Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Just-In-Time compiler for eBPF filters on 32bit ARM
   4 *
   5 * Copyright (c) 2023 Puranjay Mohan <puranjay12@gmail.com>
   6 * Copyright (c) 2017 Shubham Bansal <illusionist.neo@gmail.com>
   7 * Copyright (c) 2011 Mircea Gherzan <mgherzan@gmail.com>
   8 */
   9
  10#include <linux/bpf.h>
  11#include <linux/bitops.h>
  12#include <linux/compiler.h>
  13#include <linux/errno.h>
  14#include <linux/filter.h>
  15#include <linux/netdevice.h>
  16#include <linux/string.h>
  17#include <linux/slab.h>
  18#include <linux/if_vlan.h>
  19#include <linux/math64.h>
  20
  21#include <asm/cacheflush.h>
  22#include <asm/hwcap.h>
  23#include <asm/opcodes.h>
  24#include <asm/system_info.h>
  25
  26#include "bpf_jit_32.h"
  27
  28/*
  29 * eBPF prog stack layout:
  30 *
  31 *                         high
  32 * original ARM_SP =>     +-----+
  33 *                        |     | callee saved registers
  34 *                        +-----+ <= (BPF_FP + SCRATCH_SIZE)
  35 *                        | ... | eBPF JIT scratch space
  36 * eBPF fp register =>    +-----+
  37 *   (BPF_FP)             | ... | eBPF prog stack
  38 *                        +-----+
  39 *                        |RSVD | JIT scratchpad
  40 * current ARM_SP =>      +-----+ <= (BPF_FP - STACK_SIZE + SCRATCH_SIZE)
  41 *                        | ... | caller-saved registers
  42 *                        +-----+
  43 *                        | ... | arguments passed on stack
  44 * ARM_SP during call =>  +-----|
  45 *                        |     |
  46 *                        | ... | Function call stack
  47 *                        |     |
  48 *                        +-----+
  49 *                          low
  50 *
  51 * The callee saved registers depends on whether frame pointers are enabled.
  52 * With frame pointers (to be compliant with the ABI):
  53 *
  54 *                              high
  55 * original ARM_SP =>     +--------------+ \
  56 *                        |      pc      | |
  57 * current ARM_FP =>      +--------------+ } callee saved registers
  58 *                        |r4-r9,fp,ip,lr| |
  59 *                        +--------------+ /
  60 *                              low
  61 *
  62 * Without frame pointers:
  63 *
  64 *                              high
  65 * original ARM_SP =>     +--------------+
  66 *                        |  r4-r9,fp,lr | callee saved registers
  67 * current ARM_FP =>      +--------------+
  68 *                              low
  69 *
  70 * When popping registers off the stack at the end of a BPF function, we
  71 * reference them via the current ARM_FP register.
  72 *
  73 * Some eBPF operations are implemented via a call to a helper function.
  74 * Such calls are "invisible" in the eBPF code, so it is up to the calling
  75 * program to preserve any caller-saved ARM registers during the call. The
  76 * JIT emits code to push and pop those registers onto the stack, immediately
  77 * above the callee stack frame.
  78 */
  79#define CALLEE_MASK	(1 << ARM_R4 | 1 << ARM_R5 | 1 << ARM_R6 | \
  80			 1 << ARM_R7 | 1 << ARM_R8 | 1 << ARM_R9 | \
  81			 1 << ARM_FP)
  82#define CALLEE_PUSH_MASK (CALLEE_MASK | 1 << ARM_LR)
  83#define CALLEE_POP_MASK  (CALLEE_MASK | 1 << ARM_PC)
  84
  85#define CALLER_MASK	(1 << ARM_R0 | 1 << ARM_R1 | 1 << ARM_R2 | 1 << ARM_R3)
  86
  87enum {
  88	/* Stack layout - these are offsets from (top of stack - 4) */
  89	BPF_R2_HI,
  90	BPF_R2_LO,
  91	BPF_R3_HI,
  92	BPF_R3_LO,
  93	BPF_R4_HI,
  94	BPF_R4_LO,
  95	BPF_R5_HI,
  96	BPF_R5_LO,
  97	BPF_R7_HI,
  98	BPF_R7_LO,
  99	BPF_R8_HI,
 100	BPF_R8_LO,
 101	BPF_R9_HI,
 102	BPF_R9_LO,
 103	BPF_FP_HI,
 104	BPF_FP_LO,
 105	BPF_TC_HI,
 106	BPF_TC_LO,
 107	BPF_AX_HI,
 108	BPF_AX_LO,
 109	/* Stack space for BPF_REG_2, BPF_REG_3, BPF_REG_4,
 110	 * BPF_REG_5, BPF_REG_7, BPF_REG_8, BPF_REG_9,
 111	 * BPF_REG_FP and Tail call counts.
 112	 */
 113	BPF_JIT_SCRATCH_REGS,
 114};
 115
 116/*
 117 * Negative "register" values indicate the register is stored on the stack
 118 * and are the offset from the top of the eBPF JIT scratch space.
 119 */
 120#define STACK_OFFSET(k)	(-4 - (k) * 4)
 121#define SCRATCH_SIZE	(BPF_JIT_SCRATCH_REGS * 4)
 122
 123#ifdef CONFIG_FRAME_POINTER
 124#define EBPF_SCRATCH_TO_ARM_FP(x) ((x) - 4 * hweight16(CALLEE_PUSH_MASK) - 4)
 125#else
 126#define EBPF_SCRATCH_TO_ARM_FP(x) (x)
 127#endif
 128
 129#define TMP_REG_1	(MAX_BPF_JIT_REG + 0)	/* TEMP Register 1 */
 130#define TMP_REG_2	(MAX_BPF_JIT_REG + 1)	/* TEMP Register 2 */
 131#define TCALL_CNT	(MAX_BPF_JIT_REG + 2)	/* Tail Call Count */
 132
 133#define FLAG_IMM_OVERFLOW	(1 << 0)
 134
 135/*
 136 * Map eBPF registers to ARM 32bit registers or stack scratch space.
 137 *
 138 * 1. First argument is passed using the arm 32bit registers and rest of the
 139 * arguments are passed on stack scratch space.
 140 * 2. First callee-saved argument is mapped to arm 32 bit registers and rest
 141 * arguments are mapped to scratch space on stack.
 142 * 3. We need two 64 bit temp registers to do complex operations on eBPF
 143 * registers.
 144 *
 145 * As the eBPF registers are all 64 bit registers and arm has only 32 bit
 146 * registers, we have to map each eBPF registers with two arm 32 bit regs or
 147 * scratch memory space and we have to build eBPF 64 bit register from those.
 148 *
 149 */
 150static const s8 bpf2a32[][2] = {
 151	/* return value from in-kernel function, and exit value from eBPF */
 152	[BPF_REG_0] = {ARM_R1, ARM_R0},
 153	/* arguments from eBPF program to in-kernel function */
 154	[BPF_REG_1] = {ARM_R3, ARM_R2},
 155	/* Stored on stack scratch space */
 156	[BPF_REG_2] = {STACK_OFFSET(BPF_R2_HI), STACK_OFFSET(BPF_R2_LO)},
 157	[BPF_REG_3] = {STACK_OFFSET(BPF_R3_HI), STACK_OFFSET(BPF_R3_LO)},
 158	[BPF_REG_4] = {STACK_OFFSET(BPF_R4_HI), STACK_OFFSET(BPF_R4_LO)},
 159	[BPF_REG_5] = {STACK_OFFSET(BPF_R5_HI), STACK_OFFSET(BPF_R5_LO)},
 160	/* callee saved registers that in-kernel function will preserve */
 161	[BPF_REG_6] = {ARM_R5, ARM_R4},
 162	/* Stored on stack scratch space */
 163	[BPF_REG_7] = {STACK_OFFSET(BPF_R7_HI), STACK_OFFSET(BPF_R7_LO)},
 164	[BPF_REG_8] = {STACK_OFFSET(BPF_R8_HI), STACK_OFFSET(BPF_R8_LO)},
 165	[BPF_REG_9] = {STACK_OFFSET(BPF_R9_HI), STACK_OFFSET(BPF_R9_LO)},
 166	/* Read only Frame Pointer to access Stack */
 167	[BPF_REG_FP] = {STACK_OFFSET(BPF_FP_HI), STACK_OFFSET(BPF_FP_LO)},
 168	/* Temporary Register for BPF JIT, can be used
 169	 * for constant blindings and others.
 170	 */
 171	[TMP_REG_1] = {ARM_R7, ARM_R6},
 172	[TMP_REG_2] = {ARM_R9, ARM_R8},
 173	/* Tail call count. Stored on stack scratch space. */
 174	[TCALL_CNT] = {STACK_OFFSET(BPF_TC_HI), STACK_OFFSET(BPF_TC_LO)},
 175	/* temporary register for blinding constants.
 176	 * Stored on stack scratch space.
 177	 */
 178	[BPF_REG_AX] = {STACK_OFFSET(BPF_AX_HI), STACK_OFFSET(BPF_AX_LO)},
 179};
 180
 181#define	dst_lo	dst[1]
 182#define dst_hi	dst[0]
 183#define src_lo	src[1]
 184#define src_hi	src[0]
 185
 186/*
 187 * JIT Context:
 188 *
 189 * prog			:	bpf_prog
 190 * idx			:	index of current last JITed instruction.
 191 * prologue_bytes	:	bytes used in prologue.
 192 * epilogue_offset	:	offset of epilogue starting.
 193 * offsets		:	array of eBPF instruction offsets in
 194 *				JITed code.
 195 * target		:	final JITed code.
 196 * epilogue_bytes	:	no of bytes used in epilogue.
 197 * imm_count		:	no of immediate counts used for global
 198 *				variables.
 199 * imms			:	array of global variable addresses.
 200 */
 201
 202struct jit_ctx {
 203	const struct bpf_prog *prog;
 204	unsigned int idx;
 205	unsigned int prologue_bytes;
 206	unsigned int epilogue_offset;
 207	unsigned int cpu_architecture;
 208	u32 flags;
 209	u32 *offsets;
 210	u32 *target;
 211	u32 stack_size;
 212#if __LINUX_ARM_ARCH__ < 7
 213	u16 epilogue_bytes;
 214	u16 imm_count;
 215	u32 *imms;
 216#endif
 217};
 218
 219/*
 220 * Wrappers which handle both OABI and EABI and assures Thumb2 interworking
 221 * (where the assembly routines like __aeabi_uidiv could cause problems).
 222 */
 223static u32 jit_udiv32(u32 dividend, u32 divisor)
 224{
 225	return dividend / divisor;
 226}
 227
 228static u32 jit_mod32(u32 dividend, u32 divisor)
 229{
 230	return dividend % divisor;
 231}
 232
 233static s32 jit_sdiv32(s32 dividend, s32 divisor)
 234{
 235	return dividend / divisor;
 236}
 237
 238static s32 jit_smod32(s32 dividend, s32 divisor)
 239{
 240	return dividend % divisor;
 241}
 242
 243/* Wrappers for 64-bit div/mod */
 244static u64 jit_udiv64(u64 dividend, u64 divisor)
 245{
 246	return div64_u64(dividend, divisor);
 247}
 248
 249static u64 jit_mod64(u64 dividend, u64 divisor)
 250{
 251	u64 rem;
 252
 253	div64_u64_rem(dividend, divisor, &rem);
 254	return rem;
 255}
 256
 257static s64 jit_sdiv64(s64 dividend, s64 divisor)
 258{
 259	return div64_s64(dividend, divisor);
 260}
 261
 262static s64 jit_smod64(s64 dividend, s64 divisor)
 263{
 264	u64 q;
 265
 266	q = div64_s64(dividend, divisor);
 267
 268	return dividend - q * divisor;
 269}
 270
 271static inline void _emit(int cond, u32 inst, struct jit_ctx *ctx)
 272{
 273	inst |= (cond << 28);
 274	inst = __opcode_to_mem_arm(inst);
 275
 276	if (ctx->target != NULL)
 277		ctx->target[ctx->idx] = inst;
 278
 279	ctx->idx++;
 280}
 281
 282/*
 283 * Emit an instruction that will be executed unconditionally.
 284 */
 285static inline void emit(u32 inst, struct jit_ctx *ctx)
 286{
 287	_emit(ARM_COND_AL, inst, ctx);
 288}
 289
 290/*
 291 * This is rather horrid, but necessary to convert an integer constant
 292 * to an immediate operand for the opcodes, and be able to detect at
 293 * build time whether the constant can't be converted (iow, usable in
 294 * BUILD_BUG_ON()).
 295 */
 296#define imm12val(v, s) (rol32(v, (s)) | (s) << 7)
 297#define const_imm8m(x)					\
 298	({ int r;					\
 299	   u32 v = (x);					\
 300	   if (!(v & ~0x000000ff))			\
 301		r = imm12val(v, 0);			\
 302	   else if (!(v & ~0xc000003f))			\
 303		r = imm12val(v, 2);			\
 304	   else if (!(v & ~0xf000000f))			\
 305		r = imm12val(v, 4);			\
 306	   else if (!(v & ~0xfc000003))			\
 307		r = imm12val(v, 6);			\
 308	   else if (!(v & ~0xff000000))			\
 309		r = imm12val(v, 8);			\
 310	   else if (!(v & ~0x3fc00000))			\
 311		r = imm12val(v, 10);			\
 312	   else if (!(v & ~0x0ff00000))			\
 313		r = imm12val(v, 12);			\
 314	   else if (!(v & ~0x03fc0000))			\
 315		r = imm12val(v, 14);			\
 316	   else if (!(v & ~0x00ff0000))			\
 317		r = imm12val(v, 16);			\
 318	   else if (!(v & ~0x003fc000))			\
 319		r = imm12val(v, 18);			\
 320	   else if (!(v & ~0x000ff000))			\
 321		r = imm12val(v, 20);			\
 322	   else if (!(v & ~0x0003fc00))			\
 323		r = imm12val(v, 22);			\
 324	   else if (!(v & ~0x0000ff00))			\
 325		r = imm12val(v, 24);			\
 326	   else if (!(v & ~0x00003fc0))			\
 327		r = imm12val(v, 26);			\
 328	   else if (!(v & ~0x00000ff0))			\
 329		r = imm12val(v, 28);			\
 330	   else if (!(v & ~0x000003fc))			\
 331		r = imm12val(v, 30);			\
 332	   else						\
 333		r = -1;					\
 334	   r; })
 335
 336/*
 337 * Checks if immediate value can be converted to imm12(12 bits) value.
 338 */
 339static int imm8m(u32 x)
 340{
 341	u32 rot;
 342
 343	for (rot = 0; rot < 16; rot++)
 344		if ((x & ~ror32(0xff, 2 * rot)) == 0)
 345			return rol32(x, 2 * rot) | (rot << 8);
 346	return -1;
 347}
 348
 349#define imm8m(x) (__builtin_constant_p(x) ? const_imm8m(x) : imm8m(x))
 350
 351static u32 arm_bpf_ldst_imm12(u32 op, u8 rt, u8 rn, s16 imm12)
 352{
 353	op |= rt << 12 | rn << 16;
 354	if (imm12 >= 0)
 355		op |= ARM_INST_LDST__U;
 356	else
 357		imm12 = -imm12;
 358	return op | (imm12 & ARM_INST_LDST__IMM12);
 359}
 360
 361static u32 arm_bpf_ldst_imm8(u32 op, u8 rt, u8 rn, s16 imm8)
 362{
 363	op |= rt << 12 | rn << 16;
 364	if (imm8 >= 0)
 365		op |= ARM_INST_LDST__U;
 366	else
 367		imm8 = -imm8;
 368	return op | (imm8 & 0xf0) << 4 | (imm8 & 0x0f);
 369}
 370
 371#define ARM_LDR_I(rt, rn, off)	arm_bpf_ldst_imm12(ARM_INST_LDR_I, rt, rn, off)
 372#define ARM_LDRB_I(rt, rn, off)	arm_bpf_ldst_imm12(ARM_INST_LDRB_I, rt, rn, off)
 373#define ARM_LDRD_I(rt, rn, off)	arm_bpf_ldst_imm8(ARM_INST_LDRD_I, rt, rn, off)
 374#define ARM_LDRH_I(rt, rn, off)	arm_bpf_ldst_imm8(ARM_INST_LDRH_I, rt, rn, off)
 375
 376#define ARM_LDRSH_I(rt, rn, off) arm_bpf_ldst_imm8(ARM_INST_LDRSH_I, rt, rn, off)
 377#define ARM_LDRSB_I(rt, rn, off) arm_bpf_ldst_imm8(ARM_INST_LDRSB_I, rt, rn, off)
 378
 379#define ARM_STR_I(rt, rn, off)	arm_bpf_ldst_imm12(ARM_INST_STR_I, rt, rn, off)
 380#define ARM_STRB_I(rt, rn, off)	arm_bpf_ldst_imm12(ARM_INST_STRB_I, rt, rn, off)
 381#define ARM_STRD_I(rt, rn, off)	arm_bpf_ldst_imm8(ARM_INST_STRD_I, rt, rn, off)
 382#define ARM_STRH_I(rt, rn, off)	arm_bpf_ldst_imm8(ARM_INST_STRH_I, rt, rn, off)
 383
 384/*
 385 * Initializes the JIT space with undefined instructions.
 386 */
 387static void jit_fill_hole(void *area, unsigned int size)
 388{
 389	u32 *ptr;
 390	/* We are guaranteed to have aligned memory. */
 391	for (ptr = area; size >= sizeof(u32); size -= sizeof(u32))
 392		*ptr++ = __opcode_to_mem_arm(ARM_INST_UDF);
 393}
 394
 395#if defined(CONFIG_AEABI) && (__LINUX_ARM_ARCH__ >= 5)
 396/* EABI requires the stack to be aligned to 64-bit boundaries */
 397#define STACK_ALIGNMENT	8
 398#else
 399/* Stack must be aligned to 32-bit boundaries */
 400#define STACK_ALIGNMENT	4
 401#endif
 402
 403/* total stack size used in JITed code */
 404#define _STACK_SIZE	(ctx->prog->aux->stack_depth + SCRATCH_SIZE)
 405#define STACK_SIZE	ALIGN(_STACK_SIZE, STACK_ALIGNMENT)
 406
 407#if __LINUX_ARM_ARCH__ < 7
 408
 409static u16 imm_offset(u32 k, struct jit_ctx *ctx)
 410{
 411	unsigned int i = 0, offset;
 412	u16 imm;
 413
 414	/* on the "fake" run we just count them (duplicates included) */
 415	if (ctx->target == NULL) {
 416		ctx->imm_count++;
 417		return 0;
 418	}
 419
 420	while ((i < ctx->imm_count) && ctx->imms[i]) {
 421		if (ctx->imms[i] == k)
 422			break;
 423		i++;
 424	}
 425
 426	if (ctx->imms[i] == 0)
 427		ctx->imms[i] = k;
 428
 429	/* constants go just after the epilogue */
 430	offset =  ctx->offsets[ctx->prog->len - 1] * 4;
 431	offset += ctx->prologue_bytes;
 432	offset += ctx->epilogue_bytes;
 433	offset += i * 4;
 434
 435	ctx->target[offset / 4] = k;
 436
 437	/* PC in ARM mode == address of the instruction + 8 */
 438	imm = offset - (8 + ctx->idx * 4);
 439
 440	if (imm & ~0xfff) {
 441		/*
 442		 * literal pool is too far, signal it into flags. we
 443		 * can only detect it on the second pass unfortunately.
 444		 */
 445		ctx->flags |= FLAG_IMM_OVERFLOW;
 446		return 0;
 447	}
 448
 449	return imm;
 450}
 451
 452#endif /* __LINUX_ARM_ARCH__ */
 453
 454static inline int bpf2a32_offset(int bpf_to, int bpf_from,
 455				 const struct jit_ctx *ctx) {
 456	int to, from;
 457
 458	if (ctx->target == NULL)
 459		return 0;
 460	to = ctx->offsets[bpf_to];
 461	from = ctx->offsets[bpf_from];
 462
 463	return to - from - 1;
 464}
 465
 466/*
 467 * Move an immediate that's not an imm8m to a core register.
 468 */
 469static inline void emit_mov_i_no8m(const u8 rd, u32 val, struct jit_ctx *ctx)
 470{
 471#if __LINUX_ARM_ARCH__ < 7
 472	emit(ARM_LDR_I(rd, ARM_PC, imm_offset(val, ctx)), ctx);
 473#else
 474	emit(ARM_MOVW(rd, val & 0xffff), ctx);
 475	if (val > 0xffff)
 476		emit(ARM_MOVT(rd, val >> 16), ctx);
 477#endif
 478}
 479
 480static inline void emit_mov_i(const u8 rd, u32 val, struct jit_ctx *ctx)
 481{
 482	int imm12 = imm8m(val);
 483
 484	if (imm12 >= 0)
 485		emit(ARM_MOV_I(rd, imm12), ctx);
 486	else
 487		emit_mov_i_no8m(rd, val, ctx);
 488}
 489
 490static void emit_bx_r(u8 tgt_reg, struct jit_ctx *ctx)
 491{
 492	if (elf_hwcap & HWCAP_THUMB)
 493		emit(ARM_BX(tgt_reg), ctx);
 494	else
 495		emit(ARM_MOV_R(ARM_PC, tgt_reg), ctx);
 496}
 497
 498static inline void emit_blx_r(u8 tgt_reg, struct jit_ctx *ctx)
 499{
 500#if __LINUX_ARM_ARCH__ < 5
 501	emit(ARM_MOV_R(ARM_LR, ARM_PC), ctx);
 502	emit_bx_r(tgt_reg, ctx);
 503#else
 504	emit(ARM_BLX_R(tgt_reg), ctx);
 505#endif
 506}
 507
 508static inline int epilogue_offset(const struct jit_ctx *ctx)
 509{
 510	int to, from;
 511	/* No need for 1st dummy run */
 512	if (ctx->target == NULL)
 513		return 0;
 514	to = ctx->epilogue_offset;
 515	from = ctx->idx;
 516
 517	return to - from - 2;
 518}
 519
 520static inline void emit_udivmod(u8 rd, u8 rm, u8 rn, struct jit_ctx *ctx, u8 op, u8 sign)
 521{
 522	const int exclude_mask = BIT(ARM_R0) | BIT(ARM_R1);
 523	const s8 *tmp = bpf2a32[TMP_REG_1];
 524	u32 dst;
 525
 526#if __LINUX_ARM_ARCH__ == 7
 527	if (elf_hwcap & HWCAP_IDIVA) {
 528		if (op == BPF_DIV) {
 529			emit(sign ? ARM_SDIV(rd, rm, rn) : ARM_UDIV(rd, rm, rn), ctx);
 530		} else {
 531			emit(sign ? ARM_SDIV(ARM_IP, rm, rn) : ARM_UDIV(ARM_IP, rm, rn), ctx);
 532			emit(ARM_MLS(rd, rn, ARM_IP, rm), ctx);
 533		}
 534		return;
 535	}
 536#endif
 537
 538	/*
 539	 * For BPF_ALU | BPF_DIV | BPF_K instructions
 540	 * As ARM_R1 and ARM_R0 contains 1st argument of bpf
 541	 * function, we need to save it on caller side to save
 542	 * it from getting destroyed within callee.
 543	 * After the return from the callee, we restore ARM_R0
 544	 * ARM_R1.
 545	 */
 546	if (rn != ARM_R1) {
 547		emit(ARM_MOV_R(tmp[0], ARM_R1), ctx);
 548		emit(ARM_MOV_R(ARM_R1, rn), ctx);
 549	}
 550	if (rm != ARM_R0) {
 551		emit(ARM_MOV_R(tmp[1], ARM_R0), ctx);
 552		emit(ARM_MOV_R(ARM_R0, rm), ctx);
 553	}
 554
 555	/* Push caller-saved registers on stack */
 556	emit(ARM_PUSH(CALLER_MASK & ~exclude_mask), ctx);
 557
 558	/* Call appropriate function */
 559	if (sign) {
 560		if (op == BPF_DIV)
 561			dst = (u32)jit_sdiv32;
 562		else
 563			dst = (u32)jit_smod32;
 564	} else {
 565		if (op == BPF_DIV)
 566			dst = (u32)jit_udiv32;
 567		else
 568			dst = (u32)jit_mod32;
 569	}
 570
 571	emit_mov_i(ARM_IP, dst, ctx);
 572	emit_blx_r(ARM_IP, ctx);
 573
 574	/* Restore caller-saved registers from stack */
 575	emit(ARM_POP(CALLER_MASK & ~exclude_mask), ctx);
 576
 577	/* Save return value */
 578	if (rd != ARM_R0)
 579		emit(ARM_MOV_R(rd, ARM_R0), ctx);
 580
 581	/* Restore ARM_R0 and ARM_R1 */
 582	if (rn != ARM_R1)
 583		emit(ARM_MOV_R(ARM_R1, tmp[0]), ctx);
 584	if (rm != ARM_R0)
 585		emit(ARM_MOV_R(ARM_R0, tmp[1]), ctx);
 586}
 587
 588static inline void emit_udivmod64(const s8 *rd, const s8 *rm, const s8 *rn, struct jit_ctx *ctx,
 589				  u8 op, u8 sign)
 590{
 591	u32 dst;
 592
 593	/* Push caller-saved registers on stack */
 594	emit(ARM_PUSH(CALLER_MASK), ctx);
 595
 596	/*
 597	 * As we are implementing 64-bit div/mod as function calls, We need to put the dividend in
 598	 * R0-R1 and the divisor in R2-R3. As we have already pushed these registers on the stack,
 599	 * we can recover them later after returning from the function call.
 600	 */
 601	if (rm[1] != ARM_R0 || rn[1] != ARM_R2) {
 602		/*
 603		 * Move Rm to {R1, R0} if it is not already there.
 604		 */
 605		if (rm[1] != ARM_R0) {
 606			if (rn[1] == ARM_R0)
 607				emit(ARM_PUSH(BIT(ARM_R0) | BIT(ARM_R1)), ctx);
 608			emit(ARM_MOV_R(ARM_R1, rm[0]), ctx);
 609			emit(ARM_MOV_R(ARM_R0, rm[1]), ctx);
 610			if (rn[1] == ARM_R0) {
 611				emit(ARM_POP(BIT(ARM_R2) | BIT(ARM_R3)), ctx);
 612				goto cont;
 613			}
 614		}
 615		/*
 616		 * Move Rn to {R3, R2} if it is not already there.
 617		 */
 618		if (rn[1] != ARM_R2) {
 619			emit(ARM_MOV_R(ARM_R3, rn[0]), ctx);
 620			emit(ARM_MOV_R(ARM_R2, rn[1]), ctx);
 621		}
 622	}
 623
 624cont:
 625
 626	/* Call appropriate function */
 627	if (sign) {
 628		if (op == BPF_DIV)
 629			dst = (u32)jit_sdiv64;
 630		else
 631			dst = (u32)jit_smod64;
 632	} else {
 633		if (op == BPF_DIV)
 634			dst = (u32)jit_udiv64;
 635		else
 636			dst = (u32)jit_mod64;
 637	}
 638
 639	emit_mov_i(ARM_IP, dst, ctx);
 640	emit_blx_r(ARM_IP, ctx);
 641
 642	/* Save return value */
 643	if (rd[1] != ARM_R0) {
 644		emit(ARM_MOV_R(rd[0], ARM_R1), ctx);
 645		emit(ARM_MOV_R(rd[1], ARM_R0), ctx);
 646	}
 647
 648	/* Recover {R3, R2} and {R1, R0} from stack if they are not Rd */
 649	if (rd[1] != ARM_R0 && rd[1] != ARM_R2) {
 650		emit(ARM_POP(CALLER_MASK), ctx);
 651	} else if (rd[1] != ARM_R0) {
 652		emit(ARM_POP(BIT(ARM_R0) | BIT(ARM_R1)), ctx);
 653		emit(ARM_ADD_I(ARM_SP, ARM_SP, 8), ctx);
 654	} else {
 655		emit(ARM_ADD_I(ARM_SP, ARM_SP, 8), ctx);
 656		emit(ARM_POP(BIT(ARM_R2) | BIT(ARM_R3)), ctx);
 657	}
 658}
 659
 660/* Is the translated BPF register on stack? */
 661static bool is_stacked(s8 reg)
 662{
 663	return reg < 0;
 664}
 665
 666/* If a BPF register is on the stack (stk is true), load it to the
 667 * supplied temporary register and return the temporary register
 668 * for subsequent operations, otherwise just use the CPU register.
 669 */
 670static s8 arm_bpf_get_reg32(s8 reg, s8 tmp, struct jit_ctx *ctx)
 671{
 672	if (is_stacked(reg)) {
 673		emit(ARM_LDR_I(tmp, ARM_FP, EBPF_SCRATCH_TO_ARM_FP(reg)), ctx);
 674		reg = tmp;
 675	}
 676	return reg;
 677}
 678
 679static const s8 *arm_bpf_get_reg64(const s8 *reg, const s8 *tmp,
 680				   struct jit_ctx *ctx)
 681{
 682	if (is_stacked(reg[1])) {
 683		if (__LINUX_ARM_ARCH__ >= 6 ||
 684		    ctx->cpu_architecture >= CPU_ARCH_ARMv5TE) {
 685			emit(ARM_LDRD_I(tmp[1], ARM_FP,
 686					EBPF_SCRATCH_TO_ARM_FP(reg[1])), ctx);
 687		} else {
 688			emit(ARM_LDR_I(tmp[1], ARM_FP,
 689				       EBPF_SCRATCH_TO_ARM_FP(reg[1])), ctx);
 690			emit(ARM_LDR_I(tmp[0], ARM_FP,
 691				       EBPF_SCRATCH_TO_ARM_FP(reg[0])), ctx);
 692		}
 693		reg = tmp;
 694	}
 695	return reg;
 696}
 697
 698/* If a BPF register is on the stack (stk is true), save the register
 699 * back to the stack.  If the source register is not the same, then
 700 * move it into the correct register.
 701 */
 702static void arm_bpf_put_reg32(s8 reg, s8 src, struct jit_ctx *ctx)
 703{
 704	if (is_stacked(reg))
 705		emit(ARM_STR_I(src, ARM_FP, EBPF_SCRATCH_TO_ARM_FP(reg)), ctx);
 706	else if (reg != src)
 707		emit(ARM_MOV_R(reg, src), ctx);
 708}
 709
 710static void arm_bpf_put_reg64(const s8 *reg, const s8 *src,
 711			      struct jit_ctx *ctx)
 712{
 713	if (is_stacked(reg[1])) {
 714		if (__LINUX_ARM_ARCH__ >= 6 ||
 715		    ctx->cpu_architecture >= CPU_ARCH_ARMv5TE) {
 716			emit(ARM_STRD_I(src[1], ARM_FP,
 717				       EBPF_SCRATCH_TO_ARM_FP(reg[1])), ctx);
 718		} else {
 719			emit(ARM_STR_I(src[1], ARM_FP,
 720				       EBPF_SCRATCH_TO_ARM_FP(reg[1])), ctx);
 721			emit(ARM_STR_I(src[0], ARM_FP,
 722				       EBPF_SCRATCH_TO_ARM_FP(reg[0])), ctx);
 723		}
 724	} else {
 725		if (reg[1] != src[1])
 726			emit(ARM_MOV_R(reg[1], src[1]), ctx);
 727		if (reg[0] != src[0])
 728			emit(ARM_MOV_R(reg[0], src[0]), ctx);
 729	}
 730}
 731
 732static inline void emit_a32_mov_i(const s8 dst, const u32 val,
 733				  struct jit_ctx *ctx)
 734{
 735	const s8 *tmp = bpf2a32[TMP_REG_1];
 736
 737	if (is_stacked(dst)) {
 738		emit_mov_i(tmp[1], val, ctx);
 739		arm_bpf_put_reg32(dst, tmp[1], ctx);
 740	} else {
 741		emit_mov_i(dst, val, ctx);
 742	}
 743}
 744
 745static void emit_a32_mov_i64(const s8 dst[], u64 val, struct jit_ctx *ctx)
 746{
 747	const s8 *tmp = bpf2a32[TMP_REG_1];
 748	const s8 *rd = is_stacked(dst_lo) ? tmp : dst;
 749
 750	emit_mov_i(rd[1], (u32)val, ctx);
 751	emit_mov_i(rd[0], val >> 32, ctx);
 752
 753	arm_bpf_put_reg64(dst, rd, ctx);
 754}
 755
 756/* Sign extended move */
 757static inline void emit_a32_mov_se_i64(const bool is64, const s8 dst[],
 758				       const u32 val, struct jit_ctx *ctx) {
 759	u64 val64 = val;
 760
 761	if (is64 && (val & (1<<31)))
 762		val64 |= 0xffffffff00000000ULL;
 763	emit_a32_mov_i64(dst, val64, ctx);
 764}
 765
 766static inline void emit_a32_add_r(const u8 dst, const u8 src,
 767			      const bool is64, const bool hi,
 768			      struct jit_ctx *ctx) {
 769	/* 64 bit :
 770	 *	adds dst_lo, dst_lo, src_lo
 771	 *	adc dst_hi, dst_hi, src_hi
 772	 * 32 bit :
 773	 *	add dst_lo, dst_lo, src_lo
 774	 */
 775	if (!hi && is64)
 776		emit(ARM_ADDS_R(dst, dst, src), ctx);
 777	else if (hi && is64)
 778		emit(ARM_ADC_R(dst, dst, src), ctx);
 779	else
 780		emit(ARM_ADD_R(dst, dst, src), ctx);
 781}
 782
 783static inline void emit_a32_sub_r(const u8 dst, const u8 src,
 784				  const bool is64, const bool hi,
 785				  struct jit_ctx *ctx) {
 786	/* 64 bit :
 787	 *	subs dst_lo, dst_lo, src_lo
 788	 *	sbc dst_hi, dst_hi, src_hi
 789	 * 32 bit :
 790	 *	sub dst_lo, dst_lo, src_lo
 791	 */
 792	if (!hi && is64)
 793		emit(ARM_SUBS_R(dst, dst, src), ctx);
 794	else if (hi && is64)
 795		emit(ARM_SBC_R(dst, dst, src), ctx);
 796	else
 797		emit(ARM_SUB_R(dst, dst, src), ctx);
 798}
 799
 800static inline void emit_alu_r(const u8 dst, const u8 src, const bool is64,
 801			      const bool hi, const u8 op, struct jit_ctx *ctx){
 802	switch (BPF_OP(op)) {
 803	/* dst = dst + src */
 804	case BPF_ADD:
 805		emit_a32_add_r(dst, src, is64, hi, ctx);
 806		break;
 807	/* dst = dst - src */
 808	case BPF_SUB:
 809		emit_a32_sub_r(dst, src, is64, hi, ctx);
 810		break;
 811	/* dst = dst | src */
 812	case BPF_OR:
 813		emit(ARM_ORR_R(dst, dst, src), ctx);
 814		break;
 815	/* dst = dst & src */
 816	case BPF_AND:
 817		emit(ARM_AND_R(dst, dst, src), ctx);
 818		break;
 819	/* dst = dst ^ src */
 820	case BPF_XOR:
 821		emit(ARM_EOR_R(dst, dst, src), ctx);
 822		break;
 823	/* dst = dst * src */
 824	case BPF_MUL:
 825		emit(ARM_MUL(dst, dst, src), ctx);
 826		break;
 827	/* dst = dst << src */
 828	case BPF_LSH:
 829		emit(ARM_LSL_R(dst, dst, src), ctx);
 830		break;
 831	/* dst = dst >> src */
 832	case BPF_RSH:
 833		emit(ARM_LSR_R(dst, dst, src), ctx);
 834		break;
 835	/* dst = dst >> src (signed)*/
 836	case BPF_ARSH:
 837		emit(ARM_MOV_SR(dst, dst, SRTYPE_ASR, src), ctx);
 838		break;
 839	}
 840}
 841
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 842/* ALU operation (64 bit) */
 843static inline void emit_a32_alu_r64(const bool is64, const s8 dst[],
 844				  const s8 src[], struct jit_ctx *ctx,
 845				  const u8 op) {
 846	const s8 *tmp = bpf2a32[TMP_REG_1];
 847	const s8 *tmp2 = bpf2a32[TMP_REG_2];
 848	const s8 *rd;
 849
 850	rd = arm_bpf_get_reg64(dst, tmp, ctx);
 851	if (is64) {
 852		const s8 *rs;
 853
 854		rs = arm_bpf_get_reg64(src, tmp2, ctx);
 855
 856		/* ALU operation */
 857		emit_alu_r(rd[1], rs[1], true, false, op, ctx);
 858		emit_alu_r(rd[0], rs[0], true, true, op, ctx);
 859	} else {
 860		s8 rs;
 861
 862		rs = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
 863
 864		/* ALU operation */
 865		emit_alu_r(rd[1], rs, true, false, op, ctx);
 866		if (!ctx->prog->aux->verifier_zext)
 867			emit_a32_mov_i(rd[0], 0, ctx);
 868	}
 869
 870	arm_bpf_put_reg64(dst, rd, ctx);
 871}
 872
 873/* dst = src (4 bytes)*/
 874static inline void emit_a32_mov_r(const s8 dst, const s8 src, struct jit_ctx *ctx) {
 
 875	const s8 *tmp = bpf2a32[TMP_REG_1];
 876	s8 rt;
 877
 878	rt = arm_bpf_get_reg32(src, tmp[0], ctx);
 879	arm_bpf_put_reg32(dst, rt, ctx);
 880}
 881
 882/* dst = src */
 883static inline void emit_a32_mov_r64(const bool is64, const s8 dst[],
 884				  const s8 src[],
 885				  struct jit_ctx *ctx) {
 886	if (!is64) {
 887		emit_a32_mov_r(dst_lo, src_lo, ctx);
 888		if (!ctx->prog->aux->verifier_zext)
 889			/* Zero out high 4 bytes */
 890			emit_a32_mov_i(dst_hi, 0, ctx);
 891	} else if (__LINUX_ARM_ARCH__ < 6 &&
 892		   ctx->cpu_architecture < CPU_ARCH_ARMv5TE) {
 893		/* complete 8 byte move */
 894		emit_a32_mov_r(dst_lo, src_lo, ctx);
 895		emit_a32_mov_r(dst_hi, src_hi, ctx);
 896	} else if (is_stacked(src_lo) && is_stacked(dst_lo)) {
 897		const u8 *tmp = bpf2a32[TMP_REG_1];
 898
 899		emit(ARM_LDRD_I(tmp[1], ARM_FP, EBPF_SCRATCH_TO_ARM_FP(src_lo)), ctx);
 900		emit(ARM_STRD_I(tmp[1], ARM_FP, EBPF_SCRATCH_TO_ARM_FP(dst_lo)), ctx);
 901	} else if (is_stacked(src_lo)) {
 902		emit(ARM_LDRD_I(dst[1], ARM_FP, EBPF_SCRATCH_TO_ARM_FP(src_lo)), ctx);
 903	} else if (is_stacked(dst_lo)) {
 904		emit(ARM_STRD_I(src[1], ARM_FP, EBPF_SCRATCH_TO_ARM_FP(dst_lo)), ctx);
 905	} else {
 906		emit(ARM_MOV_R(dst[0], src[0]), ctx);
 907		emit(ARM_MOV_R(dst[1], src[1]), ctx);
 908	}
 909}
 910
 911/* dst = (signed)src */
 912static inline void emit_a32_movsx_r64(const bool is64, const u8 off, const s8 dst[], const s8 src[],
 913				      struct jit_ctx *ctx) {
 914	const s8 *tmp = bpf2a32[TMP_REG_1];
 915	s8 rs;
 916	s8 rd;
 917
 918	if (is_stacked(dst_lo))
 919		rd = tmp[1];
 920	else
 921		rd = dst_lo;
 922	rs = arm_bpf_get_reg32(src_lo, rd, ctx);
 923	/* rs may be one of src[1], dst[1], or tmp[1] */
 924
 925	/* Sign extend rs if needed. If off == 32, lower 32-bits of src are moved to dst and sign
 926	 * extension only happens in the upper 64 bits.
 927	 */
 928	if (off != 32) {
 929		/* Sign extend rs into rd */
 930		emit(ARM_LSL_I(rd, rs, 32 - off), ctx);
 931		emit(ARM_ASR_I(rd, rd, 32 - off), ctx);
 932	} else {
 933		rd = rs;
 934	}
 935
 936	/* Write rd to dst_lo
 937	 *
 938	 * Optimization:
 939	 * Assume:
 940	 * 1. dst == src and stacked.
 941	 * 2. off == 32
 942	 *
 943	 * In this case src_lo was loaded into rd(tmp[1]) but rd was not sign extended as off==32.
 944	 * So, we don't need to write rd back to dst_lo as they have the same value.
 945	 * This saves us one str instruction.
 946	 */
 947	if (dst_lo != src_lo || off != 32)
 948		arm_bpf_put_reg32(dst_lo, rd, ctx);
 949
 950	if (!is64) {
 951		if (!ctx->prog->aux->verifier_zext)
 952			/* Zero out high 4 bytes */
 953			emit_a32_mov_i(dst_hi, 0, ctx);
 954	} else {
 955		if (is_stacked(dst_hi)) {
 956			emit(ARM_ASR_I(tmp[0], rd, 31), ctx);
 957			arm_bpf_put_reg32(dst_hi, tmp[0], ctx);
 958		} else {
 959			emit(ARM_ASR_I(dst_hi, rd, 31), ctx);
 960		}
 961	}
 962}
 963
 964/* Shift operations */
 965static inline void emit_a32_alu_i(const s8 dst, const u32 val,
 966				struct jit_ctx *ctx, const u8 op) {
 967	const s8 *tmp = bpf2a32[TMP_REG_1];
 968	s8 rd;
 969
 970	rd = arm_bpf_get_reg32(dst, tmp[0], ctx);
 971
 972	/* Do shift operation */
 973	switch (op) {
 974	case BPF_LSH:
 975		emit(ARM_LSL_I(rd, rd, val), ctx);
 976		break;
 977	case BPF_RSH:
 978		emit(ARM_LSR_I(rd, rd, val), ctx);
 979		break;
 980	case BPF_ARSH:
 981		emit(ARM_ASR_I(rd, rd, val), ctx);
 982		break;
 983	case BPF_NEG:
 984		emit(ARM_RSB_I(rd, rd, val), ctx);
 985		break;
 986	}
 987
 988	arm_bpf_put_reg32(dst, rd, ctx);
 989}
 990
 991/* dst = ~dst (64 bit) */
 992static inline void emit_a32_neg64(const s8 dst[],
 993				struct jit_ctx *ctx){
 994	const s8 *tmp = bpf2a32[TMP_REG_1];
 995	const s8 *rd;
 996
 997	/* Setup Operand */
 998	rd = arm_bpf_get_reg64(dst, tmp, ctx);
 999
1000	/* Do Negate Operation */
1001	emit(ARM_RSBS_I(rd[1], rd[1], 0), ctx);
1002	emit(ARM_RSC_I(rd[0], rd[0], 0), ctx);
1003
1004	arm_bpf_put_reg64(dst, rd, ctx);
1005}
1006
1007/* dst = dst << src */
1008static inline void emit_a32_lsh_r64(const s8 dst[], const s8 src[],
1009				    struct jit_ctx *ctx) {
1010	const s8 *tmp = bpf2a32[TMP_REG_1];
1011	const s8 *tmp2 = bpf2a32[TMP_REG_2];
1012	const s8 *rd;
1013	s8 rt;
1014
1015	/* Setup Operands */
1016	rt = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
1017	rd = arm_bpf_get_reg64(dst, tmp, ctx);
1018
1019	/* Do LSH operation */
1020	emit(ARM_SUB_I(ARM_IP, rt, 32), ctx);
1021	emit(ARM_RSB_I(tmp2[0], rt, 32), ctx);
1022	emit(ARM_MOV_SR(ARM_LR, rd[0], SRTYPE_ASL, rt), ctx);
1023	emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[1], SRTYPE_ASL, ARM_IP), ctx);
1024	emit(ARM_ORR_SR(ARM_IP, ARM_LR, rd[1], SRTYPE_LSR, tmp2[0]), ctx);
1025	emit(ARM_MOV_SR(ARM_LR, rd[1], SRTYPE_ASL, rt), ctx);
1026
1027	arm_bpf_put_reg32(dst_lo, ARM_LR, ctx);
1028	arm_bpf_put_reg32(dst_hi, ARM_IP, ctx);
1029}
1030
1031/* dst = dst >> src (signed)*/
1032static inline void emit_a32_arsh_r64(const s8 dst[], const s8 src[],
1033				     struct jit_ctx *ctx) {
1034	const s8 *tmp = bpf2a32[TMP_REG_1];
1035	const s8 *tmp2 = bpf2a32[TMP_REG_2];
1036	const s8 *rd;
1037	s8 rt;
1038
1039	/* Setup Operands */
1040	rt = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
1041	rd = arm_bpf_get_reg64(dst, tmp, ctx);
1042
1043	/* Do the ARSH operation */
1044	emit(ARM_RSB_I(ARM_IP, rt, 32), ctx);
1045	emit(ARM_SUBS_I(tmp2[0], rt, 32), ctx);
1046	emit(ARM_MOV_SR(ARM_LR, rd[1], SRTYPE_LSR, rt), ctx);
1047	emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[0], SRTYPE_ASL, ARM_IP), ctx);
1048	_emit(ARM_COND_PL,
1049	      ARM_ORR_SR(ARM_LR, ARM_LR, rd[0], SRTYPE_ASR, tmp2[0]), ctx);
1050	emit(ARM_MOV_SR(ARM_IP, rd[0], SRTYPE_ASR, rt), ctx);
1051
1052	arm_bpf_put_reg32(dst_lo, ARM_LR, ctx);
1053	arm_bpf_put_reg32(dst_hi, ARM_IP, ctx);
1054}
1055
1056/* dst = dst >> src */
1057static inline void emit_a32_rsh_r64(const s8 dst[], const s8 src[],
1058				    struct jit_ctx *ctx) {
1059	const s8 *tmp = bpf2a32[TMP_REG_1];
1060	const s8 *tmp2 = bpf2a32[TMP_REG_2];
1061	const s8 *rd;
1062	s8 rt;
1063
1064	/* Setup Operands */
1065	rt = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
1066	rd = arm_bpf_get_reg64(dst, tmp, ctx);
1067
1068	/* Do RSH operation */
1069	emit(ARM_RSB_I(ARM_IP, rt, 32), ctx);
1070	emit(ARM_SUBS_I(tmp2[0], rt, 32), ctx);
1071	emit(ARM_MOV_SR(ARM_LR, rd[1], SRTYPE_LSR, rt), ctx);
1072	emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[0], SRTYPE_ASL, ARM_IP), ctx);
1073	emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[0], SRTYPE_LSR, tmp2[0]), ctx);
1074	emit(ARM_MOV_SR(ARM_IP, rd[0], SRTYPE_LSR, rt), ctx);
1075
1076	arm_bpf_put_reg32(dst_lo, ARM_LR, ctx);
1077	arm_bpf_put_reg32(dst_hi, ARM_IP, ctx);
1078}
1079
1080/* dst = dst << val */
1081static inline void emit_a32_lsh_i64(const s8 dst[],
1082				    const u32 val, struct jit_ctx *ctx){
1083	const s8 *tmp = bpf2a32[TMP_REG_1];
1084	const s8 *tmp2 = bpf2a32[TMP_REG_2];
1085	const s8 *rd;
1086
1087	/* Setup operands */
1088	rd = arm_bpf_get_reg64(dst, tmp, ctx);
1089
1090	/* Do LSH operation */
1091	if (val < 32) {
1092		emit(ARM_MOV_SI(tmp2[0], rd[0], SRTYPE_ASL, val), ctx);
1093		emit(ARM_ORR_SI(rd[0], tmp2[0], rd[1], SRTYPE_LSR, 32 - val), ctx);
1094		emit(ARM_MOV_SI(rd[1], rd[1], SRTYPE_ASL, val), ctx);
1095	} else {
1096		if (val == 32)
1097			emit(ARM_MOV_R(rd[0], rd[1]), ctx);
1098		else
1099			emit(ARM_MOV_SI(rd[0], rd[1], SRTYPE_ASL, val - 32), ctx);
1100		emit(ARM_EOR_R(rd[1], rd[1], rd[1]), ctx);
1101	}
1102
1103	arm_bpf_put_reg64(dst, rd, ctx);
1104}
1105
1106/* dst = dst >> val */
1107static inline void emit_a32_rsh_i64(const s8 dst[],
1108				    const u32 val, struct jit_ctx *ctx) {
1109	const s8 *tmp = bpf2a32[TMP_REG_1];
1110	const s8 *tmp2 = bpf2a32[TMP_REG_2];
1111	const s8 *rd;
1112
1113	/* Setup operands */
1114	rd = arm_bpf_get_reg64(dst, tmp, ctx);
1115
1116	/* Do LSR operation */
1117	if (val == 0) {
1118		/* An immediate value of 0 encodes a shift amount of 32
1119		 * for LSR. To shift by 0, don't do anything.
1120		 */
1121	} else if (val < 32) {
1122		emit(ARM_MOV_SI(tmp2[1], rd[1], SRTYPE_LSR, val), ctx);
1123		emit(ARM_ORR_SI(rd[1], tmp2[1], rd[0], SRTYPE_ASL, 32 - val), ctx);
1124		emit(ARM_MOV_SI(rd[0], rd[0], SRTYPE_LSR, val), ctx);
1125	} else if (val == 32) {
1126		emit(ARM_MOV_R(rd[1], rd[0]), ctx);
1127		emit(ARM_MOV_I(rd[0], 0), ctx);
1128	} else {
1129		emit(ARM_MOV_SI(rd[1], rd[0], SRTYPE_LSR, val - 32), ctx);
1130		emit(ARM_MOV_I(rd[0], 0), ctx);
1131	}
1132
1133	arm_bpf_put_reg64(dst, rd, ctx);
1134}
1135
1136/* dst = dst >> val (signed) */
1137static inline void emit_a32_arsh_i64(const s8 dst[],
1138				     const u32 val, struct jit_ctx *ctx){
1139	const s8 *tmp = bpf2a32[TMP_REG_1];
1140	const s8 *tmp2 = bpf2a32[TMP_REG_2];
1141	const s8 *rd;
1142
1143	/* Setup operands */
1144	rd = arm_bpf_get_reg64(dst, tmp, ctx);
1145
1146	/* Do ARSH operation */
1147	if (val == 0) {
1148		/* An immediate value of 0 encodes a shift amount of 32
1149		 * for ASR. To shift by 0, don't do anything.
1150		 */
1151	} else if (val < 32) {
1152		emit(ARM_MOV_SI(tmp2[1], rd[1], SRTYPE_LSR, val), ctx);
1153		emit(ARM_ORR_SI(rd[1], tmp2[1], rd[0], SRTYPE_ASL, 32 - val), ctx);
1154		emit(ARM_MOV_SI(rd[0], rd[0], SRTYPE_ASR, val), ctx);
1155	} else if (val == 32) {
1156		emit(ARM_MOV_R(rd[1], rd[0]), ctx);
1157		emit(ARM_MOV_SI(rd[0], rd[0], SRTYPE_ASR, 31), ctx);
1158	} else {
1159		emit(ARM_MOV_SI(rd[1], rd[0], SRTYPE_ASR, val - 32), ctx);
1160		emit(ARM_MOV_SI(rd[0], rd[0], SRTYPE_ASR, 31), ctx);
1161	}
1162
1163	arm_bpf_put_reg64(dst, rd, ctx);
1164}
1165
1166static inline void emit_a32_mul_r64(const s8 dst[], const s8 src[],
1167				    struct jit_ctx *ctx) {
1168	const s8 *tmp = bpf2a32[TMP_REG_1];
1169	const s8 *tmp2 = bpf2a32[TMP_REG_2];
1170	const s8 *rd, *rt;
1171
1172	/* Setup operands for multiplication */
1173	rd = arm_bpf_get_reg64(dst, tmp, ctx);
1174	rt = arm_bpf_get_reg64(src, tmp2, ctx);
1175
1176	/* Do Multiplication */
1177	emit(ARM_MUL(ARM_IP, rd[1], rt[0]), ctx);
1178	emit(ARM_MUL(ARM_LR, rd[0], rt[1]), ctx);
1179	emit(ARM_ADD_R(ARM_LR, ARM_IP, ARM_LR), ctx);
1180
1181	emit(ARM_UMULL(ARM_IP, rd[0], rd[1], rt[1]), ctx);
1182	emit(ARM_ADD_R(rd[0], ARM_LR, rd[0]), ctx);
1183
1184	arm_bpf_put_reg32(dst_lo, ARM_IP, ctx);
1185	arm_bpf_put_reg32(dst_hi, rd[0], ctx);
1186}
1187
1188static bool is_ldst_imm(s16 off, const u8 size)
1189{
1190	s16 off_max = 0;
1191
1192	switch (size) {
1193	case BPF_B:
1194	case BPF_W:
1195		off_max = 0xfff;
1196		break;
1197	case BPF_H:
1198		off_max = 0xff;
1199		break;
1200	case BPF_DW:
1201		/* Need to make sure off+4 does not overflow. */
1202		off_max = 0xfff - 4;
1203		break;
1204	}
1205	return -off_max <= off && off <= off_max;
1206}
1207
1208static bool is_ldst_imm8(s16 off, const u8 size)
1209{
1210	s16 off_max = 0;
1211
1212	switch (size) {
1213	case BPF_B:
1214		off_max = 0xff;
1215		break;
1216	case BPF_W:
1217		off_max = 0xfff;
1218		break;
1219	case BPF_H:
1220		off_max = 0xff;
1221		break;
1222	}
1223	return -off_max <= off && off <= off_max;
1224}
1225
1226/* *(size *)(dst + off) = src */
1227static inline void emit_str_r(const s8 dst, const s8 src[],
1228			      s16 off, struct jit_ctx *ctx, const u8 sz){
1229	const s8 *tmp = bpf2a32[TMP_REG_1];
 
1230	s8 rd;
1231
1232	rd = arm_bpf_get_reg32(dst, tmp[1], ctx);
1233
1234	if (!is_ldst_imm(off, sz)) {
 
 
 
 
 
1235		emit_a32_mov_i(tmp[0], off, ctx);
1236		emit(ARM_ADD_R(tmp[0], tmp[0], rd), ctx);
1237		rd = tmp[0];
1238		off = 0;
1239	}
1240	switch (sz) {
1241	case BPF_B:
1242		/* Store a Byte */
1243		emit(ARM_STRB_I(src_lo, rd, off), ctx);
1244		break;
1245	case BPF_H:
1246		/* Store a HalfWord */
1247		emit(ARM_STRH_I(src_lo, rd, off), ctx);
1248		break;
1249	case BPF_W:
1250		/* Store a Word */
1251		emit(ARM_STR_I(src_lo, rd, off), ctx);
1252		break;
1253	case BPF_DW:
1254		/* Store a Double Word */
1255		emit(ARM_STR_I(src_lo, rd, off), ctx);
1256		emit(ARM_STR_I(src_hi, rd, off + 4), ctx);
1257		break;
1258	}
1259}
1260
1261/* dst = *(size*)(src + off) */
1262static inline void emit_ldx_r(const s8 dst[], const s8 src,
1263			      s16 off, struct jit_ctx *ctx, const u8 sz){
1264	const s8 *tmp = bpf2a32[TMP_REG_1];
1265	const s8 *rd = is_stacked(dst_lo) ? tmp : dst;
1266	s8 rm = src;
 
1267
1268	if (!is_ldst_imm(off, sz)) {
 
 
 
 
 
1269		emit_a32_mov_i(tmp[0], off, ctx);
1270		emit(ARM_ADD_R(tmp[0], tmp[0], src), ctx);
1271		rm = tmp[0];
1272		off = 0;
1273	} else if (rd[1] == rm) {
1274		emit(ARM_MOV_R(tmp[0], rm), ctx);
1275		rm = tmp[0];
1276	}
1277	switch (sz) {
1278	case BPF_B:
1279		/* Load a Byte */
1280		emit(ARM_LDRB_I(rd[1], rm, off), ctx);
1281		if (!ctx->prog->aux->verifier_zext)
1282			emit_a32_mov_i(rd[0], 0, ctx);
1283		break;
1284	case BPF_H:
1285		/* Load a HalfWord */
1286		emit(ARM_LDRH_I(rd[1], rm, off), ctx);
1287		if (!ctx->prog->aux->verifier_zext)
1288			emit_a32_mov_i(rd[0], 0, ctx);
1289		break;
1290	case BPF_W:
1291		/* Load a Word */
1292		emit(ARM_LDR_I(rd[1], rm, off), ctx);
1293		if (!ctx->prog->aux->verifier_zext)
1294			emit_a32_mov_i(rd[0], 0, ctx);
1295		break;
1296	case BPF_DW:
1297		/* Load a Double Word */
1298		emit(ARM_LDR_I(rd[1], rm, off), ctx);
1299		emit(ARM_LDR_I(rd[0], rm, off + 4), ctx);
1300		break;
1301	}
1302	arm_bpf_put_reg64(dst, rd, ctx);
1303}
1304
1305/* dst = *(signed size*)(src + off) */
1306static inline void emit_ldsx_r(const s8 dst[], const s8 src,
1307			       s16 off, struct jit_ctx *ctx, const u8 sz){
1308	const s8 *tmp = bpf2a32[TMP_REG_1];
1309	const s8 *rd = is_stacked(dst_lo) ? tmp : dst;
1310	s8 rm = src;
1311	int add_off;
1312
1313	if (!is_ldst_imm8(off, sz)) {
1314		/*
1315		 * offset does not fit in the load/store immediate,
1316		 * construct an ADD instruction to apply the offset.
1317		 */
1318		add_off = imm8m(off);
1319		if (add_off > 0) {
1320			emit(ARM_ADD_I(tmp[0], src, add_off), ctx);
1321			rm = tmp[0];
1322		} else {
1323			emit_a32_mov_i(tmp[0], off, ctx);
1324			emit(ARM_ADD_R(tmp[0], tmp[0], src), ctx);
1325			rm = tmp[0];
1326		}
1327		off = 0;
1328	}
1329
1330	switch (sz) {
1331	case BPF_B:
1332		/* Load a Byte with sign extension*/
1333		emit(ARM_LDRSB_I(rd[1], rm, off), ctx);
1334		break;
1335	case BPF_H:
1336		/* Load a HalfWord with sign extension*/
1337		emit(ARM_LDRSH_I(rd[1], rm, off), ctx);
1338		break;
1339	case BPF_W:
1340		/* Load a Word*/
1341		emit(ARM_LDR_I(rd[1], rm, off), ctx);
1342		break;
1343	}
1344	/* Carry the sign extension to upper 32 bits */
1345	emit(ARM_ASR_I(rd[0], rd[1], 31), ctx);
1346	arm_bpf_put_reg64(dst, rd, ctx);
1347}
1348
1349/* Arithmatic Operation */
1350static inline void emit_ar_r(const u8 rd, const u8 rt, const u8 rm,
1351			     const u8 rn, struct jit_ctx *ctx, u8 op,
1352			     bool is_jmp64) {
1353	switch (op) {
1354	case BPF_JSET:
1355		if (is_jmp64) {
1356			emit(ARM_AND_R(ARM_IP, rt, rn), ctx);
1357			emit(ARM_AND_R(ARM_LR, rd, rm), ctx);
1358			emit(ARM_ORRS_R(ARM_IP, ARM_LR, ARM_IP), ctx);
1359		} else {
1360			emit(ARM_ANDS_R(ARM_IP, rt, rn), ctx);
1361		}
1362		break;
1363	case BPF_JEQ:
1364	case BPF_JNE:
1365	case BPF_JGT:
1366	case BPF_JGE:
1367	case BPF_JLE:
1368	case BPF_JLT:
1369		if (is_jmp64) {
1370			emit(ARM_CMP_R(rd, rm), ctx);
1371			/* Only compare low halve if high halve are equal. */
1372			_emit(ARM_COND_EQ, ARM_CMP_R(rt, rn), ctx);
1373		} else {
1374			emit(ARM_CMP_R(rt, rn), ctx);
1375		}
1376		break;
1377	case BPF_JSLE:
1378	case BPF_JSGT:
1379		emit(ARM_CMP_R(rn, rt), ctx);
1380		if (is_jmp64)
1381			emit(ARM_SBCS_R(ARM_IP, rm, rd), ctx);
1382		break;
1383	case BPF_JSLT:
1384	case BPF_JSGE:
1385		emit(ARM_CMP_R(rt, rn), ctx);
1386		if (is_jmp64)
1387			emit(ARM_SBCS_R(ARM_IP, rd, rm), ctx);
1388		break;
1389	}
1390}
1391
1392static int out_offset = -1; /* initialized on the first pass of build_body() */
1393static int emit_bpf_tail_call(struct jit_ctx *ctx)
1394{
1395
1396	/* bpf_tail_call(void *prog_ctx, struct bpf_array *array, u64 index) */
1397	const s8 *r2 = bpf2a32[BPF_REG_2];
1398	const s8 *r3 = bpf2a32[BPF_REG_3];
1399	const s8 *tmp = bpf2a32[TMP_REG_1];
1400	const s8 *tmp2 = bpf2a32[TMP_REG_2];
1401	const s8 *tcc = bpf2a32[TCALL_CNT];
1402	const s8 *tc;
1403	const int idx0 = ctx->idx;
1404#define cur_offset (ctx->idx - idx0)
1405#define jmp_offset (out_offset - (cur_offset) - 2)
1406	u32 lo, hi;
1407	s8 r_array, r_index;
1408	int off;
1409
1410	/* if (index >= array->map.max_entries)
1411	 *	goto out;
1412	 */
1413	BUILD_BUG_ON(offsetof(struct bpf_array, map.max_entries) >
1414		     ARM_INST_LDST__IMM12);
1415	off = offsetof(struct bpf_array, map.max_entries);
1416	r_array = arm_bpf_get_reg32(r2[1], tmp2[0], ctx);
1417	/* index is 32-bit for arrays */
1418	r_index = arm_bpf_get_reg32(r3[1], tmp2[1], ctx);
1419	/* array->map.max_entries */
1420	emit(ARM_LDR_I(tmp[1], r_array, off), ctx);
1421	/* index >= array->map.max_entries */
1422	emit(ARM_CMP_R(r_index, tmp[1]), ctx);
1423	_emit(ARM_COND_CS, ARM_B(jmp_offset), ctx);
1424
1425	/* tmp2[0] = array, tmp2[1] = index */
1426
1427	/*
1428	 * if (tail_call_cnt >= MAX_TAIL_CALL_CNT)
1429	 *	goto out;
1430	 * tail_call_cnt++;
1431	 */
1432	lo = (u32)MAX_TAIL_CALL_CNT;
1433	hi = (u32)((u64)MAX_TAIL_CALL_CNT >> 32);
1434	tc = arm_bpf_get_reg64(tcc, tmp, ctx);
1435	emit(ARM_CMP_I(tc[0], hi), ctx);
1436	_emit(ARM_COND_EQ, ARM_CMP_I(tc[1], lo), ctx);
1437	_emit(ARM_COND_CS, ARM_B(jmp_offset), ctx);
1438	emit(ARM_ADDS_I(tc[1], tc[1], 1), ctx);
1439	emit(ARM_ADC_I(tc[0], tc[0], 0), ctx);
1440	arm_bpf_put_reg64(tcc, tmp, ctx);
1441
1442	/* prog = array->ptrs[index]
1443	 * if (prog == NULL)
1444	 *	goto out;
1445	 */
1446	BUILD_BUG_ON(imm8m(offsetof(struct bpf_array, ptrs)) < 0);
1447	off = imm8m(offsetof(struct bpf_array, ptrs));
1448	emit(ARM_ADD_I(tmp[1], r_array, off), ctx);
1449	emit(ARM_LDR_R_SI(tmp[1], tmp[1], r_index, SRTYPE_ASL, 2), ctx);
1450	emit(ARM_CMP_I(tmp[1], 0), ctx);
1451	_emit(ARM_COND_EQ, ARM_B(jmp_offset), ctx);
1452
1453	/* goto *(prog->bpf_func + prologue_size); */
1454	BUILD_BUG_ON(offsetof(struct bpf_prog, bpf_func) >
1455		     ARM_INST_LDST__IMM12);
1456	off = offsetof(struct bpf_prog, bpf_func);
1457	emit(ARM_LDR_I(tmp[1], tmp[1], off), ctx);
1458	emit(ARM_ADD_I(tmp[1], tmp[1], ctx->prologue_bytes), ctx);
1459	emit_bx_r(tmp[1], ctx);
1460
1461	/* out: */
1462	if (out_offset == -1)
1463		out_offset = cur_offset;
1464	if (cur_offset != out_offset) {
1465		pr_err_once("tail_call out_offset = %d, expected %d!\n",
1466			    cur_offset, out_offset);
1467		return -1;
1468	}
1469	return 0;
1470#undef cur_offset
1471#undef jmp_offset
1472}
1473
1474/* 0xabcd => 0xcdab */
1475static inline void emit_rev16(const u8 rd, const u8 rn, struct jit_ctx *ctx)
1476{
1477#if __LINUX_ARM_ARCH__ < 6
1478	const s8 *tmp2 = bpf2a32[TMP_REG_2];
1479
1480	emit(ARM_AND_I(tmp2[1], rn, 0xff), ctx);
1481	emit(ARM_MOV_SI(tmp2[0], rn, SRTYPE_LSR, 8), ctx);
1482	emit(ARM_AND_I(tmp2[0], tmp2[0], 0xff), ctx);
1483	emit(ARM_ORR_SI(rd, tmp2[0], tmp2[1], SRTYPE_LSL, 8), ctx);
1484#else /* ARMv6+ */
1485	emit(ARM_REV16(rd, rn), ctx);
1486#endif
1487}
1488
1489/* 0xabcdefgh => 0xghefcdab */
1490static inline void emit_rev32(const u8 rd, const u8 rn, struct jit_ctx *ctx)
1491{
1492#if __LINUX_ARM_ARCH__ < 6
1493	const s8 *tmp2 = bpf2a32[TMP_REG_2];
1494
1495	emit(ARM_AND_I(tmp2[1], rn, 0xff), ctx);
1496	emit(ARM_MOV_SI(tmp2[0], rn, SRTYPE_LSR, 24), ctx);
1497	emit(ARM_ORR_SI(ARM_IP, tmp2[0], tmp2[1], SRTYPE_LSL, 24), ctx);
1498
1499	emit(ARM_MOV_SI(tmp2[1], rn, SRTYPE_LSR, 8), ctx);
1500	emit(ARM_AND_I(tmp2[1], tmp2[1], 0xff), ctx);
1501	emit(ARM_MOV_SI(tmp2[0], rn, SRTYPE_LSR, 16), ctx);
1502	emit(ARM_AND_I(tmp2[0], tmp2[0], 0xff), ctx);
1503	emit(ARM_MOV_SI(tmp2[0], tmp2[0], SRTYPE_LSL, 8), ctx);
1504	emit(ARM_ORR_SI(tmp2[0], tmp2[0], tmp2[1], SRTYPE_LSL, 16), ctx);
1505	emit(ARM_ORR_R(rd, ARM_IP, tmp2[0]), ctx);
1506
1507#else /* ARMv6+ */
1508	emit(ARM_REV(rd, rn), ctx);
1509#endif
1510}
1511
1512// push the scratch stack register on top of the stack
1513static inline void emit_push_r64(const s8 src[], struct jit_ctx *ctx)
1514{
1515	const s8 *tmp2 = bpf2a32[TMP_REG_2];
1516	const s8 *rt;
1517	u16 reg_set = 0;
1518
1519	rt = arm_bpf_get_reg64(src, tmp2, ctx);
1520
1521	reg_set = (1 << rt[1]) | (1 << rt[0]);
1522	emit(ARM_PUSH(reg_set), ctx);
1523}
1524
1525static void build_prologue(struct jit_ctx *ctx)
1526{
1527	const s8 arm_r0 = bpf2a32[BPF_REG_0][1];
1528	const s8 *bpf_r1 = bpf2a32[BPF_REG_1];
1529	const s8 *bpf_fp = bpf2a32[BPF_REG_FP];
 
 
 
1530	const s8 *tcc = bpf2a32[TCALL_CNT];
1531
1532	/* Save callee saved registers. */
1533#ifdef CONFIG_FRAME_POINTER
1534	u16 reg_set = CALLEE_PUSH_MASK | 1 << ARM_IP | 1 << ARM_PC;
1535	emit(ARM_MOV_R(ARM_IP, ARM_SP), ctx);
1536	emit(ARM_PUSH(reg_set), ctx);
1537	emit(ARM_SUB_I(ARM_FP, ARM_IP, 4), ctx);
1538#else
1539	emit(ARM_PUSH(CALLEE_PUSH_MASK), ctx);
1540	emit(ARM_MOV_R(ARM_FP, ARM_SP), ctx);
1541#endif
1542	/* mov r3, #0 */
1543	/* sub r2, sp, #SCRATCH_SIZE */
1544	emit(ARM_MOV_I(bpf_r1[0], 0), ctx);
1545	emit(ARM_SUB_I(bpf_r1[1], ARM_SP, SCRATCH_SIZE), ctx);
1546
1547	ctx->stack_size = imm8m(STACK_SIZE);
1548
1549	/* Set up function call stack */
1550	emit(ARM_SUB_I(ARM_SP, ARM_SP, ctx->stack_size), ctx);
1551
1552	/* Set up BPF prog stack base register */
1553	emit_a32_mov_r64(true, bpf_fp, bpf_r1, ctx);
 
1554
1555	/* Initialize Tail Count */
1556	emit(ARM_MOV_I(bpf_r1[1], 0), ctx);
1557	emit_a32_mov_r64(true, tcc, bpf_r1, ctx);
1558
1559	/* Move BPF_CTX to BPF_R1 */
1560	emit(ARM_MOV_R(bpf_r1[1], arm_r0), ctx);
1561
 
 
 
1562	/* end of prologue */
1563}
1564
1565/* restore callee saved registers. */
1566static void build_epilogue(struct jit_ctx *ctx)
1567{
1568#ifdef CONFIG_FRAME_POINTER
1569	/* When using frame pointers, some additional registers need to
1570	 * be loaded. */
1571	u16 reg_set = CALLEE_POP_MASK | 1 << ARM_SP;
1572	emit(ARM_SUB_I(ARM_SP, ARM_FP, hweight16(reg_set) * 4), ctx);
1573	emit(ARM_LDM(ARM_SP, reg_set), ctx);
1574#else
1575	/* Restore callee saved registers. */
1576	emit(ARM_MOV_R(ARM_SP, ARM_FP), ctx);
1577	emit(ARM_POP(CALLEE_POP_MASK), ctx);
1578#endif
1579}
1580
1581/*
1582 * Convert an eBPF instruction to native instruction, i.e
1583 * JITs an eBPF instruction.
1584 * Returns :
1585 *	0  - Successfully JITed an 8-byte eBPF instruction
1586 *	>0 - Successfully JITed a 16-byte eBPF instruction
1587 *	<0 - Failed to JIT.
1588 */
1589static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx)
1590{
1591	const u8 code = insn->code;
1592	const s8 *dst = bpf2a32[insn->dst_reg];
1593	const s8 *src = bpf2a32[insn->src_reg];
1594	const s8 *tmp = bpf2a32[TMP_REG_1];
1595	const s8 *tmp2 = bpf2a32[TMP_REG_2];
1596	const s16 off = insn->off;
1597	const s32 imm = insn->imm;
1598	const int i = insn - ctx->prog->insnsi;
1599	const bool is64 = BPF_CLASS(code) == BPF_ALU64;
1600	const s8 *rd, *rs;
1601	s8 rd_lo, rt, rm, rn;
1602	s32 jmp_offset;
1603
1604#define check_imm(bits, imm) do {				\
1605	if ((imm) >= (1 << ((bits) - 1)) ||			\
1606	    (imm) < -(1 << ((bits) - 1))) {			\
1607		pr_info("[%2d] imm=%d(0x%x) out of range\n",	\
1608			i, imm, imm);				\
1609		return -EINVAL;					\
1610	}							\
1611} while (0)
1612#define check_imm24(imm) check_imm(24, imm)
1613
1614	switch (code) {
1615	/* ALU operations */
1616
1617	/* dst = src */
1618	case BPF_ALU | BPF_MOV | BPF_K:
1619	case BPF_ALU | BPF_MOV | BPF_X:
1620	case BPF_ALU64 | BPF_MOV | BPF_K:
1621	case BPF_ALU64 | BPF_MOV | BPF_X:
1622		switch (BPF_SRC(code)) {
1623		case BPF_X:
1624			if (imm == 1) {
1625				/* Special mov32 for zext */
1626				emit_a32_mov_i(dst_hi, 0, ctx);
1627				break;
1628			}
1629			if (insn->off)
1630				emit_a32_movsx_r64(is64, insn->off, dst, src, ctx);
1631			else
1632				emit_a32_mov_r64(is64, dst, src, ctx);
1633			break;
1634		case BPF_K:
1635			/* Sign-extend immediate value to destination reg */
1636			emit_a32_mov_se_i64(is64, dst, imm, ctx);
1637			break;
1638		}
1639		break;
1640	/* dst = dst + src/imm */
1641	/* dst = dst - src/imm */
1642	/* dst = dst | src/imm */
1643	/* dst = dst & src/imm */
1644	/* dst = dst ^ src/imm */
1645	/* dst = dst * src/imm */
1646	/* dst = dst << src */
1647	/* dst = dst >> src */
1648	case BPF_ALU | BPF_ADD | BPF_K:
1649	case BPF_ALU | BPF_ADD | BPF_X:
1650	case BPF_ALU | BPF_SUB | BPF_K:
1651	case BPF_ALU | BPF_SUB | BPF_X:
1652	case BPF_ALU | BPF_OR | BPF_K:
1653	case BPF_ALU | BPF_OR | BPF_X:
1654	case BPF_ALU | BPF_AND | BPF_K:
1655	case BPF_ALU | BPF_AND | BPF_X:
1656	case BPF_ALU | BPF_XOR | BPF_K:
1657	case BPF_ALU | BPF_XOR | BPF_X:
1658	case BPF_ALU | BPF_MUL | BPF_K:
1659	case BPF_ALU | BPF_MUL | BPF_X:
1660	case BPF_ALU | BPF_LSH | BPF_X:
1661	case BPF_ALU | BPF_RSH | BPF_X:
 
1662	case BPF_ALU | BPF_ARSH | BPF_X:
1663	case BPF_ALU64 | BPF_ADD | BPF_K:
1664	case BPF_ALU64 | BPF_ADD | BPF_X:
1665	case BPF_ALU64 | BPF_SUB | BPF_K:
1666	case BPF_ALU64 | BPF_SUB | BPF_X:
1667	case BPF_ALU64 | BPF_OR | BPF_K:
1668	case BPF_ALU64 | BPF_OR | BPF_X:
1669	case BPF_ALU64 | BPF_AND | BPF_K:
1670	case BPF_ALU64 | BPF_AND | BPF_X:
1671	case BPF_ALU64 | BPF_XOR | BPF_K:
1672	case BPF_ALU64 | BPF_XOR | BPF_X:
1673		switch (BPF_SRC(code)) {
1674		case BPF_X:
1675			emit_a32_alu_r64(is64, dst, src, ctx, BPF_OP(code));
1676			break;
1677		case BPF_K:
1678			/* Move immediate value to the temporary register
1679			 * and then do the ALU operation on the temporary
1680			 * register as this will sign-extend the immediate
1681			 * value into temporary reg and then it would be
1682			 * safe to do the operation on it.
1683			 */
1684			emit_a32_mov_se_i64(is64, tmp2, imm, ctx);
1685			emit_a32_alu_r64(is64, dst, tmp2, ctx, BPF_OP(code));
1686			break;
1687		}
1688		break;
1689	/* dst = dst / src(imm) */
1690	/* dst = dst % src(imm) */
1691	case BPF_ALU | BPF_DIV | BPF_K:
1692	case BPF_ALU | BPF_DIV | BPF_X:
1693	case BPF_ALU | BPF_MOD | BPF_K:
1694	case BPF_ALU | BPF_MOD | BPF_X:
1695		rd_lo = arm_bpf_get_reg32(dst_lo, tmp2[1], ctx);
1696		switch (BPF_SRC(code)) {
1697		case BPF_X:
1698			rt = arm_bpf_get_reg32(src_lo, tmp2[0], ctx);
1699			break;
1700		case BPF_K:
1701			rt = tmp2[0];
1702			emit_a32_mov_i(rt, imm, ctx);
1703			break;
1704		default:
1705			rt = src_lo;
1706			break;
1707		}
1708		emit_udivmod(rd_lo, rd_lo, rt, ctx, BPF_OP(code), off);
1709		arm_bpf_put_reg32(dst_lo, rd_lo, ctx);
1710		if (!ctx->prog->aux->verifier_zext)
1711			emit_a32_mov_i(dst_hi, 0, ctx);
1712		break;
1713	case BPF_ALU64 | BPF_DIV | BPF_K:
1714	case BPF_ALU64 | BPF_DIV | BPF_X:
1715	case BPF_ALU64 | BPF_MOD | BPF_K:
1716	case BPF_ALU64 | BPF_MOD | BPF_X:
1717		rd = arm_bpf_get_reg64(dst, tmp2, ctx);
1718		switch (BPF_SRC(code)) {
1719		case BPF_X:
1720			rs = arm_bpf_get_reg64(src, tmp, ctx);
1721			break;
1722		case BPF_K:
1723			rs = tmp;
1724			emit_a32_mov_se_i64(is64, rs, imm, ctx);
1725			break;
1726		}
1727		emit_udivmod64(rd, rd, rs, ctx, BPF_OP(code), off);
1728		arm_bpf_put_reg64(dst, rd, ctx);
1729		break;
1730	/* dst = dst << imm */
1731	/* dst = dst >> imm */
1732	/* dst = dst >> imm (signed) */
1733	case BPF_ALU | BPF_LSH | BPF_K:
1734	case BPF_ALU | BPF_RSH | BPF_K:
1735	case BPF_ALU | BPF_ARSH | BPF_K:
1736		if (unlikely(imm > 31))
1737			return -EINVAL;
1738		if (imm)
1739			emit_a32_alu_i(dst_lo, imm, ctx, BPF_OP(code));
1740		if (!ctx->prog->aux->verifier_zext)
1741			emit_a32_mov_i(dst_hi, 0, ctx);
1742		break;
1743	/* dst = dst << imm */
1744	case BPF_ALU64 | BPF_LSH | BPF_K:
1745		if (unlikely(imm > 63))
1746			return -EINVAL;
1747		emit_a32_lsh_i64(dst, imm, ctx);
1748		break;
1749	/* dst = dst >> imm */
1750	case BPF_ALU64 | BPF_RSH | BPF_K:
1751		if (unlikely(imm > 63))
1752			return -EINVAL;
1753		emit_a32_rsh_i64(dst, imm, ctx);
1754		break;
1755	/* dst = dst << src */
1756	case BPF_ALU64 | BPF_LSH | BPF_X:
1757		emit_a32_lsh_r64(dst, src, ctx);
1758		break;
1759	/* dst = dst >> src */
1760	case BPF_ALU64 | BPF_RSH | BPF_X:
1761		emit_a32_rsh_r64(dst, src, ctx);
1762		break;
1763	/* dst = dst >> src (signed) */
1764	case BPF_ALU64 | BPF_ARSH | BPF_X:
1765		emit_a32_arsh_r64(dst, src, ctx);
1766		break;
1767	/* dst = dst >> imm (signed) */
1768	case BPF_ALU64 | BPF_ARSH | BPF_K:
1769		if (unlikely(imm > 63))
1770			return -EINVAL;
1771		emit_a32_arsh_i64(dst, imm, ctx);
1772		break;
1773	/* dst = ~dst */
1774	case BPF_ALU | BPF_NEG:
1775		emit_a32_alu_i(dst_lo, 0, ctx, BPF_OP(code));
1776		if (!ctx->prog->aux->verifier_zext)
1777			emit_a32_mov_i(dst_hi, 0, ctx);
1778		break;
1779	/* dst = ~dst (64 bit) */
1780	case BPF_ALU64 | BPF_NEG:
1781		emit_a32_neg64(dst, ctx);
1782		break;
1783	/* dst = dst * src/imm */
1784	case BPF_ALU64 | BPF_MUL | BPF_X:
1785	case BPF_ALU64 | BPF_MUL | BPF_K:
1786		switch (BPF_SRC(code)) {
1787		case BPF_X:
1788			emit_a32_mul_r64(dst, src, ctx);
1789			break;
1790		case BPF_K:
1791			/* Move immediate value to the temporary register
1792			 * and then do the multiplication on it as this
1793			 * will sign-extend the immediate value into temp
1794			 * reg then it would be safe to do the operation
1795			 * on it.
1796			 */
1797			emit_a32_mov_se_i64(is64, tmp2, imm, ctx);
1798			emit_a32_mul_r64(dst, tmp2, ctx);
1799			break;
1800		}
1801		break;
1802	/* dst = htole(dst) */
1803	/* dst = htobe(dst) */
1804	case BPF_ALU | BPF_END | BPF_FROM_LE: /* also BPF_TO_LE */
1805	case BPF_ALU | BPF_END | BPF_FROM_BE: /* also BPF_TO_BE */
1806	/* dst = bswap(dst) */
1807	case BPF_ALU64 | BPF_END | BPF_FROM_LE: /* also BPF_TO_LE */
1808		rd = arm_bpf_get_reg64(dst, tmp, ctx);
1809		if (BPF_SRC(code) == BPF_FROM_LE && BPF_CLASS(code) != BPF_ALU64)
1810			goto emit_bswap_uxt;
1811		switch (imm) {
1812		case 16:
1813			emit_rev16(rd[1], rd[1], ctx);
1814			goto emit_bswap_uxt;
1815		case 32:
1816			emit_rev32(rd[1], rd[1], ctx);
1817			goto emit_bswap_uxt;
1818		case 64:
1819			emit_rev32(ARM_LR, rd[1], ctx);
1820			emit_rev32(rd[1], rd[0], ctx);
1821			emit(ARM_MOV_R(rd[0], ARM_LR), ctx);
1822			break;
1823		}
1824		goto exit;
1825emit_bswap_uxt:
1826		switch (imm) {
1827		case 16:
1828			/* zero-extend 16 bits into 64 bits */
1829#if __LINUX_ARM_ARCH__ < 6
1830			emit_a32_mov_i(tmp2[1], 0xffff, ctx);
1831			emit(ARM_AND_R(rd[1], rd[1], tmp2[1]), ctx);
1832#else /* ARMv6+ */
1833			emit(ARM_UXTH(rd[1], rd[1]), ctx);
1834#endif
1835			if (!ctx->prog->aux->verifier_zext)
1836				emit(ARM_EOR_R(rd[0], rd[0], rd[0]), ctx);
1837			break;
1838		case 32:
1839			/* zero-extend 32 bits into 64 bits */
1840			if (!ctx->prog->aux->verifier_zext)
1841				emit(ARM_EOR_R(rd[0], rd[0], rd[0]), ctx);
1842			break;
1843		case 64:
1844			/* nop */
1845			break;
1846		}
1847exit:
1848		arm_bpf_put_reg64(dst, rd, ctx);
1849		break;
1850	/* dst = imm64 */
1851	case BPF_LD | BPF_IMM | BPF_DW:
1852	{
1853		u64 val = (u32)imm | (u64)insn[1].imm << 32;
1854
1855		emit_a32_mov_i64(dst, val, ctx);
1856
1857		return 1;
1858	}
1859	/* LDX: dst = *(size *)(src + off) */
1860	case BPF_LDX | BPF_MEM | BPF_W:
1861	case BPF_LDX | BPF_MEM | BPF_H:
1862	case BPF_LDX | BPF_MEM | BPF_B:
1863	case BPF_LDX | BPF_MEM | BPF_DW:
1864	/* LDSX: dst = *(signed size *)(src + off) */
1865	case BPF_LDX | BPF_MEMSX | BPF_B:
1866	case BPF_LDX | BPF_MEMSX | BPF_H:
1867	case BPF_LDX | BPF_MEMSX | BPF_W:
1868		rn = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
1869		if (BPF_MODE(insn->code) == BPF_MEMSX)
1870			emit_ldsx_r(dst, rn, off, ctx, BPF_SIZE(code));
1871		else
1872			emit_ldx_r(dst, rn, off, ctx, BPF_SIZE(code));
1873		break;
1874	/* speculation barrier */
1875	case BPF_ST | BPF_NOSPEC:
1876		break;
1877	/* ST: *(size *)(dst + off) = imm */
1878	case BPF_ST | BPF_MEM | BPF_W:
1879	case BPF_ST | BPF_MEM | BPF_H:
1880	case BPF_ST | BPF_MEM | BPF_B:
1881	case BPF_ST | BPF_MEM | BPF_DW:
1882		switch (BPF_SIZE(code)) {
1883		case BPF_DW:
1884			/* Sign-extend immediate value into temp reg */
1885			emit_a32_mov_se_i64(true, tmp2, imm, ctx);
1886			break;
1887		case BPF_W:
1888		case BPF_H:
1889		case BPF_B:
1890			emit_a32_mov_i(tmp2[1], imm, ctx);
1891			break;
1892		}
1893		emit_str_r(dst_lo, tmp2, off, ctx, BPF_SIZE(code));
1894		break;
1895	/* Atomic ops */
1896	case BPF_STX | BPF_ATOMIC | BPF_W:
1897	case BPF_STX | BPF_ATOMIC | BPF_DW:
 
1898		goto notyet;
1899	/* STX: *(size *)(dst + off) = src */
1900	case BPF_STX | BPF_MEM | BPF_W:
1901	case BPF_STX | BPF_MEM | BPF_H:
1902	case BPF_STX | BPF_MEM | BPF_B:
1903	case BPF_STX | BPF_MEM | BPF_DW:
1904		rs = arm_bpf_get_reg64(src, tmp2, ctx);
1905		emit_str_r(dst_lo, rs, off, ctx, BPF_SIZE(code));
1906		break;
1907	/* PC += off if dst == src */
1908	/* PC += off if dst > src */
1909	/* PC += off if dst >= src */
1910	/* PC += off if dst < src */
1911	/* PC += off if dst <= src */
1912	/* PC += off if dst != src */
1913	/* PC += off if dst > src (signed) */
1914	/* PC += off if dst >= src (signed) */
1915	/* PC += off if dst < src (signed) */
1916	/* PC += off if dst <= src (signed) */
1917	/* PC += off if dst & src */
1918	case BPF_JMP | BPF_JEQ | BPF_X:
1919	case BPF_JMP | BPF_JGT | BPF_X:
1920	case BPF_JMP | BPF_JGE | BPF_X:
1921	case BPF_JMP | BPF_JNE | BPF_X:
1922	case BPF_JMP | BPF_JSGT | BPF_X:
1923	case BPF_JMP | BPF_JSGE | BPF_X:
1924	case BPF_JMP | BPF_JSET | BPF_X:
1925	case BPF_JMP | BPF_JLE | BPF_X:
1926	case BPF_JMP | BPF_JLT | BPF_X:
1927	case BPF_JMP | BPF_JSLT | BPF_X:
1928	case BPF_JMP | BPF_JSLE | BPF_X:
1929	case BPF_JMP32 | BPF_JEQ | BPF_X:
1930	case BPF_JMP32 | BPF_JGT | BPF_X:
1931	case BPF_JMP32 | BPF_JGE | BPF_X:
1932	case BPF_JMP32 | BPF_JNE | BPF_X:
1933	case BPF_JMP32 | BPF_JSGT | BPF_X:
1934	case BPF_JMP32 | BPF_JSGE | BPF_X:
1935	case BPF_JMP32 | BPF_JSET | BPF_X:
1936	case BPF_JMP32 | BPF_JLE | BPF_X:
1937	case BPF_JMP32 | BPF_JLT | BPF_X:
1938	case BPF_JMP32 | BPF_JSLT | BPF_X:
1939	case BPF_JMP32 | BPF_JSLE | BPF_X:
1940		/* Setup source registers */
1941		rm = arm_bpf_get_reg32(src_hi, tmp2[0], ctx);
1942		rn = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
1943		goto go_jmp;
1944	/* PC += off if dst == imm */
1945	/* PC += off if dst > imm */
1946	/* PC += off if dst >= imm */
1947	/* PC += off if dst < imm */
1948	/* PC += off if dst <= imm */
1949	/* PC += off if dst != imm */
1950	/* PC += off if dst > imm (signed) */
1951	/* PC += off if dst >= imm (signed) */
1952	/* PC += off if dst < imm (signed) */
1953	/* PC += off if dst <= imm (signed) */
1954	/* PC += off if dst & imm */
1955	case BPF_JMP | BPF_JEQ | BPF_K:
1956	case BPF_JMP | BPF_JGT | BPF_K:
1957	case BPF_JMP | BPF_JGE | BPF_K:
1958	case BPF_JMP | BPF_JNE | BPF_K:
1959	case BPF_JMP | BPF_JSGT | BPF_K:
1960	case BPF_JMP | BPF_JSGE | BPF_K:
1961	case BPF_JMP | BPF_JSET | BPF_K:
1962	case BPF_JMP | BPF_JLT | BPF_K:
1963	case BPF_JMP | BPF_JLE | BPF_K:
1964	case BPF_JMP | BPF_JSLT | BPF_K:
1965	case BPF_JMP | BPF_JSLE | BPF_K:
1966	case BPF_JMP32 | BPF_JEQ | BPF_K:
1967	case BPF_JMP32 | BPF_JGT | BPF_K:
1968	case BPF_JMP32 | BPF_JGE | BPF_K:
1969	case BPF_JMP32 | BPF_JNE | BPF_K:
1970	case BPF_JMP32 | BPF_JSGT | BPF_K:
1971	case BPF_JMP32 | BPF_JSGE | BPF_K:
1972	case BPF_JMP32 | BPF_JSET | BPF_K:
1973	case BPF_JMP32 | BPF_JLT | BPF_K:
1974	case BPF_JMP32 | BPF_JLE | BPF_K:
1975	case BPF_JMP32 | BPF_JSLT | BPF_K:
1976	case BPF_JMP32 | BPF_JSLE | BPF_K:
1977		if (off == 0)
1978			break;
1979		rm = tmp2[0];
1980		rn = tmp2[1];
1981		/* Sign-extend immediate value */
1982		emit_a32_mov_se_i64(true, tmp2, imm, ctx);
1983go_jmp:
1984		/* Setup destination register */
1985		rd = arm_bpf_get_reg64(dst, tmp, ctx);
1986
1987		/* Check for the condition */
1988		emit_ar_r(rd[0], rd[1], rm, rn, ctx, BPF_OP(code),
1989			  BPF_CLASS(code) == BPF_JMP);
1990
1991		/* Setup JUMP instruction */
1992		jmp_offset = bpf2a32_offset(i+off, i, ctx);
1993		switch (BPF_OP(code)) {
1994		case BPF_JNE:
1995		case BPF_JSET:
1996			_emit(ARM_COND_NE, ARM_B(jmp_offset), ctx);
1997			break;
1998		case BPF_JEQ:
1999			_emit(ARM_COND_EQ, ARM_B(jmp_offset), ctx);
2000			break;
2001		case BPF_JGT:
2002			_emit(ARM_COND_HI, ARM_B(jmp_offset), ctx);
2003			break;
2004		case BPF_JGE:
2005			_emit(ARM_COND_CS, ARM_B(jmp_offset), ctx);
2006			break;
2007		case BPF_JSGT:
2008			_emit(ARM_COND_LT, ARM_B(jmp_offset), ctx);
2009			break;
2010		case BPF_JSGE:
2011			_emit(ARM_COND_GE, ARM_B(jmp_offset), ctx);
2012			break;
2013		case BPF_JLE:
2014			_emit(ARM_COND_LS, ARM_B(jmp_offset), ctx);
2015			break;
2016		case BPF_JLT:
2017			_emit(ARM_COND_CC, ARM_B(jmp_offset), ctx);
2018			break;
2019		case BPF_JSLT:
2020			_emit(ARM_COND_LT, ARM_B(jmp_offset), ctx);
2021			break;
2022		case BPF_JSLE:
2023			_emit(ARM_COND_GE, ARM_B(jmp_offset), ctx);
2024			break;
2025		}
2026		break;
2027	/* JMP OFF */
2028	case BPF_JMP | BPF_JA:
2029	case BPF_JMP32 | BPF_JA:
2030	{
2031		if (BPF_CLASS(code) == BPF_JMP32 && imm != 0)
2032			jmp_offset = bpf2a32_offset(i + imm, i, ctx);
2033		else if (BPF_CLASS(code) == BPF_JMP && off != 0)
2034			jmp_offset = bpf2a32_offset(i + off, i, ctx);
2035		else
2036			break;
2037
2038		check_imm24(jmp_offset);
2039		emit(ARM_B(jmp_offset), ctx);
2040		break;
2041	}
2042	/* tail call */
2043	case BPF_JMP | BPF_TAIL_CALL:
2044		if (emit_bpf_tail_call(ctx))
2045			return -EFAULT;
2046		break;
2047	/* function call */
2048	case BPF_JMP | BPF_CALL:
2049	{
2050		const s8 *r0 = bpf2a32[BPF_REG_0];
2051		const s8 *r1 = bpf2a32[BPF_REG_1];
2052		const s8 *r2 = bpf2a32[BPF_REG_2];
2053		const s8 *r3 = bpf2a32[BPF_REG_3];
2054		const s8 *r4 = bpf2a32[BPF_REG_4];
2055		const s8 *r5 = bpf2a32[BPF_REG_5];
2056		const u32 func = (u32)__bpf_call_base + (u32)imm;
2057
2058		emit_a32_mov_r64(true, r0, r1, ctx);
2059		emit_a32_mov_r64(true, r1, r2, ctx);
2060		emit_push_r64(r5, ctx);
2061		emit_push_r64(r4, ctx);
2062		emit_push_r64(r3, ctx);
2063
2064		emit_a32_mov_i(tmp[1], func, ctx);
2065		emit_blx_r(tmp[1], ctx);
2066
2067		emit(ARM_ADD_I(ARM_SP, ARM_SP, imm8m(24)), ctx); // callee clean
2068		break;
2069	}
2070	/* function return */
2071	case BPF_JMP | BPF_EXIT:
2072		/* Optimization: when last instruction is EXIT
2073		 * simply fallthrough to epilogue.
2074		 */
2075		if (i == ctx->prog->len - 1)
2076			break;
2077		jmp_offset = epilogue_offset(ctx);
2078		check_imm24(jmp_offset);
2079		emit(ARM_B(jmp_offset), ctx);
2080		break;
2081notyet:
2082		pr_info_once("*** NOT YET: opcode %02x ***\n", code);
2083		return -EFAULT;
2084	default:
2085		pr_err_once("unknown opcode %02x\n", code);
2086		return -EINVAL;
2087	}
2088
2089	if (ctx->flags & FLAG_IMM_OVERFLOW)
2090		/*
2091		 * this instruction generated an overflow when
2092		 * trying to access the literal pool, so
2093		 * delegate this filter to the kernel interpreter.
2094		 */
2095		return -1;
2096	return 0;
2097}
2098
2099static int build_body(struct jit_ctx *ctx)
2100{
2101	const struct bpf_prog *prog = ctx->prog;
2102	unsigned int i;
2103
2104	for (i = 0; i < prog->len; i++) {
2105		const struct bpf_insn *insn = &(prog->insnsi[i]);
2106		int ret;
2107
2108		ret = build_insn(insn, ctx);
2109
2110		/* It's used with loading the 64 bit immediate value. */
2111		if (ret > 0) {
2112			i++;
2113			if (ctx->target == NULL)
2114				ctx->offsets[i] = ctx->idx;
2115			continue;
2116		}
2117
2118		if (ctx->target == NULL)
2119			ctx->offsets[i] = ctx->idx;
2120
2121		/* If unsuccesful, return with error code */
2122		if (ret)
2123			return ret;
2124	}
2125	return 0;
2126}
2127
2128static int validate_code(struct jit_ctx *ctx)
2129{
2130	int i;
2131
2132	for (i = 0; i < ctx->idx; i++) {
2133		if (ctx->target[i] == __opcode_to_mem_arm(ARM_INST_UDF))
2134			return -1;
2135	}
2136
2137	return 0;
2138}
2139
 
 
 
 
 
2140bool bpf_jit_needs_zext(void)
2141{
2142	return true;
2143}
2144
2145struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
2146{
2147	struct bpf_prog *tmp, *orig_prog = prog;
2148	struct bpf_binary_header *header;
2149	bool tmp_blinded = false;
2150	struct jit_ctx ctx;
2151	unsigned int tmp_idx;
2152	unsigned int image_size;
2153	u8 *image_ptr;
2154
2155	/* If BPF JIT was not enabled then we must fall back to
2156	 * the interpreter.
2157	 */
2158	if (!prog->jit_requested)
2159		return orig_prog;
2160
2161	/* If constant blinding was enabled and we failed during blinding
2162	 * then we must fall back to the interpreter. Otherwise, we save
2163	 * the new JITed code.
2164	 */
2165	tmp = bpf_jit_blind_constants(prog);
2166
2167	if (IS_ERR(tmp))
2168		return orig_prog;
2169	if (tmp != prog) {
2170		tmp_blinded = true;
2171		prog = tmp;
2172	}
2173
2174	memset(&ctx, 0, sizeof(ctx));
2175	ctx.prog = prog;
2176	ctx.cpu_architecture = cpu_architecture();
2177
2178	/* Not able to allocate memory for offsets[] , then
2179	 * we must fall back to the interpreter
2180	 */
2181	ctx.offsets = kcalloc(prog->len, sizeof(int), GFP_KERNEL);
2182	if (ctx.offsets == NULL) {
2183		prog = orig_prog;
2184		goto out;
2185	}
2186
2187	/* 1) fake pass to find in the length of the JITed code,
2188	 * to compute ctx->offsets and other context variables
2189	 * needed to compute final JITed code.
2190	 * Also, calculate random starting pointer/start of JITed code
2191	 * which is prefixed by random number of fault instructions.
2192	 *
2193	 * If the first pass fails then there is no chance of it
2194	 * being successful in the second pass, so just fall back
2195	 * to the interpreter.
2196	 */
2197	if (build_body(&ctx)) {
2198		prog = orig_prog;
2199		goto out_off;
2200	}
2201
2202	tmp_idx = ctx.idx;
2203	build_prologue(&ctx);
2204	ctx.prologue_bytes = (ctx.idx - tmp_idx) * 4;
2205
2206	ctx.epilogue_offset = ctx.idx;
2207
2208#if __LINUX_ARM_ARCH__ < 7
2209	tmp_idx = ctx.idx;
2210	build_epilogue(&ctx);
2211	ctx.epilogue_bytes = (ctx.idx - tmp_idx) * 4;
2212
2213	ctx.idx += ctx.imm_count;
2214	if (ctx.imm_count) {
2215		ctx.imms = kcalloc(ctx.imm_count, sizeof(u32), GFP_KERNEL);
2216		if (ctx.imms == NULL) {
2217			prog = orig_prog;
2218			goto out_off;
2219		}
2220	}
2221#else
2222	/* there's nothing about the epilogue on ARMv7 */
2223	build_epilogue(&ctx);
2224#endif
2225	/* Now we can get the actual image size of the JITed arm code.
2226	 * Currently, we are not considering the THUMB-2 instructions
2227	 * for jit, although it can decrease the size of the image.
2228	 *
2229	 * As each arm instruction is of length 32bit, we are translating
2230	 * number of JITed instructions into the size required to store these
2231	 * JITed code.
2232	 */
2233	image_size = sizeof(u32) * ctx.idx;
2234
2235	/* Now we know the size of the structure to make */
2236	header = bpf_jit_binary_alloc(image_size, &image_ptr,
2237				      sizeof(u32), jit_fill_hole);
2238	/* Not able to allocate memory for the structure then
2239	 * we must fall back to the interpretation
2240	 */
2241	if (header == NULL) {
2242		prog = orig_prog;
2243		goto out_imms;
2244	}
2245
2246	/* 2.) Actual pass to generate final JIT code */
2247	ctx.target = (u32 *) image_ptr;
2248	ctx.idx = 0;
2249
2250	build_prologue(&ctx);
2251
2252	/* If building the body of the JITed code fails somehow,
2253	 * we fall back to the interpretation.
2254	 */
2255	if (build_body(&ctx) < 0)
2256		goto out_free;
 
 
 
 
2257	build_epilogue(&ctx);
2258
2259	/* 3.) Extra pass to validate JITed Code */
2260	if (validate_code(&ctx))
2261		goto out_free;
 
 
 
 
2262	flush_icache_range((u32)header, (u32)(ctx.target + ctx.idx));
2263
2264	if (bpf_jit_enable > 1)
2265		/* there are 2 passes here */
2266		bpf_jit_dump(prog->len, image_size, 2, ctx.target);
2267
2268	if (bpf_jit_binary_lock_ro(header))
2269		goto out_free;
2270	prog->bpf_func = (void *)ctx.target;
2271	prog->jited = 1;
2272	prog->jited_len = image_size;
2273
2274out_imms:
2275#if __LINUX_ARM_ARCH__ < 7
2276	if (ctx.imm_count)
2277		kfree(ctx.imms);
2278#endif
2279out_off:
2280	kfree(ctx.offsets);
2281out:
2282	if (tmp_blinded)
2283		bpf_jit_prog_release_other(prog, prog == orig_prog ?
2284					   tmp : orig_prog);
2285	return prog;
2286
2287out_free:
2288	image_ptr = NULL;
2289	bpf_jit_binary_free(header);
2290	prog = orig_prog;
2291	goto out_imms;
2292}
2293
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Just-In-Time compiler for eBPF filters on 32bit ARM
   4 *
 
   5 * Copyright (c) 2017 Shubham Bansal <illusionist.neo@gmail.com>
   6 * Copyright (c) 2011 Mircea Gherzan <mgherzan@gmail.com>
   7 */
   8
   9#include <linux/bpf.h>
  10#include <linux/bitops.h>
  11#include <linux/compiler.h>
  12#include <linux/errno.h>
  13#include <linux/filter.h>
  14#include <linux/netdevice.h>
  15#include <linux/string.h>
  16#include <linux/slab.h>
  17#include <linux/if_vlan.h>
 
  18
  19#include <asm/cacheflush.h>
  20#include <asm/hwcap.h>
  21#include <asm/opcodes.h>
  22#include <asm/system_info.h>
  23
  24#include "bpf_jit_32.h"
  25
  26/*
  27 * eBPF prog stack layout:
  28 *
  29 *                         high
  30 * original ARM_SP =>     +-----+
  31 *                        |     | callee saved registers
  32 *                        +-----+ <= (BPF_FP + SCRATCH_SIZE)
  33 *                        | ... | eBPF JIT scratch space
  34 * eBPF fp register =>    +-----+
  35 *   (BPF_FP)             | ... | eBPF prog stack
  36 *                        +-----+
  37 *                        |RSVD | JIT scratchpad
  38 * current ARM_SP =>      +-----+ <= (BPF_FP - STACK_SIZE + SCRATCH_SIZE)
 
 
 
 
  39 *                        |     |
  40 *                        | ... | Function call stack
  41 *                        |     |
  42 *                        +-----+
  43 *                          low
  44 *
  45 * The callee saved registers depends on whether frame pointers are enabled.
  46 * With frame pointers (to be compliant with the ABI):
  47 *
  48 *                              high
  49 * original ARM_SP =>     +--------------+ \
  50 *                        |      pc      | |
  51 * current ARM_FP =>      +--------------+ } callee saved registers
  52 *                        |r4-r9,fp,ip,lr| |
  53 *                        +--------------+ /
  54 *                              low
  55 *
  56 * Without frame pointers:
  57 *
  58 *                              high
  59 * original ARM_SP =>     +--------------+
  60 *                        |  r4-r9,fp,lr | callee saved registers
  61 * current ARM_FP =>      +--------------+
  62 *                              low
  63 *
  64 * When popping registers off the stack at the end of a BPF function, we
  65 * reference them via the current ARM_FP register.
 
 
 
 
 
 
  66 */
  67#define CALLEE_MASK	(1 << ARM_R4 | 1 << ARM_R5 | 1 << ARM_R6 | \
  68			 1 << ARM_R7 | 1 << ARM_R8 | 1 << ARM_R9 | \
  69			 1 << ARM_FP)
  70#define CALLEE_PUSH_MASK (CALLEE_MASK | 1 << ARM_LR)
  71#define CALLEE_POP_MASK  (CALLEE_MASK | 1 << ARM_PC)
  72
 
 
  73enum {
  74	/* Stack layout - these are offsets from (top of stack - 4) */
  75	BPF_R2_HI,
  76	BPF_R2_LO,
  77	BPF_R3_HI,
  78	BPF_R3_LO,
  79	BPF_R4_HI,
  80	BPF_R4_LO,
  81	BPF_R5_HI,
  82	BPF_R5_LO,
  83	BPF_R7_HI,
  84	BPF_R7_LO,
  85	BPF_R8_HI,
  86	BPF_R8_LO,
  87	BPF_R9_HI,
  88	BPF_R9_LO,
  89	BPF_FP_HI,
  90	BPF_FP_LO,
  91	BPF_TC_HI,
  92	BPF_TC_LO,
  93	BPF_AX_HI,
  94	BPF_AX_LO,
  95	/* Stack space for BPF_REG_2, BPF_REG_3, BPF_REG_4,
  96	 * BPF_REG_5, BPF_REG_7, BPF_REG_8, BPF_REG_9,
  97	 * BPF_REG_FP and Tail call counts.
  98	 */
  99	BPF_JIT_SCRATCH_REGS,
 100};
 101
 102/*
 103 * Negative "register" values indicate the register is stored on the stack
 104 * and are the offset from the top of the eBPF JIT scratch space.
 105 */
 106#define STACK_OFFSET(k)	(-4 - (k) * 4)
 107#define SCRATCH_SIZE	(BPF_JIT_SCRATCH_REGS * 4)
 108
 109#ifdef CONFIG_FRAME_POINTER
 110#define EBPF_SCRATCH_TO_ARM_FP(x) ((x) - 4 * hweight16(CALLEE_PUSH_MASK) - 4)
 111#else
 112#define EBPF_SCRATCH_TO_ARM_FP(x) (x)
 113#endif
 114
 115#define TMP_REG_1	(MAX_BPF_JIT_REG + 0)	/* TEMP Register 1 */
 116#define TMP_REG_2	(MAX_BPF_JIT_REG + 1)	/* TEMP Register 2 */
 117#define TCALL_CNT	(MAX_BPF_JIT_REG + 2)	/* Tail Call Count */
 118
 119#define FLAG_IMM_OVERFLOW	(1 << 0)
 120
 121/*
 122 * Map eBPF registers to ARM 32bit registers or stack scratch space.
 123 *
 124 * 1. First argument is passed using the arm 32bit registers and rest of the
 125 * arguments are passed on stack scratch space.
 126 * 2. First callee-saved argument is mapped to arm 32 bit registers and rest
 127 * arguments are mapped to scratch space on stack.
 128 * 3. We need two 64 bit temp registers to do complex operations on eBPF
 129 * registers.
 130 *
 131 * As the eBPF registers are all 64 bit registers and arm has only 32 bit
 132 * registers, we have to map each eBPF registers with two arm 32 bit regs or
 133 * scratch memory space and we have to build eBPF 64 bit register from those.
 134 *
 135 */
 136static const s8 bpf2a32[][2] = {
 137	/* return value from in-kernel function, and exit value from eBPF */
 138	[BPF_REG_0] = {ARM_R1, ARM_R0},
 139	/* arguments from eBPF program to in-kernel function */
 140	[BPF_REG_1] = {ARM_R3, ARM_R2},
 141	/* Stored on stack scratch space */
 142	[BPF_REG_2] = {STACK_OFFSET(BPF_R2_HI), STACK_OFFSET(BPF_R2_LO)},
 143	[BPF_REG_3] = {STACK_OFFSET(BPF_R3_HI), STACK_OFFSET(BPF_R3_LO)},
 144	[BPF_REG_4] = {STACK_OFFSET(BPF_R4_HI), STACK_OFFSET(BPF_R4_LO)},
 145	[BPF_REG_5] = {STACK_OFFSET(BPF_R5_HI), STACK_OFFSET(BPF_R5_LO)},
 146	/* callee saved registers that in-kernel function will preserve */
 147	[BPF_REG_6] = {ARM_R5, ARM_R4},
 148	/* Stored on stack scratch space */
 149	[BPF_REG_7] = {STACK_OFFSET(BPF_R7_HI), STACK_OFFSET(BPF_R7_LO)},
 150	[BPF_REG_8] = {STACK_OFFSET(BPF_R8_HI), STACK_OFFSET(BPF_R8_LO)},
 151	[BPF_REG_9] = {STACK_OFFSET(BPF_R9_HI), STACK_OFFSET(BPF_R9_LO)},
 152	/* Read only Frame Pointer to access Stack */
 153	[BPF_REG_FP] = {STACK_OFFSET(BPF_FP_HI), STACK_OFFSET(BPF_FP_LO)},
 154	/* Temporary Register for internal BPF JIT, can be used
 155	 * for constant blindings and others.
 156	 */
 157	[TMP_REG_1] = {ARM_R7, ARM_R6},
 158	[TMP_REG_2] = {ARM_R9, ARM_R8},
 159	/* Tail call count. Stored on stack scratch space. */
 160	[TCALL_CNT] = {STACK_OFFSET(BPF_TC_HI), STACK_OFFSET(BPF_TC_LO)},
 161	/* temporary register for blinding constants.
 162	 * Stored on stack scratch space.
 163	 */
 164	[BPF_REG_AX] = {STACK_OFFSET(BPF_AX_HI), STACK_OFFSET(BPF_AX_LO)},
 165};
 166
 167#define	dst_lo	dst[1]
 168#define dst_hi	dst[0]
 169#define src_lo	src[1]
 170#define src_hi	src[0]
 171
 172/*
 173 * JIT Context:
 174 *
 175 * prog			:	bpf_prog
 176 * idx			:	index of current last JITed instruction.
 177 * prologue_bytes	:	bytes used in prologue.
 178 * epilogue_offset	:	offset of epilogue starting.
 179 * offsets		:	array of eBPF instruction offsets in
 180 *				JITed code.
 181 * target		:	final JITed code.
 182 * epilogue_bytes	:	no of bytes used in epilogue.
 183 * imm_count		:	no of immediate counts used for global
 184 *				variables.
 185 * imms			:	array of global variable addresses.
 186 */
 187
 188struct jit_ctx {
 189	const struct bpf_prog *prog;
 190	unsigned int idx;
 191	unsigned int prologue_bytes;
 192	unsigned int epilogue_offset;
 193	unsigned int cpu_architecture;
 194	u32 flags;
 195	u32 *offsets;
 196	u32 *target;
 197	u32 stack_size;
 198#if __LINUX_ARM_ARCH__ < 7
 199	u16 epilogue_bytes;
 200	u16 imm_count;
 201	u32 *imms;
 202#endif
 203};
 204
 205/*
 206 * Wrappers which handle both OABI and EABI and assures Thumb2 interworking
 207 * (where the assembly routines like __aeabi_uidiv could cause problems).
 208 */
 209static u32 jit_udiv32(u32 dividend, u32 divisor)
 210{
 211	return dividend / divisor;
 212}
 213
 214static u32 jit_mod32(u32 dividend, u32 divisor)
 215{
 216	return dividend % divisor;
 217}
 218
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 219static inline void _emit(int cond, u32 inst, struct jit_ctx *ctx)
 220{
 221	inst |= (cond << 28);
 222	inst = __opcode_to_mem_arm(inst);
 223
 224	if (ctx->target != NULL)
 225		ctx->target[ctx->idx] = inst;
 226
 227	ctx->idx++;
 228}
 229
 230/*
 231 * Emit an instruction that will be executed unconditionally.
 232 */
 233static inline void emit(u32 inst, struct jit_ctx *ctx)
 234{
 235	_emit(ARM_COND_AL, inst, ctx);
 236}
 237
 238/*
 239 * This is rather horrid, but necessary to convert an integer constant
 240 * to an immediate operand for the opcodes, and be able to detect at
 241 * build time whether the constant can't be converted (iow, usable in
 242 * BUILD_BUG_ON()).
 243 */
 244#define imm12val(v, s) (rol32(v, (s)) | (s) << 7)
 245#define const_imm8m(x)					\
 246	({ int r;					\
 247	   u32 v = (x);					\
 248	   if (!(v & ~0x000000ff))			\
 249		r = imm12val(v, 0);			\
 250	   else if (!(v & ~0xc000003f))			\
 251		r = imm12val(v, 2);			\
 252	   else if (!(v & ~0xf000000f))			\
 253		r = imm12val(v, 4);			\
 254	   else if (!(v & ~0xfc000003))			\
 255		r = imm12val(v, 6);			\
 256	   else if (!(v & ~0xff000000))			\
 257		r = imm12val(v, 8);			\
 258	   else if (!(v & ~0x3fc00000))			\
 259		r = imm12val(v, 10);			\
 260	   else if (!(v & ~0x0ff00000))			\
 261		r = imm12val(v, 12);			\
 262	   else if (!(v & ~0x03fc0000))			\
 263		r = imm12val(v, 14);			\
 264	   else if (!(v & ~0x00ff0000))			\
 265		r = imm12val(v, 16);			\
 266	   else if (!(v & ~0x003fc000))			\
 267		r = imm12val(v, 18);			\
 268	   else if (!(v & ~0x000ff000))			\
 269		r = imm12val(v, 20);			\
 270	   else if (!(v & ~0x0003fc00))			\
 271		r = imm12val(v, 22);			\
 272	   else if (!(v & ~0x0000ff00))			\
 273		r = imm12val(v, 24);			\
 274	   else if (!(v & ~0x00003fc0))			\
 275		r = imm12val(v, 26);			\
 276	   else if (!(v & ~0x00000ff0))			\
 277		r = imm12val(v, 28);			\
 278	   else if (!(v & ~0x000003fc))			\
 279		r = imm12val(v, 30);			\
 280	   else						\
 281		r = -1;					\
 282	   r; })
 283
 284/*
 285 * Checks if immediate value can be converted to imm12(12 bits) value.
 286 */
 287static int imm8m(u32 x)
 288{
 289	u32 rot;
 290
 291	for (rot = 0; rot < 16; rot++)
 292		if ((x & ~ror32(0xff, 2 * rot)) == 0)
 293			return rol32(x, 2 * rot) | (rot << 8);
 294	return -1;
 295}
 296
 297#define imm8m(x) (__builtin_constant_p(x) ? const_imm8m(x) : imm8m(x))
 298
 299static u32 arm_bpf_ldst_imm12(u32 op, u8 rt, u8 rn, s16 imm12)
 300{
 301	op |= rt << 12 | rn << 16;
 302	if (imm12 >= 0)
 303		op |= ARM_INST_LDST__U;
 304	else
 305		imm12 = -imm12;
 306	return op | (imm12 & ARM_INST_LDST__IMM12);
 307}
 308
 309static u32 arm_bpf_ldst_imm8(u32 op, u8 rt, u8 rn, s16 imm8)
 310{
 311	op |= rt << 12 | rn << 16;
 312	if (imm8 >= 0)
 313		op |= ARM_INST_LDST__U;
 314	else
 315		imm8 = -imm8;
 316	return op | (imm8 & 0xf0) << 4 | (imm8 & 0x0f);
 317}
 318
 319#define ARM_LDR_I(rt, rn, off)	arm_bpf_ldst_imm12(ARM_INST_LDR_I, rt, rn, off)
 320#define ARM_LDRB_I(rt, rn, off)	arm_bpf_ldst_imm12(ARM_INST_LDRB_I, rt, rn, off)
 321#define ARM_LDRD_I(rt, rn, off)	arm_bpf_ldst_imm8(ARM_INST_LDRD_I, rt, rn, off)
 322#define ARM_LDRH_I(rt, rn, off)	arm_bpf_ldst_imm8(ARM_INST_LDRH_I, rt, rn, off)
 323
 
 
 
 324#define ARM_STR_I(rt, rn, off)	arm_bpf_ldst_imm12(ARM_INST_STR_I, rt, rn, off)
 325#define ARM_STRB_I(rt, rn, off)	arm_bpf_ldst_imm12(ARM_INST_STRB_I, rt, rn, off)
 326#define ARM_STRD_I(rt, rn, off)	arm_bpf_ldst_imm8(ARM_INST_STRD_I, rt, rn, off)
 327#define ARM_STRH_I(rt, rn, off)	arm_bpf_ldst_imm8(ARM_INST_STRH_I, rt, rn, off)
 328
 329/*
 330 * Initializes the JIT space with undefined instructions.
 331 */
 332static void jit_fill_hole(void *area, unsigned int size)
 333{
 334	u32 *ptr;
 335	/* We are guaranteed to have aligned memory. */
 336	for (ptr = area; size >= sizeof(u32); size -= sizeof(u32))
 337		*ptr++ = __opcode_to_mem_arm(ARM_INST_UDF);
 338}
 339
 340#if defined(CONFIG_AEABI) && (__LINUX_ARM_ARCH__ >= 5)
 341/* EABI requires the stack to be aligned to 64-bit boundaries */
 342#define STACK_ALIGNMENT	8
 343#else
 344/* Stack must be aligned to 32-bit boundaries */
 345#define STACK_ALIGNMENT	4
 346#endif
 347
 348/* total stack size used in JITed code */
 349#define _STACK_SIZE	(ctx->prog->aux->stack_depth + SCRATCH_SIZE)
 350#define STACK_SIZE	ALIGN(_STACK_SIZE, STACK_ALIGNMENT)
 351
 352#if __LINUX_ARM_ARCH__ < 7
 353
 354static u16 imm_offset(u32 k, struct jit_ctx *ctx)
 355{
 356	unsigned int i = 0, offset;
 357	u16 imm;
 358
 359	/* on the "fake" run we just count them (duplicates included) */
 360	if (ctx->target == NULL) {
 361		ctx->imm_count++;
 362		return 0;
 363	}
 364
 365	while ((i < ctx->imm_count) && ctx->imms[i]) {
 366		if (ctx->imms[i] == k)
 367			break;
 368		i++;
 369	}
 370
 371	if (ctx->imms[i] == 0)
 372		ctx->imms[i] = k;
 373
 374	/* constants go just after the epilogue */
 375	offset =  ctx->offsets[ctx->prog->len - 1] * 4;
 376	offset += ctx->prologue_bytes;
 377	offset += ctx->epilogue_bytes;
 378	offset += i * 4;
 379
 380	ctx->target[offset / 4] = k;
 381
 382	/* PC in ARM mode == address of the instruction + 8 */
 383	imm = offset - (8 + ctx->idx * 4);
 384
 385	if (imm & ~0xfff) {
 386		/*
 387		 * literal pool is too far, signal it into flags. we
 388		 * can only detect it on the second pass unfortunately.
 389		 */
 390		ctx->flags |= FLAG_IMM_OVERFLOW;
 391		return 0;
 392	}
 393
 394	return imm;
 395}
 396
 397#endif /* __LINUX_ARM_ARCH__ */
 398
 399static inline int bpf2a32_offset(int bpf_to, int bpf_from,
 400				 const struct jit_ctx *ctx) {
 401	int to, from;
 402
 403	if (ctx->target == NULL)
 404		return 0;
 405	to = ctx->offsets[bpf_to];
 406	from = ctx->offsets[bpf_from];
 407
 408	return to - from - 1;
 409}
 410
 411/*
 412 * Move an immediate that's not an imm8m to a core register.
 413 */
 414static inline void emit_mov_i_no8m(const u8 rd, u32 val, struct jit_ctx *ctx)
 415{
 416#if __LINUX_ARM_ARCH__ < 7
 417	emit(ARM_LDR_I(rd, ARM_PC, imm_offset(val, ctx)), ctx);
 418#else
 419	emit(ARM_MOVW(rd, val & 0xffff), ctx);
 420	if (val > 0xffff)
 421		emit(ARM_MOVT(rd, val >> 16), ctx);
 422#endif
 423}
 424
 425static inline void emit_mov_i(const u8 rd, u32 val, struct jit_ctx *ctx)
 426{
 427	int imm12 = imm8m(val);
 428
 429	if (imm12 >= 0)
 430		emit(ARM_MOV_I(rd, imm12), ctx);
 431	else
 432		emit_mov_i_no8m(rd, val, ctx);
 433}
 434
 435static void emit_bx_r(u8 tgt_reg, struct jit_ctx *ctx)
 436{
 437	if (elf_hwcap & HWCAP_THUMB)
 438		emit(ARM_BX(tgt_reg), ctx);
 439	else
 440		emit(ARM_MOV_R(ARM_PC, tgt_reg), ctx);
 441}
 442
 443static inline void emit_blx_r(u8 tgt_reg, struct jit_ctx *ctx)
 444{
 445#if __LINUX_ARM_ARCH__ < 5
 446	emit(ARM_MOV_R(ARM_LR, ARM_PC), ctx);
 447	emit_bx_r(tgt_reg, ctx);
 448#else
 449	emit(ARM_BLX_R(tgt_reg), ctx);
 450#endif
 451}
 452
 453static inline int epilogue_offset(const struct jit_ctx *ctx)
 454{
 455	int to, from;
 456	/* No need for 1st dummy run */
 457	if (ctx->target == NULL)
 458		return 0;
 459	to = ctx->epilogue_offset;
 460	from = ctx->idx;
 461
 462	return to - from - 2;
 463}
 464
 465static inline void emit_udivmod(u8 rd, u8 rm, u8 rn, struct jit_ctx *ctx, u8 op)
 466{
 
 467	const s8 *tmp = bpf2a32[TMP_REG_1];
 
 468
 469#if __LINUX_ARM_ARCH__ == 7
 470	if (elf_hwcap & HWCAP_IDIVA) {
 471		if (op == BPF_DIV)
 472			emit(ARM_UDIV(rd, rm, rn), ctx);
 473		else {
 474			emit(ARM_UDIV(ARM_IP, rm, rn), ctx);
 475			emit(ARM_MLS(rd, rn, ARM_IP, rm), ctx);
 476		}
 477		return;
 478	}
 479#endif
 480
 481	/*
 482	 * For BPF_ALU | BPF_DIV | BPF_K instructions
 483	 * As ARM_R1 and ARM_R0 contains 1st argument of bpf
 484	 * function, we need to save it on caller side to save
 485	 * it from getting destroyed within callee.
 486	 * After the return from the callee, we restore ARM_R0
 487	 * ARM_R1.
 488	 */
 489	if (rn != ARM_R1) {
 490		emit(ARM_MOV_R(tmp[0], ARM_R1), ctx);
 491		emit(ARM_MOV_R(ARM_R1, rn), ctx);
 492	}
 493	if (rm != ARM_R0) {
 494		emit(ARM_MOV_R(tmp[1], ARM_R0), ctx);
 495		emit(ARM_MOV_R(ARM_R0, rm), ctx);
 496	}
 497
 
 
 
 498	/* Call appropriate function */
 499	emit_mov_i(ARM_IP, op == BPF_DIV ?
 500		   (u32)jit_udiv32 : (u32)jit_mod32, ctx);
 
 
 
 
 
 
 
 
 
 
 
 501	emit_blx_r(ARM_IP, ctx);
 502
 
 
 
 503	/* Save return value */
 504	if (rd != ARM_R0)
 505		emit(ARM_MOV_R(rd, ARM_R0), ctx);
 506
 507	/* Restore ARM_R0 and ARM_R1 */
 508	if (rn != ARM_R1)
 509		emit(ARM_MOV_R(ARM_R1, tmp[0]), ctx);
 510	if (rm != ARM_R0)
 511		emit(ARM_MOV_R(ARM_R0, tmp[1]), ctx);
 512}
 513
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 514/* Is the translated BPF register on stack? */
 515static bool is_stacked(s8 reg)
 516{
 517	return reg < 0;
 518}
 519
 520/* If a BPF register is on the stack (stk is true), load it to the
 521 * supplied temporary register and return the temporary register
 522 * for subsequent operations, otherwise just use the CPU register.
 523 */
 524static s8 arm_bpf_get_reg32(s8 reg, s8 tmp, struct jit_ctx *ctx)
 525{
 526	if (is_stacked(reg)) {
 527		emit(ARM_LDR_I(tmp, ARM_FP, EBPF_SCRATCH_TO_ARM_FP(reg)), ctx);
 528		reg = tmp;
 529	}
 530	return reg;
 531}
 532
 533static const s8 *arm_bpf_get_reg64(const s8 *reg, const s8 *tmp,
 534				   struct jit_ctx *ctx)
 535{
 536	if (is_stacked(reg[1])) {
 537		if (__LINUX_ARM_ARCH__ >= 6 ||
 538		    ctx->cpu_architecture >= CPU_ARCH_ARMv5TE) {
 539			emit(ARM_LDRD_I(tmp[1], ARM_FP,
 540					EBPF_SCRATCH_TO_ARM_FP(reg[1])), ctx);
 541		} else {
 542			emit(ARM_LDR_I(tmp[1], ARM_FP,
 543				       EBPF_SCRATCH_TO_ARM_FP(reg[1])), ctx);
 544			emit(ARM_LDR_I(tmp[0], ARM_FP,
 545				       EBPF_SCRATCH_TO_ARM_FP(reg[0])), ctx);
 546		}
 547		reg = tmp;
 548	}
 549	return reg;
 550}
 551
 552/* If a BPF register is on the stack (stk is true), save the register
 553 * back to the stack.  If the source register is not the same, then
 554 * move it into the correct register.
 555 */
 556static void arm_bpf_put_reg32(s8 reg, s8 src, struct jit_ctx *ctx)
 557{
 558	if (is_stacked(reg))
 559		emit(ARM_STR_I(src, ARM_FP, EBPF_SCRATCH_TO_ARM_FP(reg)), ctx);
 560	else if (reg != src)
 561		emit(ARM_MOV_R(reg, src), ctx);
 562}
 563
 564static void arm_bpf_put_reg64(const s8 *reg, const s8 *src,
 565			      struct jit_ctx *ctx)
 566{
 567	if (is_stacked(reg[1])) {
 568		if (__LINUX_ARM_ARCH__ >= 6 ||
 569		    ctx->cpu_architecture >= CPU_ARCH_ARMv5TE) {
 570			emit(ARM_STRD_I(src[1], ARM_FP,
 571				       EBPF_SCRATCH_TO_ARM_FP(reg[1])), ctx);
 572		} else {
 573			emit(ARM_STR_I(src[1], ARM_FP,
 574				       EBPF_SCRATCH_TO_ARM_FP(reg[1])), ctx);
 575			emit(ARM_STR_I(src[0], ARM_FP,
 576				       EBPF_SCRATCH_TO_ARM_FP(reg[0])), ctx);
 577		}
 578	} else {
 579		if (reg[1] != src[1])
 580			emit(ARM_MOV_R(reg[1], src[1]), ctx);
 581		if (reg[0] != src[0])
 582			emit(ARM_MOV_R(reg[0], src[0]), ctx);
 583	}
 584}
 585
 586static inline void emit_a32_mov_i(const s8 dst, const u32 val,
 587				  struct jit_ctx *ctx)
 588{
 589	const s8 *tmp = bpf2a32[TMP_REG_1];
 590
 591	if (is_stacked(dst)) {
 592		emit_mov_i(tmp[1], val, ctx);
 593		arm_bpf_put_reg32(dst, tmp[1], ctx);
 594	} else {
 595		emit_mov_i(dst, val, ctx);
 596	}
 597}
 598
 599static void emit_a32_mov_i64(const s8 dst[], u64 val, struct jit_ctx *ctx)
 600{
 601	const s8 *tmp = bpf2a32[TMP_REG_1];
 602	const s8 *rd = is_stacked(dst_lo) ? tmp : dst;
 603
 604	emit_mov_i(rd[1], (u32)val, ctx);
 605	emit_mov_i(rd[0], val >> 32, ctx);
 606
 607	arm_bpf_put_reg64(dst, rd, ctx);
 608}
 609
 610/* Sign extended move */
 611static inline void emit_a32_mov_se_i64(const bool is64, const s8 dst[],
 612				       const u32 val, struct jit_ctx *ctx) {
 613	u64 val64 = val;
 614
 615	if (is64 && (val & (1<<31)))
 616		val64 |= 0xffffffff00000000ULL;
 617	emit_a32_mov_i64(dst, val64, ctx);
 618}
 619
 620static inline void emit_a32_add_r(const u8 dst, const u8 src,
 621			      const bool is64, const bool hi,
 622			      struct jit_ctx *ctx) {
 623	/* 64 bit :
 624	 *	adds dst_lo, dst_lo, src_lo
 625	 *	adc dst_hi, dst_hi, src_hi
 626	 * 32 bit :
 627	 *	add dst_lo, dst_lo, src_lo
 628	 */
 629	if (!hi && is64)
 630		emit(ARM_ADDS_R(dst, dst, src), ctx);
 631	else if (hi && is64)
 632		emit(ARM_ADC_R(dst, dst, src), ctx);
 633	else
 634		emit(ARM_ADD_R(dst, dst, src), ctx);
 635}
 636
 637static inline void emit_a32_sub_r(const u8 dst, const u8 src,
 638				  const bool is64, const bool hi,
 639				  struct jit_ctx *ctx) {
 640	/* 64 bit :
 641	 *	subs dst_lo, dst_lo, src_lo
 642	 *	sbc dst_hi, dst_hi, src_hi
 643	 * 32 bit :
 644	 *	sub dst_lo, dst_lo, src_lo
 645	 */
 646	if (!hi && is64)
 647		emit(ARM_SUBS_R(dst, dst, src), ctx);
 648	else if (hi && is64)
 649		emit(ARM_SBC_R(dst, dst, src), ctx);
 650	else
 651		emit(ARM_SUB_R(dst, dst, src), ctx);
 652}
 653
 654static inline void emit_alu_r(const u8 dst, const u8 src, const bool is64,
 655			      const bool hi, const u8 op, struct jit_ctx *ctx){
 656	switch (BPF_OP(op)) {
 657	/* dst = dst + src */
 658	case BPF_ADD:
 659		emit_a32_add_r(dst, src, is64, hi, ctx);
 660		break;
 661	/* dst = dst - src */
 662	case BPF_SUB:
 663		emit_a32_sub_r(dst, src, is64, hi, ctx);
 664		break;
 665	/* dst = dst | src */
 666	case BPF_OR:
 667		emit(ARM_ORR_R(dst, dst, src), ctx);
 668		break;
 669	/* dst = dst & src */
 670	case BPF_AND:
 671		emit(ARM_AND_R(dst, dst, src), ctx);
 672		break;
 673	/* dst = dst ^ src */
 674	case BPF_XOR:
 675		emit(ARM_EOR_R(dst, dst, src), ctx);
 676		break;
 677	/* dst = dst * src */
 678	case BPF_MUL:
 679		emit(ARM_MUL(dst, dst, src), ctx);
 680		break;
 681	/* dst = dst << src */
 682	case BPF_LSH:
 683		emit(ARM_LSL_R(dst, dst, src), ctx);
 684		break;
 685	/* dst = dst >> src */
 686	case BPF_RSH:
 687		emit(ARM_LSR_R(dst, dst, src), ctx);
 688		break;
 689	/* dst = dst >> src (signed)*/
 690	case BPF_ARSH:
 691		emit(ARM_MOV_SR(dst, dst, SRTYPE_ASR, src), ctx);
 692		break;
 693	}
 694}
 695
 696/* ALU operation (32 bit)
 697 * dst = dst (op) src
 698 */
 699static inline void emit_a32_alu_r(const s8 dst, const s8 src,
 700				  struct jit_ctx *ctx, const bool is64,
 701				  const bool hi, const u8 op) {
 702	const s8 *tmp = bpf2a32[TMP_REG_1];
 703	s8 rn, rd;
 704
 705	rn = arm_bpf_get_reg32(src, tmp[1], ctx);
 706	rd = arm_bpf_get_reg32(dst, tmp[0], ctx);
 707	/* ALU operation */
 708	emit_alu_r(rd, rn, is64, hi, op, ctx);
 709	arm_bpf_put_reg32(dst, rd, ctx);
 710}
 711
 712/* ALU operation (64 bit) */
 713static inline void emit_a32_alu_r64(const bool is64, const s8 dst[],
 714				  const s8 src[], struct jit_ctx *ctx,
 715				  const u8 op) {
 716	const s8 *tmp = bpf2a32[TMP_REG_1];
 717	const s8 *tmp2 = bpf2a32[TMP_REG_2];
 718	const s8 *rd;
 719
 720	rd = arm_bpf_get_reg64(dst, tmp, ctx);
 721	if (is64) {
 722		const s8 *rs;
 723
 724		rs = arm_bpf_get_reg64(src, tmp2, ctx);
 725
 726		/* ALU operation */
 727		emit_alu_r(rd[1], rs[1], true, false, op, ctx);
 728		emit_alu_r(rd[0], rs[0], true, true, op, ctx);
 729	} else {
 730		s8 rs;
 731
 732		rs = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
 733
 734		/* ALU operation */
 735		emit_alu_r(rd[1], rs, true, false, op, ctx);
 736		if (!ctx->prog->aux->verifier_zext)
 737			emit_a32_mov_i(rd[0], 0, ctx);
 738	}
 739
 740	arm_bpf_put_reg64(dst, rd, ctx);
 741}
 742
 743/* dst = src (4 bytes)*/
 744static inline void emit_a32_mov_r(const s8 dst, const s8 src,
 745				  struct jit_ctx *ctx) {
 746	const s8 *tmp = bpf2a32[TMP_REG_1];
 747	s8 rt;
 748
 749	rt = arm_bpf_get_reg32(src, tmp[0], ctx);
 750	arm_bpf_put_reg32(dst, rt, ctx);
 751}
 752
 753/* dst = src */
 754static inline void emit_a32_mov_r64(const bool is64, const s8 dst[],
 755				  const s8 src[],
 756				  struct jit_ctx *ctx) {
 757	if (!is64) {
 758		emit_a32_mov_r(dst_lo, src_lo, ctx);
 759		if (!ctx->prog->aux->verifier_zext)
 760			/* Zero out high 4 bytes */
 761			emit_a32_mov_i(dst_hi, 0, ctx);
 762	} else if (__LINUX_ARM_ARCH__ < 6 &&
 763		   ctx->cpu_architecture < CPU_ARCH_ARMv5TE) {
 764		/* complete 8 byte move */
 765		emit_a32_mov_r(dst_lo, src_lo, ctx);
 766		emit_a32_mov_r(dst_hi, src_hi, ctx);
 767	} else if (is_stacked(src_lo) && is_stacked(dst_lo)) {
 768		const u8 *tmp = bpf2a32[TMP_REG_1];
 769
 770		emit(ARM_LDRD_I(tmp[1], ARM_FP, EBPF_SCRATCH_TO_ARM_FP(src_lo)), ctx);
 771		emit(ARM_STRD_I(tmp[1], ARM_FP, EBPF_SCRATCH_TO_ARM_FP(dst_lo)), ctx);
 772	} else if (is_stacked(src_lo)) {
 773		emit(ARM_LDRD_I(dst[1], ARM_FP, EBPF_SCRATCH_TO_ARM_FP(src_lo)), ctx);
 774	} else if (is_stacked(dst_lo)) {
 775		emit(ARM_STRD_I(src[1], ARM_FP, EBPF_SCRATCH_TO_ARM_FP(dst_lo)), ctx);
 776	} else {
 777		emit(ARM_MOV_R(dst[0], src[0]), ctx);
 778		emit(ARM_MOV_R(dst[1], src[1]), ctx);
 779	}
 780}
 781
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 782/* Shift operations */
 783static inline void emit_a32_alu_i(const s8 dst, const u32 val,
 784				struct jit_ctx *ctx, const u8 op) {
 785	const s8 *tmp = bpf2a32[TMP_REG_1];
 786	s8 rd;
 787
 788	rd = arm_bpf_get_reg32(dst, tmp[0], ctx);
 789
 790	/* Do shift operation */
 791	switch (op) {
 792	case BPF_LSH:
 793		emit(ARM_LSL_I(rd, rd, val), ctx);
 794		break;
 795	case BPF_RSH:
 796		emit(ARM_LSR_I(rd, rd, val), ctx);
 797		break;
 
 
 
 798	case BPF_NEG:
 799		emit(ARM_RSB_I(rd, rd, val), ctx);
 800		break;
 801	}
 802
 803	arm_bpf_put_reg32(dst, rd, ctx);
 804}
 805
 806/* dst = ~dst (64 bit) */
 807static inline void emit_a32_neg64(const s8 dst[],
 808				struct jit_ctx *ctx){
 809	const s8 *tmp = bpf2a32[TMP_REG_1];
 810	const s8 *rd;
 811
 812	/* Setup Operand */
 813	rd = arm_bpf_get_reg64(dst, tmp, ctx);
 814
 815	/* Do Negate Operation */
 816	emit(ARM_RSBS_I(rd[1], rd[1], 0), ctx);
 817	emit(ARM_RSC_I(rd[0], rd[0], 0), ctx);
 818
 819	arm_bpf_put_reg64(dst, rd, ctx);
 820}
 821
 822/* dst = dst << src */
 823static inline void emit_a32_lsh_r64(const s8 dst[], const s8 src[],
 824				    struct jit_ctx *ctx) {
 825	const s8 *tmp = bpf2a32[TMP_REG_1];
 826	const s8 *tmp2 = bpf2a32[TMP_REG_2];
 827	const s8 *rd;
 828	s8 rt;
 829
 830	/* Setup Operands */
 831	rt = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
 832	rd = arm_bpf_get_reg64(dst, tmp, ctx);
 833
 834	/* Do LSH operation */
 835	emit(ARM_SUB_I(ARM_IP, rt, 32), ctx);
 836	emit(ARM_RSB_I(tmp2[0], rt, 32), ctx);
 837	emit(ARM_MOV_SR(ARM_LR, rd[0], SRTYPE_ASL, rt), ctx);
 838	emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[1], SRTYPE_ASL, ARM_IP), ctx);
 839	emit(ARM_ORR_SR(ARM_IP, ARM_LR, rd[1], SRTYPE_LSR, tmp2[0]), ctx);
 840	emit(ARM_MOV_SR(ARM_LR, rd[1], SRTYPE_ASL, rt), ctx);
 841
 842	arm_bpf_put_reg32(dst_lo, ARM_LR, ctx);
 843	arm_bpf_put_reg32(dst_hi, ARM_IP, ctx);
 844}
 845
 846/* dst = dst >> src (signed)*/
 847static inline void emit_a32_arsh_r64(const s8 dst[], const s8 src[],
 848				     struct jit_ctx *ctx) {
 849	const s8 *tmp = bpf2a32[TMP_REG_1];
 850	const s8 *tmp2 = bpf2a32[TMP_REG_2];
 851	const s8 *rd;
 852	s8 rt;
 853
 854	/* Setup Operands */
 855	rt = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
 856	rd = arm_bpf_get_reg64(dst, tmp, ctx);
 857
 858	/* Do the ARSH operation */
 859	emit(ARM_RSB_I(ARM_IP, rt, 32), ctx);
 860	emit(ARM_SUBS_I(tmp2[0], rt, 32), ctx);
 861	emit(ARM_MOV_SR(ARM_LR, rd[1], SRTYPE_LSR, rt), ctx);
 862	emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[0], SRTYPE_ASL, ARM_IP), ctx);
 863	_emit(ARM_COND_MI, ARM_B(0), ctx);
 864	emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[0], SRTYPE_ASR, tmp2[0]), ctx);
 865	emit(ARM_MOV_SR(ARM_IP, rd[0], SRTYPE_ASR, rt), ctx);
 866
 867	arm_bpf_put_reg32(dst_lo, ARM_LR, ctx);
 868	arm_bpf_put_reg32(dst_hi, ARM_IP, ctx);
 869}
 870
 871/* dst = dst >> src */
 872static inline void emit_a32_rsh_r64(const s8 dst[], const s8 src[],
 873				    struct jit_ctx *ctx) {
 874	const s8 *tmp = bpf2a32[TMP_REG_1];
 875	const s8 *tmp2 = bpf2a32[TMP_REG_2];
 876	const s8 *rd;
 877	s8 rt;
 878
 879	/* Setup Operands */
 880	rt = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
 881	rd = arm_bpf_get_reg64(dst, tmp, ctx);
 882
 883	/* Do RSH operation */
 884	emit(ARM_RSB_I(ARM_IP, rt, 32), ctx);
 885	emit(ARM_SUBS_I(tmp2[0], rt, 32), ctx);
 886	emit(ARM_MOV_SR(ARM_LR, rd[1], SRTYPE_LSR, rt), ctx);
 887	emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[0], SRTYPE_ASL, ARM_IP), ctx);
 888	emit(ARM_ORR_SR(ARM_LR, ARM_LR, rd[0], SRTYPE_LSR, tmp2[0]), ctx);
 889	emit(ARM_MOV_SR(ARM_IP, rd[0], SRTYPE_LSR, rt), ctx);
 890
 891	arm_bpf_put_reg32(dst_lo, ARM_LR, ctx);
 892	arm_bpf_put_reg32(dst_hi, ARM_IP, ctx);
 893}
 894
 895/* dst = dst << val */
 896static inline void emit_a32_lsh_i64(const s8 dst[],
 897				    const u32 val, struct jit_ctx *ctx){
 898	const s8 *tmp = bpf2a32[TMP_REG_1];
 899	const s8 *tmp2 = bpf2a32[TMP_REG_2];
 900	const s8 *rd;
 901
 902	/* Setup operands */
 903	rd = arm_bpf_get_reg64(dst, tmp, ctx);
 904
 905	/* Do LSH operation */
 906	if (val < 32) {
 907		emit(ARM_MOV_SI(tmp2[0], rd[0], SRTYPE_ASL, val), ctx);
 908		emit(ARM_ORR_SI(rd[0], tmp2[0], rd[1], SRTYPE_LSR, 32 - val), ctx);
 909		emit(ARM_MOV_SI(rd[1], rd[1], SRTYPE_ASL, val), ctx);
 910	} else {
 911		if (val == 32)
 912			emit(ARM_MOV_R(rd[0], rd[1]), ctx);
 913		else
 914			emit(ARM_MOV_SI(rd[0], rd[1], SRTYPE_ASL, val - 32), ctx);
 915		emit(ARM_EOR_R(rd[1], rd[1], rd[1]), ctx);
 916	}
 917
 918	arm_bpf_put_reg64(dst, rd, ctx);
 919}
 920
 921/* dst = dst >> val */
 922static inline void emit_a32_rsh_i64(const s8 dst[],
 923				    const u32 val, struct jit_ctx *ctx) {
 924	const s8 *tmp = bpf2a32[TMP_REG_1];
 925	const s8 *tmp2 = bpf2a32[TMP_REG_2];
 926	const s8 *rd;
 927
 928	/* Setup operands */
 929	rd = arm_bpf_get_reg64(dst, tmp, ctx);
 930
 931	/* Do LSR operation */
 932	if (val < 32) {
 
 
 
 
 933		emit(ARM_MOV_SI(tmp2[1], rd[1], SRTYPE_LSR, val), ctx);
 934		emit(ARM_ORR_SI(rd[1], tmp2[1], rd[0], SRTYPE_ASL, 32 - val), ctx);
 935		emit(ARM_MOV_SI(rd[0], rd[0], SRTYPE_LSR, val), ctx);
 936	} else if (val == 32) {
 937		emit(ARM_MOV_R(rd[1], rd[0]), ctx);
 938		emit(ARM_MOV_I(rd[0], 0), ctx);
 939	} else {
 940		emit(ARM_MOV_SI(rd[1], rd[0], SRTYPE_LSR, val - 32), ctx);
 941		emit(ARM_MOV_I(rd[0], 0), ctx);
 942	}
 943
 944	arm_bpf_put_reg64(dst, rd, ctx);
 945}
 946
 947/* dst = dst >> val (signed) */
 948static inline void emit_a32_arsh_i64(const s8 dst[],
 949				     const u32 val, struct jit_ctx *ctx){
 950	const s8 *tmp = bpf2a32[TMP_REG_1];
 951	const s8 *tmp2 = bpf2a32[TMP_REG_2];
 952	const s8 *rd;
 953
 954	/* Setup operands */
 955	rd = arm_bpf_get_reg64(dst, tmp, ctx);
 956
 957	/* Do ARSH operation */
 958	if (val < 32) {
 
 
 
 
 959		emit(ARM_MOV_SI(tmp2[1], rd[1], SRTYPE_LSR, val), ctx);
 960		emit(ARM_ORR_SI(rd[1], tmp2[1], rd[0], SRTYPE_ASL, 32 - val), ctx);
 961		emit(ARM_MOV_SI(rd[0], rd[0], SRTYPE_ASR, val), ctx);
 962	} else if (val == 32) {
 963		emit(ARM_MOV_R(rd[1], rd[0]), ctx);
 964		emit(ARM_MOV_SI(rd[0], rd[0], SRTYPE_ASR, 31), ctx);
 965	} else {
 966		emit(ARM_MOV_SI(rd[1], rd[0], SRTYPE_ASR, val - 32), ctx);
 967		emit(ARM_MOV_SI(rd[0], rd[0], SRTYPE_ASR, 31), ctx);
 968	}
 969
 970	arm_bpf_put_reg64(dst, rd, ctx);
 971}
 972
 973static inline void emit_a32_mul_r64(const s8 dst[], const s8 src[],
 974				    struct jit_ctx *ctx) {
 975	const s8 *tmp = bpf2a32[TMP_REG_1];
 976	const s8 *tmp2 = bpf2a32[TMP_REG_2];
 977	const s8 *rd, *rt;
 978
 979	/* Setup operands for multiplication */
 980	rd = arm_bpf_get_reg64(dst, tmp, ctx);
 981	rt = arm_bpf_get_reg64(src, tmp2, ctx);
 982
 983	/* Do Multiplication */
 984	emit(ARM_MUL(ARM_IP, rd[1], rt[0]), ctx);
 985	emit(ARM_MUL(ARM_LR, rd[0], rt[1]), ctx);
 986	emit(ARM_ADD_R(ARM_LR, ARM_IP, ARM_LR), ctx);
 987
 988	emit(ARM_UMULL(ARM_IP, rd[0], rd[1], rt[1]), ctx);
 989	emit(ARM_ADD_R(rd[0], ARM_LR, rd[0]), ctx);
 990
 991	arm_bpf_put_reg32(dst_lo, ARM_IP, ctx);
 992	arm_bpf_put_reg32(dst_hi, rd[0], ctx);
 993}
 994
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 995/* *(size *)(dst + off) = src */
 996static inline void emit_str_r(const s8 dst, const s8 src[],
 997			      s32 off, struct jit_ctx *ctx, const u8 sz){
 998	const s8 *tmp = bpf2a32[TMP_REG_1];
 999	s32 off_max;
1000	s8 rd;
1001
1002	rd = arm_bpf_get_reg32(dst, tmp[1], ctx);
1003
1004	if (sz == BPF_H)
1005		off_max = 0xff;
1006	else
1007		off_max = 0xfff;
1008
1009	if (off < 0 || off > off_max) {
1010		emit_a32_mov_i(tmp[0], off, ctx);
1011		emit(ARM_ADD_R(tmp[0], tmp[0], rd), ctx);
1012		rd = tmp[0];
1013		off = 0;
1014	}
1015	switch (sz) {
1016	case BPF_B:
1017		/* Store a Byte */
1018		emit(ARM_STRB_I(src_lo, rd, off), ctx);
1019		break;
1020	case BPF_H:
1021		/* Store a HalfWord */
1022		emit(ARM_STRH_I(src_lo, rd, off), ctx);
1023		break;
1024	case BPF_W:
1025		/* Store a Word */
1026		emit(ARM_STR_I(src_lo, rd, off), ctx);
1027		break;
1028	case BPF_DW:
1029		/* Store a Double Word */
1030		emit(ARM_STR_I(src_lo, rd, off), ctx);
1031		emit(ARM_STR_I(src_hi, rd, off + 4), ctx);
1032		break;
1033	}
1034}
1035
1036/* dst = *(size*)(src + off) */
1037static inline void emit_ldx_r(const s8 dst[], const s8 src,
1038			      s32 off, struct jit_ctx *ctx, const u8 sz){
1039	const s8 *tmp = bpf2a32[TMP_REG_1];
1040	const s8 *rd = is_stacked(dst_lo) ? tmp : dst;
1041	s8 rm = src;
1042	s32 off_max;
1043
1044	if (sz == BPF_H)
1045		off_max = 0xff;
1046	else
1047		off_max = 0xfff;
1048
1049	if (off < 0 || off > off_max) {
1050		emit_a32_mov_i(tmp[0], off, ctx);
1051		emit(ARM_ADD_R(tmp[0], tmp[0], src), ctx);
1052		rm = tmp[0];
1053		off = 0;
1054	} else if (rd[1] == rm) {
1055		emit(ARM_MOV_R(tmp[0], rm), ctx);
1056		rm = tmp[0];
1057	}
1058	switch (sz) {
1059	case BPF_B:
1060		/* Load a Byte */
1061		emit(ARM_LDRB_I(rd[1], rm, off), ctx);
1062		if (!ctx->prog->aux->verifier_zext)
1063			emit_a32_mov_i(rd[0], 0, ctx);
1064		break;
1065	case BPF_H:
1066		/* Load a HalfWord */
1067		emit(ARM_LDRH_I(rd[1], rm, off), ctx);
1068		if (!ctx->prog->aux->verifier_zext)
1069			emit_a32_mov_i(rd[0], 0, ctx);
1070		break;
1071	case BPF_W:
1072		/* Load a Word */
1073		emit(ARM_LDR_I(rd[1], rm, off), ctx);
1074		if (!ctx->prog->aux->verifier_zext)
1075			emit_a32_mov_i(rd[0], 0, ctx);
1076		break;
1077	case BPF_DW:
1078		/* Load a Double Word */
1079		emit(ARM_LDR_I(rd[1], rm, off), ctx);
1080		emit(ARM_LDR_I(rd[0], rm, off + 4), ctx);
1081		break;
1082	}
1083	arm_bpf_put_reg64(dst, rd, ctx);
1084}
1085
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1086/* Arithmatic Operation */
1087static inline void emit_ar_r(const u8 rd, const u8 rt, const u8 rm,
1088			     const u8 rn, struct jit_ctx *ctx, u8 op,
1089			     bool is_jmp64) {
1090	switch (op) {
1091	case BPF_JSET:
1092		if (is_jmp64) {
1093			emit(ARM_AND_R(ARM_IP, rt, rn), ctx);
1094			emit(ARM_AND_R(ARM_LR, rd, rm), ctx);
1095			emit(ARM_ORRS_R(ARM_IP, ARM_LR, ARM_IP), ctx);
1096		} else {
1097			emit(ARM_ANDS_R(ARM_IP, rt, rn), ctx);
1098		}
1099		break;
1100	case BPF_JEQ:
1101	case BPF_JNE:
1102	case BPF_JGT:
1103	case BPF_JGE:
1104	case BPF_JLE:
1105	case BPF_JLT:
1106		if (is_jmp64) {
1107			emit(ARM_CMP_R(rd, rm), ctx);
1108			/* Only compare low halve if high halve are equal. */
1109			_emit(ARM_COND_EQ, ARM_CMP_R(rt, rn), ctx);
1110		} else {
1111			emit(ARM_CMP_R(rt, rn), ctx);
1112		}
1113		break;
1114	case BPF_JSLE:
1115	case BPF_JSGT:
1116		emit(ARM_CMP_R(rn, rt), ctx);
1117		if (is_jmp64)
1118			emit(ARM_SBCS_R(ARM_IP, rm, rd), ctx);
1119		break;
1120	case BPF_JSLT:
1121	case BPF_JSGE:
1122		emit(ARM_CMP_R(rt, rn), ctx);
1123		if (is_jmp64)
1124			emit(ARM_SBCS_R(ARM_IP, rd, rm), ctx);
1125		break;
1126	}
1127}
1128
1129static int out_offset = -1; /* initialized on the first pass of build_body() */
1130static int emit_bpf_tail_call(struct jit_ctx *ctx)
1131{
1132
1133	/* bpf_tail_call(void *prog_ctx, struct bpf_array *array, u64 index) */
1134	const s8 *r2 = bpf2a32[BPF_REG_2];
1135	const s8 *r3 = bpf2a32[BPF_REG_3];
1136	const s8 *tmp = bpf2a32[TMP_REG_1];
1137	const s8 *tmp2 = bpf2a32[TMP_REG_2];
1138	const s8 *tcc = bpf2a32[TCALL_CNT];
1139	const s8 *tc;
1140	const int idx0 = ctx->idx;
1141#define cur_offset (ctx->idx - idx0)
1142#define jmp_offset (out_offset - (cur_offset) - 2)
1143	u32 lo, hi;
1144	s8 r_array, r_index;
1145	int off;
1146
1147	/* if (index >= array->map.max_entries)
1148	 *	goto out;
1149	 */
1150	BUILD_BUG_ON(offsetof(struct bpf_array, map.max_entries) >
1151		     ARM_INST_LDST__IMM12);
1152	off = offsetof(struct bpf_array, map.max_entries);
1153	r_array = arm_bpf_get_reg32(r2[1], tmp2[0], ctx);
1154	/* index is 32-bit for arrays */
1155	r_index = arm_bpf_get_reg32(r3[1], tmp2[1], ctx);
1156	/* array->map.max_entries */
1157	emit(ARM_LDR_I(tmp[1], r_array, off), ctx);
1158	/* index >= array->map.max_entries */
1159	emit(ARM_CMP_R(r_index, tmp[1]), ctx);
1160	_emit(ARM_COND_CS, ARM_B(jmp_offset), ctx);
1161
1162	/* tmp2[0] = array, tmp2[1] = index */
1163
1164	/* if (tail_call_cnt > MAX_TAIL_CALL_CNT)
 
1165	 *	goto out;
1166	 * tail_call_cnt++;
1167	 */
1168	lo = (u32)MAX_TAIL_CALL_CNT;
1169	hi = (u32)((u64)MAX_TAIL_CALL_CNT >> 32);
1170	tc = arm_bpf_get_reg64(tcc, tmp, ctx);
1171	emit(ARM_CMP_I(tc[0], hi), ctx);
1172	_emit(ARM_COND_EQ, ARM_CMP_I(tc[1], lo), ctx);
1173	_emit(ARM_COND_HI, ARM_B(jmp_offset), ctx);
1174	emit(ARM_ADDS_I(tc[1], tc[1], 1), ctx);
1175	emit(ARM_ADC_I(tc[0], tc[0], 0), ctx);
1176	arm_bpf_put_reg64(tcc, tmp, ctx);
1177
1178	/* prog = array->ptrs[index]
1179	 * if (prog == NULL)
1180	 *	goto out;
1181	 */
1182	BUILD_BUG_ON(imm8m(offsetof(struct bpf_array, ptrs)) < 0);
1183	off = imm8m(offsetof(struct bpf_array, ptrs));
1184	emit(ARM_ADD_I(tmp[1], r_array, off), ctx);
1185	emit(ARM_LDR_R_SI(tmp[1], tmp[1], r_index, SRTYPE_ASL, 2), ctx);
1186	emit(ARM_CMP_I(tmp[1], 0), ctx);
1187	_emit(ARM_COND_EQ, ARM_B(jmp_offset), ctx);
1188
1189	/* goto *(prog->bpf_func + prologue_size); */
1190	BUILD_BUG_ON(offsetof(struct bpf_prog, bpf_func) >
1191		     ARM_INST_LDST__IMM12);
1192	off = offsetof(struct bpf_prog, bpf_func);
1193	emit(ARM_LDR_I(tmp[1], tmp[1], off), ctx);
1194	emit(ARM_ADD_I(tmp[1], tmp[1], ctx->prologue_bytes), ctx);
1195	emit_bx_r(tmp[1], ctx);
1196
1197	/* out: */
1198	if (out_offset == -1)
1199		out_offset = cur_offset;
1200	if (cur_offset != out_offset) {
1201		pr_err_once("tail_call out_offset = %d, expected %d!\n",
1202			    cur_offset, out_offset);
1203		return -1;
1204	}
1205	return 0;
1206#undef cur_offset
1207#undef jmp_offset
1208}
1209
1210/* 0xabcd => 0xcdab */
1211static inline void emit_rev16(const u8 rd, const u8 rn, struct jit_ctx *ctx)
1212{
1213#if __LINUX_ARM_ARCH__ < 6
1214	const s8 *tmp2 = bpf2a32[TMP_REG_2];
1215
1216	emit(ARM_AND_I(tmp2[1], rn, 0xff), ctx);
1217	emit(ARM_MOV_SI(tmp2[0], rn, SRTYPE_LSR, 8), ctx);
1218	emit(ARM_AND_I(tmp2[0], tmp2[0], 0xff), ctx);
1219	emit(ARM_ORR_SI(rd, tmp2[0], tmp2[1], SRTYPE_LSL, 8), ctx);
1220#else /* ARMv6+ */
1221	emit(ARM_REV16(rd, rn), ctx);
1222#endif
1223}
1224
1225/* 0xabcdefgh => 0xghefcdab */
1226static inline void emit_rev32(const u8 rd, const u8 rn, struct jit_ctx *ctx)
1227{
1228#if __LINUX_ARM_ARCH__ < 6
1229	const s8 *tmp2 = bpf2a32[TMP_REG_2];
1230
1231	emit(ARM_AND_I(tmp2[1], rn, 0xff), ctx);
1232	emit(ARM_MOV_SI(tmp2[0], rn, SRTYPE_LSR, 24), ctx);
1233	emit(ARM_ORR_SI(ARM_IP, tmp2[0], tmp2[1], SRTYPE_LSL, 24), ctx);
1234
1235	emit(ARM_MOV_SI(tmp2[1], rn, SRTYPE_LSR, 8), ctx);
1236	emit(ARM_AND_I(tmp2[1], tmp2[1], 0xff), ctx);
1237	emit(ARM_MOV_SI(tmp2[0], rn, SRTYPE_LSR, 16), ctx);
1238	emit(ARM_AND_I(tmp2[0], tmp2[0], 0xff), ctx);
1239	emit(ARM_MOV_SI(tmp2[0], tmp2[0], SRTYPE_LSL, 8), ctx);
1240	emit(ARM_ORR_SI(tmp2[0], tmp2[0], tmp2[1], SRTYPE_LSL, 16), ctx);
1241	emit(ARM_ORR_R(rd, ARM_IP, tmp2[0]), ctx);
1242
1243#else /* ARMv6+ */
1244	emit(ARM_REV(rd, rn), ctx);
1245#endif
1246}
1247
1248// push the scratch stack register on top of the stack
1249static inline void emit_push_r64(const s8 src[], struct jit_ctx *ctx)
1250{
1251	const s8 *tmp2 = bpf2a32[TMP_REG_2];
1252	const s8 *rt;
1253	u16 reg_set = 0;
1254
1255	rt = arm_bpf_get_reg64(src, tmp2, ctx);
1256
1257	reg_set = (1 << rt[1]) | (1 << rt[0]);
1258	emit(ARM_PUSH(reg_set), ctx);
1259}
1260
1261static void build_prologue(struct jit_ctx *ctx)
1262{
1263	const s8 r0 = bpf2a32[BPF_REG_0][1];
1264	const s8 r2 = bpf2a32[BPF_REG_1][1];
1265	const s8 r3 = bpf2a32[BPF_REG_1][0];
1266	const s8 r4 = bpf2a32[BPF_REG_6][1];
1267	const s8 fplo = bpf2a32[BPF_REG_FP][1];
1268	const s8 fphi = bpf2a32[BPF_REG_FP][0];
1269	const s8 *tcc = bpf2a32[TCALL_CNT];
1270
1271	/* Save callee saved registers. */
1272#ifdef CONFIG_FRAME_POINTER
1273	u16 reg_set = CALLEE_PUSH_MASK | 1 << ARM_IP | 1 << ARM_PC;
1274	emit(ARM_MOV_R(ARM_IP, ARM_SP), ctx);
1275	emit(ARM_PUSH(reg_set), ctx);
1276	emit(ARM_SUB_I(ARM_FP, ARM_IP, 4), ctx);
1277#else
1278	emit(ARM_PUSH(CALLEE_PUSH_MASK), ctx);
1279	emit(ARM_MOV_R(ARM_FP, ARM_SP), ctx);
1280#endif
1281	/* Save frame pointer for later */
1282	emit(ARM_SUB_I(ARM_IP, ARM_SP, SCRATCH_SIZE), ctx);
 
 
1283
1284	ctx->stack_size = imm8m(STACK_SIZE);
1285
1286	/* Set up function call stack */
1287	emit(ARM_SUB_I(ARM_SP, ARM_SP, ctx->stack_size), ctx);
1288
1289	/* Set up BPF prog stack base register */
1290	emit_a32_mov_r(fplo, ARM_IP, ctx);
1291	emit_a32_mov_i(fphi, 0, ctx);
1292
1293	/* mov r4, 0 */
1294	emit(ARM_MOV_I(r4, 0), ctx);
 
1295
1296	/* Move BPF_CTX to BPF_R1 */
1297	emit(ARM_MOV_R(r3, r4), ctx);
1298	emit(ARM_MOV_R(r2, r0), ctx);
1299	/* Initialize Tail Count */
1300	emit(ARM_STR_I(r4, ARM_FP, EBPF_SCRATCH_TO_ARM_FP(tcc[0])), ctx);
1301	emit(ARM_STR_I(r4, ARM_FP, EBPF_SCRATCH_TO_ARM_FP(tcc[1])), ctx);
1302	/* end of prologue */
1303}
1304
1305/* restore callee saved registers. */
1306static void build_epilogue(struct jit_ctx *ctx)
1307{
1308#ifdef CONFIG_FRAME_POINTER
1309	/* When using frame pointers, some additional registers need to
1310	 * be loaded. */
1311	u16 reg_set = CALLEE_POP_MASK | 1 << ARM_SP;
1312	emit(ARM_SUB_I(ARM_SP, ARM_FP, hweight16(reg_set) * 4), ctx);
1313	emit(ARM_LDM(ARM_SP, reg_set), ctx);
1314#else
1315	/* Restore callee saved registers. */
1316	emit(ARM_MOV_R(ARM_SP, ARM_FP), ctx);
1317	emit(ARM_POP(CALLEE_POP_MASK), ctx);
1318#endif
1319}
1320
1321/*
1322 * Convert an eBPF instruction to native instruction, i.e
1323 * JITs an eBPF instruction.
1324 * Returns :
1325 *	0  - Successfully JITed an 8-byte eBPF instruction
1326 *	>0 - Successfully JITed a 16-byte eBPF instruction
1327 *	<0 - Failed to JIT.
1328 */
1329static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx)
1330{
1331	const u8 code = insn->code;
1332	const s8 *dst = bpf2a32[insn->dst_reg];
1333	const s8 *src = bpf2a32[insn->src_reg];
1334	const s8 *tmp = bpf2a32[TMP_REG_1];
1335	const s8 *tmp2 = bpf2a32[TMP_REG_2];
1336	const s16 off = insn->off;
1337	const s32 imm = insn->imm;
1338	const int i = insn - ctx->prog->insnsi;
1339	const bool is64 = BPF_CLASS(code) == BPF_ALU64;
1340	const s8 *rd, *rs;
1341	s8 rd_lo, rt, rm, rn;
1342	s32 jmp_offset;
1343
1344#define check_imm(bits, imm) do {				\
1345	if ((imm) >= (1 << ((bits) - 1)) ||			\
1346	    (imm) < -(1 << ((bits) - 1))) {			\
1347		pr_info("[%2d] imm=%d(0x%x) out of range\n",	\
1348			i, imm, imm);				\
1349		return -EINVAL;					\
1350	}							\
1351} while (0)
1352#define check_imm24(imm) check_imm(24, imm)
1353
1354	switch (code) {
1355	/* ALU operations */
1356
1357	/* dst = src */
1358	case BPF_ALU | BPF_MOV | BPF_K:
1359	case BPF_ALU | BPF_MOV | BPF_X:
1360	case BPF_ALU64 | BPF_MOV | BPF_K:
1361	case BPF_ALU64 | BPF_MOV | BPF_X:
1362		switch (BPF_SRC(code)) {
1363		case BPF_X:
1364			if (imm == 1) {
1365				/* Special mov32 for zext */
1366				emit_a32_mov_i(dst_hi, 0, ctx);
1367				break;
1368			}
1369			emit_a32_mov_r64(is64, dst, src, ctx);
 
 
 
1370			break;
1371		case BPF_K:
1372			/* Sign-extend immediate value to destination reg */
1373			emit_a32_mov_se_i64(is64, dst, imm, ctx);
1374			break;
1375		}
1376		break;
1377	/* dst = dst + src/imm */
1378	/* dst = dst - src/imm */
1379	/* dst = dst | src/imm */
1380	/* dst = dst & src/imm */
1381	/* dst = dst ^ src/imm */
1382	/* dst = dst * src/imm */
1383	/* dst = dst << src */
1384	/* dst = dst >> src */
1385	case BPF_ALU | BPF_ADD | BPF_K:
1386	case BPF_ALU | BPF_ADD | BPF_X:
1387	case BPF_ALU | BPF_SUB | BPF_K:
1388	case BPF_ALU | BPF_SUB | BPF_X:
1389	case BPF_ALU | BPF_OR | BPF_K:
1390	case BPF_ALU | BPF_OR | BPF_X:
1391	case BPF_ALU | BPF_AND | BPF_K:
1392	case BPF_ALU | BPF_AND | BPF_X:
1393	case BPF_ALU | BPF_XOR | BPF_K:
1394	case BPF_ALU | BPF_XOR | BPF_X:
1395	case BPF_ALU | BPF_MUL | BPF_K:
1396	case BPF_ALU | BPF_MUL | BPF_X:
1397	case BPF_ALU | BPF_LSH | BPF_X:
1398	case BPF_ALU | BPF_RSH | BPF_X:
1399	case BPF_ALU | BPF_ARSH | BPF_K:
1400	case BPF_ALU | BPF_ARSH | BPF_X:
1401	case BPF_ALU64 | BPF_ADD | BPF_K:
1402	case BPF_ALU64 | BPF_ADD | BPF_X:
1403	case BPF_ALU64 | BPF_SUB | BPF_K:
1404	case BPF_ALU64 | BPF_SUB | BPF_X:
1405	case BPF_ALU64 | BPF_OR | BPF_K:
1406	case BPF_ALU64 | BPF_OR | BPF_X:
1407	case BPF_ALU64 | BPF_AND | BPF_K:
1408	case BPF_ALU64 | BPF_AND | BPF_X:
1409	case BPF_ALU64 | BPF_XOR | BPF_K:
1410	case BPF_ALU64 | BPF_XOR | BPF_X:
1411		switch (BPF_SRC(code)) {
1412		case BPF_X:
1413			emit_a32_alu_r64(is64, dst, src, ctx, BPF_OP(code));
1414			break;
1415		case BPF_K:
1416			/* Move immediate value to the temporary register
1417			 * and then do the ALU operation on the temporary
1418			 * register as this will sign-extend the immediate
1419			 * value into temporary reg and then it would be
1420			 * safe to do the operation on it.
1421			 */
1422			emit_a32_mov_se_i64(is64, tmp2, imm, ctx);
1423			emit_a32_alu_r64(is64, dst, tmp2, ctx, BPF_OP(code));
1424			break;
1425		}
1426		break;
1427	/* dst = dst / src(imm) */
1428	/* dst = dst % src(imm) */
1429	case BPF_ALU | BPF_DIV | BPF_K:
1430	case BPF_ALU | BPF_DIV | BPF_X:
1431	case BPF_ALU | BPF_MOD | BPF_K:
1432	case BPF_ALU | BPF_MOD | BPF_X:
1433		rd_lo = arm_bpf_get_reg32(dst_lo, tmp2[1], ctx);
1434		switch (BPF_SRC(code)) {
1435		case BPF_X:
1436			rt = arm_bpf_get_reg32(src_lo, tmp2[0], ctx);
1437			break;
1438		case BPF_K:
1439			rt = tmp2[0];
1440			emit_a32_mov_i(rt, imm, ctx);
1441			break;
1442		default:
1443			rt = src_lo;
1444			break;
1445		}
1446		emit_udivmod(rd_lo, rd_lo, rt, ctx, BPF_OP(code));
1447		arm_bpf_put_reg32(dst_lo, rd_lo, ctx);
1448		if (!ctx->prog->aux->verifier_zext)
1449			emit_a32_mov_i(dst_hi, 0, ctx);
1450		break;
1451	case BPF_ALU64 | BPF_DIV | BPF_K:
1452	case BPF_ALU64 | BPF_DIV | BPF_X:
1453	case BPF_ALU64 | BPF_MOD | BPF_K:
1454	case BPF_ALU64 | BPF_MOD | BPF_X:
1455		goto notyet;
 
 
 
 
 
 
 
 
 
 
 
 
 
1456	/* dst = dst >> imm */
1457	/* dst = dst << imm */
 
1458	case BPF_ALU | BPF_RSH | BPF_K:
1459	case BPF_ALU | BPF_LSH | BPF_K:
1460		if (unlikely(imm > 31))
1461			return -EINVAL;
1462		if (imm)
1463			emit_a32_alu_i(dst_lo, imm, ctx, BPF_OP(code));
1464		if (!ctx->prog->aux->verifier_zext)
1465			emit_a32_mov_i(dst_hi, 0, ctx);
1466		break;
1467	/* dst = dst << imm */
1468	case BPF_ALU64 | BPF_LSH | BPF_K:
1469		if (unlikely(imm > 63))
1470			return -EINVAL;
1471		emit_a32_lsh_i64(dst, imm, ctx);
1472		break;
1473	/* dst = dst >> imm */
1474	case BPF_ALU64 | BPF_RSH | BPF_K:
1475		if (unlikely(imm > 63))
1476			return -EINVAL;
1477		emit_a32_rsh_i64(dst, imm, ctx);
1478		break;
1479	/* dst = dst << src */
1480	case BPF_ALU64 | BPF_LSH | BPF_X:
1481		emit_a32_lsh_r64(dst, src, ctx);
1482		break;
1483	/* dst = dst >> src */
1484	case BPF_ALU64 | BPF_RSH | BPF_X:
1485		emit_a32_rsh_r64(dst, src, ctx);
1486		break;
1487	/* dst = dst >> src (signed) */
1488	case BPF_ALU64 | BPF_ARSH | BPF_X:
1489		emit_a32_arsh_r64(dst, src, ctx);
1490		break;
1491	/* dst = dst >> imm (signed) */
1492	case BPF_ALU64 | BPF_ARSH | BPF_K:
1493		if (unlikely(imm > 63))
1494			return -EINVAL;
1495		emit_a32_arsh_i64(dst, imm, ctx);
1496		break;
1497	/* dst = ~dst */
1498	case BPF_ALU | BPF_NEG:
1499		emit_a32_alu_i(dst_lo, 0, ctx, BPF_OP(code));
1500		if (!ctx->prog->aux->verifier_zext)
1501			emit_a32_mov_i(dst_hi, 0, ctx);
1502		break;
1503	/* dst = ~dst (64 bit) */
1504	case BPF_ALU64 | BPF_NEG:
1505		emit_a32_neg64(dst, ctx);
1506		break;
1507	/* dst = dst * src/imm */
1508	case BPF_ALU64 | BPF_MUL | BPF_X:
1509	case BPF_ALU64 | BPF_MUL | BPF_K:
1510		switch (BPF_SRC(code)) {
1511		case BPF_X:
1512			emit_a32_mul_r64(dst, src, ctx);
1513			break;
1514		case BPF_K:
1515			/* Move immediate value to the temporary register
1516			 * and then do the multiplication on it as this
1517			 * will sign-extend the immediate value into temp
1518			 * reg then it would be safe to do the operation
1519			 * on it.
1520			 */
1521			emit_a32_mov_se_i64(is64, tmp2, imm, ctx);
1522			emit_a32_mul_r64(dst, tmp2, ctx);
1523			break;
1524		}
1525		break;
1526	/* dst = htole(dst) */
1527	/* dst = htobe(dst) */
1528	case BPF_ALU | BPF_END | BPF_FROM_LE:
1529	case BPF_ALU | BPF_END | BPF_FROM_BE:
 
 
1530		rd = arm_bpf_get_reg64(dst, tmp, ctx);
1531		if (BPF_SRC(code) == BPF_FROM_LE)
1532			goto emit_bswap_uxt;
1533		switch (imm) {
1534		case 16:
1535			emit_rev16(rd[1], rd[1], ctx);
1536			goto emit_bswap_uxt;
1537		case 32:
1538			emit_rev32(rd[1], rd[1], ctx);
1539			goto emit_bswap_uxt;
1540		case 64:
1541			emit_rev32(ARM_LR, rd[1], ctx);
1542			emit_rev32(rd[1], rd[0], ctx);
1543			emit(ARM_MOV_R(rd[0], ARM_LR), ctx);
1544			break;
1545		}
1546		goto exit;
1547emit_bswap_uxt:
1548		switch (imm) {
1549		case 16:
1550			/* zero-extend 16 bits into 64 bits */
1551#if __LINUX_ARM_ARCH__ < 6
1552			emit_a32_mov_i(tmp2[1], 0xffff, ctx);
1553			emit(ARM_AND_R(rd[1], rd[1], tmp2[1]), ctx);
1554#else /* ARMv6+ */
1555			emit(ARM_UXTH(rd[1], rd[1]), ctx);
1556#endif
1557			if (!ctx->prog->aux->verifier_zext)
1558				emit(ARM_EOR_R(rd[0], rd[0], rd[0]), ctx);
1559			break;
1560		case 32:
1561			/* zero-extend 32 bits into 64 bits */
1562			if (!ctx->prog->aux->verifier_zext)
1563				emit(ARM_EOR_R(rd[0], rd[0], rd[0]), ctx);
1564			break;
1565		case 64:
1566			/* nop */
1567			break;
1568		}
1569exit:
1570		arm_bpf_put_reg64(dst, rd, ctx);
1571		break;
1572	/* dst = imm64 */
1573	case BPF_LD | BPF_IMM | BPF_DW:
1574	{
1575		u64 val = (u32)imm | (u64)insn[1].imm << 32;
1576
1577		emit_a32_mov_i64(dst, val, ctx);
1578
1579		return 1;
1580	}
1581	/* LDX: dst = *(size *)(src + off) */
1582	case BPF_LDX | BPF_MEM | BPF_W:
1583	case BPF_LDX | BPF_MEM | BPF_H:
1584	case BPF_LDX | BPF_MEM | BPF_B:
1585	case BPF_LDX | BPF_MEM | BPF_DW:
 
 
 
 
1586		rn = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
1587		emit_ldx_r(dst, rn, off, ctx, BPF_SIZE(code));
 
 
 
 
 
 
1588		break;
1589	/* ST: *(size *)(dst + off) = imm */
1590	case BPF_ST | BPF_MEM | BPF_W:
1591	case BPF_ST | BPF_MEM | BPF_H:
1592	case BPF_ST | BPF_MEM | BPF_B:
1593	case BPF_ST | BPF_MEM | BPF_DW:
1594		switch (BPF_SIZE(code)) {
1595		case BPF_DW:
1596			/* Sign-extend immediate value into temp reg */
1597			emit_a32_mov_se_i64(true, tmp2, imm, ctx);
1598			break;
1599		case BPF_W:
1600		case BPF_H:
1601		case BPF_B:
1602			emit_a32_mov_i(tmp2[1], imm, ctx);
1603			break;
1604		}
1605		emit_str_r(dst_lo, tmp2, off, ctx, BPF_SIZE(code));
1606		break;
1607	/* STX XADD: lock *(u32 *)(dst + off) += src */
1608	case BPF_STX | BPF_XADD | BPF_W:
1609	/* STX XADD: lock *(u64 *)(dst + off) += src */
1610	case BPF_STX | BPF_XADD | BPF_DW:
1611		goto notyet;
1612	/* STX: *(size *)(dst + off) = src */
1613	case BPF_STX | BPF_MEM | BPF_W:
1614	case BPF_STX | BPF_MEM | BPF_H:
1615	case BPF_STX | BPF_MEM | BPF_B:
1616	case BPF_STX | BPF_MEM | BPF_DW:
1617		rs = arm_bpf_get_reg64(src, tmp2, ctx);
1618		emit_str_r(dst_lo, rs, off, ctx, BPF_SIZE(code));
1619		break;
1620	/* PC += off if dst == src */
1621	/* PC += off if dst > src */
1622	/* PC += off if dst >= src */
1623	/* PC += off if dst < src */
1624	/* PC += off if dst <= src */
1625	/* PC += off if dst != src */
1626	/* PC += off if dst > src (signed) */
1627	/* PC += off if dst >= src (signed) */
1628	/* PC += off if dst < src (signed) */
1629	/* PC += off if dst <= src (signed) */
1630	/* PC += off if dst & src */
1631	case BPF_JMP | BPF_JEQ | BPF_X:
1632	case BPF_JMP | BPF_JGT | BPF_X:
1633	case BPF_JMP | BPF_JGE | BPF_X:
1634	case BPF_JMP | BPF_JNE | BPF_X:
1635	case BPF_JMP | BPF_JSGT | BPF_X:
1636	case BPF_JMP | BPF_JSGE | BPF_X:
1637	case BPF_JMP | BPF_JSET | BPF_X:
1638	case BPF_JMP | BPF_JLE | BPF_X:
1639	case BPF_JMP | BPF_JLT | BPF_X:
1640	case BPF_JMP | BPF_JSLT | BPF_X:
1641	case BPF_JMP | BPF_JSLE | BPF_X:
1642	case BPF_JMP32 | BPF_JEQ | BPF_X:
1643	case BPF_JMP32 | BPF_JGT | BPF_X:
1644	case BPF_JMP32 | BPF_JGE | BPF_X:
1645	case BPF_JMP32 | BPF_JNE | BPF_X:
1646	case BPF_JMP32 | BPF_JSGT | BPF_X:
1647	case BPF_JMP32 | BPF_JSGE | BPF_X:
1648	case BPF_JMP32 | BPF_JSET | BPF_X:
1649	case BPF_JMP32 | BPF_JLE | BPF_X:
1650	case BPF_JMP32 | BPF_JLT | BPF_X:
1651	case BPF_JMP32 | BPF_JSLT | BPF_X:
1652	case BPF_JMP32 | BPF_JSLE | BPF_X:
1653		/* Setup source registers */
1654		rm = arm_bpf_get_reg32(src_hi, tmp2[0], ctx);
1655		rn = arm_bpf_get_reg32(src_lo, tmp2[1], ctx);
1656		goto go_jmp;
1657	/* PC += off if dst == imm */
1658	/* PC += off if dst > imm */
1659	/* PC += off if dst >= imm */
1660	/* PC += off if dst < imm */
1661	/* PC += off if dst <= imm */
1662	/* PC += off if dst != imm */
1663	/* PC += off if dst > imm (signed) */
1664	/* PC += off if dst >= imm (signed) */
1665	/* PC += off if dst < imm (signed) */
1666	/* PC += off if dst <= imm (signed) */
1667	/* PC += off if dst & imm */
1668	case BPF_JMP | BPF_JEQ | BPF_K:
1669	case BPF_JMP | BPF_JGT | BPF_K:
1670	case BPF_JMP | BPF_JGE | BPF_K:
1671	case BPF_JMP | BPF_JNE | BPF_K:
1672	case BPF_JMP | BPF_JSGT | BPF_K:
1673	case BPF_JMP | BPF_JSGE | BPF_K:
1674	case BPF_JMP | BPF_JSET | BPF_K:
1675	case BPF_JMP | BPF_JLT | BPF_K:
1676	case BPF_JMP | BPF_JLE | BPF_K:
1677	case BPF_JMP | BPF_JSLT | BPF_K:
1678	case BPF_JMP | BPF_JSLE | BPF_K:
1679	case BPF_JMP32 | BPF_JEQ | BPF_K:
1680	case BPF_JMP32 | BPF_JGT | BPF_K:
1681	case BPF_JMP32 | BPF_JGE | BPF_K:
1682	case BPF_JMP32 | BPF_JNE | BPF_K:
1683	case BPF_JMP32 | BPF_JSGT | BPF_K:
1684	case BPF_JMP32 | BPF_JSGE | BPF_K:
1685	case BPF_JMP32 | BPF_JSET | BPF_K:
1686	case BPF_JMP32 | BPF_JLT | BPF_K:
1687	case BPF_JMP32 | BPF_JLE | BPF_K:
1688	case BPF_JMP32 | BPF_JSLT | BPF_K:
1689	case BPF_JMP32 | BPF_JSLE | BPF_K:
1690		if (off == 0)
1691			break;
1692		rm = tmp2[0];
1693		rn = tmp2[1];
1694		/* Sign-extend immediate value */
1695		emit_a32_mov_se_i64(true, tmp2, imm, ctx);
1696go_jmp:
1697		/* Setup destination register */
1698		rd = arm_bpf_get_reg64(dst, tmp, ctx);
1699
1700		/* Check for the condition */
1701		emit_ar_r(rd[0], rd[1], rm, rn, ctx, BPF_OP(code),
1702			  BPF_CLASS(code) == BPF_JMP);
1703
1704		/* Setup JUMP instruction */
1705		jmp_offset = bpf2a32_offset(i+off, i, ctx);
1706		switch (BPF_OP(code)) {
1707		case BPF_JNE:
1708		case BPF_JSET:
1709			_emit(ARM_COND_NE, ARM_B(jmp_offset), ctx);
1710			break;
1711		case BPF_JEQ:
1712			_emit(ARM_COND_EQ, ARM_B(jmp_offset), ctx);
1713			break;
1714		case BPF_JGT:
1715			_emit(ARM_COND_HI, ARM_B(jmp_offset), ctx);
1716			break;
1717		case BPF_JGE:
1718			_emit(ARM_COND_CS, ARM_B(jmp_offset), ctx);
1719			break;
1720		case BPF_JSGT:
1721			_emit(ARM_COND_LT, ARM_B(jmp_offset), ctx);
1722			break;
1723		case BPF_JSGE:
1724			_emit(ARM_COND_GE, ARM_B(jmp_offset), ctx);
1725			break;
1726		case BPF_JLE:
1727			_emit(ARM_COND_LS, ARM_B(jmp_offset), ctx);
1728			break;
1729		case BPF_JLT:
1730			_emit(ARM_COND_CC, ARM_B(jmp_offset), ctx);
1731			break;
1732		case BPF_JSLT:
1733			_emit(ARM_COND_LT, ARM_B(jmp_offset), ctx);
1734			break;
1735		case BPF_JSLE:
1736			_emit(ARM_COND_GE, ARM_B(jmp_offset), ctx);
1737			break;
1738		}
1739		break;
1740	/* JMP OFF */
1741	case BPF_JMP | BPF_JA:
 
1742	{
1743		if (off == 0)
 
 
 
 
1744			break;
1745		jmp_offset = bpf2a32_offset(i+off, i, ctx);
1746		check_imm24(jmp_offset);
1747		emit(ARM_B(jmp_offset), ctx);
1748		break;
1749	}
1750	/* tail call */
1751	case BPF_JMP | BPF_TAIL_CALL:
1752		if (emit_bpf_tail_call(ctx))
1753			return -EFAULT;
1754		break;
1755	/* function call */
1756	case BPF_JMP | BPF_CALL:
1757	{
1758		const s8 *r0 = bpf2a32[BPF_REG_0];
1759		const s8 *r1 = bpf2a32[BPF_REG_1];
1760		const s8 *r2 = bpf2a32[BPF_REG_2];
1761		const s8 *r3 = bpf2a32[BPF_REG_3];
1762		const s8 *r4 = bpf2a32[BPF_REG_4];
1763		const s8 *r5 = bpf2a32[BPF_REG_5];
1764		const u32 func = (u32)__bpf_call_base + (u32)imm;
1765
1766		emit_a32_mov_r64(true, r0, r1, ctx);
1767		emit_a32_mov_r64(true, r1, r2, ctx);
1768		emit_push_r64(r5, ctx);
1769		emit_push_r64(r4, ctx);
1770		emit_push_r64(r3, ctx);
1771
1772		emit_a32_mov_i(tmp[1], func, ctx);
1773		emit_blx_r(tmp[1], ctx);
1774
1775		emit(ARM_ADD_I(ARM_SP, ARM_SP, imm8m(24)), ctx); // callee clean
1776		break;
1777	}
1778	/* function return */
1779	case BPF_JMP | BPF_EXIT:
1780		/* Optimization: when last instruction is EXIT
1781		 * simply fallthrough to epilogue.
1782		 */
1783		if (i == ctx->prog->len - 1)
1784			break;
1785		jmp_offset = epilogue_offset(ctx);
1786		check_imm24(jmp_offset);
1787		emit(ARM_B(jmp_offset), ctx);
1788		break;
1789notyet:
1790		pr_info_once("*** NOT YET: opcode %02x ***\n", code);
1791		return -EFAULT;
1792	default:
1793		pr_err_once("unknown opcode %02x\n", code);
1794		return -EINVAL;
1795	}
1796
1797	if (ctx->flags & FLAG_IMM_OVERFLOW)
1798		/*
1799		 * this instruction generated an overflow when
1800		 * trying to access the literal pool, so
1801		 * delegate this filter to the kernel interpreter.
1802		 */
1803		return -1;
1804	return 0;
1805}
1806
1807static int build_body(struct jit_ctx *ctx)
1808{
1809	const struct bpf_prog *prog = ctx->prog;
1810	unsigned int i;
1811
1812	for (i = 0; i < prog->len; i++) {
1813		const struct bpf_insn *insn = &(prog->insnsi[i]);
1814		int ret;
1815
1816		ret = build_insn(insn, ctx);
1817
1818		/* It's used with loading the 64 bit immediate value. */
1819		if (ret > 0) {
1820			i++;
1821			if (ctx->target == NULL)
1822				ctx->offsets[i] = ctx->idx;
1823			continue;
1824		}
1825
1826		if (ctx->target == NULL)
1827			ctx->offsets[i] = ctx->idx;
1828
1829		/* If unsuccesfull, return with error code */
1830		if (ret)
1831			return ret;
1832	}
1833	return 0;
1834}
1835
1836static int validate_code(struct jit_ctx *ctx)
1837{
1838	int i;
1839
1840	for (i = 0; i < ctx->idx; i++) {
1841		if (ctx->target[i] == __opcode_to_mem_arm(ARM_INST_UDF))
1842			return -1;
1843	}
1844
1845	return 0;
1846}
1847
1848void bpf_jit_compile(struct bpf_prog *prog)
1849{
1850	/* Nothing to do here. We support Internal BPF. */
1851}
1852
1853bool bpf_jit_needs_zext(void)
1854{
1855	return true;
1856}
1857
1858struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
1859{
1860	struct bpf_prog *tmp, *orig_prog = prog;
1861	struct bpf_binary_header *header;
1862	bool tmp_blinded = false;
1863	struct jit_ctx ctx;
1864	unsigned int tmp_idx;
1865	unsigned int image_size;
1866	u8 *image_ptr;
1867
1868	/* If BPF JIT was not enabled then we must fall back to
1869	 * the interpreter.
1870	 */
1871	if (!prog->jit_requested)
1872		return orig_prog;
1873
1874	/* If constant blinding was enabled and we failed during blinding
1875	 * then we must fall back to the interpreter. Otherwise, we save
1876	 * the new JITed code.
1877	 */
1878	tmp = bpf_jit_blind_constants(prog);
1879
1880	if (IS_ERR(tmp))
1881		return orig_prog;
1882	if (tmp != prog) {
1883		tmp_blinded = true;
1884		prog = tmp;
1885	}
1886
1887	memset(&ctx, 0, sizeof(ctx));
1888	ctx.prog = prog;
1889	ctx.cpu_architecture = cpu_architecture();
1890
1891	/* Not able to allocate memory for offsets[] , then
1892	 * we must fall back to the interpreter
1893	 */
1894	ctx.offsets = kcalloc(prog->len, sizeof(int), GFP_KERNEL);
1895	if (ctx.offsets == NULL) {
1896		prog = orig_prog;
1897		goto out;
1898	}
1899
1900	/* 1) fake pass to find in the length of the JITed code,
1901	 * to compute ctx->offsets and other context variables
1902	 * needed to compute final JITed code.
1903	 * Also, calculate random starting pointer/start of JITed code
1904	 * which is prefixed by random number of fault instructions.
1905	 *
1906	 * If the first pass fails then there is no chance of it
1907	 * being successful in the second pass, so just fall back
1908	 * to the interpreter.
1909	 */
1910	if (build_body(&ctx)) {
1911		prog = orig_prog;
1912		goto out_off;
1913	}
1914
1915	tmp_idx = ctx.idx;
1916	build_prologue(&ctx);
1917	ctx.prologue_bytes = (ctx.idx - tmp_idx) * 4;
1918
1919	ctx.epilogue_offset = ctx.idx;
1920
1921#if __LINUX_ARM_ARCH__ < 7
1922	tmp_idx = ctx.idx;
1923	build_epilogue(&ctx);
1924	ctx.epilogue_bytes = (ctx.idx - tmp_idx) * 4;
1925
1926	ctx.idx += ctx.imm_count;
1927	if (ctx.imm_count) {
1928		ctx.imms = kcalloc(ctx.imm_count, sizeof(u32), GFP_KERNEL);
1929		if (ctx.imms == NULL) {
1930			prog = orig_prog;
1931			goto out_off;
1932		}
1933	}
1934#else
1935	/* there's nothing about the epilogue on ARMv7 */
1936	build_epilogue(&ctx);
1937#endif
1938	/* Now we can get the actual image size of the JITed arm code.
1939	 * Currently, we are not considering the THUMB-2 instructions
1940	 * for jit, although it can decrease the size of the image.
1941	 *
1942	 * As each arm instruction is of length 32bit, we are translating
1943	 * number of JITed intructions into the size required to store these
1944	 * JITed code.
1945	 */
1946	image_size = sizeof(u32) * ctx.idx;
1947
1948	/* Now we know the size of the structure to make */
1949	header = bpf_jit_binary_alloc(image_size, &image_ptr,
1950				      sizeof(u32), jit_fill_hole);
1951	/* Not able to allocate memory for the structure then
1952	 * we must fall back to the interpretation
1953	 */
1954	if (header == NULL) {
1955		prog = orig_prog;
1956		goto out_imms;
1957	}
1958
1959	/* 2.) Actual pass to generate final JIT code */
1960	ctx.target = (u32 *) image_ptr;
1961	ctx.idx = 0;
1962
1963	build_prologue(&ctx);
1964
1965	/* If building the body of the JITed code fails somehow,
1966	 * we fall back to the interpretation.
1967	 */
1968	if (build_body(&ctx) < 0) {
1969		image_ptr = NULL;
1970		bpf_jit_binary_free(header);
1971		prog = orig_prog;
1972		goto out_imms;
1973	}
1974	build_epilogue(&ctx);
1975
1976	/* 3.) Extra pass to validate JITed Code */
1977	if (validate_code(&ctx)) {
1978		image_ptr = NULL;
1979		bpf_jit_binary_free(header);
1980		prog = orig_prog;
1981		goto out_imms;
1982	}
1983	flush_icache_range((u32)header, (u32)(ctx.target + ctx.idx));
1984
1985	if (bpf_jit_enable > 1)
1986		/* there are 2 passes here */
1987		bpf_jit_dump(prog->len, image_size, 2, ctx.target);
1988
1989	bpf_jit_binary_lock_ro(header);
 
1990	prog->bpf_func = (void *)ctx.target;
1991	prog->jited = 1;
1992	prog->jited_len = image_size;
1993
1994out_imms:
1995#if __LINUX_ARM_ARCH__ < 7
1996	if (ctx.imm_count)
1997		kfree(ctx.imms);
1998#endif
1999out_off:
2000	kfree(ctx.offsets);
2001out:
2002	if (tmp_blinded)
2003		bpf_jit_prog_release_other(prog, prog == orig_prog ?
2004					   tmp : orig_prog);
2005	return prog;
 
 
 
 
 
 
2006}
2007