Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
   2/*
   3 * Copyright (C) 2005-2014 Intel Corporation
   4 */
   5#include <linux/slab.h>
   6#include <net/mac80211.h>
   7
   8#include "iwl-trans.h"
   9
  10#include "dev.h"
  11#include "calib.h"
  12#include "agn.h"
  13
  14/*****************************************************************************
  15 * INIT calibrations framework
  16 *****************************************************************************/
  17
  18/* Opaque calibration results */
  19struct iwl_calib_result {
  20	struct list_head list;
  21	size_t cmd_len;
  22	struct iwl_calib_cmd cmd;
 
  23};
  24
  25struct statistics_general_data {
  26	u32 beacon_silence_rssi_a;
  27	u32 beacon_silence_rssi_b;
  28	u32 beacon_silence_rssi_c;
  29	u32 beacon_energy_a;
  30	u32 beacon_energy_b;
  31	u32 beacon_energy_c;
  32};
  33
  34int iwl_send_calib_results(struct iwl_priv *priv)
  35{
  36	struct iwl_host_cmd hcmd = {
  37		.id = REPLY_PHY_CALIBRATION_CMD,
  38	};
  39	struct iwl_calib_result *res;
  40
  41	list_for_each_entry(res, &priv->calib_results, list) {
  42		int ret;
  43
  44		hcmd.len[0] = res->cmd_len;
  45		hcmd.data[0] = &res->cmd;
  46		hcmd.dataflags[0] = IWL_HCMD_DFL_NOCOPY;
  47		ret = iwl_dvm_send_cmd(priv, &hcmd);
  48		if (ret) {
  49			IWL_ERR(priv, "Error %d on calib cmd %d\n",
  50				ret, res->cmd.hdr.op_code);
  51			return ret;
  52		}
  53	}
  54
  55	return 0;
  56}
  57
  58int iwl_calib_set(struct iwl_priv *priv,
  59		  const struct iwl_calib_cmd *cmd, size_t len)
  60{
  61	struct iwl_calib_result *res, *tmp;
  62
  63	if (check_sub_overflow(len, sizeof(*cmd), &len))
  64		return -ENOMEM;
  65
  66	res = kmalloc(struct_size(res, cmd.data, len), GFP_ATOMIC);
  67	if (!res)
  68		return -ENOMEM;
  69	res->cmd = *cmd;
  70	memcpy(res->cmd.data, cmd->data, len);
  71	res->cmd_len = struct_size(cmd, data, len);
  72
  73	list_for_each_entry(tmp, &priv->calib_results, list) {
  74		if (tmp->cmd.hdr.op_code == res->cmd.hdr.op_code) {
  75			list_replace(&tmp->list, &res->list);
  76			kfree(tmp);
  77			return 0;
  78		}
  79	}
  80
  81	/* wasn't in list already */
  82	list_add_tail(&res->list, &priv->calib_results);
  83
  84	return 0;
  85}
  86
  87void iwl_calib_free_results(struct iwl_priv *priv)
  88{
  89	struct iwl_calib_result *res, *tmp;
  90
  91	list_for_each_entry_safe(res, tmp, &priv->calib_results, list) {
  92		list_del(&res->list);
  93		kfree(res);
  94	}
  95}
  96
  97/*****************************************************************************
  98 * RUNTIME calibrations framework
  99 *****************************************************************************/
 100
 101/* "false alarms" are signals that our DSP tries to lock onto,
 102 *   but then determines that they are either noise, or transmissions
 103 *   from a distant wireless network (also "noise", really) that get
 104 *   "stepped on" by stronger transmissions within our own network.
 105 * This algorithm attempts to set a sensitivity level that is high
 106 *   enough to receive all of our own network traffic, but not so
 107 *   high that our DSP gets too busy trying to lock onto non-network
 108 *   activity/noise. */
 109static int iwl_sens_energy_cck(struct iwl_priv *priv,
 110				   u32 norm_fa,
 111				   u32 rx_enable_time,
 112				   struct statistics_general_data *rx_info)
 113{
 114	u32 max_nrg_cck = 0;
 115	int i = 0;
 116	u8 max_silence_rssi = 0;
 117	u32 silence_ref = 0;
 118	u8 silence_rssi_a = 0;
 119	u8 silence_rssi_b = 0;
 120	u8 silence_rssi_c = 0;
 121	u32 val;
 122
 123	/* "false_alarms" values below are cross-multiplications to assess the
 124	 *   numbers of false alarms within the measured period of actual Rx
 125	 *   (Rx is off when we're txing), vs the min/max expected false alarms
 126	 *   (some should be expected if rx is sensitive enough) in a
 127	 *   hypothetical listening period of 200 time units (TU), 204.8 msec:
 128	 *
 129	 * MIN_FA/fixed-time < false_alarms/actual-rx-time < MAX_FA/beacon-time
 130	 *
 131	 * */
 132	u32 false_alarms = norm_fa * 200 * 1024;
 133	u32 max_false_alarms = MAX_FA_CCK * rx_enable_time;
 134	u32 min_false_alarms = MIN_FA_CCK * rx_enable_time;
 135	struct iwl_sensitivity_data *data = NULL;
 136	const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens;
 137
 138	data = &(priv->sensitivity_data);
 139
 140	data->nrg_auto_corr_silence_diff = 0;
 141
 142	/* Find max silence rssi among all 3 receivers.
 143	 * This is background noise, which may include transmissions from other
 144	 *    networks, measured during silence before our network's beacon */
 145	silence_rssi_a = (u8)((rx_info->beacon_silence_rssi_a &
 146			    ALL_BAND_FILTER) >> 8);
 147	silence_rssi_b = (u8)((rx_info->beacon_silence_rssi_b &
 148			    ALL_BAND_FILTER) >> 8);
 149	silence_rssi_c = (u8)((rx_info->beacon_silence_rssi_c &
 150			    ALL_BAND_FILTER) >> 8);
 151
 152	val = max(silence_rssi_b, silence_rssi_c);
 153	max_silence_rssi = max(silence_rssi_a, (u8) val);
 154
 155	/* Store silence rssi in 20-beacon history table */
 156	data->nrg_silence_rssi[data->nrg_silence_idx] = max_silence_rssi;
 157	data->nrg_silence_idx++;
 158	if (data->nrg_silence_idx >= NRG_NUM_PREV_STAT_L)
 159		data->nrg_silence_idx = 0;
 160
 161	/* Find max silence rssi across 20 beacon history */
 162	for (i = 0; i < NRG_NUM_PREV_STAT_L; i++) {
 163		val = data->nrg_silence_rssi[i];
 164		silence_ref = max(silence_ref, val);
 165	}
 166	IWL_DEBUG_CALIB(priv, "silence a %u, b %u, c %u, 20-bcn max %u\n",
 167			silence_rssi_a, silence_rssi_b, silence_rssi_c,
 168			silence_ref);
 169
 170	/* Find max rx energy (min value!) among all 3 receivers,
 171	 *   measured during beacon frame.
 172	 * Save it in 10-beacon history table. */
 173	i = data->nrg_energy_idx;
 174	val = min(rx_info->beacon_energy_b, rx_info->beacon_energy_c);
 175	data->nrg_value[i] = min(rx_info->beacon_energy_a, val);
 176
 177	data->nrg_energy_idx++;
 178	if (data->nrg_energy_idx >= 10)
 179		data->nrg_energy_idx = 0;
 180
 181	/* Find min rx energy (max value) across 10 beacon history.
 182	 * This is the minimum signal level that we want to receive well.
 183	 * Add backoff (margin so we don't miss slightly lower energy frames).
 184	 * This establishes an upper bound (min value) for energy threshold. */
 185	max_nrg_cck = data->nrg_value[0];
 186	for (i = 1; i < 10; i++)
 187		max_nrg_cck = (u32) max(max_nrg_cck, (data->nrg_value[i]));
 188	max_nrg_cck += 6;
 189
 190	IWL_DEBUG_CALIB(priv, "rx energy a %u, b %u, c %u, 10-bcn max/min %u\n",
 191			rx_info->beacon_energy_a, rx_info->beacon_energy_b,
 192			rx_info->beacon_energy_c, max_nrg_cck - 6);
 193
 194	/* Count number of consecutive beacons with fewer-than-desired
 195	 *   false alarms. */
 196	if (false_alarms < min_false_alarms)
 197		data->num_in_cck_no_fa++;
 198	else
 199		data->num_in_cck_no_fa = 0;
 200	IWL_DEBUG_CALIB(priv, "consecutive bcns with few false alarms = %u\n",
 201			data->num_in_cck_no_fa);
 202
 203	/* If we got too many false alarms this time, reduce sensitivity */
 204	if ((false_alarms > max_false_alarms) &&
 205		(data->auto_corr_cck > AUTO_CORR_MAX_TH_CCK)) {
 206		IWL_DEBUG_CALIB(priv, "norm FA %u > max FA %u\n",
 207		     false_alarms, max_false_alarms);
 208		IWL_DEBUG_CALIB(priv, "... reducing sensitivity\n");
 209		data->nrg_curr_state = IWL_FA_TOO_MANY;
 210		/* Store for "fewer than desired" on later beacon */
 211		data->nrg_silence_ref = silence_ref;
 212
 213		/* increase energy threshold (reduce nrg value)
 214		 *   to decrease sensitivity */
 215		data->nrg_th_cck = data->nrg_th_cck - NRG_STEP_CCK;
 216	/* Else if we got fewer than desired, increase sensitivity */
 217	} else if (false_alarms < min_false_alarms) {
 218		data->nrg_curr_state = IWL_FA_TOO_FEW;
 219
 220		/* Compare silence level with silence level for most recent
 221		 *   healthy number or too many false alarms */
 222		data->nrg_auto_corr_silence_diff = (s32)data->nrg_silence_ref -
 223						   (s32)silence_ref;
 224
 225		IWL_DEBUG_CALIB(priv, "norm FA %u < min FA %u, silence diff %d\n",
 226			 false_alarms, min_false_alarms,
 227			 data->nrg_auto_corr_silence_diff);
 228
 229		/* Increase value to increase sensitivity, but only if:
 230		 * 1a) previous beacon did *not* have *too many* false alarms
 231		 * 1b) AND there's a significant difference in Rx levels
 232		 *      from a previous beacon with too many, or healthy # FAs
 233		 * OR 2) We've seen a lot of beacons (100) with too few
 234		 *       false alarms */
 235		if ((data->nrg_prev_state != IWL_FA_TOO_MANY) &&
 236			((data->nrg_auto_corr_silence_diff > NRG_DIFF) ||
 237			(data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA))) {
 238
 239			IWL_DEBUG_CALIB(priv, "... increasing sensitivity\n");
 240			/* Increase nrg value to increase sensitivity */
 241			val = data->nrg_th_cck + NRG_STEP_CCK;
 242			data->nrg_th_cck = min((u32)ranges->min_nrg_cck, val);
 243		} else {
 244			IWL_DEBUG_CALIB(priv, "... but not changing sensitivity\n");
 245		}
 246
 247	/* Else we got a healthy number of false alarms, keep status quo */
 248	} else {
 249		IWL_DEBUG_CALIB(priv, " FA in safe zone\n");
 250		data->nrg_curr_state = IWL_FA_GOOD_RANGE;
 251
 252		/* Store for use in "fewer than desired" with later beacon */
 253		data->nrg_silence_ref = silence_ref;
 254
 255		/* If previous beacon had too many false alarms,
 256		 *   give it some extra margin by reducing sensitivity again
 257		 *   (but don't go below measured energy of desired Rx) */
 258		if (data->nrg_prev_state == IWL_FA_TOO_MANY) {
 259			IWL_DEBUG_CALIB(priv, "... increasing margin\n");
 260			if (data->nrg_th_cck > (max_nrg_cck + NRG_MARGIN))
 261				data->nrg_th_cck -= NRG_MARGIN;
 262			else
 263				data->nrg_th_cck = max_nrg_cck;
 264		}
 265	}
 266
 267	/* Make sure the energy threshold does not go above the measured
 268	 * energy of the desired Rx signals (reduced by backoff margin),
 269	 * or else we might start missing Rx frames.
 270	 * Lower value is higher energy, so we use max()!
 271	 */
 272	data->nrg_th_cck = max(max_nrg_cck, data->nrg_th_cck);
 273	IWL_DEBUG_CALIB(priv, "new nrg_th_cck %u\n", data->nrg_th_cck);
 274
 275	data->nrg_prev_state = data->nrg_curr_state;
 276
 277	/* Auto-correlation CCK algorithm */
 278	if (false_alarms > min_false_alarms) {
 279
 280		/* increase auto_corr values to decrease sensitivity
 281		 * so the DSP won't be disturbed by the noise
 282		 */
 283		if (data->auto_corr_cck < AUTO_CORR_MAX_TH_CCK)
 284			data->auto_corr_cck = AUTO_CORR_MAX_TH_CCK + 1;
 285		else {
 286			val = data->auto_corr_cck + AUTO_CORR_STEP_CCK;
 287			data->auto_corr_cck =
 288				min((u32)ranges->auto_corr_max_cck, val);
 289		}
 290		val = data->auto_corr_cck_mrc + AUTO_CORR_STEP_CCK;
 291		data->auto_corr_cck_mrc =
 292			min((u32)ranges->auto_corr_max_cck_mrc, val);
 293	} else if ((false_alarms < min_false_alarms) &&
 294	   ((data->nrg_auto_corr_silence_diff > NRG_DIFF) ||
 295	   (data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA))) {
 296
 297		/* Decrease auto_corr values to increase sensitivity */
 298		val = data->auto_corr_cck - AUTO_CORR_STEP_CCK;
 299		data->auto_corr_cck =
 300			max((u32)ranges->auto_corr_min_cck, val);
 301		val = data->auto_corr_cck_mrc - AUTO_CORR_STEP_CCK;
 302		data->auto_corr_cck_mrc =
 303			max((u32)ranges->auto_corr_min_cck_mrc, val);
 304	}
 305
 306	return 0;
 307}
 308
 309
 310static int iwl_sens_auto_corr_ofdm(struct iwl_priv *priv,
 311				       u32 norm_fa,
 312				       u32 rx_enable_time)
 313{
 314	u32 val;
 315	u32 false_alarms = norm_fa * 200 * 1024;
 316	u32 max_false_alarms = MAX_FA_OFDM * rx_enable_time;
 317	u32 min_false_alarms = MIN_FA_OFDM * rx_enable_time;
 318	struct iwl_sensitivity_data *data = NULL;
 319	const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens;
 320
 321	data = &(priv->sensitivity_data);
 322
 323	/* If we got too many false alarms this time, reduce sensitivity */
 324	if (false_alarms > max_false_alarms) {
 325
 326		IWL_DEBUG_CALIB(priv, "norm FA %u > max FA %u)\n",
 327			     false_alarms, max_false_alarms);
 328
 329		val = data->auto_corr_ofdm + AUTO_CORR_STEP_OFDM;
 330		data->auto_corr_ofdm =
 331			min((u32)ranges->auto_corr_max_ofdm, val);
 332
 333		val = data->auto_corr_ofdm_mrc + AUTO_CORR_STEP_OFDM;
 334		data->auto_corr_ofdm_mrc =
 335			min((u32)ranges->auto_corr_max_ofdm_mrc, val);
 336
 337		val = data->auto_corr_ofdm_x1 + AUTO_CORR_STEP_OFDM;
 338		data->auto_corr_ofdm_x1 =
 339			min((u32)ranges->auto_corr_max_ofdm_x1, val);
 340
 341		val = data->auto_corr_ofdm_mrc_x1 + AUTO_CORR_STEP_OFDM;
 342		data->auto_corr_ofdm_mrc_x1 =
 343			min((u32)ranges->auto_corr_max_ofdm_mrc_x1, val);
 344	}
 345
 346	/* Else if we got fewer than desired, increase sensitivity */
 347	else if (false_alarms < min_false_alarms) {
 348
 349		IWL_DEBUG_CALIB(priv, "norm FA %u < min FA %u\n",
 350			     false_alarms, min_false_alarms);
 351
 352		val = data->auto_corr_ofdm - AUTO_CORR_STEP_OFDM;
 353		data->auto_corr_ofdm =
 354			max((u32)ranges->auto_corr_min_ofdm, val);
 355
 356		val = data->auto_corr_ofdm_mrc - AUTO_CORR_STEP_OFDM;
 357		data->auto_corr_ofdm_mrc =
 358			max((u32)ranges->auto_corr_min_ofdm_mrc, val);
 359
 360		val = data->auto_corr_ofdm_x1 - AUTO_CORR_STEP_OFDM;
 361		data->auto_corr_ofdm_x1 =
 362			max((u32)ranges->auto_corr_min_ofdm_x1, val);
 363
 364		val = data->auto_corr_ofdm_mrc_x1 - AUTO_CORR_STEP_OFDM;
 365		data->auto_corr_ofdm_mrc_x1 =
 366			max((u32)ranges->auto_corr_min_ofdm_mrc_x1, val);
 367	} else {
 368		IWL_DEBUG_CALIB(priv, "min FA %u < norm FA %u < max FA %u OK\n",
 369			 min_false_alarms, false_alarms, max_false_alarms);
 370	}
 371	return 0;
 372}
 373
 374static void iwl_prepare_legacy_sensitivity_tbl(struct iwl_priv *priv,
 375				struct iwl_sensitivity_data *data,
 376				__le16 *tbl)
 377{
 378	tbl[HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX] =
 379				cpu_to_le16((u16)data->auto_corr_ofdm);
 380	tbl[HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX] =
 381				cpu_to_le16((u16)data->auto_corr_ofdm_mrc);
 382	tbl[HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX] =
 383				cpu_to_le16((u16)data->auto_corr_ofdm_x1);
 384	tbl[HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX] =
 385				cpu_to_le16((u16)data->auto_corr_ofdm_mrc_x1);
 386
 387	tbl[HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX] =
 388				cpu_to_le16((u16)data->auto_corr_cck);
 389	tbl[HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX] =
 390				cpu_to_le16((u16)data->auto_corr_cck_mrc);
 391
 392	tbl[HD_MIN_ENERGY_CCK_DET_INDEX] =
 393				cpu_to_le16((u16)data->nrg_th_cck);
 394	tbl[HD_MIN_ENERGY_OFDM_DET_INDEX] =
 395				cpu_to_le16((u16)data->nrg_th_ofdm);
 396
 397	tbl[HD_BARKER_CORR_TH_ADD_MIN_INDEX] =
 398				cpu_to_le16(data->barker_corr_th_min);
 399	tbl[HD_BARKER_CORR_TH_ADD_MIN_MRC_INDEX] =
 400				cpu_to_le16(data->barker_corr_th_min_mrc);
 401	tbl[HD_OFDM_ENERGY_TH_IN_INDEX] =
 402				cpu_to_le16(data->nrg_th_cca);
 403
 404	IWL_DEBUG_CALIB(priv, "ofdm: ac %u mrc %u x1 %u mrc_x1 %u thresh %u\n",
 405			data->auto_corr_ofdm, data->auto_corr_ofdm_mrc,
 406			data->auto_corr_ofdm_x1, data->auto_corr_ofdm_mrc_x1,
 407			data->nrg_th_ofdm);
 408
 409	IWL_DEBUG_CALIB(priv, "cck: ac %u mrc %u thresh %u\n",
 410			data->auto_corr_cck, data->auto_corr_cck_mrc,
 411			data->nrg_th_cck);
 412}
 413
 414/* Prepare a SENSITIVITY_CMD, send to uCode if values have changed */
 415static int iwl_sensitivity_write(struct iwl_priv *priv)
 416{
 417	struct iwl_sensitivity_cmd cmd;
 418	struct iwl_sensitivity_data *data = NULL;
 419	struct iwl_host_cmd cmd_out = {
 420		.id = SENSITIVITY_CMD,
 421		.len = { sizeof(struct iwl_sensitivity_cmd), },
 422		.flags = CMD_ASYNC,
 423		.data = { &cmd, },
 424	};
 425
 426	data = &(priv->sensitivity_data);
 427
 428	memset(&cmd, 0, sizeof(cmd));
 429
 430	iwl_prepare_legacy_sensitivity_tbl(priv, data, &cmd.table[0]);
 431
 432	/* Update uCode's "work" table, and copy it to DSP */
 433	cmd.control = SENSITIVITY_CMD_CONTROL_WORK_TABLE;
 434
 435	/* Don't send command to uCode if nothing has changed */
 436	if (!memcmp(&cmd.table[0], &(priv->sensitivity_tbl[0]),
 437		    sizeof(u16)*HD_TABLE_SIZE)) {
 438		IWL_DEBUG_CALIB(priv, "No change in SENSITIVITY_CMD\n");
 439		return 0;
 440	}
 441
 442	/* Copy table for comparison next time */
 443	memcpy(&(priv->sensitivity_tbl[0]), &(cmd.table[0]),
 444	       sizeof(u16)*HD_TABLE_SIZE);
 445
 446	return iwl_dvm_send_cmd(priv, &cmd_out);
 447}
 448
 449/* Prepare a SENSITIVITY_CMD, send to uCode if values have changed */
 450static int iwl_enhance_sensitivity_write(struct iwl_priv *priv)
 451{
 452	struct iwl_enhance_sensitivity_cmd cmd;
 453	struct iwl_sensitivity_data *data = NULL;
 454	struct iwl_host_cmd cmd_out = {
 455		.id = SENSITIVITY_CMD,
 456		.len = { sizeof(struct iwl_enhance_sensitivity_cmd), },
 457		.flags = CMD_ASYNC,
 458		.data = { &cmd, },
 459	};
 460
 461	data = &(priv->sensitivity_data);
 462
 463	memset(&cmd, 0, sizeof(cmd));
 464
 465	iwl_prepare_legacy_sensitivity_tbl(priv, data, &cmd.enhance_table[0]);
 466
 467	if (priv->lib->hd_v2) {
 468		cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX] =
 469			HD_INA_NON_SQUARE_DET_OFDM_DATA_V2;
 470		cmd.enhance_table[HD_INA_NON_SQUARE_DET_CCK_INDEX] =
 471			HD_INA_NON_SQUARE_DET_CCK_DATA_V2;
 472		cmd.enhance_table[HD_CORR_11_INSTEAD_OF_CORR_9_EN_INDEX] =
 473			HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V2;
 474		cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_INDEX] =
 475			HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V2;
 476		cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] =
 477			HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2;
 478		cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_INDEX] =
 479			HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V2;
 480		cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_INDEX] =
 481			HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V2;
 482		cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_MRC_INDEX] =
 483			HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V2;
 484		cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] =
 485			HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2;
 486		cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_INDEX] =
 487			HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V2;
 488		cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_INDEX] =
 489			HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V2;
 490	} else {
 491		cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX] =
 492			HD_INA_NON_SQUARE_DET_OFDM_DATA_V1;
 493		cmd.enhance_table[HD_INA_NON_SQUARE_DET_CCK_INDEX] =
 494			HD_INA_NON_SQUARE_DET_CCK_DATA_V1;
 495		cmd.enhance_table[HD_CORR_11_INSTEAD_OF_CORR_9_EN_INDEX] =
 496			HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V1;
 497		cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_INDEX] =
 498			HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V1;
 499		cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] =
 500			HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1;
 501		cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_INDEX] =
 502			HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V1;
 503		cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_INDEX] =
 504			HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V1;
 505		cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_MRC_INDEX] =
 506			HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V1;
 507		cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] =
 508			HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1;
 509		cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_INDEX] =
 510			HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V1;
 511		cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_INDEX] =
 512			HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V1;
 513	}
 514
 515	/* Update uCode's "work" table, and copy it to DSP */
 516	cmd.control = SENSITIVITY_CMD_CONTROL_WORK_TABLE;
 517
 518	/* Don't send command to uCode if nothing has changed */
 519	if (!memcmp(&cmd.enhance_table[0], &(priv->sensitivity_tbl[0]),
 520		    sizeof(u16)*HD_TABLE_SIZE) &&
 521	    !memcmp(&cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX],
 522		    &(priv->enhance_sensitivity_tbl[0]),
 523		    sizeof(u16)*ENHANCE_HD_TABLE_ENTRIES)) {
 524		IWL_DEBUG_CALIB(priv, "No change in SENSITIVITY_CMD\n");
 525		return 0;
 526	}
 527
 528	/* Copy table for comparison next time */
 529	memcpy(&(priv->sensitivity_tbl[0]), &(cmd.enhance_table[0]),
 530	       sizeof(u16)*HD_TABLE_SIZE);
 531	memcpy(&(priv->enhance_sensitivity_tbl[0]),
 532	       &(cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX]),
 533	       sizeof(u16)*ENHANCE_HD_TABLE_ENTRIES);
 534
 535	return iwl_dvm_send_cmd(priv, &cmd_out);
 536}
 537
 538void iwl_init_sensitivity(struct iwl_priv *priv)
 539{
 540	int ret = 0;
 541	int i;
 542	struct iwl_sensitivity_data *data = NULL;
 543	const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens;
 544
 545	if (priv->calib_disabled & IWL_SENSITIVITY_CALIB_DISABLED)
 546		return;
 547
 548	IWL_DEBUG_CALIB(priv, "Start iwl_init_sensitivity\n");
 549
 550	/* Clear driver's sensitivity algo data */
 551	data = &(priv->sensitivity_data);
 552
 553	if (ranges == NULL)
 554		return;
 555
 556	memset(data, 0, sizeof(struct iwl_sensitivity_data));
 557
 558	data->num_in_cck_no_fa = 0;
 559	data->nrg_curr_state = IWL_FA_TOO_MANY;
 560	data->nrg_prev_state = IWL_FA_TOO_MANY;
 561	data->nrg_silence_ref = 0;
 562	data->nrg_silence_idx = 0;
 563	data->nrg_energy_idx = 0;
 564
 565	for (i = 0; i < 10; i++)
 566		data->nrg_value[i] = 0;
 567
 568	for (i = 0; i < NRG_NUM_PREV_STAT_L; i++)
 569		data->nrg_silence_rssi[i] = 0;
 570
 571	data->auto_corr_ofdm =  ranges->auto_corr_min_ofdm;
 572	data->auto_corr_ofdm_mrc = ranges->auto_corr_min_ofdm_mrc;
 573	data->auto_corr_ofdm_x1  = ranges->auto_corr_min_ofdm_x1;
 574	data->auto_corr_ofdm_mrc_x1 = ranges->auto_corr_min_ofdm_mrc_x1;
 575	data->auto_corr_cck = AUTO_CORR_CCK_MIN_VAL_DEF;
 576	data->auto_corr_cck_mrc = ranges->auto_corr_min_cck_mrc;
 577	data->nrg_th_cck = ranges->nrg_th_cck;
 578	data->nrg_th_ofdm = ranges->nrg_th_ofdm;
 579	data->barker_corr_th_min = ranges->barker_corr_th_min;
 580	data->barker_corr_th_min_mrc = ranges->barker_corr_th_min_mrc;
 581	data->nrg_th_cca = ranges->nrg_th_cca;
 582
 583	data->last_bad_plcp_cnt_ofdm = 0;
 584	data->last_fa_cnt_ofdm = 0;
 585	data->last_bad_plcp_cnt_cck = 0;
 586	data->last_fa_cnt_cck = 0;
 587
 588	if (priv->fw->enhance_sensitivity_table)
 589		ret |= iwl_enhance_sensitivity_write(priv);
 590	else
 591		ret |= iwl_sensitivity_write(priv);
 592	IWL_DEBUG_CALIB(priv, "<<return 0x%X\n", ret);
 593}
 594
 595void iwl_sensitivity_calibration(struct iwl_priv *priv)
 596{
 597	u32 rx_enable_time;
 598	u32 fa_cck;
 599	u32 fa_ofdm;
 600	u32 bad_plcp_cck;
 601	u32 bad_plcp_ofdm;
 602	u32 norm_fa_ofdm;
 603	u32 norm_fa_cck;
 604	struct iwl_sensitivity_data *data = NULL;
 605	struct statistics_rx_non_phy *rx_info;
 606	struct statistics_rx_phy *ofdm, *cck;
 607	struct statistics_general_data statis;
 608
 609	if (priv->calib_disabled & IWL_SENSITIVITY_CALIB_DISABLED)
 610		return;
 611
 612	data = &(priv->sensitivity_data);
 613
 614	if (!iwl_is_any_associated(priv)) {
 615		IWL_DEBUG_CALIB(priv, "<< - not associated\n");
 616		return;
 617	}
 618
 619	spin_lock_bh(&priv->statistics.lock);
 620	rx_info = &priv->statistics.rx_non_phy;
 621	ofdm = &priv->statistics.rx_ofdm;
 622	cck = &priv->statistics.rx_cck;
 623	if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) {
 624		IWL_DEBUG_CALIB(priv, "<< invalid data.\n");
 625		spin_unlock_bh(&priv->statistics.lock);
 626		return;
 627	}
 628
 629	/* Extract Statistics: */
 630	rx_enable_time = le32_to_cpu(rx_info->channel_load);
 631	fa_cck = le32_to_cpu(cck->false_alarm_cnt);
 632	fa_ofdm = le32_to_cpu(ofdm->false_alarm_cnt);
 633	bad_plcp_cck = le32_to_cpu(cck->plcp_err);
 634	bad_plcp_ofdm = le32_to_cpu(ofdm->plcp_err);
 635
 636	statis.beacon_silence_rssi_a =
 637			le32_to_cpu(rx_info->beacon_silence_rssi_a);
 638	statis.beacon_silence_rssi_b =
 639			le32_to_cpu(rx_info->beacon_silence_rssi_b);
 640	statis.beacon_silence_rssi_c =
 641			le32_to_cpu(rx_info->beacon_silence_rssi_c);
 642	statis.beacon_energy_a =
 643			le32_to_cpu(rx_info->beacon_energy_a);
 644	statis.beacon_energy_b =
 645			le32_to_cpu(rx_info->beacon_energy_b);
 646	statis.beacon_energy_c =
 647			le32_to_cpu(rx_info->beacon_energy_c);
 648
 649	spin_unlock_bh(&priv->statistics.lock);
 650
 651	IWL_DEBUG_CALIB(priv, "rx_enable_time = %u usecs\n", rx_enable_time);
 652
 653	if (!rx_enable_time) {
 654		IWL_DEBUG_CALIB(priv, "<< RX Enable Time == 0!\n");
 655		return;
 656	}
 657
 658	/* These statistics increase monotonically, and do not reset
 659	 *   at each beacon.  Calculate difference from last value, or just
 660	 *   use the new statistics value if it has reset or wrapped around. */
 661	if (data->last_bad_plcp_cnt_cck > bad_plcp_cck)
 662		data->last_bad_plcp_cnt_cck = bad_plcp_cck;
 663	else {
 664		bad_plcp_cck -= data->last_bad_plcp_cnt_cck;
 665		data->last_bad_plcp_cnt_cck += bad_plcp_cck;
 666	}
 667
 668	if (data->last_bad_plcp_cnt_ofdm > bad_plcp_ofdm)
 669		data->last_bad_plcp_cnt_ofdm = bad_plcp_ofdm;
 670	else {
 671		bad_plcp_ofdm -= data->last_bad_plcp_cnt_ofdm;
 672		data->last_bad_plcp_cnt_ofdm += bad_plcp_ofdm;
 673	}
 674
 675	if (data->last_fa_cnt_ofdm > fa_ofdm)
 676		data->last_fa_cnt_ofdm = fa_ofdm;
 677	else {
 678		fa_ofdm -= data->last_fa_cnt_ofdm;
 679		data->last_fa_cnt_ofdm += fa_ofdm;
 680	}
 681
 682	if (data->last_fa_cnt_cck > fa_cck)
 683		data->last_fa_cnt_cck = fa_cck;
 684	else {
 685		fa_cck -= data->last_fa_cnt_cck;
 686		data->last_fa_cnt_cck += fa_cck;
 687	}
 688
 689	/* Total aborted signal locks */
 690	norm_fa_ofdm = fa_ofdm + bad_plcp_ofdm;
 691	norm_fa_cck = fa_cck + bad_plcp_cck;
 692
 693	IWL_DEBUG_CALIB(priv, "cck: fa %u badp %u  ofdm: fa %u badp %u\n", fa_cck,
 694			bad_plcp_cck, fa_ofdm, bad_plcp_ofdm);
 695
 696	iwl_sens_auto_corr_ofdm(priv, norm_fa_ofdm, rx_enable_time);
 697	iwl_sens_energy_cck(priv, norm_fa_cck, rx_enable_time, &statis);
 698	if (priv->fw->enhance_sensitivity_table)
 699		iwl_enhance_sensitivity_write(priv);
 700	else
 701		iwl_sensitivity_write(priv);
 702}
 703
 704static inline u8 find_first_chain(u8 mask)
 705{
 706	if (mask & ANT_A)
 707		return CHAIN_A;
 708	if (mask & ANT_B)
 709		return CHAIN_B;
 710	return CHAIN_C;
 711}
 712
 713/*
 714 * Run disconnected antenna algorithm to find out which antennas are
 715 * disconnected.
 716 */
 717static void iwl_find_disconn_antenna(struct iwl_priv *priv, u32* average_sig,
 718				     struct iwl_chain_noise_data *data)
 719{
 720	u32 active_chains = 0;
 721	u32 max_average_sig;
 722	u16 max_average_sig_antenna_i;
 723	u8 num_tx_chains;
 724	u8 first_chain;
 725	u16 i = 0;
 726
 727	average_sig[0] = data->chain_signal_a / IWL_CAL_NUM_BEACONS;
 728	average_sig[1] = data->chain_signal_b / IWL_CAL_NUM_BEACONS;
 729	average_sig[2] = data->chain_signal_c / IWL_CAL_NUM_BEACONS;
 730
 731	if (average_sig[0] >= average_sig[1]) {
 732		max_average_sig = average_sig[0];
 733		max_average_sig_antenna_i = 0;
 734		active_chains = (1 << max_average_sig_antenna_i);
 735	} else {
 736		max_average_sig = average_sig[1];
 737		max_average_sig_antenna_i = 1;
 738		active_chains = (1 << max_average_sig_antenna_i);
 739	}
 740
 741	if (average_sig[2] >= max_average_sig) {
 742		max_average_sig = average_sig[2];
 743		max_average_sig_antenna_i = 2;
 744		active_chains = (1 << max_average_sig_antenna_i);
 745	}
 746
 747	IWL_DEBUG_CALIB(priv, "average_sig: a %d b %d c %d\n",
 748		     average_sig[0], average_sig[1], average_sig[2]);
 749	IWL_DEBUG_CALIB(priv, "max_average_sig = %d, antenna %d\n",
 750		     max_average_sig, max_average_sig_antenna_i);
 751
 752	/* Compare signal strengths for all 3 receivers. */
 753	for (i = 0; i < NUM_RX_CHAINS; i++) {
 754		if (i != max_average_sig_antenna_i) {
 755			s32 rssi_delta = (max_average_sig - average_sig[i]);
 756
 757			/* If signal is very weak, compared with
 758			 * strongest, mark it as disconnected. */
 759			if (rssi_delta > MAXIMUM_ALLOWED_PATHLOSS)
 760				data->disconn_array[i] = 1;
 761			else
 762				active_chains |= (1 << i);
 763			IWL_DEBUG_CALIB(priv, "i = %d  rssiDelta = %d  "
 764			     "disconn_array[i] = %d\n",
 765			     i, rssi_delta, data->disconn_array[i]);
 766		}
 767	}
 768
 769	/*
 770	 * The above algorithm sometimes fails when the ucode
 771	 * reports 0 for all chains. It's not clear why that
 772	 * happens to start with, but it is then causing trouble
 773	 * because this can make us enable more chains than the
 774	 * hardware really has.
 775	 *
 776	 * To be safe, simply mask out any chains that we know
 777	 * are not on the device.
 778	 */
 779	active_chains &= priv->nvm_data->valid_rx_ant;
 780
 781	num_tx_chains = 0;
 782	for (i = 0; i < NUM_RX_CHAINS; i++) {
 783		/* loops on all the bits of
 784		 * priv->hw_setting.valid_tx_ant */
 785		u8 ant_msk = (1 << i);
 786		if (!(priv->nvm_data->valid_tx_ant & ant_msk))
 787			continue;
 788
 789		num_tx_chains++;
 790		if (data->disconn_array[i] == 0)
 791			/* there is a Tx antenna connected */
 792			break;
 793		if (num_tx_chains == priv->hw_params.tx_chains_num &&
 794		    data->disconn_array[i]) {
 795			/*
 796			 * If all chains are disconnected
 797			 * connect the first valid tx chain
 798			 */
 799			first_chain =
 800				find_first_chain(priv->nvm_data->valid_tx_ant);
 801			data->disconn_array[first_chain] = 0;
 802			active_chains |= BIT(first_chain);
 803			IWL_DEBUG_CALIB(priv,
 804					"All Tx chains are disconnected W/A - declare %d as connected\n",
 805					first_chain);
 806			break;
 807		}
 808	}
 809
 810	if (active_chains != priv->nvm_data->valid_rx_ant &&
 811	    active_chains != priv->chain_noise_data.active_chains)
 812		IWL_DEBUG_CALIB(priv,
 813				"Detected that not all antennas are connected! "
 814				"Connected: %#x, valid: %#x.\n",
 815				active_chains,
 816				priv->nvm_data->valid_rx_ant);
 817
 818	/* Save for use within RXON, TX, SCAN commands, etc. */
 819	data->active_chains = active_chains;
 820	IWL_DEBUG_CALIB(priv, "active_chains (bitwise) = 0x%x\n",
 821			active_chains);
 822}
 823
 824static void iwlagn_gain_computation(struct iwl_priv *priv,
 825				    u32 average_noise[NUM_RX_CHAINS],
 826				    u8 default_chain)
 827{
 828	int i;
 829	s32 delta_g;
 830	struct iwl_chain_noise_data *data = &priv->chain_noise_data;
 831
 832	/*
 833	 * Find Gain Code for the chains based on "default chain"
 834	 */
 835	for (i = default_chain + 1; i < NUM_RX_CHAINS; i++) {
 836		if ((data->disconn_array[i])) {
 837			data->delta_gain_code[i] = 0;
 838			continue;
 839		}
 840
 841		delta_g = (priv->lib->chain_noise_scale *
 842			((s32)average_noise[default_chain] -
 843			(s32)average_noise[i])) / 1500;
 844
 845		/* bound gain by 2 bits value max, 3rd bit is sign */
 846		data->delta_gain_code[i] =
 847			min(abs(delta_g), CHAIN_NOISE_MAX_DELTA_GAIN_CODE);
 848
 849		if (delta_g < 0)
 850			/*
 851			 * set negative sign ...
 852			 * note to Intel developers:  This is uCode API format,
 853			 *   not the format of any internal device registers.
 854			 *   Do not change this format for e.g. 6050 or similar
 855			 *   devices.  Change format only if more resolution
 856			 *   (i.e. more than 2 bits magnitude) is needed.
 857			 */
 858			data->delta_gain_code[i] |= (1 << 2);
 859	}
 860
 861	IWL_DEBUG_CALIB(priv, "Delta gains: ANT_B = %d  ANT_C = %d\n",
 862			data->delta_gain_code[1], data->delta_gain_code[2]);
 863
 864	if (!data->radio_write) {
 865		struct iwl_calib_chain_noise_gain_cmd cmd;
 866
 867		memset(&cmd, 0, sizeof(cmd));
 868
 869		iwl_set_calib_hdr(&cmd.hdr,
 870			priv->phy_calib_chain_noise_gain_cmd);
 871		cmd.delta_gain_1 = data->delta_gain_code[1];
 872		cmd.delta_gain_2 = data->delta_gain_code[2];
 873		iwl_dvm_send_cmd_pdu(priv, REPLY_PHY_CALIBRATION_CMD,
 874			CMD_ASYNC, sizeof(cmd), &cmd);
 875
 876		data->radio_write = 1;
 877		data->state = IWL_CHAIN_NOISE_CALIBRATED;
 878	}
 879}
 880
 881/*
 882 * Accumulate 16 beacons of signal and noise statistics for each of
 883 *   3 receivers/antennas/rx-chains, then figure out:
 884 * 1)  Which antennas are connected.
 885 * 2)  Differential rx gain settings to balance the 3 receivers.
 886 */
 887void iwl_chain_noise_calibration(struct iwl_priv *priv)
 888{
 889	struct iwl_chain_noise_data *data = NULL;
 890
 891	u32 chain_noise_a;
 892	u32 chain_noise_b;
 893	u32 chain_noise_c;
 894	u32 chain_sig_a;
 895	u32 chain_sig_b;
 896	u32 chain_sig_c;
 897	u32 average_sig[NUM_RX_CHAINS] = {INITIALIZATION_VALUE};
 898	u32 average_noise[NUM_RX_CHAINS] = {INITIALIZATION_VALUE};
 899	u32 min_average_noise = MIN_AVERAGE_NOISE_MAX_VALUE;
 900	u16 min_average_noise_antenna_i = INITIALIZATION_VALUE;
 901	u16 i = 0;
 902	u16 rxon_chnum = INITIALIZATION_VALUE;
 903	u16 stat_chnum = INITIALIZATION_VALUE;
 904	u8 rxon_band24;
 905	u8 stat_band24;
 906	struct statistics_rx_non_phy *rx_info;
 907
 908	/*
 909	 * MULTI-FIXME:
 910	 * When we support multiple interfaces on different channels,
 911	 * this must be modified/fixed.
 912	 */
 913	struct iwl_rxon_context *ctx = &priv->contexts[IWL_RXON_CTX_BSS];
 914
 915	if (priv->calib_disabled & IWL_CHAIN_NOISE_CALIB_DISABLED)
 916		return;
 917
 918	data = &(priv->chain_noise_data);
 919
 920	/*
 921	 * Accumulate just the first "chain_noise_num_beacons" after
 922	 * the first association, then we're done forever.
 923	 */
 924	if (data->state != IWL_CHAIN_NOISE_ACCUMULATE) {
 925		if (data->state == IWL_CHAIN_NOISE_ALIVE)
 926			IWL_DEBUG_CALIB(priv, "Wait for noise calib reset\n");
 927		return;
 928	}
 929
 930	spin_lock_bh(&priv->statistics.lock);
 931
 932	rx_info = &priv->statistics.rx_non_phy;
 933
 934	if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) {
 935		IWL_DEBUG_CALIB(priv, " << Interference data unavailable\n");
 936		spin_unlock_bh(&priv->statistics.lock);
 937		return;
 938	}
 939
 940	rxon_band24 = !!(ctx->staging.flags & RXON_FLG_BAND_24G_MSK);
 941	rxon_chnum = le16_to_cpu(ctx->staging.channel);
 942	stat_band24 =
 943		!!(priv->statistics.flag & STATISTICS_REPLY_FLG_BAND_24G_MSK);
 944	stat_chnum = le32_to_cpu(priv->statistics.flag) >> 16;
 945
 946	/* Make sure we accumulate data for just the associated channel
 947	 *   (even if scanning). */
 948	if ((rxon_chnum != stat_chnum) || (rxon_band24 != stat_band24)) {
 949		IWL_DEBUG_CALIB(priv, "Stats not from chan=%d, band24=%d\n",
 950				rxon_chnum, rxon_band24);
 951		spin_unlock_bh(&priv->statistics.lock);
 952		return;
 953	}
 954
 955	/*
 956	 *  Accumulate beacon statistics values across
 957	 * "chain_noise_num_beacons"
 958	 */
 959	chain_noise_a = le32_to_cpu(rx_info->beacon_silence_rssi_a) &
 960				IN_BAND_FILTER;
 961	chain_noise_b = le32_to_cpu(rx_info->beacon_silence_rssi_b) &
 962				IN_BAND_FILTER;
 963	chain_noise_c = le32_to_cpu(rx_info->beacon_silence_rssi_c) &
 964				IN_BAND_FILTER;
 965
 966	chain_sig_a = le32_to_cpu(rx_info->beacon_rssi_a) & IN_BAND_FILTER;
 967	chain_sig_b = le32_to_cpu(rx_info->beacon_rssi_b) & IN_BAND_FILTER;
 968	chain_sig_c = le32_to_cpu(rx_info->beacon_rssi_c) & IN_BAND_FILTER;
 969
 970	spin_unlock_bh(&priv->statistics.lock);
 971
 972	data->beacon_count++;
 973
 974	data->chain_noise_a = (chain_noise_a + data->chain_noise_a);
 975	data->chain_noise_b = (chain_noise_b + data->chain_noise_b);
 976	data->chain_noise_c = (chain_noise_c + data->chain_noise_c);
 977
 978	data->chain_signal_a = (chain_sig_a + data->chain_signal_a);
 979	data->chain_signal_b = (chain_sig_b + data->chain_signal_b);
 980	data->chain_signal_c = (chain_sig_c + data->chain_signal_c);
 981
 982	IWL_DEBUG_CALIB(priv, "chan=%d, band24=%d, beacon=%d\n",
 983			rxon_chnum, rxon_band24, data->beacon_count);
 984	IWL_DEBUG_CALIB(priv, "chain_sig: a %d b %d c %d\n",
 985			chain_sig_a, chain_sig_b, chain_sig_c);
 986	IWL_DEBUG_CALIB(priv, "chain_noise: a %d b %d c %d\n",
 987			chain_noise_a, chain_noise_b, chain_noise_c);
 988
 989	/* If this is the "chain_noise_num_beacons", determine:
 990	 * 1)  Disconnected antennas (using signal strengths)
 991	 * 2)  Differential gain (using silence noise) to balance receivers */
 992	if (data->beacon_count != IWL_CAL_NUM_BEACONS)
 993		return;
 994
 995	/* Analyze signal for disconnected antenna */
 996	if (priv->lib->bt_params &&
 997	    priv->lib->bt_params->advanced_bt_coexist) {
 998		/* Disable disconnected antenna algorithm for advanced
 999		   bt coex, assuming valid antennas are connected */
1000		data->active_chains = priv->nvm_data->valid_rx_ant;
1001		for (i = 0; i < NUM_RX_CHAINS; i++)
1002			if (!(data->active_chains & (1<<i)))
1003				data->disconn_array[i] = 1;
1004	} else
1005		iwl_find_disconn_antenna(priv, average_sig, data);
1006
1007	/* Analyze noise for rx balance */
1008	average_noise[0] = data->chain_noise_a / IWL_CAL_NUM_BEACONS;
1009	average_noise[1] = data->chain_noise_b / IWL_CAL_NUM_BEACONS;
1010	average_noise[2] = data->chain_noise_c / IWL_CAL_NUM_BEACONS;
1011
1012	for (i = 0; i < NUM_RX_CHAINS; i++) {
1013		if (!(data->disconn_array[i]) &&
1014		   (average_noise[i] <= min_average_noise)) {
1015			/* This means that chain i is active and has
1016			 * lower noise values so far: */
1017			min_average_noise = average_noise[i];
1018			min_average_noise_antenna_i = i;
1019		}
1020	}
1021
1022	IWL_DEBUG_CALIB(priv, "average_noise: a %d b %d c %d\n",
1023			average_noise[0], average_noise[1],
1024			average_noise[2]);
1025
1026	IWL_DEBUG_CALIB(priv, "min_average_noise = %d, antenna %d\n",
1027			min_average_noise, min_average_noise_antenna_i);
1028
1029	iwlagn_gain_computation(
1030		priv, average_noise,
1031		find_first_chain(priv->nvm_data->valid_rx_ant));
1032
1033	/* Some power changes may have been made during the calibration.
1034	 * Update and commit the RXON
1035	 */
1036	iwl_update_chain_flags(priv);
1037
1038	data->state = IWL_CHAIN_NOISE_DONE;
1039	iwl_power_update_mode(priv, false);
1040}
1041
1042void iwl_reset_run_time_calib(struct iwl_priv *priv)
1043{
1044	int i;
1045	memset(&(priv->sensitivity_data), 0,
1046	       sizeof(struct iwl_sensitivity_data));
1047	memset(&(priv->chain_noise_data), 0,
1048	       sizeof(struct iwl_chain_noise_data));
1049	for (i = 0; i < NUM_RX_CHAINS; i++)
1050		priv->chain_noise_data.delta_gain_code[i] =
1051				CHAIN_NOISE_DELTA_GAIN_INIT_VAL;
1052
1053	/* Ask for statistics now, the uCode will send notification
1054	 * periodically after association */
1055	iwl_send_statistics_request(priv, CMD_ASYNC, true);
1056}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
   2/*
   3 * Copyright (C) 2005-2014 Intel Corporation
   4 */
   5#include <linux/slab.h>
   6#include <net/mac80211.h>
   7
   8#include "iwl-trans.h"
   9
  10#include "dev.h"
  11#include "calib.h"
  12#include "agn.h"
  13
  14/*****************************************************************************
  15 * INIT calibrations framework
  16 *****************************************************************************/
  17
  18/* Opaque calibration results */
  19struct iwl_calib_result {
  20	struct list_head list;
  21	size_t cmd_len;
  22	struct iwl_calib_hdr hdr;
  23	/* data follows */
  24};
  25
  26struct statistics_general_data {
  27	u32 beacon_silence_rssi_a;
  28	u32 beacon_silence_rssi_b;
  29	u32 beacon_silence_rssi_c;
  30	u32 beacon_energy_a;
  31	u32 beacon_energy_b;
  32	u32 beacon_energy_c;
  33};
  34
  35int iwl_send_calib_results(struct iwl_priv *priv)
  36{
  37	struct iwl_host_cmd hcmd = {
  38		.id = REPLY_PHY_CALIBRATION_CMD,
  39	};
  40	struct iwl_calib_result *res;
  41
  42	list_for_each_entry(res, &priv->calib_results, list) {
  43		int ret;
  44
  45		hcmd.len[0] = res->cmd_len;
  46		hcmd.data[0] = &res->hdr;
  47		hcmd.dataflags[0] = IWL_HCMD_DFL_NOCOPY;
  48		ret = iwl_dvm_send_cmd(priv, &hcmd);
  49		if (ret) {
  50			IWL_ERR(priv, "Error %d on calib cmd %d\n",
  51				ret, res->hdr.op_code);
  52			return ret;
  53		}
  54	}
  55
  56	return 0;
  57}
  58
  59int iwl_calib_set(struct iwl_priv *priv,
  60		  const struct iwl_calib_hdr *cmd, int len)
  61{
  62	struct iwl_calib_result *res, *tmp;
  63
  64	res = kmalloc(sizeof(*res) + len - sizeof(struct iwl_calib_hdr),
  65		      GFP_ATOMIC);
 
 
  66	if (!res)
  67		return -ENOMEM;
  68	memcpy(&res->hdr, cmd, len);
  69	res->cmd_len = len;
 
  70
  71	list_for_each_entry(tmp, &priv->calib_results, list) {
  72		if (tmp->hdr.op_code == res->hdr.op_code) {
  73			list_replace(&tmp->list, &res->list);
  74			kfree(tmp);
  75			return 0;
  76		}
  77	}
  78
  79	/* wasn't in list already */
  80	list_add_tail(&res->list, &priv->calib_results);
  81
  82	return 0;
  83}
  84
  85void iwl_calib_free_results(struct iwl_priv *priv)
  86{
  87	struct iwl_calib_result *res, *tmp;
  88
  89	list_for_each_entry_safe(res, tmp, &priv->calib_results, list) {
  90		list_del(&res->list);
  91		kfree(res);
  92	}
  93}
  94
  95/*****************************************************************************
  96 * RUNTIME calibrations framework
  97 *****************************************************************************/
  98
  99/* "false alarms" are signals that our DSP tries to lock onto,
 100 *   but then determines that they are either noise, or transmissions
 101 *   from a distant wireless network (also "noise", really) that get
 102 *   "stepped on" by stronger transmissions within our own network.
 103 * This algorithm attempts to set a sensitivity level that is high
 104 *   enough to receive all of our own network traffic, but not so
 105 *   high that our DSP gets too busy trying to lock onto non-network
 106 *   activity/noise. */
 107static int iwl_sens_energy_cck(struct iwl_priv *priv,
 108				   u32 norm_fa,
 109				   u32 rx_enable_time,
 110				   struct statistics_general_data *rx_info)
 111{
 112	u32 max_nrg_cck = 0;
 113	int i = 0;
 114	u8 max_silence_rssi = 0;
 115	u32 silence_ref = 0;
 116	u8 silence_rssi_a = 0;
 117	u8 silence_rssi_b = 0;
 118	u8 silence_rssi_c = 0;
 119	u32 val;
 120
 121	/* "false_alarms" values below are cross-multiplications to assess the
 122	 *   numbers of false alarms within the measured period of actual Rx
 123	 *   (Rx is off when we're txing), vs the min/max expected false alarms
 124	 *   (some should be expected if rx is sensitive enough) in a
 125	 *   hypothetical listening period of 200 time units (TU), 204.8 msec:
 126	 *
 127	 * MIN_FA/fixed-time < false_alarms/actual-rx-time < MAX_FA/beacon-time
 128	 *
 129	 * */
 130	u32 false_alarms = norm_fa * 200 * 1024;
 131	u32 max_false_alarms = MAX_FA_CCK * rx_enable_time;
 132	u32 min_false_alarms = MIN_FA_CCK * rx_enable_time;
 133	struct iwl_sensitivity_data *data = NULL;
 134	const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens;
 135
 136	data = &(priv->sensitivity_data);
 137
 138	data->nrg_auto_corr_silence_diff = 0;
 139
 140	/* Find max silence rssi among all 3 receivers.
 141	 * This is background noise, which may include transmissions from other
 142	 *    networks, measured during silence before our network's beacon */
 143	silence_rssi_a = (u8)((rx_info->beacon_silence_rssi_a &
 144			    ALL_BAND_FILTER) >> 8);
 145	silence_rssi_b = (u8)((rx_info->beacon_silence_rssi_b &
 146			    ALL_BAND_FILTER) >> 8);
 147	silence_rssi_c = (u8)((rx_info->beacon_silence_rssi_c &
 148			    ALL_BAND_FILTER) >> 8);
 149
 150	val = max(silence_rssi_b, silence_rssi_c);
 151	max_silence_rssi = max(silence_rssi_a, (u8) val);
 152
 153	/* Store silence rssi in 20-beacon history table */
 154	data->nrg_silence_rssi[data->nrg_silence_idx] = max_silence_rssi;
 155	data->nrg_silence_idx++;
 156	if (data->nrg_silence_idx >= NRG_NUM_PREV_STAT_L)
 157		data->nrg_silence_idx = 0;
 158
 159	/* Find max silence rssi across 20 beacon history */
 160	for (i = 0; i < NRG_NUM_PREV_STAT_L; i++) {
 161		val = data->nrg_silence_rssi[i];
 162		silence_ref = max(silence_ref, val);
 163	}
 164	IWL_DEBUG_CALIB(priv, "silence a %u, b %u, c %u, 20-bcn max %u\n",
 165			silence_rssi_a, silence_rssi_b, silence_rssi_c,
 166			silence_ref);
 167
 168	/* Find max rx energy (min value!) among all 3 receivers,
 169	 *   measured during beacon frame.
 170	 * Save it in 10-beacon history table. */
 171	i = data->nrg_energy_idx;
 172	val = min(rx_info->beacon_energy_b, rx_info->beacon_energy_c);
 173	data->nrg_value[i] = min(rx_info->beacon_energy_a, val);
 174
 175	data->nrg_energy_idx++;
 176	if (data->nrg_energy_idx >= 10)
 177		data->nrg_energy_idx = 0;
 178
 179	/* Find min rx energy (max value) across 10 beacon history.
 180	 * This is the minimum signal level that we want to receive well.
 181	 * Add backoff (margin so we don't miss slightly lower energy frames).
 182	 * This establishes an upper bound (min value) for energy threshold. */
 183	max_nrg_cck = data->nrg_value[0];
 184	for (i = 1; i < 10; i++)
 185		max_nrg_cck = (u32) max(max_nrg_cck, (data->nrg_value[i]));
 186	max_nrg_cck += 6;
 187
 188	IWL_DEBUG_CALIB(priv, "rx energy a %u, b %u, c %u, 10-bcn max/min %u\n",
 189			rx_info->beacon_energy_a, rx_info->beacon_energy_b,
 190			rx_info->beacon_energy_c, max_nrg_cck - 6);
 191
 192	/* Count number of consecutive beacons with fewer-than-desired
 193	 *   false alarms. */
 194	if (false_alarms < min_false_alarms)
 195		data->num_in_cck_no_fa++;
 196	else
 197		data->num_in_cck_no_fa = 0;
 198	IWL_DEBUG_CALIB(priv, "consecutive bcns with few false alarms = %u\n",
 199			data->num_in_cck_no_fa);
 200
 201	/* If we got too many false alarms this time, reduce sensitivity */
 202	if ((false_alarms > max_false_alarms) &&
 203		(data->auto_corr_cck > AUTO_CORR_MAX_TH_CCK)) {
 204		IWL_DEBUG_CALIB(priv, "norm FA %u > max FA %u\n",
 205		     false_alarms, max_false_alarms);
 206		IWL_DEBUG_CALIB(priv, "... reducing sensitivity\n");
 207		data->nrg_curr_state = IWL_FA_TOO_MANY;
 208		/* Store for "fewer than desired" on later beacon */
 209		data->nrg_silence_ref = silence_ref;
 210
 211		/* increase energy threshold (reduce nrg value)
 212		 *   to decrease sensitivity */
 213		data->nrg_th_cck = data->nrg_th_cck - NRG_STEP_CCK;
 214	/* Else if we got fewer than desired, increase sensitivity */
 215	} else if (false_alarms < min_false_alarms) {
 216		data->nrg_curr_state = IWL_FA_TOO_FEW;
 217
 218		/* Compare silence level with silence level for most recent
 219		 *   healthy number or too many false alarms */
 220		data->nrg_auto_corr_silence_diff = (s32)data->nrg_silence_ref -
 221						   (s32)silence_ref;
 222
 223		IWL_DEBUG_CALIB(priv, "norm FA %u < min FA %u, silence diff %d\n",
 224			 false_alarms, min_false_alarms,
 225			 data->nrg_auto_corr_silence_diff);
 226
 227		/* Increase value to increase sensitivity, but only if:
 228		 * 1a) previous beacon did *not* have *too many* false alarms
 229		 * 1b) AND there's a significant difference in Rx levels
 230		 *      from a previous beacon with too many, or healthy # FAs
 231		 * OR 2) We've seen a lot of beacons (100) with too few
 232		 *       false alarms */
 233		if ((data->nrg_prev_state != IWL_FA_TOO_MANY) &&
 234			((data->nrg_auto_corr_silence_diff > NRG_DIFF) ||
 235			(data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA))) {
 236
 237			IWL_DEBUG_CALIB(priv, "... increasing sensitivity\n");
 238			/* Increase nrg value to increase sensitivity */
 239			val = data->nrg_th_cck + NRG_STEP_CCK;
 240			data->nrg_th_cck = min((u32)ranges->min_nrg_cck, val);
 241		} else {
 242			IWL_DEBUG_CALIB(priv, "... but not changing sensitivity\n");
 243		}
 244
 245	/* Else we got a healthy number of false alarms, keep status quo */
 246	} else {
 247		IWL_DEBUG_CALIB(priv, " FA in safe zone\n");
 248		data->nrg_curr_state = IWL_FA_GOOD_RANGE;
 249
 250		/* Store for use in "fewer than desired" with later beacon */
 251		data->nrg_silence_ref = silence_ref;
 252
 253		/* If previous beacon had too many false alarms,
 254		 *   give it some extra margin by reducing sensitivity again
 255		 *   (but don't go below measured energy of desired Rx) */
 256		if (data->nrg_prev_state == IWL_FA_TOO_MANY) {
 257			IWL_DEBUG_CALIB(priv, "... increasing margin\n");
 258			if (data->nrg_th_cck > (max_nrg_cck + NRG_MARGIN))
 259				data->nrg_th_cck -= NRG_MARGIN;
 260			else
 261				data->nrg_th_cck = max_nrg_cck;
 262		}
 263	}
 264
 265	/* Make sure the energy threshold does not go above the measured
 266	 * energy of the desired Rx signals (reduced by backoff margin),
 267	 * or else we might start missing Rx frames.
 268	 * Lower value is higher energy, so we use max()!
 269	 */
 270	data->nrg_th_cck = max(max_nrg_cck, data->nrg_th_cck);
 271	IWL_DEBUG_CALIB(priv, "new nrg_th_cck %u\n", data->nrg_th_cck);
 272
 273	data->nrg_prev_state = data->nrg_curr_state;
 274
 275	/* Auto-correlation CCK algorithm */
 276	if (false_alarms > min_false_alarms) {
 277
 278		/* increase auto_corr values to decrease sensitivity
 279		 * so the DSP won't be disturbed by the noise
 280		 */
 281		if (data->auto_corr_cck < AUTO_CORR_MAX_TH_CCK)
 282			data->auto_corr_cck = AUTO_CORR_MAX_TH_CCK + 1;
 283		else {
 284			val = data->auto_corr_cck + AUTO_CORR_STEP_CCK;
 285			data->auto_corr_cck =
 286				min((u32)ranges->auto_corr_max_cck, val);
 287		}
 288		val = data->auto_corr_cck_mrc + AUTO_CORR_STEP_CCK;
 289		data->auto_corr_cck_mrc =
 290			min((u32)ranges->auto_corr_max_cck_mrc, val);
 291	} else if ((false_alarms < min_false_alarms) &&
 292	   ((data->nrg_auto_corr_silence_diff > NRG_DIFF) ||
 293	   (data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA))) {
 294
 295		/* Decrease auto_corr values to increase sensitivity */
 296		val = data->auto_corr_cck - AUTO_CORR_STEP_CCK;
 297		data->auto_corr_cck =
 298			max((u32)ranges->auto_corr_min_cck, val);
 299		val = data->auto_corr_cck_mrc - AUTO_CORR_STEP_CCK;
 300		data->auto_corr_cck_mrc =
 301			max((u32)ranges->auto_corr_min_cck_mrc, val);
 302	}
 303
 304	return 0;
 305}
 306
 307
 308static int iwl_sens_auto_corr_ofdm(struct iwl_priv *priv,
 309				       u32 norm_fa,
 310				       u32 rx_enable_time)
 311{
 312	u32 val;
 313	u32 false_alarms = norm_fa * 200 * 1024;
 314	u32 max_false_alarms = MAX_FA_OFDM * rx_enable_time;
 315	u32 min_false_alarms = MIN_FA_OFDM * rx_enable_time;
 316	struct iwl_sensitivity_data *data = NULL;
 317	const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens;
 318
 319	data = &(priv->sensitivity_data);
 320
 321	/* If we got too many false alarms this time, reduce sensitivity */
 322	if (false_alarms > max_false_alarms) {
 323
 324		IWL_DEBUG_CALIB(priv, "norm FA %u > max FA %u)\n",
 325			     false_alarms, max_false_alarms);
 326
 327		val = data->auto_corr_ofdm + AUTO_CORR_STEP_OFDM;
 328		data->auto_corr_ofdm =
 329			min((u32)ranges->auto_corr_max_ofdm, val);
 330
 331		val = data->auto_corr_ofdm_mrc + AUTO_CORR_STEP_OFDM;
 332		data->auto_corr_ofdm_mrc =
 333			min((u32)ranges->auto_corr_max_ofdm_mrc, val);
 334
 335		val = data->auto_corr_ofdm_x1 + AUTO_CORR_STEP_OFDM;
 336		data->auto_corr_ofdm_x1 =
 337			min((u32)ranges->auto_corr_max_ofdm_x1, val);
 338
 339		val = data->auto_corr_ofdm_mrc_x1 + AUTO_CORR_STEP_OFDM;
 340		data->auto_corr_ofdm_mrc_x1 =
 341			min((u32)ranges->auto_corr_max_ofdm_mrc_x1, val);
 342	}
 343
 344	/* Else if we got fewer than desired, increase sensitivity */
 345	else if (false_alarms < min_false_alarms) {
 346
 347		IWL_DEBUG_CALIB(priv, "norm FA %u < min FA %u\n",
 348			     false_alarms, min_false_alarms);
 349
 350		val = data->auto_corr_ofdm - AUTO_CORR_STEP_OFDM;
 351		data->auto_corr_ofdm =
 352			max((u32)ranges->auto_corr_min_ofdm, val);
 353
 354		val = data->auto_corr_ofdm_mrc - AUTO_CORR_STEP_OFDM;
 355		data->auto_corr_ofdm_mrc =
 356			max((u32)ranges->auto_corr_min_ofdm_mrc, val);
 357
 358		val = data->auto_corr_ofdm_x1 - AUTO_CORR_STEP_OFDM;
 359		data->auto_corr_ofdm_x1 =
 360			max((u32)ranges->auto_corr_min_ofdm_x1, val);
 361
 362		val = data->auto_corr_ofdm_mrc_x1 - AUTO_CORR_STEP_OFDM;
 363		data->auto_corr_ofdm_mrc_x1 =
 364			max((u32)ranges->auto_corr_min_ofdm_mrc_x1, val);
 365	} else {
 366		IWL_DEBUG_CALIB(priv, "min FA %u < norm FA %u < max FA %u OK\n",
 367			 min_false_alarms, false_alarms, max_false_alarms);
 368	}
 369	return 0;
 370}
 371
 372static void iwl_prepare_legacy_sensitivity_tbl(struct iwl_priv *priv,
 373				struct iwl_sensitivity_data *data,
 374				__le16 *tbl)
 375{
 376	tbl[HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX] =
 377				cpu_to_le16((u16)data->auto_corr_ofdm);
 378	tbl[HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX] =
 379				cpu_to_le16((u16)data->auto_corr_ofdm_mrc);
 380	tbl[HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX] =
 381				cpu_to_le16((u16)data->auto_corr_ofdm_x1);
 382	tbl[HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX] =
 383				cpu_to_le16((u16)data->auto_corr_ofdm_mrc_x1);
 384
 385	tbl[HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX] =
 386				cpu_to_le16((u16)data->auto_corr_cck);
 387	tbl[HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX] =
 388				cpu_to_le16((u16)data->auto_corr_cck_mrc);
 389
 390	tbl[HD_MIN_ENERGY_CCK_DET_INDEX] =
 391				cpu_to_le16((u16)data->nrg_th_cck);
 392	tbl[HD_MIN_ENERGY_OFDM_DET_INDEX] =
 393				cpu_to_le16((u16)data->nrg_th_ofdm);
 394
 395	tbl[HD_BARKER_CORR_TH_ADD_MIN_INDEX] =
 396				cpu_to_le16(data->barker_corr_th_min);
 397	tbl[HD_BARKER_CORR_TH_ADD_MIN_MRC_INDEX] =
 398				cpu_to_le16(data->barker_corr_th_min_mrc);
 399	tbl[HD_OFDM_ENERGY_TH_IN_INDEX] =
 400				cpu_to_le16(data->nrg_th_cca);
 401
 402	IWL_DEBUG_CALIB(priv, "ofdm: ac %u mrc %u x1 %u mrc_x1 %u thresh %u\n",
 403			data->auto_corr_ofdm, data->auto_corr_ofdm_mrc,
 404			data->auto_corr_ofdm_x1, data->auto_corr_ofdm_mrc_x1,
 405			data->nrg_th_ofdm);
 406
 407	IWL_DEBUG_CALIB(priv, "cck: ac %u mrc %u thresh %u\n",
 408			data->auto_corr_cck, data->auto_corr_cck_mrc,
 409			data->nrg_th_cck);
 410}
 411
 412/* Prepare a SENSITIVITY_CMD, send to uCode if values have changed */
 413static int iwl_sensitivity_write(struct iwl_priv *priv)
 414{
 415	struct iwl_sensitivity_cmd cmd;
 416	struct iwl_sensitivity_data *data = NULL;
 417	struct iwl_host_cmd cmd_out = {
 418		.id = SENSITIVITY_CMD,
 419		.len = { sizeof(struct iwl_sensitivity_cmd), },
 420		.flags = CMD_ASYNC,
 421		.data = { &cmd, },
 422	};
 423
 424	data = &(priv->sensitivity_data);
 425
 426	memset(&cmd, 0, sizeof(cmd));
 427
 428	iwl_prepare_legacy_sensitivity_tbl(priv, data, &cmd.table[0]);
 429
 430	/* Update uCode's "work" table, and copy it to DSP */
 431	cmd.control = SENSITIVITY_CMD_CONTROL_WORK_TABLE;
 432
 433	/* Don't send command to uCode if nothing has changed */
 434	if (!memcmp(&cmd.table[0], &(priv->sensitivity_tbl[0]),
 435		    sizeof(u16)*HD_TABLE_SIZE)) {
 436		IWL_DEBUG_CALIB(priv, "No change in SENSITIVITY_CMD\n");
 437		return 0;
 438	}
 439
 440	/* Copy table for comparison next time */
 441	memcpy(&(priv->sensitivity_tbl[0]), &(cmd.table[0]),
 442	       sizeof(u16)*HD_TABLE_SIZE);
 443
 444	return iwl_dvm_send_cmd(priv, &cmd_out);
 445}
 446
 447/* Prepare a SENSITIVITY_CMD, send to uCode if values have changed */
 448static int iwl_enhance_sensitivity_write(struct iwl_priv *priv)
 449{
 450	struct iwl_enhance_sensitivity_cmd cmd;
 451	struct iwl_sensitivity_data *data = NULL;
 452	struct iwl_host_cmd cmd_out = {
 453		.id = SENSITIVITY_CMD,
 454		.len = { sizeof(struct iwl_enhance_sensitivity_cmd), },
 455		.flags = CMD_ASYNC,
 456		.data = { &cmd, },
 457	};
 458
 459	data = &(priv->sensitivity_data);
 460
 461	memset(&cmd, 0, sizeof(cmd));
 462
 463	iwl_prepare_legacy_sensitivity_tbl(priv, data, &cmd.enhance_table[0]);
 464
 465	if (priv->lib->hd_v2) {
 466		cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX] =
 467			HD_INA_NON_SQUARE_DET_OFDM_DATA_V2;
 468		cmd.enhance_table[HD_INA_NON_SQUARE_DET_CCK_INDEX] =
 469			HD_INA_NON_SQUARE_DET_CCK_DATA_V2;
 470		cmd.enhance_table[HD_CORR_11_INSTEAD_OF_CORR_9_EN_INDEX] =
 471			HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V2;
 472		cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_INDEX] =
 473			HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V2;
 474		cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] =
 475			HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2;
 476		cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_INDEX] =
 477			HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V2;
 478		cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_INDEX] =
 479			HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V2;
 480		cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_MRC_INDEX] =
 481			HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V2;
 482		cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] =
 483			HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2;
 484		cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_INDEX] =
 485			HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V2;
 486		cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_INDEX] =
 487			HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V2;
 488	} else {
 489		cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX] =
 490			HD_INA_NON_SQUARE_DET_OFDM_DATA_V1;
 491		cmd.enhance_table[HD_INA_NON_SQUARE_DET_CCK_INDEX] =
 492			HD_INA_NON_SQUARE_DET_CCK_DATA_V1;
 493		cmd.enhance_table[HD_CORR_11_INSTEAD_OF_CORR_9_EN_INDEX] =
 494			HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V1;
 495		cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_INDEX] =
 496			HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V1;
 497		cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] =
 498			HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1;
 499		cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_INDEX] =
 500			HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V1;
 501		cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_INDEX] =
 502			HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V1;
 503		cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_MRC_INDEX] =
 504			HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V1;
 505		cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] =
 506			HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1;
 507		cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_INDEX] =
 508			HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V1;
 509		cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_INDEX] =
 510			HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V1;
 511	}
 512
 513	/* Update uCode's "work" table, and copy it to DSP */
 514	cmd.control = SENSITIVITY_CMD_CONTROL_WORK_TABLE;
 515
 516	/* Don't send command to uCode if nothing has changed */
 517	if (!memcmp(&cmd.enhance_table[0], &(priv->sensitivity_tbl[0]),
 518		    sizeof(u16)*HD_TABLE_SIZE) &&
 519	    !memcmp(&cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX],
 520		    &(priv->enhance_sensitivity_tbl[0]),
 521		    sizeof(u16)*ENHANCE_HD_TABLE_ENTRIES)) {
 522		IWL_DEBUG_CALIB(priv, "No change in SENSITIVITY_CMD\n");
 523		return 0;
 524	}
 525
 526	/* Copy table for comparison next time */
 527	memcpy(&(priv->sensitivity_tbl[0]), &(cmd.enhance_table[0]),
 528	       sizeof(u16)*HD_TABLE_SIZE);
 529	memcpy(&(priv->enhance_sensitivity_tbl[0]),
 530	       &(cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX]),
 531	       sizeof(u16)*ENHANCE_HD_TABLE_ENTRIES);
 532
 533	return iwl_dvm_send_cmd(priv, &cmd_out);
 534}
 535
 536void iwl_init_sensitivity(struct iwl_priv *priv)
 537{
 538	int ret = 0;
 539	int i;
 540	struct iwl_sensitivity_data *data = NULL;
 541	const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens;
 542
 543	if (priv->calib_disabled & IWL_SENSITIVITY_CALIB_DISABLED)
 544		return;
 545
 546	IWL_DEBUG_CALIB(priv, "Start iwl_init_sensitivity\n");
 547
 548	/* Clear driver's sensitivity algo data */
 549	data = &(priv->sensitivity_data);
 550
 551	if (ranges == NULL)
 552		return;
 553
 554	memset(data, 0, sizeof(struct iwl_sensitivity_data));
 555
 556	data->num_in_cck_no_fa = 0;
 557	data->nrg_curr_state = IWL_FA_TOO_MANY;
 558	data->nrg_prev_state = IWL_FA_TOO_MANY;
 559	data->nrg_silence_ref = 0;
 560	data->nrg_silence_idx = 0;
 561	data->nrg_energy_idx = 0;
 562
 563	for (i = 0; i < 10; i++)
 564		data->nrg_value[i] = 0;
 565
 566	for (i = 0; i < NRG_NUM_PREV_STAT_L; i++)
 567		data->nrg_silence_rssi[i] = 0;
 568
 569	data->auto_corr_ofdm =  ranges->auto_corr_min_ofdm;
 570	data->auto_corr_ofdm_mrc = ranges->auto_corr_min_ofdm_mrc;
 571	data->auto_corr_ofdm_x1  = ranges->auto_corr_min_ofdm_x1;
 572	data->auto_corr_ofdm_mrc_x1 = ranges->auto_corr_min_ofdm_mrc_x1;
 573	data->auto_corr_cck = AUTO_CORR_CCK_MIN_VAL_DEF;
 574	data->auto_corr_cck_mrc = ranges->auto_corr_min_cck_mrc;
 575	data->nrg_th_cck = ranges->nrg_th_cck;
 576	data->nrg_th_ofdm = ranges->nrg_th_ofdm;
 577	data->barker_corr_th_min = ranges->barker_corr_th_min;
 578	data->barker_corr_th_min_mrc = ranges->barker_corr_th_min_mrc;
 579	data->nrg_th_cca = ranges->nrg_th_cca;
 580
 581	data->last_bad_plcp_cnt_ofdm = 0;
 582	data->last_fa_cnt_ofdm = 0;
 583	data->last_bad_plcp_cnt_cck = 0;
 584	data->last_fa_cnt_cck = 0;
 585
 586	if (priv->fw->enhance_sensitivity_table)
 587		ret |= iwl_enhance_sensitivity_write(priv);
 588	else
 589		ret |= iwl_sensitivity_write(priv);
 590	IWL_DEBUG_CALIB(priv, "<<return 0x%X\n", ret);
 591}
 592
 593void iwl_sensitivity_calibration(struct iwl_priv *priv)
 594{
 595	u32 rx_enable_time;
 596	u32 fa_cck;
 597	u32 fa_ofdm;
 598	u32 bad_plcp_cck;
 599	u32 bad_plcp_ofdm;
 600	u32 norm_fa_ofdm;
 601	u32 norm_fa_cck;
 602	struct iwl_sensitivity_data *data = NULL;
 603	struct statistics_rx_non_phy *rx_info;
 604	struct statistics_rx_phy *ofdm, *cck;
 605	struct statistics_general_data statis;
 606
 607	if (priv->calib_disabled & IWL_SENSITIVITY_CALIB_DISABLED)
 608		return;
 609
 610	data = &(priv->sensitivity_data);
 611
 612	if (!iwl_is_any_associated(priv)) {
 613		IWL_DEBUG_CALIB(priv, "<< - not associated\n");
 614		return;
 615	}
 616
 617	spin_lock_bh(&priv->statistics.lock);
 618	rx_info = &priv->statistics.rx_non_phy;
 619	ofdm = &priv->statistics.rx_ofdm;
 620	cck = &priv->statistics.rx_cck;
 621	if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) {
 622		IWL_DEBUG_CALIB(priv, "<< invalid data.\n");
 623		spin_unlock_bh(&priv->statistics.lock);
 624		return;
 625	}
 626
 627	/* Extract Statistics: */
 628	rx_enable_time = le32_to_cpu(rx_info->channel_load);
 629	fa_cck = le32_to_cpu(cck->false_alarm_cnt);
 630	fa_ofdm = le32_to_cpu(ofdm->false_alarm_cnt);
 631	bad_plcp_cck = le32_to_cpu(cck->plcp_err);
 632	bad_plcp_ofdm = le32_to_cpu(ofdm->plcp_err);
 633
 634	statis.beacon_silence_rssi_a =
 635			le32_to_cpu(rx_info->beacon_silence_rssi_a);
 636	statis.beacon_silence_rssi_b =
 637			le32_to_cpu(rx_info->beacon_silence_rssi_b);
 638	statis.beacon_silence_rssi_c =
 639			le32_to_cpu(rx_info->beacon_silence_rssi_c);
 640	statis.beacon_energy_a =
 641			le32_to_cpu(rx_info->beacon_energy_a);
 642	statis.beacon_energy_b =
 643			le32_to_cpu(rx_info->beacon_energy_b);
 644	statis.beacon_energy_c =
 645			le32_to_cpu(rx_info->beacon_energy_c);
 646
 647	spin_unlock_bh(&priv->statistics.lock);
 648
 649	IWL_DEBUG_CALIB(priv, "rx_enable_time = %u usecs\n", rx_enable_time);
 650
 651	if (!rx_enable_time) {
 652		IWL_DEBUG_CALIB(priv, "<< RX Enable Time == 0!\n");
 653		return;
 654	}
 655
 656	/* These statistics increase monotonically, and do not reset
 657	 *   at each beacon.  Calculate difference from last value, or just
 658	 *   use the new statistics value if it has reset or wrapped around. */
 659	if (data->last_bad_plcp_cnt_cck > bad_plcp_cck)
 660		data->last_bad_plcp_cnt_cck = bad_plcp_cck;
 661	else {
 662		bad_plcp_cck -= data->last_bad_plcp_cnt_cck;
 663		data->last_bad_plcp_cnt_cck += bad_plcp_cck;
 664	}
 665
 666	if (data->last_bad_plcp_cnt_ofdm > bad_plcp_ofdm)
 667		data->last_bad_plcp_cnt_ofdm = bad_plcp_ofdm;
 668	else {
 669		bad_plcp_ofdm -= data->last_bad_plcp_cnt_ofdm;
 670		data->last_bad_plcp_cnt_ofdm += bad_plcp_ofdm;
 671	}
 672
 673	if (data->last_fa_cnt_ofdm > fa_ofdm)
 674		data->last_fa_cnt_ofdm = fa_ofdm;
 675	else {
 676		fa_ofdm -= data->last_fa_cnt_ofdm;
 677		data->last_fa_cnt_ofdm += fa_ofdm;
 678	}
 679
 680	if (data->last_fa_cnt_cck > fa_cck)
 681		data->last_fa_cnt_cck = fa_cck;
 682	else {
 683		fa_cck -= data->last_fa_cnt_cck;
 684		data->last_fa_cnt_cck += fa_cck;
 685	}
 686
 687	/* Total aborted signal locks */
 688	norm_fa_ofdm = fa_ofdm + bad_plcp_ofdm;
 689	norm_fa_cck = fa_cck + bad_plcp_cck;
 690
 691	IWL_DEBUG_CALIB(priv, "cck: fa %u badp %u  ofdm: fa %u badp %u\n", fa_cck,
 692			bad_plcp_cck, fa_ofdm, bad_plcp_ofdm);
 693
 694	iwl_sens_auto_corr_ofdm(priv, norm_fa_ofdm, rx_enable_time);
 695	iwl_sens_energy_cck(priv, norm_fa_cck, rx_enable_time, &statis);
 696	if (priv->fw->enhance_sensitivity_table)
 697		iwl_enhance_sensitivity_write(priv);
 698	else
 699		iwl_sensitivity_write(priv);
 700}
 701
 702static inline u8 find_first_chain(u8 mask)
 703{
 704	if (mask & ANT_A)
 705		return CHAIN_A;
 706	if (mask & ANT_B)
 707		return CHAIN_B;
 708	return CHAIN_C;
 709}
 710
 711/*
 712 * Run disconnected antenna algorithm to find out which antennas are
 713 * disconnected.
 714 */
 715static void iwl_find_disconn_antenna(struct iwl_priv *priv, u32* average_sig,
 716				     struct iwl_chain_noise_data *data)
 717{
 718	u32 active_chains = 0;
 719	u32 max_average_sig;
 720	u16 max_average_sig_antenna_i;
 721	u8 num_tx_chains;
 722	u8 first_chain;
 723	u16 i = 0;
 724
 725	average_sig[0] = data->chain_signal_a / IWL_CAL_NUM_BEACONS;
 726	average_sig[1] = data->chain_signal_b / IWL_CAL_NUM_BEACONS;
 727	average_sig[2] = data->chain_signal_c / IWL_CAL_NUM_BEACONS;
 728
 729	if (average_sig[0] >= average_sig[1]) {
 730		max_average_sig = average_sig[0];
 731		max_average_sig_antenna_i = 0;
 732		active_chains = (1 << max_average_sig_antenna_i);
 733	} else {
 734		max_average_sig = average_sig[1];
 735		max_average_sig_antenna_i = 1;
 736		active_chains = (1 << max_average_sig_antenna_i);
 737	}
 738
 739	if (average_sig[2] >= max_average_sig) {
 740		max_average_sig = average_sig[2];
 741		max_average_sig_antenna_i = 2;
 742		active_chains = (1 << max_average_sig_antenna_i);
 743	}
 744
 745	IWL_DEBUG_CALIB(priv, "average_sig: a %d b %d c %d\n",
 746		     average_sig[0], average_sig[1], average_sig[2]);
 747	IWL_DEBUG_CALIB(priv, "max_average_sig = %d, antenna %d\n",
 748		     max_average_sig, max_average_sig_antenna_i);
 749
 750	/* Compare signal strengths for all 3 receivers. */
 751	for (i = 0; i < NUM_RX_CHAINS; i++) {
 752		if (i != max_average_sig_antenna_i) {
 753			s32 rssi_delta = (max_average_sig - average_sig[i]);
 754
 755			/* If signal is very weak, compared with
 756			 * strongest, mark it as disconnected. */
 757			if (rssi_delta > MAXIMUM_ALLOWED_PATHLOSS)
 758				data->disconn_array[i] = 1;
 759			else
 760				active_chains |= (1 << i);
 761			IWL_DEBUG_CALIB(priv, "i = %d  rssiDelta = %d  "
 762			     "disconn_array[i] = %d\n",
 763			     i, rssi_delta, data->disconn_array[i]);
 764		}
 765	}
 766
 767	/*
 768	 * The above algorithm sometimes fails when the ucode
 769	 * reports 0 for all chains. It's not clear why that
 770	 * happens to start with, but it is then causing trouble
 771	 * because this can make us enable more chains than the
 772	 * hardware really has.
 773	 *
 774	 * To be safe, simply mask out any chains that we know
 775	 * are not on the device.
 776	 */
 777	active_chains &= priv->nvm_data->valid_rx_ant;
 778
 779	num_tx_chains = 0;
 780	for (i = 0; i < NUM_RX_CHAINS; i++) {
 781		/* loops on all the bits of
 782		 * priv->hw_setting.valid_tx_ant */
 783		u8 ant_msk = (1 << i);
 784		if (!(priv->nvm_data->valid_tx_ant & ant_msk))
 785			continue;
 786
 787		num_tx_chains++;
 788		if (data->disconn_array[i] == 0)
 789			/* there is a Tx antenna connected */
 790			break;
 791		if (num_tx_chains == priv->hw_params.tx_chains_num &&
 792		    data->disconn_array[i]) {
 793			/*
 794			 * If all chains are disconnected
 795			 * connect the first valid tx chain
 796			 */
 797			first_chain =
 798				find_first_chain(priv->nvm_data->valid_tx_ant);
 799			data->disconn_array[first_chain] = 0;
 800			active_chains |= BIT(first_chain);
 801			IWL_DEBUG_CALIB(priv,
 802					"All Tx chains are disconnected W/A - declare %d as connected\n",
 803					first_chain);
 804			break;
 805		}
 806	}
 807
 808	if (active_chains != priv->nvm_data->valid_rx_ant &&
 809	    active_chains != priv->chain_noise_data.active_chains)
 810		IWL_DEBUG_CALIB(priv,
 811				"Detected that not all antennas are connected! "
 812				"Connected: %#x, valid: %#x.\n",
 813				active_chains,
 814				priv->nvm_data->valid_rx_ant);
 815
 816	/* Save for use within RXON, TX, SCAN commands, etc. */
 817	data->active_chains = active_chains;
 818	IWL_DEBUG_CALIB(priv, "active_chains (bitwise) = 0x%x\n",
 819			active_chains);
 820}
 821
 822static void iwlagn_gain_computation(struct iwl_priv *priv,
 823				    u32 average_noise[NUM_RX_CHAINS],
 824				    u8 default_chain)
 825{
 826	int i;
 827	s32 delta_g;
 828	struct iwl_chain_noise_data *data = &priv->chain_noise_data;
 829
 830	/*
 831	 * Find Gain Code for the chains based on "default chain"
 832	 */
 833	for (i = default_chain + 1; i < NUM_RX_CHAINS; i++) {
 834		if ((data->disconn_array[i])) {
 835			data->delta_gain_code[i] = 0;
 836			continue;
 837		}
 838
 839		delta_g = (priv->lib->chain_noise_scale *
 840			((s32)average_noise[default_chain] -
 841			(s32)average_noise[i])) / 1500;
 842
 843		/* bound gain by 2 bits value max, 3rd bit is sign */
 844		data->delta_gain_code[i] =
 845			min(abs(delta_g), CHAIN_NOISE_MAX_DELTA_GAIN_CODE);
 846
 847		if (delta_g < 0)
 848			/*
 849			 * set negative sign ...
 850			 * note to Intel developers:  This is uCode API format,
 851			 *   not the format of any internal device registers.
 852			 *   Do not change this format for e.g. 6050 or similar
 853			 *   devices.  Change format only if more resolution
 854			 *   (i.e. more than 2 bits magnitude) is needed.
 855			 */
 856			data->delta_gain_code[i] |= (1 << 2);
 857	}
 858
 859	IWL_DEBUG_CALIB(priv, "Delta gains: ANT_B = %d  ANT_C = %d\n",
 860			data->delta_gain_code[1], data->delta_gain_code[2]);
 861
 862	if (!data->radio_write) {
 863		struct iwl_calib_chain_noise_gain_cmd cmd;
 864
 865		memset(&cmd, 0, sizeof(cmd));
 866
 867		iwl_set_calib_hdr(&cmd.hdr,
 868			priv->phy_calib_chain_noise_gain_cmd);
 869		cmd.delta_gain_1 = data->delta_gain_code[1];
 870		cmd.delta_gain_2 = data->delta_gain_code[2];
 871		iwl_dvm_send_cmd_pdu(priv, REPLY_PHY_CALIBRATION_CMD,
 872			CMD_ASYNC, sizeof(cmd), &cmd);
 873
 874		data->radio_write = 1;
 875		data->state = IWL_CHAIN_NOISE_CALIBRATED;
 876	}
 877}
 878
 879/*
 880 * Accumulate 16 beacons of signal and noise statistics for each of
 881 *   3 receivers/antennas/rx-chains, then figure out:
 882 * 1)  Which antennas are connected.
 883 * 2)  Differential rx gain settings to balance the 3 receivers.
 884 */
 885void iwl_chain_noise_calibration(struct iwl_priv *priv)
 886{
 887	struct iwl_chain_noise_data *data = NULL;
 888
 889	u32 chain_noise_a;
 890	u32 chain_noise_b;
 891	u32 chain_noise_c;
 892	u32 chain_sig_a;
 893	u32 chain_sig_b;
 894	u32 chain_sig_c;
 895	u32 average_sig[NUM_RX_CHAINS] = {INITIALIZATION_VALUE};
 896	u32 average_noise[NUM_RX_CHAINS] = {INITIALIZATION_VALUE};
 897	u32 min_average_noise = MIN_AVERAGE_NOISE_MAX_VALUE;
 898	u16 min_average_noise_antenna_i = INITIALIZATION_VALUE;
 899	u16 i = 0;
 900	u16 rxon_chnum = INITIALIZATION_VALUE;
 901	u16 stat_chnum = INITIALIZATION_VALUE;
 902	u8 rxon_band24;
 903	u8 stat_band24;
 904	struct statistics_rx_non_phy *rx_info;
 905
 906	/*
 907	 * MULTI-FIXME:
 908	 * When we support multiple interfaces on different channels,
 909	 * this must be modified/fixed.
 910	 */
 911	struct iwl_rxon_context *ctx = &priv->contexts[IWL_RXON_CTX_BSS];
 912
 913	if (priv->calib_disabled & IWL_CHAIN_NOISE_CALIB_DISABLED)
 914		return;
 915
 916	data = &(priv->chain_noise_data);
 917
 918	/*
 919	 * Accumulate just the first "chain_noise_num_beacons" after
 920	 * the first association, then we're done forever.
 921	 */
 922	if (data->state != IWL_CHAIN_NOISE_ACCUMULATE) {
 923		if (data->state == IWL_CHAIN_NOISE_ALIVE)
 924			IWL_DEBUG_CALIB(priv, "Wait for noise calib reset\n");
 925		return;
 926	}
 927
 928	spin_lock_bh(&priv->statistics.lock);
 929
 930	rx_info = &priv->statistics.rx_non_phy;
 931
 932	if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) {
 933		IWL_DEBUG_CALIB(priv, " << Interference data unavailable\n");
 934		spin_unlock_bh(&priv->statistics.lock);
 935		return;
 936	}
 937
 938	rxon_band24 = !!(ctx->staging.flags & RXON_FLG_BAND_24G_MSK);
 939	rxon_chnum = le16_to_cpu(ctx->staging.channel);
 940	stat_band24 =
 941		!!(priv->statistics.flag & STATISTICS_REPLY_FLG_BAND_24G_MSK);
 942	stat_chnum = le32_to_cpu(priv->statistics.flag) >> 16;
 943
 944	/* Make sure we accumulate data for just the associated channel
 945	 *   (even if scanning). */
 946	if ((rxon_chnum != stat_chnum) || (rxon_band24 != stat_band24)) {
 947		IWL_DEBUG_CALIB(priv, "Stats not from chan=%d, band24=%d\n",
 948				rxon_chnum, rxon_band24);
 949		spin_unlock_bh(&priv->statistics.lock);
 950		return;
 951	}
 952
 953	/*
 954	 *  Accumulate beacon statistics values across
 955	 * "chain_noise_num_beacons"
 956	 */
 957	chain_noise_a = le32_to_cpu(rx_info->beacon_silence_rssi_a) &
 958				IN_BAND_FILTER;
 959	chain_noise_b = le32_to_cpu(rx_info->beacon_silence_rssi_b) &
 960				IN_BAND_FILTER;
 961	chain_noise_c = le32_to_cpu(rx_info->beacon_silence_rssi_c) &
 962				IN_BAND_FILTER;
 963
 964	chain_sig_a = le32_to_cpu(rx_info->beacon_rssi_a) & IN_BAND_FILTER;
 965	chain_sig_b = le32_to_cpu(rx_info->beacon_rssi_b) & IN_BAND_FILTER;
 966	chain_sig_c = le32_to_cpu(rx_info->beacon_rssi_c) & IN_BAND_FILTER;
 967
 968	spin_unlock_bh(&priv->statistics.lock);
 969
 970	data->beacon_count++;
 971
 972	data->chain_noise_a = (chain_noise_a + data->chain_noise_a);
 973	data->chain_noise_b = (chain_noise_b + data->chain_noise_b);
 974	data->chain_noise_c = (chain_noise_c + data->chain_noise_c);
 975
 976	data->chain_signal_a = (chain_sig_a + data->chain_signal_a);
 977	data->chain_signal_b = (chain_sig_b + data->chain_signal_b);
 978	data->chain_signal_c = (chain_sig_c + data->chain_signal_c);
 979
 980	IWL_DEBUG_CALIB(priv, "chan=%d, band24=%d, beacon=%d\n",
 981			rxon_chnum, rxon_band24, data->beacon_count);
 982	IWL_DEBUG_CALIB(priv, "chain_sig: a %d b %d c %d\n",
 983			chain_sig_a, chain_sig_b, chain_sig_c);
 984	IWL_DEBUG_CALIB(priv, "chain_noise: a %d b %d c %d\n",
 985			chain_noise_a, chain_noise_b, chain_noise_c);
 986
 987	/* If this is the "chain_noise_num_beacons", determine:
 988	 * 1)  Disconnected antennas (using signal strengths)
 989	 * 2)  Differential gain (using silence noise) to balance receivers */
 990	if (data->beacon_count != IWL_CAL_NUM_BEACONS)
 991		return;
 992
 993	/* Analyze signal for disconnected antenna */
 994	if (priv->lib->bt_params &&
 995	    priv->lib->bt_params->advanced_bt_coexist) {
 996		/* Disable disconnected antenna algorithm for advanced
 997		   bt coex, assuming valid antennas are connected */
 998		data->active_chains = priv->nvm_data->valid_rx_ant;
 999		for (i = 0; i < NUM_RX_CHAINS; i++)
1000			if (!(data->active_chains & (1<<i)))
1001				data->disconn_array[i] = 1;
1002	} else
1003		iwl_find_disconn_antenna(priv, average_sig, data);
1004
1005	/* Analyze noise for rx balance */
1006	average_noise[0] = data->chain_noise_a / IWL_CAL_NUM_BEACONS;
1007	average_noise[1] = data->chain_noise_b / IWL_CAL_NUM_BEACONS;
1008	average_noise[2] = data->chain_noise_c / IWL_CAL_NUM_BEACONS;
1009
1010	for (i = 0; i < NUM_RX_CHAINS; i++) {
1011		if (!(data->disconn_array[i]) &&
1012		   (average_noise[i] <= min_average_noise)) {
1013			/* This means that chain i is active and has
1014			 * lower noise values so far: */
1015			min_average_noise = average_noise[i];
1016			min_average_noise_antenna_i = i;
1017		}
1018	}
1019
1020	IWL_DEBUG_CALIB(priv, "average_noise: a %d b %d c %d\n",
1021			average_noise[0], average_noise[1],
1022			average_noise[2]);
1023
1024	IWL_DEBUG_CALIB(priv, "min_average_noise = %d, antenna %d\n",
1025			min_average_noise, min_average_noise_antenna_i);
1026
1027	iwlagn_gain_computation(
1028		priv, average_noise,
1029		find_first_chain(priv->nvm_data->valid_rx_ant));
1030
1031	/* Some power changes may have been made during the calibration.
1032	 * Update and commit the RXON
1033	 */
1034	iwl_update_chain_flags(priv);
1035
1036	data->state = IWL_CHAIN_NOISE_DONE;
1037	iwl_power_update_mode(priv, false);
1038}
1039
1040void iwl_reset_run_time_calib(struct iwl_priv *priv)
1041{
1042	int i;
1043	memset(&(priv->sensitivity_data), 0,
1044	       sizeof(struct iwl_sensitivity_data));
1045	memset(&(priv->chain_noise_data), 0,
1046	       sizeof(struct iwl_chain_noise_data));
1047	for (i = 0; i < NUM_RX_CHAINS; i++)
1048		priv->chain_noise_data.delta_gain_code[i] =
1049				CHAIN_NOISE_DELTA_GAIN_INIT_VAL;
1050
1051	/* Ask for statistics now, the uCode will send notification
1052	 * periodically after association */
1053	iwl_send_statistics_request(priv, CMD_ASYNC, true);
1054}