Linux Audio

Check our new training course

Loading...
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * pptt.c - parsing of Processor Properties Topology Table (PPTT)
  4 *
  5 * Copyright (C) 2018, ARM
  6 *
  7 * This file implements parsing of the Processor Properties Topology Table
  8 * which is optionally used to describe the processor and cache topology.
  9 * Due to the relative pointers used throughout the table, this doesn't
 10 * leverage the existing subtable parsing in the kernel.
 11 *
 12 * The PPTT structure is an inverted tree, with each node potentially
 13 * holding one or two inverted tree data structures describing
 14 * the caches available at that level. Each cache structure optionally
 15 * contains properties describing the cache at a given level which can be
 16 * used to override hardware probed values.
 17 */
 18#define pr_fmt(fmt) "ACPI PPTT: " fmt
 19
 20#include <linux/acpi.h>
 21#include <linux/cacheinfo.h>
 22#include <acpi/processor.h>
 23
 24static struct acpi_subtable_header *fetch_pptt_subtable(struct acpi_table_header *table_hdr,
 25							u32 pptt_ref)
 26{
 27	struct acpi_subtable_header *entry;
 28
 29	/* there isn't a subtable at reference 0 */
 30	if (pptt_ref < sizeof(struct acpi_subtable_header))
 31		return NULL;
 32
 33	if (pptt_ref + sizeof(struct acpi_subtable_header) > table_hdr->length)
 34		return NULL;
 35
 36	entry = ACPI_ADD_PTR(struct acpi_subtable_header, table_hdr, pptt_ref);
 37
 38	if (entry->length == 0)
 39		return NULL;
 40
 41	if (pptt_ref + entry->length > table_hdr->length)
 42		return NULL;
 43
 44	return entry;
 45}
 46
 47static struct acpi_pptt_processor *fetch_pptt_node(struct acpi_table_header *table_hdr,
 48						   u32 pptt_ref)
 49{
 50	return (struct acpi_pptt_processor *)fetch_pptt_subtable(table_hdr, pptt_ref);
 51}
 52
 53static struct acpi_pptt_cache *fetch_pptt_cache(struct acpi_table_header *table_hdr,
 54						u32 pptt_ref)
 55{
 56	return (struct acpi_pptt_cache *)fetch_pptt_subtable(table_hdr, pptt_ref);
 57}
 58
 59static struct acpi_subtable_header *acpi_get_pptt_resource(struct acpi_table_header *table_hdr,
 60							   struct acpi_pptt_processor *node,
 61							   int resource)
 62{
 63	u32 *ref;
 64
 65	if (resource >= node->number_of_priv_resources)
 66		return NULL;
 67
 68	ref = ACPI_ADD_PTR(u32, node, sizeof(struct acpi_pptt_processor));
 69	ref += resource;
 70
 71	return fetch_pptt_subtable(table_hdr, *ref);
 72}
 73
 74static inline bool acpi_pptt_match_type(int table_type, int type)
 75{
 76	return ((table_type & ACPI_PPTT_MASK_CACHE_TYPE) == type ||
 77		table_type & ACPI_PPTT_CACHE_TYPE_UNIFIED & type);
 78}
 79
 80/**
 81 * acpi_pptt_walk_cache() - Attempt to find the requested acpi_pptt_cache
 82 * @table_hdr: Pointer to the head of the PPTT table
 83 * @local_level: passed res reflects this cache level
 84 * @split_levels: Number of split cache levels (data/instruction).
 85 * @res: cache resource in the PPTT we want to walk
 86 * @found: returns a pointer to the requested level if found
 87 * @level: the requested cache level
 88 * @type: the requested cache type
 89 *
 90 * Attempt to find a given cache level, while counting the max number
 91 * of cache levels for the cache node.
 92 *
 93 * Given a pptt resource, verify that it is a cache node, then walk
 94 * down each level of caches, counting how many levels are found
 95 * as well as checking the cache type (icache, dcache, unified). If a
 96 * level & type match, then we set found, and continue the search.
 97 * Once the entire cache branch has been walked return its max
 98 * depth.
 99 *
100 * Return: The cache structure and the level we terminated with.
101 */
102static unsigned int acpi_pptt_walk_cache(struct acpi_table_header *table_hdr,
103					 unsigned int local_level,
104					 unsigned int *split_levels,
105					 struct acpi_subtable_header *res,
106					 struct acpi_pptt_cache **found,
107					 unsigned int level, int type)
108{
109	struct acpi_pptt_cache *cache;
110
111	if (res->type != ACPI_PPTT_TYPE_CACHE)
112		return 0;
113
114	cache = (struct acpi_pptt_cache *) res;
115	while (cache) {
116		local_level++;
117
118		if (!(cache->flags & ACPI_PPTT_CACHE_TYPE_VALID)) {
119			cache = fetch_pptt_cache(table_hdr, cache->next_level_of_cache);
120			continue;
121		}
122
123		if (split_levels &&
124		    (acpi_pptt_match_type(cache->attributes, ACPI_PPTT_CACHE_TYPE_DATA) ||
125		     acpi_pptt_match_type(cache->attributes, ACPI_PPTT_CACHE_TYPE_INSTR)))
126			*split_levels = local_level;
127
128		if (local_level == level &&
 
129		    acpi_pptt_match_type(cache->attributes, type)) {
130			if (*found != NULL && cache != *found)
131				pr_warn("Found duplicate cache level/type unable to determine uniqueness\n");
132
133			pr_debug("Found cache @ level %u\n", level);
134			*found = cache;
135			/*
136			 * continue looking at this node's resource list
137			 * to verify that we don't find a duplicate
138			 * cache node.
139			 */
140		}
141		cache = fetch_pptt_cache(table_hdr, cache->next_level_of_cache);
142	}
143	return local_level;
144}
145
146static struct acpi_pptt_cache *
147acpi_find_cache_level(struct acpi_table_header *table_hdr,
148		      struct acpi_pptt_processor *cpu_node,
149		      unsigned int *starting_level, unsigned int *split_levels,
150		      unsigned int level, int type)
151{
152	struct acpi_subtable_header *res;
153	unsigned int number_of_levels = *starting_level;
154	int resource = 0;
155	struct acpi_pptt_cache *ret = NULL;
156	unsigned int local_level;
157
158	/* walk down from processor node */
159	while ((res = acpi_get_pptt_resource(table_hdr, cpu_node, resource))) {
160		resource++;
161
162		local_level = acpi_pptt_walk_cache(table_hdr, *starting_level,
163						   split_levels, res, &ret,
164						   level, type);
165		/*
166		 * we are looking for the max depth. Since its potentially
167		 * possible for a given node to have resources with differing
168		 * depths verify that the depth we have found is the largest.
169		 */
170		if (number_of_levels < local_level)
171			number_of_levels = local_level;
172	}
173	if (number_of_levels > *starting_level)
174		*starting_level = number_of_levels;
175
176	return ret;
177}
178
179/**
180 * acpi_count_levels() - Given a PPTT table, and a CPU node, count the cache
181 * levels and split cache levels (data/instruction).
182 * @table_hdr: Pointer to the head of the PPTT table
183 * @cpu_node: processor node we wish to count caches for
184 * @levels: Number of levels if success.
185 * @split_levels:	Number of split cache levels (data/instruction) if
186 *			success. Can by NULL.
187 *
188 * Given a processor node containing a processing unit, walk into it and count
189 * how many levels exist solely for it, and then walk up each level until we hit
190 * the root node (ignore the package level because it may be possible to have
191 * caches that exist across packages). Count the number of cache levels and
192 * split cache levels (data/instruction) that exist at each level on the way
193 * up.
194 */
195static void acpi_count_levels(struct acpi_table_header *table_hdr,
196			      struct acpi_pptt_processor *cpu_node,
197			      unsigned int *levels, unsigned int *split_levels)
198{
 
 
199	do {
200		acpi_find_cache_level(table_hdr, cpu_node, levels, split_levels, 0, 0);
201		cpu_node = fetch_pptt_node(table_hdr, cpu_node->parent);
202	} while (cpu_node);
 
 
203}
204
205/**
206 * acpi_pptt_leaf_node() - Given a processor node, determine if its a leaf
207 * @table_hdr: Pointer to the head of the PPTT table
208 * @node: passed node is checked to see if its a leaf
209 *
210 * Determine if the *node parameter is a leaf node by iterating the
211 * PPTT table, looking for nodes which reference it.
212 *
213 * Return: 0 if we find a node referencing the passed node (or table error),
214 * or 1 if we don't.
215 */
216static int acpi_pptt_leaf_node(struct acpi_table_header *table_hdr,
217			       struct acpi_pptt_processor *node)
218{
219	struct acpi_subtable_header *entry;
220	unsigned long table_end;
221	u32 node_entry;
222	struct acpi_pptt_processor *cpu_node;
223	u32 proc_sz;
224
225	if (table_hdr->revision > 1)
226		return (node->flags & ACPI_PPTT_ACPI_LEAF_NODE);
227
228	table_end = (unsigned long)table_hdr + table_hdr->length;
229	node_entry = ACPI_PTR_DIFF(node, table_hdr);
230	entry = ACPI_ADD_PTR(struct acpi_subtable_header, table_hdr,
231			     sizeof(struct acpi_table_pptt));
232	proc_sz = sizeof(struct acpi_pptt_processor *);
233
234	while ((unsigned long)entry + proc_sz < table_end) {
235		cpu_node = (struct acpi_pptt_processor *)entry;
236		if (entry->type == ACPI_PPTT_TYPE_PROCESSOR &&
237		    cpu_node->parent == node_entry)
238			return 0;
239		if (entry->length == 0)
240			return 0;
241		entry = ACPI_ADD_PTR(struct acpi_subtable_header, entry,
242				     entry->length);
243
244	}
245	return 1;
246}
247
248/**
249 * acpi_find_processor_node() - Given a PPTT table find the requested processor
250 * @table_hdr:  Pointer to the head of the PPTT table
251 * @acpi_cpu_id: CPU we are searching for
252 *
253 * Find the subtable entry describing the provided processor.
254 * This is done by iterating the PPTT table looking for processor nodes
255 * which have an acpi_processor_id that matches the acpi_cpu_id parameter
256 * passed into the function. If we find a node that matches this criteria
257 * we verify that its a leaf node in the topology rather than depending
258 * on the valid flag, which doesn't need to be set for leaf nodes.
259 *
260 * Return: NULL, or the processors acpi_pptt_processor*
261 */
262static struct acpi_pptt_processor *acpi_find_processor_node(struct acpi_table_header *table_hdr,
263							    u32 acpi_cpu_id)
264{
265	struct acpi_subtable_header *entry;
266	unsigned long table_end;
267	struct acpi_pptt_processor *cpu_node;
268	u32 proc_sz;
269
270	table_end = (unsigned long)table_hdr + table_hdr->length;
271	entry = ACPI_ADD_PTR(struct acpi_subtable_header, table_hdr,
272			     sizeof(struct acpi_table_pptt));
273	proc_sz = sizeof(struct acpi_pptt_processor *);
274
275	/* find the processor structure associated with this cpuid */
276	while ((unsigned long)entry + proc_sz < table_end) {
277		cpu_node = (struct acpi_pptt_processor *)entry;
278
279		if (entry->length == 0) {
280			pr_warn("Invalid zero length subtable\n");
281			break;
282		}
283		if (entry->type == ACPI_PPTT_TYPE_PROCESSOR &&
284		    acpi_cpu_id == cpu_node->acpi_processor_id &&
285		     acpi_pptt_leaf_node(table_hdr, cpu_node)) {
286			return (struct acpi_pptt_processor *)entry;
287		}
288
289		entry = ACPI_ADD_PTR(struct acpi_subtable_header, entry,
290				     entry->length);
291	}
292
293	return NULL;
294}
295
 
 
 
 
 
 
 
 
 
 
 
 
 
296static u8 acpi_cache_type(enum cache_type type)
297{
298	switch (type) {
299	case CACHE_TYPE_DATA:
300		pr_debug("Looking for data cache\n");
301		return ACPI_PPTT_CACHE_TYPE_DATA;
302	case CACHE_TYPE_INST:
303		pr_debug("Looking for instruction cache\n");
304		return ACPI_PPTT_CACHE_TYPE_INSTR;
305	default:
306	case CACHE_TYPE_UNIFIED:
307		pr_debug("Looking for unified cache\n");
308		/*
309		 * It is important that ACPI_PPTT_CACHE_TYPE_UNIFIED
310		 * contains the bit pattern that will match both
311		 * ACPI unified bit patterns because we use it later
312		 * to match both cases.
313		 */
314		return ACPI_PPTT_CACHE_TYPE_UNIFIED;
315	}
316}
317
318static struct acpi_pptt_cache *acpi_find_cache_node(struct acpi_table_header *table_hdr,
319						    u32 acpi_cpu_id,
320						    enum cache_type type,
321						    unsigned int level,
322						    struct acpi_pptt_processor **node)
323{
324	unsigned int total_levels = 0;
325	struct acpi_pptt_cache *found = NULL;
326	struct acpi_pptt_processor *cpu_node;
327	u8 acpi_type = acpi_cache_type(type);
328
329	pr_debug("Looking for CPU %d's level %u cache type %d\n",
330		 acpi_cpu_id, level, acpi_type);
331
332	cpu_node = acpi_find_processor_node(table_hdr, acpi_cpu_id);
333
334	while (cpu_node && !found) {
335		found = acpi_find_cache_level(table_hdr, cpu_node,
336					      &total_levels, NULL, level, acpi_type);
337		*node = cpu_node;
338		cpu_node = fetch_pptt_node(table_hdr, cpu_node->parent);
339	}
340
341	return found;
342}
343
344/**
345 * update_cache_properties() - Update cacheinfo for the given processor
346 * @this_leaf: Kernel cache info structure being updated
347 * @found_cache: The PPTT node describing this cache instance
348 * @cpu_node: A unique reference to describe this cache instance
349 * @revision: The revision of the PPTT table
350 *
351 * The ACPI spec implies that the fields in the cache structures are used to
352 * extend and correct the information probed from the hardware. Lets only
353 * set fields that we determine are VALID.
354 *
355 * Return: nothing. Side effect of updating the global cacheinfo
356 */
357static void update_cache_properties(struct cacheinfo *this_leaf,
358				    struct acpi_pptt_cache *found_cache,
359				    struct acpi_pptt_processor *cpu_node,
360				    u8 revision)
361{
362	struct acpi_pptt_cache_v1* found_cache_v1;
363
364	this_leaf->fw_token = cpu_node;
365	if (found_cache->flags & ACPI_PPTT_SIZE_PROPERTY_VALID)
366		this_leaf->size = found_cache->size;
367	if (found_cache->flags & ACPI_PPTT_LINE_SIZE_VALID)
368		this_leaf->coherency_line_size = found_cache->line_size;
369	if (found_cache->flags & ACPI_PPTT_NUMBER_OF_SETS_VALID)
370		this_leaf->number_of_sets = found_cache->number_of_sets;
371	if (found_cache->flags & ACPI_PPTT_ASSOCIATIVITY_VALID)
372		this_leaf->ways_of_associativity = found_cache->associativity;
373	if (found_cache->flags & ACPI_PPTT_WRITE_POLICY_VALID) {
374		switch (found_cache->attributes & ACPI_PPTT_MASK_WRITE_POLICY) {
375		case ACPI_PPTT_CACHE_POLICY_WT:
376			this_leaf->attributes = CACHE_WRITE_THROUGH;
377			break;
378		case ACPI_PPTT_CACHE_POLICY_WB:
379			this_leaf->attributes = CACHE_WRITE_BACK;
380			break;
381		}
382	}
383	if (found_cache->flags & ACPI_PPTT_ALLOCATION_TYPE_VALID) {
384		switch (found_cache->attributes & ACPI_PPTT_MASK_ALLOCATION_TYPE) {
385		case ACPI_PPTT_CACHE_READ_ALLOCATE:
386			this_leaf->attributes |= CACHE_READ_ALLOCATE;
387			break;
388		case ACPI_PPTT_CACHE_WRITE_ALLOCATE:
389			this_leaf->attributes |= CACHE_WRITE_ALLOCATE;
390			break;
391		case ACPI_PPTT_CACHE_RW_ALLOCATE:
392		case ACPI_PPTT_CACHE_RW_ALLOCATE_ALT:
393			this_leaf->attributes |=
394				CACHE_READ_ALLOCATE | CACHE_WRITE_ALLOCATE;
395			break;
396		}
397	}
398	/*
399	 * If cache type is NOCACHE, then the cache hasn't been specified
400	 * via other mechanisms.  Update the type if a cache type has been
401	 * provided.
402	 *
403	 * Note, we assume such caches are unified based on conventional system
404	 * design and known examples.  Significant work is required elsewhere to
405	 * fully support data/instruction only type caches which are only
406	 * specified in PPTT.
407	 */
408	if (this_leaf->type == CACHE_TYPE_NOCACHE &&
409	    found_cache->flags & ACPI_PPTT_CACHE_TYPE_VALID)
410		this_leaf->type = CACHE_TYPE_UNIFIED;
411
412	if (revision >= 3 && (found_cache->flags & ACPI_PPTT_CACHE_ID_VALID)) {
413		found_cache_v1 = ACPI_ADD_PTR(struct acpi_pptt_cache_v1,
414	                                      found_cache, sizeof(struct acpi_pptt_cache));
415		this_leaf->id = found_cache_v1->cache_id;
416		this_leaf->attributes |= CACHE_ID;
417	}
418}
419
420static void cache_setup_acpi_cpu(struct acpi_table_header *table,
421				 unsigned int cpu)
422{
423	struct acpi_pptt_cache *found_cache;
424	struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
425	u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu);
426	struct cacheinfo *this_leaf;
427	unsigned int index = 0;
428	struct acpi_pptt_processor *cpu_node = NULL;
429
430	while (index < get_cpu_cacheinfo(cpu)->num_leaves) {
431		this_leaf = this_cpu_ci->info_list + index;
432		found_cache = acpi_find_cache_node(table, acpi_cpu_id,
433						   this_leaf->type,
434						   this_leaf->level,
435						   &cpu_node);
436		pr_debug("found = %p %p\n", found_cache, cpu_node);
437		if (found_cache)
438			update_cache_properties(this_leaf, found_cache,
439						ACPI_TO_POINTER(ACPI_PTR_DIFF(cpu_node, table)),
440						table->revision);
441
442		index++;
443	}
444}
445
446static bool flag_identical(struct acpi_table_header *table_hdr,
447			   struct acpi_pptt_processor *cpu)
448{
449	struct acpi_pptt_processor *next;
450
451	/* heterogeneous machines must use PPTT revision > 1 */
452	if (table_hdr->revision < 2)
453		return false;
454
455	/* Locate the last node in the tree with IDENTICAL set */
456	if (cpu->flags & ACPI_PPTT_ACPI_IDENTICAL) {
457		next = fetch_pptt_node(table_hdr, cpu->parent);
458		if (!(next && next->flags & ACPI_PPTT_ACPI_IDENTICAL))
459			return true;
460	}
461
462	return false;
463}
464
465/* Passing level values greater than this will result in search termination */
466#define PPTT_ABORT_PACKAGE 0xFF
467
468static struct acpi_pptt_processor *acpi_find_processor_tag(struct acpi_table_header *table_hdr,
469							   struct acpi_pptt_processor *cpu,
470							   int level, int flag)
471{
472	struct acpi_pptt_processor *prev_node;
473
474	while (cpu && level) {
475		/* special case the identical flag to find last identical */
476		if (flag == ACPI_PPTT_ACPI_IDENTICAL) {
477			if (flag_identical(table_hdr, cpu))
478				break;
479		} else if (cpu->flags & flag)
480			break;
481		pr_debug("level %d\n", level);
482		prev_node = fetch_pptt_node(table_hdr, cpu->parent);
483		if (prev_node == NULL)
484			break;
485		cpu = prev_node;
486		level--;
487	}
488	return cpu;
489}
490
491static void acpi_pptt_warn_missing(void)
492{
493	pr_warn_once("No PPTT table found, CPU and cache topology may be inaccurate\n");
494}
495
496/**
497 * topology_get_acpi_cpu_tag() - Find a unique topology value for a feature
498 * @table: Pointer to the head of the PPTT table
499 * @cpu: Kernel logical CPU number
500 * @level: A level that terminates the search
501 * @flag: A flag which terminates the search
502 *
503 * Get a unique value given a CPU, and a topology level, that can be
504 * matched to determine which cpus share common topological features
505 * at that level.
506 *
507 * Return: Unique value, or -ENOENT if unable to locate CPU
508 */
509static int topology_get_acpi_cpu_tag(struct acpi_table_header *table,
510				     unsigned int cpu, int level, int flag)
511{
512	struct acpi_pptt_processor *cpu_node;
513	u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu);
514
515	cpu_node = acpi_find_processor_node(table, acpi_cpu_id);
516	if (cpu_node) {
517		cpu_node = acpi_find_processor_tag(table, cpu_node,
518						   level, flag);
519		/*
520		 * As per specification if the processor structure represents
521		 * an actual processor, then ACPI processor ID must be valid.
522		 * For processor containers ACPI_PPTT_ACPI_PROCESSOR_ID_VALID
523		 * should be set if the UID is valid
524		 */
525		if (level == 0 ||
526		    cpu_node->flags & ACPI_PPTT_ACPI_PROCESSOR_ID_VALID)
527			return cpu_node->acpi_processor_id;
528		return ACPI_PTR_DIFF(cpu_node, table);
529	}
530	pr_warn_once("PPTT table found, but unable to locate core %d (%d)\n",
531		    cpu, acpi_cpu_id);
532	return -ENOENT;
533}
534
535
536static struct acpi_table_header *acpi_get_pptt(void)
537{
538	static struct acpi_table_header *pptt;
539	static bool is_pptt_checked;
540	acpi_status status;
541
542	/*
543	 * PPTT will be used at runtime on every CPU hotplug in path, so we
544	 * don't need to call acpi_put_table() to release the table mapping.
545	 */
546	if (!pptt && !is_pptt_checked) {
547		status = acpi_get_table(ACPI_SIG_PPTT, 0, &pptt);
548		if (ACPI_FAILURE(status))
549			acpi_pptt_warn_missing();
550
551		is_pptt_checked = true;
552	}
553
554	return pptt;
555}
556
557static int find_acpi_cpu_topology_tag(unsigned int cpu, int level, int flag)
558{
559	struct acpi_table_header *table;
 
560	int retval;
561
562	table = acpi_get_pptt();
563	if (!table)
 
564		return -ENOENT;
565
566	retval = topology_get_acpi_cpu_tag(table, cpu, level, flag);
567	pr_debug("Topology Setup ACPI CPU %d, level %d ret = %d\n",
568		 cpu, level, retval);
 
569
570	return retval;
571}
572
573/**
574 * check_acpi_cpu_flag() - Determine if CPU node has a flag set
575 * @cpu: Kernel logical CPU number
576 * @rev: The minimum PPTT revision defining the flag
577 * @flag: The flag itself
578 *
579 * Check the node representing a CPU for a given flag.
580 *
581 * Return: -ENOENT if the PPTT doesn't exist, the CPU cannot be found or
582 *	   the table revision isn't new enough.
583 *	   1, any passed flag set
584 *	   0, flag unset
585 */
586static int check_acpi_cpu_flag(unsigned int cpu, int rev, u32 flag)
587{
588	struct acpi_table_header *table;
 
589	u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu);
590	struct acpi_pptt_processor *cpu_node = NULL;
591	int ret = -ENOENT;
592
593	table = acpi_get_pptt();
594	if (!table)
595		return -ENOENT;
 
 
596
597	if (table->revision >= rev)
598		cpu_node = acpi_find_processor_node(table, acpi_cpu_id);
599
600	if (cpu_node)
601		ret = (cpu_node->flags & flag) != 0;
602
 
 
603	return ret;
604}
605
606/**
607 * acpi_get_cache_info() - Determine the number of cache levels and
608 * split cache levels (data/instruction) and for a PE.
609 * @cpu: Kernel logical CPU number
610 * @levels: Number of levels if success.
611 * @split_levels:	Number of levels being split (i.e. data/instruction)
612 *			if success. Can by NULL.
613 *
614 * Given a logical CPU number, returns the number of levels of cache represented
615 * in the PPTT. Errors caused by lack of a PPTT table, or otherwise, return 0
616 * indicating we didn't find any cache levels.
617 *
618 * Return: -ENOENT if no PPTT table or no PPTT processor struct found.
619 *	   0 on success.
620 */
621int acpi_get_cache_info(unsigned int cpu, unsigned int *levels,
622			unsigned int *split_levels)
623{
624	struct acpi_pptt_processor *cpu_node;
625	struct acpi_table_header *table;
626	u32 acpi_cpu_id;
 
 
 
627
628	*levels = 0;
629	if (split_levels)
630		*split_levels = 0;
631
632	table = acpi_get_pptt();
633	if (!table)
634		return -ENOENT;
635
636	pr_debug("Cache Setup: find cache levels for CPU=%d\n", cpu);
637
638	acpi_cpu_id = get_acpi_id_for_cpu(cpu);
639	cpu_node = acpi_find_processor_node(table, acpi_cpu_id);
640	if (!cpu_node)
641		return -ENOENT;
642
643	acpi_count_levels(table, cpu_node, levels, split_levels);
644
645	pr_debug("Cache Setup: last_level=%d split_levels=%d\n",
646		 *levels, split_levels ? *split_levels : -1);
647
648	return 0;
649}
650
651/**
652 * cache_setup_acpi() - Override CPU cache topology with data from the PPTT
653 * @cpu: Kernel logical CPU number
654 *
655 * Updates the global cache info provided by cpu_get_cacheinfo()
656 * when there are valid properties in the acpi_pptt_cache nodes. A
657 * successful parse may not result in any updates if none of the
658 * cache levels have any valid flags set.  Further, a unique value is
659 * associated with each known CPU cache entry. This unique value
660 * can be used to determine whether caches are shared between CPUs.
661 *
662 * Return: -ENOENT on failure to find table, or 0 on success
663 */
664int cache_setup_acpi(unsigned int cpu)
665{
666	struct acpi_table_header *table;
667
668	table = acpi_get_pptt();
669	if (!table)
670		return -ENOENT;
671
672	pr_debug("Cache Setup ACPI CPU %d\n", cpu);
673
 
 
 
 
 
 
674	cache_setup_acpi_cpu(table, cpu);
 
675
676	return 0;
677}
678
679/**
680 * acpi_pptt_cpu_is_thread() - Determine if CPU is a thread
681 * @cpu: Kernel logical CPU number
682 *
683 * Return: 1, a thread
684 *         0, not a thread
685 *         -ENOENT ,if the PPTT doesn't exist, the CPU cannot be found or
686 *         the table revision isn't new enough.
687 */
688int acpi_pptt_cpu_is_thread(unsigned int cpu)
689{
690	return check_acpi_cpu_flag(cpu, 2, ACPI_PPTT_ACPI_PROCESSOR_IS_THREAD);
691}
692
693/**
694 * find_acpi_cpu_topology() - Determine a unique topology value for a given CPU
695 * @cpu: Kernel logical CPU number
696 * @level: The topological level for which we would like a unique ID
697 *
698 * Determine a topology unique ID for each thread/core/cluster/mc_grouping
699 * /socket/etc. This ID can then be used to group peers, which will have
700 * matching ids.
701 *
702 * The search terminates when either the requested level is found or
703 * we reach a root node. Levels beyond the termination point will return the
704 * same unique ID. The unique id for level 0 is the acpi processor id. All
705 * other levels beyond this use a generated value to uniquely identify
706 * a topological feature.
707 *
708 * Return: -ENOENT if the PPTT doesn't exist, or the CPU cannot be found.
709 * Otherwise returns a value which represents a unique topological feature.
710 */
711int find_acpi_cpu_topology(unsigned int cpu, int level)
712{
713	return find_acpi_cpu_topology_tag(cpu, level, 0);
714}
715
716/**
717 * find_acpi_cpu_topology_package() - Determine a unique CPU package value
718 * @cpu: Kernel logical CPU number
 
719 *
720 * Determine a topology unique package ID for the given CPU.
721 * This ID can then be used to group peers, which will have matching ids.
722 *
723 * The search terminates when either a level is found with the PHYSICAL_PACKAGE
724 * flag set or we reach a root node.
725 *
726 * Return: -ENOENT if the PPTT doesn't exist, or the CPU cannot be found.
727 * Otherwise returns a value which represents the package for this CPU.
728 */
729int find_acpi_cpu_topology_package(unsigned int cpu)
730{
731	return find_acpi_cpu_topology_tag(cpu, PPTT_ABORT_PACKAGE,
732					  ACPI_PPTT_PHYSICAL_PACKAGE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
733}
734
735/**
736 * find_acpi_cpu_topology_cluster() - Determine a unique CPU cluster value
737 * @cpu: Kernel logical CPU number
738 *
739 * Determine a topology unique cluster ID for the given CPU/thread.
740 * This ID can then be used to group peers, which will have matching ids.
741 *
742 * The cluster, if present is the level of topology above CPUs. In a
743 * multi-thread CPU, it will be the level above the CPU, not the thread.
744 * It may not exist in single CPU systems. In simple multi-CPU systems,
745 * it may be equal to the package topology level.
746 *
747 * Return: -ENOENT if the PPTT doesn't exist, the CPU cannot be found
748 * or there is no toplogy level above the CPU..
749 * Otherwise returns a value which represents the package for this CPU.
750 */
751
752int find_acpi_cpu_topology_cluster(unsigned int cpu)
753{
754	struct acpi_table_header *table;
755	struct acpi_pptt_processor *cpu_node, *cluster_node;
756	u32 acpi_cpu_id;
757	int retval;
758	int is_thread;
759
760	table = acpi_get_pptt();
761	if (!table)
762		return -ENOENT;
763
764	acpi_cpu_id = get_acpi_id_for_cpu(cpu);
765	cpu_node = acpi_find_processor_node(table, acpi_cpu_id);
766	if (!cpu_node || !cpu_node->parent)
767		return -ENOENT;
768
769	is_thread = cpu_node->flags & ACPI_PPTT_ACPI_PROCESSOR_IS_THREAD;
770	cluster_node = fetch_pptt_node(table, cpu_node->parent);
771	if (!cluster_node)
772		return -ENOENT;
773
774	if (is_thread) {
775		if (!cluster_node->parent)
776			return -ENOENT;
777
778		cluster_node = fetch_pptt_node(table, cluster_node->parent);
779		if (!cluster_node)
780			return -ENOENT;
781	}
782	if (cluster_node->flags & ACPI_PPTT_ACPI_PROCESSOR_ID_VALID)
783		retval = cluster_node->acpi_processor_id;
784	else
785		retval = ACPI_PTR_DIFF(cluster_node, table);
786
787	return retval;
788}
789
790/**
791 * find_acpi_cpu_topology_hetero_id() - Get a core architecture tag
792 * @cpu: Kernel logical CPU number
793 *
794 * Determine a unique heterogeneous tag for the given CPU. CPUs with the same
795 * implementation should have matching tags.
796 *
797 * The returned tag can be used to group peers with identical implementation.
798 *
799 * The search terminates when a level is found with the identical implementation
800 * flag set or we reach a root node.
801 *
802 * Due to limitations in the PPTT data structure, there may be rare situations
803 * where two cores in a heterogeneous machine may be identical, but won't have
804 * the same tag.
805 *
806 * Return: -ENOENT if the PPTT doesn't exist, or the CPU cannot be found.
807 * Otherwise returns a value which represents a group of identical cores
808 * similar to this CPU.
809 */
810int find_acpi_cpu_topology_hetero_id(unsigned int cpu)
811{
812	return find_acpi_cpu_topology_tag(cpu, PPTT_ABORT_PACKAGE,
813					  ACPI_PPTT_ACPI_IDENTICAL);
814}
v5.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * pptt.c - parsing of Processor Properties Topology Table (PPTT)
  4 *
  5 * Copyright (C) 2018, ARM
  6 *
  7 * This file implements parsing of the Processor Properties Topology Table
  8 * which is optionally used to describe the processor and cache topology.
  9 * Due to the relative pointers used throughout the table, this doesn't
 10 * leverage the existing subtable parsing in the kernel.
 11 *
 12 * The PPTT structure is an inverted tree, with each node potentially
 13 * holding one or two inverted tree data structures describing
 14 * the caches available at that level. Each cache structure optionally
 15 * contains properties describing the cache at a given level which can be
 16 * used to override hardware probed values.
 17 */
 18#define pr_fmt(fmt) "ACPI PPTT: " fmt
 19
 20#include <linux/acpi.h>
 21#include <linux/cacheinfo.h>
 22#include <acpi/processor.h>
 23
 24static struct acpi_subtable_header *fetch_pptt_subtable(struct acpi_table_header *table_hdr,
 25							u32 pptt_ref)
 26{
 27	struct acpi_subtable_header *entry;
 28
 29	/* there isn't a subtable at reference 0 */
 30	if (pptt_ref < sizeof(struct acpi_subtable_header))
 31		return NULL;
 32
 33	if (pptt_ref + sizeof(struct acpi_subtable_header) > table_hdr->length)
 34		return NULL;
 35
 36	entry = ACPI_ADD_PTR(struct acpi_subtable_header, table_hdr, pptt_ref);
 37
 38	if (entry->length == 0)
 39		return NULL;
 40
 41	if (pptt_ref + entry->length > table_hdr->length)
 42		return NULL;
 43
 44	return entry;
 45}
 46
 47static struct acpi_pptt_processor *fetch_pptt_node(struct acpi_table_header *table_hdr,
 48						   u32 pptt_ref)
 49{
 50	return (struct acpi_pptt_processor *)fetch_pptt_subtable(table_hdr, pptt_ref);
 51}
 52
 53static struct acpi_pptt_cache *fetch_pptt_cache(struct acpi_table_header *table_hdr,
 54						u32 pptt_ref)
 55{
 56	return (struct acpi_pptt_cache *)fetch_pptt_subtable(table_hdr, pptt_ref);
 57}
 58
 59static struct acpi_subtable_header *acpi_get_pptt_resource(struct acpi_table_header *table_hdr,
 60							   struct acpi_pptt_processor *node,
 61							   int resource)
 62{
 63	u32 *ref;
 64
 65	if (resource >= node->number_of_priv_resources)
 66		return NULL;
 67
 68	ref = ACPI_ADD_PTR(u32, node, sizeof(struct acpi_pptt_processor));
 69	ref += resource;
 70
 71	return fetch_pptt_subtable(table_hdr, *ref);
 72}
 73
 74static inline bool acpi_pptt_match_type(int table_type, int type)
 75{
 76	return ((table_type & ACPI_PPTT_MASK_CACHE_TYPE) == type ||
 77		table_type & ACPI_PPTT_CACHE_TYPE_UNIFIED & type);
 78}
 79
 80/**
 81 * acpi_pptt_walk_cache() - Attempt to find the requested acpi_pptt_cache
 82 * @table_hdr: Pointer to the head of the PPTT table
 83 * @local_level: passed res reflects this cache level
 
 84 * @res: cache resource in the PPTT we want to walk
 85 * @found: returns a pointer to the requested level if found
 86 * @level: the requested cache level
 87 * @type: the requested cache type
 88 *
 89 * Attempt to find a given cache level, while counting the max number
 90 * of cache levels for the cache node.
 91 *
 92 * Given a pptt resource, verify that it is a cache node, then walk
 93 * down each level of caches, counting how many levels are found
 94 * as well as checking the cache type (icache, dcache, unified). If a
 95 * level & type match, then we set found, and continue the search.
 96 * Once the entire cache branch has been walked return its max
 97 * depth.
 98 *
 99 * Return: The cache structure and the level we terminated with.
100 */
101static int acpi_pptt_walk_cache(struct acpi_table_header *table_hdr,
102				int local_level,
103				struct acpi_subtable_header *res,
104				struct acpi_pptt_cache **found,
105				int level, int type)
 
106{
107	struct acpi_pptt_cache *cache;
108
109	if (res->type != ACPI_PPTT_TYPE_CACHE)
110		return 0;
111
112	cache = (struct acpi_pptt_cache *) res;
113	while (cache) {
114		local_level++;
115
 
 
 
 
 
 
 
 
 
 
116		if (local_level == level &&
117		    cache->flags & ACPI_PPTT_CACHE_TYPE_VALID &&
118		    acpi_pptt_match_type(cache->attributes, type)) {
119			if (*found != NULL && cache != *found)
120				pr_warn("Found duplicate cache level/type unable to determine uniqueness\n");
121
122			pr_debug("Found cache @ level %d\n", level);
123			*found = cache;
124			/*
125			 * continue looking at this node's resource list
126			 * to verify that we don't find a duplicate
127			 * cache node.
128			 */
129		}
130		cache = fetch_pptt_cache(table_hdr, cache->next_level_of_cache);
131	}
132	return local_level;
133}
134
135static struct acpi_pptt_cache *acpi_find_cache_level(struct acpi_table_header *table_hdr,
136						     struct acpi_pptt_processor *cpu_node,
137						     int *starting_level, int level,
138						     int type)
 
139{
140	struct acpi_subtable_header *res;
141	int number_of_levels = *starting_level;
142	int resource = 0;
143	struct acpi_pptt_cache *ret = NULL;
144	int local_level;
145
146	/* walk down from processor node */
147	while ((res = acpi_get_pptt_resource(table_hdr, cpu_node, resource))) {
148		resource++;
149
150		local_level = acpi_pptt_walk_cache(table_hdr, *starting_level,
151						   res, &ret, level, type);
 
152		/*
153		 * we are looking for the max depth. Since its potentially
154		 * possible for a given node to have resources with differing
155		 * depths verify that the depth we have found is the largest.
156		 */
157		if (number_of_levels < local_level)
158			number_of_levels = local_level;
159	}
160	if (number_of_levels > *starting_level)
161		*starting_level = number_of_levels;
162
163	return ret;
164}
165
166/**
167 * acpi_count_levels() - Given a PPTT table, and a CPU node, count the caches
 
168 * @table_hdr: Pointer to the head of the PPTT table
169 * @cpu_node: processor node we wish to count caches for
 
 
 
170 *
171 * Given a processor node containing a processing unit, walk into it and count
172 * how many levels exist solely for it, and then walk up each level until we hit
173 * the root node (ignore the package level because it may be possible to have
174 * caches that exist across packages). Count the number of cache levels that
175 * exist at each level on the way up.
176 *
177 * Return: Total number of levels found.
178 */
179static int acpi_count_levels(struct acpi_table_header *table_hdr,
180			     struct acpi_pptt_processor *cpu_node)
181{
182	int total_levels = 0;
183
184	do {
185		acpi_find_cache_level(table_hdr, cpu_node, &total_levels, 0, 0);
186		cpu_node = fetch_pptt_node(table_hdr, cpu_node->parent);
187	} while (cpu_node);
188
189	return total_levels;
190}
191
192/**
193 * acpi_pptt_leaf_node() - Given a processor node, determine if its a leaf
194 * @table_hdr: Pointer to the head of the PPTT table
195 * @node: passed node is checked to see if its a leaf
196 *
197 * Determine if the *node parameter is a leaf node by iterating the
198 * PPTT table, looking for nodes which reference it.
199 *
200 * Return: 0 if we find a node referencing the passed node (or table error),
201 * or 1 if we don't.
202 */
203static int acpi_pptt_leaf_node(struct acpi_table_header *table_hdr,
204			       struct acpi_pptt_processor *node)
205{
206	struct acpi_subtable_header *entry;
207	unsigned long table_end;
208	u32 node_entry;
209	struct acpi_pptt_processor *cpu_node;
210	u32 proc_sz;
211
212	if (table_hdr->revision > 1)
213		return (node->flags & ACPI_PPTT_ACPI_LEAF_NODE);
214
215	table_end = (unsigned long)table_hdr + table_hdr->length;
216	node_entry = ACPI_PTR_DIFF(node, table_hdr);
217	entry = ACPI_ADD_PTR(struct acpi_subtable_header, table_hdr,
218			     sizeof(struct acpi_table_pptt));
219	proc_sz = sizeof(struct acpi_pptt_processor *);
220
221	while ((unsigned long)entry + proc_sz < table_end) {
222		cpu_node = (struct acpi_pptt_processor *)entry;
223		if (entry->type == ACPI_PPTT_TYPE_PROCESSOR &&
224		    cpu_node->parent == node_entry)
225			return 0;
226		if (entry->length == 0)
227			return 0;
228		entry = ACPI_ADD_PTR(struct acpi_subtable_header, entry,
229				     entry->length);
230
231	}
232	return 1;
233}
234
235/**
236 * acpi_find_processor_node() - Given a PPTT table find the requested processor
237 * @table_hdr:  Pointer to the head of the PPTT table
238 * @acpi_cpu_id: CPU we are searching for
239 *
240 * Find the subtable entry describing the provided processor.
241 * This is done by iterating the PPTT table looking for processor nodes
242 * which have an acpi_processor_id that matches the acpi_cpu_id parameter
243 * passed into the function. If we find a node that matches this criteria
244 * we verify that its a leaf node in the topology rather than depending
245 * on the valid flag, which doesn't need to be set for leaf nodes.
246 *
247 * Return: NULL, or the processors acpi_pptt_processor*
248 */
249static struct acpi_pptt_processor *acpi_find_processor_node(struct acpi_table_header *table_hdr,
250							    u32 acpi_cpu_id)
251{
252	struct acpi_subtable_header *entry;
253	unsigned long table_end;
254	struct acpi_pptt_processor *cpu_node;
255	u32 proc_sz;
256
257	table_end = (unsigned long)table_hdr + table_hdr->length;
258	entry = ACPI_ADD_PTR(struct acpi_subtable_header, table_hdr,
259			     sizeof(struct acpi_table_pptt));
260	proc_sz = sizeof(struct acpi_pptt_processor *);
261
262	/* find the processor structure associated with this cpuid */
263	while ((unsigned long)entry + proc_sz < table_end) {
264		cpu_node = (struct acpi_pptt_processor *)entry;
265
266		if (entry->length == 0) {
267			pr_warn("Invalid zero length subtable\n");
268			break;
269		}
270		if (entry->type == ACPI_PPTT_TYPE_PROCESSOR &&
271		    acpi_cpu_id == cpu_node->acpi_processor_id &&
272		     acpi_pptt_leaf_node(table_hdr, cpu_node)) {
273			return (struct acpi_pptt_processor *)entry;
274		}
275
276		entry = ACPI_ADD_PTR(struct acpi_subtable_header, entry,
277				     entry->length);
278	}
279
280	return NULL;
281}
282
283static int acpi_find_cache_levels(struct acpi_table_header *table_hdr,
284				  u32 acpi_cpu_id)
285{
286	int number_of_levels = 0;
287	struct acpi_pptt_processor *cpu;
288
289	cpu = acpi_find_processor_node(table_hdr, acpi_cpu_id);
290	if (cpu)
291		number_of_levels = acpi_count_levels(table_hdr, cpu);
292
293	return number_of_levels;
294}
295
296static u8 acpi_cache_type(enum cache_type type)
297{
298	switch (type) {
299	case CACHE_TYPE_DATA:
300		pr_debug("Looking for data cache\n");
301		return ACPI_PPTT_CACHE_TYPE_DATA;
302	case CACHE_TYPE_INST:
303		pr_debug("Looking for instruction cache\n");
304		return ACPI_PPTT_CACHE_TYPE_INSTR;
305	default:
306	case CACHE_TYPE_UNIFIED:
307		pr_debug("Looking for unified cache\n");
308		/*
309		 * It is important that ACPI_PPTT_CACHE_TYPE_UNIFIED
310		 * contains the bit pattern that will match both
311		 * ACPI unified bit patterns because we use it later
312		 * to match both cases.
313		 */
314		return ACPI_PPTT_CACHE_TYPE_UNIFIED;
315	}
316}
317
318static struct acpi_pptt_cache *acpi_find_cache_node(struct acpi_table_header *table_hdr,
319						    u32 acpi_cpu_id,
320						    enum cache_type type,
321						    unsigned int level,
322						    struct acpi_pptt_processor **node)
323{
324	int total_levels = 0;
325	struct acpi_pptt_cache *found = NULL;
326	struct acpi_pptt_processor *cpu_node;
327	u8 acpi_type = acpi_cache_type(type);
328
329	pr_debug("Looking for CPU %d's level %d cache type %d\n",
330		 acpi_cpu_id, level, acpi_type);
331
332	cpu_node = acpi_find_processor_node(table_hdr, acpi_cpu_id);
333
334	while (cpu_node && !found) {
335		found = acpi_find_cache_level(table_hdr, cpu_node,
336					      &total_levels, level, acpi_type);
337		*node = cpu_node;
338		cpu_node = fetch_pptt_node(table_hdr, cpu_node->parent);
339	}
340
341	return found;
342}
343
344/**
345 * update_cache_properties() - Update cacheinfo for the given processor
346 * @this_leaf: Kernel cache info structure being updated
347 * @found_cache: The PPTT node describing this cache instance
348 * @cpu_node: A unique reference to describe this cache instance
 
349 *
350 * The ACPI spec implies that the fields in the cache structures are used to
351 * extend and correct the information probed from the hardware. Lets only
352 * set fields that we determine are VALID.
353 *
354 * Return: nothing. Side effect of updating the global cacheinfo
355 */
356static void update_cache_properties(struct cacheinfo *this_leaf,
357				    struct acpi_pptt_cache *found_cache,
358				    struct acpi_pptt_processor *cpu_node)
 
359{
 
 
360	this_leaf->fw_token = cpu_node;
361	if (found_cache->flags & ACPI_PPTT_SIZE_PROPERTY_VALID)
362		this_leaf->size = found_cache->size;
363	if (found_cache->flags & ACPI_PPTT_LINE_SIZE_VALID)
364		this_leaf->coherency_line_size = found_cache->line_size;
365	if (found_cache->flags & ACPI_PPTT_NUMBER_OF_SETS_VALID)
366		this_leaf->number_of_sets = found_cache->number_of_sets;
367	if (found_cache->flags & ACPI_PPTT_ASSOCIATIVITY_VALID)
368		this_leaf->ways_of_associativity = found_cache->associativity;
369	if (found_cache->flags & ACPI_PPTT_WRITE_POLICY_VALID) {
370		switch (found_cache->attributes & ACPI_PPTT_MASK_WRITE_POLICY) {
371		case ACPI_PPTT_CACHE_POLICY_WT:
372			this_leaf->attributes = CACHE_WRITE_THROUGH;
373			break;
374		case ACPI_PPTT_CACHE_POLICY_WB:
375			this_leaf->attributes = CACHE_WRITE_BACK;
376			break;
377		}
378	}
379	if (found_cache->flags & ACPI_PPTT_ALLOCATION_TYPE_VALID) {
380		switch (found_cache->attributes & ACPI_PPTT_MASK_ALLOCATION_TYPE) {
381		case ACPI_PPTT_CACHE_READ_ALLOCATE:
382			this_leaf->attributes |= CACHE_READ_ALLOCATE;
383			break;
384		case ACPI_PPTT_CACHE_WRITE_ALLOCATE:
385			this_leaf->attributes |= CACHE_WRITE_ALLOCATE;
386			break;
387		case ACPI_PPTT_CACHE_RW_ALLOCATE:
388		case ACPI_PPTT_CACHE_RW_ALLOCATE_ALT:
389			this_leaf->attributes |=
390				CACHE_READ_ALLOCATE | CACHE_WRITE_ALLOCATE;
391			break;
392		}
393	}
394	/*
395	 * If cache type is NOCACHE, then the cache hasn't been specified
396	 * via other mechanisms.  Update the type if a cache type has been
397	 * provided.
398	 *
399	 * Note, we assume such caches are unified based on conventional system
400	 * design and known examples.  Significant work is required elsewhere to
401	 * fully support data/instruction only type caches which are only
402	 * specified in PPTT.
403	 */
404	if (this_leaf->type == CACHE_TYPE_NOCACHE &&
405	    found_cache->flags & ACPI_PPTT_CACHE_TYPE_VALID)
406		this_leaf->type = CACHE_TYPE_UNIFIED;
 
 
 
 
 
 
 
407}
408
409static void cache_setup_acpi_cpu(struct acpi_table_header *table,
410				 unsigned int cpu)
411{
412	struct acpi_pptt_cache *found_cache;
413	struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
414	u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu);
415	struct cacheinfo *this_leaf;
416	unsigned int index = 0;
417	struct acpi_pptt_processor *cpu_node = NULL;
418
419	while (index < get_cpu_cacheinfo(cpu)->num_leaves) {
420		this_leaf = this_cpu_ci->info_list + index;
421		found_cache = acpi_find_cache_node(table, acpi_cpu_id,
422						   this_leaf->type,
423						   this_leaf->level,
424						   &cpu_node);
425		pr_debug("found = %p %p\n", found_cache, cpu_node);
426		if (found_cache)
427			update_cache_properties(this_leaf,
428						found_cache,
429						cpu_node);
430
431		index++;
432	}
433}
434
435static bool flag_identical(struct acpi_table_header *table_hdr,
436			   struct acpi_pptt_processor *cpu)
437{
438	struct acpi_pptt_processor *next;
439
440	/* heterogeneous machines must use PPTT revision > 1 */
441	if (table_hdr->revision < 2)
442		return false;
443
444	/* Locate the last node in the tree with IDENTICAL set */
445	if (cpu->flags & ACPI_PPTT_ACPI_IDENTICAL) {
446		next = fetch_pptt_node(table_hdr, cpu->parent);
447		if (!(next && next->flags & ACPI_PPTT_ACPI_IDENTICAL))
448			return true;
449	}
450
451	return false;
452}
453
454/* Passing level values greater than this will result in search termination */
455#define PPTT_ABORT_PACKAGE 0xFF
456
457static struct acpi_pptt_processor *acpi_find_processor_tag(struct acpi_table_header *table_hdr,
458							   struct acpi_pptt_processor *cpu,
459							   int level, int flag)
460{
461	struct acpi_pptt_processor *prev_node;
462
463	while (cpu && level) {
464		/* special case the identical flag to find last identical */
465		if (flag == ACPI_PPTT_ACPI_IDENTICAL) {
466			if (flag_identical(table_hdr, cpu))
467				break;
468		} else if (cpu->flags & flag)
469			break;
470		pr_debug("level %d\n", level);
471		prev_node = fetch_pptt_node(table_hdr, cpu->parent);
472		if (prev_node == NULL)
473			break;
474		cpu = prev_node;
475		level--;
476	}
477	return cpu;
478}
479
480static void acpi_pptt_warn_missing(void)
481{
482	pr_warn_once("No PPTT table found, CPU and cache topology may be inaccurate\n");
483}
484
485/**
486 * topology_get_acpi_cpu_tag() - Find a unique topology value for a feature
487 * @table: Pointer to the head of the PPTT table
488 * @cpu: Kernel logical CPU number
489 * @level: A level that terminates the search
490 * @flag: A flag which terminates the search
491 *
492 * Get a unique value given a CPU, and a topology level, that can be
493 * matched to determine which cpus share common topological features
494 * at that level.
495 *
496 * Return: Unique value, or -ENOENT if unable to locate CPU
497 */
498static int topology_get_acpi_cpu_tag(struct acpi_table_header *table,
499				     unsigned int cpu, int level, int flag)
500{
501	struct acpi_pptt_processor *cpu_node;
502	u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu);
503
504	cpu_node = acpi_find_processor_node(table, acpi_cpu_id);
505	if (cpu_node) {
506		cpu_node = acpi_find_processor_tag(table, cpu_node,
507						   level, flag);
508		/*
509		 * As per specification if the processor structure represents
510		 * an actual processor, then ACPI processor ID must be valid.
511		 * For processor containers ACPI_PPTT_ACPI_PROCESSOR_ID_VALID
512		 * should be set if the UID is valid
513		 */
514		if (level == 0 ||
515		    cpu_node->flags & ACPI_PPTT_ACPI_PROCESSOR_ID_VALID)
516			return cpu_node->acpi_processor_id;
517		return ACPI_PTR_DIFF(cpu_node, table);
518	}
519	pr_warn_once("PPTT table found, but unable to locate core %d (%d)\n",
520		    cpu, acpi_cpu_id);
521	return -ENOENT;
522}
523
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
524static int find_acpi_cpu_topology_tag(unsigned int cpu, int level, int flag)
525{
526	struct acpi_table_header *table;
527	acpi_status status;
528	int retval;
529
530	status = acpi_get_table(ACPI_SIG_PPTT, 0, &table);
531	if (ACPI_FAILURE(status)) {
532		acpi_pptt_warn_missing();
533		return -ENOENT;
534	}
535	retval = topology_get_acpi_cpu_tag(table, cpu, level, flag);
536	pr_debug("Topology Setup ACPI CPU %d, level %d ret = %d\n",
537		 cpu, level, retval);
538	acpi_put_table(table);
539
540	return retval;
541}
542
543/**
544 * check_acpi_cpu_flag() - Determine if CPU node has a flag set
545 * @cpu: Kernel logical CPU number
546 * @rev: The minimum PPTT revision defining the flag
547 * @flag: The flag itself
548 *
549 * Check the node representing a CPU for a given flag.
550 *
551 * Return: -ENOENT if the PPTT doesn't exist, the CPU cannot be found or
552 *	   the table revision isn't new enough.
553 *	   1, any passed flag set
554 *	   0, flag unset
555 */
556static int check_acpi_cpu_flag(unsigned int cpu, int rev, u32 flag)
557{
558	struct acpi_table_header *table;
559	acpi_status status;
560	u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu);
561	struct acpi_pptt_processor *cpu_node = NULL;
562	int ret = -ENOENT;
563
564	status = acpi_get_table(ACPI_SIG_PPTT, 0, &table);
565	if (ACPI_FAILURE(status)) {
566		acpi_pptt_warn_missing();
567		return ret;
568	}
569
570	if (table->revision >= rev)
571		cpu_node = acpi_find_processor_node(table, acpi_cpu_id);
572
573	if (cpu_node)
574		ret = (cpu_node->flags & flag) != 0;
575
576	acpi_put_table(table);
577
578	return ret;
579}
580
581/**
582 * acpi_find_last_cache_level() - Determines the number of cache levels for a PE
 
583 * @cpu: Kernel logical CPU number
 
 
 
584 *
585 * Given a logical CPU number, returns the number of levels of cache represented
586 * in the PPTT. Errors caused by lack of a PPTT table, or otherwise, return 0
587 * indicating we didn't find any cache levels.
588 *
589 * Return: Cache levels visible to this core.
 
590 */
591int acpi_find_last_cache_level(unsigned int cpu)
 
592{
 
 
593	u32 acpi_cpu_id;
594	struct acpi_table_header *table;
595	int number_of_levels = 0;
596	acpi_status status;
597
598	pr_debug("Cache Setup find last level CPU=%d\n", cpu);
 
 
 
 
 
 
 
 
599
600	acpi_cpu_id = get_acpi_id_for_cpu(cpu);
601	status = acpi_get_table(ACPI_SIG_PPTT, 0, &table);
602	if (ACPI_FAILURE(status)) {
603		acpi_pptt_warn_missing();
604	} else {
605		number_of_levels = acpi_find_cache_levels(table, acpi_cpu_id);
606		acpi_put_table(table);
607	}
608	pr_debug("Cache Setup find last level level=%d\n", number_of_levels);
609
610	return number_of_levels;
611}
612
613/**
614 * cache_setup_acpi() - Override CPU cache topology with data from the PPTT
615 * @cpu: Kernel logical CPU number
616 *
617 * Updates the global cache info provided by cpu_get_cacheinfo()
618 * when there are valid properties in the acpi_pptt_cache nodes. A
619 * successful parse may not result in any updates if none of the
620 * cache levels have any valid flags set.  Further, a unique value is
621 * associated with each known CPU cache entry. This unique value
622 * can be used to determine whether caches are shared between CPUs.
623 *
624 * Return: -ENOENT on failure to find table, or 0 on success
625 */
626int cache_setup_acpi(unsigned int cpu)
627{
628	struct acpi_table_header *table;
629	acpi_status status;
 
 
 
630
631	pr_debug("Cache Setup ACPI CPU %d\n", cpu);
632
633	status = acpi_get_table(ACPI_SIG_PPTT, 0, &table);
634	if (ACPI_FAILURE(status)) {
635		acpi_pptt_warn_missing();
636		return -ENOENT;
637	}
638
639	cache_setup_acpi_cpu(table, cpu);
640	acpi_put_table(table);
641
642	return status;
643}
644
645/**
646 * acpi_pptt_cpu_is_thread() - Determine if CPU is a thread
647 * @cpu: Kernel logical CPU number
648 *
649 * Return: 1, a thread
650 *         0, not a thread
651 *         -ENOENT ,if the PPTT doesn't exist, the CPU cannot be found or
652 *         the table revision isn't new enough.
653 */
654int acpi_pptt_cpu_is_thread(unsigned int cpu)
655{
656	return check_acpi_cpu_flag(cpu, 2, ACPI_PPTT_ACPI_PROCESSOR_IS_THREAD);
657}
658
659/**
660 * find_acpi_cpu_topology() - Determine a unique topology value for a given CPU
661 * @cpu: Kernel logical CPU number
662 * @level: The topological level for which we would like a unique ID
663 *
664 * Determine a topology unique ID for each thread/core/cluster/mc_grouping
665 * /socket/etc. This ID can then be used to group peers, which will have
666 * matching ids.
667 *
668 * The search terminates when either the requested level is found or
669 * we reach a root node. Levels beyond the termination point will return the
670 * same unique ID. The unique id for level 0 is the acpi processor id. All
671 * other levels beyond this use a generated value to uniquely identify
672 * a topological feature.
673 *
674 * Return: -ENOENT if the PPTT doesn't exist, or the CPU cannot be found.
675 * Otherwise returns a value which represents a unique topological feature.
676 */
677int find_acpi_cpu_topology(unsigned int cpu, int level)
678{
679	return find_acpi_cpu_topology_tag(cpu, level, 0);
680}
681
682/**
683 * find_acpi_cpu_cache_topology() - Determine a unique cache topology value
684 * @cpu: Kernel logical CPU number
685 * @level: The cache level for which we would like a unique ID
686 *
687 * Determine a unique ID for each unified cache in the system
 
 
 
 
688 *
689 * Return: -ENOENT if the PPTT doesn't exist, or the CPU cannot be found.
690 * Otherwise returns a value which represents a unique topological feature.
691 */
692int find_acpi_cpu_cache_topology(unsigned int cpu, int level)
693{
694	struct acpi_table_header *table;
695	struct acpi_pptt_cache *found_cache;
696	acpi_status status;
697	u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu);
698	struct acpi_pptt_processor *cpu_node = NULL;
699	int ret = -1;
700
701	status = acpi_get_table(ACPI_SIG_PPTT, 0, &table);
702	if (ACPI_FAILURE(status)) {
703		acpi_pptt_warn_missing();
704		return -ENOENT;
705	}
706
707	found_cache = acpi_find_cache_node(table, acpi_cpu_id,
708					   CACHE_TYPE_UNIFIED,
709					   level,
710					   &cpu_node);
711	if (found_cache)
712		ret = ACPI_PTR_DIFF(cpu_node, table);
713
714	acpi_put_table(table);
715
716	return ret;
717}
718
719/**
720 * find_acpi_cpu_topology_package() - Determine a unique CPU package value
721 * @cpu: Kernel logical CPU number
722 *
723 * Determine a topology unique package ID for the given CPU.
724 * This ID can then be used to group peers, which will have matching ids.
725 *
726 * The search terminates when either a level is found with the PHYSICAL_PACKAGE
727 * flag set or we reach a root node.
 
 
728 *
729 * Return: -ENOENT if the PPTT doesn't exist, or the CPU cannot be found.
 
730 * Otherwise returns a value which represents the package for this CPU.
731 */
732int find_acpi_cpu_topology_package(unsigned int cpu)
 
733{
734	return find_acpi_cpu_topology_tag(cpu, PPTT_ABORT_PACKAGE,
735					  ACPI_PPTT_PHYSICAL_PACKAGE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
736}
737
738/**
739 * find_acpi_cpu_topology_hetero_id() - Get a core architecture tag
740 * @cpu: Kernel logical CPU number
741 *
742 * Determine a unique heterogeneous tag for the given CPU. CPUs with the same
743 * implementation should have matching tags.
744 *
745 * The returned tag can be used to group peers with identical implementation.
746 *
747 * The search terminates when a level is found with the identical implementation
748 * flag set or we reach a root node.
749 *
750 * Due to limitations in the PPTT data structure, there may be rare situations
751 * where two cores in a heterogeneous machine may be identical, but won't have
752 * the same tag.
753 *
754 * Return: -ENOENT if the PPTT doesn't exist, or the CPU cannot be found.
755 * Otherwise returns a value which represents a group of identical cores
756 * similar to this CPU.
757 */
758int find_acpi_cpu_topology_hetero_id(unsigned int cpu)
759{
760	return find_acpi_cpu_topology_tag(cpu, PPTT_ABORT_PACKAGE,
761					  ACPI_PPTT_ACPI_IDENTICAL);
762}