2FS_I(dst)->i_gc_rwsem[WRITE]))
2656			goto out_src;
2657	}
2658
2659	f2fs_lock_op(sbi);
2660	ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS,
2661				pos_out >> F2FS_BLKSIZE_BITS,
2662				len >> F2FS_BLKSIZE_BITS, false);
2663
2664	if (!ret) {
2665		if (dst_max_i_size)
2666			f2fs_i_size_write(dst, dst_max_i_size);
2667		else if (dst_osize != dst->i_size)
2668			f2fs_i_size_write(dst, dst_osize);
2669	}
2670	f2fs_unlock_op(sbi);
2671
2672	if (src != dst)
2673		up_write(&F2FS_I(dst)->i_gc_rwsem[WRITE]);
2674out_src:
2675	up_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
 
 
 
 
 
 
 
 
 
 
 
2676out_unlock:
2677	if (src != dst)
2678		inode_unlock(dst);
2679out:
2680	inode_unlock(src);
2681	return ret;
2682}
2683
2684static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
 
2685{
2686	struct f2fs_move_range range;
2687	struct fd dst;
2688	int err;
2689
2690	if (!(filp->f_mode & FMODE_READ) ||
2691			!(filp->f_mode & FMODE_WRITE))
2692		return -EBADF;
2693
2694	if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
2695							sizeof(range)))
2696		return -EFAULT;
2697
2698	dst = fdget(range.dst_fd);
2699	if (!dst.file)
2700		return -EBADF;
2701
2702	if (!(dst.file->f_mode & FMODE_WRITE)) {
2703		err = -EBADF;
2704		goto err_out;
2705	}
2706
2707	err = mnt_want_write_file(filp);
2708	if (err)
2709		goto err_out;
2710
2711	err = f2fs_move_file_range(filp, range.pos_in, dst.file,
2712					range.pos_out, range.len);
2713
2714	mnt_drop_write_file(filp);
2715	if (err)
2716		goto err_out;
 
 
 
 
2717
2718	if (copy_to_user((struct f2fs_move_range __user *)arg,
2719						&range, sizeof(range)))
2720		err = -EFAULT;
2721err_out:
2722	fdput(dst);
2723	return err;
2724}
2725
2726static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg)
2727{
2728	struct inode *inode = file_inode(filp);
2729	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2730	struct sit_info *sm = SIT_I(sbi);
2731	unsigned int start_segno = 0, end_segno = 0;
2732	unsigned int dev_start_segno = 0, dev_end_segno = 0;
2733	struct f2fs_flush_device range;
 
 
 
 
 
2734	int ret;
2735
2736	if (!capable(CAP_SYS_ADMIN))
2737		return -EPERM;
2738
2739	if (f2fs_readonly(sbi->sb))
2740		return -EROFS;
2741
2742	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2743		return -EINVAL;
2744
2745	if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg,
2746							sizeof(range)))
2747		return -EFAULT;
2748
2749	if (!f2fs_is_multi_device(sbi) || sbi->s_ndevs - 1 <= range.dev_num ||
2750			__is_large_section(sbi)) {
2751		f2fs_warn(sbi, "Can't flush %u in %d for segs_per_sec %u != 1",
2752			  range.dev_num, sbi->s_ndevs, sbi->segs_per_sec);
2753		return -EINVAL;
2754	}
2755
2756	ret = mnt_want_write_file(filp);
2757	if (ret)
2758		return ret;
2759
2760	if (range.dev_num != 0)
2761		dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk);
2762	dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk);
2763
2764	start_segno = sm->last_victim[FLUSH_DEVICE];
2765	if (start_segno < dev_start_segno || start_segno >= dev_end_segno)
2766		start_segno = dev_start_segno;
2767	end_segno = min(start_segno + range.segments, dev_end_segno);
2768
2769	while (start_segno < end_segno) {
2770		if (!mutex_trylock(&sbi->gc_mutex)) {
2771			ret = -EBUSY;
2772			goto out;
2773		}
2774		sm->last_victim[GC_CB] = end_segno + 1;
2775		sm->last_victim[GC_GREEDY] = end_segno + 1;
2776		sm->last_victim[ALLOC_NEXT] = end_segno + 1;
2777		ret = f2fs_gc(sbi, true, true, start_segno);
 
 
 
2778		if (ret == -EAGAIN)
2779			ret = 0;
2780		else if (ret < 0)
2781			break;
2782		start_segno++;
2783	}
2784out:
2785	mnt_drop_write_file(filp);
2786	return ret;
2787}
2788
2789static int f2fs_ioc_get_features(struct file *filp, unsigned long arg)
2790{
2791	struct inode *inode = file_inode(filp);
2792	u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature);
2793
2794	/* Must validate to set it with SQLite behavior in Android. */
2795	sb_feature |= F2FS_FEATURE_ATOMIC_WRITE;
2796
2797	return put_user(sb_feature, (u32 __user *)arg);
2798}
2799
2800#ifdef CONFIG_QUOTA
2801int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
2802{
2803	struct dquot *transfer_to[MAXQUOTAS] = {};
2804	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2805	struct super_block *sb = sbi->sb;
2806	int err = 0;
2807
2808	transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid));
2809	if (!IS_ERR(transfer_to[PRJQUOTA])) {
2810		err = __dquot_transfer(inode, transfer_to);
2811		if (err)
2812			set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2813		dqput(transfer_to[PRJQUOTA]);
2814	}
 
2815	return err;
2816}
2817
2818static int f2fs_ioc_setproject(struct file *filp, __u32 projid)
2819{
2820	struct inode *inode = file_inode(filp);
2821	struct f2fs_inode_info *fi = F2FS_I(inode);
2822	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2823	struct page *ipage;
2824	kprojid_t kprojid;
2825	int err;
2826
2827	if (!f2fs_sb_has_project_quota(sbi)) {
2828		if (projid != F2FS_DEF_PROJID)
2829			return -EOPNOTSUPP;
2830		else
2831			return 0;
2832	}
2833
2834	if (!f2fs_has_extra_attr(inode))
2835		return -EOPNOTSUPP;
2836
2837	kprojid = make_kprojid(&init_user_ns, (projid_t)projid);
2838
2839	if (projid_eq(kprojid, F2FS_I(inode)->i_projid))
2840		return 0;
2841
2842	err = -EPERM;
2843	/* Is it quota file? Do not allow user to mess with it */
2844	if (IS_NOQUOTA(inode))
2845		return err;
2846
2847	ipage = f2fs_get_node_page(sbi, inode->i_ino);
2848	if (IS_ERR(ipage))
2849		return PTR_ERR(ipage);
2850
2851	if (!F2FS_FITS_IN_INODE(F2FS_INODE(ipage), fi->i_extra_isize,
2852								i_projid)) {
2853		err = -EOVERFLOW;
2854		f2fs_put_page(ipage, 1);
2855		return err;
2856	}
2857	f2fs_put_page(ipage, 1);
2858
2859	err = dquot_initialize(inode);
2860	if (err)
2861		return err;
2862
2863	f2fs_lock_op(sbi);
2864	err = f2fs_transfer_project_quota(inode, kprojid);
2865	if (err)
2866		goto out_unlock;
2867
2868	F2FS_I(inode)->i_projid = kprojid;
2869	inode->i_ctime = current_time(inode);
2870	f2fs_mark_inode_dirty_sync(inode, true);
2871out_unlock:
2872	f2fs_unlock_op(sbi);
2873	return err;
2874}
2875#else
2876int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
2877{
2878	return 0;
2879}
2880
2881static int f2fs_ioc_setproject(struct file *filp, __u32 projid)
2882{
2883	if (projid != F2FS_DEF_PROJID)
2884		return -EOPNOTSUPP;
2885	return 0;
2886}
2887#endif
2888
2889/* FS_IOC_FSGETXATTR and FS_IOC_FSSETXATTR support */
2890
2891/*
2892 * To make a new on-disk f2fs i_flag gettable via FS_IOC_FSGETXATTR and settable
2893 * via FS_IOC_FSSETXATTR, add an entry for it to f2fs_xflags_map[], and add its
2894 * FS_XFLAG_* equivalent to F2FS_SUPPORTED_XFLAGS.
2895 */
2896
2897static const struct {
2898	u32 iflag;
2899	u32 xflag;
2900} f2fs_xflags_map[] = {
2901	{ F2FS_SYNC_FL,		FS_XFLAG_SYNC },
2902	{ F2FS_IMMUTABLE_FL,	FS_XFLAG_IMMUTABLE },
2903	{ F2FS_APPEND_FL,	FS_XFLAG_APPEND },
2904	{ F2FS_NODUMP_FL,	FS_XFLAG_NODUMP },
2905	{ F2FS_NOATIME_FL,	FS_XFLAG_NOATIME },
2906	{ F2FS_PROJINHERIT_FL,	FS_XFLAG_PROJINHERIT },
2907};
2908
2909#define F2FS_SUPPORTED_XFLAGS (		\
2910		FS_XFLAG_SYNC |		\
2911		FS_XFLAG_IMMUTABLE |	\
2912		FS_XFLAG_APPEND |	\
2913		FS_XFLAG_NODUMP |	\
2914		FS_XFLAG_NOATIME |	\
2915		FS_XFLAG_PROJINHERIT)
2916
2917/* Convert f2fs on-disk i_flags to FS_IOC_FS{GET,SET}XATTR flags */
2918static inline u32 f2fs_iflags_to_xflags(u32 iflags)
2919{
2920	u32 xflags = 0;
2921	int i;
 
2922
2923	for (i = 0; i < ARRAY_SIZE(f2fs_xflags_map); i++)
2924		if (iflags & f2fs_xflags_map[i].iflag)
2925			xflags |= f2fs_xflags_map[i].xflag;
 
 
 
 
 
2926
2927	return xflags;
2928}
2929
2930/* Convert FS_IOC_FS{GET,SET}XATTR flags to f2fs on-disk i_flags */
2931static inline u32 f2fs_xflags_to_iflags(u32 xflags)
2932{
2933	u32 iflags = 0;
2934	int i;
2935
2936	for (i = 0; i < ARRAY_SIZE(f2fs_xflags_map); i++)
2937		if (xflags & f2fs_xflags_map[i].xflag)
2938			iflags |= f2fs_xflags_map[i].iflag;
2939
2940	return iflags;
2941}
2942
2943static void f2fs_fill_fsxattr(struct inode *inode, struct fsxattr *fa)
2944{
2945	struct f2fs_inode_info *fi = F2FS_I(inode);
2946
2947	simple_fill_fsxattr(fa, f2fs_iflags_to_xflags(fi->i_flags));
2948
2949	if (f2fs_sb_has_project_quota(F2FS_I_SB(inode)))
2950		fa->fsx_projid = from_kprojid(&init_user_ns, fi->i_projid);
2951}
2952
2953static int f2fs_ioc_fsgetxattr(struct file *filp, unsigned long arg)
2954{
2955	struct inode *inode = file_inode(filp);
2956	struct fsxattr fa;
2957
2958	f2fs_fill_fsxattr(inode, &fa);
2959
2960	if (copy_to_user((struct fsxattr __user *)arg, &fa, sizeof(fa)))
2961		return -EFAULT;
2962	return 0;
2963}
2964
2965static int f2fs_ioc_fssetxattr(struct file *filp, unsigned long arg)
 
2966{
2967	struct inode *inode = file_inode(filp);
2968	struct fsxattr fa, old_fa;
2969	u32 iflags;
2970	int err;
2971
2972	if (copy_from_user(&fa, (struct fsxattr __user *)arg, sizeof(fa)))
2973		return -EFAULT;
2974
2975	/* Make sure caller has proper permission */
2976	if (!inode_owner_or_capable(inode))
2977		return -EACCES;
2978
2979	if (fa.fsx_xflags & ~F2FS_SUPPORTED_XFLAGS)
2980		return -EOPNOTSUPP;
 
 
 
2981
2982	iflags = f2fs_xflags_to_iflags(fa.fsx_xflags);
2983	if (f2fs_mask_flags(inode->i_mode, iflags) != iflags)
2984		return -EOPNOTSUPP;
2985
2986	err = mnt_want_write_file(filp);
2987	if (err)
2988		return err;
2989
2990	inode_lock(inode);
2991
2992	f2fs_fill_fsxattr(inode, &old_fa);
2993	err = vfs_ioc_fssetxattr_check(inode, &old_fa, &fa);
2994	if (err)
2995		goto out;
2996
2997	err = f2fs_setflags_common(inode, iflags,
2998			f2fs_xflags_to_iflags(F2FS_SUPPORTED_XFLAGS));
2999	if (err)
3000		goto out;
3001
3002	err = f2fs_ioc_setproject(filp, fa.fsx_projid);
3003out:
3004	inode_unlock(inode);
3005	mnt_drop_write_file(filp);
3006	return err;
3007}
3008
3009int f2fs_pin_file_control(struct inode *inode, bool inc)
3010{
3011	struct f2fs_inode_info *fi = F2FS_I(inode);
3012	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3013
3014	/* Use i_gc_failures for normal file as a risk signal. */
3015	if (inc)
3016		f2fs_i_gc_failures_write(inode,
3017				fi->i_gc_failures[GC_FAILURE_PIN] + 1);
3018
3019	if (fi->i_gc_failures[GC_FAILURE_PIN] > sbi->gc_pin_file_threshold) {
3020		f2fs_warn(sbi, "%s: Enable GC = ino %lx after %x GC trials",
3021			  __func__, inode->i_ino,
3022			  fi->i_gc_failures[GC_FAILURE_PIN]);
3023		clear_inode_flag(inode, FI_PIN_FILE);
3024		return -EAGAIN;
3025	}
 
 
 
 
 
3026	return 0;
3027}
3028
3029static int f2fs_ioc_set_pin_file(struct file *filp, unsigned long arg)
3030{
3031	struct inode *inode = file_inode(filp);
 
3032	__u32 pin;
3033	int ret = 0;
3034
3035	if (get_user(pin, (__u32 __user *)arg))
3036		return -EFAULT;
3037
3038	if (!S_ISREG(inode->i_mode))
3039		return -EINVAL;
3040
3041	if (f2fs_readonly(F2FS_I_SB(inode)->sb))
3042		return -EROFS;
3043
 
 
 
3044	ret = mnt_want_write_file(filp);
3045	if (ret)
3046		return ret;
3047
3048	inode_lock(inode);
3049
3050	if (f2fs_should_update_outplace(inode, NULL)) {
3051		ret = -EINVAL;
3052		goto out;
3053	}
3054
3055	if (!pin) {
3056		clear_inode_flag(inode, FI_PIN_FILE);
3057		f2fs_i_gc_failures_write(inode, 0);
3058		goto done;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3059	}
3060
3061	if (f2fs_pin_file_control(inode, false)) {
3062		ret = -EAGAIN;
3063		goto out;
3064	}
 
3065	ret = f2fs_convert_inline_inode(inode);
3066	if (ret)
3067		goto out;
3068
 
 
 
 
 
3069	set_inode_flag(inode, FI_PIN_FILE);
3070	ret = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
3071done:
3072	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3073out:
3074	inode_unlock(inode);
3075	mnt_drop_write_file(filp);
3076	return ret;
3077}
3078
3079static int f2fs_ioc_get_pin_file(struct file *filp, unsigned long arg)
3080{
3081	struct inode *inode = file_inode(filp);
3082	__u32 pin = 0;
3083
3084	if (is_inode_flag_set(inode, FI_PIN_FILE))
3085		pin = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
3086	return put_user(pin, (u32 __user *)arg);
3087}
3088
 
 
 
 
 
 
3089int f2fs_precache_extents(struct inode *inode)
3090{
3091	struct f2fs_inode_info *fi = F2FS_I(inode);
3092	struct f2fs_map_blocks map;
3093	pgoff_t m_next_extent;
3094	loff_t end;
3095	int err;
3096
3097	if (is_inode_flag_set(inode, FI_NO_EXTENT))
3098		return -EOPNOTSUPP;
3099
3100	map.m_lblk = 0;
 
3101	map.m_next_pgofs = NULL;
3102	map.m_next_extent = &m_next_extent;
3103	map.m_seg_type = NO_CHECK_TYPE;
3104	map.m_may_create = false;
3105	end = F2FS_I_SB(inode)->max_file_blocks;
3106
3107	while (map.m_lblk < end) {
3108		map.m_len = end - map.m_lblk;
3109
3110		down_write(&fi->i_gc_rwsem[WRITE]);
3111		err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_PRECACHE);
3112		up_write(&fi->i_gc_rwsem[WRITE]);
3113		if (err)
3114			return err;
3115
3116		map.m_lblk = m_next_extent;
3117	}
3118
3119	return err;
3120}
3121
3122static int f2fs_ioc_precache_extents(struct file *filp, unsigned long arg)
3123{
3124	return f2fs_precache_extents(file_inode(filp));
3125}
3126
3127static int f2fs_ioc_resize_fs(struct file *filp, unsigned long arg)
3128{
3129	struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
3130	__u64 block_count;
3131	int ret;
3132
3133	if (!capable(CAP_SYS_ADMIN))
3134		return -EPERM;
3135
3136	if (f2fs_readonly(sbi->sb))
3137		return -EROFS;
3138
3139	if (copy_from_user(&block_count, (void __user *)arg,
3140			   sizeof(block_count)))
3141		return -EFAULT;
3142
3143	ret = f2fs_resize_fs(sbi, block_count);
3144
3145	return ret;
3146}
3147
3148static int f2fs_ioc_enable_verity(struct file *filp, unsigned long arg)
3149{
3150	struct inode *inode = file_inode(filp);
3151
3152	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3153
3154	if (!f2fs_sb_has_verity(F2FS_I_SB(inode))) {
3155		f2fs_warn(F2FS_I_SB(inode),
3156			  "Can't enable fs-verity on inode %lu: the verity feature is not enabled on this filesystem.\n",
3157			  inode->i_ino);
3158		return -EOPNOTSUPP;
3159	}
3160
3161	return fsverity_ioctl_enable(filp, (const void __user *)arg);
3162}
3163
3164static int f2fs_ioc_measure_verity(struct file *filp, unsigned long arg)
3165{
3166	if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3167		return -EOPNOTSUPP;
3168
3169	return fsverity_ioctl_measure(filp, (void __user *)arg);
3170}
3171
3172static int f2fs_get_volume_name(struct file *filp, unsigned long arg)
 
 
 
 
 
 
 
 
3173{
3174	struct inode *inode = file_inode(filp);
3175	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3176	char *vbuf;
3177	int count;
3178	int err = 0;
3179
3180	vbuf = f2fs_kzalloc(sbi, MAX_VOLUME_NAME, GFP_KERNEL);
3181	if (!vbuf)
3182		return -ENOMEM;
3183
3184	down_read(&sbi->sb_lock);
3185	count = utf16s_to_utf8s(sbi->raw_super->volume_name,
3186			ARRAY_SIZE(sbi->raw_super->volume_name),
3187			UTF16_LITTLE_ENDIAN, vbuf, MAX_VOLUME_NAME);
3188	up_read(&sbi->sb_lock);
3189
3190	if (copy_to_user((char __user *)arg, vbuf,
3191				min(FSLABEL_MAX, count)))
3192		err = -EFAULT;
3193
3194	kvfree(vbuf);
3195	return err;
3196}
3197
3198static int f2fs_set_volume_name(struct file *filp, unsigned long arg)
3199{
3200	struct inode *inode = file_inode(filp);
3201	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3202	char *vbuf;
3203	int err = 0;
3204
3205	if (!capable(CAP_SYS_ADMIN))
3206		return -EPERM;
3207
3208	vbuf = strndup_user((const char __user *)arg, FSLABEL_MAX);
3209	if (IS_ERR(vbuf))
3210		return PTR_ERR(vbuf);
3211
3212	err = mnt_want_write_file(filp);
3213	if (err)
3214		goto out;
3215
3216	down_write(&sbi->sb_lock);
3217
3218	memset(sbi->raw_super->volume_name, 0,
3219			sizeof(sbi->raw_super->volume_name));
3220	utf8s_to_utf16s(vbuf, strlen(vbuf), UTF16_LITTLE_ENDIAN,
3221			sbi->raw_super->volume_name,
3222			ARRAY_SIZE(sbi->raw_super->volume_name));
3223
3224	err = f2fs_commit_super(sbi, false);
3225
3226	up_write(&sbi->sb_lock);
3227
3228	mnt_drop_write_file(filp);
3229out:
3230	kfree(vbuf);
3231	return err;
3232}
3233
3234long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3235{
3236	if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp)))))
3237		return -EIO;
3238	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(filp))))
3239		return -ENOSPC;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3240
 
 
3241	switch (cmd) {
3242	case F2FS_IOC_GETFLAGS:
3243		return f2fs_ioc_getflags(filp, arg);
3244	case F2FS_IOC_SETFLAGS:
3245		return f2fs_ioc_setflags(filp, arg);
3246	case F2FS_IOC_GETVERSION:
3247		return f2fs_ioc_getversion(filp, arg);
3248	case F2FS_IOC_START_ATOMIC_WRITE:
3249		return f2fs_ioc_start_atomic_write(filp);
 
 
3250	case F2FS_IOC_COMMIT_ATOMIC_WRITE:
3251		return f2fs_ioc_commit_atomic_write(filp);
 
 
3252	case F2FS_IOC_START_VOLATILE_WRITE:
3253		return f2fs_ioc_start_volatile_write(filp);
3254	case F2FS_IOC_RELEASE_VOLATILE_WRITE:
3255		return f2fs_ioc_release_volatile_write(filp);
3256	case F2FS_IOC_ABORT_VOLATILE_WRITE:
3257		return f2fs_ioc_abort_volatile_write(filp);
3258	case F2FS_IOC_SHUTDOWN:
3259		return f2fs_ioc_shutdown(filp, arg);
3260	case FITRIM:
3261		return f2fs_ioc_fitrim(filp, arg);
3262	case F2FS_IOC_SET_ENCRYPTION_POLICY:
3263		return f2fs_ioc_set_encryption_policy(filp, arg);
3264	case F2FS_IOC_GET_ENCRYPTION_POLICY:
3265		return f2fs_ioc_get_encryption_policy(filp, arg);
3266	case F2FS_IOC_GET_ENCRYPTION_PWSALT:
3267		return f2fs_ioc_get_encryption_pwsalt(filp, arg);
3268	case FS_IOC_GET_ENCRYPTION_POLICY_EX:
3269		return f2fs_ioc_get_encryption_policy_ex(filp, arg);
3270	case FS_IOC_ADD_ENCRYPTION_KEY:
3271		return f2fs_ioc_add_encryption_key(filp, arg);
3272	case FS_IOC_REMOVE_ENCRYPTION_KEY:
3273		return f2fs_ioc_remove_encryption_key(filp, arg);
3274	case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
3275		return f2fs_ioc_remove_encryption_key_all_users(filp, arg);
3276	case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
3277		return f2fs_ioc_get_encryption_key_status(filp, arg);
 
 
3278	case F2FS_IOC_GARBAGE_COLLECT:
3279		return f2fs_ioc_gc(filp, arg);
3280	case F2FS_IOC_GARBAGE_COLLECT_RANGE:
3281		return f2fs_ioc_gc_range(filp, arg);
3282	case F2FS_IOC_WRITE_CHECKPOINT:
3283		return f2fs_ioc_write_checkpoint(filp, arg);
3284	case F2FS_IOC_DEFRAGMENT:
3285		return f2fs_ioc_defragment(filp, arg);
3286	case F2FS_IOC_MOVE_RANGE:
3287		return f2fs_ioc_move_range(filp, arg);
3288	case F2FS_IOC_FLUSH_DEVICE:
3289		return f2fs_ioc_flush_device(filp, arg);
3290	case F2FS_IOC_GET_FEATURES:
3291		return f2fs_ioc_get_features(filp, arg);
3292	case F2FS_IOC_FSGETXATTR:
3293		return f2fs_ioc_fsgetxattr(filp, arg);
3294	case F2FS_IOC_FSSETXATTR:
3295		return f2fs_ioc_fssetxattr(filp, arg);
3296	case F2FS_IOC_GET_PIN_FILE:
3297		return f2fs_ioc_get_pin_file(filp, arg);
3298	case F2FS_IOC_SET_PIN_FILE:
3299		return f2fs_ioc_set_pin_file(filp, arg);
3300	case F2FS_IOC_PRECACHE_EXTENTS:
3301		return f2fs_ioc_precache_extents(filp, arg);
3302	case F2FS_IOC_RESIZE_FS:
3303		return f2fs_ioc_resize_fs(filp, arg);
3304	case FS_IOC_ENABLE_VERITY:
3305		return f2fs_ioc_enable_verity(filp, arg);
3306	case FS_IOC_MEASURE_VERITY:
3307		return f2fs_ioc_measure_verity(filp, arg);
3308	case F2FS_IOC_GET_VOLUME_NAME:
3309		return f2fs_get_volume_name(filp, arg);
3310	case F2FS_IOC_SET_VOLUME_NAME:
3311		return f2fs_set_volume_name(filp, arg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3312	default:
3313		return -ENOTTY;
3314	}
3315}
3316
3317static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3318{
3319	struct file *file = iocb->ki_filp;
3320	struct inode *inode = file_inode(file);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3321	ssize_t ret;
3322
3323	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
3324		ret = -EIO;
3325		goto out;
3326	}
3327
 
 
 
 
 
3328	if (iocb->ki_flags & IOCB_NOWAIT) {
3329		if (!inode_trylock(inode)) {
3330			ret = -EAGAIN;
3331			goto out;
3332		}
3333	} else {
3334		inode_lock(inode);
3335	}
3336
3337	ret = generic_write_checks(iocb, from);
3338	if (ret > 0) {
3339		bool preallocated = false;
3340		size_t target_size = 0;
3341		int err;
3342
3343		if (iov_iter_fault_in_readable(from, iov_iter_count(from)))
3344			set_inode_flag(inode, FI_NO_PREALLOC);
3345
3346		if ((iocb->ki_flags & IOCB_NOWAIT)) {
3347			if (!f2fs_overwrite_io(inode, iocb->ki_pos,
3348						iov_iter_count(from)) ||
3349				f2fs_has_inline_data(inode) ||
3350				f2fs_force_buffered_io(inode, iocb, from)) {
3351				clear_inode_flag(inode, FI_NO_PREALLOC);
3352				inode_unlock(inode);
3353				ret = -EAGAIN;
3354				goto out;
3355			}
3356		} else {
3357			preallocated = true;
3358			target_size = iocb->ki_pos + iov_iter_count(from);
3359
3360			err = f2fs_preallocate_blocks(iocb, from);
3361			if (err) {
3362				clear_inode_flag(inode, FI_NO_PREALLOC);
3363				inode_unlock(inode);
3364				ret = err;
3365				goto out;
3366			}
3367		}
3368		ret = __generic_file_write_iter(iocb, from);
3369		clear_inode_flag(inode, FI_NO_PREALLOC);
3370
3371		/* if we couldn't write data, we should deallocate blocks. */
3372		if (preallocated && i_size_read(inode) < target_size)
3373			f2fs_truncate(inode);
 
 
3374
3375		if (ret > 0)
3376			f2fs_update_iostat(F2FS_I_SB(inode), APP_WRITE_IO, ret);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3377	}
 
 
 
3378	inode_unlock(inode);
3379out:
3380	trace_f2fs_file_write_iter(inode, iocb->ki_pos,
3381					iov_iter_count(from), ret);
3382	if (ret > 0)
3383		ret = generic_write_sync(iocb, ret);
 
 
 
 
 
 
 
 
 
3384	return ret;
3385}
3386
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3387#ifdef CONFIG_COMPAT
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3388long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3389{
 
 
 
 
 
3390	switch (cmd) {
3391	case F2FS_IOC32_GETFLAGS:
3392		cmd = F2FS_IOC_GETFLAGS;
3393		break;
3394	case F2FS_IOC32_SETFLAGS:
3395		cmd = F2FS_IOC_SETFLAGS;
3396		break;
3397	case F2FS_IOC32_GETVERSION:
3398		cmd = F2FS_IOC_GETVERSION;
3399		break;
 
 
 
 
3400	case F2FS_IOC_START_ATOMIC_WRITE:
 
3401	case F2FS_IOC_COMMIT_ATOMIC_WRITE:
3402	case F2FS_IOC_START_VOLATILE_WRITE:
3403	case F2FS_IOC_RELEASE_VOLATILE_WRITE:
3404	case F2FS_IOC_ABORT_VOLATILE_WRITE:
3405	case F2FS_IOC_SHUTDOWN:
3406	case F2FS_IOC_SET_ENCRYPTION_POLICY:
3407	case F2FS_IOC_GET_ENCRYPTION_PWSALT:
3408	case F2FS_IOC_GET_ENCRYPTION_POLICY:
 
3409	case FS_IOC_GET_ENCRYPTION_POLICY_EX:
3410	case FS_IOC_ADD_ENCRYPTION_KEY:
3411	case FS_IOC_REMOVE_ENCRYPTION_KEY:
3412	case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
3413	case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
 
3414	case F2FS_IOC_GARBAGE_COLLECT:
3415	case F2FS_IOC_GARBAGE_COLLECT_RANGE:
3416	case F2FS_IOC_WRITE_CHECKPOINT:
3417	case F2FS_IOC_DEFRAGMENT:
3418	case F2FS_IOC_MOVE_RANGE:
3419	case F2FS_IOC_FLUSH_DEVICE:
3420	case F2FS_IOC_GET_FEATURES:
3421	case F2FS_IOC_FSGETXATTR:
3422	case F2FS_IOC_FSSETXATTR:
3423	case F2FS_IOC_GET_PIN_FILE:
3424	case F2FS_IOC_SET_PIN_FILE:
3425	case F2FS_IOC_PRECACHE_EXTENTS:
3426	case F2FS_IOC_RESIZE_FS:
3427	case FS_IOC_ENABLE_VERITY:
3428	case FS_IOC_MEASURE_VERITY:
3429	case F2FS_IOC_GET_VOLUME_NAME:
3430	case F2FS_IOC_SET_VOLUME_NAME:
 
 
 
 
 
 
 
 
 
 
3431		break;
3432	default:
3433		return -ENOIOCTLCMD;
3434	}
3435	return f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
3436}
3437#endif
3438
3439const struct file_operations f2fs_file_operations = {
3440	.llseek		= f2fs_llseek,
3441	.read_iter	= generic_file_read_iter,
3442	.write_iter	= f2fs_file_write_iter,
 
3443	.open		= f2fs_file_open,
3444	.release	= f2fs_release_file,
3445	.mmap		= f2fs_file_mmap,
3446	.flush		= f2fs_file_flush,
3447	.fsync		= f2fs_sync_file,
3448	.fallocate	= f2fs_fallocate,
3449	.unlocked_ioctl	= f2fs_ioctl,
3450#ifdef CONFIG_COMPAT
3451	.compat_ioctl	= f2fs_compat_ioctl,
3452#endif
3453	.splice_read	= generic_file_splice_read,
3454	.splice_write	= iter_file_splice_write,
 
 
3455};