Linux Audio

Check our new training course

Loading...
v6.13.7
  1Naming and data format standards for sysfs files
  2================================================
  3
  4The libsensors library offers an interface to the raw sensors data
  5through the sysfs interface. Since lm-sensors 3.0.0, libsensors is
  6completely chip-independent. It assumes that all the kernel drivers
  7implement the standard sysfs interface described in this document.
  8This makes adding or updating support for any given chip very easy, as
  9libsensors, and applications using it, do not need to be modified.
 10This is a major improvement compared to lm-sensors 2.
 11
 12Note that motherboards vary widely in the connections to sensor chips.
 13There is no standard that ensures, for example, that the second
 14temperature sensor is connected to the CPU, or that the second fan is on
 15the CPU. Also, some values reported by the chips need some computation
 16before they make full sense. For example, most chips can only measure
 17voltages between 0 and +4V. Other voltages are scaled back into that
 18range using external resistors. Since the values of these resistors
 19can change from motherboard to motherboard, the conversions cannot be
 20hard coded into the driver and have to be done in user space.
 21
 22For this reason, even if we aim at a chip-independent libsensors, it will
 23still require a configuration file (e.g. /etc/sensors.conf) for proper
 24values conversion, labeling of inputs and hiding of unused inputs.
 25
 26An alternative method that some programs use is to access the sysfs
 27files directly. This document briefly describes the standards that the
 28drivers follow, so that an application program can scan for entries and
 29access this data in a simple and consistent way. That said, such programs
 30will have to implement conversion, labeling and hiding of inputs. For
 31this reason, it is still not recommended to bypass the library.
 32
 33Each chip gets its own directory in the sysfs /sys/devices tree.  To
 34find all sensor chips, it is easier to follow the device symlinks from
 35`/sys/class/hwmon/hwmon*`.
 36
 37Up to lm-sensors 3.0.0, libsensors looks for hardware monitoring attributes
 38in the "physical" device directory. Since lm-sensors 3.0.1, attributes found
 39in the hwmon "class" device directory are also supported. Complex drivers
 40(e.g. drivers for multifunction chips) may want to use this possibility to
 41avoid namespace pollution. The only drawback will be that older versions of
 42libsensors won't support the driver in question.
 43
 44All sysfs values are fixed point numbers.
 45
 46There is only one value per file, unlike the older /proc specification.
 47The common scheme for files naming is: <type><number>_<item>. Usual
 48types for sensor chips are "in" (voltage), "temp" (temperature) and
 49"fan" (fan). Usual items are "input" (measured value), "max" (high
 50threshold, "min" (low threshold). Numbering usually starts from 1,
 51except for voltages which start from 0 (because most data sheets use
 52this). A number is always used for elements that can be present more
 53than once, even if there is a single element of the given type on the
 54specific chip. Other files do not refer to a specific element, so
 55they have a simple name, and no number.
 56
 57Alarms are direct indications read from the chips. The drivers do NOT
 58make comparisons of readings to thresholds. This allows violations
 59between readings to be caught and alarmed. The exact definition of an
 60alarm (for example, whether a threshold must be met or must be exceeded
 61to cause an alarm) is chip-dependent.
 62
 63When setting values of hwmon sysfs attributes, the string representation of
 64the desired value must be written, note that strings which are not a number
 65are interpreted as 0! For more on how written strings are interpreted see the
 66"sysfs attribute writes interpretation" section at the end of this file.
 67
 68Attribute access
 69----------------
 70
 71Hardware monitoring sysfs attributes are displayed by unrestricted userspace
 72applications. For this reason, all standard ABI attributes shall be world
 73readable. Writeable standard ABI attributes shall be writeable only for
 74privileged users.
 75
 76-------------------------------------------------------------------------
 77
 78======= ===========================================
 79`[0-*]`	denotes any positive number starting from 0
 80`[1-*]`	denotes any positive number starting from 1
 81RO	read only value
 82WO	write only value
 83RW	read/write value
 84======= ===========================================
 85
 86Read/write values may be read-only for some chips, depending on the
 87hardware implementation.
 88
 89All entries (except name) are optional, and should only be created in a
 90given driver if the chip has the feature.
 91
 92See Documentation/ABI/testing/sysfs-class-hwmon for a complete description
 93of the attributes.
 94
 95*****************
 96Global attributes
 97*****************
 98
 99`name`
100		The chip name.
 
 
 
 
 
101
102`label`
103		A descriptive label that allows to uniquely identify a device
104		within the system.
105
106`update_interval`
107		The interval at which the chip will update readings.
 
 
 
 
 
 
108
109
110********
111Voltages
112********
113
114`in[0-*]_min`
115		Voltage min value.
116
 
 
 
 
117`in[0-*]_lcrit`
118		Voltage critical min value.
119
 
 
 
 
 
 
 
 
120`in[0-*]_max`
121		Voltage max value.
122
 
 
 
 
123`in[0-*]_crit`
124		Voltage critical max value.
125
 
 
 
 
 
 
 
 
126`in[0-*]_input`
127		Voltage input value.
128
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
129`in[0-*]_average`
130		Average voltage
131
 
 
 
 
132`in[0-*]_lowest`
133		Historical minimum voltage
134
 
 
 
 
135`in[0-*]_highest`
136		Historical maximum voltage
137
 
 
 
 
138`in[0-*]_reset_history`
139		Reset inX_lowest and inX_highest
140
 
 
141`in_reset_history`
142		Reset inX_lowest and inX_highest for all sensors
143
 
 
144`in[0-*]_label`
145		Suggested voltage channel label.
146
 
 
 
 
 
 
 
 
 
147`in[0-*]_enable`
148		Enable or disable the sensors.
149
 
 
 
 
 
 
 
150`cpu[0-*]_vid`
151		CPU core reference voltage.
152
 
 
 
 
 
 
153`vrm`
154		Voltage Regulator Module version number.
155
156`in[0-*]_rated_min`
157		Minimum rated voltage.
158
159`in[0-*]_rated_max`
160		Maximum rated voltage.
 
 
 
 
161
162Also see the Alarms section for status flags associated with voltages.
163
164
165****
166Fans
167****
168
169`fan[1-*]_min`
170		Fan minimum value
171
 
 
 
 
172`fan[1-*]_max`
173		Fan maximum value
174
 
 
 
 
 
175`fan[1-*]_input`
176		Fan input value.
177
 
 
 
 
178`fan[1-*]_div`
179		Fan divisor.
180
 
 
 
 
 
 
 
 
181`fan[1-*]_pulses`
182		Number of tachometer pulses per fan revolution.
183
 
 
 
 
 
 
 
 
 
 
 
 
 
184`fan[1-*]_target`
185		Desired fan speed
186
 
 
 
 
 
 
 
187`fan[1-*]_label`
188		Suggested fan channel label.
189
 
 
 
 
 
 
 
 
190`fan[1-*]_enable`
191		Enable or disable the sensors.
192
 
 
 
 
 
 
 
193Also see the Alarms section for status flags associated with fans.
194
195
196***
197PWM
198***
199
200`pwm[1-*]`
201		Pulse width modulation fan control.
202
 
 
 
 
 
 
203`pwm[1-*]_enable`
204		Fan speed control method.
 
 
 
 
 
 
 
 
 
205
206`pwm[1-*]_mode`
207		direct current or pulse-width modulation.
 
 
 
208
209`pwm[1-*]_freq`
210		Base PWM frequency in Hz.
211
 
 
 
 
 
212`pwm[1-*]_auto_channels_temp`
213		Select which temperature channels affect this PWM output in
214		auto mode.
215
 
 
 
 
 
216`pwm[1-*]_auto_point[1-*]_pwm` / `pwm[1-*]_auto_point[1-*]_temp` / `pwm[1-*]_auto_point[1-*]_temp_hyst`
217		Define the PWM vs temperature curve.
218
 
 
 
 
 
219`temp[1-*]_auto_point[1-*]_pwm` / `temp[1-*]_auto_point[1-*]_temp` / `temp[1-*]_auto_point[1-*]_temp_hyst`
220		Define the PWM vs temperature curve.
221
 
 
 
 
 
222There is a third case where trip points are associated to both PWM output
223channels and temperature channels: the PWM values are associated to PWM
224output channels while the temperature values are associated to temperature
225channels. In that case, the result is determined by the mapping between
226temperature inputs and PWM outputs. When several temperature inputs are
227mapped to a given PWM output, this leads to several candidate PWM values.
228The actual result is up to the chip, but in general the highest candidate
229value (fastest fan speed) wins.
230
231
232************
233Temperatures
234************
235
236`temp[1-*]_type`
237		Sensor type selection.
238
 
 
 
 
 
 
 
 
 
 
 
 
 
239`temp[1-*]_max`
240		Temperature max value.
241
 
 
 
 
242`temp[1-*]_min`
243		Temperature min value.
244
 
 
 
 
245`temp[1-*]_max_hyst`
246		Temperature hysteresis value for max limit.
247
 
 
 
 
 
 
 
248`temp[1-*]_min_hyst`
249		Temperature hysteresis value for min limit.
 
 
 
 
 
 
250
251`temp[1-*]_input`
252		Temperature input value.
 
 
 
 
253
254`temp[1-*]_crit`
255		Temperature critical max value, typically greater than
256		corresponding temp_max values.
257
 
 
 
 
258`temp[1-*]_crit_hyst`
259		Temperature hysteresis value for critical limit.
260
 
 
 
 
 
 
 
261`temp[1-*]_emergency`
262		Temperature emergency max value, for chips supporting more than
263		two upper temperature limits.
 
 
 
 
 
264
265`temp[1-*]_emergency_hyst`
266		Temperature hysteresis value for emergency limit.
267
 
 
 
 
 
 
 
268`temp[1-*]_lcrit`
269		Temperature critical min value, typically lower than
270		corresponding temp_min values.
271
 
 
 
 
272`temp[1-*]_lcrit_hyst`
273		Temperature hysteresis value for critical min limit.
274
 
 
 
 
 
 
 
275`temp[1-*]_offset`
276		Temperature offset which is added to the temperature reading
277		by the chip.
278
 
 
 
 
279`temp[1-*]_label`
280		Suggested temperature channel label.
281
 
 
 
 
 
 
 
 
 
282`temp[1-*]_lowest`
283		Historical minimum temperature
284
 
 
 
 
285`temp[1-*]_highest`
286		Historical maximum temperature
287
 
 
 
 
288`temp[1-*]_reset_history`
289		Reset temp_lowest and temp_highest
290
 
 
291`temp_reset_history`
292		Reset temp_lowest and temp_highest for all sensors
293
 
 
294`temp[1-*]_enable`
295		Enable or disable the sensors.
296
297`temp[1-*]_rated_min`
298		Minimum rated temperature.
 
 
299
300`temp[1-*]_rated_max`
301		Maximum rated temperature.
302
303Some chips measure temperature using external thermistors and an ADC, and
304report the temperature measurement as a voltage. Converting this voltage
305back to a temperature (or the other way around for limits) requires
306mathematical functions not available in the kernel, so the conversion
307must occur in user space. For these chips, all temp* files described
308above should contain values expressed in millivolt instead of millidegree
309Celsius. In other words, such temperature channels are handled as voltage
310channels by the driver.
311
312Also see the Alarms section for status flags associated with temperatures.
313
314
315********
316Currents
317********
318
319`curr[1-*]_max`
320		Current max value.
 
 
 
 
321
322`curr[1-*]_min`
323		Current min value.
324
 
 
 
 
325`curr[1-*]_lcrit`
326		Current critical low value
327
 
 
 
 
328`curr[1-*]_crit`
329		Current critical high value.
330
 
 
 
 
331`curr[1-*]_input`
332		Current input value.
 
 
 
 
333
334`curr[1-*]_average`
335		Average current use.
 
 
 
 
336
337`curr[1-*]_lowest`
338		Historical minimum current.
 
 
 
 
339
340`curr[1-*]_highest`
341		Historical maximum current.
 
 
342
343`curr[1-*]_reset_history`
344		Reset currX_lowest and currX_highest
345
346		WO
347
348`curr_reset_history`
349		Reset currX_lowest and currX_highest for all sensors.
 
 
350
351`curr[1-*]_enable`
352		Enable or disable the sensors.
353
354`curr[1-*]_rated_min`
355		Minimum rated current.
 
 
356
357`curr[1-*]_rated_max`
358		Maximum rated current.
359
360Also see the Alarms section for status flags associated with currents.
361
362*****
363Power
364*****
365
366`power[1-*]_average`
367		Average power use.
 
 
 
 
368
369`power[1-*]_average_interval`
370		Power use averaging interval.
 
 
 
 
 
 
371
372`power[1-*]_average_interval_max`
373		Maximum power use averaging interval.
 
 
 
 
374
375`power[1-*]_average_interval_min`
376		Minimum power use averaging interval.
 
 
 
 
377
378`power[1-*]_average_highest`
379		Historical average maximum power use
 
 
 
 
380
381`power[1-*]_average_lowest`
382		Historical average minimum power use
 
 
 
 
383
384`power[1-*]_average_max`
385		A poll notification is sent to `power[1-*]_average` when
386		power use rises above this value.
 
 
 
 
 
387
388`power[1-*]_average_min`
389		A poll notification is sent to `power[1-*]_average` when
390		power use sinks below this value.
 
 
 
 
 
391
392`power[1-*]_input`
393		Instantaneous power use.
 
 
 
 
394
395`power[1-*]_input_highest`
396		Historical maximum power use
 
 
 
 
397
398`power[1-*]_input_lowest`
399		Historical minimum power use.
 
 
 
 
400
401`power[1-*]_reset_history`
402		Reset input_highest, input_lowest, average_highest and
403		average_lowest.
 
 
404
405`power[1-*]_accuracy`
406		Accuracy of the power meter.
 
 
 
 
407
408`power[1-*]_cap`
409		If power use rises above this limit, the
410		system should take action to reduce power use.
 
 
 
 
 
 
 
 
411
412`power[1-*]_cap_hyst`
413		Margin of hysteresis built around capping and notification.
 
 
 
 
 
414
415`power[1-*]_cap_max`
416		Maximum cap that can be set.
 
 
 
 
417
418`power[1-*]_cap_min`
419		Minimum cap that can be set.
 
 
 
 
420
421`power[1-*]_max`
422		Maximum power.
 
 
 
 
423
424`power[1-*]_crit`
425				Critical maximum power.
426
427				If power rises to or above this limit, the
428				system is expected take drastic action to reduce
429				power consumption, such as a system shutdown or
430				a forced powerdown of some devices.
431
432				Unit: microWatt
433
434				RW
435
436`power[1-*]_enable`
437				Enable or disable the sensors.
438
439				When disabled the sensor read will return
440				-ENODATA.
441
442				- 1: Enable
443				- 0: Disable
444
445				RW
446
447`power[1-*]_rated_min`
448				Minimum rated power.
449
450				Unit: microWatt
451
452				RO
453
454`power[1-*]_rated_max`
455				Maximum rated power.
456
457				Unit: microWatt
458
459				RO
460
461Also see the Alarms section for status flags associated with power readings.
462
463******
464Energy
465******
466
467`energy[1-*]_input`
468				Cumulative energy use
469
470				Unit: microJoule
471
472				RO
473
474`energy[1-*]_enable`
475				Enable or disable the sensors.
476
477				When disabled the sensor read will return
478				-ENODATA.
479
480				- 1: Enable
481				- 0: Disable
482
483				RW
484
485********
486Humidity
487********
488
489`humidity[1-*]_input`
490		Humidity.
 
 
 
 
 
491
492`humidity[1-*]_enable`
493		Enable or disable the sensors.
494
495`humidity[1-*]_rated_min`
496		Minimum rated humidity.
497
498`humidity[1-*]_rated_max`
499		Maximum rated humidity.
 
 
500
501******
502Alarms
503******
504
505Each channel or limit may have an associated alarm file, containing a
506boolean value. 1 means than an alarm condition exists, 0 means no alarm.
507
508Usually a given chip will either use channel-related alarms, or
509limit-related alarms, not both. The driver should just reflect the hardware
510implementation.
511
512+-------------------------------+-----------------------+
513| **`in[0-*]_alarm`,		| Channel alarm		|
514| `curr[1-*]_alarm`,		|			|
515| `power[1-*]_alarm`,		|   - 0: no alarm	|
516| `fan[1-*]_alarm`,		|   - 1: alarm		|
517| `temp[1-*]_alarm`**		|			|
518|				|   RO			|
519+-------------------------------+-----------------------+
520
521**OR**
522
523+-------------------------------+-----------------------+
524| **`in[0-*]_min_alarm`,	| Limit alarm		|
525| `in[0-*]_max_alarm`,		|			|
526| `in[0-*]_lcrit_alarm`,	|   - 0: no alarm	|
527| `in[0-*]_crit_alarm`,		|   - 1: alarm		|
528| `curr[1-*]_min_alarm`,	|			|
529| `curr[1-*]_max_alarm`,	| RO			|
530| `curr[1-*]_lcrit_alarm`,	|			|
531| `curr[1-*]_crit_alarm`,	|			|
532| `power[1-*]_cap_alarm`,	|			|
533| `power[1-*]_max_alarm`,	|			|
534| `power[1-*]_crit_alarm`,	|			|
535| `fan[1-*]_min_alarm`,		|			|
536| `fan[1-*]_max_alarm`,		|			|
537| `temp[1-*]_min_alarm`,	|			|
538| `temp[1-*]_max_alarm`,	|			|
539| `temp[1-*]_lcrit_alarm`,	|			|
540| `temp[1-*]_crit_alarm`,	|			|
541| `temp[1-*]_emergency_alarm`**	|			|
542+-------------------------------+-----------------------+
543
544Each input channel may have an associated fault file. This can be used
545to notify open diodes, unconnected fans etc. where the hardware
546supports it. When this boolean has value 1, the measurement for that
547channel should not be trusted.
548
549`fan[1-*]_fault` / `temp[1-*]_fault`
550		Input fault condition.
 
 
 
 
 
551
552Some chips also offer the possibility to get beeped when an alarm occurs:
553
554`beep_enable`
555		Master beep enable.
 
 
 
 
 
556
557`in[0-*]_beep`, `curr[1-*]_beep`, `fan[1-*]_beep`, `temp[1-*]_beep`,
558		Channel beep.
 
 
 
 
 
559
560In theory, a chip could provide per-limit beep masking, but no such chip
561was seen so far.
562
563Old drivers provided a different, non-standard interface to alarms and
564beeps. These interface files are deprecated, but will be kept around
565for compatibility reasons:
566
567`alarms`
568		Alarm bitmask.
569
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
570`beep_mask`
571		Bitmask for beep.
 
 
 
 
572
573
574*******************
575Intrusion detection
576*******************
577
578`intrusion[0-*]_alarm`
579		Chassis intrusion detection.
 
 
 
 
 
 
 
 
 
 
580
581`intrusion[0-*]_beep`
582		Chassis intrusion beep.
 
 
 
 
 
583
584****************************
585Average sample configuration
586****************************
587
588Devices allowing for reading {in,power,curr,temp}_average values may export
589attributes for controlling number of samples used to compute average.
590
591+--------------+---------------------------------------------------------------+
592| samples      | Sets number of average samples for all types of measurements. |
593|	       |							       |
594|	       | RW							       |
595+--------------+---------------------------------------------------------------+
596| in_samples   | Sets number of average samples for specific type of	       |
597| power_samples| measurements.						       |
598| curr_samples |							       |
599| temp_samples | Note that on some devices it won't be possible to set all of  |
600|	       | them to different values so changing one might also change    |
601|	       | some others.						       |
602|	       |							       |
603|	       | RW							       |
604+--------------+---------------------------------------------------------------+
605
606sysfs attribute writes interpretation
607-------------------------------------
608
609hwmon sysfs attributes always contain numbers, so the first thing to do is to
610convert the input to a number, there are 2 ways todo this depending whether
611the number can be negative or not::
612
613	unsigned long u = simple_strtoul(buf, NULL, 10);
614	long s = simple_strtol(buf, NULL, 10);
615
616With buf being the buffer with the user input being passed by the kernel.
617Notice that we do not use the second argument of strto[u]l, and thus cannot
618tell when 0 is returned, if this was really 0 or is caused by invalid input.
619This is done deliberately as checking this everywhere would add a lot of
620code to the kernel.
621
622Notice that it is important to always store the converted value in an
623unsigned long or long, so that no wrap around can happen before any further
624checking.
625
626After the input string is converted to an (unsigned) long, the value should be
627checked if its acceptable. Be careful with further conversions on the value
628before checking it for validity, as these conversions could still cause a wrap
629around before the check. For example do not multiply the result, and only
630add/subtract if it has been divided before the add/subtract.
631
632What to do if a value is found to be invalid, depends on the type of the
633sysfs attribute that is being set. If it is a continuous setting like a
634tempX_max or inX_max attribute, then the value should be clamped to its
635limits using clamp_val(value, min_limit, max_limit). If it is not continuous
636like for example a tempX_type, then when an invalid value is written,
637-EINVAL should be returned.
638
639Example1, temp1_max, register is a signed 8 bit value (-128 - 127 degrees)::
640
641	long v = simple_strtol(buf, NULL, 10) / 1000;
642	v = clamp_val(v, -128, 127);
643	/* write v to register */
644
645Example2, fan divider setting, valid values 2, 4 and 8::
646
647	unsigned long v = simple_strtoul(buf, NULL, 10);
648
649	switch (v) {
650	case 2: v = 1; break;
651	case 4: v = 2; break;
652	case 8: v = 3; break;
653	default:
654		return -EINVAL;
655	}
656	/* write v to register */
v5.4
   1Naming and data format standards for sysfs files
   2================================================
   3
   4The libsensors library offers an interface to the raw sensors data
   5through the sysfs interface. Since lm-sensors 3.0.0, libsensors is
   6completely chip-independent. It assumes that all the kernel drivers
   7implement the standard sysfs interface described in this document.
   8This makes adding or updating support for any given chip very easy, as
   9libsensors, and applications using it, do not need to be modified.
  10This is a major improvement compared to lm-sensors 2.
  11
  12Note that motherboards vary widely in the connections to sensor chips.
  13There is no standard that ensures, for example, that the second
  14temperature sensor is connected to the CPU, or that the second fan is on
  15the CPU. Also, some values reported by the chips need some computation
  16before they make full sense. For example, most chips can only measure
  17voltages between 0 and +4V. Other voltages are scaled back into that
  18range using external resistors. Since the values of these resistors
  19can change from motherboard to motherboard, the conversions cannot be
  20hard coded into the driver and have to be done in user space.
  21
  22For this reason, even if we aim at a chip-independent libsensors, it will
  23still require a configuration file (e.g. /etc/sensors.conf) for proper
  24values conversion, labeling of inputs and hiding of unused inputs.
  25
  26An alternative method that some programs use is to access the sysfs
  27files directly. This document briefly describes the standards that the
  28drivers follow, so that an application program can scan for entries and
  29access this data in a simple and consistent way. That said, such programs
  30will have to implement conversion, labeling and hiding of inputs. For
  31this reason, it is still not recommended to bypass the library.
  32
  33Each chip gets its own directory in the sysfs /sys/devices tree.  To
  34find all sensor chips, it is easier to follow the device symlinks from
  35`/sys/class/hwmon/hwmon*`.
  36
  37Up to lm-sensors 3.0.0, libsensors looks for hardware monitoring attributes
  38in the "physical" device directory. Since lm-sensors 3.0.1, attributes found
  39in the hwmon "class" device directory are also supported. Complex drivers
  40(e.g. drivers for multifunction chips) may want to use this possibility to
  41avoid namespace pollution. The only drawback will be that older versions of
  42libsensors won't support the driver in question.
  43
  44All sysfs values are fixed point numbers.
  45
  46There is only one value per file, unlike the older /proc specification.
  47The common scheme for files naming is: <type><number>_<item>. Usual
  48types for sensor chips are "in" (voltage), "temp" (temperature) and
  49"fan" (fan). Usual items are "input" (measured value), "max" (high
  50threshold, "min" (low threshold). Numbering usually starts from 1,
  51except for voltages which start from 0 (because most data sheets use
  52this). A number is always used for elements that can be present more
  53than once, even if there is a single element of the given type on the
  54specific chip. Other files do not refer to a specific element, so
  55they have a simple name, and no number.
  56
  57Alarms are direct indications read from the chips. The drivers do NOT
  58make comparisons of readings to thresholds. This allows violations
  59between readings to be caught and alarmed. The exact definition of an
  60alarm (for example, whether a threshold must be met or must be exceeded
  61to cause an alarm) is chip-dependent.
  62
  63When setting values of hwmon sysfs attributes, the string representation of
  64the desired value must be written, note that strings which are not a number
  65are interpreted as 0! For more on how written strings are interpreted see the
  66"sysfs attribute writes interpretation" section at the end of this file.
  67
 
 
 
 
 
 
 
 
  68-------------------------------------------------------------------------
  69
  70======= ===========================================
  71`[0-*]`	denotes any positive number starting from 0
  72`[1-*]`	denotes any positive number starting from 1
  73RO	read only value
  74WO	write only value
  75RW	read/write value
  76======= ===========================================
  77
  78Read/write values may be read-only for some chips, depending on the
  79hardware implementation.
  80
  81All entries (except name) are optional, and should only be created in a
  82given driver if the chip has the feature.
  83
 
 
  84
  85*****************
  86Global attributes
  87*****************
  88
  89`name`
  90		The chip name.
  91		This should be a short, lowercase string, not containing
  92		whitespace, dashes, or the wildcard character '*'.
  93		This attribute represents the chip name. It is the only
  94		mandatory attribute.
  95		I2C devices get this attribute created automatically.
  96
  97		RO
 
 
  98
  99`update_interval`
 100		The interval at which the chip will update readings.
 101		Unit: millisecond
 102
 103		RW
 104
 105		Some devices have a variable update rate or interval.
 106		This attribute can be used to change it to the desired value.
 107
 108
 109********
 110Voltages
 111********
 112
 113`in[0-*]_min`
 114		Voltage min value.
 115
 116		Unit: millivolt
 117
 118		RW
 119
 120`in[0-*]_lcrit`
 121		Voltage critical min value.
 122
 123		Unit: millivolt
 124
 125		RW
 126
 127		If voltage drops to or below this limit, the system may
 128		take drastic action such as power down or reset. At the very
 129		least, it should report a fault.
 130
 131`in[0-*]_max`
 132		Voltage max value.
 133
 134		Unit: millivolt
 135
 136		RW
 137
 138`in[0-*]_crit`
 139		Voltage critical max value.
 140
 141		Unit: millivolt
 142
 143		RW
 144
 145		If voltage reaches or exceeds this limit, the system may
 146		take drastic action such as power down or reset. At the very
 147		least, it should report a fault.
 148
 149`in[0-*]_input`
 150		Voltage input value.
 151
 152		Unit: millivolt
 153
 154		RO
 155
 156		Voltage measured on the chip pin.
 157
 158		Actual voltage depends on the scaling resistors on the
 159		motherboard, as recommended in the chip datasheet.
 160
 161		This varies by chip and by motherboard.
 162		Because of this variation, values are generally NOT scaled
 163		by the chip driver, and must be done by the application.
 164		However, some drivers (notably lm87 and via686a)
 165		do scale, because of internal resistors built into a chip.
 166		These drivers will output the actual voltage. Rule of
 167		thumb: drivers should report the voltage values at the
 168		"pins" of the chip.
 169
 170`in[0-*]_average`
 171		Average voltage
 172
 173		Unit: millivolt
 174
 175		RO
 176
 177`in[0-*]_lowest`
 178		Historical minimum voltage
 179
 180		Unit: millivolt
 181
 182		RO
 183
 184`in[0-*]_highest`
 185		Historical maximum voltage
 186
 187		Unit: millivolt
 188
 189		RO
 190
 191`in[0-*]_reset_history`
 192		Reset inX_lowest and inX_highest
 193
 194		WO
 195
 196`in_reset_history`
 197		Reset inX_lowest and inX_highest for all sensors
 198
 199		WO
 200
 201`in[0-*]_label`
 202		Suggested voltage channel label.
 203
 204		Text string
 205
 206		Should only be created if the driver has hints about what
 207		this voltage channel is being used for, and user-space
 208		doesn't. In all other cases, the label is provided by
 209		user-space.
 210
 211		RO
 212
 213`in[0-*]_enable`
 214		Enable or disable the sensors.
 215
 216		When disabled the sensor read will return -ENODATA.
 217
 218		- 1: Enable
 219		- 0: Disable
 220
 221		RW
 222
 223`cpu[0-*]_vid`
 224		CPU core reference voltage.
 225
 226		Unit: millivolt
 227
 228		RO
 229
 230		Not always correct.
 231
 232`vrm`
 233		Voltage Regulator Module version number.
 234
 235		RW (but changing it should no more be necessary)
 
 236
 237		Originally the VRM standard version multiplied by 10, but now
 238		an arbitrary number, as not all standards have a version
 239		number.
 240
 241		Affects the way the driver calculates the CPU core reference
 242		voltage from the vid pins.
 243
 244Also see the Alarms section for status flags associated with voltages.
 245
 246
 247****
 248Fans
 249****
 250
 251`fan[1-*]_min`
 252		Fan minimum value
 253
 254		Unit: revolution/min (RPM)
 255
 256		RW
 257
 258`fan[1-*]_max`
 259		Fan maximum value
 260
 261		Unit: revolution/min (RPM)
 262
 263		Only rarely supported by the hardware.
 264		RW
 265
 266`fan[1-*]_input`
 267		Fan input value.
 268
 269		Unit: revolution/min (RPM)
 270
 271		RO
 272
 273`fan[1-*]_div`
 274		Fan divisor.
 275
 276		Integer value in powers of two (1, 2, 4, 8, 16, 32, 64, 128).
 277
 278		RW
 279
 280		Some chips only support values 1, 2, 4 and 8.
 281		Note that this is actually an internal clock divisor, which
 282		affects the measurable speed range, not the read value.
 283
 284`fan[1-*]_pulses`
 285		Number of tachometer pulses per fan revolution.
 286
 287		Integer value, typically between 1 and 4.
 288
 289		RW
 290
 291		This value is a characteristic of the fan connected to the
 292		device's input, so it has to be set in accordance with the fan
 293		model.
 294
 295		Should only be created if the chip has a register to configure
 296		the number of pulses. In the absence of such a register (and
 297		thus attribute) the value assumed by all devices is 2 pulses
 298		per fan revolution.
 299
 300`fan[1-*]_target`
 301		Desired fan speed
 302
 303		Unit: revolution/min (RPM)
 304
 305		RW
 306
 307		Only makes sense if the chip supports closed-loop fan speed
 308		control based on the measured fan speed.
 309
 310`fan[1-*]_label`
 311		Suggested fan channel label.
 312
 313		Text string
 314
 315		Should only be created if the driver has hints about what
 316		this fan channel is being used for, and user-space doesn't.
 317		In all other cases, the label is provided by user-space.
 318
 319		RO
 320
 321`fan[1-*]_enable`
 322		Enable or disable the sensors.
 323
 324		When disabled the sensor read will return -ENODATA.
 325
 326		- 1: Enable
 327		- 0: Disable
 328
 329		RW
 330
 331Also see the Alarms section for status flags associated with fans.
 332
 333
 334***
 335PWM
 336***
 337
 338`pwm[1-*]`
 339		Pulse width modulation fan control.
 340
 341		Integer value in the range 0 to 255
 342
 343		RW
 344
 345		255 is max or 100%.
 346
 347`pwm[1-*]_enable`
 348		Fan speed control method:
 349
 350		- 0: no fan speed control (i.e. fan at full speed)
 351		- 1: manual fan speed control enabled (using `pwm[1-*]`)
 352		- 2+: automatic fan speed control enabled
 353
 354		Check individual chip documentation files for automatic mode
 355		details.
 356
 357		RW
 358
 359`pwm[1-*]_mode`
 360		- 0: DC mode (direct current)
 361		- 1: PWM mode (pulse-width modulation)
 362
 363		RW
 364
 365`pwm[1-*]_freq`
 366		Base PWM frequency in Hz.
 367
 368		Only possibly available when pwmN_mode is PWM, but not always
 369		present even then.
 370
 371		RW
 372
 373`pwm[1-*]_auto_channels_temp`
 374		Select which temperature channels affect this PWM output in
 375		auto mode.
 376
 377		Bitfield, 1 is temp1, 2 is temp2, 4 is temp3 etc...
 378		Which values are possible depend on the chip used.
 379
 380		RW
 381
 382`pwm[1-*]_auto_point[1-*]_pwm` / `pwm[1-*]_auto_point[1-*]_temp` / `pwm[1-*]_auto_point[1-*]_temp_hyst`
 383		Define the PWM vs temperature curve.
 384
 385		Number of trip points is chip-dependent. Use this for chips
 386		which associate trip points to PWM output channels.
 387
 388		RW
 389
 390`temp[1-*]_auto_point[1-*]_pwm` / `temp[1-*]_auto_point[1-*]_temp` / `temp[1-*]_auto_point[1-*]_temp_hyst`
 391		Define the PWM vs temperature curve.
 392
 393		Number of trip points is chip-dependent. Use this for chips
 394		which associate trip points to temperature channels.
 395
 396		RW
 397
 398There is a third case where trip points are associated to both PWM output
 399channels and temperature channels: the PWM values are associated to PWM
 400output channels while the temperature values are associated to temperature
 401channels. In that case, the result is determined by the mapping between
 402temperature inputs and PWM outputs. When several temperature inputs are
 403mapped to a given PWM output, this leads to several candidate PWM values.
 404The actual result is up to the chip, but in general the highest candidate
 405value (fastest fan speed) wins.
 406
 407
 408************
 409Temperatures
 410************
 411
 412`temp[1-*]_type`
 413		Sensor type selection.
 414
 415		Integers 1 to 6
 416
 417		RW
 418
 419		- 1: CPU embedded diode
 420		- 2: 3904 transistor
 421		- 3: thermal diode
 422		- 4: thermistor
 423		- 5: AMD AMDSI
 424		- 6: Intel PECI
 425
 426		Not all types are supported by all chips
 427
 428`temp[1-*]_max`
 429		Temperature max value.
 430
 431		Unit: millidegree Celsius (or millivolt, see below)
 432
 433		RW
 434
 435`temp[1-*]_min`
 436		Temperature min value.
 437
 438		Unit: millidegree Celsius
 439
 440		RW
 441
 442`temp[1-*]_max_hyst`
 443		Temperature hysteresis value for max limit.
 444
 445		Unit: millidegree Celsius
 446
 447		Must be reported as an absolute temperature, NOT a delta
 448		from the max value.
 449
 450		RW
 451
 452`temp[1-*]_min_hyst`
 453		Temperature hysteresis value for min limit.
 454		Unit: millidegree Celsius
 455
 456		Must be reported as an absolute temperature, NOT a delta
 457		from the min value.
 458
 459		RW
 460
 461`temp[1-*]_input`
 462	 Temperature input value.
 463
 464		Unit: millidegree Celsius
 465
 466		RO
 467
 468`temp[1-*]_crit`
 469		Temperature critical max value, typically greater than
 470		corresponding temp_max values.
 471
 472		Unit: millidegree Celsius
 473
 474		RW
 475
 476`temp[1-*]_crit_hyst`
 477		Temperature hysteresis value for critical limit.
 478
 479		Unit: millidegree Celsius
 480
 481		Must be reported as an absolute temperature, NOT a delta
 482		from the critical value.
 483
 484		RW
 485
 486`temp[1-*]_emergency`
 487		Temperature emergency max value, for chips supporting more than
 488		two upper temperature limits. Must be equal or greater than
 489		corresponding temp_crit values.
 490
 491		Unit: millidegree Celsius
 492
 493		RW
 494
 495`temp[1-*]_emergency_hyst`
 496		Temperature hysteresis value for emergency limit.
 497
 498		Unit: millidegree Celsius
 499
 500		Must be reported as an absolute temperature, NOT a delta
 501		from the emergency value.
 502
 503		RW
 504
 505`temp[1-*]_lcrit`
 506		Temperature critical min value, typically lower than
 507		corresponding temp_min values.
 508
 509		Unit: millidegree Celsius
 510
 511		RW
 512
 513`temp[1-*]_lcrit_hyst`
 514		Temperature hysteresis value for critical min limit.
 515
 516		Unit: millidegree Celsius
 517
 518		Must be reported as an absolute temperature, NOT a delta
 519		from the critical min value.
 520
 521		RW
 522
 523`temp[1-*]_offset`
 524		Temperature offset which is added to the temperature reading
 525		by the chip.
 526
 527		Unit: millidegree Celsius
 528
 529		Read/Write value.
 530
 531`temp[1-*]_label`
 532		Suggested temperature channel label.
 533
 534		Text string
 535
 536		Should only be created if the driver has hints about what
 537		this temperature channel is being used for, and user-space
 538		doesn't. In all other cases, the label is provided by
 539		user-space.
 540
 541		RO
 542
 543`temp[1-*]_lowest`
 544		Historical minimum temperature
 545
 546		Unit: millidegree Celsius
 547
 548		RO
 549
 550`temp[1-*]_highest`
 551		Historical maximum temperature
 552
 553		Unit: millidegree Celsius
 554
 555		RO
 556
 557`temp[1-*]_reset_history`
 558		Reset temp_lowest and temp_highest
 559
 560		WO
 561
 562`temp_reset_history`
 563		Reset temp_lowest and temp_highest for all sensors
 564
 565		WO
 566
 567`temp[1-*]_enable`
 568		Enable or disable the sensors.
 569
 570		When disabled the sensor read will return -ENODATA.
 571
 572		- 1: Enable
 573		- 0: Disable
 574
 575		RW
 
 576
 577Some chips measure temperature using external thermistors and an ADC, and
 578report the temperature measurement as a voltage. Converting this voltage
 579back to a temperature (or the other way around for limits) requires
 580mathematical functions not available in the kernel, so the conversion
 581must occur in user space. For these chips, all temp* files described
 582above should contain values expressed in millivolt instead of millidegree
 583Celsius. In other words, such temperature channels are handled as voltage
 584channels by the driver.
 585
 586Also see the Alarms section for status flags associated with temperatures.
 587
 588
 589********
 590Currents
 591********
 592
 593`curr[1-*]_max`
 594		Current max value
 595
 596		Unit: milliampere
 597
 598		RW
 599
 600`curr[1-*]_min`
 601		Current min value.
 602
 603		Unit: milliampere
 604
 605		RW
 606
 607`curr[1-*]_lcrit`
 608		Current critical low value
 609
 610		Unit: milliampere
 611
 612		RW
 613
 614`curr[1-*]_crit`
 615		Current critical high value.
 616
 617		Unit: milliampere
 618
 619		RW
 620
 621`curr[1-*]_input`
 622		Current input value
 623
 624		Unit: milliampere
 625
 626		RO
 627
 628`curr[1-*]_average`
 629		Average current use
 630
 631		Unit: milliampere
 632
 633		RO
 634
 635`curr[1-*]_lowest`
 636		Historical minimum current
 637
 638		Unit: milliampere
 639
 640		RO
 641
 642`curr[1-*]_highest`
 643		Historical maximum current
 644		Unit: milliampere
 645		RO
 646
 647`curr[1-*]_reset_history`
 648		Reset currX_lowest and currX_highest
 649
 650		WO
 651
 652`curr_reset_history`
 653		Reset currX_lowest and currX_highest for all sensors
 654
 655		WO
 656
 657`curr[1-*]_enable`
 658		Enable or disable the sensors.
 659
 660		When disabled the sensor read will return -ENODATA.
 661
 662		- 1: Enable
 663		- 0: Disable
 664
 665		RW
 
 666
 667Also see the Alarms section for status flags associated with currents.
 668
 669*****
 670Power
 671*****
 672
 673`power[1-*]_average`
 674				Average power use
 675
 676				Unit: microWatt
 677
 678				RO
 679
 680`power[1-*]_average_interval`
 681				Power use averaging interval.  A poll
 682				notification is sent to this file if the
 683				hardware changes the averaging interval.
 684
 685				Unit: milliseconds
 686
 687				RW
 688
 689`power[1-*]_average_interval_max`
 690				Maximum power use averaging interval
 691
 692				Unit: milliseconds
 693
 694				RO
 695
 696`power[1-*]_average_interval_min`
 697				Minimum power use averaging interval
 698
 699				Unit: milliseconds
 700
 701				RO
 702
 703`power[1-*]_average_highest`
 704				Historical average maximum power use
 705
 706				Unit: microWatt
 707
 708				RO
 709
 710`power[1-*]_average_lowest`
 711				Historical average minimum power use
 712
 713				Unit: microWatt
 714
 715				RO
 716
 717`power[1-*]_average_max`
 718				A poll notification is sent to
 719				`power[1-*]_average` when power use
 720				rises above this value.
 721
 722				Unit: microWatt
 723
 724				RW
 725
 726`power[1-*]_average_min`
 727				A poll notification is sent to
 728				`power[1-*]_average` when power use
 729				sinks below this value.
 730
 731				Unit: microWatt
 732
 733				RW
 734
 735`power[1-*]_input`
 736				Instantaneous power use
 737
 738				Unit: microWatt
 739
 740				RO
 741
 742`power[1-*]_input_highest`
 743				Historical maximum power use
 744
 745				Unit: microWatt
 746
 747				RO
 748
 749`power[1-*]_input_lowest`
 750				Historical minimum power use
 751
 752				Unit: microWatt
 753
 754				RO
 755
 756`power[1-*]_reset_history`
 757				Reset input_highest, input_lowest,
 758				average_highest and average_lowest.
 759
 760				WO
 761
 762`power[1-*]_accuracy`
 763				Accuracy of the power meter.
 764
 765				Unit: Percent
 766
 767				RO
 768
 769`power[1-*]_cap`
 770				If power use rises above this limit, the
 771				system should take action to reduce power use.
 772				A poll notification is sent to this file if the
 773				cap is changed by the hardware.  The `*_cap`
 774				files only appear if the cap is known to be
 775				enforced by hardware.
 776
 777				Unit: microWatt
 778
 779				RW
 780
 781`power[1-*]_cap_hyst`
 782				Margin of hysteresis built around capping and
 783				notification.
 784
 785				Unit: microWatt
 786
 787				RW
 788
 789`power[1-*]_cap_max`
 790				Maximum cap that can be set.
 791
 792				Unit: microWatt
 793
 794				RO
 795
 796`power[1-*]_cap_min`
 797				Minimum cap that can be set.
 798
 799				Unit: microWatt
 800
 801				RO
 802
 803`power[1-*]_max`
 804				Maximum power.
 805
 806				Unit: microWatt
 807
 808				RW
 809
 810`power[1-*]_crit`
 811				Critical maximum power.
 812
 813				If power rises to or above this limit, the
 814				system is expected take drastic action to reduce
 815				power consumption, such as a system shutdown or
 816				a forced powerdown of some devices.
 817
 818				Unit: microWatt
 819
 820				RW
 821
 822`power[1-*]_enable`
 823				Enable or disable the sensors.
 824
 825				When disabled the sensor read will return
 826				-ENODATA.
 827
 828				- 1: Enable
 829				- 0: Disable
 830
 831				RW
 832
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 833Also see the Alarms section for status flags associated with power readings.
 834
 835******
 836Energy
 837******
 838
 839`energy[1-*]_input`
 840				Cumulative energy use
 841
 842				Unit: microJoule
 843
 844				RO
 845
 846`energy[1-*]_enable`
 847				Enable or disable the sensors.
 848
 849				When disabled the sensor read will return
 850				-ENODATA.
 851
 852				- 1: Enable
 853				- 0: Disable
 854
 855				RW
 856
 857********
 858Humidity
 859********
 860
 861`humidity[1-*]_input`
 862				Humidity
 863
 864				Unit: milli-percent (per cent mille, pcm)
 865
 866				RO
 867
 868
 869`humidity[1-*]_enable`
 870				Enable or disable the sensors
 871
 872				When disabled the sensor read will return
 873				-ENODATA.
 874
 875				- 1: Enable
 876				- 0: Disable
 877
 878				RW
 879
 880******
 881Alarms
 882******
 883
 884Each channel or limit may have an associated alarm file, containing a
 885boolean value. 1 means than an alarm condition exists, 0 means no alarm.
 886
 887Usually a given chip will either use channel-related alarms, or
 888limit-related alarms, not both. The driver should just reflect the hardware
 889implementation.
 890
 891+-------------------------------+-----------------------+
 892| **`in[0-*]_alarm`,		| Channel alarm		|
 893| `curr[1-*]_alarm`,		|			|
 894| `power[1-*]_alarm`,		|   - 0: no alarm	|
 895| `fan[1-*]_alarm`,		|   - 1: alarm		|
 896| `temp[1-*]_alarm`**		|			|
 897|				|   RO			|
 898+-------------------------------+-----------------------+
 899
 900**OR**
 901
 902+-------------------------------+-----------------------+
 903| **`in[0-*]_min_alarm`,	| Limit alarm		|
 904| `in[0-*]_max_alarm`,		|			|
 905| `in[0-*]_lcrit_alarm`,	|   - 0: no alarm	|
 906| `in[0-*]_crit_alarm`,		|   - 1: alarm		|
 907| `curr[1-*]_min_alarm`,	|			|
 908| `curr[1-*]_max_alarm`,	| RO			|
 909| `curr[1-*]_lcrit_alarm`,	|			|
 910| `curr[1-*]_crit_alarm`,	|			|
 911| `power[1-*]_cap_alarm`,	|			|
 912| `power[1-*]_max_alarm`,	|			|
 913| `power[1-*]_crit_alarm`,	|			|
 914| `fan[1-*]_min_alarm`,		|			|
 915| `fan[1-*]_max_alarm`,		|			|
 916| `temp[1-*]_min_alarm`,	|			|
 917| `temp[1-*]_max_alarm`,	|			|
 918| `temp[1-*]_lcrit_alarm`,	|			|
 919| `temp[1-*]_crit_alarm`,	|			|
 920| `temp[1-*]_emergency_alarm`**	|			|
 921+-------------------------------+-----------------------+
 922
 923Each input channel may have an associated fault file. This can be used
 924to notify open diodes, unconnected fans etc. where the hardware
 925supports it. When this boolean has value 1, the measurement for that
 926channel should not be trusted.
 927
 928`fan[1-*]_fault` / `temp[1-*]_fault`
 929		Input fault condition
 930
 931		- 0: no fault occurred
 932		- 1: fault condition
 933
 934		RO
 935
 936Some chips also offer the possibility to get beeped when an alarm occurs:
 937
 938`beep_enable`
 939		Master beep enable
 940
 941		- 0: no beeps
 942		- 1: beeps
 943
 944		RW
 945
 946`in[0-*]_beep`, `curr[1-*]_beep`, `fan[1-*]_beep`, `temp[1-*]_beep`,
 947		Channel beep
 948
 949		- 0: disable
 950		- 1: enable
 951
 952		RW
 953
 954In theory, a chip could provide per-limit beep masking, but no such chip
 955was seen so far.
 956
 957Old drivers provided a different, non-standard interface to alarms and
 958beeps. These interface files are deprecated, but will be kept around
 959for compatibility reasons:
 960
 961`alarms`
 962		Alarm bitmask.
 963
 964		RO
 965
 966		Integer representation of one to four bytes.
 967
 968		A '1' bit means an alarm.
 969
 970		Chips should be programmed for 'comparator' mode so that
 971		the alarm will 'come back' after you read the register
 972		if it is still valid.
 973
 974		Generally a direct representation of a chip's internal
 975		alarm registers; there is no standard for the position
 976		of individual bits. For this reason, the use of this
 977		interface file for new drivers is discouraged. Use
 978		`individual *_alarm` and `*_fault` files instead.
 979		Bits are defined in kernel/include/sensors.h.
 980
 981`beep_mask`
 982		Bitmask for beep.
 983		Same format as 'alarms' with the same bit locations,
 984		use discouraged for the same reason. Use individual
 985		`*_beep` files instead.
 986		RW
 987
 988
 989*******************
 990Intrusion detection
 991*******************
 992
 993`intrusion[0-*]_alarm`
 994		Chassis intrusion detection
 995
 996		- 0: OK
 997		- 1: intrusion detected
 998
 999		RW
1000
1001		Contrary to regular alarm flags which clear themselves
1002		automatically when read, this one sticks until cleared by
1003		the user. This is done by writing 0 to the file. Writing
1004		other values is unsupported.
1005
1006`intrusion[0-*]_beep`
1007		Chassis intrusion beep
1008
1009		0: disable
1010		1: enable
1011
1012		RW
1013
1014****************************
1015Average sample configuration
1016****************************
1017
1018Devices allowing for reading {in,power,curr,temp}_average values may export
1019attributes for controlling number of samples used to compute average.
1020
1021+--------------+---------------------------------------------------------------+
1022| samples      | Sets number of average samples for all types of measurements. |
1023|	       |							       |
1024|	       | RW							       |
1025+--------------+---------------------------------------------------------------+
1026| in_samples   | Sets number of average samples for specific type of	       |
1027| power_samples| measurements.						       |
1028| curr_samples |							       |
1029| temp_samples | Note that on some devices it won't be possible to set all of  |
1030|	       | them to different values so changing one might also change    |
1031|	       | some others.						       |
1032|	       |							       |
1033|	       | RW							       |
1034+--------------+---------------------------------------------------------------+
1035
1036sysfs attribute writes interpretation
1037-------------------------------------
1038
1039hwmon sysfs attributes always contain numbers, so the first thing to do is to
1040convert the input to a number, there are 2 ways todo this depending whether
1041the number can be negative or not::
1042
1043	unsigned long u = simple_strtoul(buf, NULL, 10);
1044	long s = simple_strtol(buf, NULL, 10);
1045
1046With buf being the buffer with the user input being passed by the kernel.
1047Notice that we do not use the second argument of strto[u]l, and thus cannot
1048tell when 0 is returned, if this was really 0 or is caused by invalid input.
1049This is done deliberately as checking this everywhere would add a lot of
1050code to the kernel.
1051
1052Notice that it is important to always store the converted value in an
1053unsigned long or long, so that no wrap around can happen before any further
1054checking.
1055
1056After the input string is converted to an (unsigned) long, the value should be
1057checked if its acceptable. Be careful with further conversions on the value
1058before checking it for validity, as these conversions could still cause a wrap
1059around before the check. For example do not multiply the result, and only
1060add/subtract if it has been divided before the add/subtract.
1061
1062What to do if a value is found to be invalid, depends on the type of the
1063sysfs attribute that is being set. If it is a continuous setting like a
1064tempX_max or inX_max attribute, then the value should be clamped to its
1065limits using clamp_val(value, min_limit, max_limit). If it is not continuous
1066like for example a tempX_type, then when an invalid value is written,
1067-EINVAL should be returned.
1068
1069Example1, temp1_max, register is a signed 8 bit value (-128 - 127 degrees)::
1070
1071	long v = simple_strtol(buf, NULL, 10) / 1000;
1072	v = clamp_val(v, -128, 127);
1073	/* write v to register */
1074
1075Example2, fan divider setting, valid values 2, 4 and 8::
1076
1077	unsigned long v = simple_strtoul(buf, NULL, 10);
1078
1079	switch (v) {
1080	case 2: v = 1; break;
1081	case 4: v = 2; break;
1082	case 8: v = 3; break;
1083	default:
1084		return -EINVAL;
1085	}
1086	/* write v to register */