Linux Audio

Check our new training course

Loading...
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Intel Low Power Subsystem PWM controller driver
  4 *
  5 * Copyright (C) 2014, Intel Corporation
  6 * Author: Mika Westerberg <mika.westerberg@linux.intel.com>
  7 * Author: Chew Kean Ho <kean.ho.chew@intel.com>
  8 * Author: Chang Rebecca Swee Fun <rebecca.swee.fun.chang@intel.com>
  9 * Author: Chew Chiau Ee <chiau.ee.chew@intel.com>
 10 * Author: Alan Cox <alan@linux.intel.com>
 11 */
 12
 13#include <linux/bits.h>
 14#include <linux/delay.h>
 15#include <linux/io.h>
 16#include <linux/iopoll.h>
 17#include <linux/kernel.h>
 18#include <linux/module.h>
 19#include <linux/pm_runtime.h>
 20#include <linux/time.h>
 21
 22#define DEFAULT_SYMBOL_NAMESPACE "PWM_LPSS"
 23
 24#include "pwm-lpss.h"
 25
 26#define PWM				0x00000000
 27#define PWM_ENABLE			BIT(31)
 28#define PWM_SW_UPDATE			BIT(30)
 29#define PWM_BASE_UNIT_SHIFT		8
 30#define PWM_ON_TIME_DIV_MASK		GENMASK(7, 0)
 31
 32/* Size of each PWM register space if multiple */
 33#define PWM_SIZE			0x400
 34
 35/* BayTrail */
 36const struct pwm_lpss_boardinfo pwm_lpss_byt_info = {
 37	.clk_rate = 25000000,
 38	.npwm = 1,
 39	.base_unit_bits = 16,
 40};
 41EXPORT_SYMBOL_GPL(pwm_lpss_byt_info);
 42
 43/* Braswell */
 44const struct pwm_lpss_boardinfo pwm_lpss_bsw_info = {
 45	.clk_rate = 19200000,
 46	.npwm = 1,
 47	.base_unit_bits = 16,
 48	.other_devices_aml_touches_pwm_regs = true,
 49};
 50EXPORT_SYMBOL_GPL(pwm_lpss_bsw_info);
 51
 52/* Broxton */
 53const struct pwm_lpss_boardinfo pwm_lpss_bxt_info = {
 54	.clk_rate = 19200000,
 55	.npwm = 4,
 56	.base_unit_bits = 22,
 57	.bypass = true,
 58};
 59EXPORT_SYMBOL_GPL(pwm_lpss_bxt_info);
 60
 61/* Tangier */
 62const struct pwm_lpss_boardinfo pwm_lpss_tng_info = {
 63	.clk_rate = 19200000,
 64	.npwm = 4,
 65	.base_unit_bits = 22,
 66};
 67EXPORT_SYMBOL_GPL(pwm_lpss_tng_info);
 68
 69static inline struct pwm_lpss_chip *to_lpwm(struct pwm_chip *chip)
 70{
 71	return pwmchip_get_drvdata(chip);
 72}
 73
 74static inline u32 pwm_lpss_read(const struct pwm_device *pwm)
 75{
 76	struct pwm_lpss_chip *lpwm = to_lpwm(pwm->chip);
 77
 78	return readl(lpwm->regs + pwm->hwpwm * PWM_SIZE + PWM);
 79}
 80
 81static inline void pwm_lpss_write(const struct pwm_device *pwm, u32 value)
 82{
 83	struct pwm_lpss_chip *lpwm = to_lpwm(pwm->chip);
 84
 85	writel(value, lpwm->regs + pwm->hwpwm * PWM_SIZE + PWM);
 86}
 87
 88static int pwm_lpss_wait_for_update(struct pwm_device *pwm)
 89{
 90	struct pwm_lpss_chip *lpwm = to_lpwm(pwm->chip);
 91	const void __iomem *addr = lpwm->regs + pwm->hwpwm * PWM_SIZE + PWM;
 92	const unsigned int ms = 500 * USEC_PER_MSEC;
 93	u32 val;
 94	int err;
 95
 96	/*
 97	 * PWM Configuration register has SW_UPDATE bit that is set when a new
 98	 * configuration is written to the register. The bit is automatically
 99	 * cleared at the start of the next output cycle by the IP block.
100	 *
101	 * If one writes a new configuration to the register while it still has
102	 * the bit enabled, PWM may freeze. That is, while one can still write
103	 * to the register, it won't have an effect. Thus, we try to sleep long
104	 * enough that the bit gets cleared and make sure the bit is not
105	 * enabled while we update the configuration.
106	 */
107	err = readl_poll_timeout(addr, val, !(val & PWM_SW_UPDATE), 40, ms);
108	if (err)
109		dev_err(pwmchip_parent(pwm->chip), "PWM_SW_UPDATE was not cleared\n");
110
111	return err;
112}
113
114static inline int pwm_lpss_is_updating(struct pwm_device *pwm)
115{
116	if (pwm_lpss_read(pwm) & PWM_SW_UPDATE) {
117		dev_err(pwmchip_parent(pwm->chip), "PWM_SW_UPDATE is still set, skipping update\n");
118		return -EBUSY;
119	}
120
121	return 0;
122}
123
124static void pwm_lpss_prepare(struct pwm_lpss_chip *lpwm, struct pwm_device *pwm,
125			     int duty_ns, int period_ns)
126{
127	unsigned long long on_time_div;
128	unsigned long c = lpwm->info->clk_rate, base_unit_range;
129	unsigned long long base_unit, freq = NSEC_PER_SEC;
130	u32 ctrl;
131
132	do_div(freq, period_ns);
133
134	/*
135	 * The equation is:
136	 * base_unit = round(base_unit_range * freq / c)
137	 */
138	base_unit_range = BIT(lpwm->info->base_unit_bits);
139	freq *= base_unit_range;
140
141	base_unit = DIV_ROUND_CLOSEST_ULL(freq, c);
142	/* base_unit must not be 0 and we also want to avoid overflowing it */
143	base_unit = clamp_val(base_unit, 1, base_unit_range - 1);
144
145	on_time_div = 255ULL * duty_ns;
146	do_div(on_time_div, period_ns);
147	on_time_div = 255ULL - on_time_div;
148
149	ctrl = pwm_lpss_read(pwm);
150	ctrl &= ~PWM_ON_TIME_DIV_MASK;
151	ctrl &= ~((base_unit_range - 1) << PWM_BASE_UNIT_SHIFT);
152	ctrl |= (u32) base_unit << PWM_BASE_UNIT_SHIFT;
153	ctrl |= on_time_div;
154
155	pwm_lpss_write(pwm, ctrl);
156	pwm_lpss_write(pwm, ctrl | PWM_SW_UPDATE);
157}
158
159static inline void pwm_lpss_cond_enable(struct pwm_device *pwm, bool cond)
160{
161	if (cond)
162		pwm_lpss_write(pwm, pwm_lpss_read(pwm) | PWM_ENABLE);
163}
164
165static int pwm_lpss_prepare_enable(struct pwm_lpss_chip *lpwm,
166				   struct pwm_device *pwm,
167				   const struct pwm_state *state)
168{
169	int ret;
170
171	ret = pwm_lpss_is_updating(pwm);
172	if (ret)
173		return ret;
174
175	pwm_lpss_prepare(lpwm, pwm, state->duty_cycle, state->period);
176	pwm_lpss_cond_enable(pwm, lpwm->info->bypass == false);
177	ret = pwm_lpss_wait_for_update(pwm);
178	if (ret)
179		return ret;
180
181	pwm_lpss_cond_enable(pwm, lpwm->info->bypass == true);
182	return 0;
183}
184
185static int pwm_lpss_apply(struct pwm_chip *chip, struct pwm_device *pwm,
186			  const struct pwm_state *state)
187{
188	struct pwm_lpss_chip *lpwm = to_lpwm(chip);
189	int ret = 0;
190
191	if (state->enabled) {
192		if (!pwm_is_enabled(pwm)) {
193			pm_runtime_get_sync(pwmchip_parent(chip));
194			ret = pwm_lpss_prepare_enable(lpwm, pwm, state);
195			if (ret)
196				pm_runtime_put(pwmchip_parent(chip));
197		} else {
198			ret = pwm_lpss_prepare_enable(lpwm, pwm, state);
199		}
200	} else if (pwm_is_enabled(pwm)) {
201		pwm_lpss_write(pwm, pwm_lpss_read(pwm) & ~PWM_ENABLE);
202		pm_runtime_put(pwmchip_parent(chip));
203	}
204
205	return ret;
206}
207
208static int pwm_lpss_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
209			      struct pwm_state *state)
210{
211	struct pwm_lpss_chip *lpwm = to_lpwm(chip);
212	unsigned long base_unit_range;
213	unsigned long long base_unit, freq, on_time_div;
214	u32 ctrl;
215
216	pm_runtime_get_sync(pwmchip_parent(chip));
217
218	base_unit_range = BIT(lpwm->info->base_unit_bits);
219
220	ctrl = pwm_lpss_read(pwm);
221	on_time_div = 255 - (ctrl & PWM_ON_TIME_DIV_MASK);
222	base_unit = (ctrl >> PWM_BASE_UNIT_SHIFT) & (base_unit_range - 1);
223
224	freq = base_unit * lpwm->info->clk_rate;
225	do_div(freq, base_unit_range);
226	if (freq == 0)
227		state->period = NSEC_PER_SEC;
228	else
229		state->period = NSEC_PER_SEC / (unsigned long)freq;
230
231	on_time_div *= state->period;
232	do_div(on_time_div, 255);
233	state->duty_cycle = on_time_div;
234
235	state->polarity = PWM_POLARITY_NORMAL;
236	state->enabled = !!(ctrl & PWM_ENABLE);
237
238	pm_runtime_put(pwmchip_parent(chip));
239
240	return 0;
241}
242
243static const struct pwm_ops pwm_lpss_ops = {
244	.apply = pwm_lpss_apply,
245	.get_state = pwm_lpss_get_state,
 
246};
247
248struct pwm_chip *devm_pwm_lpss_probe(struct device *dev, void __iomem *base,
249				     const struct pwm_lpss_boardinfo *info)
250{
251	struct pwm_lpss_chip *lpwm;
252	struct pwm_chip *chip;
253	unsigned long c;
254	int i, ret;
255	u32 ctrl;
256
257	if (WARN_ON(info->npwm > LPSS_MAX_PWMS))
258		return ERR_PTR(-ENODEV);
259
260	chip = devm_pwmchip_alloc(dev, info->npwm, sizeof(*lpwm));
261	if (IS_ERR(chip))
262		return chip;
263	lpwm = to_lpwm(chip);
 
 
 
264
265	lpwm->regs = base;
266	lpwm->info = info;
267
268	c = lpwm->info->clk_rate;
269	if (!c)
270		return ERR_PTR(-EINVAL);
271
272	chip->ops = &pwm_lpss_ops;
 
 
273
274	ret = devm_pwmchip_add(dev, chip);
275	if (ret) {
276		dev_err(dev, "failed to add PWM chip: %d\n", ret);
277		return ERR_PTR(ret);
278	}
279
280	for (i = 0; i < lpwm->info->npwm; i++) {
281		ctrl = pwm_lpss_read(&chip->pwms[i]);
282		if (ctrl & PWM_ENABLE)
283			pm_runtime_get(dev);
284	}
285
286	return chip;
287}
288EXPORT_SYMBOL_GPL(devm_pwm_lpss_probe);
289
290MODULE_DESCRIPTION("PWM driver for Intel LPSS");
291MODULE_AUTHOR("Mika Westerberg <mika.westerberg@linux.intel.com>");
292MODULE_LICENSE("GPL v2");
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Intel Low Power Subsystem PWM controller driver
  4 *
  5 * Copyright (C) 2014, Intel Corporation
  6 * Author: Mika Westerberg <mika.westerberg@linux.intel.com>
  7 * Author: Chew Kean Ho <kean.ho.chew@intel.com>
  8 * Author: Chang Rebecca Swee Fun <rebecca.swee.fun.chang@intel.com>
  9 * Author: Chew Chiau Ee <chiau.ee.chew@intel.com>
 10 * Author: Alan Cox <alan@linux.intel.com>
 11 */
 12
 
 13#include <linux/delay.h>
 14#include <linux/io.h>
 15#include <linux/iopoll.h>
 16#include <linux/kernel.h>
 17#include <linux/module.h>
 18#include <linux/pm_runtime.h>
 19#include <linux/time.h>
 20
 
 
 21#include "pwm-lpss.h"
 22
 23#define PWM				0x00000000
 24#define PWM_ENABLE			BIT(31)
 25#define PWM_SW_UPDATE			BIT(30)
 26#define PWM_BASE_UNIT_SHIFT		8
 27#define PWM_ON_TIME_DIV_MASK		0x000000ff
 28
 29/* Size of each PWM register space if multiple */
 30#define PWM_SIZE			0x400
 31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 32static inline struct pwm_lpss_chip *to_lpwm(struct pwm_chip *chip)
 33{
 34	return container_of(chip, struct pwm_lpss_chip, chip);
 35}
 36
 37static inline u32 pwm_lpss_read(const struct pwm_device *pwm)
 38{
 39	struct pwm_lpss_chip *lpwm = to_lpwm(pwm->chip);
 40
 41	return readl(lpwm->regs + pwm->hwpwm * PWM_SIZE + PWM);
 42}
 43
 44static inline void pwm_lpss_write(const struct pwm_device *pwm, u32 value)
 45{
 46	struct pwm_lpss_chip *lpwm = to_lpwm(pwm->chip);
 47
 48	writel(value, lpwm->regs + pwm->hwpwm * PWM_SIZE + PWM);
 49}
 50
 51static int pwm_lpss_wait_for_update(struct pwm_device *pwm)
 52{
 53	struct pwm_lpss_chip *lpwm = to_lpwm(pwm->chip);
 54	const void __iomem *addr = lpwm->regs + pwm->hwpwm * PWM_SIZE + PWM;
 55	const unsigned int ms = 500 * USEC_PER_MSEC;
 56	u32 val;
 57	int err;
 58
 59	/*
 60	 * PWM Configuration register has SW_UPDATE bit that is set when a new
 61	 * configuration is written to the register. The bit is automatically
 62	 * cleared at the start of the next output cycle by the IP block.
 63	 *
 64	 * If one writes a new configuration to the register while it still has
 65	 * the bit enabled, PWM may freeze. That is, while one can still write
 66	 * to the register, it won't have an effect. Thus, we try to sleep long
 67	 * enough that the bit gets cleared and make sure the bit is not
 68	 * enabled while we update the configuration.
 69	 */
 70	err = readl_poll_timeout(addr, val, !(val & PWM_SW_UPDATE), 40, ms);
 71	if (err)
 72		dev_err(pwm->chip->dev, "PWM_SW_UPDATE was not cleared\n");
 73
 74	return err;
 75}
 76
 77static inline int pwm_lpss_is_updating(struct pwm_device *pwm)
 78{
 79	if (pwm_lpss_read(pwm) & PWM_SW_UPDATE) {
 80		dev_err(pwm->chip->dev, "PWM_SW_UPDATE is still set, skipping update\n");
 81		return -EBUSY;
 82	}
 83
 84	return 0;
 85}
 86
 87static void pwm_lpss_prepare(struct pwm_lpss_chip *lpwm, struct pwm_device *pwm,
 88			     int duty_ns, int period_ns)
 89{
 90	unsigned long long on_time_div;
 91	unsigned long c = lpwm->info->clk_rate, base_unit_range;
 92	unsigned long long base_unit, freq = NSEC_PER_SEC;
 93	u32 ctrl;
 94
 95	do_div(freq, period_ns);
 96
 97	/*
 98	 * The equation is:
 99	 * base_unit = round(base_unit_range * freq / c)
100	 */
101	base_unit_range = BIT(lpwm->info->base_unit_bits);
102	freq *= base_unit_range;
103
104	base_unit = DIV_ROUND_CLOSEST_ULL(freq, c);
105	/* base_unit must not be 0 and we also want to avoid overflowing it */
106	base_unit = clamp_val(base_unit, 1, base_unit_range - 1);
107
108	on_time_div = 255ULL * duty_ns;
109	do_div(on_time_div, period_ns);
110	on_time_div = 255ULL - on_time_div;
111
112	ctrl = pwm_lpss_read(pwm);
113	ctrl &= ~PWM_ON_TIME_DIV_MASK;
114	ctrl &= ~((base_unit_range - 1) << PWM_BASE_UNIT_SHIFT);
115	ctrl |= (u32) base_unit << PWM_BASE_UNIT_SHIFT;
116	ctrl |= on_time_div;
117
118	pwm_lpss_write(pwm, ctrl);
119	pwm_lpss_write(pwm, ctrl | PWM_SW_UPDATE);
120}
121
122static inline void pwm_lpss_cond_enable(struct pwm_device *pwm, bool cond)
123{
124	if (cond)
125		pwm_lpss_write(pwm, pwm_lpss_read(pwm) | PWM_ENABLE);
126}
127
128static int pwm_lpss_prepare_enable(struct pwm_lpss_chip *lpwm,
129				   struct pwm_device *pwm,
130				   const struct pwm_state *state)
131{
132	int ret;
133
134	ret = pwm_lpss_is_updating(pwm);
135	if (ret)
136		return ret;
137
138	pwm_lpss_prepare(lpwm, pwm, state->duty_cycle, state->period);
139	pwm_lpss_cond_enable(pwm, lpwm->info->bypass == false);
140	ret = pwm_lpss_wait_for_update(pwm);
141	if (ret)
142		return ret;
143
144	pwm_lpss_cond_enable(pwm, lpwm->info->bypass == true);
145	return 0;
146}
147
148static int pwm_lpss_apply(struct pwm_chip *chip, struct pwm_device *pwm,
149			  const struct pwm_state *state)
150{
151	struct pwm_lpss_chip *lpwm = to_lpwm(chip);
152	int ret = 0;
153
154	if (state->enabled) {
155		if (!pwm_is_enabled(pwm)) {
156			pm_runtime_get_sync(chip->dev);
157			ret = pwm_lpss_prepare_enable(lpwm, pwm, state);
158			if (ret)
159				pm_runtime_put(chip->dev);
160		} else {
161			ret = pwm_lpss_prepare_enable(lpwm, pwm, state);
162		}
163	} else if (pwm_is_enabled(pwm)) {
164		pwm_lpss_write(pwm, pwm_lpss_read(pwm) & ~PWM_ENABLE);
165		pm_runtime_put(chip->dev);
166	}
167
168	return ret;
169}
170
171static void pwm_lpss_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
172			       struct pwm_state *state)
173{
174	struct pwm_lpss_chip *lpwm = to_lpwm(chip);
175	unsigned long base_unit_range;
176	unsigned long long base_unit, freq, on_time_div;
177	u32 ctrl;
178
179	pm_runtime_get_sync(chip->dev);
180
181	base_unit_range = BIT(lpwm->info->base_unit_bits);
182
183	ctrl = pwm_lpss_read(pwm);
184	on_time_div = 255 - (ctrl & PWM_ON_TIME_DIV_MASK);
185	base_unit = (ctrl >> PWM_BASE_UNIT_SHIFT) & (base_unit_range - 1);
186
187	freq = base_unit * lpwm->info->clk_rate;
188	do_div(freq, base_unit_range);
189	if (freq == 0)
190		state->period = NSEC_PER_SEC;
191	else
192		state->period = NSEC_PER_SEC / (unsigned long)freq;
193
194	on_time_div *= state->period;
195	do_div(on_time_div, 255);
196	state->duty_cycle = on_time_div;
197
198	state->polarity = PWM_POLARITY_NORMAL;
199	state->enabled = !!(ctrl & PWM_ENABLE);
200
201	pm_runtime_put(chip->dev);
 
 
202}
203
204static const struct pwm_ops pwm_lpss_ops = {
205	.apply = pwm_lpss_apply,
206	.get_state = pwm_lpss_get_state,
207	.owner = THIS_MODULE,
208};
209
210struct pwm_lpss_chip *pwm_lpss_probe(struct device *dev, struct resource *r,
211				     const struct pwm_lpss_boardinfo *info)
212{
213	struct pwm_lpss_chip *lpwm;
 
214	unsigned long c;
215	int i, ret;
216	u32 ctrl;
217
218	if (WARN_ON(info->npwm > MAX_PWMS))
219		return ERR_PTR(-ENODEV);
220
221	lpwm = devm_kzalloc(dev, sizeof(*lpwm), GFP_KERNEL);
222	if (!lpwm)
223		return ERR_PTR(-ENOMEM);
224
225	lpwm->regs = devm_ioremap_resource(dev, r);
226	if (IS_ERR(lpwm->regs))
227		return ERR_CAST(lpwm->regs);
228
 
229	lpwm->info = info;
230
231	c = lpwm->info->clk_rate;
232	if (!c)
233		return ERR_PTR(-EINVAL);
234
235	lpwm->chip.dev = dev;
236	lpwm->chip.ops = &pwm_lpss_ops;
237	lpwm->chip.npwm = info->npwm;
238
239	ret = devm_pwmchip_add(dev, &lpwm->chip);
240	if (ret) {
241		dev_err(dev, "failed to add PWM chip: %d\n", ret);
242		return ERR_PTR(ret);
243	}
244
245	for (i = 0; i < lpwm->info->npwm; i++) {
246		ctrl = pwm_lpss_read(&lpwm->chip.pwms[i]);
247		if (ctrl & PWM_ENABLE)
248			pm_runtime_get(dev);
249	}
250
251	return lpwm;
252}
253EXPORT_SYMBOL_GPL(pwm_lpss_probe);
254
255MODULE_DESCRIPTION("PWM driver for Intel LPSS");
256MODULE_AUTHOR("Mika Westerberg <mika.westerberg@linux.intel.com>");
257MODULE_LICENSE("GPL v2");