Linux Audio

Check our new training course

Loading...
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Xen time implementation.
  4 *
  5 * This is implemented in terms of a clocksource driver which uses
  6 * the hypervisor clock as a nanosecond timebase, and a clockevent
  7 * driver which uses the hypervisor's timer mechanism.
  8 *
  9 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
 10 */
 11#include <linux/kernel.h>
 12#include <linux/interrupt.h>
 13#include <linux/clocksource.h>
 14#include <linux/clockchips.h>
 15#include <linux/gfp.h>
 16#include <linux/slab.h>
 17#include <linux/pvclock_gtod.h>
 18#include <linux/timekeeper_internal.h>
 19
 20#include <asm/pvclock.h>
 21#include <asm/xen/hypervisor.h>
 22#include <asm/xen/hypercall.h>
 23#include <asm/xen/cpuid.h>
 24
 25#include <xen/events.h>
 26#include <xen/features.h>
 27#include <xen/interface/xen.h>
 28#include <xen/interface/vcpu.h>
 29
 30#include "xen-ops.h"
 31
 32/* Minimum amount of time until next clock event fires */
 33#define TIMER_SLOP	1
 34
 35static u64 xen_sched_clock_offset __read_mostly;
 36
 37/* Get the TSC speed from Xen */
 38static unsigned long xen_tsc_khz(void)
 39{
 40	struct pvclock_vcpu_time_info *info =
 41		&HYPERVISOR_shared_info->vcpu_info[0].time;
 42
 43	setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ);
 44	return pvclock_tsc_khz(info);
 45}
 46
 47static u64 xen_clocksource_read(void)
 48{
 49        struct pvclock_vcpu_time_info *src;
 50	u64 ret;
 51
 52	preempt_disable_notrace();
 53	src = &__this_cpu_read(xen_vcpu)->time;
 54	ret = pvclock_clocksource_read(src);
 55	preempt_enable_notrace();
 56	return ret;
 57}
 58
 59static u64 xen_clocksource_get_cycles(struct clocksource *cs)
 60{
 61	return xen_clocksource_read();
 62}
 63
 64static noinstr u64 xen_sched_clock(void)
 65{
 66        struct pvclock_vcpu_time_info *src;
 67	u64 ret;
 68
 69	src = &__this_cpu_read(xen_vcpu)->time;
 70	ret = pvclock_clocksource_read_nowd(src);
 71	ret -= xen_sched_clock_offset;
 72
 73	return ret;
 74}
 75
 76static void xen_read_wallclock(struct timespec64 *ts)
 77{
 78	struct shared_info *s = HYPERVISOR_shared_info;
 79	struct pvclock_wall_clock *wall_clock = &(s->wc);
 80        struct pvclock_vcpu_time_info *vcpu_time;
 81
 82	vcpu_time = &get_cpu_var(xen_vcpu)->time;
 83	pvclock_read_wallclock(wall_clock, vcpu_time, ts);
 84	put_cpu_var(xen_vcpu);
 85}
 86
 87static void xen_get_wallclock(struct timespec64 *now)
 88{
 89	xen_read_wallclock(now);
 90}
 91
 92static int xen_set_wallclock(const struct timespec64 *now)
 93{
 94	return -ENODEV;
 95}
 96
 97static int xen_pvclock_gtod_notify(struct notifier_block *nb,
 98				   unsigned long was_set, void *priv)
 99{
100	/* Protected by the calling core code serialization */
101	static struct timespec64 next_sync;
102
103	struct xen_platform_op op;
104	struct timespec64 now;
105	struct timekeeper *tk = priv;
106	static bool settime64_supported = true;
107	int ret;
108
109	now.tv_sec = tk->xtime_sec;
110	now.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
111
112	/*
113	 * We only take the expensive HV call when the clock was set
114	 * or when the 11 minutes RTC synchronization time elapsed.
115	 */
116	if (!was_set && timespec64_compare(&now, &next_sync) < 0)
117		return NOTIFY_OK;
118
119again:
120	if (settime64_supported) {
121		op.cmd = XENPF_settime64;
122		op.u.settime64.mbz = 0;
123		op.u.settime64.secs = now.tv_sec;
124		op.u.settime64.nsecs = now.tv_nsec;
125		op.u.settime64.system_time = xen_clocksource_read();
126	} else {
127		op.cmd = XENPF_settime32;
128		op.u.settime32.secs = now.tv_sec;
129		op.u.settime32.nsecs = now.tv_nsec;
130		op.u.settime32.system_time = xen_clocksource_read();
131	}
132
133	ret = HYPERVISOR_platform_op(&op);
134
135	if (ret == -ENOSYS && settime64_supported) {
136		settime64_supported = false;
137		goto again;
138	}
139	if (ret < 0)
140		return NOTIFY_BAD;
141
142	/*
143	 * Move the next drift compensation time 11 minutes
144	 * ahead. That's emulating the sync_cmos_clock() update for
145	 * the hardware RTC.
146	 */
147	next_sync = now;
148	next_sync.tv_sec += 11 * 60;
149
150	return NOTIFY_OK;
151}
152
153static struct notifier_block xen_pvclock_gtod_notifier = {
154	.notifier_call = xen_pvclock_gtod_notify,
155};
156
157static int xen_cs_enable(struct clocksource *cs)
158{
159	vclocks_set_used(VDSO_CLOCKMODE_PVCLOCK);
160	return 0;
161}
162
163static struct clocksource xen_clocksource __read_mostly = {
164	.name	= "xen",
165	.rating	= 400,
166	.read	= xen_clocksource_get_cycles,
167	.mask	= CLOCKSOURCE_MASK(64),
168	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
169	.enable = xen_cs_enable,
170};
171
172/*
173   Xen clockevent implementation
174
175   Xen has two clockevent implementations:
176
177   The old timer_op one works with all released versions of Xen prior
178   to version 3.0.4.  This version of the hypervisor provides a
179   single-shot timer with nanosecond resolution.  However, sharing the
180   same event channel is a 100Hz tick which is delivered while the
181   vcpu is running.  We don't care about or use this tick, but it will
182   cause the core time code to think the timer fired too soon, and
183   will end up resetting it each time.  It could be filtered, but
184   doing so has complications when the ktime clocksource is not yet
185   the xen clocksource (ie, at boot time).
186
187   The new vcpu_op-based timer interface allows the tick timer period
188   to be changed or turned off.  The tick timer is not useful as a
189   periodic timer because events are only delivered to running vcpus.
190   The one-shot timer can report when a timeout is in the past, so
191   set_next_event is capable of returning -ETIME when appropriate.
192   This interface is used when available.
193*/
194
195
196/*
197  Get a hypervisor absolute time.  In theory we could maintain an
198  offset between the kernel's time and the hypervisor's time, and
199  apply that to a kernel's absolute timeout.  Unfortunately the
200  hypervisor and kernel times can drift even if the kernel is using
201  the Xen clocksource, because ntp can warp the kernel's clocksource.
202*/
203static s64 get_abs_timeout(unsigned long delta)
204{
205	return xen_clocksource_read() + delta;
206}
207
208static int xen_timerop_shutdown(struct clock_event_device *evt)
209{
210	/* cancel timeout */
211	HYPERVISOR_set_timer_op(0);
212
213	return 0;
214}
215
216static int xen_timerop_set_next_event(unsigned long delta,
217				      struct clock_event_device *evt)
218{
219	WARN_ON(!clockevent_state_oneshot(evt));
220
221	if (HYPERVISOR_set_timer_op(get_abs_timeout(delta)) < 0)
222		BUG();
223
224	/* We may have missed the deadline, but there's no real way of
225	   knowing for sure.  If the event was in the past, then we'll
226	   get an immediate interrupt. */
227
228	return 0;
229}
230
231static struct clock_event_device xen_timerop_clockevent __ro_after_init = {
232	.name			= "xen",
233	.features		= CLOCK_EVT_FEAT_ONESHOT,
234
235	.max_delta_ns		= 0xffffffff,
236	.max_delta_ticks	= 0xffffffff,
237	.min_delta_ns		= TIMER_SLOP,
238	.min_delta_ticks	= TIMER_SLOP,
239
240	.mult			= 1,
241	.shift			= 0,
242	.rating			= 500,
243
244	.set_state_shutdown	= xen_timerop_shutdown,
245	.set_next_event		= xen_timerop_set_next_event,
246};
247
248static int xen_vcpuop_shutdown(struct clock_event_device *evt)
249{
250	int cpu = smp_processor_id();
251
252	if (HYPERVISOR_vcpu_op(VCPUOP_stop_singleshot_timer, xen_vcpu_nr(cpu),
253			       NULL) ||
254	    HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, xen_vcpu_nr(cpu),
255			       NULL))
256		BUG();
257
258	return 0;
259}
260
261static int xen_vcpuop_set_oneshot(struct clock_event_device *evt)
262{
263	int cpu = smp_processor_id();
264
265	if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, xen_vcpu_nr(cpu),
266			       NULL))
267		BUG();
268
269	return 0;
270}
271
272static int xen_vcpuop_set_next_event(unsigned long delta,
273				     struct clock_event_device *evt)
274{
275	int cpu = smp_processor_id();
276	struct vcpu_set_singleshot_timer single;
277	int ret;
278
279	WARN_ON(!clockevent_state_oneshot(evt));
280
281	single.timeout_abs_ns = get_abs_timeout(delta);
282	/* Get an event anyway, even if the timeout is already expired */
283	single.flags = 0;
284
285	ret = HYPERVISOR_vcpu_op(VCPUOP_set_singleshot_timer, xen_vcpu_nr(cpu),
286				 &single);
287	BUG_ON(ret != 0);
288
289	return ret;
290}
291
292static struct clock_event_device xen_vcpuop_clockevent __ro_after_init = {
293	.name = "xen",
294	.features = CLOCK_EVT_FEAT_ONESHOT,
295
296	.max_delta_ns = 0xffffffff,
297	.max_delta_ticks = 0xffffffff,
298	.min_delta_ns = TIMER_SLOP,
299	.min_delta_ticks = TIMER_SLOP,
300
301	.mult = 1,
302	.shift = 0,
303	.rating = 500,
304
305	.set_state_shutdown = xen_vcpuop_shutdown,
306	.set_state_oneshot = xen_vcpuop_set_oneshot,
307	.set_next_event = xen_vcpuop_set_next_event,
308};
309
310static const struct clock_event_device *xen_clockevent =
311	&xen_timerop_clockevent;
312
313struct xen_clock_event_device {
314	struct clock_event_device evt;
315	char name[16];
316};
317static DEFINE_PER_CPU(struct xen_clock_event_device, xen_clock_events) = { .evt.irq = -1 };
318
319static irqreturn_t xen_timer_interrupt(int irq, void *dev_id)
320{
321	struct clock_event_device *evt = this_cpu_ptr(&xen_clock_events.evt);
322	irqreturn_t ret;
323
324	ret = IRQ_NONE;
325	if (evt->event_handler) {
326		evt->event_handler(evt);
327		ret = IRQ_HANDLED;
328	}
329
330	return ret;
331}
332
333void xen_teardown_timer(int cpu)
334{
335	struct clock_event_device *evt;
336	evt = &per_cpu(xen_clock_events, cpu).evt;
337
338	if (evt->irq >= 0) {
339		unbind_from_irqhandler(evt->irq, NULL);
340		evt->irq = -1;
341	}
342}
343
344void xen_setup_timer(int cpu)
345{
346	struct xen_clock_event_device *xevt = &per_cpu(xen_clock_events, cpu);
347	struct clock_event_device *evt = &xevt->evt;
348	int irq;
349
350	WARN(evt->irq >= 0, "IRQ%d for CPU%d is already allocated\n", evt->irq, cpu);
351	if (evt->irq >= 0)
352		xen_teardown_timer(cpu);
353
354	printk(KERN_INFO "installing Xen timer for CPU %d\n", cpu);
355
356	snprintf(xevt->name, sizeof(xevt->name), "timer%d", cpu);
357
358	irq = bind_virq_to_irqhandler(VIRQ_TIMER, cpu, xen_timer_interrupt,
359				      IRQF_PERCPU|IRQF_NOBALANCING|IRQF_TIMER|
360				      IRQF_FORCE_RESUME|IRQF_EARLY_RESUME,
361				      xevt->name, NULL);
362	(void)xen_set_irq_priority(irq, XEN_IRQ_PRIORITY_MAX);
363
364	memcpy(evt, xen_clockevent, sizeof(*evt));
365
366	evt->cpumask = cpumask_of(cpu);
367	evt->irq = irq;
368}
369
370
371void xen_setup_cpu_clockevents(void)
372{
373	clockevents_register_device(this_cpu_ptr(&xen_clock_events.evt));
374}
375
376void xen_timer_resume(void)
377{
378	int cpu;
379
380	if (xen_clockevent != &xen_vcpuop_clockevent)
381		return;
382
383	for_each_online_cpu(cpu) {
384		if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer,
385				       xen_vcpu_nr(cpu), NULL))
386			BUG();
387	}
388}
389
 
 
 
 
 
390static struct pvclock_vsyscall_time_info *xen_clock __read_mostly;
391static u64 xen_clock_value_saved;
392
393void xen_save_time_memory_area(void)
394{
395	struct vcpu_register_time_memory_area t;
396	int ret;
397
398	xen_clock_value_saved = xen_clocksource_read() - xen_sched_clock_offset;
399
400	if (!xen_clock)
401		return;
402
403	t.addr.v = NULL;
404
405	ret = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_time_memory_area, 0, &t);
406	if (ret != 0)
407		pr_notice("Cannot save secondary vcpu_time_info (err %d)",
408			  ret);
409	else
410		clear_page(xen_clock);
411}
412
413void xen_restore_time_memory_area(void)
414{
415	struct vcpu_register_time_memory_area t;
416	int ret;
417
418	if (!xen_clock)
419		goto out;
420
421	t.addr.v = &xen_clock->pvti;
422
423	ret = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_time_memory_area, 0, &t);
424
425	/*
426	 * We don't disable VDSO_CLOCKMODE_PVCLOCK entirely if it fails to
427	 * register the secondary time info with Xen or if we migrated to a
428	 * host without the necessary flags. On both of these cases what
429	 * happens is either process seeing a zeroed out pvti or seeing no
430	 * PVCLOCK_TSC_STABLE_BIT bit set. Userspace checks the latter and
431	 * if 0, it discards the data in pvti and fallbacks to a system
432	 * call for a reliable timestamp.
433	 */
434	if (ret != 0)
435		pr_notice("Cannot restore secondary vcpu_time_info (err %d)",
436			  ret);
437
438out:
439	/* Need pvclock_resume() before using xen_clocksource_read(). */
440	pvclock_resume();
441	xen_sched_clock_offset = xen_clocksource_read() - xen_clock_value_saved;
442}
443
444static void xen_setup_vsyscall_time_info(void)
445{
446	struct vcpu_register_time_memory_area t;
447	struct pvclock_vsyscall_time_info *ti;
448	int ret;
449
450	ti = (struct pvclock_vsyscall_time_info *)get_zeroed_page(GFP_KERNEL);
451	if (!ti)
452		return;
453
454	t.addr.v = &ti->pvti;
455
456	ret = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_time_memory_area, 0, &t);
457	if (ret) {
458		pr_notice("xen: VDSO_CLOCKMODE_PVCLOCK not supported (err %d)\n", ret);
459		free_page((unsigned long)ti);
460		return;
461	}
462
463	/*
464	 * If primary time info had this bit set, secondary should too since
465	 * it's the same data on both just different memory regions. But we
466	 * still check it in case hypervisor is buggy.
467	 */
468	if (!(ti->pvti.flags & PVCLOCK_TSC_STABLE_BIT)) {
469		t.addr.v = NULL;
470		ret = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_time_memory_area,
471					 0, &t);
472		if (!ret)
473			free_page((unsigned long)ti);
474
475		pr_notice("xen: VDSO_CLOCKMODE_PVCLOCK not supported (tsc unstable)\n");
476		return;
477	}
478
479	xen_clock = ti;
480	pvclock_set_pvti_cpu0_va(xen_clock);
481
482	xen_clocksource.vdso_clock_mode = VDSO_CLOCKMODE_PVCLOCK;
483}
484
485/*
486 * Check if it is possible to safely use the tsc as a clocksource.  This is
487 * only true if the hypervisor notifies the guest that its tsc is invariant,
488 * the tsc is stable, and the tsc instruction will never be emulated.
489 */
490static int __init xen_tsc_safe_clocksource(void)
491{
492	u32 eax, ebx, ecx, edx;
493
494	if (!(boot_cpu_has(X86_FEATURE_CONSTANT_TSC)))
495		return 0;
496
497	if (!(boot_cpu_has(X86_FEATURE_NONSTOP_TSC)))
498		return 0;
499
500	if (check_tsc_unstable())
501		return 0;
502
503	/* Leaf 4, sub-leaf 0 (0x40000x03) */
504	cpuid_count(xen_cpuid_base() + 3, 0, &eax, &ebx, &ecx, &edx);
505
506	return ebx == XEN_CPUID_TSC_MODE_NEVER_EMULATE;
507}
508
509static void __init xen_time_init(void)
510{
511	struct pvclock_vcpu_time_info *pvti;
512	int cpu = smp_processor_id();
513	struct timespec64 tp;
514
515	/*
516	 * As Dom0 is never moved, no penalty on using TSC there.
517	 *
518	 * If it is possible for the guest to determine that the tsc is a safe
519	 * clocksource, then set xen_clocksource rating below that of the tsc
520	 * so that the system prefers tsc instead.
521	 */
522	if (xen_initial_domain())
523		xen_clocksource.rating = 275;
524	else if (xen_tsc_safe_clocksource())
525		xen_clocksource.rating = 299;
526
527	clocksource_register_hz(&xen_clocksource, NSEC_PER_SEC);
528
529	if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, xen_vcpu_nr(cpu),
530			       NULL) == 0) {
531		/* Successfully turned off 100Hz tick, so we have the
532		   vcpuop-based timer interface */
533		printk(KERN_DEBUG "Xen: using vcpuop timer interface\n");
534		xen_clockevent = &xen_vcpuop_clockevent;
535	}
536
537	/* Set initial system time with full resolution */
538	xen_read_wallclock(&tp);
539	do_settimeofday64(&tp);
540
541	setup_force_cpu_cap(X86_FEATURE_TSC);
542
543	/*
544	 * We check ahead on the primary time info if this
545	 * bit is supported hence speeding up Xen clocksource.
546	 */
547	pvti = &__this_cpu_read(xen_vcpu)->time;
548	if (pvti->flags & PVCLOCK_TSC_STABLE_BIT) {
549		pvclock_set_flags(PVCLOCK_TSC_STABLE_BIT);
550		xen_setup_vsyscall_time_info();
551	}
552
553	xen_setup_runstate_info(cpu);
554	xen_setup_timer(cpu);
555	xen_setup_cpu_clockevents();
556
557	xen_time_setup_guest();
558
559	if (xen_initial_domain())
560		pvclock_gtod_register_notifier(&xen_pvclock_gtod_notifier);
561}
562
563static void __init xen_init_time_common(void)
564{
565	xen_sched_clock_offset = xen_clocksource_read();
566	static_call_update(pv_steal_clock, xen_steal_clock);
567	paravirt_set_sched_clock(xen_sched_clock);
568
569	x86_platform.calibrate_tsc = xen_tsc_khz;
570	x86_platform.get_wallclock = xen_get_wallclock;
571}
572
573void __init xen_init_time_ops(void)
574{
575	xen_init_time_common();
 
576
577	x86_init.timers.timer_init = xen_time_init;
578	x86_init.timers.setup_percpu_clockev = x86_init_noop;
579	x86_cpuinit.setup_percpu_clockev = x86_init_noop;
580
 
 
581	/* Dom0 uses the native method to set the hardware RTC. */
582	if (!xen_initial_domain())
583		x86_platform.set_wallclock = xen_set_wallclock;
584}
585
586#ifdef CONFIG_XEN_PVHVM
587static void xen_hvm_setup_cpu_clockevents(void)
588{
589	int cpu = smp_processor_id();
590	xen_setup_runstate_info(cpu);
591	/*
592	 * xen_setup_timer(cpu) - snprintf is bad in atomic context. Hence
593	 * doing it xen_hvm_cpu_notify (which gets called by smp_init during
594	 * early bootup and also during CPU hotplug events).
595	 */
596	xen_setup_cpu_clockevents();
597}
598
599void __init xen_hvm_init_time_ops(void)
600{
601	static bool hvm_time_initialized;
602
603	if (hvm_time_initialized)
604		return;
605
606	/*
607	 * vector callback is needed otherwise we cannot receive interrupts
608	 * on cpu > 0 and at this point we don't know how many cpus are
609	 * available.
610	 */
611	if (!xen_have_vector_callback)
612		return;
613
614	if (!xen_feature(XENFEAT_hvm_safe_pvclock)) {
615		pr_info_once("Xen doesn't support pvclock on HVM, disable pv timer");
616		return;
617	}
618
619	/*
620	 * Only MAX_VIRT_CPUS 'vcpu_info' are embedded inside 'shared_info'.
621	 * The __this_cpu_read(xen_vcpu) is still NULL when Xen HVM guest
622	 * boots on vcpu >= MAX_VIRT_CPUS (e.g., kexec), To access
623	 * __this_cpu_read(xen_vcpu) via xen_clocksource_read() will panic.
624	 *
625	 * The xen_hvm_init_time_ops() should be called again later after
626	 * __this_cpu_read(xen_vcpu) is available.
627	 */
628	if (!__this_cpu_read(xen_vcpu)) {
629		pr_info("Delay xen_init_time_common() as kernel is running on vcpu=%d\n",
630			xen_vcpu_nr(0));
631		return;
632	}
633
634	xen_init_time_common();
635
636	x86_init.timers.setup_percpu_clockev = xen_time_init;
637	x86_cpuinit.setup_percpu_clockev = xen_hvm_setup_cpu_clockevents;
638
 
 
639	x86_platform.set_wallclock = xen_set_wallclock;
640
641	hvm_time_initialized = true;
642}
643#endif
644
645/* Kernel parameter to specify Xen timer slop */
646static int __init parse_xen_timer_slop(char *ptr)
647{
648	unsigned long slop = memparse(ptr, NULL);
649
650	xen_timerop_clockevent.min_delta_ns = slop;
651	xen_timerop_clockevent.min_delta_ticks = slop;
652	xen_vcpuop_clockevent.min_delta_ns = slop;
653	xen_vcpuop_clockevent.min_delta_ticks = slop;
654
655	return 0;
656}
657early_param("xen_timer_slop", parse_xen_timer_slop);
v5.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Xen time implementation.
  4 *
  5 * This is implemented in terms of a clocksource driver which uses
  6 * the hypervisor clock as a nanosecond timebase, and a clockevent
  7 * driver which uses the hypervisor's timer mechanism.
  8 *
  9 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
 10 */
 11#include <linux/kernel.h>
 12#include <linux/interrupt.h>
 13#include <linux/clocksource.h>
 14#include <linux/clockchips.h>
 15#include <linux/gfp.h>
 16#include <linux/slab.h>
 17#include <linux/pvclock_gtod.h>
 18#include <linux/timekeeper_internal.h>
 19
 20#include <asm/pvclock.h>
 21#include <asm/xen/hypervisor.h>
 22#include <asm/xen/hypercall.h>
 
 23
 24#include <xen/events.h>
 25#include <xen/features.h>
 26#include <xen/interface/xen.h>
 27#include <xen/interface/vcpu.h>
 28
 29#include "xen-ops.h"
 30
 31/* Minimum amount of time until next clock event fires */
 32#define TIMER_SLOP	100000
 33
 34static u64 xen_sched_clock_offset __read_mostly;
 35
 36/* Get the TSC speed from Xen */
 37static unsigned long xen_tsc_khz(void)
 38{
 39	struct pvclock_vcpu_time_info *info =
 40		&HYPERVISOR_shared_info->vcpu_info[0].time;
 41
 
 42	return pvclock_tsc_khz(info);
 43}
 44
 45static u64 xen_clocksource_read(void)
 46{
 47        struct pvclock_vcpu_time_info *src;
 48	u64 ret;
 49
 50	preempt_disable_notrace();
 51	src = &__this_cpu_read(xen_vcpu)->time;
 52	ret = pvclock_clocksource_read(src);
 53	preempt_enable_notrace();
 54	return ret;
 55}
 56
 57static u64 xen_clocksource_get_cycles(struct clocksource *cs)
 58{
 59	return xen_clocksource_read();
 60}
 61
 62static u64 xen_sched_clock(void)
 63{
 64	return xen_clocksource_read() - xen_sched_clock_offset;
 
 
 
 
 
 
 
 65}
 66
 67static void xen_read_wallclock(struct timespec64 *ts)
 68{
 69	struct shared_info *s = HYPERVISOR_shared_info;
 70	struct pvclock_wall_clock *wall_clock = &(s->wc);
 71        struct pvclock_vcpu_time_info *vcpu_time;
 72
 73	vcpu_time = &get_cpu_var(xen_vcpu)->time;
 74	pvclock_read_wallclock(wall_clock, vcpu_time, ts);
 75	put_cpu_var(xen_vcpu);
 76}
 77
 78static void xen_get_wallclock(struct timespec64 *now)
 79{
 80	xen_read_wallclock(now);
 81}
 82
 83static int xen_set_wallclock(const struct timespec64 *now)
 84{
 85	return -ENODEV;
 86}
 87
 88static int xen_pvclock_gtod_notify(struct notifier_block *nb,
 89				   unsigned long was_set, void *priv)
 90{
 91	/* Protected by the calling core code serialization */
 92	static struct timespec64 next_sync;
 93
 94	struct xen_platform_op op;
 95	struct timespec64 now;
 96	struct timekeeper *tk = priv;
 97	static bool settime64_supported = true;
 98	int ret;
 99
100	now.tv_sec = tk->xtime_sec;
101	now.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
102
103	/*
104	 * We only take the expensive HV call when the clock was set
105	 * or when the 11 minutes RTC synchronization time elapsed.
106	 */
107	if (!was_set && timespec64_compare(&now, &next_sync) < 0)
108		return NOTIFY_OK;
109
110again:
111	if (settime64_supported) {
112		op.cmd = XENPF_settime64;
113		op.u.settime64.mbz = 0;
114		op.u.settime64.secs = now.tv_sec;
115		op.u.settime64.nsecs = now.tv_nsec;
116		op.u.settime64.system_time = xen_clocksource_read();
117	} else {
118		op.cmd = XENPF_settime32;
119		op.u.settime32.secs = now.tv_sec;
120		op.u.settime32.nsecs = now.tv_nsec;
121		op.u.settime32.system_time = xen_clocksource_read();
122	}
123
124	ret = HYPERVISOR_platform_op(&op);
125
126	if (ret == -ENOSYS && settime64_supported) {
127		settime64_supported = false;
128		goto again;
129	}
130	if (ret < 0)
131		return NOTIFY_BAD;
132
133	/*
134	 * Move the next drift compensation time 11 minutes
135	 * ahead. That's emulating the sync_cmos_clock() update for
136	 * the hardware RTC.
137	 */
138	next_sync = now;
139	next_sync.tv_sec += 11 * 60;
140
141	return NOTIFY_OK;
142}
143
144static struct notifier_block xen_pvclock_gtod_notifier = {
145	.notifier_call = xen_pvclock_gtod_notify,
146};
147
 
 
 
 
 
 
148static struct clocksource xen_clocksource __read_mostly = {
149	.name = "xen",
150	.rating = 400,
151	.read = xen_clocksource_get_cycles,
152	.mask = ~0,
153	.flags = CLOCK_SOURCE_IS_CONTINUOUS,
 
154};
155
156/*
157   Xen clockevent implementation
158
159   Xen has two clockevent implementations:
160
161   The old timer_op one works with all released versions of Xen prior
162   to version 3.0.4.  This version of the hypervisor provides a
163   single-shot timer with nanosecond resolution.  However, sharing the
164   same event channel is a 100Hz tick which is delivered while the
165   vcpu is running.  We don't care about or use this tick, but it will
166   cause the core time code to think the timer fired too soon, and
167   will end up resetting it each time.  It could be filtered, but
168   doing so has complications when the ktime clocksource is not yet
169   the xen clocksource (ie, at boot time).
170
171   The new vcpu_op-based timer interface allows the tick timer period
172   to be changed or turned off.  The tick timer is not useful as a
173   periodic timer because events are only delivered to running vcpus.
174   The one-shot timer can report when a timeout is in the past, so
175   set_next_event is capable of returning -ETIME when appropriate.
176   This interface is used when available.
177*/
178
179
180/*
181  Get a hypervisor absolute time.  In theory we could maintain an
182  offset between the kernel's time and the hypervisor's time, and
183  apply that to a kernel's absolute timeout.  Unfortunately the
184  hypervisor and kernel times can drift even if the kernel is using
185  the Xen clocksource, because ntp can warp the kernel's clocksource.
186*/
187static s64 get_abs_timeout(unsigned long delta)
188{
189	return xen_clocksource_read() + delta;
190}
191
192static int xen_timerop_shutdown(struct clock_event_device *evt)
193{
194	/* cancel timeout */
195	HYPERVISOR_set_timer_op(0);
196
197	return 0;
198}
199
200static int xen_timerop_set_next_event(unsigned long delta,
201				      struct clock_event_device *evt)
202{
203	WARN_ON(!clockevent_state_oneshot(evt));
204
205	if (HYPERVISOR_set_timer_op(get_abs_timeout(delta)) < 0)
206		BUG();
207
208	/* We may have missed the deadline, but there's no real way of
209	   knowing for sure.  If the event was in the past, then we'll
210	   get an immediate interrupt. */
211
212	return 0;
213}
214
215static struct clock_event_device xen_timerop_clockevent __ro_after_init = {
216	.name			= "xen",
217	.features		= CLOCK_EVT_FEAT_ONESHOT,
218
219	.max_delta_ns		= 0xffffffff,
220	.max_delta_ticks	= 0xffffffff,
221	.min_delta_ns		= TIMER_SLOP,
222	.min_delta_ticks	= TIMER_SLOP,
223
224	.mult			= 1,
225	.shift			= 0,
226	.rating			= 500,
227
228	.set_state_shutdown	= xen_timerop_shutdown,
229	.set_next_event		= xen_timerop_set_next_event,
230};
231
232static int xen_vcpuop_shutdown(struct clock_event_device *evt)
233{
234	int cpu = smp_processor_id();
235
236	if (HYPERVISOR_vcpu_op(VCPUOP_stop_singleshot_timer, xen_vcpu_nr(cpu),
237			       NULL) ||
238	    HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, xen_vcpu_nr(cpu),
239			       NULL))
240		BUG();
241
242	return 0;
243}
244
245static int xen_vcpuop_set_oneshot(struct clock_event_device *evt)
246{
247	int cpu = smp_processor_id();
248
249	if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, xen_vcpu_nr(cpu),
250			       NULL))
251		BUG();
252
253	return 0;
254}
255
256static int xen_vcpuop_set_next_event(unsigned long delta,
257				     struct clock_event_device *evt)
258{
259	int cpu = smp_processor_id();
260	struct vcpu_set_singleshot_timer single;
261	int ret;
262
263	WARN_ON(!clockevent_state_oneshot(evt));
264
265	single.timeout_abs_ns = get_abs_timeout(delta);
266	/* Get an event anyway, even if the timeout is already expired */
267	single.flags = 0;
268
269	ret = HYPERVISOR_vcpu_op(VCPUOP_set_singleshot_timer, xen_vcpu_nr(cpu),
270				 &single);
271	BUG_ON(ret != 0);
272
273	return ret;
274}
275
276static struct clock_event_device xen_vcpuop_clockevent __ro_after_init = {
277	.name = "xen",
278	.features = CLOCK_EVT_FEAT_ONESHOT,
279
280	.max_delta_ns = 0xffffffff,
281	.max_delta_ticks = 0xffffffff,
282	.min_delta_ns = TIMER_SLOP,
283	.min_delta_ticks = TIMER_SLOP,
284
285	.mult = 1,
286	.shift = 0,
287	.rating = 500,
288
289	.set_state_shutdown = xen_vcpuop_shutdown,
290	.set_state_oneshot = xen_vcpuop_set_oneshot,
291	.set_next_event = xen_vcpuop_set_next_event,
292};
293
294static const struct clock_event_device *xen_clockevent =
295	&xen_timerop_clockevent;
296
297struct xen_clock_event_device {
298	struct clock_event_device evt;
299	char name[16];
300};
301static DEFINE_PER_CPU(struct xen_clock_event_device, xen_clock_events) = { .evt.irq = -1 };
302
303static irqreturn_t xen_timer_interrupt(int irq, void *dev_id)
304{
305	struct clock_event_device *evt = this_cpu_ptr(&xen_clock_events.evt);
306	irqreturn_t ret;
307
308	ret = IRQ_NONE;
309	if (evt->event_handler) {
310		evt->event_handler(evt);
311		ret = IRQ_HANDLED;
312	}
313
314	return ret;
315}
316
317void xen_teardown_timer(int cpu)
318{
319	struct clock_event_device *evt;
320	evt = &per_cpu(xen_clock_events, cpu).evt;
321
322	if (evt->irq >= 0) {
323		unbind_from_irqhandler(evt->irq, NULL);
324		evt->irq = -1;
325	}
326}
327
328void xen_setup_timer(int cpu)
329{
330	struct xen_clock_event_device *xevt = &per_cpu(xen_clock_events, cpu);
331	struct clock_event_device *evt = &xevt->evt;
332	int irq;
333
334	WARN(evt->irq >= 0, "IRQ%d for CPU%d is already allocated\n", evt->irq, cpu);
335	if (evt->irq >= 0)
336		xen_teardown_timer(cpu);
337
338	printk(KERN_INFO "installing Xen timer for CPU %d\n", cpu);
339
340	snprintf(xevt->name, sizeof(xevt->name), "timer%d", cpu);
341
342	irq = bind_virq_to_irqhandler(VIRQ_TIMER, cpu, xen_timer_interrupt,
343				      IRQF_PERCPU|IRQF_NOBALANCING|IRQF_TIMER|
344				      IRQF_FORCE_RESUME|IRQF_EARLY_RESUME,
345				      xevt->name, NULL);
346	(void)xen_set_irq_priority(irq, XEN_IRQ_PRIORITY_MAX);
347
348	memcpy(evt, xen_clockevent, sizeof(*evt));
349
350	evt->cpumask = cpumask_of(cpu);
351	evt->irq = irq;
352}
353
354
355void xen_setup_cpu_clockevents(void)
356{
357	clockevents_register_device(this_cpu_ptr(&xen_clock_events.evt));
358}
359
360void xen_timer_resume(void)
361{
362	int cpu;
363
364	if (xen_clockevent != &xen_vcpuop_clockevent)
365		return;
366
367	for_each_online_cpu(cpu) {
368		if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer,
369				       xen_vcpu_nr(cpu), NULL))
370			BUG();
371	}
372}
373
374static const struct pv_time_ops xen_time_ops __initconst = {
375	.sched_clock = xen_sched_clock,
376	.steal_clock = xen_steal_clock,
377};
378
379static struct pvclock_vsyscall_time_info *xen_clock __read_mostly;
380static u64 xen_clock_value_saved;
381
382void xen_save_time_memory_area(void)
383{
384	struct vcpu_register_time_memory_area t;
385	int ret;
386
387	xen_clock_value_saved = xen_clocksource_read() - xen_sched_clock_offset;
388
389	if (!xen_clock)
390		return;
391
392	t.addr.v = NULL;
393
394	ret = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_time_memory_area, 0, &t);
395	if (ret != 0)
396		pr_notice("Cannot save secondary vcpu_time_info (err %d)",
397			  ret);
398	else
399		clear_page(xen_clock);
400}
401
402void xen_restore_time_memory_area(void)
403{
404	struct vcpu_register_time_memory_area t;
405	int ret;
406
407	if (!xen_clock)
408		goto out;
409
410	t.addr.v = &xen_clock->pvti;
411
412	ret = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_time_memory_area, 0, &t);
413
414	/*
415	 * We don't disable VCLOCK_PVCLOCK entirely if it fails to register the
416	 * secondary time info with Xen or if we migrated to a host without the
417	 * necessary flags. On both of these cases what happens is either
418	 * process seeing a zeroed out pvti or seeing no PVCLOCK_TSC_STABLE_BIT
419	 * bit set. Userspace checks the latter and if 0, it discards the data
420	 * in pvti and fallbacks to a system call for a reliable timestamp.
 
421	 */
422	if (ret != 0)
423		pr_notice("Cannot restore secondary vcpu_time_info (err %d)",
424			  ret);
425
426out:
427	/* Need pvclock_resume() before using xen_clocksource_read(). */
428	pvclock_resume();
429	xen_sched_clock_offset = xen_clocksource_read() - xen_clock_value_saved;
430}
431
432static void xen_setup_vsyscall_time_info(void)
433{
434	struct vcpu_register_time_memory_area t;
435	struct pvclock_vsyscall_time_info *ti;
436	int ret;
437
438	ti = (struct pvclock_vsyscall_time_info *)get_zeroed_page(GFP_KERNEL);
439	if (!ti)
440		return;
441
442	t.addr.v = &ti->pvti;
443
444	ret = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_time_memory_area, 0, &t);
445	if (ret) {
446		pr_notice("xen: VCLOCK_PVCLOCK not supported (err %d)\n", ret);
447		free_page((unsigned long)ti);
448		return;
449	}
450
451	/*
452	 * If primary time info had this bit set, secondary should too since
453	 * it's the same data on both just different memory regions. But we
454	 * still check it in case hypervisor is buggy.
455	 */
456	if (!(ti->pvti.flags & PVCLOCK_TSC_STABLE_BIT)) {
457		t.addr.v = NULL;
458		ret = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_time_memory_area,
459					 0, &t);
460		if (!ret)
461			free_page((unsigned long)ti);
462
463		pr_notice("xen: VCLOCK_PVCLOCK not supported (tsc unstable)\n");
464		return;
465	}
466
467	xen_clock = ti;
468	pvclock_set_pvti_cpu0_va(xen_clock);
469
470	xen_clocksource.archdata.vclock_mode = VCLOCK_PVCLOCK;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
471}
472
473static void __init xen_time_init(void)
474{
475	struct pvclock_vcpu_time_info *pvti;
476	int cpu = smp_processor_id();
477	struct timespec64 tp;
478
479	/* As Dom0 is never moved, no penalty on using TSC there */
 
 
 
 
 
 
480	if (xen_initial_domain())
481		xen_clocksource.rating = 275;
 
 
482
483	clocksource_register_hz(&xen_clocksource, NSEC_PER_SEC);
484
485	if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, xen_vcpu_nr(cpu),
486			       NULL) == 0) {
487		/* Successfully turned off 100Hz tick, so we have the
488		   vcpuop-based timer interface */
489		printk(KERN_DEBUG "Xen: using vcpuop timer interface\n");
490		xen_clockevent = &xen_vcpuop_clockevent;
491	}
492
493	/* Set initial system time with full resolution */
494	xen_read_wallclock(&tp);
495	do_settimeofday64(&tp);
496
497	setup_force_cpu_cap(X86_FEATURE_TSC);
498
499	/*
500	 * We check ahead on the primary time info if this
501	 * bit is supported hence speeding up Xen clocksource.
502	 */
503	pvti = &__this_cpu_read(xen_vcpu)->time;
504	if (pvti->flags & PVCLOCK_TSC_STABLE_BIT) {
505		pvclock_set_flags(PVCLOCK_TSC_STABLE_BIT);
506		xen_setup_vsyscall_time_info();
507	}
508
509	xen_setup_runstate_info(cpu);
510	xen_setup_timer(cpu);
511	xen_setup_cpu_clockevents();
512
513	xen_time_setup_guest();
514
515	if (xen_initial_domain())
516		pvclock_gtod_register_notifier(&xen_pvclock_gtod_notifier);
517}
518
 
 
 
 
 
 
 
 
 
 
519void __init xen_init_time_ops(void)
520{
521	xen_sched_clock_offset = xen_clocksource_read();
522	pv_ops.time = xen_time_ops;
523
524	x86_init.timers.timer_init = xen_time_init;
525	x86_init.timers.setup_percpu_clockev = x86_init_noop;
526	x86_cpuinit.setup_percpu_clockev = x86_init_noop;
527
528	x86_platform.calibrate_tsc = xen_tsc_khz;
529	x86_platform.get_wallclock = xen_get_wallclock;
530	/* Dom0 uses the native method to set the hardware RTC. */
531	if (!xen_initial_domain())
532		x86_platform.set_wallclock = xen_set_wallclock;
533}
534
535#ifdef CONFIG_XEN_PVHVM
536static void xen_hvm_setup_cpu_clockevents(void)
537{
538	int cpu = smp_processor_id();
539	xen_setup_runstate_info(cpu);
540	/*
541	 * xen_setup_timer(cpu) - snprintf is bad in atomic context. Hence
542	 * doing it xen_hvm_cpu_notify (which gets called by smp_init during
543	 * early bootup and also during CPU hotplug events).
544	 */
545	xen_setup_cpu_clockevents();
546}
547
548void __init xen_hvm_init_time_ops(void)
549{
 
 
 
 
 
550	/*
551	 * vector callback is needed otherwise we cannot receive interrupts
552	 * on cpu > 0 and at this point we don't know how many cpus are
553	 * available.
554	 */
555	if (!xen_have_vector_callback)
556		return;
557
558	if (!xen_feature(XENFEAT_hvm_safe_pvclock)) {
559		pr_info("Xen doesn't support pvclock on HVM, disable pv timer");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
560		return;
561	}
562
563	xen_sched_clock_offset = xen_clocksource_read();
564	pv_ops.time = xen_time_ops;
565	x86_init.timers.setup_percpu_clockev = xen_time_init;
566	x86_cpuinit.setup_percpu_clockev = xen_hvm_setup_cpu_clockevents;
567
568	x86_platform.calibrate_tsc = xen_tsc_khz;
569	x86_platform.get_wallclock = xen_get_wallclock;
570	x86_platform.set_wallclock = xen_set_wallclock;
 
 
571}
572#endif
573
574/* Kernel parameter to specify Xen timer slop */
575static int __init parse_xen_timer_slop(char *ptr)
576{
577	unsigned long slop = memparse(ptr, NULL);
578
579	xen_timerop_clockevent.min_delta_ns = slop;
580	xen_timerop_clockevent.min_delta_ticks = slop;
581	xen_vcpuop_clockevent.min_delta_ns = slop;
582	xen_vcpuop_clockevent.min_delta_ticks = slop;
583
584	return 0;
585}
586early_param("xen_timer_slop", parse_xen_timer_slop);