Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * STM32 ALSA SoC Digital Audio Interface (SAI) driver.
   4 *
   5 * Copyright (C) 2016, STMicroelectronics - All Rights Reserved
   6 * Author(s): Olivier Moysan <olivier.moysan@st.com> for STMicroelectronics.
   7 */
   8
   9#include <linux/clk.h>
  10#include <linux/clk-provider.h>
  11#include <linux/kernel.h>
  12#include <linux/module.h>
  13#include <linux/of_irq.h>
  14#include <linux/of_platform.h>
  15#include <linux/pm_runtime.h>
  16#include <linux/regmap.h>
  17
  18#include <sound/asoundef.h>
  19#include <sound/core.h>
  20#include <sound/dmaengine_pcm.h>
  21#include <sound/pcm_params.h>
  22
  23#include "stm32_sai.h"
  24
  25#define SAI_FREE_PROTOCOL	0x0
  26#define SAI_SPDIF_PROTOCOL	0x1
  27
  28#define SAI_SLOT_SIZE_AUTO	0x0
  29#define SAI_SLOT_SIZE_16	0x1
  30#define SAI_SLOT_SIZE_32	0x2
  31
  32#define SAI_DATASIZE_8		0x2
  33#define SAI_DATASIZE_10		0x3
  34#define SAI_DATASIZE_16		0x4
  35#define SAI_DATASIZE_20		0x5
  36#define SAI_DATASIZE_24		0x6
  37#define SAI_DATASIZE_32		0x7
  38
  39#define STM_SAI_DAI_NAME_SIZE	15
  40
  41#define STM_SAI_IS_PLAYBACK(ip)	((ip)->dir == SNDRV_PCM_STREAM_PLAYBACK)
  42#define STM_SAI_IS_CAPTURE(ip)	((ip)->dir == SNDRV_PCM_STREAM_CAPTURE)
  43
  44#define STM_SAI_A_ID		0x0
  45#define STM_SAI_B_ID		0x1
  46
  47#define STM_SAI_IS_SUB_A(x)	((x)->id == STM_SAI_A_ID)
 
 
  48
  49#define SAI_SYNC_NONE		0x0
  50#define SAI_SYNC_INTERNAL	0x1
  51#define SAI_SYNC_EXTERNAL	0x2
  52
  53#define STM_SAI_PROTOCOL_IS_SPDIF(ip)	((ip)->spdif)
  54#define STM_SAI_HAS_SPDIF(x)	((x)->pdata->conf.has_spdif_pdm)
  55#define STM_SAI_HAS_PDM(x)	((x)->pdata->conf.has_spdif_pdm)
  56#define STM_SAI_HAS_EXT_SYNC(x) (!STM_SAI_IS_F4((x)->pdata))
  57
  58#define SAI_IEC60958_BLOCK_FRAMES	192
  59#define SAI_IEC60958_STATUS_BYTES	24
  60
  61#define SAI_MCLK_NAME_LEN		32
  62#define SAI_RATE_11K			11025
  63#define SAI_MAX_SAMPLE_RATE_8K		192000
  64#define SAI_MAX_SAMPLE_RATE_11K		176400
  65#define SAI_CK_RATE_TOLERANCE		1000 /* ppm */
  66
  67/**
  68 * struct stm32_sai_sub_data - private data of SAI sub block (block A or B)
  69 * @pdev: device data pointer
  70 * @regmap: SAI register map pointer
  71 * @regmap_config: SAI sub block register map configuration pointer
  72 * @dma_params: dma configuration data for rx or tx channel
  73 * @cpu_dai_drv: DAI driver data pointer
  74 * @cpu_dai: DAI runtime data pointer
  75 * @substream: PCM substream data pointer
  76 * @pdata: SAI block parent data pointer
  77 * @np_sync_provider: synchronization provider node
  78 * @sai_ck: kernel clock feeding the SAI clock generator
  79 * @sai_mclk: master clock from SAI mclk provider
  80 * @phys_addr: SAI registers physical base address
  81 * @mclk_rate: SAI block master clock frequency (Hz). set at init
  82 * @id: SAI sub block id corresponding to sub-block A or B
  83 * @dir: SAI block direction (playback or capture). set at init
  84 * @master: SAI block mode flag. (true=master, false=slave) set at init
  85 * @spdif: SAI S/PDIF iec60958 mode flag. set at init
  86 * @sai_ck_used: flag set while exclusivity on SAI kernel clock is active
  87 * @fmt: SAI block format. relevant only for custom protocols. set at init
  88 * @sync: SAI block synchronization mode. (none, internal or external)
  89 * @synco: SAI block ext sync source (provider setting). (none, sub-block A/B)
  90 * @synci: SAI block ext sync source (client setting). (SAI sync provider index)
  91 * @fs_length: frame synchronization length. depends on protocol settings
  92 * @slots: rx or tx slot number
  93 * @slot_width: rx or tx slot width in bits
  94 * @slot_mask: rx or tx active slots mask. set at init or at runtime
  95 * @data_size: PCM data width. corresponds to PCM substream width.
  96 * @spdif_frm_cnt: S/PDIF playback frame counter
  97 * @iec958: iec958 data
  98 * @ctrl_lock: control lock
  99 * @irq_lock: prevent race condition with IRQ
 100 * @set_sai_ck_rate: set SAI kernel clock rate
 101 * @put_sai_ck_rate: put SAI kernel clock rate
 102 */
 103struct stm32_sai_sub_data {
 104	struct platform_device *pdev;
 105	struct regmap *regmap;
 106	const struct regmap_config *regmap_config;
 107	struct snd_dmaengine_dai_dma_data dma_params;
 108	struct snd_soc_dai_driver cpu_dai_drv;
 109	struct snd_soc_dai *cpu_dai;
 110	struct snd_pcm_substream *substream;
 111	struct stm32_sai_data *pdata;
 112	struct device_node *np_sync_provider;
 113	struct clk *sai_ck;
 114	struct clk *sai_mclk;
 115	dma_addr_t phys_addr;
 116	unsigned int mclk_rate;
 117	unsigned int id;
 118	int dir;
 119	bool master;
 120	bool spdif;
 121	bool sai_ck_used;
 122	int fmt;
 123	int sync;
 124	int synco;
 125	int synci;
 126	int fs_length;
 127	int slots;
 128	int slot_width;
 129	int slot_mask;
 130	int data_size;
 131	unsigned int spdif_frm_cnt;
 132	struct snd_aes_iec958 iec958;
 133	struct mutex ctrl_lock; /* protect resources accessed by controls */
 134	spinlock_t irq_lock; /* used to prevent race condition with IRQ */
 135	int (*set_sai_ck_rate)(struct stm32_sai_sub_data *sai, unsigned int rate);
 136	void (*put_sai_ck_rate)(struct stm32_sai_sub_data *sai);
 137};
 138
 139enum stm32_sai_fifo_th {
 140	STM_SAI_FIFO_TH_EMPTY,
 141	STM_SAI_FIFO_TH_QUARTER,
 142	STM_SAI_FIFO_TH_HALF,
 143	STM_SAI_FIFO_TH_3_QUARTER,
 144	STM_SAI_FIFO_TH_FULL,
 145};
 146
 147static bool stm32_sai_sub_readable_reg(struct device *dev, unsigned int reg)
 148{
 149	switch (reg) {
 150	case STM_SAI_CR1_REGX:
 151	case STM_SAI_CR2_REGX:
 152	case STM_SAI_FRCR_REGX:
 153	case STM_SAI_SLOTR_REGX:
 154	case STM_SAI_IMR_REGX:
 155	case STM_SAI_SR_REGX:
 156	case STM_SAI_CLRFR_REGX:
 157	case STM_SAI_DR_REGX:
 158	case STM_SAI_PDMCR_REGX:
 159	case STM_SAI_PDMLY_REGX:
 160		return true;
 161	default:
 162		return false;
 163	}
 164}
 165
 166static bool stm32_sai_sub_volatile_reg(struct device *dev, unsigned int reg)
 167{
 168	switch (reg) {
 169	case STM_SAI_DR_REGX:
 170	case STM_SAI_SR_REGX:
 171		return true;
 172	default:
 173		return false;
 174	}
 175}
 176
 177static bool stm32_sai_sub_writeable_reg(struct device *dev, unsigned int reg)
 178{
 179	switch (reg) {
 180	case STM_SAI_CR1_REGX:
 181	case STM_SAI_CR2_REGX:
 182	case STM_SAI_FRCR_REGX:
 183	case STM_SAI_SLOTR_REGX:
 184	case STM_SAI_IMR_REGX:
 185	case STM_SAI_CLRFR_REGX:
 186	case STM_SAI_DR_REGX:
 187	case STM_SAI_PDMCR_REGX:
 188	case STM_SAI_PDMLY_REGX:
 189		return true;
 190	default:
 191		return false;
 192	}
 193}
 194
 195static int stm32_sai_sub_reg_up(struct stm32_sai_sub_data *sai,
 196				unsigned int reg, unsigned int mask,
 197				unsigned int val)
 198{
 199	int ret;
 200
 201	ret = clk_enable(sai->pdata->pclk);
 202	if (ret < 0)
 203		return ret;
 204
 205	ret = regmap_update_bits(sai->regmap, reg, mask, val);
 206
 207	clk_disable(sai->pdata->pclk);
 208
 209	return ret;
 210}
 211
 212static int stm32_sai_sub_reg_wr(struct stm32_sai_sub_data *sai,
 213				unsigned int reg, unsigned int mask,
 214				unsigned int val)
 215{
 216	int ret;
 217
 218	ret = clk_enable(sai->pdata->pclk);
 219	if (ret < 0)
 220		return ret;
 221
 222	ret = regmap_write_bits(sai->regmap, reg, mask, val);
 223
 224	clk_disable(sai->pdata->pclk);
 225
 226	return ret;
 227}
 228
 229static int stm32_sai_sub_reg_rd(struct stm32_sai_sub_data *sai,
 230				unsigned int reg, unsigned int *val)
 231{
 232	int ret;
 233
 234	ret = clk_enable(sai->pdata->pclk);
 235	if (ret < 0)
 236		return ret;
 237
 238	ret = regmap_read(sai->regmap, reg, val);
 239
 240	clk_disable(sai->pdata->pclk);
 241
 242	return ret;
 243}
 244
 245static const struct regmap_config stm32_sai_sub_regmap_config_f4 = {
 246	.reg_bits = 32,
 247	.reg_stride = 4,
 248	.val_bits = 32,
 249	.max_register = STM_SAI_DR_REGX,
 250	.readable_reg = stm32_sai_sub_readable_reg,
 251	.volatile_reg = stm32_sai_sub_volatile_reg,
 252	.writeable_reg = stm32_sai_sub_writeable_reg,
 253	.fast_io = true,
 254	.cache_type = REGCACHE_FLAT,
 255};
 256
 257static const struct regmap_config stm32_sai_sub_regmap_config_h7 = {
 258	.reg_bits = 32,
 259	.reg_stride = 4,
 260	.val_bits = 32,
 261	.max_register = STM_SAI_PDMLY_REGX,
 262	.readable_reg = stm32_sai_sub_readable_reg,
 263	.volatile_reg = stm32_sai_sub_volatile_reg,
 264	.writeable_reg = stm32_sai_sub_writeable_reg,
 265	.fast_io = true,
 266	.cache_type = REGCACHE_FLAT,
 267};
 268
 269static int snd_pcm_iec958_info(struct snd_kcontrol *kcontrol,
 270			       struct snd_ctl_elem_info *uinfo)
 271{
 272	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
 273	uinfo->count = 1;
 274
 275	return 0;
 276}
 277
 278static int snd_pcm_iec958_get(struct snd_kcontrol *kcontrol,
 279			      struct snd_ctl_elem_value *uctl)
 280{
 281	struct stm32_sai_sub_data *sai = snd_kcontrol_chip(kcontrol);
 282
 283	mutex_lock(&sai->ctrl_lock);
 284	memcpy(uctl->value.iec958.status, sai->iec958.status, 4);
 285	mutex_unlock(&sai->ctrl_lock);
 286
 287	return 0;
 288}
 289
 290static int snd_pcm_iec958_put(struct snd_kcontrol *kcontrol,
 291			      struct snd_ctl_elem_value *uctl)
 292{
 293	struct stm32_sai_sub_data *sai = snd_kcontrol_chip(kcontrol);
 294
 295	mutex_lock(&sai->ctrl_lock);
 296	memcpy(sai->iec958.status, uctl->value.iec958.status, 4);
 297	mutex_unlock(&sai->ctrl_lock);
 298
 299	return 0;
 300}
 301
 302static const struct snd_kcontrol_new iec958_ctls = {
 303	.access = (SNDRV_CTL_ELEM_ACCESS_READWRITE |
 304			SNDRV_CTL_ELEM_ACCESS_VOLATILE),
 305	.iface = SNDRV_CTL_ELEM_IFACE_PCM,
 306	.name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT),
 307	.info = snd_pcm_iec958_info,
 308	.get = snd_pcm_iec958_get,
 309	.put = snd_pcm_iec958_put,
 310};
 311
 312struct stm32_sai_mclk_data {
 313	struct clk_hw hw;
 314	unsigned long freq;
 315	struct stm32_sai_sub_data *sai_data;
 316};
 317
 318#define to_mclk_data(_hw) container_of(_hw, struct stm32_sai_mclk_data, hw)
 319#define STM32_SAI_MAX_CLKS 1
 320
 321static int stm32_sai_get_clk_div(struct stm32_sai_sub_data *sai,
 322				 unsigned long input_rate,
 323				 unsigned long output_rate)
 324{
 325	int version = sai->pdata->conf.version;
 326	int div;
 327
 328	div = DIV_ROUND_CLOSEST(input_rate, output_rate);
 329	if (div > SAI_XCR1_MCKDIV_MAX(version) || div <= 0) {
 330		dev_err(&sai->pdev->dev, "Divider %d out of range\n", div);
 331		return -EINVAL;
 332	}
 333	dev_dbg(&sai->pdev->dev, "SAI divider %d\n", div);
 334
 335	if (input_rate % div)
 336		dev_dbg(&sai->pdev->dev,
 337			"Rate not accurate. requested (%ld), actual (%ld)\n",
 338			output_rate, input_rate / div);
 339
 340	return div;
 341}
 342
 343static int stm32_sai_set_clk_div(struct stm32_sai_sub_data *sai,
 344				 unsigned int div)
 345{
 346	int version = sai->pdata->conf.version;
 347	int ret, cr1, mask;
 348
 349	if (div > SAI_XCR1_MCKDIV_MAX(version)) {
 350		dev_err(&sai->pdev->dev, "Divider %d out of range\n", div);
 351		return -EINVAL;
 352	}
 353
 354	mask = SAI_XCR1_MCKDIV_MASK(SAI_XCR1_MCKDIV_WIDTH(version));
 355	cr1 = SAI_XCR1_MCKDIV_SET(div);
 356	ret = stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX, mask, cr1);
 357	if (ret < 0)
 358		dev_err(&sai->pdev->dev, "Failed to update CR1 register\n");
 359
 360	return ret;
 361}
 362
 363static bool stm32_sai_rate_accurate(unsigned int max_rate, unsigned int rate)
 364{
 365	u64 delta, dividend;
 366	int ratio;
 367
 368	ratio = DIV_ROUND_CLOSEST(max_rate, rate);
 369	if (!ratio)
 370		return false;
 371
 372	dividend = mul_u32_u32(1000000, abs(max_rate - (ratio * rate)));
 373	delta = div_u64(dividend, max_rate);
 374
 375	if (delta <= SAI_CK_RATE_TOLERANCE)
 376		return true;
 377
 378	return false;
 379}
 380
 381static int stm32_sai_set_parent_clk(struct stm32_sai_sub_data *sai,
 382				    unsigned int rate)
 383{
 384	struct platform_device *pdev = sai->pdev;
 385	struct clk *parent_clk = sai->pdata->clk_x8k;
 386	int ret;
 387
 388	if (!(rate % SAI_RATE_11K))
 389		parent_clk = sai->pdata->clk_x11k;
 390
 391	ret = clk_set_parent(sai->sai_ck, parent_clk);
 392	if (ret)
 393		dev_err(&pdev->dev, " Error %d setting sai_ck parent clock. %s",
 394			ret, ret == -EBUSY ?
 395			"Active stream rates conflict\n" : "\n");
 396
 397	return ret;
 398}
 399
 400static void stm32_sai_put_parent_rate(struct stm32_sai_sub_data *sai)
 401{
 402	if (sai->sai_ck_used) {
 403		sai->sai_ck_used = false;
 404		clk_rate_exclusive_put(sai->sai_ck);
 405	}
 406}
 407
 408static int stm32_sai_set_parent_rate(struct stm32_sai_sub_data *sai,
 409				     unsigned int rate)
 410{
 411	struct platform_device *pdev = sai->pdev;
 412	unsigned int sai_ck_rate, sai_ck_max_rate, sai_curr_rate, sai_new_rate;
 413	int div, ret;
 414
 415	/*
 416	 * Set maximum expected kernel clock frequency
 417	 * - mclk on or spdif:
 418	 *   f_sai_ck = MCKDIV * mclk-fs * fs
 419	 *   Here typical 256 ratio is assumed for mclk-fs
 420	 * - mclk off:
 421	 *   f_sai_ck = MCKDIV * FRL * fs
 422	 *   Where FRL=[8..256], MCKDIV=[1..n] (n depends on SAI version)
 423	 *   Set constraint MCKDIV * FRL <= 256, to ensure MCKDIV is in available range
 424	 *   f_sai_ck = sai_ck_max_rate * pow_of_two(FRL) / 256
 425	 */
 426	if (!(rate % SAI_RATE_11K))
 427		sai_ck_max_rate = SAI_MAX_SAMPLE_RATE_11K * 256;
 428	else
 429		sai_ck_max_rate = SAI_MAX_SAMPLE_RATE_8K * 256;
 430
 431	if (!sai->sai_mclk && !STM_SAI_PROTOCOL_IS_SPDIF(sai))
 432		sai_ck_max_rate /= DIV_ROUND_CLOSEST(256, roundup_pow_of_two(sai->fs_length));
 433
 434	/*
 435	 * Request exclusivity, as the clock is shared by SAI sub-blocks and by
 436	 * some SAI instances. This allows to ensure that the rate cannot be
 437	 * changed while one or more SAIs are using the clock.
 438	 */
 439	clk_rate_exclusive_get(sai->sai_ck);
 440	sai->sai_ck_used = true;
 441
 442	/*
 443	 * Check current kernel clock rate. If it gives the expected accuracy
 444	 * return immediately.
 445	 */
 446	sai_curr_rate = clk_get_rate(sai->sai_ck);
 447	if (stm32_sai_rate_accurate(sai_ck_max_rate, sai_curr_rate))
 448		return 0;
 449
 450	/*
 451	 * Otherwise try to set the maximum rate and check the new actual rate.
 452	 * If the new rate does not give the expected accuracy, try to set
 453	 * lower rates for the kernel clock.
 454	 */
 455	sai_ck_rate = sai_ck_max_rate;
 456	div = 1;
 457	do {
 458		/* Check new rate accuracy. Return if ok */
 459		sai_new_rate = clk_round_rate(sai->sai_ck, sai_ck_rate);
 460		if (stm32_sai_rate_accurate(sai_ck_rate, sai_new_rate)) {
 461			ret = clk_set_rate(sai->sai_ck, sai_ck_rate);
 462			if (ret) {
 463				dev_err(&pdev->dev, "Error %d setting sai_ck rate. %s",
 464					ret, ret == -EBUSY ?
 465					"Active stream rates may be in conflict\n" : "\n");
 466				goto err;
 467			}
 468
 469			return 0;
 470		}
 471
 472		/* Try a lower frequency */
 473		div++;
 474		sai_ck_rate = sai_ck_max_rate / div;
 475	} while (sai_ck_rate > rate);
 476
 477	/* No accurate rate found */
 478	dev_err(&pdev->dev, "Failed to find an accurate rate");
 479
 480err:
 481	stm32_sai_put_parent_rate(sai);
 482
 483	return -EINVAL;
 484}
 485
 486static long stm32_sai_mclk_round_rate(struct clk_hw *hw, unsigned long rate,
 487				      unsigned long *prate)
 488{
 489	struct stm32_sai_mclk_data *mclk = to_mclk_data(hw);
 490	struct stm32_sai_sub_data *sai = mclk->sai_data;
 491	int div;
 492
 493	div = stm32_sai_get_clk_div(sai, *prate, rate);
 494	if (div <= 0)
 495		return -EINVAL;
 496
 497	mclk->freq = *prate / div;
 498
 499	return mclk->freq;
 500}
 501
 502static unsigned long stm32_sai_mclk_recalc_rate(struct clk_hw *hw,
 503						unsigned long parent_rate)
 504{
 505	struct stm32_sai_mclk_data *mclk = to_mclk_data(hw);
 506
 507	return mclk->freq;
 508}
 509
 510static int stm32_sai_mclk_set_rate(struct clk_hw *hw, unsigned long rate,
 511				   unsigned long parent_rate)
 512{
 513	struct stm32_sai_mclk_data *mclk = to_mclk_data(hw);
 514	struct stm32_sai_sub_data *sai = mclk->sai_data;
 515	int div, ret;
 516
 517	div = stm32_sai_get_clk_div(sai, parent_rate, rate);
 518	if (div < 0)
 519		return div;
 520
 521	ret = stm32_sai_set_clk_div(sai, div);
 522	if (ret)
 523		return ret;
 524
 525	mclk->freq = rate;
 526
 527	return 0;
 528}
 529
 530static int stm32_sai_mclk_enable(struct clk_hw *hw)
 531{
 532	struct stm32_sai_mclk_data *mclk = to_mclk_data(hw);
 533	struct stm32_sai_sub_data *sai = mclk->sai_data;
 534
 535	dev_dbg(&sai->pdev->dev, "Enable master clock\n");
 536
 537	return stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX,
 538				    SAI_XCR1_MCKEN, SAI_XCR1_MCKEN);
 539}
 540
 541static void stm32_sai_mclk_disable(struct clk_hw *hw)
 542{
 543	struct stm32_sai_mclk_data *mclk = to_mclk_data(hw);
 544	struct stm32_sai_sub_data *sai = mclk->sai_data;
 545
 546	dev_dbg(&sai->pdev->dev, "Disable master clock\n");
 547
 548	stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX, SAI_XCR1_MCKEN, 0);
 549}
 550
 551static const struct clk_ops mclk_ops = {
 552	.enable = stm32_sai_mclk_enable,
 553	.disable = stm32_sai_mclk_disable,
 554	.recalc_rate = stm32_sai_mclk_recalc_rate,
 555	.round_rate = stm32_sai_mclk_round_rate,
 556	.set_rate = stm32_sai_mclk_set_rate,
 557};
 558
 559static int stm32_sai_add_mclk_provider(struct stm32_sai_sub_data *sai)
 560{
 561	struct clk_hw *hw;
 562	struct stm32_sai_mclk_data *mclk;
 563	struct device *dev = &sai->pdev->dev;
 564	const char *pname = __clk_get_name(sai->sai_ck);
 565	char *mclk_name, *p, *s = (char *)pname;
 566	int ret, i = 0;
 567
 568	mclk = devm_kzalloc(dev, sizeof(*mclk), GFP_KERNEL);
 569	if (!mclk)
 570		return -ENOMEM;
 571
 572	mclk_name = devm_kcalloc(dev, sizeof(char),
 573				 SAI_MCLK_NAME_LEN, GFP_KERNEL);
 574	if (!mclk_name)
 575		return -ENOMEM;
 576
 577	/*
 578	 * Forge mclk clock name from parent clock name and suffix.
 579	 * String after "_" char is stripped in parent name.
 580	 */
 581	p = mclk_name;
 582	while (*s && *s != '_' && (i < (SAI_MCLK_NAME_LEN - 7))) {
 583		*p++ = *s++;
 584		i++;
 585	}
 586	STM_SAI_IS_SUB_A(sai) ? strcat(p, "a_mclk") : strcat(p, "b_mclk");
 587
 588	mclk->hw.init = CLK_HW_INIT(mclk_name, pname, &mclk_ops, 0);
 589	mclk->sai_data = sai;
 590	hw = &mclk->hw;
 591
 592	dev_dbg(dev, "Register master clock %s\n", mclk_name);
 593	ret = devm_clk_hw_register(&sai->pdev->dev, hw);
 594	if (ret) {
 595		dev_err(dev, "mclk register returned %d\n", ret);
 596		return ret;
 597	}
 598	sai->sai_mclk = hw->clk;
 599
 600	/* register mclk provider */
 601	return devm_of_clk_add_hw_provider(dev, of_clk_hw_simple_get, hw);
 602}
 603
 604static irqreturn_t stm32_sai_isr(int irq, void *devid)
 605{
 606	struct stm32_sai_sub_data *sai = (struct stm32_sai_sub_data *)devid;
 607	struct platform_device *pdev = sai->pdev;
 608	unsigned int sr, imr, flags;
 609	snd_pcm_state_t status = SNDRV_PCM_STATE_RUNNING;
 610
 611	stm32_sai_sub_reg_rd(sai, STM_SAI_IMR_REGX, &imr);
 612	stm32_sai_sub_reg_rd(sai, STM_SAI_SR_REGX, &sr);
 613
 614	flags = sr & imr;
 615	if (!flags)
 616		return IRQ_NONE;
 617
 618	stm32_sai_sub_reg_wr(sai, STM_SAI_CLRFR_REGX, SAI_XCLRFR_MASK,
 619			     SAI_XCLRFR_MASK);
 620
 621	if (!sai->substream) {
 622		dev_err(&pdev->dev, "Device stopped. Spurious IRQ 0x%x\n", sr);
 623		return IRQ_NONE;
 624	}
 625
 626	if (flags & SAI_XIMR_OVRUDRIE) {
 627		dev_err(&pdev->dev, "IRQ %s\n",
 628			STM_SAI_IS_PLAYBACK(sai) ? "underrun" : "overrun");
 629		status = SNDRV_PCM_STATE_XRUN;
 630	}
 631
 632	if (flags & SAI_XIMR_MUTEDETIE)
 633		dev_dbg(&pdev->dev, "IRQ mute detected\n");
 634
 635	if (flags & SAI_XIMR_WCKCFGIE) {
 636		dev_err(&pdev->dev, "IRQ wrong clock configuration\n");
 637		status = SNDRV_PCM_STATE_DISCONNECTED;
 638	}
 639
 640	if (flags & SAI_XIMR_CNRDYIE)
 641		dev_err(&pdev->dev, "IRQ Codec not ready\n");
 642
 643	if (flags & SAI_XIMR_AFSDETIE) {
 644		dev_err(&pdev->dev, "IRQ Anticipated frame synchro\n");
 645		status = SNDRV_PCM_STATE_XRUN;
 646	}
 647
 648	if (flags & SAI_XIMR_LFSDETIE) {
 649		dev_err(&pdev->dev, "IRQ Late frame synchro\n");
 650		status = SNDRV_PCM_STATE_XRUN;
 651	}
 652
 653	spin_lock(&sai->irq_lock);
 654	if (status != SNDRV_PCM_STATE_RUNNING && sai->substream)
 655		snd_pcm_stop_xrun(sai->substream);
 656	spin_unlock(&sai->irq_lock);
 657
 658	return IRQ_HANDLED;
 659}
 660
 661static int stm32_sai_set_sysclk(struct snd_soc_dai *cpu_dai,
 662				int clk_id, unsigned int freq, int dir)
 663{
 664	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
 665	int ret;
 666
 667	if (dir == SND_SOC_CLOCK_OUT && sai->sai_mclk) {
 668		ret = stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX,
 669					   SAI_XCR1_NODIV,
 670					 freq ? 0 : SAI_XCR1_NODIV);
 671		if (ret < 0)
 672			return ret;
 673
 674		/* Assume shutdown if requested frequency is 0Hz */
 675		if (!freq) {
 676			/* Release mclk rate only if rate was actually set */
 677			if (sai->mclk_rate) {
 678				clk_rate_exclusive_put(sai->sai_mclk);
 679				sai->mclk_rate = 0;
 680			}
 681
 682			if (sai->put_sai_ck_rate)
 683				sai->put_sai_ck_rate(sai);
 684
 685			return 0;
 686		}
 687
 688		/* If master clock is used, configure SAI kernel clock now */
 689		ret = sai->set_sai_ck_rate(sai, freq);
 690		if (ret)
 691			return ret;
 692
 693		ret = clk_set_rate_exclusive(sai->sai_mclk, freq);
 694		if (ret) {
 695			dev_err(cpu_dai->dev,
 696				ret == -EBUSY ?
 697				"Active streams have incompatible rates" :
 698				"Could not set mclk rate\n");
 699			return ret;
 700		}
 701
 702		dev_dbg(cpu_dai->dev, "SAI MCLK frequency is %uHz\n", freq);
 703		sai->mclk_rate = freq;
 704	}
 705
 706	return 0;
 707}
 708
 709static int stm32_sai_set_dai_tdm_slot(struct snd_soc_dai *cpu_dai, u32 tx_mask,
 710				      u32 rx_mask, int slots, int slot_width)
 711{
 712	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
 713	int slotr, slotr_mask, slot_size;
 714
 715	if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
 716		dev_warn(cpu_dai->dev, "Slot setting relevant only for TDM\n");
 717		return 0;
 718	}
 719
 720	dev_dbg(cpu_dai->dev, "Masks tx/rx:%#x/%#x, slots:%d, width:%d\n",
 721		tx_mask, rx_mask, slots, slot_width);
 722
 723	switch (slot_width) {
 724	case 16:
 725		slot_size = SAI_SLOT_SIZE_16;
 726		break;
 727	case 32:
 728		slot_size = SAI_SLOT_SIZE_32;
 729		break;
 730	default:
 731		slot_size = SAI_SLOT_SIZE_AUTO;
 732		break;
 733	}
 734
 735	slotr = SAI_XSLOTR_SLOTSZ_SET(slot_size) |
 736		SAI_XSLOTR_NBSLOT_SET(slots - 1);
 737	slotr_mask = SAI_XSLOTR_SLOTSZ_MASK | SAI_XSLOTR_NBSLOT_MASK;
 738
 739	/* tx/rx mask set in machine init, if slot number defined in DT */
 740	if (STM_SAI_IS_PLAYBACK(sai)) {
 741		sai->slot_mask = tx_mask;
 742		slotr |= SAI_XSLOTR_SLOTEN_SET(tx_mask);
 743	}
 744
 745	if (STM_SAI_IS_CAPTURE(sai)) {
 746		sai->slot_mask = rx_mask;
 747		slotr |= SAI_XSLOTR_SLOTEN_SET(rx_mask);
 748	}
 749
 750	slotr_mask |= SAI_XSLOTR_SLOTEN_MASK;
 751
 752	stm32_sai_sub_reg_up(sai, STM_SAI_SLOTR_REGX, slotr_mask, slotr);
 753
 754	sai->slot_width = slot_width;
 755	sai->slots = slots;
 756
 757	return 0;
 758}
 759
 760static int stm32_sai_set_dai_fmt(struct snd_soc_dai *cpu_dai, unsigned int fmt)
 761{
 762	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
 763	int cr1, frcr = 0;
 764	int cr1_mask, frcr_mask = 0;
 765	int ret;
 766
 767	dev_dbg(cpu_dai->dev, "fmt %x\n", fmt);
 768
 769	/* Do not generate master by default */
 770	cr1 = SAI_XCR1_NODIV;
 771	cr1_mask = SAI_XCR1_NODIV;
 772
 773	cr1_mask |= SAI_XCR1_PRTCFG_MASK;
 774	if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
 775		cr1 |= SAI_XCR1_PRTCFG_SET(SAI_SPDIF_PROTOCOL);
 776		goto conf_update;
 777	}
 778
 779	cr1 |= SAI_XCR1_PRTCFG_SET(SAI_FREE_PROTOCOL);
 780
 781	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
 782	/* SCK active high for all protocols */
 783	case SND_SOC_DAIFMT_I2S:
 784		cr1 |= SAI_XCR1_CKSTR;
 785		frcr |= SAI_XFRCR_FSOFF | SAI_XFRCR_FSDEF;
 786		break;
 787	/* Left justified */
 788	case SND_SOC_DAIFMT_MSB:
 789		frcr |= SAI_XFRCR_FSPOL | SAI_XFRCR_FSDEF;
 790		break;
 791	/* Right justified */
 792	case SND_SOC_DAIFMT_LSB:
 793		frcr |= SAI_XFRCR_FSPOL | SAI_XFRCR_FSDEF;
 794		break;
 795	case SND_SOC_DAIFMT_DSP_A:
 796		frcr |= SAI_XFRCR_FSPOL | SAI_XFRCR_FSOFF;
 797		break;
 798	case SND_SOC_DAIFMT_DSP_B:
 799		frcr |= SAI_XFRCR_FSPOL;
 800		break;
 801	default:
 802		dev_err(cpu_dai->dev, "Unsupported protocol %#x\n",
 803			fmt & SND_SOC_DAIFMT_FORMAT_MASK);
 804		return -EINVAL;
 805	}
 806
 807	cr1_mask |= SAI_XCR1_CKSTR;
 808	frcr_mask |= SAI_XFRCR_FSPOL | SAI_XFRCR_FSOFF |
 809		     SAI_XFRCR_FSDEF;
 810
 811	/* DAI clock strobing. Invert setting previously set */
 812	switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
 813	case SND_SOC_DAIFMT_NB_NF:
 814		break;
 815	case SND_SOC_DAIFMT_IB_NF:
 816		cr1 ^= SAI_XCR1_CKSTR;
 817		break;
 818	case SND_SOC_DAIFMT_NB_IF:
 819		frcr ^= SAI_XFRCR_FSPOL;
 820		break;
 821	case SND_SOC_DAIFMT_IB_IF:
 822		/* Invert fs & sck */
 823		cr1 ^= SAI_XCR1_CKSTR;
 824		frcr ^= SAI_XFRCR_FSPOL;
 825		break;
 826	default:
 827		dev_err(cpu_dai->dev, "Unsupported strobing %#x\n",
 828			fmt & SND_SOC_DAIFMT_INV_MASK);
 829		return -EINVAL;
 830	}
 831	cr1_mask |= SAI_XCR1_CKSTR;
 832	frcr_mask |= SAI_XFRCR_FSPOL;
 833
 834	stm32_sai_sub_reg_up(sai, STM_SAI_FRCR_REGX, frcr_mask, frcr);
 835
 836	/* DAI clock master masks */
 837	switch (fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) {
 838	case SND_SOC_DAIFMT_BC_FC:
 839		/* codec is master */
 840		cr1 |= SAI_XCR1_SLAVE;
 841		sai->master = false;
 842		break;
 843	case SND_SOC_DAIFMT_BP_FP:
 844		sai->master = true;
 845		break;
 846	default:
 847		dev_err(cpu_dai->dev, "Unsupported mode %#x\n",
 848			fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK);
 849		return -EINVAL;
 850	}
 851
 852	/* Set slave mode if sub-block is synchronized with another SAI */
 853	if (sai->sync) {
 854		dev_dbg(cpu_dai->dev, "Synchronized SAI configured as slave\n");
 855		cr1 |= SAI_XCR1_SLAVE;
 856		sai->master = false;
 857	}
 858
 859	cr1_mask |= SAI_XCR1_SLAVE;
 860
 861conf_update:
 862	ret = stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX, cr1_mask, cr1);
 863	if (ret < 0) {
 864		dev_err(cpu_dai->dev, "Failed to update CR1 register\n");
 865		return ret;
 866	}
 867
 868	sai->fmt = fmt;
 869
 870	return 0;
 871}
 872
 873static int stm32_sai_startup(struct snd_pcm_substream *substream,
 874			     struct snd_soc_dai *cpu_dai)
 875{
 876	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
 877	int imr, cr2, ret;
 878	unsigned long flags;
 879
 880	spin_lock_irqsave(&sai->irq_lock, flags);
 881	sai->substream = substream;
 882	spin_unlock_irqrestore(&sai->irq_lock, flags);
 883
 884	if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
 885		snd_pcm_hw_constraint_mask64(substream->runtime,
 886					     SNDRV_PCM_HW_PARAM_FORMAT,
 887					     SNDRV_PCM_FMTBIT_S32_LE);
 888		snd_pcm_hw_constraint_single(substream->runtime,
 889					     SNDRV_PCM_HW_PARAM_CHANNELS, 2);
 890	}
 891
 892	ret = clk_prepare_enable(sai->sai_ck);
 893	if (ret < 0) {
 894		dev_err(cpu_dai->dev, "Failed to enable clock: %d\n", ret);
 895		return ret;
 896	}
 897
 898	/* Enable ITs */
 899	stm32_sai_sub_reg_wr(sai, STM_SAI_CLRFR_REGX,
 900			     SAI_XCLRFR_MASK, SAI_XCLRFR_MASK);
 901
 902	imr = SAI_XIMR_OVRUDRIE;
 903	if (STM_SAI_IS_CAPTURE(sai)) {
 904		stm32_sai_sub_reg_rd(sai, STM_SAI_CR2_REGX, &cr2);
 905		if (cr2 & SAI_XCR2_MUTECNT_MASK)
 906			imr |= SAI_XIMR_MUTEDETIE;
 907	}
 908
 909	if (sai->master)
 910		imr |= SAI_XIMR_WCKCFGIE;
 911	else
 912		imr |= SAI_XIMR_AFSDETIE | SAI_XIMR_LFSDETIE;
 913
 914	stm32_sai_sub_reg_up(sai, STM_SAI_IMR_REGX,
 915			     SAI_XIMR_MASK, imr);
 916
 917	return 0;
 918}
 919
 920static int stm32_sai_set_config(struct snd_soc_dai *cpu_dai,
 921				struct snd_pcm_substream *substream,
 922				struct snd_pcm_hw_params *params)
 923{
 924	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
 925	int cr1, cr1_mask, ret;
 926
 927	/*
 928	 * DMA bursts increment is set to 4 words.
 929	 * SAI fifo threshold is set to half fifo, to keep enough space
 930	 * for DMA incoming bursts.
 931	 */
 932	stm32_sai_sub_reg_wr(sai, STM_SAI_CR2_REGX,
 933			     SAI_XCR2_FFLUSH | SAI_XCR2_FTH_MASK,
 934			     SAI_XCR2_FFLUSH |
 935			     SAI_XCR2_FTH_SET(STM_SAI_FIFO_TH_HALF));
 936
 937	/* DS bits in CR1 not set for SPDIF (size forced to 24 bits).*/
 938	if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
 939		sai->spdif_frm_cnt = 0;
 940		return 0;
 941	}
 942
 943	/* Mode, data format and channel config */
 944	cr1_mask = SAI_XCR1_DS_MASK;
 945	switch (params_format(params)) {
 946	case SNDRV_PCM_FORMAT_S8:
 947		cr1 = SAI_XCR1_DS_SET(SAI_DATASIZE_8);
 948		break;
 949	case SNDRV_PCM_FORMAT_S16_LE:
 950		cr1 = SAI_XCR1_DS_SET(SAI_DATASIZE_16);
 951		break;
 952	case SNDRV_PCM_FORMAT_S32_LE:
 953		cr1 = SAI_XCR1_DS_SET(SAI_DATASIZE_32);
 954		break;
 955	default:
 956		dev_err(cpu_dai->dev, "Data format not supported\n");
 957		return -EINVAL;
 958	}
 959
 960	cr1_mask |= SAI_XCR1_MONO;
 961	if ((sai->slots == 2) && (params_channels(params) == 1))
 962		cr1 |= SAI_XCR1_MONO;
 963
 964	ret = stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX, cr1_mask, cr1);
 965	if (ret < 0) {
 966		dev_err(cpu_dai->dev, "Failed to update CR1 register\n");
 967		return ret;
 968	}
 969
 970	return 0;
 971}
 972
 973static int stm32_sai_set_slots(struct snd_soc_dai *cpu_dai)
 974{
 975	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
 976	int slotr, slot_sz;
 977
 978	stm32_sai_sub_reg_rd(sai, STM_SAI_SLOTR_REGX, &slotr);
 979
 980	/*
 981	 * If SLOTSZ is set to auto in SLOTR, align slot width on data size
 982	 * By default slot width = data size, if not forced from DT
 983	 */
 984	slot_sz = slotr & SAI_XSLOTR_SLOTSZ_MASK;
 985	if (slot_sz == SAI_XSLOTR_SLOTSZ_SET(SAI_SLOT_SIZE_AUTO))
 986		sai->slot_width = sai->data_size;
 987
 988	if (sai->slot_width < sai->data_size) {
 989		dev_err(cpu_dai->dev,
 990			"Data size %d larger than slot width\n",
 991			sai->data_size);
 992		return -EINVAL;
 993	}
 994
 995	/* Slot number is set to 2, if not specified in DT */
 996	if (!sai->slots)
 997		sai->slots = 2;
 998
 999	/* The number of slots in the audio frame is equal to NBSLOT[3:0] + 1*/
1000	stm32_sai_sub_reg_up(sai, STM_SAI_SLOTR_REGX,
1001			     SAI_XSLOTR_NBSLOT_MASK,
1002			     SAI_XSLOTR_NBSLOT_SET((sai->slots - 1)));
1003
1004	/* Set default slots mask if not already set from DT */
1005	if (!(slotr & SAI_XSLOTR_SLOTEN_MASK)) {
1006		sai->slot_mask = (1 << sai->slots) - 1;
1007		stm32_sai_sub_reg_up(sai,
1008				     STM_SAI_SLOTR_REGX, SAI_XSLOTR_SLOTEN_MASK,
1009				     SAI_XSLOTR_SLOTEN_SET(sai->slot_mask));
1010	}
1011
1012	dev_dbg(cpu_dai->dev, "Slots %d, slot width %d\n",
1013		sai->slots, sai->slot_width);
1014
1015	return 0;
1016}
1017
1018static void stm32_sai_set_frame(struct snd_soc_dai *cpu_dai)
1019{
1020	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
1021	int fs_active, offset, format;
1022	int frcr, frcr_mask;
1023
1024	format = sai->fmt & SND_SOC_DAIFMT_FORMAT_MASK;
1025	sai->fs_length = sai->slot_width * sai->slots;
1026
1027	fs_active = sai->fs_length / 2;
1028	if ((format == SND_SOC_DAIFMT_DSP_A) ||
1029	    (format == SND_SOC_DAIFMT_DSP_B))
1030		fs_active = 1;
1031
1032	frcr = SAI_XFRCR_FRL_SET((sai->fs_length - 1));
1033	frcr |= SAI_XFRCR_FSALL_SET((fs_active - 1));
1034	frcr_mask = SAI_XFRCR_FRL_MASK | SAI_XFRCR_FSALL_MASK;
1035
1036	dev_dbg(cpu_dai->dev, "Frame length %d, frame active %d\n",
1037		sai->fs_length, fs_active);
1038
1039	stm32_sai_sub_reg_up(sai, STM_SAI_FRCR_REGX, frcr_mask, frcr);
1040
1041	if ((sai->fmt & SND_SOC_DAIFMT_FORMAT_MASK) == SND_SOC_DAIFMT_LSB) {
1042		offset = sai->slot_width - sai->data_size;
1043
1044		stm32_sai_sub_reg_up(sai, STM_SAI_SLOTR_REGX,
1045				     SAI_XSLOTR_FBOFF_MASK,
1046				     SAI_XSLOTR_FBOFF_SET(offset));
1047	}
1048}
1049
1050static void stm32_sai_init_iec958_status(struct stm32_sai_sub_data *sai)
1051{
1052	unsigned char *cs = sai->iec958.status;
1053
1054	cs[0] = IEC958_AES0_CON_NOT_COPYRIGHT | IEC958_AES0_CON_EMPHASIS_NONE;
1055	cs[1] = IEC958_AES1_CON_GENERAL;
1056	cs[2] = IEC958_AES2_CON_SOURCE_UNSPEC | IEC958_AES2_CON_CHANNEL_UNSPEC;
1057	cs[3] = IEC958_AES3_CON_CLOCK_1000PPM | IEC958_AES3_CON_FS_NOTID;
1058}
1059
1060static void stm32_sai_set_iec958_status(struct stm32_sai_sub_data *sai,
1061					struct snd_pcm_runtime *runtime)
1062{
1063	if (!runtime)
1064		return;
1065
1066	/* Force the sample rate according to runtime rate */
1067	mutex_lock(&sai->ctrl_lock);
1068	switch (runtime->rate) {
1069	case 22050:
1070		sai->iec958.status[3] = IEC958_AES3_CON_FS_22050;
1071		break;
1072	case 44100:
1073		sai->iec958.status[3] = IEC958_AES3_CON_FS_44100;
1074		break;
1075	case 88200:
1076		sai->iec958.status[3] = IEC958_AES3_CON_FS_88200;
1077		break;
1078	case 176400:
1079		sai->iec958.status[3] = IEC958_AES3_CON_FS_176400;
1080		break;
1081	case 24000:
1082		sai->iec958.status[3] = IEC958_AES3_CON_FS_24000;
1083		break;
1084	case 48000:
1085		sai->iec958.status[3] = IEC958_AES3_CON_FS_48000;
1086		break;
1087	case 96000:
1088		sai->iec958.status[3] = IEC958_AES3_CON_FS_96000;
1089		break;
1090	case 192000:
1091		sai->iec958.status[3] = IEC958_AES3_CON_FS_192000;
1092		break;
1093	case 32000:
1094		sai->iec958.status[3] = IEC958_AES3_CON_FS_32000;
1095		break;
1096	default:
1097		sai->iec958.status[3] = IEC958_AES3_CON_FS_NOTID;
1098		break;
1099	}
1100	mutex_unlock(&sai->ctrl_lock);
1101}
1102
1103static int stm32_sai_configure_clock(struct snd_soc_dai *cpu_dai,
1104				     struct snd_pcm_hw_params *params)
1105{
1106	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
1107	int div = 0, cr1 = 0;
1108	int sai_clk_rate, mclk_ratio, den;
1109	unsigned int rate = params_rate(params);
1110	int ret;
1111
1112	if (!sai->sai_mclk) {
1113		ret = sai->set_sai_ck_rate(sai, rate);
1114		if (ret)
1115			return ret;
1116	}
1117	sai_clk_rate = clk_get_rate(sai->sai_ck);
1118
1119	if (STM_SAI_IS_F4(sai->pdata)) {
1120		/* mclk on (NODIV=0)
1121		 *   mclk_rate = 256 * fs
1122		 *   MCKDIV = 0 if sai_ck < 3/2 * mclk_rate
1123		 *   MCKDIV = sai_ck / (2 * mclk_rate) otherwise
1124		 * mclk off (NODIV=1)
1125		 *   MCKDIV ignored. sck = sai_ck
1126		 */
1127		if (!sai->mclk_rate)
1128			return 0;
1129
1130		if (2 * sai_clk_rate >= 3 * sai->mclk_rate) {
1131			div = stm32_sai_get_clk_div(sai, sai_clk_rate,
1132						    2 * sai->mclk_rate);
1133			if (div < 0)
1134				return div;
1135		}
1136	} else {
1137		/*
1138		 * TDM mode :
1139		 *   mclk on
1140		 *      MCKDIV = sai_ck / (ws x 256)	(NOMCK=0. OSR=0)
1141		 *      MCKDIV = sai_ck / (ws x 512)	(NOMCK=0. OSR=1)
1142		 *   mclk off
1143		 *      MCKDIV = sai_ck / (frl x ws)	(NOMCK=1)
1144		 * Note: NOMCK/NODIV correspond to same bit.
1145		 */
1146		if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
1147			div = stm32_sai_get_clk_div(sai, sai_clk_rate,
1148						    rate * 128);
1149			if (div < 0)
1150				return div;
1151		} else {
1152			if (sai->mclk_rate) {
1153				mclk_ratio = sai->mclk_rate / rate;
1154				if (mclk_ratio == 512) {
1155					cr1 = SAI_XCR1_OSR;
1156				} else if (mclk_ratio != 256) {
1157					dev_err(cpu_dai->dev,
1158						"Wrong mclk ratio %d\n",
1159						mclk_ratio);
1160					return -EINVAL;
1161				}
1162
1163				stm32_sai_sub_reg_up(sai,
1164						     STM_SAI_CR1_REGX,
1165						     SAI_XCR1_OSR, cr1);
1166
1167				div = stm32_sai_get_clk_div(sai, sai_clk_rate,
1168							    sai->mclk_rate);
1169				if (div < 0)
1170					return div;
1171			} else {
1172				/* mclk-fs not set, master clock not active */
1173				den = sai->fs_length * params_rate(params);
1174				div = stm32_sai_get_clk_div(sai, sai_clk_rate,
1175							    den);
1176				if (div < 0)
1177					return div;
1178			}
1179		}
1180	}
1181
1182	return stm32_sai_set_clk_div(sai, div);
1183}
1184
1185static int stm32_sai_hw_params(struct snd_pcm_substream *substream,
1186			       struct snd_pcm_hw_params *params,
1187			       struct snd_soc_dai *cpu_dai)
1188{
1189	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
1190	int ret;
1191
1192	sai->data_size = params_width(params);
1193
1194	if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
1195		/* Rate not already set in runtime structure */
1196		substream->runtime->rate = params_rate(params);
1197		stm32_sai_set_iec958_status(sai, substream->runtime);
1198	} else {
1199		ret = stm32_sai_set_slots(cpu_dai);
1200		if (ret < 0)
1201			return ret;
1202		stm32_sai_set_frame(cpu_dai);
1203	}
1204
1205	ret = stm32_sai_set_config(cpu_dai, substream, params);
1206	if (ret)
1207		return ret;
1208
1209	if (sai->master)
1210		ret = stm32_sai_configure_clock(cpu_dai, params);
1211
1212	return ret;
1213}
1214
1215static int stm32_sai_trigger(struct snd_pcm_substream *substream, int cmd,
1216			     struct snd_soc_dai *cpu_dai)
1217{
1218	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
1219	int ret;
1220
1221	switch (cmd) {
1222	case SNDRV_PCM_TRIGGER_START:
1223	case SNDRV_PCM_TRIGGER_RESUME:
1224	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
1225		dev_dbg(cpu_dai->dev, "Enable DMA and SAI\n");
1226
1227		stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX,
1228				     SAI_XCR1_DMAEN, SAI_XCR1_DMAEN);
1229
1230		/* Enable SAI */
1231		ret = stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX,
1232					   SAI_XCR1_SAIEN, SAI_XCR1_SAIEN);
1233		if (ret < 0)
1234			dev_err(cpu_dai->dev, "Failed to update CR1 register\n");
1235		break;
1236	case SNDRV_PCM_TRIGGER_SUSPEND:
1237	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
1238	case SNDRV_PCM_TRIGGER_STOP:
1239		dev_dbg(cpu_dai->dev, "Disable DMA and SAI\n");
1240
1241		stm32_sai_sub_reg_up(sai, STM_SAI_IMR_REGX,
1242				     SAI_XIMR_MASK, 0);
1243
1244		stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX,
1245				     SAI_XCR1_SAIEN,
1246				     (unsigned int)~SAI_XCR1_SAIEN);
1247
1248		ret = stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX,
1249					   SAI_XCR1_DMAEN,
1250					   (unsigned int)~SAI_XCR1_DMAEN);
1251		if (ret < 0)
1252			dev_err(cpu_dai->dev, "Failed to update CR1 register\n");
1253
1254		if (STM_SAI_PROTOCOL_IS_SPDIF(sai))
1255			sai->spdif_frm_cnt = 0;
1256		break;
1257	default:
1258		return -EINVAL;
1259	}
1260
1261	return ret;
1262}
1263
1264static void stm32_sai_shutdown(struct snd_pcm_substream *substream,
1265			       struct snd_soc_dai *cpu_dai)
1266{
1267	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
1268	unsigned long flags;
1269
1270	stm32_sai_sub_reg_up(sai, STM_SAI_IMR_REGX, SAI_XIMR_MASK, 0);
1271
1272	clk_disable_unprepare(sai->sai_ck);
1273
1274	/*
1275	 * Release kernel clock if following conditions are fulfilled
1276	 * - Master clock is not used. Kernel clock won't be released trough sysclk
1277	 * - Put handler is defined. Involve that clock is managed exclusively
1278	 */
1279	if (!sai->sai_mclk && sai->put_sai_ck_rate)
1280		sai->put_sai_ck_rate(sai);
1281
1282	spin_lock_irqsave(&sai->irq_lock, flags);
1283	sai->substream = NULL;
1284	spin_unlock_irqrestore(&sai->irq_lock, flags);
1285}
1286
1287static int stm32_sai_pcm_new(struct snd_soc_pcm_runtime *rtd,
1288			     struct snd_soc_dai *cpu_dai)
1289{
1290	struct stm32_sai_sub_data *sai = dev_get_drvdata(cpu_dai->dev);
1291	struct snd_kcontrol_new knew = iec958_ctls;
1292
1293	if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
1294		dev_dbg(&sai->pdev->dev, "%s: register iec controls", __func__);
1295		knew.device = rtd->pcm->device;
1296		return snd_ctl_add(rtd->pcm->card, snd_ctl_new1(&knew, sai));
1297	}
1298
1299	return 0;
1300}
1301
1302static int stm32_sai_dai_probe(struct snd_soc_dai *cpu_dai)
1303{
1304	struct stm32_sai_sub_data *sai = dev_get_drvdata(cpu_dai->dev);
1305	int cr1 = 0, cr1_mask, ret;
1306
1307	sai->cpu_dai = cpu_dai;
1308
1309	sai->dma_params.addr = (dma_addr_t)(sai->phys_addr + STM_SAI_DR_REGX);
1310	/*
1311	 * DMA supports 4, 8 or 16 burst sizes. Burst size 4 is the best choice,
1312	 * as it allows bytes, half-word and words transfers. (See DMA fifos
1313	 * constraints).
1314	 */
1315	sai->dma_params.maxburst = 4;
1316	if (sai->pdata->conf.fifo_size < 8 || sai->pdata->conf.no_dma_burst)
1317		sai->dma_params.maxburst = 1;
1318	/* Buswidth will be set by framework at runtime */
1319	sai->dma_params.addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
1320
1321	if (STM_SAI_IS_PLAYBACK(sai))
1322		snd_soc_dai_init_dma_data(cpu_dai, &sai->dma_params, NULL);
1323	else
1324		snd_soc_dai_init_dma_data(cpu_dai, NULL, &sai->dma_params);
1325
1326	/* Next settings are not relevant for spdif mode */
1327	if (STM_SAI_PROTOCOL_IS_SPDIF(sai))
1328		return 0;
1329
1330	cr1_mask = SAI_XCR1_RX_TX;
1331	if (STM_SAI_IS_CAPTURE(sai))
1332		cr1 |= SAI_XCR1_RX_TX;
1333
1334	/* Configure synchronization */
1335	if (sai->sync == SAI_SYNC_EXTERNAL) {
1336		/* Configure synchro client and provider */
1337		ret = sai->pdata->set_sync(sai->pdata, sai->np_sync_provider,
1338					   sai->synco, sai->synci);
1339		if (ret)
1340			return ret;
1341	}
1342
1343	cr1_mask |= SAI_XCR1_SYNCEN_MASK;
1344	cr1 |= SAI_XCR1_SYNCEN_SET(sai->sync);
1345
1346	return stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX, cr1_mask, cr1);
1347}
1348
1349static const struct snd_soc_dai_ops stm32_sai_pcm_dai_ops = {
1350	.probe		= stm32_sai_dai_probe,
1351	.set_sysclk	= stm32_sai_set_sysclk,
1352	.set_fmt	= stm32_sai_set_dai_fmt,
1353	.set_tdm_slot	= stm32_sai_set_dai_tdm_slot,
1354	.startup	= stm32_sai_startup,
1355	.hw_params	= stm32_sai_hw_params,
1356	.trigger	= stm32_sai_trigger,
1357	.shutdown	= stm32_sai_shutdown,
1358	.pcm_new	= stm32_sai_pcm_new,
1359};
1360
1361static const struct snd_soc_dai_ops stm32_sai_pcm_dai_ops2 = {
1362	.probe		= stm32_sai_dai_probe,
1363	.set_sysclk	= stm32_sai_set_sysclk,
1364	.set_fmt	= stm32_sai_set_dai_fmt,
1365	.set_tdm_slot	= stm32_sai_set_dai_tdm_slot,
1366	.startup	= stm32_sai_startup,
1367	.hw_params	= stm32_sai_hw_params,
1368	.trigger	= stm32_sai_trigger,
1369	.shutdown	= stm32_sai_shutdown,
1370};
1371
1372static int stm32_sai_pcm_process_spdif(struct snd_pcm_substream *substream,
1373				       int channel, unsigned long hwoff,
1374				       unsigned long bytes)
1375{
1376	struct snd_pcm_runtime *runtime = substream->runtime;
1377	struct snd_soc_pcm_runtime *rtd = snd_soc_substream_to_rtd(substream);
1378	struct snd_soc_dai *cpu_dai = snd_soc_rtd_to_cpu(rtd, 0);
1379	struct stm32_sai_sub_data *sai = dev_get_drvdata(cpu_dai->dev);
1380	int *ptr = (int *)(runtime->dma_area + hwoff +
1381			   channel * (runtime->dma_bytes / runtime->channels));
1382	ssize_t cnt = bytes_to_samples(runtime, bytes);
1383	unsigned int frm_cnt = sai->spdif_frm_cnt;
1384	unsigned int byte;
1385	unsigned int mask;
1386
1387	do {
1388		*ptr = ((*ptr >> 8) & 0x00ffffff);
1389
1390		/* Set channel status bit */
1391		byte = frm_cnt >> 3;
1392		mask = 1 << (frm_cnt - (byte << 3));
1393		if (sai->iec958.status[byte] & mask)
1394			*ptr |= 0x04000000;
1395		ptr++;
1396
1397		if (!(cnt % 2))
1398			frm_cnt++;
1399
1400		if (frm_cnt == SAI_IEC60958_BLOCK_FRAMES)
1401			frm_cnt = 0;
1402	} while (--cnt);
1403	sai->spdif_frm_cnt = frm_cnt;
1404
1405	return 0;
1406}
1407
1408/* No support of mmap in S/PDIF mode */
1409static const struct snd_pcm_hardware stm32_sai_pcm_hw_spdif = {
1410	.info = SNDRV_PCM_INFO_INTERLEAVED,
1411	.buffer_bytes_max = 8 * PAGE_SIZE,
1412	.period_bytes_min = 1024,
1413	.period_bytes_max = PAGE_SIZE,
1414	.periods_min = 2,
1415	.periods_max = 8,
1416};
1417
1418static const struct snd_pcm_hardware stm32_sai_pcm_hw = {
1419	.info = SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_MMAP,
1420	.buffer_bytes_max = 8 * PAGE_SIZE,
1421	.period_bytes_min = 1024, /* 5ms at 48kHz */
1422	.period_bytes_max = PAGE_SIZE,
1423	.periods_min = 2,
1424	.periods_max = 8,
1425};
1426
1427static struct snd_soc_dai_driver stm32_sai_playback_dai = {
 
 
1428		.id = 1, /* avoid call to fmt_single_name() */
1429		.playback = {
1430			.channels_min = 1,
1431			.channels_max = 16,
1432			.rate_min = 8000,
1433			.rate_max = 192000,
1434			.rates = SNDRV_PCM_RATE_CONTINUOUS,
1435			/* DMA does not support 24 bits transfers */
1436			.formats =
1437				SNDRV_PCM_FMTBIT_S8 |
1438				SNDRV_PCM_FMTBIT_S16_LE |
1439				SNDRV_PCM_FMTBIT_S32_LE,
1440		},
1441		.ops = &stm32_sai_pcm_dai_ops,
1442};
1443
1444static struct snd_soc_dai_driver stm32_sai_capture_dai = {
 
1445		.id = 1, /* avoid call to fmt_single_name() */
1446		.capture = {
1447			.channels_min = 1,
1448			.channels_max = 16,
1449			.rate_min = 8000,
1450			.rate_max = 192000,
1451			.rates = SNDRV_PCM_RATE_CONTINUOUS,
1452			/* DMA does not support 24 bits transfers */
1453			.formats =
1454				SNDRV_PCM_FMTBIT_S8 |
1455				SNDRV_PCM_FMTBIT_S16_LE |
1456				SNDRV_PCM_FMTBIT_S32_LE,
1457		},
1458		.ops = &stm32_sai_pcm_dai_ops2,
1459};
1460
1461static const struct snd_dmaengine_pcm_config stm32_sai_pcm_config = {
1462	.pcm_hardware = &stm32_sai_pcm_hw,
1463	.prepare_slave_config = snd_dmaengine_pcm_prepare_slave_config,
1464};
1465
1466static const struct snd_dmaengine_pcm_config stm32_sai_pcm_config_spdif = {
1467	.pcm_hardware = &stm32_sai_pcm_hw_spdif,
1468	.prepare_slave_config = snd_dmaengine_pcm_prepare_slave_config,
1469	.process = stm32_sai_pcm_process_spdif,
1470};
1471
1472static const struct snd_soc_component_driver stm32_component = {
1473	.name = "stm32-sai",
1474	.legacy_dai_naming = 1,
1475};
1476
1477static const struct of_device_id stm32_sai_sub_ids[] = {
1478	{ .compatible = "st,stm32-sai-sub-a",
1479	  .data = (void *)STM_SAI_A_ID},
1480	{ .compatible = "st,stm32-sai-sub-b",
1481	  .data = (void *)STM_SAI_B_ID},
1482	{}
1483};
1484MODULE_DEVICE_TABLE(of, stm32_sai_sub_ids);
1485
1486static int stm32_sai_sub_parse_of(struct platform_device *pdev,
1487				  struct stm32_sai_sub_data *sai)
1488{
1489	struct device_node *np = pdev->dev.of_node;
1490	struct resource *res;
1491	void __iomem *base;
1492	struct of_phandle_args args;
1493	int ret;
1494
1495	if (!np)
1496		return -ENODEV;
1497
1498	base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
1499	if (IS_ERR(base))
1500		return PTR_ERR(base);
1501
1502	sai->phys_addr = res->start;
1503
1504	sai->regmap_config = &stm32_sai_sub_regmap_config_f4;
1505	/* Note: PDM registers not available for sub-block B */
1506	if (STM_SAI_HAS_PDM(sai) && STM_SAI_IS_SUB_A(sai))
1507		sai->regmap_config = &stm32_sai_sub_regmap_config_h7;
1508
1509	/*
1510	 * Do not manage peripheral clock through regmap framework as this
1511	 * can lead to circular locking issue with sai master clock provider.
1512	 * Manage peripheral clock directly in driver instead.
1513	 */
1514	sai->regmap = devm_regmap_init_mmio(&pdev->dev, base,
1515					    sai->regmap_config);
1516	if (IS_ERR(sai->regmap))
1517		return dev_err_probe(&pdev->dev, PTR_ERR(sai->regmap),
1518				     "Regmap init error\n");
 
 
 
1519
1520	/* Get direction property */
1521	if (of_property_match_string(np, "dma-names", "tx") >= 0) {
1522		sai->dir = SNDRV_PCM_STREAM_PLAYBACK;
1523	} else if (of_property_match_string(np, "dma-names", "rx") >= 0) {
1524		sai->dir = SNDRV_PCM_STREAM_CAPTURE;
1525	} else {
1526		dev_err(&pdev->dev, "Unsupported direction\n");
1527		return -EINVAL;
1528	}
1529
1530	/* Get spdif iec60958 property */
1531	sai->spdif = false;
1532	if (of_property_present(np, "st,iec60958")) {
1533		if (!STM_SAI_HAS_SPDIF(sai) ||
1534		    sai->dir == SNDRV_PCM_STREAM_CAPTURE) {
1535			dev_err(&pdev->dev, "S/PDIF IEC60958 not supported\n");
1536			return -EINVAL;
1537		}
1538		stm32_sai_init_iec958_status(sai);
1539		sai->spdif = true;
1540		sai->master = true;
1541	}
1542
1543	/* Get synchronization property */
1544	args.np = NULL;
1545	ret = of_parse_phandle_with_fixed_args(np, "st,sync", 1, 0, &args);
1546	if (ret < 0  && ret != -ENOENT) {
1547		dev_err(&pdev->dev, "Failed to get st,sync property\n");
1548		return ret;
1549	}
1550
1551	sai->sync = SAI_SYNC_NONE;
1552	if (args.np) {
1553		if (args.np == np) {
1554			dev_err(&pdev->dev, "%pOFn sync own reference\n", np);
1555			of_node_put(args.np);
1556			return -EINVAL;
1557		}
1558
1559		sai->np_sync_provider  = of_get_parent(args.np);
1560		if (!sai->np_sync_provider) {
1561			dev_err(&pdev->dev, "%pOFn parent node not found\n",
1562				np);
1563			of_node_put(args.np);
1564			return -ENODEV;
1565		}
1566
1567		sai->sync = SAI_SYNC_INTERNAL;
1568		if (sai->np_sync_provider != sai->pdata->pdev->dev.of_node) {
1569			if (!STM_SAI_HAS_EXT_SYNC(sai)) {
1570				dev_err(&pdev->dev,
1571					"External synchro not supported\n");
1572				of_node_put(args.np);
1573				return -EINVAL;
1574			}
1575			sai->sync = SAI_SYNC_EXTERNAL;
1576
1577			sai->synci = args.args[0];
1578			if (sai->synci < 1 ||
1579			    (sai->synci > (SAI_GCR_SYNCIN_MAX + 1))) {
1580				dev_err(&pdev->dev, "Wrong SAI index\n");
1581				of_node_put(args.np);
1582				return -EINVAL;
1583			}
1584
1585			if (of_property_match_string(args.np, "compatible",
1586						     "st,stm32-sai-sub-a") >= 0)
1587				sai->synco = STM_SAI_SYNC_OUT_A;
1588
1589			if (of_property_match_string(args.np, "compatible",
1590						     "st,stm32-sai-sub-b") >= 0)
1591				sai->synco = STM_SAI_SYNC_OUT_B;
1592
1593			if (!sai->synco) {
1594				dev_err(&pdev->dev, "Unknown SAI sub-block\n");
1595				of_node_put(args.np);
1596				return -EINVAL;
1597			}
1598		}
1599
1600		dev_dbg(&pdev->dev, "%s synchronized with %s\n",
1601			pdev->name, args.np->full_name);
1602	}
1603
1604	of_node_put(args.np);
1605	sai->sai_ck = devm_clk_get(&pdev->dev, "sai_ck");
1606	if (IS_ERR(sai->sai_ck))
1607		return dev_err_probe(&pdev->dev, PTR_ERR(sai->sai_ck),
1608				     "Missing kernel clock sai_ck\n");
 
 
 
1609
1610	ret = clk_prepare(sai->pdata->pclk);
1611	if (ret < 0)
1612		return ret;
1613
1614	if (STM_SAI_IS_F4(sai->pdata))
1615		return 0;
1616
1617	/* Register mclk provider if requested */
1618	if (of_property_present(np, "#clock-cells")) {
1619		ret = stm32_sai_add_mclk_provider(sai);
1620		if (ret < 0)
1621			return ret;
1622	} else {
1623		sai->sai_mclk = devm_clk_get_optional(&pdev->dev, "MCLK");
1624		if (IS_ERR(sai->sai_mclk))
1625			return PTR_ERR(sai->sai_mclk);
 
 
 
1626	}
1627
1628	return 0;
1629}
1630
1631static int stm32_sai_sub_probe(struct platform_device *pdev)
1632{
1633	struct stm32_sai_sub_data *sai;
 
1634	const struct snd_dmaengine_pcm_config *conf = &stm32_sai_pcm_config;
1635	int ret;
1636
1637	sai = devm_kzalloc(&pdev->dev, sizeof(*sai), GFP_KERNEL);
1638	if (!sai)
1639		return -ENOMEM;
1640
1641	sai->id = (uintptr_t)device_get_match_data(&pdev->dev);
 
 
 
1642
1643	sai->pdev = pdev;
1644	mutex_init(&sai->ctrl_lock);
1645	spin_lock_init(&sai->irq_lock);
1646	platform_set_drvdata(pdev, sai);
1647
1648	sai->pdata = dev_get_drvdata(pdev->dev.parent);
1649	if (!sai->pdata) {
1650		dev_err(&pdev->dev, "Parent device data not available\n");
1651		return -EINVAL;
1652	}
1653
1654	if (sai->pdata->conf.get_sai_ck_parent) {
1655		sai->set_sai_ck_rate = stm32_sai_set_parent_clk;
1656	} else {
1657		sai->set_sai_ck_rate = stm32_sai_set_parent_rate;
1658		sai->put_sai_ck_rate = stm32_sai_put_parent_rate;
1659	}
1660
1661	ret = stm32_sai_sub_parse_of(pdev, sai);
1662	if (ret)
1663		return ret;
1664
1665	if (STM_SAI_IS_PLAYBACK(sai))
1666		sai->cpu_dai_drv = stm32_sai_playback_dai;
1667	else
1668		sai->cpu_dai_drv = stm32_sai_capture_dai;
1669	sai->cpu_dai_drv.name = dev_name(&pdev->dev);
1670
1671	ret = devm_request_irq(&pdev->dev, sai->pdata->irq, stm32_sai_isr,
1672			       IRQF_SHARED, dev_name(&pdev->dev), sai);
1673	if (ret) {
1674		dev_err(&pdev->dev, "IRQ request returned %d\n", ret);
1675		return ret;
1676	}
1677
1678	if (STM_SAI_PROTOCOL_IS_SPDIF(sai))
1679		conf = &stm32_sai_pcm_config_spdif;
1680
1681	ret = snd_dmaengine_pcm_register(&pdev->dev, conf, 0);
1682	if (ret)
1683		return dev_err_probe(&pdev->dev, ret, "Could not register pcm dma\n");
 
 
 
1684
1685	ret = snd_soc_register_component(&pdev->dev, &stm32_component,
1686					 &sai->cpu_dai_drv, 1);
1687	if (ret) {
1688		snd_dmaengine_pcm_unregister(&pdev->dev);
1689		return ret;
1690	}
1691
1692	pm_runtime_enable(&pdev->dev);
1693
1694	return 0;
1695}
1696
1697static void stm32_sai_sub_remove(struct platform_device *pdev)
1698{
1699	struct stm32_sai_sub_data *sai = dev_get_drvdata(&pdev->dev);
1700
1701	clk_unprepare(sai->pdata->pclk);
1702	snd_dmaengine_pcm_unregister(&pdev->dev);
1703	snd_soc_unregister_component(&pdev->dev);
1704	pm_runtime_disable(&pdev->dev);
 
 
1705}
1706
1707#ifdef CONFIG_PM_SLEEP
1708static int stm32_sai_sub_suspend(struct device *dev)
1709{
1710	struct stm32_sai_sub_data *sai = dev_get_drvdata(dev);
1711	int ret;
1712
1713	ret = clk_enable(sai->pdata->pclk);
1714	if (ret < 0)
1715		return ret;
1716
1717	regcache_cache_only(sai->regmap, true);
1718	regcache_mark_dirty(sai->regmap);
1719
1720	clk_disable(sai->pdata->pclk);
1721
1722	return 0;
1723}
1724
1725static int stm32_sai_sub_resume(struct device *dev)
1726{
1727	struct stm32_sai_sub_data *sai = dev_get_drvdata(dev);
1728	int ret;
1729
1730	ret = clk_enable(sai->pdata->pclk);
1731	if (ret < 0)
1732		return ret;
1733
1734	regcache_cache_only(sai->regmap, false);
1735	ret = regcache_sync(sai->regmap);
1736
1737	clk_disable(sai->pdata->pclk);
1738
1739	return ret;
1740}
1741#endif /* CONFIG_PM_SLEEP */
1742
1743static const struct dev_pm_ops stm32_sai_sub_pm_ops = {
1744	SET_SYSTEM_SLEEP_PM_OPS(stm32_sai_sub_suspend, stm32_sai_sub_resume)
1745};
1746
1747static struct platform_driver stm32_sai_sub_driver = {
1748	.driver = {
1749		.name = "st,stm32-sai-sub",
1750		.of_match_table = stm32_sai_sub_ids,
1751		.pm = &stm32_sai_sub_pm_ops,
1752	},
1753	.probe = stm32_sai_sub_probe,
1754	.remove = stm32_sai_sub_remove,
1755};
1756
1757module_platform_driver(stm32_sai_sub_driver);
1758
1759MODULE_DESCRIPTION("STM32 Soc SAI sub-block Interface");
1760MODULE_AUTHOR("Olivier Moysan <olivier.moysan@st.com>");
1761MODULE_ALIAS("platform:st,stm32-sai-sub");
1762MODULE_LICENSE("GPL v2");
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * STM32 ALSA SoC Digital Audio Interface (SAI) driver.
   4 *
   5 * Copyright (C) 2016, STMicroelectronics - All Rights Reserved
   6 * Author(s): Olivier Moysan <olivier.moysan@st.com> for STMicroelectronics.
   7 */
   8
   9#include <linux/clk.h>
  10#include <linux/clk-provider.h>
  11#include <linux/kernel.h>
  12#include <linux/module.h>
  13#include <linux/of_irq.h>
  14#include <linux/of_platform.h>
  15#include <linux/pm_runtime.h>
  16#include <linux/regmap.h>
  17
  18#include <sound/asoundef.h>
  19#include <sound/core.h>
  20#include <sound/dmaengine_pcm.h>
  21#include <sound/pcm_params.h>
  22
  23#include "stm32_sai.h"
  24
  25#define SAI_FREE_PROTOCOL	0x0
  26#define SAI_SPDIF_PROTOCOL	0x1
  27
  28#define SAI_SLOT_SIZE_AUTO	0x0
  29#define SAI_SLOT_SIZE_16	0x1
  30#define SAI_SLOT_SIZE_32	0x2
  31
  32#define SAI_DATASIZE_8		0x2
  33#define SAI_DATASIZE_10		0x3
  34#define SAI_DATASIZE_16		0x4
  35#define SAI_DATASIZE_20		0x5
  36#define SAI_DATASIZE_24		0x6
  37#define SAI_DATASIZE_32		0x7
  38
  39#define STM_SAI_DAI_NAME_SIZE	15
  40
  41#define STM_SAI_IS_PLAYBACK(ip)	((ip)->dir == SNDRV_PCM_STREAM_PLAYBACK)
  42#define STM_SAI_IS_CAPTURE(ip)	((ip)->dir == SNDRV_PCM_STREAM_CAPTURE)
  43
  44#define STM_SAI_A_ID		0x0
  45#define STM_SAI_B_ID		0x1
  46
  47#define STM_SAI_IS_SUB_A(x)	((x)->id == STM_SAI_A_ID)
  48#define STM_SAI_IS_SUB_B(x)	((x)->id == STM_SAI_B_ID)
  49#define STM_SAI_BLOCK_NAME(x)	(((x)->id == STM_SAI_A_ID) ? "A" : "B")
  50
  51#define SAI_SYNC_NONE		0x0
  52#define SAI_SYNC_INTERNAL	0x1
  53#define SAI_SYNC_EXTERNAL	0x2
  54
  55#define STM_SAI_PROTOCOL_IS_SPDIF(ip)	((ip)->spdif)
  56#define STM_SAI_HAS_SPDIF(x)	((x)->pdata->conf.has_spdif_pdm)
  57#define STM_SAI_HAS_PDM(x)	((x)->pdata->conf.has_spdif_pdm)
  58#define STM_SAI_HAS_EXT_SYNC(x) (!STM_SAI_IS_F4(sai->pdata))
  59
  60#define SAI_IEC60958_BLOCK_FRAMES	192
  61#define SAI_IEC60958_STATUS_BYTES	24
  62
  63#define SAI_MCLK_NAME_LEN		32
  64#define SAI_RATE_11K			11025
 
 
 
  65
  66/**
  67 * struct stm32_sai_sub_data - private data of SAI sub block (block A or B)
  68 * @pdev: device data pointer
  69 * @regmap: SAI register map pointer
  70 * @regmap_config: SAI sub block register map configuration pointer
  71 * @dma_params: dma configuration data for rx or tx channel
  72 * @cpu_dai_drv: DAI driver data pointer
  73 * @cpu_dai: DAI runtime data pointer
  74 * @substream: PCM substream data pointer
  75 * @pdata: SAI block parent data pointer
  76 * @np_sync_provider: synchronization provider node
  77 * @sai_ck: kernel clock feeding the SAI clock generator
  78 * @sai_mclk: master clock from SAI mclk provider
  79 * @phys_addr: SAI registers physical base address
  80 * @mclk_rate: SAI block master clock frequency (Hz). set at init
  81 * @id: SAI sub block id corresponding to sub-block A or B
  82 * @dir: SAI block direction (playback or capture). set at init
  83 * @master: SAI block mode flag. (true=master, false=slave) set at init
  84 * @spdif: SAI S/PDIF iec60958 mode flag. set at init
 
  85 * @fmt: SAI block format. relevant only for custom protocols. set at init
  86 * @sync: SAI block synchronization mode. (none, internal or external)
  87 * @synco: SAI block ext sync source (provider setting). (none, sub-block A/B)
  88 * @synci: SAI block ext sync source (client setting). (SAI sync provider index)
  89 * @fs_length: frame synchronization length. depends on protocol settings
  90 * @slots: rx or tx slot number
  91 * @slot_width: rx or tx slot width in bits
  92 * @slot_mask: rx or tx active slots mask. set at init or at runtime
  93 * @data_size: PCM data width. corresponds to PCM substream width.
  94 * @spdif_frm_cnt: S/PDIF playback frame counter
  95 * @iec958: iec958 data
  96 * @ctrl_lock: control lock
  97 * @irq_lock: prevent race condition with IRQ
 
 
  98 */
  99struct stm32_sai_sub_data {
 100	struct platform_device *pdev;
 101	struct regmap *regmap;
 102	const struct regmap_config *regmap_config;
 103	struct snd_dmaengine_dai_dma_data dma_params;
 104	struct snd_soc_dai_driver cpu_dai_drv;
 105	struct snd_soc_dai *cpu_dai;
 106	struct snd_pcm_substream *substream;
 107	struct stm32_sai_data *pdata;
 108	struct device_node *np_sync_provider;
 109	struct clk *sai_ck;
 110	struct clk *sai_mclk;
 111	dma_addr_t phys_addr;
 112	unsigned int mclk_rate;
 113	unsigned int id;
 114	int dir;
 115	bool master;
 116	bool spdif;
 
 117	int fmt;
 118	int sync;
 119	int synco;
 120	int synci;
 121	int fs_length;
 122	int slots;
 123	int slot_width;
 124	int slot_mask;
 125	int data_size;
 126	unsigned int spdif_frm_cnt;
 127	struct snd_aes_iec958 iec958;
 128	struct mutex ctrl_lock; /* protect resources accessed by controls */
 129	spinlock_t irq_lock; /* used to prevent race condition with IRQ */
 
 
 130};
 131
 132enum stm32_sai_fifo_th {
 133	STM_SAI_FIFO_TH_EMPTY,
 134	STM_SAI_FIFO_TH_QUARTER,
 135	STM_SAI_FIFO_TH_HALF,
 136	STM_SAI_FIFO_TH_3_QUARTER,
 137	STM_SAI_FIFO_TH_FULL,
 138};
 139
 140static bool stm32_sai_sub_readable_reg(struct device *dev, unsigned int reg)
 141{
 142	switch (reg) {
 143	case STM_SAI_CR1_REGX:
 144	case STM_SAI_CR2_REGX:
 145	case STM_SAI_FRCR_REGX:
 146	case STM_SAI_SLOTR_REGX:
 147	case STM_SAI_IMR_REGX:
 148	case STM_SAI_SR_REGX:
 149	case STM_SAI_CLRFR_REGX:
 150	case STM_SAI_DR_REGX:
 151	case STM_SAI_PDMCR_REGX:
 152	case STM_SAI_PDMLY_REGX:
 153		return true;
 154	default:
 155		return false;
 156	}
 157}
 158
 159static bool stm32_sai_sub_volatile_reg(struct device *dev, unsigned int reg)
 160{
 161	switch (reg) {
 162	case STM_SAI_DR_REGX:
 163	case STM_SAI_SR_REGX:
 164		return true;
 165	default:
 166		return false;
 167	}
 168}
 169
 170static bool stm32_sai_sub_writeable_reg(struct device *dev, unsigned int reg)
 171{
 172	switch (reg) {
 173	case STM_SAI_CR1_REGX:
 174	case STM_SAI_CR2_REGX:
 175	case STM_SAI_FRCR_REGX:
 176	case STM_SAI_SLOTR_REGX:
 177	case STM_SAI_IMR_REGX:
 178	case STM_SAI_CLRFR_REGX:
 179	case STM_SAI_DR_REGX:
 180	case STM_SAI_PDMCR_REGX:
 181	case STM_SAI_PDMLY_REGX:
 182		return true;
 183	default:
 184		return false;
 185	}
 186}
 187
 188static int stm32_sai_sub_reg_up(struct stm32_sai_sub_data *sai,
 189				unsigned int reg, unsigned int mask,
 190				unsigned int val)
 191{
 192	int ret;
 193
 194	ret = clk_enable(sai->pdata->pclk);
 195	if (ret < 0)
 196		return ret;
 197
 198	ret = regmap_update_bits(sai->regmap, reg, mask, val);
 199
 200	clk_disable(sai->pdata->pclk);
 201
 202	return ret;
 203}
 204
 205static int stm32_sai_sub_reg_wr(struct stm32_sai_sub_data *sai,
 206				unsigned int reg, unsigned int mask,
 207				unsigned int val)
 208{
 209	int ret;
 210
 211	ret = clk_enable(sai->pdata->pclk);
 212	if (ret < 0)
 213		return ret;
 214
 215	ret = regmap_write_bits(sai->regmap, reg, mask, val);
 216
 217	clk_disable(sai->pdata->pclk);
 218
 219	return ret;
 220}
 221
 222static int stm32_sai_sub_reg_rd(struct stm32_sai_sub_data *sai,
 223				unsigned int reg, unsigned int *val)
 224{
 225	int ret;
 226
 227	ret = clk_enable(sai->pdata->pclk);
 228	if (ret < 0)
 229		return ret;
 230
 231	ret = regmap_read(sai->regmap, reg, val);
 232
 233	clk_disable(sai->pdata->pclk);
 234
 235	return ret;
 236}
 237
 238static const struct regmap_config stm32_sai_sub_regmap_config_f4 = {
 239	.reg_bits = 32,
 240	.reg_stride = 4,
 241	.val_bits = 32,
 242	.max_register = STM_SAI_DR_REGX,
 243	.readable_reg = stm32_sai_sub_readable_reg,
 244	.volatile_reg = stm32_sai_sub_volatile_reg,
 245	.writeable_reg = stm32_sai_sub_writeable_reg,
 246	.fast_io = true,
 247	.cache_type = REGCACHE_FLAT,
 248};
 249
 250static const struct regmap_config stm32_sai_sub_regmap_config_h7 = {
 251	.reg_bits = 32,
 252	.reg_stride = 4,
 253	.val_bits = 32,
 254	.max_register = STM_SAI_PDMLY_REGX,
 255	.readable_reg = stm32_sai_sub_readable_reg,
 256	.volatile_reg = stm32_sai_sub_volatile_reg,
 257	.writeable_reg = stm32_sai_sub_writeable_reg,
 258	.fast_io = true,
 259	.cache_type = REGCACHE_FLAT,
 260};
 261
 262static int snd_pcm_iec958_info(struct snd_kcontrol *kcontrol,
 263			       struct snd_ctl_elem_info *uinfo)
 264{
 265	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
 266	uinfo->count = 1;
 267
 268	return 0;
 269}
 270
 271static int snd_pcm_iec958_get(struct snd_kcontrol *kcontrol,
 272			      struct snd_ctl_elem_value *uctl)
 273{
 274	struct stm32_sai_sub_data *sai = snd_kcontrol_chip(kcontrol);
 275
 276	mutex_lock(&sai->ctrl_lock);
 277	memcpy(uctl->value.iec958.status, sai->iec958.status, 4);
 278	mutex_unlock(&sai->ctrl_lock);
 279
 280	return 0;
 281}
 282
 283static int snd_pcm_iec958_put(struct snd_kcontrol *kcontrol,
 284			      struct snd_ctl_elem_value *uctl)
 285{
 286	struct stm32_sai_sub_data *sai = snd_kcontrol_chip(kcontrol);
 287
 288	mutex_lock(&sai->ctrl_lock);
 289	memcpy(sai->iec958.status, uctl->value.iec958.status, 4);
 290	mutex_unlock(&sai->ctrl_lock);
 291
 292	return 0;
 293}
 294
 295static const struct snd_kcontrol_new iec958_ctls = {
 296	.access = (SNDRV_CTL_ELEM_ACCESS_READWRITE |
 297			SNDRV_CTL_ELEM_ACCESS_VOLATILE),
 298	.iface = SNDRV_CTL_ELEM_IFACE_PCM,
 299	.name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT),
 300	.info = snd_pcm_iec958_info,
 301	.get = snd_pcm_iec958_get,
 302	.put = snd_pcm_iec958_put,
 303};
 304
 305struct stm32_sai_mclk_data {
 306	struct clk_hw hw;
 307	unsigned long freq;
 308	struct stm32_sai_sub_data *sai_data;
 309};
 310
 311#define to_mclk_data(_hw) container_of(_hw, struct stm32_sai_mclk_data, hw)
 312#define STM32_SAI_MAX_CLKS 1
 313
 314static int stm32_sai_get_clk_div(struct stm32_sai_sub_data *sai,
 315				 unsigned long input_rate,
 316				 unsigned long output_rate)
 317{
 318	int version = sai->pdata->conf.version;
 319	int div;
 320
 321	div = DIV_ROUND_CLOSEST(input_rate, output_rate);
 322	if (div > SAI_XCR1_MCKDIV_MAX(version)) {
 323		dev_err(&sai->pdev->dev, "Divider %d out of range\n", div);
 324		return -EINVAL;
 325	}
 326	dev_dbg(&sai->pdev->dev, "SAI divider %d\n", div);
 327
 328	if (input_rate % div)
 329		dev_dbg(&sai->pdev->dev,
 330			"Rate not accurate. requested (%ld), actual (%ld)\n",
 331			output_rate, input_rate / div);
 332
 333	return div;
 334}
 335
 336static int stm32_sai_set_clk_div(struct stm32_sai_sub_data *sai,
 337				 unsigned int div)
 338{
 339	int version = sai->pdata->conf.version;
 340	int ret, cr1, mask;
 341
 342	if (div > SAI_XCR1_MCKDIV_MAX(version)) {
 343		dev_err(&sai->pdev->dev, "Divider %d out of range\n", div);
 344		return -EINVAL;
 345	}
 346
 347	mask = SAI_XCR1_MCKDIV_MASK(SAI_XCR1_MCKDIV_WIDTH(version));
 348	cr1 = SAI_XCR1_MCKDIV_SET(div);
 349	ret = stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX, mask, cr1);
 350	if (ret < 0)
 351		dev_err(&sai->pdev->dev, "Failed to update CR1 register\n");
 352
 353	return ret;
 354}
 355
 356static int stm32_sai_set_parent_clock(struct stm32_sai_sub_data *sai,
 357				      unsigned int rate)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 358{
 359	struct platform_device *pdev = sai->pdev;
 360	struct clk *parent_clk = sai->pdata->clk_x8k;
 361	int ret;
 362
 363	if (!(rate % SAI_RATE_11K))
 364		parent_clk = sai->pdata->clk_x11k;
 365
 366	ret = clk_set_parent(sai->sai_ck, parent_clk);
 367	if (ret)
 368		dev_err(&pdev->dev, " Error %d setting sai_ck parent clock. %s",
 369			ret, ret == -EBUSY ?
 370			"Active stream rates conflict\n" : "\n");
 371
 372	return ret;
 373}
 374
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 375static long stm32_sai_mclk_round_rate(struct clk_hw *hw, unsigned long rate,
 376				      unsigned long *prate)
 377{
 378	struct stm32_sai_mclk_data *mclk = to_mclk_data(hw);
 379	struct stm32_sai_sub_data *sai = mclk->sai_data;
 380	int div;
 381
 382	div = stm32_sai_get_clk_div(sai, *prate, rate);
 383	if (div < 0)
 384		return div;
 385
 386	mclk->freq = *prate / div;
 387
 388	return mclk->freq;
 389}
 390
 391static unsigned long stm32_sai_mclk_recalc_rate(struct clk_hw *hw,
 392						unsigned long parent_rate)
 393{
 394	struct stm32_sai_mclk_data *mclk = to_mclk_data(hw);
 395
 396	return mclk->freq;
 397}
 398
 399static int stm32_sai_mclk_set_rate(struct clk_hw *hw, unsigned long rate,
 400				   unsigned long parent_rate)
 401{
 402	struct stm32_sai_mclk_data *mclk = to_mclk_data(hw);
 403	struct stm32_sai_sub_data *sai = mclk->sai_data;
 404	int div, ret;
 405
 406	div = stm32_sai_get_clk_div(sai, parent_rate, rate);
 407	if (div < 0)
 408		return div;
 409
 410	ret = stm32_sai_set_clk_div(sai, div);
 411	if (ret)
 412		return ret;
 413
 414	mclk->freq = rate;
 415
 416	return 0;
 417}
 418
 419static int stm32_sai_mclk_enable(struct clk_hw *hw)
 420{
 421	struct stm32_sai_mclk_data *mclk = to_mclk_data(hw);
 422	struct stm32_sai_sub_data *sai = mclk->sai_data;
 423
 424	dev_dbg(&sai->pdev->dev, "Enable master clock\n");
 425
 426	return stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX,
 427				    SAI_XCR1_MCKEN, SAI_XCR1_MCKEN);
 428}
 429
 430static void stm32_sai_mclk_disable(struct clk_hw *hw)
 431{
 432	struct stm32_sai_mclk_data *mclk = to_mclk_data(hw);
 433	struct stm32_sai_sub_data *sai = mclk->sai_data;
 434
 435	dev_dbg(&sai->pdev->dev, "Disable master clock\n");
 436
 437	stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX, SAI_XCR1_MCKEN, 0);
 438}
 439
 440static const struct clk_ops mclk_ops = {
 441	.enable = stm32_sai_mclk_enable,
 442	.disable = stm32_sai_mclk_disable,
 443	.recalc_rate = stm32_sai_mclk_recalc_rate,
 444	.round_rate = stm32_sai_mclk_round_rate,
 445	.set_rate = stm32_sai_mclk_set_rate,
 446};
 447
 448static int stm32_sai_add_mclk_provider(struct stm32_sai_sub_data *sai)
 449{
 450	struct clk_hw *hw;
 451	struct stm32_sai_mclk_data *mclk;
 452	struct device *dev = &sai->pdev->dev;
 453	const char *pname = __clk_get_name(sai->sai_ck);
 454	char *mclk_name, *p, *s = (char *)pname;
 455	int ret, i = 0;
 456
 457	mclk = devm_kzalloc(dev, sizeof(*mclk), GFP_KERNEL);
 458	if (!mclk)
 459		return -ENOMEM;
 460
 461	mclk_name = devm_kcalloc(dev, sizeof(char),
 462				 SAI_MCLK_NAME_LEN, GFP_KERNEL);
 463	if (!mclk_name)
 464		return -ENOMEM;
 465
 466	/*
 467	 * Forge mclk clock name from parent clock name and suffix.
 468	 * String after "_" char is stripped in parent name.
 469	 */
 470	p = mclk_name;
 471	while (*s && *s != '_' && (i < (SAI_MCLK_NAME_LEN - 7))) {
 472		*p++ = *s++;
 473		i++;
 474	}
 475	STM_SAI_IS_SUB_A(sai) ? strcat(p, "a_mclk") : strcat(p, "b_mclk");
 476
 477	mclk->hw.init = CLK_HW_INIT(mclk_name, pname, &mclk_ops, 0);
 478	mclk->sai_data = sai;
 479	hw = &mclk->hw;
 480
 481	dev_dbg(dev, "Register master clock %s\n", mclk_name);
 482	ret = devm_clk_hw_register(&sai->pdev->dev, hw);
 483	if (ret) {
 484		dev_err(dev, "mclk register returned %d\n", ret);
 485		return ret;
 486	}
 487	sai->sai_mclk = hw->clk;
 488
 489	/* register mclk provider */
 490	return devm_of_clk_add_hw_provider(dev, of_clk_hw_simple_get, hw);
 491}
 492
 493static irqreturn_t stm32_sai_isr(int irq, void *devid)
 494{
 495	struct stm32_sai_sub_data *sai = (struct stm32_sai_sub_data *)devid;
 496	struct platform_device *pdev = sai->pdev;
 497	unsigned int sr, imr, flags;
 498	snd_pcm_state_t status = SNDRV_PCM_STATE_RUNNING;
 499
 500	stm32_sai_sub_reg_rd(sai, STM_SAI_IMR_REGX, &imr);
 501	stm32_sai_sub_reg_rd(sai, STM_SAI_SR_REGX, &sr);
 502
 503	flags = sr & imr;
 504	if (!flags)
 505		return IRQ_NONE;
 506
 507	stm32_sai_sub_reg_wr(sai, STM_SAI_CLRFR_REGX, SAI_XCLRFR_MASK,
 508			     SAI_XCLRFR_MASK);
 509
 510	if (!sai->substream) {
 511		dev_err(&pdev->dev, "Device stopped. Spurious IRQ 0x%x\n", sr);
 512		return IRQ_NONE;
 513	}
 514
 515	if (flags & SAI_XIMR_OVRUDRIE) {
 516		dev_err(&pdev->dev, "IRQ %s\n",
 517			STM_SAI_IS_PLAYBACK(sai) ? "underrun" : "overrun");
 518		status = SNDRV_PCM_STATE_XRUN;
 519	}
 520
 521	if (flags & SAI_XIMR_MUTEDETIE)
 522		dev_dbg(&pdev->dev, "IRQ mute detected\n");
 523
 524	if (flags & SAI_XIMR_WCKCFGIE) {
 525		dev_err(&pdev->dev, "IRQ wrong clock configuration\n");
 526		status = SNDRV_PCM_STATE_DISCONNECTED;
 527	}
 528
 529	if (flags & SAI_XIMR_CNRDYIE)
 530		dev_err(&pdev->dev, "IRQ Codec not ready\n");
 531
 532	if (flags & SAI_XIMR_AFSDETIE) {
 533		dev_err(&pdev->dev, "IRQ Anticipated frame synchro\n");
 534		status = SNDRV_PCM_STATE_XRUN;
 535	}
 536
 537	if (flags & SAI_XIMR_LFSDETIE) {
 538		dev_err(&pdev->dev, "IRQ Late frame synchro\n");
 539		status = SNDRV_PCM_STATE_XRUN;
 540	}
 541
 542	spin_lock(&sai->irq_lock);
 543	if (status != SNDRV_PCM_STATE_RUNNING && sai->substream)
 544		snd_pcm_stop_xrun(sai->substream);
 545	spin_unlock(&sai->irq_lock);
 546
 547	return IRQ_HANDLED;
 548}
 549
 550static int stm32_sai_set_sysclk(struct snd_soc_dai *cpu_dai,
 551				int clk_id, unsigned int freq, int dir)
 552{
 553	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
 554	int ret;
 555
 556	if (dir == SND_SOC_CLOCK_OUT && sai->sai_mclk) {
 557		ret = stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX,
 558					   SAI_XCR1_NODIV,
 559					 freq ? 0 : SAI_XCR1_NODIV);
 560		if (ret < 0)
 561			return ret;
 562
 563		/* Assume shutdown if requested frequency is 0Hz */
 564		if (!freq) {
 565			/* Release mclk rate only if rate was actually set */
 566			if (sai->mclk_rate) {
 567				clk_rate_exclusive_put(sai->sai_mclk);
 568				sai->mclk_rate = 0;
 569			}
 
 
 
 
 570			return 0;
 571		}
 572
 573		/* If master clock is used, set parent clock now */
 574		ret = stm32_sai_set_parent_clock(sai, freq);
 575		if (ret)
 576			return ret;
 577
 578		ret = clk_set_rate_exclusive(sai->sai_mclk, freq);
 579		if (ret) {
 580			dev_err(cpu_dai->dev,
 581				ret == -EBUSY ?
 582				"Active streams have incompatible rates" :
 583				"Could not set mclk rate\n");
 584			return ret;
 585		}
 586
 587		dev_dbg(cpu_dai->dev, "SAI MCLK frequency is %uHz\n", freq);
 588		sai->mclk_rate = freq;
 589	}
 590
 591	return 0;
 592}
 593
 594static int stm32_sai_set_dai_tdm_slot(struct snd_soc_dai *cpu_dai, u32 tx_mask,
 595				      u32 rx_mask, int slots, int slot_width)
 596{
 597	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
 598	int slotr, slotr_mask, slot_size;
 599
 600	if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
 601		dev_warn(cpu_dai->dev, "Slot setting relevant only for TDM\n");
 602		return 0;
 603	}
 604
 605	dev_dbg(cpu_dai->dev, "Masks tx/rx:%#x/%#x, slots:%d, width:%d\n",
 606		tx_mask, rx_mask, slots, slot_width);
 607
 608	switch (slot_width) {
 609	case 16:
 610		slot_size = SAI_SLOT_SIZE_16;
 611		break;
 612	case 32:
 613		slot_size = SAI_SLOT_SIZE_32;
 614		break;
 615	default:
 616		slot_size = SAI_SLOT_SIZE_AUTO;
 617		break;
 618	}
 619
 620	slotr = SAI_XSLOTR_SLOTSZ_SET(slot_size) |
 621		SAI_XSLOTR_NBSLOT_SET(slots - 1);
 622	slotr_mask = SAI_XSLOTR_SLOTSZ_MASK | SAI_XSLOTR_NBSLOT_MASK;
 623
 624	/* tx/rx mask set in machine init, if slot number defined in DT */
 625	if (STM_SAI_IS_PLAYBACK(sai)) {
 626		sai->slot_mask = tx_mask;
 627		slotr |= SAI_XSLOTR_SLOTEN_SET(tx_mask);
 628	}
 629
 630	if (STM_SAI_IS_CAPTURE(sai)) {
 631		sai->slot_mask = rx_mask;
 632		slotr |= SAI_XSLOTR_SLOTEN_SET(rx_mask);
 633	}
 634
 635	slotr_mask |= SAI_XSLOTR_SLOTEN_MASK;
 636
 637	stm32_sai_sub_reg_up(sai, STM_SAI_SLOTR_REGX, slotr_mask, slotr);
 638
 639	sai->slot_width = slot_width;
 640	sai->slots = slots;
 641
 642	return 0;
 643}
 644
 645static int stm32_sai_set_dai_fmt(struct snd_soc_dai *cpu_dai, unsigned int fmt)
 646{
 647	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
 648	int cr1, frcr = 0;
 649	int cr1_mask, frcr_mask = 0;
 650	int ret;
 651
 652	dev_dbg(cpu_dai->dev, "fmt %x\n", fmt);
 653
 654	/* Do not generate master by default */
 655	cr1 = SAI_XCR1_NODIV;
 656	cr1_mask = SAI_XCR1_NODIV;
 657
 658	cr1_mask |= SAI_XCR1_PRTCFG_MASK;
 659	if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
 660		cr1 |= SAI_XCR1_PRTCFG_SET(SAI_SPDIF_PROTOCOL);
 661		goto conf_update;
 662	}
 663
 664	cr1 |= SAI_XCR1_PRTCFG_SET(SAI_FREE_PROTOCOL);
 665
 666	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
 667	/* SCK active high for all protocols */
 668	case SND_SOC_DAIFMT_I2S:
 669		cr1 |= SAI_XCR1_CKSTR;
 670		frcr |= SAI_XFRCR_FSOFF | SAI_XFRCR_FSDEF;
 671		break;
 672	/* Left justified */
 673	case SND_SOC_DAIFMT_MSB:
 674		frcr |= SAI_XFRCR_FSPOL | SAI_XFRCR_FSDEF;
 675		break;
 676	/* Right justified */
 677	case SND_SOC_DAIFMT_LSB:
 678		frcr |= SAI_XFRCR_FSPOL | SAI_XFRCR_FSDEF;
 679		break;
 680	case SND_SOC_DAIFMT_DSP_A:
 681		frcr |= SAI_XFRCR_FSPOL | SAI_XFRCR_FSOFF;
 682		break;
 683	case SND_SOC_DAIFMT_DSP_B:
 684		frcr |= SAI_XFRCR_FSPOL;
 685		break;
 686	default:
 687		dev_err(cpu_dai->dev, "Unsupported protocol %#x\n",
 688			fmt & SND_SOC_DAIFMT_FORMAT_MASK);
 689		return -EINVAL;
 690	}
 691
 692	cr1_mask |= SAI_XCR1_CKSTR;
 693	frcr_mask |= SAI_XFRCR_FSPOL | SAI_XFRCR_FSOFF |
 694		     SAI_XFRCR_FSDEF;
 695
 696	/* DAI clock strobing. Invert setting previously set */
 697	switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
 698	case SND_SOC_DAIFMT_NB_NF:
 699		break;
 700	case SND_SOC_DAIFMT_IB_NF:
 701		cr1 ^= SAI_XCR1_CKSTR;
 702		break;
 703	case SND_SOC_DAIFMT_NB_IF:
 704		frcr ^= SAI_XFRCR_FSPOL;
 705		break;
 706	case SND_SOC_DAIFMT_IB_IF:
 707		/* Invert fs & sck */
 708		cr1 ^= SAI_XCR1_CKSTR;
 709		frcr ^= SAI_XFRCR_FSPOL;
 710		break;
 711	default:
 712		dev_err(cpu_dai->dev, "Unsupported strobing %#x\n",
 713			fmt & SND_SOC_DAIFMT_INV_MASK);
 714		return -EINVAL;
 715	}
 716	cr1_mask |= SAI_XCR1_CKSTR;
 717	frcr_mask |= SAI_XFRCR_FSPOL;
 718
 719	stm32_sai_sub_reg_up(sai, STM_SAI_FRCR_REGX, frcr_mask, frcr);
 720
 721	/* DAI clock master masks */
 722	switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
 723	case SND_SOC_DAIFMT_CBM_CFM:
 724		/* codec is master */
 725		cr1 |= SAI_XCR1_SLAVE;
 726		sai->master = false;
 727		break;
 728	case SND_SOC_DAIFMT_CBS_CFS:
 729		sai->master = true;
 730		break;
 731	default:
 732		dev_err(cpu_dai->dev, "Unsupported mode %#x\n",
 733			fmt & SND_SOC_DAIFMT_MASTER_MASK);
 734		return -EINVAL;
 735	}
 736
 737	/* Set slave mode if sub-block is synchronized with another SAI */
 738	if (sai->sync) {
 739		dev_dbg(cpu_dai->dev, "Synchronized SAI configured as slave\n");
 740		cr1 |= SAI_XCR1_SLAVE;
 741		sai->master = false;
 742	}
 743
 744	cr1_mask |= SAI_XCR1_SLAVE;
 745
 746conf_update:
 747	ret = stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX, cr1_mask, cr1);
 748	if (ret < 0) {
 749		dev_err(cpu_dai->dev, "Failed to update CR1 register\n");
 750		return ret;
 751	}
 752
 753	sai->fmt = fmt;
 754
 755	return 0;
 756}
 757
 758static int stm32_sai_startup(struct snd_pcm_substream *substream,
 759			     struct snd_soc_dai *cpu_dai)
 760{
 761	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
 762	int imr, cr2, ret;
 763	unsigned long flags;
 764
 765	spin_lock_irqsave(&sai->irq_lock, flags);
 766	sai->substream = substream;
 767	spin_unlock_irqrestore(&sai->irq_lock, flags);
 768
 769	if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
 770		snd_pcm_hw_constraint_mask64(substream->runtime,
 771					     SNDRV_PCM_HW_PARAM_FORMAT,
 772					     SNDRV_PCM_FMTBIT_S32_LE);
 773		snd_pcm_hw_constraint_single(substream->runtime,
 774					     SNDRV_PCM_HW_PARAM_CHANNELS, 2);
 775	}
 776
 777	ret = clk_prepare_enable(sai->sai_ck);
 778	if (ret < 0) {
 779		dev_err(cpu_dai->dev, "Failed to enable clock: %d\n", ret);
 780		return ret;
 781	}
 782
 783	/* Enable ITs */
 784	stm32_sai_sub_reg_wr(sai, STM_SAI_CLRFR_REGX,
 785			     SAI_XCLRFR_MASK, SAI_XCLRFR_MASK);
 786
 787	imr = SAI_XIMR_OVRUDRIE;
 788	if (STM_SAI_IS_CAPTURE(sai)) {
 789		stm32_sai_sub_reg_rd(sai, STM_SAI_CR2_REGX, &cr2);
 790		if (cr2 & SAI_XCR2_MUTECNT_MASK)
 791			imr |= SAI_XIMR_MUTEDETIE;
 792	}
 793
 794	if (sai->master)
 795		imr |= SAI_XIMR_WCKCFGIE;
 796	else
 797		imr |= SAI_XIMR_AFSDETIE | SAI_XIMR_LFSDETIE;
 798
 799	stm32_sai_sub_reg_up(sai, STM_SAI_IMR_REGX,
 800			     SAI_XIMR_MASK, imr);
 801
 802	return 0;
 803}
 804
 805static int stm32_sai_set_config(struct snd_soc_dai *cpu_dai,
 806				struct snd_pcm_substream *substream,
 807				struct snd_pcm_hw_params *params)
 808{
 809	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
 810	int cr1, cr1_mask, ret;
 811
 812	/*
 813	 * DMA bursts increment is set to 4 words.
 814	 * SAI fifo threshold is set to half fifo, to keep enough space
 815	 * for DMA incoming bursts.
 816	 */
 817	stm32_sai_sub_reg_wr(sai, STM_SAI_CR2_REGX,
 818			     SAI_XCR2_FFLUSH | SAI_XCR2_FTH_MASK,
 819			     SAI_XCR2_FFLUSH |
 820			     SAI_XCR2_FTH_SET(STM_SAI_FIFO_TH_HALF));
 821
 822	/* DS bits in CR1 not set for SPDIF (size forced to 24 bits).*/
 823	if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
 824		sai->spdif_frm_cnt = 0;
 825		return 0;
 826	}
 827
 828	/* Mode, data format and channel config */
 829	cr1_mask = SAI_XCR1_DS_MASK;
 830	switch (params_format(params)) {
 831	case SNDRV_PCM_FORMAT_S8:
 832		cr1 = SAI_XCR1_DS_SET(SAI_DATASIZE_8);
 833		break;
 834	case SNDRV_PCM_FORMAT_S16_LE:
 835		cr1 = SAI_XCR1_DS_SET(SAI_DATASIZE_16);
 836		break;
 837	case SNDRV_PCM_FORMAT_S32_LE:
 838		cr1 = SAI_XCR1_DS_SET(SAI_DATASIZE_32);
 839		break;
 840	default:
 841		dev_err(cpu_dai->dev, "Data format not supported\n");
 842		return -EINVAL;
 843	}
 844
 845	cr1_mask |= SAI_XCR1_MONO;
 846	if ((sai->slots == 2) && (params_channels(params) == 1))
 847		cr1 |= SAI_XCR1_MONO;
 848
 849	ret = stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX, cr1_mask, cr1);
 850	if (ret < 0) {
 851		dev_err(cpu_dai->dev, "Failed to update CR1 register\n");
 852		return ret;
 853	}
 854
 855	return 0;
 856}
 857
 858static int stm32_sai_set_slots(struct snd_soc_dai *cpu_dai)
 859{
 860	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
 861	int slotr, slot_sz;
 862
 863	stm32_sai_sub_reg_rd(sai, STM_SAI_SLOTR_REGX, &slotr);
 864
 865	/*
 866	 * If SLOTSZ is set to auto in SLOTR, align slot width on data size
 867	 * By default slot width = data size, if not forced from DT
 868	 */
 869	slot_sz = slotr & SAI_XSLOTR_SLOTSZ_MASK;
 870	if (slot_sz == SAI_XSLOTR_SLOTSZ_SET(SAI_SLOT_SIZE_AUTO))
 871		sai->slot_width = sai->data_size;
 872
 873	if (sai->slot_width < sai->data_size) {
 874		dev_err(cpu_dai->dev,
 875			"Data size %d larger than slot width\n",
 876			sai->data_size);
 877		return -EINVAL;
 878	}
 879
 880	/* Slot number is set to 2, if not specified in DT */
 881	if (!sai->slots)
 882		sai->slots = 2;
 883
 884	/* The number of slots in the audio frame is equal to NBSLOT[3:0] + 1*/
 885	stm32_sai_sub_reg_up(sai, STM_SAI_SLOTR_REGX,
 886			     SAI_XSLOTR_NBSLOT_MASK,
 887			     SAI_XSLOTR_NBSLOT_SET((sai->slots - 1)));
 888
 889	/* Set default slots mask if not already set from DT */
 890	if (!(slotr & SAI_XSLOTR_SLOTEN_MASK)) {
 891		sai->slot_mask = (1 << sai->slots) - 1;
 892		stm32_sai_sub_reg_up(sai,
 893				     STM_SAI_SLOTR_REGX, SAI_XSLOTR_SLOTEN_MASK,
 894				     SAI_XSLOTR_SLOTEN_SET(sai->slot_mask));
 895	}
 896
 897	dev_dbg(cpu_dai->dev, "Slots %d, slot width %d\n",
 898		sai->slots, sai->slot_width);
 899
 900	return 0;
 901}
 902
 903static void stm32_sai_set_frame(struct snd_soc_dai *cpu_dai)
 904{
 905	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
 906	int fs_active, offset, format;
 907	int frcr, frcr_mask;
 908
 909	format = sai->fmt & SND_SOC_DAIFMT_FORMAT_MASK;
 910	sai->fs_length = sai->slot_width * sai->slots;
 911
 912	fs_active = sai->fs_length / 2;
 913	if ((format == SND_SOC_DAIFMT_DSP_A) ||
 914	    (format == SND_SOC_DAIFMT_DSP_B))
 915		fs_active = 1;
 916
 917	frcr = SAI_XFRCR_FRL_SET((sai->fs_length - 1));
 918	frcr |= SAI_XFRCR_FSALL_SET((fs_active - 1));
 919	frcr_mask = SAI_XFRCR_FRL_MASK | SAI_XFRCR_FSALL_MASK;
 920
 921	dev_dbg(cpu_dai->dev, "Frame length %d, frame active %d\n",
 922		sai->fs_length, fs_active);
 923
 924	stm32_sai_sub_reg_up(sai, STM_SAI_FRCR_REGX, frcr_mask, frcr);
 925
 926	if ((sai->fmt & SND_SOC_DAIFMT_FORMAT_MASK) == SND_SOC_DAIFMT_LSB) {
 927		offset = sai->slot_width - sai->data_size;
 928
 929		stm32_sai_sub_reg_up(sai, STM_SAI_SLOTR_REGX,
 930				     SAI_XSLOTR_FBOFF_MASK,
 931				     SAI_XSLOTR_FBOFF_SET(offset));
 932	}
 933}
 934
 935static void stm32_sai_init_iec958_status(struct stm32_sai_sub_data *sai)
 936{
 937	unsigned char *cs = sai->iec958.status;
 938
 939	cs[0] = IEC958_AES0_CON_NOT_COPYRIGHT | IEC958_AES0_CON_EMPHASIS_NONE;
 940	cs[1] = IEC958_AES1_CON_GENERAL;
 941	cs[2] = IEC958_AES2_CON_SOURCE_UNSPEC | IEC958_AES2_CON_CHANNEL_UNSPEC;
 942	cs[3] = IEC958_AES3_CON_CLOCK_1000PPM | IEC958_AES3_CON_FS_NOTID;
 943}
 944
 945static void stm32_sai_set_iec958_status(struct stm32_sai_sub_data *sai,
 946					struct snd_pcm_runtime *runtime)
 947{
 948	if (!runtime)
 949		return;
 950
 951	/* Force the sample rate according to runtime rate */
 952	mutex_lock(&sai->ctrl_lock);
 953	switch (runtime->rate) {
 954	case 22050:
 955		sai->iec958.status[3] = IEC958_AES3_CON_FS_22050;
 956		break;
 957	case 44100:
 958		sai->iec958.status[3] = IEC958_AES3_CON_FS_44100;
 959		break;
 960	case 88200:
 961		sai->iec958.status[3] = IEC958_AES3_CON_FS_88200;
 962		break;
 963	case 176400:
 964		sai->iec958.status[3] = IEC958_AES3_CON_FS_176400;
 965		break;
 966	case 24000:
 967		sai->iec958.status[3] = IEC958_AES3_CON_FS_24000;
 968		break;
 969	case 48000:
 970		sai->iec958.status[3] = IEC958_AES3_CON_FS_48000;
 971		break;
 972	case 96000:
 973		sai->iec958.status[3] = IEC958_AES3_CON_FS_96000;
 974		break;
 975	case 192000:
 976		sai->iec958.status[3] = IEC958_AES3_CON_FS_192000;
 977		break;
 978	case 32000:
 979		sai->iec958.status[3] = IEC958_AES3_CON_FS_32000;
 980		break;
 981	default:
 982		sai->iec958.status[3] = IEC958_AES3_CON_FS_NOTID;
 983		break;
 984	}
 985	mutex_unlock(&sai->ctrl_lock);
 986}
 987
 988static int stm32_sai_configure_clock(struct snd_soc_dai *cpu_dai,
 989				     struct snd_pcm_hw_params *params)
 990{
 991	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
 992	int div = 0, cr1 = 0;
 993	int sai_clk_rate, mclk_ratio, den;
 994	unsigned int rate = params_rate(params);
 995	int ret;
 996
 997	if (!sai->sai_mclk) {
 998		ret = stm32_sai_set_parent_clock(sai, rate);
 999		if (ret)
1000			return ret;
1001	}
1002	sai_clk_rate = clk_get_rate(sai->sai_ck);
1003
1004	if (STM_SAI_IS_F4(sai->pdata)) {
1005		/* mclk on (NODIV=0)
1006		 *   mclk_rate = 256 * fs
1007		 *   MCKDIV = 0 if sai_ck < 3/2 * mclk_rate
1008		 *   MCKDIV = sai_ck / (2 * mclk_rate) otherwise
1009		 * mclk off (NODIV=1)
1010		 *   MCKDIV ignored. sck = sai_ck
1011		 */
1012		if (!sai->mclk_rate)
1013			return 0;
1014
1015		if (2 * sai_clk_rate >= 3 * sai->mclk_rate) {
1016			div = stm32_sai_get_clk_div(sai, sai_clk_rate,
1017						    2 * sai->mclk_rate);
1018			if (div < 0)
1019				return div;
1020		}
1021	} else {
1022		/*
1023		 * TDM mode :
1024		 *   mclk on
1025		 *      MCKDIV = sai_ck / (ws x 256)	(NOMCK=0. OSR=0)
1026		 *      MCKDIV = sai_ck / (ws x 512)	(NOMCK=0. OSR=1)
1027		 *   mclk off
1028		 *      MCKDIV = sai_ck / (frl x ws)	(NOMCK=1)
1029		 * Note: NOMCK/NODIV correspond to same bit.
1030		 */
1031		if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
1032			div = stm32_sai_get_clk_div(sai, sai_clk_rate,
1033						    rate * 128);
1034			if (div < 0)
1035				return div;
1036		} else {
1037			if (sai->mclk_rate) {
1038				mclk_ratio = sai->mclk_rate / rate;
1039				if (mclk_ratio == 512) {
1040					cr1 = SAI_XCR1_OSR;
1041				} else if (mclk_ratio != 256) {
1042					dev_err(cpu_dai->dev,
1043						"Wrong mclk ratio %d\n",
1044						mclk_ratio);
1045					return -EINVAL;
1046				}
1047
1048				stm32_sai_sub_reg_up(sai,
1049						     STM_SAI_CR1_REGX,
1050						     SAI_XCR1_OSR, cr1);
1051
1052				div = stm32_sai_get_clk_div(sai, sai_clk_rate,
1053							    sai->mclk_rate);
1054				if (div < 0)
1055					return div;
1056			} else {
1057				/* mclk-fs not set, master clock not active */
1058				den = sai->fs_length * params_rate(params);
1059				div = stm32_sai_get_clk_div(sai, sai_clk_rate,
1060							    den);
1061				if (div < 0)
1062					return div;
1063			}
1064		}
1065	}
1066
1067	return stm32_sai_set_clk_div(sai, div);
1068}
1069
1070static int stm32_sai_hw_params(struct snd_pcm_substream *substream,
1071			       struct snd_pcm_hw_params *params,
1072			       struct snd_soc_dai *cpu_dai)
1073{
1074	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
1075	int ret;
1076
1077	sai->data_size = params_width(params);
1078
1079	if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
1080		/* Rate not already set in runtime structure */
1081		substream->runtime->rate = params_rate(params);
1082		stm32_sai_set_iec958_status(sai, substream->runtime);
1083	} else {
1084		ret = stm32_sai_set_slots(cpu_dai);
1085		if (ret < 0)
1086			return ret;
1087		stm32_sai_set_frame(cpu_dai);
1088	}
1089
1090	ret = stm32_sai_set_config(cpu_dai, substream, params);
1091	if (ret)
1092		return ret;
1093
1094	if (sai->master)
1095		ret = stm32_sai_configure_clock(cpu_dai, params);
1096
1097	return ret;
1098}
1099
1100static int stm32_sai_trigger(struct snd_pcm_substream *substream, int cmd,
1101			     struct snd_soc_dai *cpu_dai)
1102{
1103	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
1104	int ret;
1105
1106	switch (cmd) {
1107	case SNDRV_PCM_TRIGGER_START:
1108	case SNDRV_PCM_TRIGGER_RESUME:
1109	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
1110		dev_dbg(cpu_dai->dev, "Enable DMA and SAI\n");
1111
1112		stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX,
1113				     SAI_XCR1_DMAEN, SAI_XCR1_DMAEN);
1114
1115		/* Enable SAI */
1116		ret = stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX,
1117					   SAI_XCR1_SAIEN, SAI_XCR1_SAIEN);
1118		if (ret < 0)
1119			dev_err(cpu_dai->dev, "Failed to update CR1 register\n");
1120		break;
1121	case SNDRV_PCM_TRIGGER_SUSPEND:
1122	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
1123	case SNDRV_PCM_TRIGGER_STOP:
1124		dev_dbg(cpu_dai->dev, "Disable DMA and SAI\n");
1125
1126		stm32_sai_sub_reg_up(sai, STM_SAI_IMR_REGX,
1127				     SAI_XIMR_MASK, 0);
1128
1129		stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX,
1130				     SAI_XCR1_SAIEN,
1131				     (unsigned int)~SAI_XCR1_SAIEN);
1132
1133		ret = stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX,
1134					   SAI_XCR1_DMAEN,
1135					   (unsigned int)~SAI_XCR1_DMAEN);
1136		if (ret < 0)
1137			dev_err(cpu_dai->dev, "Failed to update CR1 register\n");
1138
1139		if (STM_SAI_PROTOCOL_IS_SPDIF(sai))
1140			sai->spdif_frm_cnt = 0;
1141		break;
1142	default:
1143		return -EINVAL;
1144	}
1145
1146	return ret;
1147}
1148
1149static void stm32_sai_shutdown(struct snd_pcm_substream *substream,
1150			       struct snd_soc_dai *cpu_dai)
1151{
1152	struct stm32_sai_sub_data *sai = snd_soc_dai_get_drvdata(cpu_dai);
1153	unsigned long flags;
1154
1155	stm32_sai_sub_reg_up(sai, STM_SAI_IMR_REGX, SAI_XIMR_MASK, 0);
1156
1157	clk_disable_unprepare(sai->sai_ck);
1158
 
 
 
 
 
 
 
 
1159	spin_lock_irqsave(&sai->irq_lock, flags);
1160	sai->substream = NULL;
1161	spin_unlock_irqrestore(&sai->irq_lock, flags);
1162}
1163
1164static int stm32_sai_pcm_new(struct snd_soc_pcm_runtime *rtd,
1165			     struct snd_soc_dai *cpu_dai)
1166{
1167	struct stm32_sai_sub_data *sai = dev_get_drvdata(cpu_dai->dev);
1168	struct snd_kcontrol_new knew = iec958_ctls;
1169
1170	if (STM_SAI_PROTOCOL_IS_SPDIF(sai)) {
1171		dev_dbg(&sai->pdev->dev, "%s: register iec controls", __func__);
1172		knew.device = rtd->pcm->device;
1173		return snd_ctl_add(rtd->pcm->card, snd_ctl_new1(&knew, sai));
1174	}
1175
1176	return 0;
1177}
1178
1179static int stm32_sai_dai_probe(struct snd_soc_dai *cpu_dai)
1180{
1181	struct stm32_sai_sub_data *sai = dev_get_drvdata(cpu_dai->dev);
1182	int cr1 = 0, cr1_mask, ret;
1183
1184	sai->cpu_dai = cpu_dai;
1185
1186	sai->dma_params.addr = (dma_addr_t)(sai->phys_addr + STM_SAI_DR_REGX);
1187	/*
1188	 * DMA supports 4, 8 or 16 burst sizes. Burst size 4 is the best choice,
1189	 * as it allows bytes, half-word and words transfers. (See DMA fifos
1190	 * constraints).
1191	 */
1192	sai->dma_params.maxburst = 4;
1193	if (sai->pdata->conf.fifo_size < 8)
1194		sai->dma_params.maxburst = 1;
1195	/* Buswidth will be set by framework at runtime */
1196	sai->dma_params.addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
1197
1198	if (STM_SAI_IS_PLAYBACK(sai))
1199		snd_soc_dai_init_dma_data(cpu_dai, &sai->dma_params, NULL);
1200	else
1201		snd_soc_dai_init_dma_data(cpu_dai, NULL, &sai->dma_params);
1202
1203	/* Next settings are not relevant for spdif mode */
1204	if (STM_SAI_PROTOCOL_IS_SPDIF(sai))
1205		return 0;
1206
1207	cr1_mask = SAI_XCR1_RX_TX;
1208	if (STM_SAI_IS_CAPTURE(sai))
1209		cr1 |= SAI_XCR1_RX_TX;
1210
1211	/* Configure synchronization */
1212	if (sai->sync == SAI_SYNC_EXTERNAL) {
1213		/* Configure synchro client and provider */
1214		ret = sai->pdata->set_sync(sai->pdata, sai->np_sync_provider,
1215					   sai->synco, sai->synci);
1216		if (ret)
1217			return ret;
1218	}
1219
1220	cr1_mask |= SAI_XCR1_SYNCEN_MASK;
1221	cr1 |= SAI_XCR1_SYNCEN_SET(sai->sync);
1222
1223	return stm32_sai_sub_reg_up(sai, STM_SAI_CR1_REGX, cr1_mask, cr1);
1224}
1225
1226static const struct snd_soc_dai_ops stm32_sai_pcm_dai_ops = {
 
 
 
 
 
 
 
 
 
 
 
 
 
1227	.set_sysclk	= stm32_sai_set_sysclk,
1228	.set_fmt	= stm32_sai_set_dai_fmt,
1229	.set_tdm_slot	= stm32_sai_set_dai_tdm_slot,
1230	.startup	= stm32_sai_startup,
1231	.hw_params	= stm32_sai_hw_params,
1232	.trigger	= stm32_sai_trigger,
1233	.shutdown	= stm32_sai_shutdown,
1234};
1235
1236static int stm32_sai_pcm_process_spdif(struct snd_pcm_substream *substream,
1237				       int channel, unsigned long hwoff,
1238				       void *buf, unsigned long bytes)
1239{
1240	struct snd_pcm_runtime *runtime = substream->runtime;
1241	struct snd_soc_pcm_runtime *rtd = asoc_substream_to_rtd(substream);
1242	struct snd_soc_dai *cpu_dai = asoc_rtd_to_cpu(rtd, 0);
1243	struct stm32_sai_sub_data *sai = dev_get_drvdata(cpu_dai->dev);
1244	int *ptr = (int *)(runtime->dma_area + hwoff +
1245			   channel * (runtime->dma_bytes / runtime->channels));
1246	ssize_t cnt = bytes_to_samples(runtime, bytes);
1247	unsigned int frm_cnt = sai->spdif_frm_cnt;
1248	unsigned int byte;
1249	unsigned int mask;
1250
1251	do {
1252		*ptr = ((*ptr >> 8) & 0x00ffffff);
1253
1254		/* Set channel status bit */
1255		byte = frm_cnt >> 3;
1256		mask = 1 << (frm_cnt - (byte << 3));
1257		if (sai->iec958.status[byte] & mask)
1258			*ptr |= 0x04000000;
1259		ptr++;
1260
1261		if (!(cnt % 2))
1262			frm_cnt++;
1263
1264		if (frm_cnt == SAI_IEC60958_BLOCK_FRAMES)
1265			frm_cnt = 0;
1266	} while (--cnt);
1267	sai->spdif_frm_cnt = frm_cnt;
1268
1269	return 0;
1270}
1271
1272/* No support of mmap in S/PDIF mode */
1273static const struct snd_pcm_hardware stm32_sai_pcm_hw_spdif = {
1274	.info = SNDRV_PCM_INFO_INTERLEAVED,
1275	.buffer_bytes_max = 8 * PAGE_SIZE,
1276	.period_bytes_min = 1024,
1277	.period_bytes_max = PAGE_SIZE,
1278	.periods_min = 2,
1279	.periods_max = 8,
1280};
1281
1282static const struct snd_pcm_hardware stm32_sai_pcm_hw = {
1283	.info = SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_MMAP,
1284	.buffer_bytes_max = 8 * PAGE_SIZE,
1285	.period_bytes_min = 1024, /* 5ms at 48kHz */
1286	.period_bytes_max = PAGE_SIZE,
1287	.periods_min = 2,
1288	.periods_max = 8,
1289};
1290
1291static struct snd_soc_dai_driver stm32_sai_playback_dai = {
1292		.probe = stm32_sai_dai_probe,
1293		.pcm_new = stm32_sai_pcm_new,
1294		.id = 1, /* avoid call to fmt_single_name() */
1295		.playback = {
1296			.channels_min = 1,
1297			.channels_max = 2,
1298			.rate_min = 8000,
1299			.rate_max = 192000,
1300			.rates = SNDRV_PCM_RATE_CONTINUOUS,
1301			/* DMA does not support 24 bits transfers */
1302			.formats =
1303				SNDRV_PCM_FMTBIT_S8 |
1304				SNDRV_PCM_FMTBIT_S16_LE |
1305				SNDRV_PCM_FMTBIT_S32_LE,
1306		},
1307		.ops = &stm32_sai_pcm_dai_ops,
1308};
1309
1310static struct snd_soc_dai_driver stm32_sai_capture_dai = {
1311		.probe = stm32_sai_dai_probe,
1312		.id = 1, /* avoid call to fmt_single_name() */
1313		.capture = {
1314			.channels_min = 1,
1315			.channels_max = 2,
1316			.rate_min = 8000,
1317			.rate_max = 192000,
1318			.rates = SNDRV_PCM_RATE_CONTINUOUS,
1319			/* DMA does not support 24 bits transfers */
1320			.formats =
1321				SNDRV_PCM_FMTBIT_S8 |
1322				SNDRV_PCM_FMTBIT_S16_LE |
1323				SNDRV_PCM_FMTBIT_S32_LE,
1324		},
1325		.ops = &stm32_sai_pcm_dai_ops,
1326};
1327
1328static const struct snd_dmaengine_pcm_config stm32_sai_pcm_config = {
1329	.pcm_hardware = &stm32_sai_pcm_hw,
1330	.prepare_slave_config = snd_dmaengine_pcm_prepare_slave_config,
1331};
1332
1333static const struct snd_dmaengine_pcm_config stm32_sai_pcm_config_spdif = {
1334	.pcm_hardware = &stm32_sai_pcm_hw_spdif,
1335	.prepare_slave_config = snd_dmaengine_pcm_prepare_slave_config,
1336	.process = stm32_sai_pcm_process_spdif,
1337};
1338
1339static const struct snd_soc_component_driver stm32_component = {
1340	.name = "stm32-sai",
 
1341};
1342
1343static const struct of_device_id stm32_sai_sub_ids[] = {
1344	{ .compatible = "st,stm32-sai-sub-a",
1345	  .data = (void *)STM_SAI_A_ID},
1346	{ .compatible = "st,stm32-sai-sub-b",
1347	  .data = (void *)STM_SAI_B_ID},
1348	{}
1349};
1350MODULE_DEVICE_TABLE(of, stm32_sai_sub_ids);
1351
1352static int stm32_sai_sub_parse_of(struct platform_device *pdev,
1353				  struct stm32_sai_sub_data *sai)
1354{
1355	struct device_node *np = pdev->dev.of_node;
1356	struct resource *res;
1357	void __iomem *base;
1358	struct of_phandle_args args;
1359	int ret;
1360
1361	if (!np)
1362		return -ENODEV;
1363
1364	base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
1365	if (IS_ERR(base))
1366		return PTR_ERR(base);
1367
1368	sai->phys_addr = res->start;
1369
1370	sai->regmap_config = &stm32_sai_sub_regmap_config_f4;
1371	/* Note: PDM registers not available for sub-block B */
1372	if (STM_SAI_HAS_PDM(sai) && STM_SAI_IS_SUB_A(sai))
1373		sai->regmap_config = &stm32_sai_sub_regmap_config_h7;
1374
1375	/*
1376	 * Do not manage peripheral clock through regmap framework as this
1377	 * can lead to circular locking issue with sai master clock provider.
1378	 * Manage peripheral clock directly in driver instead.
1379	 */
1380	sai->regmap = devm_regmap_init_mmio(&pdev->dev, base,
1381					    sai->regmap_config);
1382	if (IS_ERR(sai->regmap)) {
1383		if (PTR_ERR(sai->regmap) != -EPROBE_DEFER)
1384			dev_err(&pdev->dev, "Regmap init error %ld\n",
1385				PTR_ERR(sai->regmap));
1386		return PTR_ERR(sai->regmap);
1387	}
1388
1389	/* Get direction property */
1390	if (of_property_match_string(np, "dma-names", "tx") >= 0) {
1391		sai->dir = SNDRV_PCM_STREAM_PLAYBACK;
1392	} else if (of_property_match_string(np, "dma-names", "rx") >= 0) {
1393		sai->dir = SNDRV_PCM_STREAM_CAPTURE;
1394	} else {
1395		dev_err(&pdev->dev, "Unsupported direction\n");
1396		return -EINVAL;
1397	}
1398
1399	/* Get spdif iec60958 property */
1400	sai->spdif = false;
1401	if (of_get_property(np, "st,iec60958", NULL)) {
1402		if (!STM_SAI_HAS_SPDIF(sai) ||
1403		    sai->dir == SNDRV_PCM_STREAM_CAPTURE) {
1404			dev_err(&pdev->dev, "S/PDIF IEC60958 not supported\n");
1405			return -EINVAL;
1406		}
1407		stm32_sai_init_iec958_status(sai);
1408		sai->spdif = true;
1409		sai->master = true;
1410	}
1411
1412	/* Get synchronization property */
1413	args.np = NULL;
1414	ret = of_parse_phandle_with_fixed_args(np, "st,sync", 1, 0, &args);
1415	if (ret < 0  && ret != -ENOENT) {
1416		dev_err(&pdev->dev, "Failed to get st,sync property\n");
1417		return ret;
1418	}
1419
1420	sai->sync = SAI_SYNC_NONE;
1421	if (args.np) {
1422		if (args.np == np) {
1423			dev_err(&pdev->dev, "%pOFn sync own reference\n", np);
1424			of_node_put(args.np);
1425			return -EINVAL;
1426		}
1427
1428		sai->np_sync_provider  = of_get_parent(args.np);
1429		if (!sai->np_sync_provider) {
1430			dev_err(&pdev->dev, "%pOFn parent node not found\n",
1431				np);
1432			of_node_put(args.np);
1433			return -ENODEV;
1434		}
1435
1436		sai->sync = SAI_SYNC_INTERNAL;
1437		if (sai->np_sync_provider != sai->pdata->pdev->dev.of_node) {
1438			if (!STM_SAI_HAS_EXT_SYNC(sai)) {
1439				dev_err(&pdev->dev,
1440					"External synchro not supported\n");
1441				of_node_put(args.np);
1442				return -EINVAL;
1443			}
1444			sai->sync = SAI_SYNC_EXTERNAL;
1445
1446			sai->synci = args.args[0];
1447			if (sai->synci < 1 ||
1448			    (sai->synci > (SAI_GCR_SYNCIN_MAX + 1))) {
1449				dev_err(&pdev->dev, "Wrong SAI index\n");
1450				of_node_put(args.np);
1451				return -EINVAL;
1452			}
1453
1454			if (of_property_match_string(args.np, "compatible",
1455						     "st,stm32-sai-sub-a") >= 0)
1456				sai->synco = STM_SAI_SYNC_OUT_A;
1457
1458			if (of_property_match_string(args.np, "compatible",
1459						     "st,stm32-sai-sub-b") >= 0)
1460				sai->synco = STM_SAI_SYNC_OUT_B;
1461
1462			if (!sai->synco) {
1463				dev_err(&pdev->dev, "Unknown SAI sub-block\n");
1464				of_node_put(args.np);
1465				return -EINVAL;
1466			}
1467		}
1468
1469		dev_dbg(&pdev->dev, "%s synchronized with %s\n",
1470			pdev->name, args.np->full_name);
1471	}
1472
1473	of_node_put(args.np);
1474	sai->sai_ck = devm_clk_get(&pdev->dev, "sai_ck");
1475	if (IS_ERR(sai->sai_ck)) {
1476		if (PTR_ERR(sai->sai_ck) != -EPROBE_DEFER)
1477			dev_err(&pdev->dev, "Missing kernel clock sai_ck: %ld\n",
1478				PTR_ERR(sai->sai_ck));
1479		return PTR_ERR(sai->sai_ck);
1480	}
1481
1482	ret = clk_prepare(sai->pdata->pclk);
1483	if (ret < 0)
1484		return ret;
1485
1486	if (STM_SAI_IS_F4(sai->pdata))
1487		return 0;
1488
1489	/* Register mclk provider if requested */
1490	if (of_find_property(np, "#clock-cells", NULL)) {
1491		ret = stm32_sai_add_mclk_provider(sai);
1492		if (ret < 0)
1493			return ret;
1494	} else {
1495		sai->sai_mclk = devm_clk_get(&pdev->dev, "MCLK");
1496		if (IS_ERR(sai->sai_mclk)) {
1497			if (PTR_ERR(sai->sai_mclk) != -ENOENT)
1498				return PTR_ERR(sai->sai_mclk);
1499			sai->sai_mclk = NULL;
1500		}
1501	}
1502
1503	return 0;
1504}
1505
1506static int stm32_sai_sub_probe(struct platform_device *pdev)
1507{
1508	struct stm32_sai_sub_data *sai;
1509	const struct of_device_id *of_id;
1510	const struct snd_dmaengine_pcm_config *conf = &stm32_sai_pcm_config;
1511	int ret;
1512
1513	sai = devm_kzalloc(&pdev->dev, sizeof(*sai), GFP_KERNEL);
1514	if (!sai)
1515		return -ENOMEM;
1516
1517	of_id = of_match_device(stm32_sai_sub_ids, &pdev->dev);
1518	if (!of_id)
1519		return -EINVAL;
1520	sai->id = (uintptr_t)of_id->data;
1521
1522	sai->pdev = pdev;
1523	mutex_init(&sai->ctrl_lock);
1524	spin_lock_init(&sai->irq_lock);
1525	platform_set_drvdata(pdev, sai);
1526
1527	sai->pdata = dev_get_drvdata(pdev->dev.parent);
1528	if (!sai->pdata) {
1529		dev_err(&pdev->dev, "Parent device data not available\n");
1530		return -EINVAL;
1531	}
1532
 
 
 
 
 
 
 
1533	ret = stm32_sai_sub_parse_of(pdev, sai);
1534	if (ret)
1535		return ret;
1536
1537	if (STM_SAI_IS_PLAYBACK(sai))
1538		sai->cpu_dai_drv = stm32_sai_playback_dai;
1539	else
1540		sai->cpu_dai_drv = stm32_sai_capture_dai;
1541	sai->cpu_dai_drv.name = dev_name(&pdev->dev);
1542
1543	ret = devm_request_irq(&pdev->dev, sai->pdata->irq, stm32_sai_isr,
1544			       IRQF_SHARED, dev_name(&pdev->dev), sai);
1545	if (ret) {
1546		dev_err(&pdev->dev, "IRQ request returned %d\n", ret);
1547		return ret;
1548	}
1549
1550	if (STM_SAI_PROTOCOL_IS_SPDIF(sai))
1551		conf = &stm32_sai_pcm_config_spdif;
1552
1553	ret = snd_dmaengine_pcm_register(&pdev->dev, conf, 0);
1554	if (ret) {
1555		if (ret != -EPROBE_DEFER)
1556			dev_err(&pdev->dev, "Could not register pcm dma\n");
1557		return ret;
1558	}
1559
1560	ret = snd_soc_register_component(&pdev->dev, &stm32_component,
1561					 &sai->cpu_dai_drv, 1);
1562	if (ret) {
1563		snd_dmaengine_pcm_unregister(&pdev->dev);
1564		return ret;
1565	}
1566
1567	pm_runtime_enable(&pdev->dev);
1568
1569	return 0;
1570}
1571
1572static int stm32_sai_sub_remove(struct platform_device *pdev)
1573{
1574	struct stm32_sai_sub_data *sai = dev_get_drvdata(&pdev->dev);
1575
1576	clk_unprepare(sai->pdata->pclk);
1577	snd_dmaengine_pcm_unregister(&pdev->dev);
1578	snd_soc_unregister_component(&pdev->dev);
1579	pm_runtime_disable(&pdev->dev);
1580
1581	return 0;
1582}
1583
1584#ifdef CONFIG_PM_SLEEP
1585static int stm32_sai_sub_suspend(struct device *dev)
1586{
1587	struct stm32_sai_sub_data *sai = dev_get_drvdata(dev);
1588	int ret;
1589
1590	ret = clk_enable(sai->pdata->pclk);
1591	if (ret < 0)
1592		return ret;
1593
1594	regcache_cache_only(sai->regmap, true);
1595	regcache_mark_dirty(sai->regmap);
1596
1597	clk_disable(sai->pdata->pclk);
1598
1599	return 0;
1600}
1601
1602static int stm32_sai_sub_resume(struct device *dev)
1603{
1604	struct stm32_sai_sub_data *sai = dev_get_drvdata(dev);
1605	int ret;
1606
1607	ret = clk_enable(sai->pdata->pclk);
1608	if (ret < 0)
1609		return ret;
1610
1611	regcache_cache_only(sai->regmap, false);
1612	ret = regcache_sync(sai->regmap);
1613
1614	clk_disable(sai->pdata->pclk);
1615
1616	return ret;
1617}
1618#endif /* CONFIG_PM_SLEEP */
1619
1620static const struct dev_pm_ops stm32_sai_sub_pm_ops = {
1621	SET_SYSTEM_SLEEP_PM_OPS(stm32_sai_sub_suspend, stm32_sai_sub_resume)
1622};
1623
1624static struct platform_driver stm32_sai_sub_driver = {
1625	.driver = {
1626		.name = "st,stm32-sai-sub",
1627		.of_match_table = stm32_sai_sub_ids,
1628		.pm = &stm32_sai_sub_pm_ops,
1629	},
1630	.probe = stm32_sai_sub_probe,
1631	.remove = stm32_sai_sub_remove,
1632};
1633
1634module_platform_driver(stm32_sai_sub_driver);
1635
1636MODULE_DESCRIPTION("STM32 Soc SAI sub-block Interface");
1637MODULE_AUTHOR("Olivier Moysan <olivier.moysan@st.com>");
1638MODULE_ALIAS("platform:st,stm32-sai-sub");
1639MODULE_LICENSE("GPL v2");