Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * smc91x.c
4 * This is a driver for SMSC's 91C9x/91C1xx single-chip Ethernet devices.
5 *
6 * Copyright (C) 1996 by Erik Stahlman
7 * Copyright (C) 2001 Standard Microsystems Corporation
8 * Developed by Simple Network Magic Corporation
9 * Copyright (C) 2003 Monta Vista Software, Inc.
10 * Unified SMC91x driver by Nicolas Pitre
11 *
12 * Arguments:
13 * io = for the base address
14 * irq = for the IRQ
15 * nowait = 0 for normal wait states, 1 eliminates additional wait states
16 *
17 * original author:
18 * Erik Stahlman <erik@vt.edu>
19 *
20 * hardware multicast code:
21 * Peter Cammaert <pc@denkart.be>
22 *
23 * contributors:
24 * Daris A Nevil <dnevil@snmc.com>
25 * Nicolas Pitre <nico@fluxnic.net>
26 * Russell King <rmk@arm.linux.org.uk>
27 *
28 * History:
29 * 08/20/00 Arnaldo Melo fix kfree(skb) in smc_hardware_send_packet
30 * 12/15/00 Christian Jullien fix "Warning: kfree_skb on hard IRQ"
31 * 03/16/01 Daris A Nevil modified smc9194.c for use with LAN91C111
32 * 08/22/01 Scott Anderson merge changes from smc9194 to smc91111
33 * 08/21/01 Pramod B Bhardwaj added support for RevB of LAN91C111
34 * 12/20/01 Jeff Sutherland initial port to Xscale PXA with DMA support
35 * 04/07/03 Nicolas Pitre unified SMC91x driver, killed irq races,
36 * more bus abstraction, big cleanup, etc.
37 * 29/09/03 Russell King - add driver model support
38 * - ethtool support
39 * - convert to use generic MII interface
40 * - add link up/down notification
41 * - don't try to handle full negotiation in
42 * smc_phy_configure
43 * - clean up (and fix stack overrun) in PHY
44 * MII read/write functions
45 * 22/09/04 Nicolas Pitre big update (see commit log for details)
46 */
47static const char version[] =
48 "smc91x.c: v1.1, sep 22 2004 by Nicolas Pitre <nico@fluxnic.net>";
49
50/* Debugging level */
51#ifndef SMC_DEBUG
52#define SMC_DEBUG 0
53#endif
54
55
56#include <linux/module.h>
57#include <linux/kernel.h>
58#include <linux/sched.h>
59#include <linux/delay.h>
60#include <linux/gpio/consumer.h>
61#include <linux/interrupt.h>
62#include <linux/irq.h>
63#include <linux/errno.h>
64#include <linux/ioport.h>
65#include <linux/crc32.h>
66#include <linux/platform_device.h>
67#include <linux/spinlock.h>
68#include <linux/ethtool.h>
69#include <linux/mii.h>
70#include <linux/workqueue.h>
71#include <linux/of.h>
72#include <linux/of_device.h>
73
74#include <linux/netdevice.h>
75#include <linux/etherdevice.h>
76#include <linux/skbuff.h>
77
78#include <asm/io.h>
79
80#include "smc91x.h"
81
82#if defined(CONFIG_ASSABET_NEPONSET)
83#include <mach/assabet.h>
84#include <mach/neponset.h>
85#endif
86
87#ifndef SMC_NOWAIT
88# define SMC_NOWAIT 0
89#endif
90static int nowait = SMC_NOWAIT;
91module_param(nowait, int, 0400);
92MODULE_PARM_DESC(nowait, "set to 1 for no wait state");
93
94/*
95 * Transmit timeout, default 5 seconds.
96 */
97static int watchdog = 1000;
98module_param(watchdog, int, 0400);
99MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds");
100
101MODULE_DESCRIPTION("SMC 91C9x/91C1xxx Ethernet driver");
102MODULE_LICENSE("GPL");
103MODULE_ALIAS("platform:smc91x");
104
105/*
106 * The internal workings of the driver. If you are changing anything
107 * here with the SMC stuff, you should have the datasheet and know
108 * what you are doing.
109 */
110#define CARDNAME "smc91x"
111
112/*
113 * Use power-down feature of the chip
114 */
115#define POWER_DOWN 1
116
117/*
118 * Wait time for memory to be free. This probably shouldn't be
119 * tuned that much, as waiting for this means nothing else happens
120 * in the system
121 */
122#define MEMORY_WAIT_TIME 16
123
124/*
125 * The maximum number of processing loops allowed for each call to the
126 * IRQ handler.
127 */
128#define MAX_IRQ_LOOPS 8
129
130/*
131 * This selects whether TX packets are sent one by one to the SMC91x internal
132 * memory and throttled until transmission completes. This may prevent
133 * RX overruns a litle by keeping much of the memory free for RX packets
134 * but to the expense of reduced TX throughput and increased IRQ overhead.
135 * Note this is not a cure for a too slow data bus or too high IRQ latency.
136 */
137#define THROTTLE_TX_PKTS 0
138
139/*
140 * The MII clock high/low times. 2x this number gives the MII clock period
141 * in microseconds. (was 50, but this gives 6.4ms for each MII transaction!)
142 */
143#define MII_DELAY 1
144
145#define DBG(n, dev, fmt, ...) \
146 do { \
147 if (SMC_DEBUG >= (n)) \
148 netdev_dbg(dev, fmt, ##__VA_ARGS__); \
149 } while (0)
150
151#define PRINTK(dev, fmt, ...) \
152 do { \
153 if (SMC_DEBUG > 0) \
154 netdev_info(dev, fmt, ##__VA_ARGS__); \
155 else \
156 netdev_dbg(dev, fmt, ##__VA_ARGS__); \
157 } while (0)
158
159#if SMC_DEBUG > 3
160static void PRINT_PKT(u_char *buf, int length)
161{
162 int i;
163 int remainder;
164 int lines;
165
166 lines = length / 16;
167 remainder = length % 16;
168
169 for (i = 0; i < lines ; i ++) {
170 int cur;
171 printk(KERN_DEBUG);
172 for (cur = 0; cur < 8; cur++) {
173 u_char a, b;
174 a = *buf++;
175 b = *buf++;
176 pr_cont("%02x%02x ", a, b);
177 }
178 pr_cont("\n");
179 }
180 printk(KERN_DEBUG);
181 for (i = 0; i < remainder/2 ; i++) {
182 u_char a, b;
183 a = *buf++;
184 b = *buf++;
185 pr_cont("%02x%02x ", a, b);
186 }
187 pr_cont("\n");
188}
189#else
190static inline void PRINT_PKT(u_char *buf, int length) { }
191#endif
192
193
194/* this enables an interrupt in the interrupt mask register */
195#define SMC_ENABLE_INT(lp, x) do { \
196 unsigned char mask; \
197 unsigned long smc_enable_flags; \
198 spin_lock_irqsave(&lp->lock, smc_enable_flags); \
199 mask = SMC_GET_INT_MASK(lp); \
200 mask |= (x); \
201 SMC_SET_INT_MASK(lp, mask); \
202 spin_unlock_irqrestore(&lp->lock, smc_enable_flags); \
203} while (0)
204
205/* this disables an interrupt from the interrupt mask register */
206#define SMC_DISABLE_INT(lp, x) do { \
207 unsigned char mask; \
208 unsigned long smc_disable_flags; \
209 spin_lock_irqsave(&lp->lock, smc_disable_flags); \
210 mask = SMC_GET_INT_MASK(lp); \
211 mask &= ~(x); \
212 SMC_SET_INT_MASK(lp, mask); \
213 spin_unlock_irqrestore(&lp->lock, smc_disable_flags); \
214} while (0)
215
216/*
217 * Wait while MMU is busy. This is usually in the order of a few nanosecs
218 * if at all, but let's avoid deadlocking the system if the hardware
219 * decides to go south.
220 */
221#define SMC_WAIT_MMU_BUSY(lp) do { \
222 if (unlikely(SMC_GET_MMU_CMD(lp) & MC_BUSY)) { \
223 unsigned long timeout = jiffies + 2; \
224 while (SMC_GET_MMU_CMD(lp) & MC_BUSY) { \
225 if (time_after(jiffies, timeout)) { \
226 netdev_dbg(dev, "timeout %s line %d\n", \
227 __FILE__, __LINE__); \
228 break; \
229 } \
230 cpu_relax(); \
231 } \
232 } \
233} while (0)
234
235
236/*
237 * this does a soft reset on the device
238 */
239static void smc_reset(struct net_device *dev)
240{
241 struct smc_local *lp = netdev_priv(dev);
242 void __iomem *ioaddr = lp->base;
243 unsigned int ctl, cfg;
244 struct sk_buff *pending_skb;
245
246 DBG(2, dev, "%s\n", __func__);
247
248 /* Disable all interrupts, block TX tasklet */
249 spin_lock_irq(&lp->lock);
250 SMC_SELECT_BANK(lp, 2);
251 SMC_SET_INT_MASK(lp, 0);
252 pending_skb = lp->pending_tx_skb;
253 lp->pending_tx_skb = NULL;
254 spin_unlock_irq(&lp->lock);
255
256 /* free any pending tx skb */
257 if (pending_skb) {
258 dev_kfree_skb(pending_skb);
259 dev->stats.tx_errors++;
260 dev->stats.tx_aborted_errors++;
261 }
262
263 /*
264 * This resets the registers mostly to defaults, but doesn't
265 * affect EEPROM. That seems unnecessary
266 */
267 SMC_SELECT_BANK(lp, 0);
268 SMC_SET_RCR(lp, RCR_SOFTRST);
269
270 /*
271 * Setup the Configuration Register
272 * This is necessary because the CONFIG_REG is not affected
273 * by a soft reset
274 */
275 SMC_SELECT_BANK(lp, 1);
276
277 cfg = CONFIG_DEFAULT;
278
279 /*
280 * Setup for fast accesses if requested. If the card/system
281 * can't handle it then there will be no recovery except for
282 * a hard reset or power cycle
283 */
284 if (lp->cfg.flags & SMC91X_NOWAIT)
285 cfg |= CONFIG_NO_WAIT;
286
287 /*
288 * Release from possible power-down state
289 * Configuration register is not affected by Soft Reset
290 */
291 cfg |= CONFIG_EPH_POWER_EN;
292
293 SMC_SET_CONFIG(lp, cfg);
294
295 /* this should pause enough for the chip to be happy */
296 /*
297 * elaborate? What does the chip _need_? --jgarzik
298 *
299 * This seems to be undocumented, but something the original
300 * driver(s) have always done. Suspect undocumented timing
301 * info/determined empirically. --rmk
302 */
303 udelay(1);
304
305 /* Disable transmit and receive functionality */
306 SMC_SELECT_BANK(lp, 0);
307 SMC_SET_RCR(lp, RCR_CLEAR);
308 SMC_SET_TCR(lp, TCR_CLEAR);
309
310 SMC_SELECT_BANK(lp, 1);
311 ctl = SMC_GET_CTL(lp) | CTL_LE_ENABLE;
312
313 /*
314 * Set the control register to automatically release successfully
315 * transmitted packets, to make the best use out of our limited
316 * memory
317 */
318 if(!THROTTLE_TX_PKTS)
319 ctl |= CTL_AUTO_RELEASE;
320 else
321 ctl &= ~CTL_AUTO_RELEASE;
322 SMC_SET_CTL(lp, ctl);
323
324 /* Reset the MMU */
325 SMC_SELECT_BANK(lp, 2);
326 SMC_SET_MMU_CMD(lp, MC_RESET);
327 SMC_WAIT_MMU_BUSY(lp);
328}
329
330/*
331 * Enable Interrupts, Receive, and Transmit
332 */
333static void smc_enable(struct net_device *dev)
334{
335 struct smc_local *lp = netdev_priv(dev);
336 void __iomem *ioaddr = lp->base;
337 int mask;
338
339 DBG(2, dev, "%s\n", __func__);
340
341 /* see the header file for options in TCR/RCR DEFAULT */
342 SMC_SELECT_BANK(lp, 0);
343 SMC_SET_TCR(lp, lp->tcr_cur_mode);
344 SMC_SET_RCR(lp, lp->rcr_cur_mode);
345
346 SMC_SELECT_BANK(lp, 1);
347 SMC_SET_MAC_ADDR(lp, dev->dev_addr);
348
349 /* now, enable interrupts */
350 mask = IM_EPH_INT|IM_RX_OVRN_INT|IM_RCV_INT;
351 if (lp->version >= (CHIP_91100 << 4))
352 mask |= IM_MDINT;
353 SMC_SELECT_BANK(lp, 2);
354 SMC_SET_INT_MASK(lp, mask);
355
356 /*
357 * From this point the register bank must _NOT_ be switched away
358 * to something else than bank 2 without proper locking against
359 * races with any tasklet or interrupt handlers until smc_shutdown()
360 * or smc_reset() is called.
361 */
362}
363
364/*
365 * this puts the device in an inactive state
366 */
367static void smc_shutdown(struct net_device *dev)
368{
369 struct smc_local *lp = netdev_priv(dev);
370 void __iomem *ioaddr = lp->base;
371 struct sk_buff *pending_skb;
372
373 DBG(2, dev, "%s: %s\n", CARDNAME, __func__);
374
375 /* no more interrupts for me */
376 spin_lock_irq(&lp->lock);
377 SMC_SELECT_BANK(lp, 2);
378 SMC_SET_INT_MASK(lp, 0);
379 pending_skb = lp->pending_tx_skb;
380 lp->pending_tx_skb = NULL;
381 spin_unlock_irq(&lp->lock);
382 dev_kfree_skb(pending_skb);
383
384 /* and tell the card to stay away from that nasty outside world */
385 SMC_SELECT_BANK(lp, 0);
386 SMC_SET_RCR(lp, RCR_CLEAR);
387 SMC_SET_TCR(lp, TCR_CLEAR);
388
389#ifdef POWER_DOWN
390 /* finally, shut the chip down */
391 SMC_SELECT_BANK(lp, 1);
392 SMC_SET_CONFIG(lp, SMC_GET_CONFIG(lp) & ~CONFIG_EPH_POWER_EN);
393#endif
394}
395
396/*
397 * This is the procedure to handle the receipt of a packet.
398 */
399static inline void smc_rcv(struct net_device *dev)
400{
401 struct smc_local *lp = netdev_priv(dev);
402 void __iomem *ioaddr = lp->base;
403 unsigned int packet_number, status, packet_len;
404
405 DBG(3, dev, "%s\n", __func__);
406
407 packet_number = SMC_GET_RXFIFO(lp);
408 if (unlikely(packet_number & RXFIFO_REMPTY)) {
409 PRINTK(dev, "smc_rcv with nothing on FIFO.\n");
410 return;
411 }
412
413 /* read from start of packet */
414 SMC_SET_PTR(lp, PTR_READ | PTR_RCV | PTR_AUTOINC);
415
416 /* First two words are status and packet length */
417 SMC_GET_PKT_HDR(lp, status, packet_len);
418 packet_len &= 0x07ff; /* mask off top bits */
419 DBG(2, dev, "RX PNR 0x%x STATUS 0x%04x LENGTH 0x%04x (%d)\n",
420 packet_number, status, packet_len, packet_len);
421
422 back:
423 if (unlikely(packet_len < 6 || status & RS_ERRORS)) {
424 if (status & RS_TOOLONG && packet_len <= (1514 + 4 + 6)) {
425 /* accept VLAN packets */
426 status &= ~RS_TOOLONG;
427 goto back;
428 }
429 if (packet_len < 6) {
430 /* bloody hardware */
431 netdev_err(dev, "fubar (rxlen %u status %x\n",
432 packet_len, status);
433 status |= RS_TOOSHORT;
434 }
435 SMC_WAIT_MMU_BUSY(lp);
436 SMC_SET_MMU_CMD(lp, MC_RELEASE);
437 dev->stats.rx_errors++;
438 if (status & RS_ALGNERR)
439 dev->stats.rx_frame_errors++;
440 if (status & (RS_TOOSHORT | RS_TOOLONG))
441 dev->stats.rx_length_errors++;
442 if (status & RS_BADCRC)
443 dev->stats.rx_crc_errors++;
444 } else {
445 struct sk_buff *skb;
446 unsigned char *data;
447 unsigned int data_len;
448
449 /* set multicast stats */
450 if (status & RS_MULTICAST)
451 dev->stats.multicast++;
452
453 /*
454 * Actual payload is packet_len - 6 (or 5 if odd byte).
455 * We want skb_reserve(2) and the final ctrl word
456 * (2 bytes, possibly containing the payload odd byte).
457 * Furthermore, we add 2 bytes to allow rounding up to
458 * multiple of 4 bytes on 32 bit buses.
459 * Hence packet_len - 6 + 2 + 2 + 2.
460 */
461 skb = netdev_alloc_skb(dev, packet_len);
462 if (unlikely(skb == NULL)) {
463 SMC_WAIT_MMU_BUSY(lp);
464 SMC_SET_MMU_CMD(lp, MC_RELEASE);
465 dev->stats.rx_dropped++;
466 return;
467 }
468
469 /* Align IP header to 32 bits */
470 skb_reserve(skb, 2);
471
472 /* BUG: the LAN91C111 rev A never sets this bit. Force it. */
473 if (lp->version == 0x90)
474 status |= RS_ODDFRAME;
475
476 /*
477 * If odd length: packet_len - 5,
478 * otherwise packet_len - 6.
479 * With the trailing ctrl byte it's packet_len - 4.
480 */
481 data_len = packet_len - ((status & RS_ODDFRAME) ? 5 : 6);
482 data = skb_put(skb, data_len);
483 SMC_PULL_DATA(lp, data, packet_len - 4);
484
485 SMC_WAIT_MMU_BUSY(lp);
486 SMC_SET_MMU_CMD(lp, MC_RELEASE);
487
488 PRINT_PKT(data, packet_len - 4);
489
490 skb->protocol = eth_type_trans(skb, dev);
491 netif_rx(skb);
492 dev->stats.rx_packets++;
493 dev->stats.rx_bytes += data_len;
494 }
495}
496
497#ifdef CONFIG_SMP
498/*
499 * On SMP we have the following problem:
500 *
501 * A = smc_hardware_send_pkt()
502 * B = smc_hard_start_xmit()
503 * C = smc_interrupt()
504 *
505 * A and B can never be executed simultaneously. However, at least on UP,
506 * it is possible (and even desirable) for C to interrupt execution of
507 * A or B in order to have better RX reliability and avoid overruns.
508 * C, just like A and B, must have exclusive access to the chip and
509 * each of them must lock against any other concurrent access.
510 * Unfortunately this is not possible to have C suspend execution of A or
511 * B taking place on another CPU. On UP this is no an issue since A and B
512 * are run from softirq context and C from hard IRQ context, and there is
513 * no other CPU where concurrent access can happen.
514 * If ever there is a way to force at least B and C to always be executed
515 * on the same CPU then we could use read/write locks to protect against
516 * any other concurrent access and C would always interrupt B. But life
517 * isn't that easy in a SMP world...
518 */
519#define smc_special_trylock(lock, flags) \
520({ \
521 int __ret; \
522 local_irq_save(flags); \
523 __ret = spin_trylock(lock); \
524 if (!__ret) \
525 local_irq_restore(flags); \
526 __ret; \
527})
528#define smc_special_lock(lock, flags) spin_lock_irqsave(lock, flags)
529#define smc_special_unlock(lock, flags) spin_unlock_irqrestore(lock, flags)
530#else
531#define smc_special_trylock(lock, flags) ((void)flags, true)
532#define smc_special_lock(lock, flags) do { flags = 0; } while (0)
533#define smc_special_unlock(lock, flags) do { flags = 0; } while (0)
534#endif
535
536/*
537 * This is called to actually send a packet to the chip.
538 */
539static void smc_hardware_send_pkt(struct tasklet_struct *t)
540{
541 struct smc_local *lp = from_tasklet(lp, t, tx_task);
542 struct net_device *dev = lp->dev;
543 void __iomem *ioaddr = lp->base;
544 struct sk_buff *skb;
545 unsigned int packet_no, len;
546 unsigned char *buf;
547 unsigned long flags;
548
549 DBG(3, dev, "%s\n", __func__);
550
551 if (!smc_special_trylock(&lp->lock, flags)) {
552 netif_stop_queue(dev);
553 tasklet_schedule(&lp->tx_task);
554 return;
555 }
556
557 skb = lp->pending_tx_skb;
558 if (unlikely(!skb)) {
559 smc_special_unlock(&lp->lock, flags);
560 return;
561 }
562 lp->pending_tx_skb = NULL;
563
564 packet_no = SMC_GET_AR(lp);
565 if (unlikely(packet_no & AR_FAILED)) {
566 netdev_err(dev, "Memory allocation failed.\n");
567 dev->stats.tx_errors++;
568 dev->stats.tx_fifo_errors++;
569 smc_special_unlock(&lp->lock, flags);
570 goto done;
571 }
572
573 /* point to the beginning of the packet */
574 SMC_SET_PN(lp, packet_no);
575 SMC_SET_PTR(lp, PTR_AUTOINC);
576
577 buf = skb->data;
578 len = skb->len;
579 DBG(2, dev, "TX PNR 0x%x LENGTH 0x%04x (%d) BUF 0x%p\n",
580 packet_no, len, len, buf);
581 PRINT_PKT(buf, len);
582
583 /*
584 * Send the packet length (+6 for status words, length, and ctl.
585 * The card will pad to 64 bytes with zeroes if packet is too small.
586 */
587 SMC_PUT_PKT_HDR(lp, 0, len + 6);
588
589 /* send the actual data */
590 SMC_PUSH_DATA(lp, buf, len & ~1);
591
592 /* Send final ctl word with the last byte if there is one */
593 SMC_outw(lp, ((len & 1) ? (0x2000 | buf[len - 1]) : 0), ioaddr,
594 DATA_REG(lp));
595
596 /*
597 * If THROTTLE_TX_PKTS is set, we stop the queue here. This will
598 * have the effect of having at most one packet queued for TX
599 * in the chip's memory at all time.
600 *
601 * If THROTTLE_TX_PKTS is not set then the queue is stopped only
602 * when memory allocation (MC_ALLOC) does not succeed right away.
603 */
604 if (THROTTLE_TX_PKTS)
605 netif_stop_queue(dev);
606
607 /* queue the packet for TX */
608 SMC_SET_MMU_CMD(lp, MC_ENQUEUE);
609 smc_special_unlock(&lp->lock, flags);
610
611 netif_trans_update(dev);
612 dev->stats.tx_packets++;
613 dev->stats.tx_bytes += len;
614
615 SMC_ENABLE_INT(lp, IM_TX_INT | IM_TX_EMPTY_INT);
616
617done: if (!THROTTLE_TX_PKTS)
618 netif_wake_queue(dev);
619
620 dev_consume_skb_any(skb);
621}
622
623/*
624 * Since I am not sure if I will have enough room in the chip's ram
625 * to store the packet, I call this routine which either sends it
626 * now, or set the card to generates an interrupt when ready
627 * for the packet.
628 */
629static netdev_tx_t
630smc_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
631{
632 struct smc_local *lp = netdev_priv(dev);
633 void __iomem *ioaddr = lp->base;
634 unsigned int numPages, poll_count, status;
635 unsigned long flags;
636
637 DBG(3, dev, "%s\n", __func__);
638
639 BUG_ON(lp->pending_tx_skb != NULL);
640
641 /*
642 * The MMU wants the number of pages to be the number of 256 bytes
643 * 'pages', minus 1 (since a packet can't ever have 0 pages :))
644 *
645 * The 91C111 ignores the size bits, but earlier models don't.
646 *
647 * Pkt size for allocating is data length +6 (for additional status
648 * words, length and ctl)
649 *
650 * If odd size then last byte is included in ctl word.
651 */
652 numPages = ((skb->len & ~1) + (6 - 1)) >> 8;
653 if (unlikely(numPages > 7)) {
654 netdev_warn(dev, "Far too big packet error.\n");
655 dev->stats.tx_errors++;
656 dev->stats.tx_dropped++;
657 dev_kfree_skb_any(skb);
658 return NETDEV_TX_OK;
659 }
660
661 smc_special_lock(&lp->lock, flags);
662
663 /* now, try to allocate the memory */
664 SMC_SET_MMU_CMD(lp, MC_ALLOC | numPages);
665
666 /*
667 * Poll the chip for a short amount of time in case the
668 * allocation succeeds quickly.
669 */
670 poll_count = MEMORY_WAIT_TIME;
671 do {
672 status = SMC_GET_INT(lp);
673 if (status & IM_ALLOC_INT) {
674 SMC_ACK_INT(lp, IM_ALLOC_INT);
675 break;
676 }
677 } while (--poll_count);
678
679 smc_special_unlock(&lp->lock, flags);
680
681 lp->pending_tx_skb = skb;
682 if (!poll_count) {
683 /* oh well, wait until the chip finds memory later */
684 netif_stop_queue(dev);
685 DBG(2, dev, "TX memory allocation deferred.\n");
686 SMC_ENABLE_INT(lp, IM_ALLOC_INT);
687 } else {
688 /*
689 * Allocation succeeded: push packet to the chip's own memory
690 * immediately.
691 */
692 smc_hardware_send_pkt(&lp->tx_task);
693 }
694
695 return NETDEV_TX_OK;
696}
697
698/*
699 * This handles a TX interrupt, which is only called when:
700 * - a TX error occurred, or
701 * - CTL_AUTO_RELEASE is not set and TX of a packet completed.
702 */
703static void smc_tx(struct net_device *dev)
704{
705 struct smc_local *lp = netdev_priv(dev);
706 void __iomem *ioaddr = lp->base;
707 unsigned int saved_packet, packet_no, tx_status;
708 unsigned int pkt_len __always_unused;
709
710 DBG(3, dev, "%s\n", __func__);
711
712 /* If the TX FIFO is empty then nothing to do */
713 packet_no = SMC_GET_TXFIFO(lp);
714 if (unlikely(packet_no & TXFIFO_TEMPTY)) {
715 PRINTK(dev, "smc_tx with nothing on FIFO.\n");
716 return;
717 }
718
719 /* select packet to read from */
720 saved_packet = SMC_GET_PN(lp);
721 SMC_SET_PN(lp, packet_no);
722
723 /* read the first word (status word) from this packet */
724 SMC_SET_PTR(lp, PTR_AUTOINC | PTR_READ);
725 SMC_GET_PKT_HDR(lp, tx_status, pkt_len);
726 DBG(2, dev, "TX STATUS 0x%04x PNR 0x%02x\n",
727 tx_status, packet_no);
728
729 if (!(tx_status & ES_TX_SUC))
730 dev->stats.tx_errors++;
731
732 if (tx_status & ES_LOSTCARR)
733 dev->stats.tx_carrier_errors++;
734
735 if (tx_status & (ES_LATCOL | ES_16COL)) {
736 PRINTK(dev, "%s occurred on last xmit\n",
737 (tx_status & ES_LATCOL) ?
738 "late collision" : "too many collisions");
739 dev->stats.tx_window_errors++;
740 if (!(dev->stats.tx_window_errors & 63) && net_ratelimit()) {
741 netdev_info(dev, "unexpectedly large number of bad collisions. Please check duplex setting.\n");
742 }
743 }
744
745 /* kill the packet */
746 SMC_WAIT_MMU_BUSY(lp);
747 SMC_SET_MMU_CMD(lp, MC_FREEPKT);
748
749 /* Don't restore Packet Number Reg until busy bit is cleared */
750 SMC_WAIT_MMU_BUSY(lp);
751 SMC_SET_PN(lp, saved_packet);
752
753 /* re-enable transmit */
754 SMC_SELECT_BANK(lp, 0);
755 SMC_SET_TCR(lp, lp->tcr_cur_mode);
756 SMC_SELECT_BANK(lp, 2);
757}
758
759
760/*---PHY CONTROL AND CONFIGURATION-----------------------------------------*/
761
762static void smc_mii_out(struct net_device *dev, unsigned int val, int bits)
763{
764 struct smc_local *lp = netdev_priv(dev);
765 void __iomem *ioaddr = lp->base;
766 unsigned int mii_reg, mask;
767
768 mii_reg = SMC_GET_MII(lp) & ~(MII_MCLK | MII_MDOE | MII_MDO);
769 mii_reg |= MII_MDOE;
770
771 for (mask = 1 << (bits - 1); mask; mask >>= 1) {
772 if (val & mask)
773 mii_reg |= MII_MDO;
774 else
775 mii_reg &= ~MII_MDO;
776
777 SMC_SET_MII(lp, mii_reg);
778 udelay(MII_DELAY);
779 SMC_SET_MII(lp, mii_reg | MII_MCLK);
780 udelay(MII_DELAY);
781 }
782}
783
784static unsigned int smc_mii_in(struct net_device *dev, int bits)
785{
786 struct smc_local *lp = netdev_priv(dev);
787 void __iomem *ioaddr = lp->base;
788 unsigned int mii_reg, mask, val;
789
790 mii_reg = SMC_GET_MII(lp) & ~(MII_MCLK | MII_MDOE | MII_MDO);
791 SMC_SET_MII(lp, mii_reg);
792
793 for (mask = 1 << (bits - 1), val = 0; mask; mask >>= 1) {
794 if (SMC_GET_MII(lp) & MII_MDI)
795 val |= mask;
796
797 SMC_SET_MII(lp, mii_reg);
798 udelay(MII_DELAY);
799 SMC_SET_MII(lp, mii_reg | MII_MCLK);
800 udelay(MII_DELAY);
801 }
802
803 return val;
804}
805
806/*
807 * Reads a register from the MII Management serial interface
808 */
809static int smc_phy_read(struct net_device *dev, int phyaddr, int phyreg)
810{
811 struct smc_local *lp = netdev_priv(dev);
812 void __iomem *ioaddr = lp->base;
813 unsigned int phydata;
814
815 SMC_SELECT_BANK(lp, 3);
816
817 /* Idle - 32 ones */
818 smc_mii_out(dev, 0xffffffff, 32);
819
820 /* Start code (01) + read (10) + phyaddr + phyreg */
821 smc_mii_out(dev, 6 << 10 | phyaddr << 5 | phyreg, 14);
822
823 /* Turnaround (2bits) + phydata */
824 phydata = smc_mii_in(dev, 18);
825
826 /* Return to idle state */
827 SMC_SET_MII(lp, SMC_GET_MII(lp) & ~(MII_MCLK|MII_MDOE|MII_MDO));
828
829 DBG(3, dev, "%s: phyaddr=0x%x, phyreg=0x%x, phydata=0x%x\n",
830 __func__, phyaddr, phyreg, phydata);
831
832 SMC_SELECT_BANK(lp, 2);
833 return phydata;
834}
835
836/*
837 * Writes a register to the MII Management serial interface
838 */
839static void smc_phy_write(struct net_device *dev, int phyaddr, int phyreg,
840 int phydata)
841{
842 struct smc_local *lp = netdev_priv(dev);
843 void __iomem *ioaddr = lp->base;
844
845 SMC_SELECT_BANK(lp, 3);
846
847 /* Idle - 32 ones */
848 smc_mii_out(dev, 0xffffffff, 32);
849
850 /* Start code (01) + write (01) + phyaddr + phyreg + turnaround + phydata */
851 smc_mii_out(dev, 5 << 28 | phyaddr << 23 | phyreg << 18 | 2 << 16 | phydata, 32);
852
853 /* Return to idle state */
854 SMC_SET_MII(lp, SMC_GET_MII(lp) & ~(MII_MCLK|MII_MDOE|MII_MDO));
855
856 DBG(3, dev, "%s: phyaddr=0x%x, phyreg=0x%x, phydata=0x%x\n",
857 __func__, phyaddr, phyreg, phydata);
858
859 SMC_SELECT_BANK(lp, 2);
860}
861
862/*
863 * Finds and reports the PHY address
864 */
865static void smc_phy_detect(struct net_device *dev)
866{
867 struct smc_local *lp = netdev_priv(dev);
868 int phyaddr;
869
870 DBG(2, dev, "%s\n", __func__);
871
872 lp->phy_type = 0;
873
874 /*
875 * Scan all 32 PHY addresses if necessary, starting at
876 * PHY#1 to PHY#31, and then PHY#0 last.
877 */
878 for (phyaddr = 1; phyaddr < 33; ++phyaddr) {
879 unsigned int id1, id2;
880
881 /* Read the PHY identifiers */
882 id1 = smc_phy_read(dev, phyaddr & 31, MII_PHYSID1);
883 id2 = smc_phy_read(dev, phyaddr & 31, MII_PHYSID2);
884
885 DBG(3, dev, "phy_id1=0x%x, phy_id2=0x%x\n",
886 id1, id2);
887
888 /* Make sure it is a valid identifier */
889 if (id1 != 0x0000 && id1 != 0xffff && id1 != 0x8000 &&
890 id2 != 0x0000 && id2 != 0xffff && id2 != 0x8000) {
891 /* Save the PHY's address */
892 lp->mii.phy_id = phyaddr & 31;
893 lp->phy_type = id1 << 16 | id2;
894 break;
895 }
896 }
897}
898
899/*
900 * Sets the PHY to a configuration as determined by the user
901 */
902static int smc_phy_fixed(struct net_device *dev)
903{
904 struct smc_local *lp = netdev_priv(dev);
905 void __iomem *ioaddr = lp->base;
906 int phyaddr = lp->mii.phy_id;
907 int bmcr, cfg1;
908
909 DBG(3, dev, "%s\n", __func__);
910
911 /* Enter Link Disable state */
912 cfg1 = smc_phy_read(dev, phyaddr, PHY_CFG1_REG);
913 cfg1 |= PHY_CFG1_LNKDIS;
914 smc_phy_write(dev, phyaddr, PHY_CFG1_REG, cfg1);
915
916 /*
917 * Set our fixed capabilities
918 * Disable auto-negotiation
919 */
920 bmcr = 0;
921
922 if (lp->ctl_rfduplx)
923 bmcr |= BMCR_FULLDPLX;
924
925 if (lp->ctl_rspeed == 100)
926 bmcr |= BMCR_SPEED100;
927
928 /* Write our capabilities to the phy control register */
929 smc_phy_write(dev, phyaddr, MII_BMCR, bmcr);
930
931 /* Re-Configure the Receive/Phy Control register */
932 SMC_SELECT_BANK(lp, 0);
933 SMC_SET_RPC(lp, lp->rpc_cur_mode);
934 SMC_SELECT_BANK(lp, 2);
935
936 return 1;
937}
938
939/**
940 * smc_phy_reset - reset the phy
941 * @dev: net device
942 * @phy: phy address
943 *
944 * Issue a software reset for the specified PHY and
945 * wait up to 100ms for the reset to complete. We should
946 * not access the PHY for 50ms after issuing the reset.
947 *
948 * The time to wait appears to be dependent on the PHY.
949 *
950 * Must be called with lp->lock locked.
951 */
952static int smc_phy_reset(struct net_device *dev, int phy)
953{
954 struct smc_local *lp = netdev_priv(dev);
955 unsigned int bmcr;
956 int timeout;
957
958 smc_phy_write(dev, phy, MII_BMCR, BMCR_RESET);
959
960 for (timeout = 2; timeout; timeout--) {
961 spin_unlock_irq(&lp->lock);
962 msleep(50);
963 spin_lock_irq(&lp->lock);
964
965 bmcr = smc_phy_read(dev, phy, MII_BMCR);
966 if (!(bmcr & BMCR_RESET))
967 break;
968 }
969
970 return bmcr & BMCR_RESET;
971}
972
973/**
974 * smc_phy_powerdown - powerdown phy
975 * @dev: net device
976 *
977 * Power down the specified PHY
978 */
979static void smc_phy_powerdown(struct net_device *dev)
980{
981 struct smc_local *lp = netdev_priv(dev);
982 unsigned int bmcr;
983 int phy = lp->mii.phy_id;
984
985 if (lp->phy_type == 0)
986 return;
987
988 /* We need to ensure that no calls to smc_phy_configure are
989 pending.
990 */
991 cancel_work_sync(&lp->phy_configure);
992
993 bmcr = smc_phy_read(dev, phy, MII_BMCR);
994 smc_phy_write(dev, phy, MII_BMCR, bmcr | BMCR_PDOWN);
995}
996
997/**
998 * smc_phy_check_media - check the media status and adjust TCR
999 * @dev: net device
1000 * @init: set true for initialisation
1001 *
1002 * Select duplex mode depending on negotiation state. This
1003 * also updates our carrier state.
1004 */
1005static void smc_phy_check_media(struct net_device *dev, int init)
1006{
1007 struct smc_local *lp = netdev_priv(dev);
1008 void __iomem *ioaddr = lp->base;
1009
1010 if (mii_check_media(&lp->mii, netif_msg_link(lp), init)) {
1011 /* duplex state has changed */
1012 if (lp->mii.full_duplex) {
1013 lp->tcr_cur_mode |= TCR_SWFDUP;
1014 } else {
1015 lp->tcr_cur_mode &= ~TCR_SWFDUP;
1016 }
1017
1018 SMC_SELECT_BANK(lp, 0);
1019 SMC_SET_TCR(lp, lp->tcr_cur_mode);
1020 }
1021}
1022
1023/*
1024 * Configures the specified PHY through the MII management interface
1025 * using Autonegotiation.
1026 * Calls smc_phy_fixed() if the user has requested a certain config.
1027 * If RPC ANEG bit is set, the media selection is dependent purely on
1028 * the selection by the MII (either in the MII BMCR reg or the result
1029 * of autonegotiation.) If the RPC ANEG bit is cleared, the selection
1030 * is controlled by the RPC SPEED and RPC DPLX bits.
1031 */
1032static void smc_phy_configure(struct work_struct *work)
1033{
1034 struct smc_local *lp =
1035 container_of(work, struct smc_local, phy_configure);
1036 struct net_device *dev = lp->dev;
1037 void __iomem *ioaddr = lp->base;
1038 int phyaddr = lp->mii.phy_id;
1039 int my_phy_caps; /* My PHY capabilities */
1040 int my_ad_caps; /* My Advertised capabilities */
1041
1042 DBG(3, dev, "smc_program_phy()\n");
1043
1044 spin_lock_irq(&lp->lock);
1045
1046 /*
1047 * We should not be called if phy_type is zero.
1048 */
1049 if (lp->phy_type == 0)
1050 goto smc_phy_configure_exit;
1051
1052 if (smc_phy_reset(dev, phyaddr)) {
1053 netdev_info(dev, "PHY reset timed out\n");
1054 goto smc_phy_configure_exit;
1055 }
1056
1057 /*
1058 * Enable PHY Interrupts (for register 18)
1059 * Interrupts listed here are disabled
1060 */
1061 smc_phy_write(dev, phyaddr, PHY_MASK_REG,
1062 PHY_INT_LOSSSYNC | PHY_INT_CWRD | PHY_INT_SSD |
1063 PHY_INT_ESD | PHY_INT_RPOL | PHY_INT_JAB |
1064 PHY_INT_SPDDET | PHY_INT_DPLXDET);
1065
1066 /* Configure the Receive/Phy Control register */
1067 SMC_SELECT_BANK(lp, 0);
1068 SMC_SET_RPC(lp, lp->rpc_cur_mode);
1069
1070 /* If the user requested no auto neg, then go set his request */
1071 if (lp->mii.force_media) {
1072 smc_phy_fixed(dev);
1073 goto smc_phy_configure_exit;
1074 }
1075
1076 /* Copy our capabilities from MII_BMSR to MII_ADVERTISE */
1077 my_phy_caps = smc_phy_read(dev, phyaddr, MII_BMSR);
1078
1079 if (!(my_phy_caps & BMSR_ANEGCAPABLE)) {
1080 netdev_info(dev, "Auto negotiation NOT supported\n");
1081 smc_phy_fixed(dev);
1082 goto smc_phy_configure_exit;
1083 }
1084
1085 my_ad_caps = ADVERTISE_CSMA; /* I am CSMA capable */
1086
1087 if (my_phy_caps & BMSR_100BASE4)
1088 my_ad_caps |= ADVERTISE_100BASE4;
1089 if (my_phy_caps & BMSR_100FULL)
1090 my_ad_caps |= ADVERTISE_100FULL;
1091 if (my_phy_caps & BMSR_100HALF)
1092 my_ad_caps |= ADVERTISE_100HALF;
1093 if (my_phy_caps & BMSR_10FULL)
1094 my_ad_caps |= ADVERTISE_10FULL;
1095 if (my_phy_caps & BMSR_10HALF)
1096 my_ad_caps |= ADVERTISE_10HALF;
1097
1098 /* Disable capabilities not selected by our user */
1099 if (lp->ctl_rspeed != 100)
1100 my_ad_caps &= ~(ADVERTISE_100BASE4|ADVERTISE_100FULL|ADVERTISE_100HALF);
1101
1102 if (!lp->ctl_rfduplx)
1103 my_ad_caps &= ~(ADVERTISE_100FULL|ADVERTISE_10FULL);
1104
1105 /* Update our Auto-Neg Advertisement Register */
1106 smc_phy_write(dev, phyaddr, MII_ADVERTISE, my_ad_caps);
1107 lp->mii.advertising = my_ad_caps;
1108
1109 /*
1110 * Read the register back. Without this, it appears that when
1111 * auto-negotiation is restarted, sometimes it isn't ready and
1112 * the link does not come up.
1113 */
1114 smc_phy_read(dev, phyaddr, MII_ADVERTISE);
1115
1116 DBG(2, dev, "phy caps=%x\n", my_phy_caps);
1117 DBG(2, dev, "phy advertised caps=%x\n", my_ad_caps);
1118
1119 /* Restart auto-negotiation process in order to advertise my caps */
1120 smc_phy_write(dev, phyaddr, MII_BMCR, BMCR_ANENABLE | BMCR_ANRESTART);
1121
1122 smc_phy_check_media(dev, 1);
1123
1124smc_phy_configure_exit:
1125 SMC_SELECT_BANK(lp, 2);
1126 spin_unlock_irq(&lp->lock);
1127}
1128
1129/*
1130 * smc_phy_interrupt
1131 *
1132 * Purpose: Handle interrupts relating to PHY register 18. This is
1133 * called from the "hard" interrupt handler under our private spinlock.
1134 */
1135static void smc_phy_interrupt(struct net_device *dev)
1136{
1137 struct smc_local *lp = netdev_priv(dev);
1138 int phyaddr = lp->mii.phy_id;
1139 int phy18;
1140
1141 DBG(2, dev, "%s\n", __func__);
1142
1143 if (lp->phy_type == 0)
1144 return;
1145
1146 for(;;) {
1147 smc_phy_check_media(dev, 0);
1148
1149 /* Read PHY Register 18, Status Output */
1150 phy18 = smc_phy_read(dev, phyaddr, PHY_INT_REG);
1151 if ((phy18 & PHY_INT_INT) == 0)
1152 break;
1153 }
1154}
1155
1156/*--- END PHY CONTROL AND CONFIGURATION-------------------------------------*/
1157
1158static void smc_10bt_check_media(struct net_device *dev, int init)
1159{
1160 struct smc_local *lp = netdev_priv(dev);
1161 void __iomem *ioaddr = lp->base;
1162 unsigned int old_carrier, new_carrier;
1163
1164 old_carrier = netif_carrier_ok(dev) ? 1 : 0;
1165
1166 SMC_SELECT_BANK(lp, 0);
1167 new_carrier = (SMC_GET_EPH_STATUS(lp) & ES_LINK_OK) ? 1 : 0;
1168 SMC_SELECT_BANK(lp, 2);
1169
1170 if (init || (old_carrier != new_carrier)) {
1171 if (!new_carrier) {
1172 netif_carrier_off(dev);
1173 } else {
1174 netif_carrier_on(dev);
1175 }
1176 if (netif_msg_link(lp))
1177 netdev_info(dev, "link %s\n",
1178 new_carrier ? "up" : "down");
1179 }
1180}
1181
1182static void smc_eph_interrupt(struct net_device *dev)
1183{
1184 struct smc_local *lp = netdev_priv(dev);
1185 void __iomem *ioaddr = lp->base;
1186 unsigned int ctl;
1187
1188 smc_10bt_check_media(dev, 0);
1189
1190 SMC_SELECT_BANK(lp, 1);
1191 ctl = SMC_GET_CTL(lp);
1192 SMC_SET_CTL(lp, ctl & ~CTL_LE_ENABLE);
1193 SMC_SET_CTL(lp, ctl);
1194 SMC_SELECT_BANK(lp, 2);
1195}
1196
1197/*
1198 * This is the main routine of the driver, to handle the device when
1199 * it needs some attention.
1200 */
1201static irqreturn_t smc_interrupt(int irq, void *dev_id)
1202{
1203 struct net_device *dev = dev_id;
1204 struct smc_local *lp = netdev_priv(dev);
1205 void __iomem *ioaddr = lp->base;
1206 int status, mask, timeout, card_stats;
1207 int saved_pointer;
1208
1209 DBG(3, dev, "%s\n", __func__);
1210
1211 spin_lock(&lp->lock);
1212
1213 /* A preamble may be used when there is a potential race
1214 * between the interruptible transmit functions and this
1215 * ISR. */
1216 SMC_INTERRUPT_PREAMBLE;
1217
1218 saved_pointer = SMC_GET_PTR(lp);
1219 mask = SMC_GET_INT_MASK(lp);
1220 SMC_SET_INT_MASK(lp, 0);
1221
1222 /* set a timeout value, so I don't stay here forever */
1223 timeout = MAX_IRQ_LOOPS;
1224
1225 do {
1226 status = SMC_GET_INT(lp);
1227
1228 DBG(2, dev, "INT 0x%02x MASK 0x%02x MEM 0x%04x FIFO 0x%04x\n",
1229 status, mask,
1230 ({ int meminfo; SMC_SELECT_BANK(lp, 0);
1231 meminfo = SMC_GET_MIR(lp);
1232 SMC_SELECT_BANK(lp, 2); meminfo; }),
1233 SMC_GET_FIFO(lp));
1234
1235 status &= mask;
1236 if (!status)
1237 break;
1238
1239 if (status & IM_TX_INT) {
1240 /* do this before RX as it will free memory quickly */
1241 DBG(3, dev, "TX int\n");
1242 smc_tx(dev);
1243 SMC_ACK_INT(lp, IM_TX_INT);
1244 if (THROTTLE_TX_PKTS)
1245 netif_wake_queue(dev);
1246 } else if (status & IM_RCV_INT) {
1247 DBG(3, dev, "RX irq\n");
1248 smc_rcv(dev);
1249 } else if (status & IM_ALLOC_INT) {
1250 DBG(3, dev, "Allocation irq\n");
1251 tasklet_hi_schedule(&lp->tx_task);
1252 mask &= ~IM_ALLOC_INT;
1253 } else if (status & IM_TX_EMPTY_INT) {
1254 DBG(3, dev, "TX empty\n");
1255 mask &= ~IM_TX_EMPTY_INT;
1256
1257 /* update stats */
1258 SMC_SELECT_BANK(lp, 0);
1259 card_stats = SMC_GET_COUNTER(lp);
1260 SMC_SELECT_BANK(lp, 2);
1261
1262 /* single collisions */
1263 dev->stats.collisions += card_stats & 0xF;
1264 card_stats >>= 4;
1265
1266 /* multiple collisions */
1267 dev->stats.collisions += card_stats & 0xF;
1268 } else if (status & IM_RX_OVRN_INT) {
1269 DBG(1, dev, "RX overrun (EPH_ST 0x%04x)\n",
1270 ({ int eph_st; SMC_SELECT_BANK(lp, 0);
1271 eph_st = SMC_GET_EPH_STATUS(lp);
1272 SMC_SELECT_BANK(lp, 2); eph_st; }));
1273 SMC_ACK_INT(lp, IM_RX_OVRN_INT);
1274 dev->stats.rx_errors++;
1275 dev->stats.rx_fifo_errors++;
1276 } else if (status & IM_EPH_INT) {
1277 smc_eph_interrupt(dev);
1278 } else if (status & IM_MDINT) {
1279 SMC_ACK_INT(lp, IM_MDINT);
1280 smc_phy_interrupt(dev);
1281 } else if (status & IM_ERCV_INT) {
1282 SMC_ACK_INT(lp, IM_ERCV_INT);
1283 PRINTK(dev, "UNSUPPORTED: ERCV INTERRUPT\n");
1284 }
1285 } while (--timeout);
1286
1287 /* restore register states */
1288 SMC_SET_PTR(lp, saved_pointer);
1289 SMC_SET_INT_MASK(lp, mask);
1290 spin_unlock(&lp->lock);
1291
1292#ifndef CONFIG_NET_POLL_CONTROLLER
1293 if (timeout == MAX_IRQ_LOOPS)
1294 PRINTK(dev, "spurious interrupt (mask = 0x%02x)\n",
1295 mask);
1296#endif
1297 DBG(3, dev, "Interrupt done (%d loops)\n",
1298 MAX_IRQ_LOOPS - timeout);
1299
1300 /*
1301 * We return IRQ_HANDLED unconditionally here even if there was
1302 * nothing to do. There is a possibility that a packet might
1303 * get enqueued into the chip right after TX_EMPTY_INT is raised
1304 * but just before the CPU acknowledges the IRQ.
1305 * Better take an unneeded IRQ in some occasions than complexifying
1306 * the code for all cases.
1307 */
1308 return IRQ_HANDLED;
1309}
1310
1311#ifdef CONFIG_NET_POLL_CONTROLLER
1312/*
1313 * Polling receive - used by netconsole and other diagnostic tools
1314 * to allow network i/o with interrupts disabled.
1315 */
1316static void smc_poll_controller(struct net_device *dev)
1317{
1318 disable_irq(dev->irq);
1319 smc_interrupt(dev->irq, dev);
1320 enable_irq(dev->irq);
1321}
1322#endif
1323
1324/* Our watchdog timed out. Called by the networking layer */
1325static void smc_timeout(struct net_device *dev, unsigned int txqueue)
1326{
1327 struct smc_local *lp = netdev_priv(dev);
1328 void __iomem *ioaddr = lp->base;
1329 int status, mask, eph_st, meminfo, fifo;
1330
1331 DBG(2, dev, "%s\n", __func__);
1332
1333 spin_lock_irq(&lp->lock);
1334 status = SMC_GET_INT(lp);
1335 mask = SMC_GET_INT_MASK(lp);
1336 fifo = SMC_GET_FIFO(lp);
1337 SMC_SELECT_BANK(lp, 0);
1338 eph_st = SMC_GET_EPH_STATUS(lp);
1339 meminfo = SMC_GET_MIR(lp);
1340 SMC_SELECT_BANK(lp, 2);
1341 spin_unlock_irq(&lp->lock);
1342 PRINTK(dev, "TX timeout (INT 0x%02x INTMASK 0x%02x MEM 0x%04x FIFO 0x%04x EPH_ST 0x%04x)\n",
1343 status, mask, meminfo, fifo, eph_st);
1344
1345 smc_reset(dev);
1346 smc_enable(dev);
1347
1348 /*
1349 * Reconfiguring the PHY doesn't seem like a bad idea here, but
1350 * smc_phy_configure() calls msleep() which calls schedule_timeout()
1351 * which calls schedule(). Hence we use a work queue.
1352 */
1353 if (lp->phy_type != 0)
1354 schedule_work(&lp->phy_configure);
1355
1356 /* We can accept TX packets again */
1357 netif_trans_update(dev); /* prevent tx timeout */
1358 netif_wake_queue(dev);
1359}
1360
1361/*
1362 * This routine will, depending on the values passed to it,
1363 * either make it accept multicast packets, go into
1364 * promiscuous mode (for TCPDUMP and cousins) or accept
1365 * a select set of multicast packets
1366 */
1367static void smc_set_multicast_list(struct net_device *dev)
1368{
1369 struct smc_local *lp = netdev_priv(dev);
1370 void __iomem *ioaddr = lp->base;
1371 unsigned char multicast_table[8];
1372 int update_multicast = 0;
1373
1374 DBG(2, dev, "%s\n", __func__);
1375
1376 if (dev->flags & IFF_PROMISC) {
1377 DBG(2, dev, "RCR_PRMS\n");
1378 lp->rcr_cur_mode |= RCR_PRMS;
1379 }
1380
1381/* BUG? I never disable promiscuous mode if multicasting was turned on.
1382 Now, I turn off promiscuous mode, but I don't do anything to multicasting
1383 when promiscuous mode is turned on.
1384*/
1385
1386 /*
1387 * Here, I am setting this to accept all multicast packets.
1388 * I don't need to zero the multicast table, because the flag is
1389 * checked before the table is
1390 */
1391 else if (dev->flags & IFF_ALLMULTI || netdev_mc_count(dev) > 16) {
1392 DBG(2, dev, "RCR_ALMUL\n");
1393 lp->rcr_cur_mode |= RCR_ALMUL;
1394 }
1395
1396 /*
1397 * This sets the internal hardware table to filter out unwanted
1398 * multicast packets before they take up memory.
1399 *
1400 * The SMC chip uses a hash table where the high 6 bits of the CRC of
1401 * address are the offset into the table. If that bit is 1, then the
1402 * multicast packet is accepted. Otherwise, it's dropped silently.
1403 *
1404 * To use the 6 bits as an offset into the table, the high 3 bits are
1405 * the number of the 8 bit register, while the low 3 bits are the bit
1406 * within that register.
1407 */
1408 else if (!netdev_mc_empty(dev)) {
1409 struct netdev_hw_addr *ha;
1410
1411 /* table for flipping the order of 3 bits */
1412 static const unsigned char invert3[] = {0, 4, 2, 6, 1, 5, 3, 7};
1413
1414 /* start with a table of all zeros: reject all */
1415 memset(multicast_table, 0, sizeof(multicast_table));
1416
1417 netdev_for_each_mc_addr(ha, dev) {
1418 int position;
1419
1420 /* only use the low order bits */
1421 position = crc32_le(~0, ha->addr, 6) & 0x3f;
1422
1423 /* do some messy swapping to put the bit in the right spot */
1424 multicast_table[invert3[position&7]] |=
1425 (1<<invert3[(position>>3)&7]);
1426 }
1427
1428 /* be sure I get rid of flags I might have set */
1429 lp->rcr_cur_mode &= ~(RCR_PRMS | RCR_ALMUL);
1430
1431 /* now, the table can be loaded into the chipset */
1432 update_multicast = 1;
1433 } else {
1434 DBG(2, dev, "~(RCR_PRMS|RCR_ALMUL)\n");
1435 lp->rcr_cur_mode &= ~(RCR_PRMS | RCR_ALMUL);
1436
1437 /*
1438 * since I'm disabling all multicast entirely, I need to
1439 * clear the multicast list
1440 */
1441 memset(multicast_table, 0, sizeof(multicast_table));
1442 update_multicast = 1;
1443 }
1444
1445 spin_lock_irq(&lp->lock);
1446 SMC_SELECT_BANK(lp, 0);
1447 SMC_SET_RCR(lp, lp->rcr_cur_mode);
1448 if (update_multicast) {
1449 SMC_SELECT_BANK(lp, 3);
1450 SMC_SET_MCAST(lp, multicast_table);
1451 }
1452 SMC_SELECT_BANK(lp, 2);
1453 spin_unlock_irq(&lp->lock);
1454}
1455
1456
1457/*
1458 * Open and Initialize the board
1459 *
1460 * Set up everything, reset the card, etc..
1461 */
1462static int
1463smc_open(struct net_device *dev)
1464{
1465 struct smc_local *lp = netdev_priv(dev);
1466
1467 DBG(2, dev, "%s\n", __func__);
1468
1469 /* Setup the default Register Modes */
1470 lp->tcr_cur_mode = TCR_DEFAULT;
1471 lp->rcr_cur_mode = RCR_DEFAULT;
1472 lp->rpc_cur_mode = RPC_DEFAULT |
1473 lp->cfg.leda << RPC_LSXA_SHFT |
1474 lp->cfg.ledb << RPC_LSXB_SHFT;
1475
1476 /*
1477 * If we are not using a MII interface, we need to
1478 * monitor our own carrier signal to detect faults.
1479 */
1480 if (lp->phy_type == 0)
1481 lp->tcr_cur_mode |= TCR_MON_CSN;
1482
1483 /* reset the hardware */
1484 smc_reset(dev);
1485 smc_enable(dev);
1486
1487 /* Configure the PHY, initialize the link state */
1488 if (lp->phy_type != 0)
1489 smc_phy_configure(&lp->phy_configure);
1490 else {
1491 spin_lock_irq(&lp->lock);
1492 smc_10bt_check_media(dev, 1);
1493 spin_unlock_irq(&lp->lock);
1494 }
1495
1496 netif_start_queue(dev);
1497 return 0;
1498}
1499
1500/*
1501 * smc_close
1502 *
1503 * this makes the board clean up everything that it can
1504 * and not talk to the outside world. Caused by
1505 * an 'ifconfig ethX down'
1506 */
1507static int smc_close(struct net_device *dev)
1508{
1509 struct smc_local *lp = netdev_priv(dev);
1510
1511 DBG(2, dev, "%s\n", __func__);
1512
1513 netif_stop_queue(dev);
1514 netif_carrier_off(dev);
1515
1516 /* clear everything */
1517 smc_shutdown(dev);
1518 tasklet_kill(&lp->tx_task);
1519 smc_phy_powerdown(dev);
1520 return 0;
1521}
1522
1523/*
1524 * Ethtool support
1525 */
1526static int
1527smc_ethtool_get_link_ksettings(struct net_device *dev,
1528 struct ethtool_link_ksettings *cmd)
1529{
1530 struct smc_local *lp = netdev_priv(dev);
1531
1532 if (lp->phy_type != 0) {
1533 spin_lock_irq(&lp->lock);
1534 mii_ethtool_get_link_ksettings(&lp->mii, cmd);
1535 spin_unlock_irq(&lp->lock);
1536 } else {
1537 u32 supported = SUPPORTED_10baseT_Half |
1538 SUPPORTED_10baseT_Full |
1539 SUPPORTED_TP | SUPPORTED_AUI;
1540
1541 if (lp->ctl_rspeed == 10)
1542 cmd->base.speed = SPEED_10;
1543 else if (lp->ctl_rspeed == 100)
1544 cmd->base.speed = SPEED_100;
1545
1546 cmd->base.autoneg = AUTONEG_DISABLE;
1547 cmd->base.port = 0;
1548 cmd->base.duplex = lp->tcr_cur_mode & TCR_SWFDUP ?
1549 DUPLEX_FULL : DUPLEX_HALF;
1550
1551 ethtool_convert_legacy_u32_to_link_mode(
1552 cmd->link_modes.supported, supported);
1553 }
1554
1555 return 0;
1556}
1557
1558static int
1559smc_ethtool_set_link_ksettings(struct net_device *dev,
1560 const struct ethtool_link_ksettings *cmd)
1561{
1562 struct smc_local *lp = netdev_priv(dev);
1563 int ret;
1564
1565 if (lp->phy_type != 0) {
1566 spin_lock_irq(&lp->lock);
1567 ret = mii_ethtool_set_link_ksettings(&lp->mii, cmd);
1568 spin_unlock_irq(&lp->lock);
1569 } else {
1570 if (cmd->base.autoneg != AUTONEG_DISABLE ||
1571 cmd->base.speed != SPEED_10 ||
1572 (cmd->base.duplex != DUPLEX_HALF &&
1573 cmd->base.duplex != DUPLEX_FULL) ||
1574 (cmd->base.port != PORT_TP && cmd->base.port != PORT_AUI))
1575 return -EINVAL;
1576
1577 lp->ctl_rfduplx = cmd->base.duplex == DUPLEX_FULL;
1578
1579 ret = 0;
1580 }
1581
1582 return ret;
1583}
1584
1585static void
1586smc_ethtool_getdrvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1587{
1588 strscpy(info->driver, CARDNAME, sizeof(info->driver));
1589 strscpy(info->version, version, sizeof(info->version));
1590 strscpy(info->bus_info, dev_name(dev->dev.parent),
1591 sizeof(info->bus_info));
1592}
1593
1594static int smc_ethtool_nwayreset(struct net_device *dev)
1595{
1596 struct smc_local *lp = netdev_priv(dev);
1597 int ret = -EINVAL;
1598
1599 if (lp->phy_type != 0) {
1600 spin_lock_irq(&lp->lock);
1601 ret = mii_nway_restart(&lp->mii);
1602 spin_unlock_irq(&lp->lock);
1603 }
1604
1605 return ret;
1606}
1607
1608static u32 smc_ethtool_getmsglevel(struct net_device *dev)
1609{
1610 struct smc_local *lp = netdev_priv(dev);
1611 return lp->msg_enable;
1612}
1613
1614static void smc_ethtool_setmsglevel(struct net_device *dev, u32 level)
1615{
1616 struct smc_local *lp = netdev_priv(dev);
1617 lp->msg_enable = level;
1618}
1619
1620static int smc_write_eeprom_word(struct net_device *dev, u16 addr, u16 word)
1621{
1622 u16 ctl;
1623 struct smc_local *lp = netdev_priv(dev);
1624 void __iomem *ioaddr = lp->base;
1625
1626 spin_lock_irq(&lp->lock);
1627 /* load word into GP register */
1628 SMC_SELECT_BANK(lp, 1);
1629 SMC_SET_GP(lp, word);
1630 /* set the address to put the data in EEPROM */
1631 SMC_SELECT_BANK(lp, 2);
1632 SMC_SET_PTR(lp, addr);
1633 /* tell it to write */
1634 SMC_SELECT_BANK(lp, 1);
1635 ctl = SMC_GET_CTL(lp);
1636 SMC_SET_CTL(lp, ctl | (CTL_EEPROM_SELECT | CTL_STORE));
1637 /* wait for it to finish */
1638 do {
1639 udelay(1);
1640 } while (SMC_GET_CTL(lp) & CTL_STORE);
1641 /* clean up */
1642 SMC_SET_CTL(lp, ctl);
1643 SMC_SELECT_BANK(lp, 2);
1644 spin_unlock_irq(&lp->lock);
1645 return 0;
1646}
1647
1648static int smc_read_eeprom_word(struct net_device *dev, u16 addr, u16 *word)
1649{
1650 u16 ctl;
1651 struct smc_local *lp = netdev_priv(dev);
1652 void __iomem *ioaddr = lp->base;
1653
1654 spin_lock_irq(&lp->lock);
1655 /* set the EEPROM address to get the data from */
1656 SMC_SELECT_BANK(lp, 2);
1657 SMC_SET_PTR(lp, addr | PTR_READ);
1658 /* tell it to load */
1659 SMC_SELECT_BANK(lp, 1);
1660 SMC_SET_GP(lp, 0xffff); /* init to known */
1661 ctl = SMC_GET_CTL(lp);
1662 SMC_SET_CTL(lp, ctl | (CTL_EEPROM_SELECT | CTL_RELOAD));
1663 /* wait for it to finish */
1664 do {
1665 udelay(1);
1666 } while (SMC_GET_CTL(lp) & CTL_RELOAD);
1667 /* read word from GP register */
1668 *word = SMC_GET_GP(lp);
1669 /* clean up */
1670 SMC_SET_CTL(lp, ctl);
1671 SMC_SELECT_BANK(lp, 2);
1672 spin_unlock_irq(&lp->lock);
1673 return 0;
1674}
1675
1676static int smc_ethtool_geteeprom_len(struct net_device *dev)
1677{
1678 return 0x23 * 2;
1679}
1680
1681static int smc_ethtool_geteeprom(struct net_device *dev,
1682 struct ethtool_eeprom *eeprom, u8 *data)
1683{
1684 int i;
1685 int imax;
1686
1687 DBG(1, dev, "Reading %d bytes at %d(0x%x)\n",
1688 eeprom->len, eeprom->offset, eeprom->offset);
1689 imax = smc_ethtool_geteeprom_len(dev);
1690 for (i = 0; i < eeprom->len; i += 2) {
1691 int ret;
1692 u16 wbuf;
1693 int offset = i + eeprom->offset;
1694 if (offset > imax)
1695 break;
1696 ret = smc_read_eeprom_word(dev, offset >> 1, &wbuf);
1697 if (ret != 0)
1698 return ret;
1699 DBG(2, dev, "Read 0x%x from 0x%x\n", wbuf, offset >> 1);
1700 data[i] = (wbuf >> 8) & 0xff;
1701 data[i+1] = wbuf & 0xff;
1702 }
1703 return 0;
1704}
1705
1706static int smc_ethtool_seteeprom(struct net_device *dev,
1707 struct ethtool_eeprom *eeprom, u8 *data)
1708{
1709 int i;
1710 int imax;
1711
1712 DBG(1, dev, "Writing %d bytes to %d(0x%x)\n",
1713 eeprom->len, eeprom->offset, eeprom->offset);
1714 imax = smc_ethtool_geteeprom_len(dev);
1715 for (i = 0; i < eeprom->len; i += 2) {
1716 int ret;
1717 u16 wbuf;
1718 int offset = i + eeprom->offset;
1719 if (offset > imax)
1720 break;
1721 wbuf = (data[i] << 8) | data[i + 1];
1722 DBG(2, dev, "Writing 0x%x to 0x%x\n", wbuf, offset >> 1);
1723 ret = smc_write_eeprom_word(dev, offset >> 1, wbuf);
1724 if (ret != 0)
1725 return ret;
1726 }
1727 return 0;
1728}
1729
1730
1731static const struct ethtool_ops smc_ethtool_ops = {
1732 .get_drvinfo = smc_ethtool_getdrvinfo,
1733
1734 .get_msglevel = smc_ethtool_getmsglevel,
1735 .set_msglevel = smc_ethtool_setmsglevel,
1736 .nway_reset = smc_ethtool_nwayreset,
1737 .get_link = ethtool_op_get_link,
1738 .get_eeprom_len = smc_ethtool_geteeprom_len,
1739 .get_eeprom = smc_ethtool_geteeprom,
1740 .set_eeprom = smc_ethtool_seteeprom,
1741 .get_link_ksettings = smc_ethtool_get_link_ksettings,
1742 .set_link_ksettings = smc_ethtool_set_link_ksettings,
1743};
1744
1745static const struct net_device_ops smc_netdev_ops = {
1746 .ndo_open = smc_open,
1747 .ndo_stop = smc_close,
1748 .ndo_start_xmit = smc_hard_start_xmit,
1749 .ndo_tx_timeout = smc_timeout,
1750 .ndo_set_rx_mode = smc_set_multicast_list,
1751 .ndo_validate_addr = eth_validate_addr,
1752 .ndo_set_mac_address = eth_mac_addr,
1753#ifdef CONFIG_NET_POLL_CONTROLLER
1754 .ndo_poll_controller = smc_poll_controller,
1755#endif
1756};
1757
1758/*
1759 * smc_findirq
1760 *
1761 * This routine has a simple purpose -- make the SMC chip generate an
1762 * interrupt, so an auto-detect routine can detect it, and find the IRQ,
1763 */
1764/*
1765 * does this still work?
1766 *
1767 * I just deleted auto_irq.c, since it was never built...
1768 * --jgarzik
1769 */
1770static int smc_findirq(struct smc_local *lp)
1771{
1772 void __iomem *ioaddr = lp->base;
1773 int timeout = 20;
1774 unsigned long cookie;
1775
1776 DBG(2, lp->dev, "%s: %s\n", CARDNAME, __func__);
1777
1778 cookie = probe_irq_on();
1779
1780 /*
1781 * What I try to do here is trigger an ALLOC_INT. This is done
1782 * by allocating a small chunk of memory, which will give an interrupt
1783 * when done.
1784 */
1785 /* enable ALLOCation interrupts ONLY */
1786 SMC_SELECT_BANK(lp, 2);
1787 SMC_SET_INT_MASK(lp, IM_ALLOC_INT);
1788
1789 /*
1790 * Allocate 512 bytes of memory. Note that the chip was just
1791 * reset so all the memory is available
1792 */
1793 SMC_SET_MMU_CMD(lp, MC_ALLOC | 1);
1794
1795 /*
1796 * Wait until positive that the interrupt has been generated
1797 */
1798 do {
1799 int int_status;
1800 udelay(10);
1801 int_status = SMC_GET_INT(lp);
1802 if (int_status & IM_ALLOC_INT)
1803 break; /* got the interrupt */
1804 } while (--timeout);
1805
1806 /*
1807 * there is really nothing that I can do here if timeout fails,
1808 * as autoirq_report will return a 0 anyway, which is what I
1809 * want in this case. Plus, the clean up is needed in both
1810 * cases.
1811 */
1812
1813 /* and disable all interrupts again */
1814 SMC_SET_INT_MASK(lp, 0);
1815
1816 /* and return what I found */
1817 return probe_irq_off(cookie);
1818}
1819
1820/*
1821 * Function: smc_probe(unsigned long ioaddr)
1822 *
1823 * Purpose:
1824 * Tests to see if a given ioaddr points to an SMC91x chip.
1825 * Returns a 0 on success
1826 *
1827 * Algorithm:
1828 * (1) see if the high byte of BANK_SELECT is 0x33
1829 * (2) compare the ioaddr with the base register's address
1830 * (3) see if I recognize the chip ID in the appropriate register
1831 *
1832 * Here I do typical initialization tasks.
1833 *
1834 * o Initialize the structure if needed
1835 * o print out my vanity message if not done so already
1836 * o print out what type of hardware is detected
1837 * o print out the ethernet address
1838 * o find the IRQ
1839 * o set up my private data
1840 * o configure the dev structure with my subroutines
1841 * o actually GRAB the irq.
1842 * o GRAB the region
1843 */
1844static int smc_probe(struct net_device *dev, void __iomem *ioaddr,
1845 unsigned long irq_flags)
1846{
1847 struct smc_local *lp = netdev_priv(dev);
1848 int retval;
1849 unsigned int val, revision_register;
1850 const char *version_string;
1851 u8 addr[ETH_ALEN];
1852
1853 DBG(2, dev, "%s: %s\n", CARDNAME, __func__);
1854
1855 /* First, see if the high byte is 0x33 */
1856 val = SMC_CURRENT_BANK(lp);
1857 DBG(2, dev, "%s: bank signature probe returned 0x%04x\n",
1858 CARDNAME, val);
1859 if ((val & 0xFF00) != 0x3300) {
1860 if ((val & 0xFF) == 0x33) {
1861 netdev_warn(dev,
1862 "%s: Detected possible byte-swapped interface at IOADDR %p\n",
1863 CARDNAME, ioaddr);
1864 }
1865 retval = -ENODEV;
1866 goto err_out;
1867 }
1868
1869 /*
1870 * The above MIGHT indicate a device, but I need to write to
1871 * further test this.
1872 */
1873 SMC_SELECT_BANK(lp, 0);
1874 val = SMC_CURRENT_BANK(lp);
1875 if ((val & 0xFF00) != 0x3300) {
1876 retval = -ENODEV;
1877 goto err_out;
1878 }
1879
1880 /*
1881 * well, we've already written once, so hopefully another
1882 * time won't hurt. This time, I need to switch the bank
1883 * register to bank 1, so I can access the base address
1884 * register
1885 */
1886 SMC_SELECT_BANK(lp, 1);
1887 val = SMC_GET_BASE(lp);
1888 val = ((val & 0x1F00) >> 3) << SMC_IO_SHIFT;
1889 if (((unsigned long)ioaddr & (0x3e0 << SMC_IO_SHIFT)) != val) {
1890 netdev_warn(dev, "%s: IOADDR %p doesn't match configuration (%x).\n",
1891 CARDNAME, ioaddr, val);
1892 }
1893
1894 /*
1895 * check if the revision register is something that I
1896 * recognize. These might need to be added to later,
1897 * as future revisions could be added.
1898 */
1899 SMC_SELECT_BANK(lp, 3);
1900 revision_register = SMC_GET_REV(lp);
1901 DBG(2, dev, "%s: revision = 0x%04x\n", CARDNAME, revision_register);
1902 version_string = chip_ids[ (revision_register >> 4) & 0xF];
1903 if (!version_string || (revision_register & 0xff00) != 0x3300) {
1904 /* I don't recognize this chip, so... */
1905 netdev_warn(dev, "%s: IO %p: Unrecognized revision register 0x%04x, Contact author.\n",
1906 CARDNAME, ioaddr, revision_register);
1907
1908 retval = -ENODEV;
1909 goto err_out;
1910 }
1911
1912 /* At this point I'll assume that the chip is an SMC91x. */
1913 pr_info_once("%s\n", version);
1914
1915 /* fill in some of the fields */
1916 dev->base_addr = (unsigned long)ioaddr;
1917 lp->base = ioaddr;
1918 lp->version = revision_register & 0xff;
1919 spin_lock_init(&lp->lock);
1920
1921 /* Get the MAC address */
1922 SMC_SELECT_BANK(lp, 1);
1923 SMC_GET_MAC_ADDR(lp, addr);
1924 eth_hw_addr_set(dev, addr);
1925
1926 /* now, reset the chip, and put it into a known state */
1927 smc_reset(dev);
1928
1929 /*
1930 * If dev->irq is 0, then the device has to be banged on to see
1931 * what the IRQ is.
1932 *
1933 * This banging doesn't always detect the IRQ, for unknown reasons.
1934 * a workaround is to reset the chip and try again.
1935 *
1936 * Interestingly, the DOS packet driver *SETS* the IRQ on the card to
1937 * be what is requested on the command line. I don't do that, mostly
1938 * because the card that I have uses a non-standard method of accessing
1939 * the IRQs, and because this _should_ work in most configurations.
1940 *
1941 * Specifying an IRQ is done with the assumption that the user knows
1942 * what (s)he is doing. No checking is done!!!!
1943 */
1944 if (dev->irq < 1) {
1945 int trials;
1946
1947 trials = 3;
1948 while (trials--) {
1949 dev->irq = smc_findirq(lp);
1950 if (dev->irq)
1951 break;
1952 /* kick the card and try again */
1953 smc_reset(dev);
1954 }
1955 }
1956 if (dev->irq == 0) {
1957 netdev_warn(dev, "Couldn't autodetect your IRQ. Use irq=xx.\n");
1958 retval = -ENODEV;
1959 goto err_out;
1960 }
1961 dev->irq = irq_canonicalize(dev->irq);
1962
1963 dev->watchdog_timeo = msecs_to_jiffies(watchdog);
1964 dev->netdev_ops = &smc_netdev_ops;
1965 dev->ethtool_ops = &smc_ethtool_ops;
1966
1967 tasklet_setup(&lp->tx_task, smc_hardware_send_pkt);
1968 INIT_WORK(&lp->phy_configure, smc_phy_configure);
1969 lp->dev = dev;
1970 lp->mii.phy_id_mask = 0x1f;
1971 lp->mii.reg_num_mask = 0x1f;
1972 lp->mii.force_media = 0;
1973 lp->mii.full_duplex = 0;
1974 lp->mii.dev = dev;
1975 lp->mii.mdio_read = smc_phy_read;
1976 lp->mii.mdio_write = smc_phy_write;
1977
1978 /*
1979 * Locate the phy, if any.
1980 */
1981 if (lp->version >= (CHIP_91100 << 4))
1982 smc_phy_detect(dev);
1983
1984 /* then shut everything down to save power */
1985 smc_shutdown(dev);
1986 smc_phy_powerdown(dev);
1987
1988 /* Set default parameters */
1989 lp->msg_enable = NETIF_MSG_LINK;
1990 lp->ctl_rfduplx = 0;
1991 lp->ctl_rspeed = 10;
1992
1993 if (lp->version >= (CHIP_91100 << 4)) {
1994 lp->ctl_rfduplx = 1;
1995 lp->ctl_rspeed = 100;
1996 }
1997
1998 /* Grab the IRQ */
1999 retval = request_irq(dev->irq, smc_interrupt, irq_flags, dev->name, dev);
2000 if (retval)
2001 goto err_out;
2002
2003#ifdef CONFIG_ARCH_PXA
2004# ifdef SMC_USE_PXA_DMA
2005 lp->cfg.flags |= SMC91X_USE_DMA;
2006# endif
2007 if (lp->cfg.flags & SMC91X_USE_DMA) {
2008 dma_cap_mask_t mask;
2009
2010 dma_cap_zero(mask);
2011 dma_cap_set(DMA_SLAVE, mask);
2012 lp->dma_chan = dma_request_channel(mask, NULL, NULL);
2013 }
2014#endif
2015
2016 retval = register_netdev(dev);
2017 if (retval == 0) {
2018 /* now, print out the card info, in a short format.. */
2019 netdev_info(dev, "%s (rev %d) at %p IRQ %d",
2020 version_string, revision_register & 0x0f,
2021 lp->base, dev->irq);
2022
2023 if (lp->dma_chan)
2024 pr_cont(" DMA %p", lp->dma_chan);
2025
2026 pr_cont("%s%s\n",
2027 lp->cfg.flags & SMC91X_NOWAIT ? " [nowait]" : "",
2028 THROTTLE_TX_PKTS ? " [throttle_tx]" : "");
2029
2030 if (!is_valid_ether_addr(dev->dev_addr)) {
2031 netdev_warn(dev, "Invalid ethernet MAC address. Please set using ifconfig\n");
2032 } else {
2033 /* Print the Ethernet address */
2034 netdev_info(dev, "Ethernet addr: %pM\n",
2035 dev->dev_addr);
2036 }
2037
2038 if (lp->phy_type == 0) {
2039 PRINTK(dev, "No PHY found\n");
2040 } else if ((lp->phy_type & 0xfffffff0) == 0x0016f840) {
2041 PRINTK(dev, "PHY LAN83C183 (LAN91C111 Internal)\n");
2042 } else if ((lp->phy_type & 0xfffffff0) == 0x02821c50) {
2043 PRINTK(dev, "PHY LAN83C180\n");
2044 }
2045 }
2046
2047err_out:
2048#ifdef CONFIG_ARCH_PXA
2049 if (retval && lp->dma_chan)
2050 dma_release_channel(lp->dma_chan);
2051#endif
2052 return retval;
2053}
2054
2055static int smc_enable_device(struct platform_device *pdev)
2056{
2057 struct net_device *ndev = platform_get_drvdata(pdev);
2058 struct smc_local *lp = netdev_priv(ndev);
2059 unsigned long flags;
2060 unsigned char ecor, ecsr;
2061 void __iomem *addr;
2062 struct resource * res;
2063
2064 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2065 if (!res)
2066 return 0;
2067
2068 /*
2069 * Map the attribute space. This is overkill, but clean.
2070 */
2071 addr = ioremap(res->start, ATTRIB_SIZE);
2072 if (!addr)
2073 return -ENOMEM;
2074
2075 /*
2076 * Reset the device. We must disable IRQs around this
2077 * since a reset causes the IRQ line become active.
2078 */
2079 local_irq_save(flags);
2080 ecor = readb(addr + (ECOR << SMC_IO_SHIFT)) & ~ECOR_RESET;
2081 writeb(ecor | ECOR_RESET, addr + (ECOR << SMC_IO_SHIFT));
2082 readb(addr + (ECOR << SMC_IO_SHIFT));
2083
2084 /*
2085 * Wait 100us for the chip to reset.
2086 */
2087 udelay(100);
2088
2089 /*
2090 * The device will ignore all writes to the enable bit while
2091 * reset is asserted, even if the reset bit is cleared in the
2092 * same write. Must clear reset first, then enable the device.
2093 */
2094 writeb(ecor, addr + (ECOR << SMC_IO_SHIFT));
2095 writeb(ecor | ECOR_ENABLE, addr + (ECOR << SMC_IO_SHIFT));
2096
2097 /*
2098 * Set the appropriate byte/word mode.
2099 */
2100 ecsr = readb(addr + (ECSR << SMC_IO_SHIFT)) & ~ECSR_IOIS8;
2101 if (!SMC_16BIT(lp))
2102 ecsr |= ECSR_IOIS8;
2103 writeb(ecsr, addr + (ECSR << SMC_IO_SHIFT));
2104 local_irq_restore(flags);
2105
2106 iounmap(addr);
2107
2108 /*
2109 * Wait for the chip to wake up. We could poll the control
2110 * register in the main register space, but that isn't mapped
2111 * yet. We know this is going to take 750us.
2112 */
2113 msleep(1);
2114
2115 return 0;
2116}
2117
2118static int smc_request_attrib(struct platform_device *pdev,
2119 struct net_device *ndev)
2120{
2121 struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2122 struct smc_local *lp __maybe_unused = netdev_priv(ndev);
2123
2124 if (!res)
2125 return 0;
2126
2127 if (!request_mem_region(res->start, ATTRIB_SIZE, CARDNAME))
2128 return -EBUSY;
2129
2130 return 0;
2131}
2132
2133static void smc_release_attrib(struct platform_device *pdev,
2134 struct net_device *ndev)
2135{
2136 struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2137 struct smc_local *lp __maybe_unused = netdev_priv(ndev);
2138
2139 if (res)
2140 release_mem_region(res->start, ATTRIB_SIZE);
2141}
2142
2143static inline void smc_request_datacs(struct platform_device *pdev, struct net_device *ndev)
2144{
2145 if (SMC_CAN_USE_DATACS) {
2146 struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-data32");
2147 struct smc_local *lp = netdev_priv(ndev);
2148
2149 if (!res)
2150 return;
2151
2152 if(!request_mem_region(res->start, SMC_DATA_EXTENT, CARDNAME)) {
2153 netdev_info(ndev, "%s: failed to request datacs memory region.\n",
2154 CARDNAME);
2155 return;
2156 }
2157
2158 lp->datacs = ioremap(res->start, SMC_DATA_EXTENT);
2159 }
2160}
2161
2162static void smc_release_datacs(struct platform_device *pdev, struct net_device *ndev)
2163{
2164 if (SMC_CAN_USE_DATACS) {
2165 struct smc_local *lp = netdev_priv(ndev);
2166 struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-data32");
2167
2168 if (lp->datacs)
2169 iounmap(lp->datacs);
2170
2171 lp->datacs = NULL;
2172
2173 if (res)
2174 release_mem_region(res->start, SMC_DATA_EXTENT);
2175 }
2176}
2177
2178static const struct acpi_device_id smc91x_acpi_match[] = {
2179 { "LNRO0003", 0 },
2180 { }
2181};
2182MODULE_DEVICE_TABLE(acpi, smc91x_acpi_match);
2183
2184#if IS_BUILTIN(CONFIG_OF)
2185static const struct of_device_id smc91x_match[] = {
2186 { .compatible = "smsc,lan91c94", },
2187 { .compatible = "smsc,lan91c111", },
2188 {},
2189};
2190MODULE_DEVICE_TABLE(of, smc91x_match);
2191
2192/**
2193 * try_toggle_control_gpio - configure a gpio if it exists
2194 * @dev: net device
2195 * @desc: where to store the GPIO descriptor, if it exists
2196 * @name: name of the GPIO in DT
2197 * @index: index of the GPIO in DT
2198 * @value: set the GPIO to this value
2199 * @nsdelay: delay before setting the GPIO
2200 */
2201static int try_toggle_control_gpio(struct device *dev,
2202 struct gpio_desc **desc,
2203 const char *name, int index,
2204 int value, unsigned int nsdelay)
2205{
2206 struct gpio_desc *gpio;
2207 enum gpiod_flags flags = value ? GPIOD_OUT_LOW : GPIOD_OUT_HIGH;
2208
2209 gpio = devm_gpiod_get_index_optional(dev, name, index, flags);
2210 if (IS_ERR(gpio))
2211 return PTR_ERR(gpio);
2212
2213 if (gpio) {
2214 if (nsdelay)
2215 usleep_range(nsdelay, 2 * nsdelay);
2216 gpiod_set_value_cansleep(gpio, value);
2217 }
2218 *desc = gpio;
2219
2220 return 0;
2221}
2222#endif
2223
2224/*
2225 * smc_init(void)
2226 * Input parameters:
2227 * dev->base_addr == 0, try to find all possible locations
2228 * dev->base_addr > 0x1ff, this is the address to check
2229 * dev->base_addr == <anything else>, return failure code
2230 *
2231 * Output:
2232 * 0 --> there is a device
2233 * anything else, error
2234 */
2235static int smc_drv_probe(struct platform_device *pdev)
2236{
2237 struct smc91x_platdata *pd = dev_get_platdata(&pdev->dev);
2238 const struct of_device_id *match = NULL;
2239 struct smc_local *lp;
2240 struct net_device *ndev;
2241 struct resource *res;
2242 unsigned int __iomem *addr;
2243 unsigned long irq_flags = SMC_IRQ_FLAGS;
2244 unsigned long irq_resflags;
2245 int ret;
2246
2247 ndev = alloc_etherdev(sizeof(struct smc_local));
2248 if (!ndev) {
2249 ret = -ENOMEM;
2250 goto out;
2251 }
2252 SET_NETDEV_DEV(ndev, &pdev->dev);
2253
2254 /* get configuration from platform data, only allow use of
2255 * bus width if both SMC_CAN_USE_xxx and SMC91X_USE_xxx are set.
2256 */
2257
2258 lp = netdev_priv(ndev);
2259 lp->cfg.flags = 0;
2260
2261 if (pd) {
2262 memcpy(&lp->cfg, pd, sizeof(lp->cfg));
2263 lp->io_shift = SMC91X_IO_SHIFT(lp->cfg.flags);
2264
2265 if (!SMC_8BIT(lp) && !SMC_16BIT(lp)) {
2266 dev_err(&pdev->dev,
2267 "at least one of 8-bit or 16-bit access support is required.\n");
2268 ret = -ENXIO;
2269 goto out_free_netdev;
2270 }
2271 }
2272
2273#if IS_BUILTIN(CONFIG_OF)
2274 match = of_match_device(of_match_ptr(smc91x_match), &pdev->dev);
2275 if (match) {
2276 u32 val;
2277
2278 /* Optional pwrdwn GPIO configured? */
2279 ret = try_toggle_control_gpio(&pdev->dev, &lp->power_gpio,
2280 "power", 0, 0, 100);
2281 if (ret)
2282 goto out_free_netdev;
2283
2284 /*
2285 * Optional reset GPIO configured? Minimum 100 ns reset needed
2286 * according to LAN91C96 datasheet page 14.
2287 */
2288 ret = try_toggle_control_gpio(&pdev->dev, &lp->reset_gpio,
2289 "reset", 0, 0, 100);
2290 if (ret)
2291 goto out_free_netdev;
2292
2293 /*
2294 * Need to wait for optional EEPROM to load, max 750 us according
2295 * to LAN91C96 datasheet page 55.
2296 */
2297 if (lp->reset_gpio)
2298 usleep_range(750, 1000);
2299
2300 /* Combination of IO widths supported, default to 16-bit */
2301 if (!device_property_read_u32(&pdev->dev, "reg-io-width",
2302 &val)) {
2303 if (val & 1)
2304 lp->cfg.flags |= SMC91X_USE_8BIT;
2305 if ((val == 0) || (val & 2))
2306 lp->cfg.flags |= SMC91X_USE_16BIT;
2307 if (val & 4)
2308 lp->cfg.flags |= SMC91X_USE_32BIT;
2309 } else {
2310 lp->cfg.flags |= SMC91X_USE_16BIT;
2311 }
2312 if (!device_property_read_u32(&pdev->dev, "reg-shift",
2313 &val))
2314 lp->io_shift = val;
2315 lp->cfg.pxa_u16_align4 =
2316 device_property_read_bool(&pdev->dev, "pxa-u16-align4");
2317 }
2318#endif
2319
2320 if (!pd && !match) {
2321 lp->cfg.flags |= (SMC_CAN_USE_8BIT) ? SMC91X_USE_8BIT : 0;
2322 lp->cfg.flags |= (SMC_CAN_USE_16BIT) ? SMC91X_USE_16BIT : 0;
2323 lp->cfg.flags |= (SMC_CAN_USE_32BIT) ? SMC91X_USE_32BIT : 0;
2324 lp->cfg.flags |= (nowait) ? SMC91X_NOWAIT : 0;
2325 }
2326
2327 if (!lp->cfg.leda && !lp->cfg.ledb) {
2328 lp->cfg.leda = RPC_LSA_DEFAULT;
2329 lp->cfg.ledb = RPC_LSB_DEFAULT;
2330 }
2331
2332 ndev->dma = (unsigned char)-1;
2333
2334 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-regs");
2335 if (!res)
2336 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2337 if (!res) {
2338 ret = -ENODEV;
2339 goto out_free_netdev;
2340 }
2341
2342
2343 if (!request_mem_region(res->start, SMC_IO_EXTENT, CARDNAME)) {
2344 ret = -EBUSY;
2345 goto out_free_netdev;
2346 }
2347
2348 ndev->irq = platform_get_irq(pdev, 0);
2349 if (ndev->irq < 0) {
2350 ret = ndev->irq;
2351 goto out_release_io;
2352 }
2353 /*
2354 * If this platform does not specify any special irqflags, or if
2355 * the resource supplies a trigger, override the irqflags with
2356 * the trigger flags from the resource.
2357 */
2358 irq_resflags = irq_get_trigger_type(ndev->irq);
2359 if (irq_flags == -1 || irq_resflags & IRQF_TRIGGER_MASK)
2360 irq_flags = irq_resflags & IRQF_TRIGGER_MASK;
2361
2362 ret = smc_request_attrib(pdev, ndev);
2363 if (ret)
2364 goto out_release_io;
2365#if defined(CONFIG_ASSABET_NEPONSET)
2366 if (machine_is_assabet() && machine_has_neponset())
2367 neponset_ncr_set(NCR_ENET_OSC_EN);
2368#endif
2369 platform_set_drvdata(pdev, ndev);
2370 ret = smc_enable_device(pdev);
2371 if (ret)
2372 goto out_release_attrib;
2373
2374 addr = ioremap(res->start, SMC_IO_EXTENT);
2375 if (!addr) {
2376 ret = -ENOMEM;
2377 goto out_release_attrib;
2378 }
2379
2380#ifdef CONFIG_ARCH_PXA
2381 {
2382 struct smc_local *lp = netdev_priv(ndev);
2383 lp->device = &pdev->dev;
2384 lp->physaddr = res->start;
2385
2386 }
2387#endif
2388
2389 ret = smc_probe(ndev, addr, irq_flags);
2390 if (ret != 0)
2391 goto out_iounmap;
2392
2393 smc_request_datacs(pdev, ndev);
2394
2395 return 0;
2396
2397 out_iounmap:
2398 iounmap(addr);
2399 out_release_attrib:
2400 smc_release_attrib(pdev, ndev);
2401 out_release_io:
2402 release_mem_region(res->start, SMC_IO_EXTENT);
2403 out_free_netdev:
2404 free_netdev(ndev);
2405 out:
2406 pr_info("%s: not found (%d).\n", CARDNAME, ret);
2407
2408 return ret;
2409}
2410
2411static void smc_drv_remove(struct platform_device *pdev)
2412{
2413 struct net_device *ndev = platform_get_drvdata(pdev);
2414 struct smc_local *lp = netdev_priv(ndev);
2415 struct resource *res;
2416
2417 unregister_netdev(ndev);
2418
2419 free_irq(ndev->irq, ndev);
2420
2421#ifdef CONFIG_ARCH_PXA
2422 if (lp->dma_chan)
2423 dma_release_channel(lp->dma_chan);
2424#endif
2425 iounmap(lp->base);
2426
2427 smc_release_datacs(pdev,ndev);
2428 smc_release_attrib(pdev,ndev);
2429
2430 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-regs");
2431 if (!res)
2432 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2433 release_mem_region(res->start, SMC_IO_EXTENT);
2434
2435 free_netdev(ndev);
2436}
2437
2438static int smc_drv_suspend(struct device *dev)
2439{
2440 struct net_device *ndev = dev_get_drvdata(dev);
2441
2442 if (ndev) {
2443 if (netif_running(ndev)) {
2444 netif_device_detach(ndev);
2445 smc_shutdown(ndev);
2446 smc_phy_powerdown(ndev);
2447 }
2448 }
2449 return 0;
2450}
2451
2452static int smc_drv_resume(struct device *dev)
2453{
2454 struct platform_device *pdev = to_platform_device(dev);
2455 struct net_device *ndev = platform_get_drvdata(pdev);
2456
2457 if (ndev) {
2458 struct smc_local *lp = netdev_priv(ndev);
2459 smc_enable_device(pdev);
2460 if (netif_running(ndev)) {
2461 smc_reset(ndev);
2462 smc_enable(ndev);
2463 if (lp->phy_type != 0)
2464 smc_phy_configure(&lp->phy_configure);
2465 netif_device_attach(ndev);
2466 }
2467 }
2468 return 0;
2469}
2470
2471static const struct dev_pm_ops smc_drv_pm_ops = {
2472 .suspend = smc_drv_suspend,
2473 .resume = smc_drv_resume,
2474};
2475
2476static struct platform_driver smc_driver = {
2477 .probe = smc_drv_probe,
2478 .remove = smc_drv_remove,
2479 .driver = {
2480 .name = CARDNAME,
2481 .pm = &smc_drv_pm_ops,
2482 .of_match_table = of_match_ptr(smc91x_match),
2483 .acpi_match_table = smc91x_acpi_match,
2484 },
2485};
2486
2487module_platform_driver(smc_driver);
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * smc91x.c
4 * This is a driver for SMSC's 91C9x/91C1xx single-chip Ethernet devices.
5 *
6 * Copyright (C) 1996 by Erik Stahlman
7 * Copyright (C) 2001 Standard Microsystems Corporation
8 * Developed by Simple Network Magic Corporation
9 * Copyright (C) 2003 Monta Vista Software, Inc.
10 * Unified SMC91x driver by Nicolas Pitre
11 *
12 * Arguments:
13 * io = for the base address
14 * irq = for the IRQ
15 * nowait = 0 for normal wait states, 1 eliminates additional wait states
16 *
17 * original author:
18 * Erik Stahlman <erik@vt.edu>
19 *
20 * hardware multicast code:
21 * Peter Cammaert <pc@denkart.be>
22 *
23 * contributors:
24 * Daris A Nevil <dnevil@snmc.com>
25 * Nicolas Pitre <nico@fluxnic.net>
26 * Russell King <rmk@arm.linux.org.uk>
27 *
28 * History:
29 * 08/20/00 Arnaldo Melo fix kfree(skb) in smc_hardware_send_packet
30 * 12/15/00 Christian Jullien fix "Warning: kfree_skb on hard IRQ"
31 * 03/16/01 Daris A Nevil modified smc9194.c for use with LAN91C111
32 * 08/22/01 Scott Anderson merge changes from smc9194 to smc91111
33 * 08/21/01 Pramod B Bhardwaj added support for RevB of LAN91C111
34 * 12/20/01 Jeff Sutherland initial port to Xscale PXA with DMA support
35 * 04/07/03 Nicolas Pitre unified SMC91x driver, killed irq races,
36 * more bus abstraction, big cleanup, etc.
37 * 29/09/03 Russell King - add driver model support
38 * - ethtool support
39 * - convert to use generic MII interface
40 * - add link up/down notification
41 * - don't try to handle full negotiation in
42 * smc_phy_configure
43 * - clean up (and fix stack overrun) in PHY
44 * MII read/write functions
45 * 22/09/04 Nicolas Pitre big update (see commit log for details)
46 */
47static const char version[] =
48 "smc91x.c: v1.1, sep 22 2004 by Nicolas Pitre <nico@fluxnic.net>";
49
50/* Debugging level */
51#ifndef SMC_DEBUG
52#define SMC_DEBUG 0
53#endif
54
55
56#include <linux/module.h>
57#include <linux/kernel.h>
58#include <linux/sched.h>
59#include <linux/delay.h>
60#include <linux/interrupt.h>
61#include <linux/irq.h>
62#include <linux/errno.h>
63#include <linux/ioport.h>
64#include <linux/crc32.h>
65#include <linux/platform_device.h>
66#include <linux/spinlock.h>
67#include <linux/ethtool.h>
68#include <linux/mii.h>
69#include <linux/workqueue.h>
70#include <linux/of.h>
71#include <linux/of_device.h>
72#include <linux/of_gpio.h>
73
74#include <linux/netdevice.h>
75#include <linux/etherdevice.h>
76#include <linux/skbuff.h>
77
78#include <asm/io.h>
79
80#include "smc91x.h"
81
82#if defined(CONFIG_ASSABET_NEPONSET)
83#include <mach/assabet.h>
84#include <mach/neponset.h>
85#endif
86
87#ifndef SMC_NOWAIT
88# define SMC_NOWAIT 0
89#endif
90static int nowait = SMC_NOWAIT;
91module_param(nowait, int, 0400);
92MODULE_PARM_DESC(nowait, "set to 1 for no wait state");
93
94/*
95 * Transmit timeout, default 5 seconds.
96 */
97static int watchdog = 1000;
98module_param(watchdog, int, 0400);
99MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds");
100
101MODULE_LICENSE("GPL");
102MODULE_ALIAS("platform:smc91x");
103
104/*
105 * The internal workings of the driver. If you are changing anything
106 * here with the SMC stuff, you should have the datasheet and know
107 * what you are doing.
108 */
109#define CARDNAME "smc91x"
110
111/*
112 * Use power-down feature of the chip
113 */
114#define POWER_DOWN 1
115
116/*
117 * Wait time for memory to be free. This probably shouldn't be
118 * tuned that much, as waiting for this means nothing else happens
119 * in the system
120 */
121#define MEMORY_WAIT_TIME 16
122
123/*
124 * The maximum number of processing loops allowed for each call to the
125 * IRQ handler.
126 */
127#define MAX_IRQ_LOOPS 8
128
129/*
130 * This selects whether TX packets are sent one by one to the SMC91x internal
131 * memory and throttled until transmission completes. This may prevent
132 * RX overruns a litle by keeping much of the memory free for RX packets
133 * but to the expense of reduced TX throughput and increased IRQ overhead.
134 * Note this is not a cure for a too slow data bus or too high IRQ latency.
135 */
136#define THROTTLE_TX_PKTS 0
137
138/*
139 * The MII clock high/low times. 2x this number gives the MII clock period
140 * in microseconds. (was 50, but this gives 6.4ms for each MII transaction!)
141 */
142#define MII_DELAY 1
143
144#define DBG(n, dev, fmt, ...) \
145 do { \
146 if (SMC_DEBUG >= (n)) \
147 netdev_dbg(dev, fmt, ##__VA_ARGS__); \
148 } while (0)
149
150#define PRINTK(dev, fmt, ...) \
151 do { \
152 if (SMC_DEBUG > 0) \
153 netdev_info(dev, fmt, ##__VA_ARGS__); \
154 else \
155 netdev_dbg(dev, fmt, ##__VA_ARGS__); \
156 } while (0)
157
158#if SMC_DEBUG > 3
159static void PRINT_PKT(u_char *buf, int length)
160{
161 int i;
162 int remainder;
163 int lines;
164
165 lines = length / 16;
166 remainder = length % 16;
167
168 for (i = 0; i < lines ; i ++) {
169 int cur;
170 printk(KERN_DEBUG);
171 for (cur = 0; cur < 8; cur++) {
172 u_char a, b;
173 a = *buf++;
174 b = *buf++;
175 pr_cont("%02x%02x ", a, b);
176 }
177 pr_cont("\n");
178 }
179 printk(KERN_DEBUG);
180 for (i = 0; i < remainder/2 ; i++) {
181 u_char a, b;
182 a = *buf++;
183 b = *buf++;
184 pr_cont("%02x%02x ", a, b);
185 }
186 pr_cont("\n");
187}
188#else
189static inline void PRINT_PKT(u_char *buf, int length) { }
190#endif
191
192
193/* this enables an interrupt in the interrupt mask register */
194#define SMC_ENABLE_INT(lp, x) do { \
195 unsigned char mask; \
196 unsigned long smc_enable_flags; \
197 spin_lock_irqsave(&lp->lock, smc_enable_flags); \
198 mask = SMC_GET_INT_MASK(lp); \
199 mask |= (x); \
200 SMC_SET_INT_MASK(lp, mask); \
201 spin_unlock_irqrestore(&lp->lock, smc_enable_flags); \
202} while (0)
203
204/* this disables an interrupt from the interrupt mask register */
205#define SMC_DISABLE_INT(lp, x) do { \
206 unsigned char mask; \
207 unsigned long smc_disable_flags; \
208 spin_lock_irqsave(&lp->lock, smc_disable_flags); \
209 mask = SMC_GET_INT_MASK(lp); \
210 mask &= ~(x); \
211 SMC_SET_INT_MASK(lp, mask); \
212 spin_unlock_irqrestore(&lp->lock, smc_disable_flags); \
213} while (0)
214
215/*
216 * Wait while MMU is busy. This is usually in the order of a few nanosecs
217 * if at all, but let's avoid deadlocking the system if the hardware
218 * decides to go south.
219 */
220#define SMC_WAIT_MMU_BUSY(lp) do { \
221 if (unlikely(SMC_GET_MMU_CMD(lp) & MC_BUSY)) { \
222 unsigned long timeout = jiffies + 2; \
223 while (SMC_GET_MMU_CMD(lp) & MC_BUSY) { \
224 if (time_after(jiffies, timeout)) { \
225 netdev_dbg(dev, "timeout %s line %d\n", \
226 __FILE__, __LINE__); \
227 break; \
228 } \
229 cpu_relax(); \
230 } \
231 } \
232} while (0)
233
234
235/*
236 * this does a soft reset on the device
237 */
238static void smc_reset(struct net_device *dev)
239{
240 struct smc_local *lp = netdev_priv(dev);
241 void __iomem *ioaddr = lp->base;
242 unsigned int ctl, cfg;
243 struct sk_buff *pending_skb;
244
245 DBG(2, dev, "%s\n", __func__);
246
247 /* Disable all interrupts, block TX tasklet */
248 spin_lock_irq(&lp->lock);
249 SMC_SELECT_BANK(lp, 2);
250 SMC_SET_INT_MASK(lp, 0);
251 pending_skb = lp->pending_tx_skb;
252 lp->pending_tx_skb = NULL;
253 spin_unlock_irq(&lp->lock);
254
255 /* free any pending tx skb */
256 if (pending_skb) {
257 dev_kfree_skb(pending_skb);
258 dev->stats.tx_errors++;
259 dev->stats.tx_aborted_errors++;
260 }
261
262 /*
263 * This resets the registers mostly to defaults, but doesn't
264 * affect EEPROM. That seems unnecessary
265 */
266 SMC_SELECT_BANK(lp, 0);
267 SMC_SET_RCR(lp, RCR_SOFTRST);
268
269 /*
270 * Setup the Configuration Register
271 * This is necessary because the CONFIG_REG is not affected
272 * by a soft reset
273 */
274 SMC_SELECT_BANK(lp, 1);
275
276 cfg = CONFIG_DEFAULT;
277
278 /*
279 * Setup for fast accesses if requested. If the card/system
280 * can't handle it then there will be no recovery except for
281 * a hard reset or power cycle
282 */
283 if (lp->cfg.flags & SMC91X_NOWAIT)
284 cfg |= CONFIG_NO_WAIT;
285
286 /*
287 * Release from possible power-down state
288 * Configuration register is not affected by Soft Reset
289 */
290 cfg |= CONFIG_EPH_POWER_EN;
291
292 SMC_SET_CONFIG(lp, cfg);
293
294 /* this should pause enough for the chip to be happy */
295 /*
296 * elaborate? What does the chip _need_? --jgarzik
297 *
298 * This seems to be undocumented, but something the original
299 * driver(s) have always done. Suspect undocumented timing
300 * info/determined empirically. --rmk
301 */
302 udelay(1);
303
304 /* Disable transmit and receive functionality */
305 SMC_SELECT_BANK(lp, 0);
306 SMC_SET_RCR(lp, RCR_CLEAR);
307 SMC_SET_TCR(lp, TCR_CLEAR);
308
309 SMC_SELECT_BANK(lp, 1);
310 ctl = SMC_GET_CTL(lp) | CTL_LE_ENABLE;
311
312 /*
313 * Set the control register to automatically release successfully
314 * transmitted packets, to make the best use out of our limited
315 * memory
316 */
317 if(!THROTTLE_TX_PKTS)
318 ctl |= CTL_AUTO_RELEASE;
319 else
320 ctl &= ~CTL_AUTO_RELEASE;
321 SMC_SET_CTL(lp, ctl);
322
323 /* Reset the MMU */
324 SMC_SELECT_BANK(lp, 2);
325 SMC_SET_MMU_CMD(lp, MC_RESET);
326 SMC_WAIT_MMU_BUSY(lp);
327}
328
329/*
330 * Enable Interrupts, Receive, and Transmit
331 */
332static void smc_enable(struct net_device *dev)
333{
334 struct smc_local *lp = netdev_priv(dev);
335 void __iomem *ioaddr = lp->base;
336 int mask;
337
338 DBG(2, dev, "%s\n", __func__);
339
340 /* see the header file for options in TCR/RCR DEFAULT */
341 SMC_SELECT_BANK(lp, 0);
342 SMC_SET_TCR(lp, lp->tcr_cur_mode);
343 SMC_SET_RCR(lp, lp->rcr_cur_mode);
344
345 SMC_SELECT_BANK(lp, 1);
346 SMC_SET_MAC_ADDR(lp, dev->dev_addr);
347
348 /* now, enable interrupts */
349 mask = IM_EPH_INT|IM_RX_OVRN_INT|IM_RCV_INT;
350 if (lp->version >= (CHIP_91100 << 4))
351 mask |= IM_MDINT;
352 SMC_SELECT_BANK(lp, 2);
353 SMC_SET_INT_MASK(lp, mask);
354
355 /*
356 * From this point the register bank must _NOT_ be switched away
357 * to something else than bank 2 without proper locking against
358 * races with any tasklet or interrupt handlers until smc_shutdown()
359 * or smc_reset() is called.
360 */
361}
362
363/*
364 * this puts the device in an inactive state
365 */
366static void smc_shutdown(struct net_device *dev)
367{
368 struct smc_local *lp = netdev_priv(dev);
369 void __iomem *ioaddr = lp->base;
370 struct sk_buff *pending_skb;
371
372 DBG(2, dev, "%s: %s\n", CARDNAME, __func__);
373
374 /* no more interrupts for me */
375 spin_lock_irq(&lp->lock);
376 SMC_SELECT_BANK(lp, 2);
377 SMC_SET_INT_MASK(lp, 0);
378 pending_skb = lp->pending_tx_skb;
379 lp->pending_tx_skb = NULL;
380 spin_unlock_irq(&lp->lock);
381 dev_kfree_skb(pending_skb);
382
383 /* and tell the card to stay away from that nasty outside world */
384 SMC_SELECT_BANK(lp, 0);
385 SMC_SET_RCR(lp, RCR_CLEAR);
386 SMC_SET_TCR(lp, TCR_CLEAR);
387
388#ifdef POWER_DOWN
389 /* finally, shut the chip down */
390 SMC_SELECT_BANK(lp, 1);
391 SMC_SET_CONFIG(lp, SMC_GET_CONFIG(lp) & ~CONFIG_EPH_POWER_EN);
392#endif
393}
394
395/*
396 * This is the procedure to handle the receipt of a packet.
397 */
398static inline void smc_rcv(struct net_device *dev)
399{
400 struct smc_local *lp = netdev_priv(dev);
401 void __iomem *ioaddr = lp->base;
402 unsigned int packet_number, status, packet_len;
403
404 DBG(3, dev, "%s\n", __func__);
405
406 packet_number = SMC_GET_RXFIFO(lp);
407 if (unlikely(packet_number & RXFIFO_REMPTY)) {
408 PRINTK(dev, "smc_rcv with nothing on FIFO.\n");
409 return;
410 }
411
412 /* read from start of packet */
413 SMC_SET_PTR(lp, PTR_READ | PTR_RCV | PTR_AUTOINC);
414
415 /* First two words are status and packet length */
416 SMC_GET_PKT_HDR(lp, status, packet_len);
417 packet_len &= 0x07ff; /* mask off top bits */
418 DBG(2, dev, "RX PNR 0x%x STATUS 0x%04x LENGTH 0x%04x (%d)\n",
419 packet_number, status, packet_len, packet_len);
420
421 back:
422 if (unlikely(packet_len < 6 || status & RS_ERRORS)) {
423 if (status & RS_TOOLONG && packet_len <= (1514 + 4 + 6)) {
424 /* accept VLAN packets */
425 status &= ~RS_TOOLONG;
426 goto back;
427 }
428 if (packet_len < 6) {
429 /* bloody hardware */
430 netdev_err(dev, "fubar (rxlen %u status %x\n",
431 packet_len, status);
432 status |= RS_TOOSHORT;
433 }
434 SMC_WAIT_MMU_BUSY(lp);
435 SMC_SET_MMU_CMD(lp, MC_RELEASE);
436 dev->stats.rx_errors++;
437 if (status & RS_ALGNERR)
438 dev->stats.rx_frame_errors++;
439 if (status & (RS_TOOSHORT | RS_TOOLONG))
440 dev->stats.rx_length_errors++;
441 if (status & RS_BADCRC)
442 dev->stats.rx_crc_errors++;
443 } else {
444 struct sk_buff *skb;
445 unsigned char *data;
446 unsigned int data_len;
447
448 /* set multicast stats */
449 if (status & RS_MULTICAST)
450 dev->stats.multicast++;
451
452 /*
453 * Actual payload is packet_len - 6 (or 5 if odd byte).
454 * We want skb_reserve(2) and the final ctrl word
455 * (2 bytes, possibly containing the payload odd byte).
456 * Furthermore, we add 2 bytes to allow rounding up to
457 * multiple of 4 bytes on 32 bit buses.
458 * Hence packet_len - 6 + 2 + 2 + 2.
459 */
460 skb = netdev_alloc_skb(dev, packet_len);
461 if (unlikely(skb == NULL)) {
462 SMC_WAIT_MMU_BUSY(lp);
463 SMC_SET_MMU_CMD(lp, MC_RELEASE);
464 dev->stats.rx_dropped++;
465 return;
466 }
467
468 /* Align IP header to 32 bits */
469 skb_reserve(skb, 2);
470
471 /* BUG: the LAN91C111 rev A never sets this bit. Force it. */
472 if (lp->version == 0x90)
473 status |= RS_ODDFRAME;
474
475 /*
476 * If odd length: packet_len - 5,
477 * otherwise packet_len - 6.
478 * With the trailing ctrl byte it's packet_len - 4.
479 */
480 data_len = packet_len - ((status & RS_ODDFRAME) ? 5 : 6);
481 data = skb_put(skb, data_len);
482 SMC_PULL_DATA(lp, data, packet_len - 4);
483
484 SMC_WAIT_MMU_BUSY(lp);
485 SMC_SET_MMU_CMD(lp, MC_RELEASE);
486
487 PRINT_PKT(data, packet_len - 4);
488
489 skb->protocol = eth_type_trans(skb, dev);
490 netif_rx(skb);
491 dev->stats.rx_packets++;
492 dev->stats.rx_bytes += data_len;
493 }
494}
495
496#ifdef CONFIG_SMP
497/*
498 * On SMP we have the following problem:
499 *
500 * A = smc_hardware_send_pkt()
501 * B = smc_hard_start_xmit()
502 * C = smc_interrupt()
503 *
504 * A and B can never be executed simultaneously. However, at least on UP,
505 * it is possible (and even desirable) for C to interrupt execution of
506 * A or B in order to have better RX reliability and avoid overruns.
507 * C, just like A and B, must have exclusive access to the chip and
508 * each of them must lock against any other concurrent access.
509 * Unfortunately this is not possible to have C suspend execution of A or
510 * B taking place on another CPU. On UP this is no an issue since A and B
511 * are run from softirq context and C from hard IRQ context, and there is
512 * no other CPU where concurrent access can happen.
513 * If ever there is a way to force at least B and C to always be executed
514 * on the same CPU then we could use read/write locks to protect against
515 * any other concurrent access and C would always interrupt B. But life
516 * isn't that easy in a SMP world...
517 */
518#define smc_special_trylock(lock, flags) \
519({ \
520 int __ret; \
521 local_irq_save(flags); \
522 __ret = spin_trylock(lock); \
523 if (!__ret) \
524 local_irq_restore(flags); \
525 __ret; \
526})
527#define smc_special_lock(lock, flags) spin_lock_irqsave(lock, flags)
528#define smc_special_unlock(lock, flags) spin_unlock_irqrestore(lock, flags)
529#else
530#define smc_special_trylock(lock, flags) ((void)flags, true)
531#define smc_special_lock(lock, flags) do { flags = 0; } while (0)
532#define smc_special_unlock(lock, flags) do { flags = 0; } while (0)
533#endif
534
535/*
536 * This is called to actually send a packet to the chip.
537 */
538static void smc_hardware_send_pkt(unsigned long data)
539{
540 struct net_device *dev = (struct net_device *)data;
541 struct smc_local *lp = netdev_priv(dev);
542 void __iomem *ioaddr = lp->base;
543 struct sk_buff *skb;
544 unsigned int packet_no, len;
545 unsigned char *buf;
546 unsigned long flags;
547
548 DBG(3, dev, "%s\n", __func__);
549
550 if (!smc_special_trylock(&lp->lock, flags)) {
551 netif_stop_queue(dev);
552 tasklet_schedule(&lp->tx_task);
553 return;
554 }
555
556 skb = lp->pending_tx_skb;
557 if (unlikely(!skb)) {
558 smc_special_unlock(&lp->lock, flags);
559 return;
560 }
561 lp->pending_tx_skb = NULL;
562
563 packet_no = SMC_GET_AR(lp);
564 if (unlikely(packet_no & AR_FAILED)) {
565 netdev_err(dev, "Memory allocation failed.\n");
566 dev->stats.tx_errors++;
567 dev->stats.tx_fifo_errors++;
568 smc_special_unlock(&lp->lock, flags);
569 goto done;
570 }
571
572 /* point to the beginning of the packet */
573 SMC_SET_PN(lp, packet_no);
574 SMC_SET_PTR(lp, PTR_AUTOINC);
575
576 buf = skb->data;
577 len = skb->len;
578 DBG(2, dev, "TX PNR 0x%x LENGTH 0x%04x (%d) BUF 0x%p\n",
579 packet_no, len, len, buf);
580 PRINT_PKT(buf, len);
581
582 /*
583 * Send the packet length (+6 for status words, length, and ctl.
584 * The card will pad to 64 bytes with zeroes if packet is too small.
585 */
586 SMC_PUT_PKT_HDR(lp, 0, len + 6);
587
588 /* send the actual data */
589 SMC_PUSH_DATA(lp, buf, len & ~1);
590
591 /* Send final ctl word with the last byte if there is one */
592 SMC_outw(lp, ((len & 1) ? (0x2000 | buf[len - 1]) : 0), ioaddr,
593 DATA_REG(lp));
594
595 /*
596 * If THROTTLE_TX_PKTS is set, we stop the queue here. This will
597 * have the effect of having at most one packet queued for TX
598 * in the chip's memory at all time.
599 *
600 * If THROTTLE_TX_PKTS is not set then the queue is stopped only
601 * when memory allocation (MC_ALLOC) does not succeed right away.
602 */
603 if (THROTTLE_TX_PKTS)
604 netif_stop_queue(dev);
605
606 /* queue the packet for TX */
607 SMC_SET_MMU_CMD(lp, MC_ENQUEUE);
608 smc_special_unlock(&lp->lock, flags);
609
610 netif_trans_update(dev);
611 dev->stats.tx_packets++;
612 dev->stats.tx_bytes += len;
613
614 SMC_ENABLE_INT(lp, IM_TX_INT | IM_TX_EMPTY_INT);
615
616done: if (!THROTTLE_TX_PKTS)
617 netif_wake_queue(dev);
618
619 dev_consume_skb_any(skb);
620}
621
622/*
623 * Since I am not sure if I will have enough room in the chip's ram
624 * to store the packet, I call this routine which either sends it
625 * now, or set the card to generates an interrupt when ready
626 * for the packet.
627 */
628static netdev_tx_t
629smc_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
630{
631 struct smc_local *lp = netdev_priv(dev);
632 void __iomem *ioaddr = lp->base;
633 unsigned int numPages, poll_count, status;
634 unsigned long flags;
635
636 DBG(3, dev, "%s\n", __func__);
637
638 BUG_ON(lp->pending_tx_skb != NULL);
639
640 /*
641 * The MMU wants the number of pages to be the number of 256 bytes
642 * 'pages', minus 1 (since a packet can't ever have 0 pages :))
643 *
644 * The 91C111 ignores the size bits, but earlier models don't.
645 *
646 * Pkt size for allocating is data length +6 (for additional status
647 * words, length and ctl)
648 *
649 * If odd size then last byte is included in ctl word.
650 */
651 numPages = ((skb->len & ~1) + (6 - 1)) >> 8;
652 if (unlikely(numPages > 7)) {
653 netdev_warn(dev, "Far too big packet error.\n");
654 dev->stats.tx_errors++;
655 dev->stats.tx_dropped++;
656 dev_kfree_skb_any(skb);
657 return NETDEV_TX_OK;
658 }
659
660 smc_special_lock(&lp->lock, flags);
661
662 /* now, try to allocate the memory */
663 SMC_SET_MMU_CMD(lp, MC_ALLOC | numPages);
664
665 /*
666 * Poll the chip for a short amount of time in case the
667 * allocation succeeds quickly.
668 */
669 poll_count = MEMORY_WAIT_TIME;
670 do {
671 status = SMC_GET_INT(lp);
672 if (status & IM_ALLOC_INT) {
673 SMC_ACK_INT(lp, IM_ALLOC_INT);
674 break;
675 }
676 } while (--poll_count);
677
678 smc_special_unlock(&lp->lock, flags);
679
680 lp->pending_tx_skb = skb;
681 if (!poll_count) {
682 /* oh well, wait until the chip finds memory later */
683 netif_stop_queue(dev);
684 DBG(2, dev, "TX memory allocation deferred.\n");
685 SMC_ENABLE_INT(lp, IM_ALLOC_INT);
686 } else {
687 /*
688 * Allocation succeeded: push packet to the chip's own memory
689 * immediately.
690 */
691 smc_hardware_send_pkt((unsigned long)dev);
692 }
693
694 return NETDEV_TX_OK;
695}
696
697/*
698 * This handles a TX interrupt, which is only called when:
699 * - a TX error occurred, or
700 * - CTL_AUTO_RELEASE is not set and TX of a packet completed.
701 */
702static void smc_tx(struct net_device *dev)
703{
704 struct smc_local *lp = netdev_priv(dev);
705 void __iomem *ioaddr = lp->base;
706 unsigned int saved_packet, packet_no, tx_status, pkt_len;
707
708 DBG(3, dev, "%s\n", __func__);
709
710 /* If the TX FIFO is empty then nothing to do */
711 packet_no = SMC_GET_TXFIFO(lp);
712 if (unlikely(packet_no & TXFIFO_TEMPTY)) {
713 PRINTK(dev, "smc_tx with nothing on FIFO.\n");
714 return;
715 }
716
717 /* select packet to read from */
718 saved_packet = SMC_GET_PN(lp);
719 SMC_SET_PN(lp, packet_no);
720
721 /* read the first word (status word) from this packet */
722 SMC_SET_PTR(lp, PTR_AUTOINC | PTR_READ);
723 SMC_GET_PKT_HDR(lp, tx_status, pkt_len);
724 DBG(2, dev, "TX STATUS 0x%04x PNR 0x%02x\n",
725 tx_status, packet_no);
726
727 if (!(tx_status & ES_TX_SUC))
728 dev->stats.tx_errors++;
729
730 if (tx_status & ES_LOSTCARR)
731 dev->stats.tx_carrier_errors++;
732
733 if (tx_status & (ES_LATCOL | ES_16COL)) {
734 PRINTK(dev, "%s occurred on last xmit\n",
735 (tx_status & ES_LATCOL) ?
736 "late collision" : "too many collisions");
737 dev->stats.tx_window_errors++;
738 if (!(dev->stats.tx_window_errors & 63) && net_ratelimit()) {
739 netdev_info(dev, "unexpectedly large number of bad collisions. Please check duplex setting.\n");
740 }
741 }
742
743 /* kill the packet */
744 SMC_WAIT_MMU_BUSY(lp);
745 SMC_SET_MMU_CMD(lp, MC_FREEPKT);
746
747 /* Don't restore Packet Number Reg until busy bit is cleared */
748 SMC_WAIT_MMU_BUSY(lp);
749 SMC_SET_PN(lp, saved_packet);
750
751 /* re-enable transmit */
752 SMC_SELECT_BANK(lp, 0);
753 SMC_SET_TCR(lp, lp->tcr_cur_mode);
754 SMC_SELECT_BANK(lp, 2);
755}
756
757
758/*---PHY CONTROL AND CONFIGURATION-----------------------------------------*/
759
760static void smc_mii_out(struct net_device *dev, unsigned int val, int bits)
761{
762 struct smc_local *lp = netdev_priv(dev);
763 void __iomem *ioaddr = lp->base;
764 unsigned int mii_reg, mask;
765
766 mii_reg = SMC_GET_MII(lp) & ~(MII_MCLK | MII_MDOE | MII_MDO);
767 mii_reg |= MII_MDOE;
768
769 for (mask = 1 << (bits - 1); mask; mask >>= 1) {
770 if (val & mask)
771 mii_reg |= MII_MDO;
772 else
773 mii_reg &= ~MII_MDO;
774
775 SMC_SET_MII(lp, mii_reg);
776 udelay(MII_DELAY);
777 SMC_SET_MII(lp, mii_reg | MII_MCLK);
778 udelay(MII_DELAY);
779 }
780}
781
782static unsigned int smc_mii_in(struct net_device *dev, int bits)
783{
784 struct smc_local *lp = netdev_priv(dev);
785 void __iomem *ioaddr = lp->base;
786 unsigned int mii_reg, mask, val;
787
788 mii_reg = SMC_GET_MII(lp) & ~(MII_MCLK | MII_MDOE | MII_MDO);
789 SMC_SET_MII(lp, mii_reg);
790
791 for (mask = 1 << (bits - 1), val = 0; mask; mask >>= 1) {
792 if (SMC_GET_MII(lp) & MII_MDI)
793 val |= mask;
794
795 SMC_SET_MII(lp, mii_reg);
796 udelay(MII_DELAY);
797 SMC_SET_MII(lp, mii_reg | MII_MCLK);
798 udelay(MII_DELAY);
799 }
800
801 return val;
802}
803
804/*
805 * Reads a register from the MII Management serial interface
806 */
807static int smc_phy_read(struct net_device *dev, int phyaddr, int phyreg)
808{
809 struct smc_local *lp = netdev_priv(dev);
810 void __iomem *ioaddr = lp->base;
811 unsigned int phydata;
812
813 SMC_SELECT_BANK(lp, 3);
814
815 /* Idle - 32 ones */
816 smc_mii_out(dev, 0xffffffff, 32);
817
818 /* Start code (01) + read (10) + phyaddr + phyreg */
819 smc_mii_out(dev, 6 << 10 | phyaddr << 5 | phyreg, 14);
820
821 /* Turnaround (2bits) + phydata */
822 phydata = smc_mii_in(dev, 18);
823
824 /* Return to idle state */
825 SMC_SET_MII(lp, SMC_GET_MII(lp) & ~(MII_MCLK|MII_MDOE|MII_MDO));
826
827 DBG(3, dev, "%s: phyaddr=0x%x, phyreg=0x%x, phydata=0x%x\n",
828 __func__, phyaddr, phyreg, phydata);
829
830 SMC_SELECT_BANK(lp, 2);
831 return phydata;
832}
833
834/*
835 * Writes a register to the MII Management serial interface
836 */
837static void smc_phy_write(struct net_device *dev, int phyaddr, int phyreg,
838 int phydata)
839{
840 struct smc_local *lp = netdev_priv(dev);
841 void __iomem *ioaddr = lp->base;
842
843 SMC_SELECT_BANK(lp, 3);
844
845 /* Idle - 32 ones */
846 smc_mii_out(dev, 0xffffffff, 32);
847
848 /* Start code (01) + write (01) + phyaddr + phyreg + turnaround + phydata */
849 smc_mii_out(dev, 5 << 28 | phyaddr << 23 | phyreg << 18 | 2 << 16 | phydata, 32);
850
851 /* Return to idle state */
852 SMC_SET_MII(lp, SMC_GET_MII(lp) & ~(MII_MCLK|MII_MDOE|MII_MDO));
853
854 DBG(3, dev, "%s: phyaddr=0x%x, phyreg=0x%x, phydata=0x%x\n",
855 __func__, phyaddr, phyreg, phydata);
856
857 SMC_SELECT_BANK(lp, 2);
858}
859
860/*
861 * Finds and reports the PHY address
862 */
863static void smc_phy_detect(struct net_device *dev)
864{
865 struct smc_local *lp = netdev_priv(dev);
866 int phyaddr;
867
868 DBG(2, dev, "%s\n", __func__);
869
870 lp->phy_type = 0;
871
872 /*
873 * Scan all 32 PHY addresses if necessary, starting at
874 * PHY#1 to PHY#31, and then PHY#0 last.
875 */
876 for (phyaddr = 1; phyaddr < 33; ++phyaddr) {
877 unsigned int id1, id2;
878
879 /* Read the PHY identifiers */
880 id1 = smc_phy_read(dev, phyaddr & 31, MII_PHYSID1);
881 id2 = smc_phy_read(dev, phyaddr & 31, MII_PHYSID2);
882
883 DBG(3, dev, "phy_id1=0x%x, phy_id2=0x%x\n",
884 id1, id2);
885
886 /* Make sure it is a valid identifier */
887 if (id1 != 0x0000 && id1 != 0xffff && id1 != 0x8000 &&
888 id2 != 0x0000 && id2 != 0xffff && id2 != 0x8000) {
889 /* Save the PHY's address */
890 lp->mii.phy_id = phyaddr & 31;
891 lp->phy_type = id1 << 16 | id2;
892 break;
893 }
894 }
895}
896
897/*
898 * Sets the PHY to a configuration as determined by the user
899 */
900static int smc_phy_fixed(struct net_device *dev)
901{
902 struct smc_local *lp = netdev_priv(dev);
903 void __iomem *ioaddr = lp->base;
904 int phyaddr = lp->mii.phy_id;
905 int bmcr, cfg1;
906
907 DBG(3, dev, "%s\n", __func__);
908
909 /* Enter Link Disable state */
910 cfg1 = smc_phy_read(dev, phyaddr, PHY_CFG1_REG);
911 cfg1 |= PHY_CFG1_LNKDIS;
912 smc_phy_write(dev, phyaddr, PHY_CFG1_REG, cfg1);
913
914 /*
915 * Set our fixed capabilities
916 * Disable auto-negotiation
917 */
918 bmcr = 0;
919
920 if (lp->ctl_rfduplx)
921 bmcr |= BMCR_FULLDPLX;
922
923 if (lp->ctl_rspeed == 100)
924 bmcr |= BMCR_SPEED100;
925
926 /* Write our capabilities to the phy control register */
927 smc_phy_write(dev, phyaddr, MII_BMCR, bmcr);
928
929 /* Re-Configure the Receive/Phy Control register */
930 SMC_SELECT_BANK(lp, 0);
931 SMC_SET_RPC(lp, lp->rpc_cur_mode);
932 SMC_SELECT_BANK(lp, 2);
933
934 return 1;
935}
936
937/**
938 * smc_phy_reset - reset the phy
939 * @dev: net device
940 * @phy: phy address
941 *
942 * Issue a software reset for the specified PHY and
943 * wait up to 100ms for the reset to complete. We should
944 * not access the PHY for 50ms after issuing the reset.
945 *
946 * The time to wait appears to be dependent on the PHY.
947 *
948 * Must be called with lp->lock locked.
949 */
950static int smc_phy_reset(struct net_device *dev, int phy)
951{
952 struct smc_local *lp = netdev_priv(dev);
953 unsigned int bmcr;
954 int timeout;
955
956 smc_phy_write(dev, phy, MII_BMCR, BMCR_RESET);
957
958 for (timeout = 2; timeout; timeout--) {
959 spin_unlock_irq(&lp->lock);
960 msleep(50);
961 spin_lock_irq(&lp->lock);
962
963 bmcr = smc_phy_read(dev, phy, MII_BMCR);
964 if (!(bmcr & BMCR_RESET))
965 break;
966 }
967
968 return bmcr & BMCR_RESET;
969}
970
971/**
972 * smc_phy_powerdown - powerdown phy
973 * @dev: net device
974 *
975 * Power down the specified PHY
976 */
977static void smc_phy_powerdown(struct net_device *dev)
978{
979 struct smc_local *lp = netdev_priv(dev);
980 unsigned int bmcr;
981 int phy = lp->mii.phy_id;
982
983 if (lp->phy_type == 0)
984 return;
985
986 /* We need to ensure that no calls to smc_phy_configure are
987 pending.
988 */
989 cancel_work_sync(&lp->phy_configure);
990
991 bmcr = smc_phy_read(dev, phy, MII_BMCR);
992 smc_phy_write(dev, phy, MII_BMCR, bmcr | BMCR_PDOWN);
993}
994
995/**
996 * smc_phy_check_media - check the media status and adjust TCR
997 * @dev: net device
998 * @init: set true for initialisation
999 *
1000 * Select duplex mode depending on negotiation state. This
1001 * also updates our carrier state.
1002 */
1003static void smc_phy_check_media(struct net_device *dev, int init)
1004{
1005 struct smc_local *lp = netdev_priv(dev);
1006 void __iomem *ioaddr = lp->base;
1007
1008 if (mii_check_media(&lp->mii, netif_msg_link(lp), init)) {
1009 /* duplex state has changed */
1010 if (lp->mii.full_duplex) {
1011 lp->tcr_cur_mode |= TCR_SWFDUP;
1012 } else {
1013 lp->tcr_cur_mode &= ~TCR_SWFDUP;
1014 }
1015
1016 SMC_SELECT_BANK(lp, 0);
1017 SMC_SET_TCR(lp, lp->tcr_cur_mode);
1018 }
1019}
1020
1021/*
1022 * Configures the specified PHY through the MII management interface
1023 * using Autonegotiation.
1024 * Calls smc_phy_fixed() if the user has requested a certain config.
1025 * If RPC ANEG bit is set, the media selection is dependent purely on
1026 * the selection by the MII (either in the MII BMCR reg or the result
1027 * of autonegotiation.) If the RPC ANEG bit is cleared, the selection
1028 * is controlled by the RPC SPEED and RPC DPLX bits.
1029 */
1030static void smc_phy_configure(struct work_struct *work)
1031{
1032 struct smc_local *lp =
1033 container_of(work, struct smc_local, phy_configure);
1034 struct net_device *dev = lp->dev;
1035 void __iomem *ioaddr = lp->base;
1036 int phyaddr = lp->mii.phy_id;
1037 int my_phy_caps; /* My PHY capabilities */
1038 int my_ad_caps; /* My Advertised capabilities */
1039 int status;
1040
1041 DBG(3, dev, "smc_program_phy()\n");
1042
1043 spin_lock_irq(&lp->lock);
1044
1045 /*
1046 * We should not be called if phy_type is zero.
1047 */
1048 if (lp->phy_type == 0)
1049 goto smc_phy_configure_exit;
1050
1051 if (smc_phy_reset(dev, phyaddr)) {
1052 netdev_info(dev, "PHY reset timed out\n");
1053 goto smc_phy_configure_exit;
1054 }
1055
1056 /*
1057 * Enable PHY Interrupts (for register 18)
1058 * Interrupts listed here are disabled
1059 */
1060 smc_phy_write(dev, phyaddr, PHY_MASK_REG,
1061 PHY_INT_LOSSSYNC | PHY_INT_CWRD | PHY_INT_SSD |
1062 PHY_INT_ESD | PHY_INT_RPOL | PHY_INT_JAB |
1063 PHY_INT_SPDDET | PHY_INT_DPLXDET);
1064
1065 /* Configure the Receive/Phy Control register */
1066 SMC_SELECT_BANK(lp, 0);
1067 SMC_SET_RPC(lp, lp->rpc_cur_mode);
1068
1069 /* If the user requested no auto neg, then go set his request */
1070 if (lp->mii.force_media) {
1071 smc_phy_fixed(dev);
1072 goto smc_phy_configure_exit;
1073 }
1074
1075 /* Copy our capabilities from MII_BMSR to MII_ADVERTISE */
1076 my_phy_caps = smc_phy_read(dev, phyaddr, MII_BMSR);
1077
1078 if (!(my_phy_caps & BMSR_ANEGCAPABLE)) {
1079 netdev_info(dev, "Auto negotiation NOT supported\n");
1080 smc_phy_fixed(dev);
1081 goto smc_phy_configure_exit;
1082 }
1083
1084 my_ad_caps = ADVERTISE_CSMA; /* I am CSMA capable */
1085
1086 if (my_phy_caps & BMSR_100BASE4)
1087 my_ad_caps |= ADVERTISE_100BASE4;
1088 if (my_phy_caps & BMSR_100FULL)
1089 my_ad_caps |= ADVERTISE_100FULL;
1090 if (my_phy_caps & BMSR_100HALF)
1091 my_ad_caps |= ADVERTISE_100HALF;
1092 if (my_phy_caps & BMSR_10FULL)
1093 my_ad_caps |= ADVERTISE_10FULL;
1094 if (my_phy_caps & BMSR_10HALF)
1095 my_ad_caps |= ADVERTISE_10HALF;
1096
1097 /* Disable capabilities not selected by our user */
1098 if (lp->ctl_rspeed != 100)
1099 my_ad_caps &= ~(ADVERTISE_100BASE4|ADVERTISE_100FULL|ADVERTISE_100HALF);
1100
1101 if (!lp->ctl_rfduplx)
1102 my_ad_caps &= ~(ADVERTISE_100FULL|ADVERTISE_10FULL);
1103
1104 /* Update our Auto-Neg Advertisement Register */
1105 smc_phy_write(dev, phyaddr, MII_ADVERTISE, my_ad_caps);
1106 lp->mii.advertising = my_ad_caps;
1107
1108 /*
1109 * Read the register back. Without this, it appears that when
1110 * auto-negotiation is restarted, sometimes it isn't ready and
1111 * the link does not come up.
1112 */
1113 status = smc_phy_read(dev, phyaddr, MII_ADVERTISE);
1114
1115 DBG(2, dev, "phy caps=%x\n", my_phy_caps);
1116 DBG(2, dev, "phy advertised caps=%x\n", my_ad_caps);
1117
1118 /* Restart auto-negotiation process in order to advertise my caps */
1119 smc_phy_write(dev, phyaddr, MII_BMCR, BMCR_ANENABLE | BMCR_ANRESTART);
1120
1121 smc_phy_check_media(dev, 1);
1122
1123smc_phy_configure_exit:
1124 SMC_SELECT_BANK(lp, 2);
1125 spin_unlock_irq(&lp->lock);
1126}
1127
1128/*
1129 * smc_phy_interrupt
1130 *
1131 * Purpose: Handle interrupts relating to PHY register 18. This is
1132 * called from the "hard" interrupt handler under our private spinlock.
1133 */
1134static void smc_phy_interrupt(struct net_device *dev)
1135{
1136 struct smc_local *lp = netdev_priv(dev);
1137 int phyaddr = lp->mii.phy_id;
1138 int phy18;
1139
1140 DBG(2, dev, "%s\n", __func__);
1141
1142 if (lp->phy_type == 0)
1143 return;
1144
1145 for(;;) {
1146 smc_phy_check_media(dev, 0);
1147
1148 /* Read PHY Register 18, Status Output */
1149 phy18 = smc_phy_read(dev, phyaddr, PHY_INT_REG);
1150 if ((phy18 & PHY_INT_INT) == 0)
1151 break;
1152 }
1153}
1154
1155/*--- END PHY CONTROL AND CONFIGURATION-------------------------------------*/
1156
1157static void smc_10bt_check_media(struct net_device *dev, int init)
1158{
1159 struct smc_local *lp = netdev_priv(dev);
1160 void __iomem *ioaddr = lp->base;
1161 unsigned int old_carrier, new_carrier;
1162
1163 old_carrier = netif_carrier_ok(dev) ? 1 : 0;
1164
1165 SMC_SELECT_BANK(lp, 0);
1166 new_carrier = (SMC_GET_EPH_STATUS(lp) & ES_LINK_OK) ? 1 : 0;
1167 SMC_SELECT_BANK(lp, 2);
1168
1169 if (init || (old_carrier != new_carrier)) {
1170 if (!new_carrier) {
1171 netif_carrier_off(dev);
1172 } else {
1173 netif_carrier_on(dev);
1174 }
1175 if (netif_msg_link(lp))
1176 netdev_info(dev, "link %s\n",
1177 new_carrier ? "up" : "down");
1178 }
1179}
1180
1181static void smc_eph_interrupt(struct net_device *dev)
1182{
1183 struct smc_local *lp = netdev_priv(dev);
1184 void __iomem *ioaddr = lp->base;
1185 unsigned int ctl;
1186
1187 smc_10bt_check_media(dev, 0);
1188
1189 SMC_SELECT_BANK(lp, 1);
1190 ctl = SMC_GET_CTL(lp);
1191 SMC_SET_CTL(lp, ctl & ~CTL_LE_ENABLE);
1192 SMC_SET_CTL(lp, ctl);
1193 SMC_SELECT_BANK(lp, 2);
1194}
1195
1196/*
1197 * This is the main routine of the driver, to handle the device when
1198 * it needs some attention.
1199 */
1200static irqreturn_t smc_interrupt(int irq, void *dev_id)
1201{
1202 struct net_device *dev = dev_id;
1203 struct smc_local *lp = netdev_priv(dev);
1204 void __iomem *ioaddr = lp->base;
1205 int status, mask, timeout, card_stats;
1206 int saved_pointer;
1207
1208 DBG(3, dev, "%s\n", __func__);
1209
1210 spin_lock(&lp->lock);
1211
1212 /* A preamble may be used when there is a potential race
1213 * between the interruptible transmit functions and this
1214 * ISR. */
1215 SMC_INTERRUPT_PREAMBLE;
1216
1217 saved_pointer = SMC_GET_PTR(lp);
1218 mask = SMC_GET_INT_MASK(lp);
1219 SMC_SET_INT_MASK(lp, 0);
1220
1221 /* set a timeout value, so I don't stay here forever */
1222 timeout = MAX_IRQ_LOOPS;
1223
1224 do {
1225 status = SMC_GET_INT(lp);
1226
1227 DBG(2, dev, "INT 0x%02x MASK 0x%02x MEM 0x%04x FIFO 0x%04x\n",
1228 status, mask,
1229 ({ int meminfo; SMC_SELECT_BANK(lp, 0);
1230 meminfo = SMC_GET_MIR(lp);
1231 SMC_SELECT_BANK(lp, 2); meminfo; }),
1232 SMC_GET_FIFO(lp));
1233
1234 status &= mask;
1235 if (!status)
1236 break;
1237
1238 if (status & IM_TX_INT) {
1239 /* do this before RX as it will free memory quickly */
1240 DBG(3, dev, "TX int\n");
1241 smc_tx(dev);
1242 SMC_ACK_INT(lp, IM_TX_INT);
1243 if (THROTTLE_TX_PKTS)
1244 netif_wake_queue(dev);
1245 } else if (status & IM_RCV_INT) {
1246 DBG(3, dev, "RX irq\n");
1247 smc_rcv(dev);
1248 } else if (status & IM_ALLOC_INT) {
1249 DBG(3, dev, "Allocation irq\n");
1250 tasklet_hi_schedule(&lp->tx_task);
1251 mask &= ~IM_ALLOC_INT;
1252 } else if (status & IM_TX_EMPTY_INT) {
1253 DBG(3, dev, "TX empty\n");
1254 mask &= ~IM_TX_EMPTY_INT;
1255
1256 /* update stats */
1257 SMC_SELECT_BANK(lp, 0);
1258 card_stats = SMC_GET_COUNTER(lp);
1259 SMC_SELECT_BANK(lp, 2);
1260
1261 /* single collisions */
1262 dev->stats.collisions += card_stats & 0xF;
1263 card_stats >>= 4;
1264
1265 /* multiple collisions */
1266 dev->stats.collisions += card_stats & 0xF;
1267 } else if (status & IM_RX_OVRN_INT) {
1268 DBG(1, dev, "RX overrun (EPH_ST 0x%04x)\n",
1269 ({ int eph_st; SMC_SELECT_BANK(lp, 0);
1270 eph_st = SMC_GET_EPH_STATUS(lp);
1271 SMC_SELECT_BANK(lp, 2); eph_st; }));
1272 SMC_ACK_INT(lp, IM_RX_OVRN_INT);
1273 dev->stats.rx_errors++;
1274 dev->stats.rx_fifo_errors++;
1275 } else if (status & IM_EPH_INT) {
1276 smc_eph_interrupt(dev);
1277 } else if (status & IM_MDINT) {
1278 SMC_ACK_INT(lp, IM_MDINT);
1279 smc_phy_interrupt(dev);
1280 } else if (status & IM_ERCV_INT) {
1281 SMC_ACK_INT(lp, IM_ERCV_INT);
1282 PRINTK(dev, "UNSUPPORTED: ERCV INTERRUPT\n");
1283 }
1284 } while (--timeout);
1285
1286 /* restore register states */
1287 SMC_SET_PTR(lp, saved_pointer);
1288 SMC_SET_INT_MASK(lp, mask);
1289 spin_unlock(&lp->lock);
1290
1291#ifndef CONFIG_NET_POLL_CONTROLLER
1292 if (timeout == MAX_IRQ_LOOPS)
1293 PRINTK(dev, "spurious interrupt (mask = 0x%02x)\n",
1294 mask);
1295#endif
1296 DBG(3, dev, "Interrupt done (%d loops)\n",
1297 MAX_IRQ_LOOPS - timeout);
1298
1299 /*
1300 * We return IRQ_HANDLED unconditionally here even if there was
1301 * nothing to do. There is a possibility that a packet might
1302 * get enqueued into the chip right after TX_EMPTY_INT is raised
1303 * but just before the CPU acknowledges the IRQ.
1304 * Better take an unneeded IRQ in some occasions than complexifying
1305 * the code for all cases.
1306 */
1307 return IRQ_HANDLED;
1308}
1309
1310#ifdef CONFIG_NET_POLL_CONTROLLER
1311/*
1312 * Polling receive - used by netconsole and other diagnostic tools
1313 * to allow network i/o with interrupts disabled.
1314 */
1315static void smc_poll_controller(struct net_device *dev)
1316{
1317 disable_irq(dev->irq);
1318 smc_interrupt(dev->irq, dev);
1319 enable_irq(dev->irq);
1320}
1321#endif
1322
1323/* Our watchdog timed out. Called by the networking layer */
1324static void smc_timeout(struct net_device *dev)
1325{
1326 struct smc_local *lp = netdev_priv(dev);
1327 void __iomem *ioaddr = lp->base;
1328 int status, mask, eph_st, meminfo, fifo;
1329
1330 DBG(2, dev, "%s\n", __func__);
1331
1332 spin_lock_irq(&lp->lock);
1333 status = SMC_GET_INT(lp);
1334 mask = SMC_GET_INT_MASK(lp);
1335 fifo = SMC_GET_FIFO(lp);
1336 SMC_SELECT_BANK(lp, 0);
1337 eph_st = SMC_GET_EPH_STATUS(lp);
1338 meminfo = SMC_GET_MIR(lp);
1339 SMC_SELECT_BANK(lp, 2);
1340 spin_unlock_irq(&lp->lock);
1341 PRINTK(dev, "TX timeout (INT 0x%02x INTMASK 0x%02x MEM 0x%04x FIFO 0x%04x EPH_ST 0x%04x)\n",
1342 status, mask, meminfo, fifo, eph_st);
1343
1344 smc_reset(dev);
1345 smc_enable(dev);
1346
1347 /*
1348 * Reconfiguring the PHY doesn't seem like a bad idea here, but
1349 * smc_phy_configure() calls msleep() which calls schedule_timeout()
1350 * which calls schedule(). Hence we use a work queue.
1351 */
1352 if (lp->phy_type != 0)
1353 schedule_work(&lp->phy_configure);
1354
1355 /* We can accept TX packets again */
1356 netif_trans_update(dev); /* prevent tx timeout */
1357 netif_wake_queue(dev);
1358}
1359
1360/*
1361 * This routine will, depending on the values passed to it,
1362 * either make it accept multicast packets, go into
1363 * promiscuous mode (for TCPDUMP and cousins) or accept
1364 * a select set of multicast packets
1365 */
1366static void smc_set_multicast_list(struct net_device *dev)
1367{
1368 struct smc_local *lp = netdev_priv(dev);
1369 void __iomem *ioaddr = lp->base;
1370 unsigned char multicast_table[8];
1371 int update_multicast = 0;
1372
1373 DBG(2, dev, "%s\n", __func__);
1374
1375 if (dev->flags & IFF_PROMISC) {
1376 DBG(2, dev, "RCR_PRMS\n");
1377 lp->rcr_cur_mode |= RCR_PRMS;
1378 }
1379
1380/* BUG? I never disable promiscuous mode if multicasting was turned on.
1381 Now, I turn off promiscuous mode, but I don't do anything to multicasting
1382 when promiscuous mode is turned on.
1383*/
1384
1385 /*
1386 * Here, I am setting this to accept all multicast packets.
1387 * I don't need to zero the multicast table, because the flag is
1388 * checked before the table is
1389 */
1390 else if (dev->flags & IFF_ALLMULTI || netdev_mc_count(dev) > 16) {
1391 DBG(2, dev, "RCR_ALMUL\n");
1392 lp->rcr_cur_mode |= RCR_ALMUL;
1393 }
1394
1395 /*
1396 * This sets the internal hardware table to filter out unwanted
1397 * multicast packets before they take up memory.
1398 *
1399 * The SMC chip uses a hash table where the high 6 bits of the CRC of
1400 * address are the offset into the table. If that bit is 1, then the
1401 * multicast packet is accepted. Otherwise, it's dropped silently.
1402 *
1403 * To use the 6 bits as an offset into the table, the high 3 bits are
1404 * the number of the 8 bit register, while the low 3 bits are the bit
1405 * within that register.
1406 */
1407 else if (!netdev_mc_empty(dev)) {
1408 struct netdev_hw_addr *ha;
1409
1410 /* table for flipping the order of 3 bits */
1411 static const unsigned char invert3[] = {0, 4, 2, 6, 1, 5, 3, 7};
1412
1413 /* start with a table of all zeros: reject all */
1414 memset(multicast_table, 0, sizeof(multicast_table));
1415
1416 netdev_for_each_mc_addr(ha, dev) {
1417 int position;
1418
1419 /* only use the low order bits */
1420 position = crc32_le(~0, ha->addr, 6) & 0x3f;
1421
1422 /* do some messy swapping to put the bit in the right spot */
1423 multicast_table[invert3[position&7]] |=
1424 (1<<invert3[(position>>3)&7]);
1425 }
1426
1427 /* be sure I get rid of flags I might have set */
1428 lp->rcr_cur_mode &= ~(RCR_PRMS | RCR_ALMUL);
1429
1430 /* now, the table can be loaded into the chipset */
1431 update_multicast = 1;
1432 } else {
1433 DBG(2, dev, "~(RCR_PRMS|RCR_ALMUL)\n");
1434 lp->rcr_cur_mode &= ~(RCR_PRMS | RCR_ALMUL);
1435
1436 /*
1437 * since I'm disabling all multicast entirely, I need to
1438 * clear the multicast list
1439 */
1440 memset(multicast_table, 0, sizeof(multicast_table));
1441 update_multicast = 1;
1442 }
1443
1444 spin_lock_irq(&lp->lock);
1445 SMC_SELECT_BANK(lp, 0);
1446 SMC_SET_RCR(lp, lp->rcr_cur_mode);
1447 if (update_multicast) {
1448 SMC_SELECT_BANK(lp, 3);
1449 SMC_SET_MCAST(lp, multicast_table);
1450 }
1451 SMC_SELECT_BANK(lp, 2);
1452 spin_unlock_irq(&lp->lock);
1453}
1454
1455
1456/*
1457 * Open and Initialize the board
1458 *
1459 * Set up everything, reset the card, etc..
1460 */
1461static int
1462smc_open(struct net_device *dev)
1463{
1464 struct smc_local *lp = netdev_priv(dev);
1465
1466 DBG(2, dev, "%s\n", __func__);
1467
1468 /* Setup the default Register Modes */
1469 lp->tcr_cur_mode = TCR_DEFAULT;
1470 lp->rcr_cur_mode = RCR_DEFAULT;
1471 lp->rpc_cur_mode = RPC_DEFAULT |
1472 lp->cfg.leda << RPC_LSXA_SHFT |
1473 lp->cfg.ledb << RPC_LSXB_SHFT;
1474
1475 /*
1476 * If we are not using a MII interface, we need to
1477 * monitor our own carrier signal to detect faults.
1478 */
1479 if (lp->phy_type == 0)
1480 lp->tcr_cur_mode |= TCR_MON_CSN;
1481
1482 /* reset the hardware */
1483 smc_reset(dev);
1484 smc_enable(dev);
1485
1486 /* Configure the PHY, initialize the link state */
1487 if (lp->phy_type != 0)
1488 smc_phy_configure(&lp->phy_configure);
1489 else {
1490 spin_lock_irq(&lp->lock);
1491 smc_10bt_check_media(dev, 1);
1492 spin_unlock_irq(&lp->lock);
1493 }
1494
1495 netif_start_queue(dev);
1496 return 0;
1497}
1498
1499/*
1500 * smc_close
1501 *
1502 * this makes the board clean up everything that it can
1503 * and not talk to the outside world. Caused by
1504 * an 'ifconfig ethX down'
1505 */
1506static int smc_close(struct net_device *dev)
1507{
1508 struct smc_local *lp = netdev_priv(dev);
1509
1510 DBG(2, dev, "%s\n", __func__);
1511
1512 netif_stop_queue(dev);
1513 netif_carrier_off(dev);
1514
1515 /* clear everything */
1516 smc_shutdown(dev);
1517 tasklet_kill(&lp->tx_task);
1518 smc_phy_powerdown(dev);
1519 return 0;
1520}
1521
1522/*
1523 * Ethtool support
1524 */
1525static int
1526smc_ethtool_get_link_ksettings(struct net_device *dev,
1527 struct ethtool_link_ksettings *cmd)
1528{
1529 struct smc_local *lp = netdev_priv(dev);
1530
1531 if (lp->phy_type != 0) {
1532 spin_lock_irq(&lp->lock);
1533 mii_ethtool_get_link_ksettings(&lp->mii, cmd);
1534 spin_unlock_irq(&lp->lock);
1535 } else {
1536 u32 supported = SUPPORTED_10baseT_Half |
1537 SUPPORTED_10baseT_Full |
1538 SUPPORTED_TP | SUPPORTED_AUI;
1539
1540 if (lp->ctl_rspeed == 10)
1541 cmd->base.speed = SPEED_10;
1542 else if (lp->ctl_rspeed == 100)
1543 cmd->base.speed = SPEED_100;
1544
1545 cmd->base.autoneg = AUTONEG_DISABLE;
1546 cmd->base.port = 0;
1547 cmd->base.duplex = lp->tcr_cur_mode & TCR_SWFDUP ?
1548 DUPLEX_FULL : DUPLEX_HALF;
1549
1550 ethtool_convert_legacy_u32_to_link_mode(
1551 cmd->link_modes.supported, supported);
1552 }
1553
1554 return 0;
1555}
1556
1557static int
1558smc_ethtool_set_link_ksettings(struct net_device *dev,
1559 const struct ethtool_link_ksettings *cmd)
1560{
1561 struct smc_local *lp = netdev_priv(dev);
1562 int ret;
1563
1564 if (lp->phy_type != 0) {
1565 spin_lock_irq(&lp->lock);
1566 ret = mii_ethtool_set_link_ksettings(&lp->mii, cmd);
1567 spin_unlock_irq(&lp->lock);
1568 } else {
1569 if (cmd->base.autoneg != AUTONEG_DISABLE ||
1570 cmd->base.speed != SPEED_10 ||
1571 (cmd->base.duplex != DUPLEX_HALF &&
1572 cmd->base.duplex != DUPLEX_FULL) ||
1573 (cmd->base.port != PORT_TP && cmd->base.port != PORT_AUI))
1574 return -EINVAL;
1575
1576// lp->port = cmd->base.port;
1577 lp->ctl_rfduplx = cmd->base.duplex == DUPLEX_FULL;
1578
1579// if (netif_running(dev))
1580// smc_set_port(dev);
1581
1582 ret = 0;
1583 }
1584
1585 return ret;
1586}
1587
1588static void
1589smc_ethtool_getdrvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1590{
1591 strlcpy(info->driver, CARDNAME, sizeof(info->driver));
1592 strlcpy(info->version, version, sizeof(info->version));
1593 strlcpy(info->bus_info, dev_name(dev->dev.parent),
1594 sizeof(info->bus_info));
1595}
1596
1597static int smc_ethtool_nwayreset(struct net_device *dev)
1598{
1599 struct smc_local *lp = netdev_priv(dev);
1600 int ret = -EINVAL;
1601
1602 if (lp->phy_type != 0) {
1603 spin_lock_irq(&lp->lock);
1604 ret = mii_nway_restart(&lp->mii);
1605 spin_unlock_irq(&lp->lock);
1606 }
1607
1608 return ret;
1609}
1610
1611static u32 smc_ethtool_getmsglevel(struct net_device *dev)
1612{
1613 struct smc_local *lp = netdev_priv(dev);
1614 return lp->msg_enable;
1615}
1616
1617static void smc_ethtool_setmsglevel(struct net_device *dev, u32 level)
1618{
1619 struct smc_local *lp = netdev_priv(dev);
1620 lp->msg_enable = level;
1621}
1622
1623static int smc_write_eeprom_word(struct net_device *dev, u16 addr, u16 word)
1624{
1625 u16 ctl;
1626 struct smc_local *lp = netdev_priv(dev);
1627 void __iomem *ioaddr = lp->base;
1628
1629 spin_lock_irq(&lp->lock);
1630 /* load word into GP register */
1631 SMC_SELECT_BANK(lp, 1);
1632 SMC_SET_GP(lp, word);
1633 /* set the address to put the data in EEPROM */
1634 SMC_SELECT_BANK(lp, 2);
1635 SMC_SET_PTR(lp, addr);
1636 /* tell it to write */
1637 SMC_SELECT_BANK(lp, 1);
1638 ctl = SMC_GET_CTL(lp);
1639 SMC_SET_CTL(lp, ctl | (CTL_EEPROM_SELECT | CTL_STORE));
1640 /* wait for it to finish */
1641 do {
1642 udelay(1);
1643 } while (SMC_GET_CTL(lp) & CTL_STORE);
1644 /* clean up */
1645 SMC_SET_CTL(lp, ctl);
1646 SMC_SELECT_BANK(lp, 2);
1647 spin_unlock_irq(&lp->lock);
1648 return 0;
1649}
1650
1651static int smc_read_eeprom_word(struct net_device *dev, u16 addr, u16 *word)
1652{
1653 u16 ctl;
1654 struct smc_local *lp = netdev_priv(dev);
1655 void __iomem *ioaddr = lp->base;
1656
1657 spin_lock_irq(&lp->lock);
1658 /* set the EEPROM address to get the data from */
1659 SMC_SELECT_BANK(lp, 2);
1660 SMC_SET_PTR(lp, addr | PTR_READ);
1661 /* tell it to load */
1662 SMC_SELECT_BANK(lp, 1);
1663 SMC_SET_GP(lp, 0xffff); /* init to known */
1664 ctl = SMC_GET_CTL(lp);
1665 SMC_SET_CTL(lp, ctl | (CTL_EEPROM_SELECT | CTL_RELOAD));
1666 /* wait for it to finish */
1667 do {
1668 udelay(1);
1669 } while (SMC_GET_CTL(lp) & CTL_RELOAD);
1670 /* read word from GP register */
1671 *word = SMC_GET_GP(lp);
1672 /* clean up */
1673 SMC_SET_CTL(lp, ctl);
1674 SMC_SELECT_BANK(lp, 2);
1675 spin_unlock_irq(&lp->lock);
1676 return 0;
1677}
1678
1679static int smc_ethtool_geteeprom_len(struct net_device *dev)
1680{
1681 return 0x23 * 2;
1682}
1683
1684static int smc_ethtool_geteeprom(struct net_device *dev,
1685 struct ethtool_eeprom *eeprom, u8 *data)
1686{
1687 int i;
1688 int imax;
1689
1690 DBG(1, dev, "Reading %d bytes at %d(0x%x)\n",
1691 eeprom->len, eeprom->offset, eeprom->offset);
1692 imax = smc_ethtool_geteeprom_len(dev);
1693 for (i = 0; i < eeprom->len; i += 2) {
1694 int ret;
1695 u16 wbuf;
1696 int offset = i + eeprom->offset;
1697 if (offset > imax)
1698 break;
1699 ret = smc_read_eeprom_word(dev, offset >> 1, &wbuf);
1700 if (ret != 0)
1701 return ret;
1702 DBG(2, dev, "Read 0x%x from 0x%x\n", wbuf, offset >> 1);
1703 data[i] = (wbuf >> 8) & 0xff;
1704 data[i+1] = wbuf & 0xff;
1705 }
1706 return 0;
1707}
1708
1709static int smc_ethtool_seteeprom(struct net_device *dev,
1710 struct ethtool_eeprom *eeprom, u8 *data)
1711{
1712 int i;
1713 int imax;
1714
1715 DBG(1, dev, "Writing %d bytes to %d(0x%x)\n",
1716 eeprom->len, eeprom->offset, eeprom->offset);
1717 imax = smc_ethtool_geteeprom_len(dev);
1718 for (i = 0; i < eeprom->len; i += 2) {
1719 int ret;
1720 u16 wbuf;
1721 int offset = i + eeprom->offset;
1722 if (offset > imax)
1723 break;
1724 wbuf = (data[i] << 8) | data[i + 1];
1725 DBG(2, dev, "Writing 0x%x to 0x%x\n", wbuf, offset >> 1);
1726 ret = smc_write_eeprom_word(dev, offset >> 1, wbuf);
1727 if (ret != 0)
1728 return ret;
1729 }
1730 return 0;
1731}
1732
1733
1734static const struct ethtool_ops smc_ethtool_ops = {
1735 .get_drvinfo = smc_ethtool_getdrvinfo,
1736
1737 .get_msglevel = smc_ethtool_getmsglevel,
1738 .set_msglevel = smc_ethtool_setmsglevel,
1739 .nway_reset = smc_ethtool_nwayreset,
1740 .get_link = ethtool_op_get_link,
1741 .get_eeprom_len = smc_ethtool_geteeprom_len,
1742 .get_eeprom = smc_ethtool_geteeprom,
1743 .set_eeprom = smc_ethtool_seteeprom,
1744 .get_link_ksettings = smc_ethtool_get_link_ksettings,
1745 .set_link_ksettings = smc_ethtool_set_link_ksettings,
1746};
1747
1748static const struct net_device_ops smc_netdev_ops = {
1749 .ndo_open = smc_open,
1750 .ndo_stop = smc_close,
1751 .ndo_start_xmit = smc_hard_start_xmit,
1752 .ndo_tx_timeout = smc_timeout,
1753 .ndo_set_rx_mode = smc_set_multicast_list,
1754 .ndo_validate_addr = eth_validate_addr,
1755 .ndo_set_mac_address = eth_mac_addr,
1756#ifdef CONFIG_NET_POLL_CONTROLLER
1757 .ndo_poll_controller = smc_poll_controller,
1758#endif
1759};
1760
1761/*
1762 * smc_findirq
1763 *
1764 * This routine has a simple purpose -- make the SMC chip generate an
1765 * interrupt, so an auto-detect routine can detect it, and find the IRQ,
1766 */
1767/*
1768 * does this still work?
1769 *
1770 * I just deleted auto_irq.c, since it was never built...
1771 * --jgarzik
1772 */
1773static int smc_findirq(struct smc_local *lp)
1774{
1775 void __iomem *ioaddr = lp->base;
1776 int timeout = 20;
1777 unsigned long cookie;
1778
1779 DBG(2, lp->dev, "%s: %s\n", CARDNAME, __func__);
1780
1781 cookie = probe_irq_on();
1782
1783 /*
1784 * What I try to do here is trigger an ALLOC_INT. This is done
1785 * by allocating a small chunk of memory, which will give an interrupt
1786 * when done.
1787 */
1788 /* enable ALLOCation interrupts ONLY */
1789 SMC_SELECT_BANK(lp, 2);
1790 SMC_SET_INT_MASK(lp, IM_ALLOC_INT);
1791
1792 /*
1793 * Allocate 512 bytes of memory. Note that the chip was just
1794 * reset so all the memory is available
1795 */
1796 SMC_SET_MMU_CMD(lp, MC_ALLOC | 1);
1797
1798 /*
1799 * Wait until positive that the interrupt has been generated
1800 */
1801 do {
1802 int int_status;
1803 udelay(10);
1804 int_status = SMC_GET_INT(lp);
1805 if (int_status & IM_ALLOC_INT)
1806 break; /* got the interrupt */
1807 } while (--timeout);
1808
1809 /*
1810 * there is really nothing that I can do here if timeout fails,
1811 * as autoirq_report will return a 0 anyway, which is what I
1812 * want in this case. Plus, the clean up is needed in both
1813 * cases.
1814 */
1815
1816 /* and disable all interrupts again */
1817 SMC_SET_INT_MASK(lp, 0);
1818
1819 /* and return what I found */
1820 return probe_irq_off(cookie);
1821}
1822
1823/*
1824 * Function: smc_probe(unsigned long ioaddr)
1825 *
1826 * Purpose:
1827 * Tests to see if a given ioaddr points to an SMC91x chip.
1828 * Returns a 0 on success
1829 *
1830 * Algorithm:
1831 * (1) see if the high byte of BANK_SELECT is 0x33
1832 * (2) compare the ioaddr with the base register's address
1833 * (3) see if I recognize the chip ID in the appropriate register
1834 *
1835 * Here I do typical initialization tasks.
1836 *
1837 * o Initialize the structure if needed
1838 * o print out my vanity message if not done so already
1839 * o print out what type of hardware is detected
1840 * o print out the ethernet address
1841 * o find the IRQ
1842 * o set up my private data
1843 * o configure the dev structure with my subroutines
1844 * o actually GRAB the irq.
1845 * o GRAB the region
1846 */
1847static int smc_probe(struct net_device *dev, void __iomem *ioaddr,
1848 unsigned long irq_flags)
1849{
1850 struct smc_local *lp = netdev_priv(dev);
1851 int retval;
1852 unsigned int val, revision_register;
1853 const char *version_string;
1854
1855 DBG(2, dev, "%s: %s\n", CARDNAME, __func__);
1856
1857 /* First, see if the high byte is 0x33 */
1858 val = SMC_CURRENT_BANK(lp);
1859 DBG(2, dev, "%s: bank signature probe returned 0x%04x\n",
1860 CARDNAME, val);
1861 if ((val & 0xFF00) != 0x3300) {
1862 if ((val & 0xFF) == 0x33) {
1863 netdev_warn(dev,
1864 "%s: Detected possible byte-swapped interface at IOADDR %p\n",
1865 CARDNAME, ioaddr);
1866 }
1867 retval = -ENODEV;
1868 goto err_out;
1869 }
1870
1871 /*
1872 * The above MIGHT indicate a device, but I need to write to
1873 * further test this.
1874 */
1875 SMC_SELECT_BANK(lp, 0);
1876 val = SMC_CURRENT_BANK(lp);
1877 if ((val & 0xFF00) != 0x3300) {
1878 retval = -ENODEV;
1879 goto err_out;
1880 }
1881
1882 /*
1883 * well, we've already written once, so hopefully another
1884 * time won't hurt. This time, I need to switch the bank
1885 * register to bank 1, so I can access the base address
1886 * register
1887 */
1888 SMC_SELECT_BANK(lp, 1);
1889 val = SMC_GET_BASE(lp);
1890 val = ((val & 0x1F00) >> 3) << SMC_IO_SHIFT;
1891 if (((unsigned long)ioaddr & (0x3e0 << SMC_IO_SHIFT)) != val) {
1892 netdev_warn(dev, "%s: IOADDR %p doesn't match configuration (%x).\n",
1893 CARDNAME, ioaddr, val);
1894 }
1895
1896 /*
1897 * check if the revision register is something that I
1898 * recognize. These might need to be added to later,
1899 * as future revisions could be added.
1900 */
1901 SMC_SELECT_BANK(lp, 3);
1902 revision_register = SMC_GET_REV(lp);
1903 DBG(2, dev, "%s: revision = 0x%04x\n", CARDNAME, revision_register);
1904 version_string = chip_ids[ (revision_register >> 4) & 0xF];
1905 if (!version_string || (revision_register & 0xff00) != 0x3300) {
1906 /* I don't recognize this chip, so... */
1907 netdev_warn(dev, "%s: IO %p: Unrecognized revision register 0x%04x, Contact author.\n",
1908 CARDNAME, ioaddr, revision_register);
1909
1910 retval = -ENODEV;
1911 goto err_out;
1912 }
1913
1914 /* At this point I'll assume that the chip is an SMC91x. */
1915 pr_info_once("%s\n", version);
1916
1917 /* fill in some of the fields */
1918 dev->base_addr = (unsigned long)ioaddr;
1919 lp->base = ioaddr;
1920 lp->version = revision_register & 0xff;
1921 spin_lock_init(&lp->lock);
1922
1923 /* Get the MAC address */
1924 SMC_SELECT_BANK(lp, 1);
1925 SMC_GET_MAC_ADDR(lp, dev->dev_addr);
1926
1927 /* now, reset the chip, and put it into a known state */
1928 smc_reset(dev);
1929
1930 /*
1931 * If dev->irq is 0, then the device has to be banged on to see
1932 * what the IRQ is.
1933 *
1934 * This banging doesn't always detect the IRQ, for unknown reasons.
1935 * a workaround is to reset the chip and try again.
1936 *
1937 * Interestingly, the DOS packet driver *SETS* the IRQ on the card to
1938 * be what is requested on the command line. I don't do that, mostly
1939 * because the card that I have uses a non-standard method of accessing
1940 * the IRQs, and because this _should_ work in most configurations.
1941 *
1942 * Specifying an IRQ is done with the assumption that the user knows
1943 * what (s)he is doing. No checking is done!!!!
1944 */
1945 if (dev->irq < 1) {
1946 int trials;
1947
1948 trials = 3;
1949 while (trials--) {
1950 dev->irq = smc_findirq(lp);
1951 if (dev->irq)
1952 break;
1953 /* kick the card and try again */
1954 smc_reset(dev);
1955 }
1956 }
1957 if (dev->irq == 0) {
1958 netdev_warn(dev, "Couldn't autodetect your IRQ. Use irq=xx.\n");
1959 retval = -ENODEV;
1960 goto err_out;
1961 }
1962 dev->irq = irq_canonicalize(dev->irq);
1963
1964 dev->watchdog_timeo = msecs_to_jiffies(watchdog);
1965 dev->netdev_ops = &smc_netdev_ops;
1966 dev->ethtool_ops = &smc_ethtool_ops;
1967
1968 tasklet_init(&lp->tx_task, smc_hardware_send_pkt, (unsigned long)dev);
1969 INIT_WORK(&lp->phy_configure, smc_phy_configure);
1970 lp->dev = dev;
1971 lp->mii.phy_id_mask = 0x1f;
1972 lp->mii.reg_num_mask = 0x1f;
1973 lp->mii.force_media = 0;
1974 lp->mii.full_duplex = 0;
1975 lp->mii.dev = dev;
1976 lp->mii.mdio_read = smc_phy_read;
1977 lp->mii.mdio_write = smc_phy_write;
1978
1979 /*
1980 * Locate the phy, if any.
1981 */
1982 if (lp->version >= (CHIP_91100 << 4))
1983 smc_phy_detect(dev);
1984
1985 /* then shut everything down to save power */
1986 smc_shutdown(dev);
1987 smc_phy_powerdown(dev);
1988
1989 /* Set default parameters */
1990 lp->msg_enable = NETIF_MSG_LINK;
1991 lp->ctl_rfduplx = 0;
1992 lp->ctl_rspeed = 10;
1993
1994 if (lp->version >= (CHIP_91100 << 4)) {
1995 lp->ctl_rfduplx = 1;
1996 lp->ctl_rspeed = 100;
1997 }
1998
1999 /* Grab the IRQ */
2000 retval = request_irq(dev->irq, smc_interrupt, irq_flags, dev->name, dev);
2001 if (retval)
2002 goto err_out;
2003
2004#ifdef CONFIG_ARCH_PXA
2005# ifdef SMC_USE_PXA_DMA
2006 lp->cfg.flags |= SMC91X_USE_DMA;
2007# endif
2008 if (lp->cfg.flags & SMC91X_USE_DMA) {
2009 dma_cap_mask_t mask;
2010
2011 dma_cap_zero(mask);
2012 dma_cap_set(DMA_SLAVE, mask);
2013 lp->dma_chan = dma_request_channel(mask, NULL, NULL);
2014 }
2015#endif
2016
2017 retval = register_netdev(dev);
2018 if (retval == 0) {
2019 /* now, print out the card info, in a short format.. */
2020 netdev_info(dev, "%s (rev %d) at %p IRQ %d",
2021 version_string, revision_register & 0x0f,
2022 lp->base, dev->irq);
2023
2024 if (lp->dma_chan)
2025 pr_cont(" DMA %p", lp->dma_chan);
2026
2027 pr_cont("%s%s\n",
2028 lp->cfg.flags & SMC91X_NOWAIT ? " [nowait]" : "",
2029 THROTTLE_TX_PKTS ? " [throttle_tx]" : "");
2030
2031 if (!is_valid_ether_addr(dev->dev_addr)) {
2032 netdev_warn(dev, "Invalid ethernet MAC address. Please set using ifconfig\n");
2033 } else {
2034 /* Print the Ethernet address */
2035 netdev_info(dev, "Ethernet addr: %pM\n",
2036 dev->dev_addr);
2037 }
2038
2039 if (lp->phy_type == 0) {
2040 PRINTK(dev, "No PHY found\n");
2041 } else if ((lp->phy_type & 0xfffffff0) == 0x0016f840) {
2042 PRINTK(dev, "PHY LAN83C183 (LAN91C111 Internal)\n");
2043 } else if ((lp->phy_type & 0xfffffff0) == 0x02821c50) {
2044 PRINTK(dev, "PHY LAN83C180\n");
2045 }
2046 }
2047
2048err_out:
2049#ifdef CONFIG_ARCH_PXA
2050 if (retval && lp->dma_chan)
2051 dma_release_channel(lp->dma_chan);
2052#endif
2053 return retval;
2054}
2055
2056static int smc_enable_device(struct platform_device *pdev)
2057{
2058 struct net_device *ndev = platform_get_drvdata(pdev);
2059 struct smc_local *lp = netdev_priv(ndev);
2060 unsigned long flags;
2061 unsigned char ecor, ecsr;
2062 void __iomem *addr;
2063 struct resource * res;
2064
2065 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2066 if (!res)
2067 return 0;
2068
2069 /*
2070 * Map the attribute space. This is overkill, but clean.
2071 */
2072 addr = ioremap(res->start, ATTRIB_SIZE);
2073 if (!addr)
2074 return -ENOMEM;
2075
2076 /*
2077 * Reset the device. We must disable IRQs around this
2078 * since a reset causes the IRQ line become active.
2079 */
2080 local_irq_save(flags);
2081 ecor = readb(addr + (ECOR << SMC_IO_SHIFT)) & ~ECOR_RESET;
2082 writeb(ecor | ECOR_RESET, addr + (ECOR << SMC_IO_SHIFT));
2083 readb(addr + (ECOR << SMC_IO_SHIFT));
2084
2085 /*
2086 * Wait 100us for the chip to reset.
2087 */
2088 udelay(100);
2089
2090 /*
2091 * The device will ignore all writes to the enable bit while
2092 * reset is asserted, even if the reset bit is cleared in the
2093 * same write. Must clear reset first, then enable the device.
2094 */
2095 writeb(ecor, addr + (ECOR << SMC_IO_SHIFT));
2096 writeb(ecor | ECOR_ENABLE, addr + (ECOR << SMC_IO_SHIFT));
2097
2098 /*
2099 * Set the appropriate byte/word mode.
2100 */
2101 ecsr = readb(addr + (ECSR << SMC_IO_SHIFT)) & ~ECSR_IOIS8;
2102 if (!SMC_16BIT(lp))
2103 ecsr |= ECSR_IOIS8;
2104 writeb(ecsr, addr + (ECSR << SMC_IO_SHIFT));
2105 local_irq_restore(flags);
2106
2107 iounmap(addr);
2108
2109 /*
2110 * Wait for the chip to wake up. We could poll the control
2111 * register in the main register space, but that isn't mapped
2112 * yet. We know this is going to take 750us.
2113 */
2114 msleep(1);
2115
2116 return 0;
2117}
2118
2119static int smc_request_attrib(struct platform_device *pdev,
2120 struct net_device *ndev)
2121{
2122 struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2123 struct smc_local *lp __maybe_unused = netdev_priv(ndev);
2124
2125 if (!res)
2126 return 0;
2127
2128 if (!request_mem_region(res->start, ATTRIB_SIZE, CARDNAME))
2129 return -EBUSY;
2130
2131 return 0;
2132}
2133
2134static void smc_release_attrib(struct platform_device *pdev,
2135 struct net_device *ndev)
2136{
2137 struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2138 struct smc_local *lp __maybe_unused = netdev_priv(ndev);
2139
2140 if (res)
2141 release_mem_region(res->start, ATTRIB_SIZE);
2142}
2143
2144static inline void smc_request_datacs(struct platform_device *pdev, struct net_device *ndev)
2145{
2146 if (SMC_CAN_USE_DATACS) {
2147 struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-data32");
2148 struct smc_local *lp = netdev_priv(ndev);
2149
2150 if (!res)
2151 return;
2152
2153 if(!request_mem_region(res->start, SMC_DATA_EXTENT, CARDNAME)) {
2154 netdev_info(ndev, "%s: failed to request datacs memory region.\n",
2155 CARDNAME);
2156 return;
2157 }
2158
2159 lp->datacs = ioremap(res->start, SMC_DATA_EXTENT);
2160 }
2161}
2162
2163static void smc_release_datacs(struct platform_device *pdev, struct net_device *ndev)
2164{
2165 if (SMC_CAN_USE_DATACS) {
2166 struct smc_local *lp = netdev_priv(ndev);
2167 struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-data32");
2168
2169 if (lp->datacs)
2170 iounmap(lp->datacs);
2171
2172 lp->datacs = NULL;
2173
2174 if (res)
2175 release_mem_region(res->start, SMC_DATA_EXTENT);
2176 }
2177}
2178
2179static const struct acpi_device_id smc91x_acpi_match[] = {
2180 { "LNRO0003", 0 },
2181 { }
2182};
2183MODULE_DEVICE_TABLE(acpi, smc91x_acpi_match);
2184
2185#if IS_BUILTIN(CONFIG_OF)
2186static const struct of_device_id smc91x_match[] = {
2187 { .compatible = "smsc,lan91c94", },
2188 { .compatible = "smsc,lan91c111", },
2189 {},
2190};
2191MODULE_DEVICE_TABLE(of, smc91x_match);
2192
2193/**
2194 * of_try_set_control_gpio - configure a gpio if it exists
2195 */
2196static int try_toggle_control_gpio(struct device *dev,
2197 struct gpio_desc **desc,
2198 const char *name, int index,
2199 int value, unsigned int nsdelay)
2200{
2201 struct gpio_desc *gpio = *desc;
2202 enum gpiod_flags flags = value ? GPIOD_OUT_LOW : GPIOD_OUT_HIGH;
2203
2204 gpio = devm_gpiod_get_index_optional(dev, name, index, flags);
2205 if (IS_ERR(gpio))
2206 return PTR_ERR(gpio);
2207
2208 if (gpio) {
2209 if (nsdelay)
2210 usleep_range(nsdelay, 2 * nsdelay);
2211 gpiod_set_value_cansleep(gpio, value);
2212 }
2213 *desc = gpio;
2214
2215 return 0;
2216}
2217#endif
2218
2219/*
2220 * smc_init(void)
2221 * Input parameters:
2222 * dev->base_addr == 0, try to find all possible locations
2223 * dev->base_addr > 0x1ff, this is the address to check
2224 * dev->base_addr == <anything else>, return failure code
2225 *
2226 * Output:
2227 * 0 --> there is a device
2228 * anything else, error
2229 */
2230static int smc_drv_probe(struct platform_device *pdev)
2231{
2232 struct smc91x_platdata *pd = dev_get_platdata(&pdev->dev);
2233 const struct of_device_id *match = NULL;
2234 struct smc_local *lp;
2235 struct net_device *ndev;
2236 struct resource *res;
2237 unsigned int __iomem *addr;
2238 unsigned long irq_flags = SMC_IRQ_FLAGS;
2239 unsigned long irq_resflags;
2240 int ret;
2241
2242 ndev = alloc_etherdev(sizeof(struct smc_local));
2243 if (!ndev) {
2244 ret = -ENOMEM;
2245 goto out;
2246 }
2247 SET_NETDEV_DEV(ndev, &pdev->dev);
2248
2249 /* get configuration from platform data, only allow use of
2250 * bus width if both SMC_CAN_USE_xxx and SMC91X_USE_xxx are set.
2251 */
2252
2253 lp = netdev_priv(ndev);
2254 lp->cfg.flags = 0;
2255
2256 if (pd) {
2257 memcpy(&lp->cfg, pd, sizeof(lp->cfg));
2258 lp->io_shift = SMC91X_IO_SHIFT(lp->cfg.flags);
2259
2260 if (!SMC_8BIT(lp) && !SMC_16BIT(lp)) {
2261 dev_err(&pdev->dev,
2262 "at least one of 8-bit or 16-bit access support is required.\n");
2263 ret = -ENXIO;
2264 goto out_free_netdev;
2265 }
2266 }
2267
2268#if IS_BUILTIN(CONFIG_OF)
2269 match = of_match_device(of_match_ptr(smc91x_match), &pdev->dev);
2270 if (match) {
2271 u32 val;
2272
2273 /* Optional pwrdwn GPIO configured? */
2274 ret = try_toggle_control_gpio(&pdev->dev, &lp->power_gpio,
2275 "power", 0, 0, 100);
2276 if (ret)
2277 return ret;
2278
2279 /*
2280 * Optional reset GPIO configured? Minimum 100 ns reset needed
2281 * according to LAN91C96 datasheet page 14.
2282 */
2283 ret = try_toggle_control_gpio(&pdev->dev, &lp->reset_gpio,
2284 "reset", 0, 0, 100);
2285 if (ret)
2286 return ret;
2287
2288 /*
2289 * Need to wait for optional EEPROM to load, max 750 us according
2290 * to LAN91C96 datasheet page 55.
2291 */
2292 if (lp->reset_gpio)
2293 usleep_range(750, 1000);
2294
2295 /* Combination of IO widths supported, default to 16-bit */
2296 if (!device_property_read_u32(&pdev->dev, "reg-io-width",
2297 &val)) {
2298 if (val & 1)
2299 lp->cfg.flags |= SMC91X_USE_8BIT;
2300 if ((val == 0) || (val & 2))
2301 lp->cfg.flags |= SMC91X_USE_16BIT;
2302 if (val & 4)
2303 lp->cfg.flags |= SMC91X_USE_32BIT;
2304 } else {
2305 lp->cfg.flags |= SMC91X_USE_16BIT;
2306 }
2307 if (!device_property_read_u32(&pdev->dev, "reg-shift",
2308 &val))
2309 lp->io_shift = val;
2310 lp->cfg.pxa_u16_align4 =
2311 device_property_read_bool(&pdev->dev, "pxa-u16-align4");
2312 }
2313#endif
2314
2315 if (!pd && !match) {
2316 lp->cfg.flags |= (SMC_CAN_USE_8BIT) ? SMC91X_USE_8BIT : 0;
2317 lp->cfg.flags |= (SMC_CAN_USE_16BIT) ? SMC91X_USE_16BIT : 0;
2318 lp->cfg.flags |= (SMC_CAN_USE_32BIT) ? SMC91X_USE_32BIT : 0;
2319 lp->cfg.flags |= (nowait) ? SMC91X_NOWAIT : 0;
2320 }
2321
2322 if (!lp->cfg.leda && !lp->cfg.ledb) {
2323 lp->cfg.leda = RPC_LSA_DEFAULT;
2324 lp->cfg.ledb = RPC_LSB_DEFAULT;
2325 }
2326
2327 ndev->dma = (unsigned char)-1;
2328
2329 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-regs");
2330 if (!res)
2331 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2332 if (!res) {
2333 ret = -ENODEV;
2334 goto out_free_netdev;
2335 }
2336
2337
2338 if (!request_mem_region(res->start, SMC_IO_EXTENT, CARDNAME)) {
2339 ret = -EBUSY;
2340 goto out_free_netdev;
2341 }
2342
2343 ndev->irq = platform_get_irq(pdev, 0);
2344 if (ndev->irq < 0) {
2345 ret = ndev->irq;
2346 goto out_release_io;
2347 }
2348 /*
2349 * If this platform does not specify any special irqflags, or if
2350 * the resource supplies a trigger, override the irqflags with
2351 * the trigger flags from the resource.
2352 */
2353 irq_resflags = irqd_get_trigger_type(irq_get_irq_data(ndev->irq));
2354 if (irq_flags == -1 || irq_resflags & IRQF_TRIGGER_MASK)
2355 irq_flags = irq_resflags & IRQF_TRIGGER_MASK;
2356
2357 ret = smc_request_attrib(pdev, ndev);
2358 if (ret)
2359 goto out_release_io;
2360#if defined(CONFIG_ASSABET_NEPONSET)
2361 if (machine_is_assabet() && machine_has_neponset())
2362 neponset_ncr_set(NCR_ENET_OSC_EN);
2363#endif
2364 platform_set_drvdata(pdev, ndev);
2365 ret = smc_enable_device(pdev);
2366 if (ret)
2367 goto out_release_attrib;
2368
2369 addr = ioremap(res->start, SMC_IO_EXTENT);
2370 if (!addr) {
2371 ret = -ENOMEM;
2372 goto out_release_attrib;
2373 }
2374
2375#ifdef CONFIG_ARCH_PXA
2376 {
2377 struct smc_local *lp = netdev_priv(ndev);
2378 lp->device = &pdev->dev;
2379 lp->physaddr = res->start;
2380
2381 }
2382#endif
2383
2384 ret = smc_probe(ndev, addr, irq_flags);
2385 if (ret != 0)
2386 goto out_iounmap;
2387
2388 smc_request_datacs(pdev, ndev);
2389
2390 return 0;
2391
2392 out_iounmap:
2393 iounmap(addr);
2394 out_release_attrib:
2395 smc_release_attrib(pdev, ndev);
2396 out_release_io:
2397 release_mem_region(res->start, SMC_IO_EXTENT);
2398 out_free_netdev:
2399 free_netdev(ndev);
2400 out:
2401 pr_info("%s: not found (%d).\n", CARDNAME, ret);
2402
2403 return ret;
2404}
2405
2406static int smc_drv_remove(struct platform_device *pdev)
2407{
2408 struct net_device *ndev = platform_get_drvdata(pdev);
2409 struct smc_local *lp = netdev_priv(ndev);
2410 struct resource *res;
2411
2412 unregister_netdev(ndev);
2413
2414 free_irq(ndev->irq, ndev);
2415
2416#ifdef CONFIG_ARCH_PXA
2417 if (lp->dma_chan)
2418 dma_release_channel(lp->dma_chan);
2419#endif
2420 iounmap(lp->base);
2421
2422 smc_release_datacs(pdev,ndev);
2423 smc_release_attrib(pdev,ndev);
2424
2425 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-regs");
2426 if (!res)
2427 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2428 release_mem_region(res->start, SMC_IO_EXTENT);
2429
2430 free_netdev(ndev);
2431
2432 return 0;
2433}
2434
2435static int smc_drv_suspend(struct device *dev)
2436{
2437 struct net_device *ndev = dev_get_drvdata(dev);
2438
2439 if (ndev) {
2440 if (netif_running(ndev)) {
2441 netif_device_detach(ndev);
2442 smc_shutdown(ndev);
2443 smc_phy_powerdown(ndev);
2444 }
2445 }
2446 return 0;
2447}
2448
2449static int smc_drv_resume(struct device *dev)
2450{
2451 struct platform_device *pdev = to_platform_device(dev);
2452 struct net_device *ndev = platform_get_drvdata(pdev);
2453
2454 if (ndev) {
2455 struct smc_local *lp = netdev_priv(ndev);
2456 smc_enable_device(pdev);
2457 if (netif_running(ndev)) {
2458 smc_reset(ndev);
2459 smc_enable(ndev);
2460 if (lp->phy_type != 0)
2461 smc_phy_configure(&lp->phy_configure);
2462 netif_device_attach(ndev);
2463 }
2464 }
2465 return 0;
2466}
2467
2468static const struct dev_pm_ops smc_drv_pm_ops = {
2469 .suspend = smc_drv_suspend,
2470 .resume = smc_drv_resume,
2471};
2472
2473static struct platform_driver smc_driver = {
2474 .probe = smc_drv_probe,
2475 .remove = smc_drv_remove,
2476 .driver = {
2477 .name = CARDNAME,
2478 .pm = &smc_drv_pm_ops,
2479 .of_match_table = of_match_ptr(smc91x_match),
2480 .acpi_match_table = smc91x_acpi_match,
2481 },
2482};
2483
2484module_platform_driver(smc_driver);