Loading...
1// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2/*
3 * Copyright (C) 2005-2014 Intel Corporation
4 */
5#include <linux/slab.h>
6#include <net/mac80211.h>
7
8#include "iwl-trans.h"
9
10#include "dev.h"
11#include "calib.h"
12#include "agn.h"
13
14/*****************************************************************************
15 * INIT calibrations framework
16 *****************************************************************************/
17
18/* Opaque calibration results */
19struct iwl_calib_result {
20 struct list_head list;
21 size_t cmd_len;
22 struct iwl_calib_cmd cmd;
23};
24
25struct statistics_general_data {
26 u32 beacon_silence_rssi_a;
27 u32 beacon_silence_rssi_b;
28 u32 beacon_silence_rssi_c;
29 u32 beacon_energy_a;
30 u32 beacon_energy_b;
31 u32 beacon_energy_c;
32};
33
34int iwl_send_calib_results(struct iwl_priv *priv)
35{
36 struct iwl_host_cmd hcmd = {
37 .id = REPLY_PHY_CALIBRATION_CMD,
38 };
39 struct iwl_calib_result *res;
40
41 list_for_each_entry(res, &priv->calib_results, list) {
42 int ret;
43
44 hcmd.len[0] = res->cmd_len;
45 hcmd.data[0] = &res->cmd;
46 hcmd.dataflags[0] = IWL_HCMD_DFL_NOCOPY;
47 ret = iwl_dvm_send_cmd(priv, &hcmd);
48 if (ret) {
49 IWL_ERR(priv, "Error %d on calib cmd %d\n",
50 ret, res->cmd.hdr.op_code);
51 return ret;
52 }
53 }
54
55 return 0;
56}
57
58int iwl_calib_set(struct iwl_priv *priv,
59 const struct iwl_calib_cmd *cmd, size_t len)
60{
61 struct iwl_calib_result *res, *tmp;
62
63 if (check_sub_overflow(len, sizeof(*cmd), &len))
64 return -ENOMEM;
65
66 res = kmalloc(struct_size(res, cmd.data, len), GFP_ATOMIC);
67 if (!res)
68 return -ENOMEM;
69 res->cmd = *cmd;
70 memcpy(res->cmd.data, cmd->data, len);
71 res->cmd_len = struct_size(cmd, data, len);
72
73 list_for_each_entry(tmp, &priv->calib_results, list) {
74 if (tmp->cmd.hdr.op_code == res->cmd.hdr.op_code) {
75 list_replace(&tmp->list, &res->list);
76 kfree(tmp);
77 return 0;
78 }
79 }
80
81 /* wasn't in list already */
82 list_add_tail(&res->list, &priv->calib_results);
83
84 return 0;
85}
86
87void iwl_calib_free_results(struct iwl_priv *priv)
88{
89 struct iwl_calib_result *res, *tmp;
90
91 list_for_each_entry_safe(res, tmp, &priv->calib_results, list) {
92 list_del(&res->list);
93 kfree(res);
94 }
95}
96
97/*****************************************************************************
98 * RUNTIME calibrations framework
99 *****************************************************************************/
100
101/* "false alarms" are signals that our DSP tries to lock onto,
102 * but then determines that they are either noise, or transmissions
103 * from a distant wireless network (also "noise", really) that get
104 * "stepped on" by stronger transmissions within our own network.
105 * This algorithm attempts to set a sensitivity level that is high
106 * enough to receive all of our own network traffic, but not so
107 * high that our DSP gets too busy trying to lock onto non-network
108 * activity/noise. */
109static int iwl_sens_energy_cck(struct iwl_priv *priv,
110 u32 norm_fa,
111 u32 rx_enable_time,
112 struct statistics_general_data *rx_info)
113{
114 u32 max_nrg_cck = 0;
115 int i = 0;
116 u8 max_silence_rssi = 0;
117 u32 silence_ref = 0;
118 u8 silence_rssi_a = 0;
119 u8 silence_rssi_b = 0;
120 u8 silence_rssi_c = 0;
121 u32 val;
122
123 /* "false_alarms" values below are cross-multiplications to assess the
124 * numbers of false alarms within the measured period of actual Rx
125 * (Rx is off when we're txing), vs the min/max expected false alarms
126 * (some should be expected if rx is sensitive enough) in a
127 * hypothetical listening period of 200 time units (TU), 204.8 msec:
128 *
129 * MIN_FA/fixed-time < false_alarms/actual-rx-time < MAX_FA/beacon-time
130 *
131 * */
132 u32 false_alarms = norm_fa * 200 * 1024;
133 u32 max_false_alarms = MAX_FA_CCK * rx_enable_time;
134 u32 min_false_alarms = MIN_FA_CCK * rx_enable_time;
135 struct iwl_sensitivity_data *data = NULL;
136 const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens;
137
138 data = &(priv->sensitivity_data);
139
140 data->nrg_auto_corr_silence_diff = 0;
141
142 /* Find max silence rssi among all 3 receivers.
143 * This is background noise, which may include transmissions from other
144 * networks, measured during silence before our network's beacon */
145 silence_rssi_a = (u8)((rx_info->beacon_silence_rssi_a &
146 ALL_BAND_FILTER) >> 8);
147 silence_rssi_b = (u8)((rx_info->beacon_silence_rssi_b &
148 ALL_BAND_FILTER) >> 8);
149 silence_rssi_c = (u8)((rx_info->beacon_silence_rssi_c &
150 ALL_BAND_FILTER) >> 8);
151
152 val = max(silence_rssi_b, silence_rssi_c);
153 max_silence_rssi = max(silence_rssi_a, (u8) val);
154
155 /* Store silence rssi in 20-beacon history table */
156 data->nrg_silence_rssi[data->nrg_silence_idx] = max_silence_rssi;
157 data->nrg_silence_idx++;
158 if (data->nrg_silence_idx >= NRG_NUM_PREV_STAT_L)
159 data->nrg_silence_idx = 0;
160
161 /* Find max silence rssi across 20 beacon history */
162 for (i = 0; i < NRG_NUM_PREV_STAT_L; i++) {
163 val = data->nrg_silence_rssi[i];
164 silence_ref = max(silence_ref, val);
165 }
166 IWL_DEBUG_CALIB(priv, "silence a %u, b %u, c %u, 20-bcn max %u\n",
167 silence_rssi_a, silence_rssi_b, silence_rssi_c,
168 silence_ref);
169
170 /* Find max rx energy (min value!) among all 3 receivers,
171 * measured during beacon frame.
172 * Save it in 10-beacon history table. */
173 i = data->nrg_energy_idx;
174 val = min(rx_info->beacon_energy_b, rx_info->beacon_energy_c);
175 data->nrg_value[i] = min(rx_info->beacon_energy_a, val);
176
177 data->nrg_energy_idx++;
178 if (data->nrg_energy_idx >= 10)
179 data->nrg_energy_idx = 0;
180
181 /* Find min rx energy (max value) across 10 beacon history.
182 * This is the minimum signal level that we want to receive well.
183 * Add backoff (margin so we don't miss slightly lower energy frames).
184 * This establishes an upper bound (min value) for energy threshold. */
185 max_nrg_cck = data->nrg_value[0];
186 for (i = 1; i < 10; i++)
187 max_nrg_cck = (u32) max(max_nrg_cck, (data->nrg_value[i]));
188 max_nrg_cck += 6;
189
190 IWL_DEBUG_CALIB(priv, "rx energy a %u, b %u, c %u, 10-bcn max/min %u\n",
191 rx_info->beacon_energy_a, rx_info->beacon_energy_b,
192 rx_info->beacon_energy_c, max_nrg_cck - 6);
193
194 /* Count number of consecutive beacons with fewer-than-desired
195 * false alarms. */
196 if (false_alarms < min_false_alarms)
197 data->num_in_cck_no_fa++;
198 else
199 data->num_in_cck_no_fa = 0;
200 IWL_DEBUG_CALIB(priv, "consecutive bcns with few false alarms = %u\n",
201 data->num_in_cck_no_fa);
202
203 /* If we got too many false alarms this time, reduce sensitivity */
204 if ((false_alarms > max_false_alarms) &&
205 (data->auto_corr_cck > AUTO_CORR_MAX_TH_CCK)) {
206 IWL_DEBUG_CALIB(priv, "norm FA %u > max FA %u\n",
207 false_alarms, max_false_alarms);
208 IWL_DEBUG_CALIB(priv, "... reducing sensitivity\n");
209 data->nrg_curr_state = IWL_FA_TOO_MANY;
210 /* Store for "fewer than desired" on later beacon */
211 data->nrg_silence_ref = silence_ref;
212
213 /* increase energy threshold (reduce nrg value)
214 * to decrease sensitivity */
215 data->nrg_th_cck = data->nrg_th_cck - NRG_STEP_CCK;
216 /* Else if we got fewer than desired, increase sensitivity */
217 } else if (false_alarms < min_false_alarms) {
218 data->nrg_curr_state = IWL_FA_TOO_FEW;
219
220 /* Compare silence level with silence level for most recent
221 * healthy number or too many false alarms */
222 data->nrg_auto_corr_silence_diff = (s32)data->nrg_silence_ref -
223 (s32)silence_ref;
224
225 IWL_DEBUG_CALIB(priv, "norm FA %u < min FA %u, silence diff %d\n",
226 false_alarms, min_false_alarms,
227 data->nrg_auto_corr_silence_diff);
228
229 /* Increase value to increase sensitivity, but only if:
230 * 1a) previous beacon did *not* have *too many* false alarms
231 * 1b) AND there's a significant difference in Rx levels
232 * from a previous beacon with too many, or healthy # FAs
233 * OR 2) We've seen a lot of beacons (100) with too few
234 * false alarms */
235 if ((data->nrg_prev_state != IWL_FA_TOO_MANY) &&
236 ((data->nrg_auto_corr_silence_diff > NRG_DIFF) ||
237 (data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA))) {
238
239 IWL_DEBUG_CALIB(priv, "... increasing sensitivity\n");
240 /* Increase nrg value to increase sensitivity */
241 val = data->nrg_th_cck + NRG_STEP_CCK;
242 data->nrg_th_cck = min((u32)ranges->min_nrg_cck, val);
243 } else {
244 IWL_DEBUG_CALIB(priv, "... but not changing sensitivity\n");
245 }
246
247 /* Else we got a healthy number of false alarms, keep status quo */
248 } else {
249 IWL_DEBUG_CALIB(priv, " FA in safe zone\n");
250 data->nrg_curr_state = IWL_FA_GOOD_RANGE;
251
252 /* Store for use in "fewer than desired" with later beacon */
253 data->nrg_silence_ref = silence_ref;
254
255 /* If previous beacon had too many false alarms,
256 * give it some extra margin by reducing sensitivity again
257 * (but don't go below measured energy of desired Rx) */
258 if (data->nrg_prev_state == IWL_FA_TOO_MANY) {
259 IWL_DEBUG_CALIB(priv, "... increasing margin\n");
260 if (data->nrg_th_cck > (max_nrg_cck + NRG_MARGIN))
261 data->nrg_th_cck -= NRG_MARGIN;
262 else
263 data->nrg_th_cck = max_nrg_cck;
264 }
265 }
266
267 /* Make sure the energy threshold does not go above the measured
268 * energy of the desired Rx signals (reduced by backoff margin),
269 * or else we might start missing Rx frames.
270 * Lower value is higher energy, so we use max()!
271 */
272 data->nrg_th_cck = max(max_nrg_cck, data->nrg_th_cck);
273 IWL_DEBUG_CALIB(priv, "new nrg_th_cck %u\n", data->nrg_th_cck);
274
275 data->nrg_prev_state = data->nrg_curr_state;
276
277 /* Auto-correlation CCK algorithm */
278 if (false_alarms > min_false_alarms) {
279
280 /* increase auto_corr values to decrease sensitivity
281 * so the DSP won't be disturbed by the noise
282 */
283 if (data->auto_corr_cck < AUTO_CORR_MAX_TH_CCK)
284 data->auto_corr_cck = AUTO_CORR_MAX_TH_CCK + 1;
285 else {
286 val = data->auto_corr_cck + AUTO_CORR_STEP_CCK;
287 data->auto_corr_cck =
288 min((u32)ranges->auto_corr_max_cck, val);
289 }
290 val = data->auto_corr_cck_mrc + AUTO_CORR_STEP_CCK;
291 data->auto_corr_cck_mrc =
292 min((u32)ranges->auto_corr_max_cck_mrc, val);
293 } else if ((false_alarms < min_false_alarms) &&
294 ((data->nrg_auto_corr_silence_diff > NRG_DIFF) ||
295 (data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA))) {
296
297 /* Decrease auto_corr values to increase sensitivity */
298 val = data->auto_corr_cck - AUTO_CORR_STEP_CCK;
299 data->auto_corr_cck =
300 max((u32)ranges->auto_corr_min_cck, val);
301 val = data->auto_corr_cck_mrc - AUTO_CORR_STEP_CCK;
302 data->auto_corr_cck_mrc =
303 max((u32)ranges->auto_corr_min_cck_mrc, val);
304 }
305
306 return 0;
307}
308
309
310static int iwl_sens_auto_corr_ofdm(struct iwl_priv *priv,
311 u32 norm_fa,
312 u32 rx_enable_time)
313{
314 u32 val;
315 u32 false_alarms = norm_fa * 200 * 1024;
316 u32 max_false_alarms = MAX_FA_OFDM * rx_enable_time;
317 u32 min_false_alarms = MIN_FA_OFDM * rx_enable_time;
318 struct iwl_sensitivity_data *data = NULL;
319 const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens;
320
321 data = &(priv->sensitivity_data);
322
323 /* If we got too many false alarms this time, reduce sensitivity */
324 if (false_alarms > max_false_alarms) {
325
326 IWL_DEBUG_CALIB(priv, "norm FA %u > max FA %u)\n",
327 false_alarms, max_false_alarms);
328
329 val = data->auto_corr_ofdm + AUTO_CORR_STEP_OFDM;
330 data->auto_corr_ofdm =
331 min((u32)ranges->auto_corr_max_ofdm, val);
332
333 val = data->auto_corr_ofdm_mrc + AUTO_CORR_STEP_OFDM;
334 data->auto_corr_ofdm_mrc =
335 min((u32)ranges->auto_corr_max_ofdm_mrc, val);
336
337 val = data->auto_corr_ofdm_x1 + AUTO_CORR_STEP_OFDM;
338 data->auto_corr_ofdm_x1 =
339 min((u32)ranges->auto_corr_max_ofdm_x1, val);
340
341 val = data->auto_corr_ofdm_mrc_x1 + AUTO_CORR_STEP_OFDM;
342 data->auto_corr_ofdm_mrc_x1 =
343 min((u32)ranges->auto_corr_max_ofdm_mrc_x1, val);
344 }
345
346 /* Else if we got fewer than desired, increase sensitivity */
347 else if (false_alarms < min_false_alarms) {
348
349 IWL_DEBUG_CALIB(priv, "norm FA %u < min FA %u\n",
350 false_alarms, min_false_alarms);
351
352 val = data->auto_corr_ofdm - AUTO_CORR_STEP_OFDM;
353 data->auto_corr_ofdm =
354 max((u32)ranges->auto_corr_min_ofdm, val);
355
356 val = data->auto_corr_ofdm_mrc - AUTO_CORR_STEP_OFDM;
357 data->auto_corr_ofdm_mrc =
358 max((u32)ranges->auto_corr_min_ofdm_mrc, val);
359
360 val = data->auto_corr_ofdm_x1 - AUTO_CORR_STEP_OFDM;
361 data->auto_corr_ofdm_x1 =
362 max((u32)ranges->auto_corr_min_ofdm_x1, val);
363
364 val = data->auto_corr_ofdm_mrc_x1 - AUTO_CORR_STEP_OFDM;
365 data->auto_corr_ofdm_mrc_x1 =
366 max((u32)ranges->auto_corr_min_ofdm_mrc_x1, val);
367 } else {
368 IWL_DEBUG_CALIB(priv, "min FA %u < norm FA %u < max FA %u OK\n",
369 min_false_alarms, false_alarms, max_false_alarms);
370 }
371 return 0;
372}
373
374static void iwl_prepare_legacy_sensitivity_tbl(struct iwl_priv *priv,
375 struct iwl_sensitivity_data *data,
376 __le16 *tbl)
377{
378 tbl[HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX] =
379 cpu_to_le16((u16)data->auto_corr_ofdm);
380 tbl[HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX] =
381 cpu_to_le16((u16)data->auto_corr_ofdm_mrc);
382 tbl[HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX] =
383 cpu_to_le16((u16)data->auto_corr_ofdm_x1);
384 tbl[HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX] =
385 cpu_to_le16((u16)data->auto_corr_ofdm_mrc_x1);
386
387 tbl[HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX] =
388 cpu_to_le16((u16)data->auto_corr_cck);
389 tbl[HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX] =
390 cpu_to_le16((u16)data->auto_corr_cck_mrc);
391
392 tbl[HD_MIN_ENERGY_CCK_DET_INDEX] =
393 cpu_to_le16((u16)data->nrg_th_cck);
394 tbl[HD_MIN_ENERGY_OFDM_DET_INDEX] =
395 cpu_to_le16((u16)data->nrg_th_ofdm);
396
397 tbl[HD_BARKER_CORR_TH_ADD_MIN_INDEX] =
398 cpu_to_le16(data->barker_corr_th_min);
399 tbl[HD_BARKER_CORR_TH_ADD_MIN_MRC_INDEX] =
400 cpu_to_le16(data->barker_corr_th_min_mrc);
401 tbl[HD_OFDM_ENERGY_TH_IN_INDEX] =
402 cpu_to_le16(data->nrg_th_cca);
403
404 IWL_DEBUG_CALIB(priv, "ofdm: ac %u mrc %u x1 %u mrc_x1 %u thresh %u\n",
405 data->auto_corr_ofdm, data->auto_corr_ofdm_mrc,
406 data->auto_corr_ofdm_x1, data->auto_corr_ofdm_mrc_x1,
407 data->nrg_th_ofdm);
408
409 IWL_DEBUG_CALIB(priv, "cck: ac %u mrc %u thresh %u\n",
410 data->auto_corr_cck, data->auto_corr_cck_mrc,
411 data->nrg_th_cck);
412}
413
414/* Prepare a SENSITIVITY_CMD, send to uCode if values have changed */
415static int iwl_sensitivity_write(struct iwl_priv *priv)
416{
417 struct iwl_sensitivity_cmd cmd;
418 struct iwl_sensitivity_data *data = NULL;
419 struct iwl_host_cmd cmd_out = {
420 .id = SENSITIVITY_CMD,
421 .len = { sizeof(struct iwl_sensitivity_cmd), },
422 .flags = CMD_ASYNC,
423 .data = { &cmd, },
424 };
425
426 data = &(priv->sensitivity_data);
427
428 memset(&cmd, 0, sizeof(cmd));
429
430 iwl_prepare_legacy_sensitivity_tbl(priv, data, &cmd.table[0]);
431
432 /* Update uCode's "work" table, and copy it to DSP */
433 cmd.control = SENSITIVITY_CMD_CONTROL_WORK_TABLE;
434
435 /* Don't send command to uCode if nothing has changed */
436 if (!memcmp(&cmd.table[0], &(priv->sensitivity_tbl[0]),
437 sizeof(u16)*HD_TABLE_SIZE)) {
438 IWL_DEBUG_CALIB(priv, "No change in SENSITIVITY_CMD\n");
439 return 0;
440 }
441
442 /* Copy table for comparison next time */
443 memcpy(&(priv->sensitivity_tbl[0]), &(cmd.table[0]),
444 sizeof(u16)*HD_TABLE_SIZE);
445
446 return iwl_dvm_send_cmd(priv, &cmd_out);
447}
448
449/* Prepare a SENSITIVITY_CMD, send to uCode if values have changed */
450static int iwl_enhance_sensitivity_write(struct iwl_priv *priv)
451{
452 struct iwl_enhance_sensitivity_cmd cmd;
453 struct iwl_sensitivity_data *data = NULL;
454 struct iwl_host_cmd cmd_out = {
455 .id = SENSITIVITY_CMD,
456 .len = { sizeof(struct iwl_enhance_sensitivity_cmd), },
457 .flags = CMD_ASYNC,
458 .data = { &cmd, },
459 };
460
461 data = &(priv->sensitivity_data);
462
463 memset(&cmd, 0, sizeof(cmd));
464
465 iwl_prepare_legacy_sensitivity_tbl(priv, data, &cmd.enhance_table[0]);
466
467 if (priv->lib->hd_v2) {
468 cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX] =
469 HD_INA_NON_SQUARE_DET_OFDM_DATA_V2;
470 cmd.enhance_table[HD_INA_NON_SQUARE_DET_CCK_INDEX] =
471 HD_INA_NON_SQUARE_DET_CCK_DATA_V2;
472 cmd.enhance_table[HD_CORR_11_INSTEAD_OF_CORR_9_EN_INDEX] =
473 HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V2;
474 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_INDEX] =
475 HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V2;
476 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] =
477 HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2;
478 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_INDEX] =
479 HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V2;
480 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_INDEX] =
481 HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V2;
482 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_MRC_INDEX] =
483 HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V2;
484 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] =
485 HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2;
486 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_INDEX] =
487 HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V2;
488 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_INDEX] =
489 HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V2;
490 } else {
491 cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX] =
492 HD_INA_NON_SQUARE_DET_OFDM_DATA_V1;
493 cmd.enhance_table[HD_INA_NON_SQUARE_DET_CCK_INDEX] =
494 HD_INA_NON_SQUARE_DET_CCK_DATA_V1;
495 cmd.enhance_table[HD_CORR_11_INSTEAD_OF_CORR_9_EN_INDEX] =
496 HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V1;
497 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_INDEX] =
498 HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V1;
499 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] =
500 HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1;
501 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_INDEX] =
502 HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V1;
503 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_INDEX] =
504 HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V1;
505 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_MRC_INDEX] =
506 HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V1;
507 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] =
508 HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1;
509 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_INDEX] =
510 HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V1;
511 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_INDEX] =
512 HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V1;
513 }
514
515 /* Update uCode's "work" table, and copy it to DSP */
516 cmd.control = SENSITIVITY_CMD_CONTROL_WORK_TABLE;
517
518 /* Don't send command to uCode if nothing has changed */
519 if (!memcmp(&cmd.enhance_table[0], &(priv->sensitivity_tbl[0]),
520 sizeof(u16)*HD_TABLE_SIZE) &&
521 !memcmp(&cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX],
522 &(priv->enhance_sensitivity_tbl[0]),
523 sizeof(u16)*ENHANCE_HD_TABLE_ENTRIES)) {
524 IWL_DEBUG_CALIB(priv, "No change in SENSITIVITY_CMD\n");
525 return 0;
526 }
527
528 /* Copy table for comparison next time */
529 memcpy(&(priv->sensitivity_tbl[0]), &(cmd.enhance_table[0]),
530 sizeof(u16)*HD_TABLE_SIZE);
531 memcpy(&(priv->enhance_sensitivity_tbl[0]),
532 &(cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX]),
533 sizeof(u16)*ENHANCE_HD_TABLE_ENTRIES);
534
535 return iwl_dvm_send_cmd(priv, &cmd_out);
536}
537
538void iwl_init_sensitivity(struct iwl_priv *priv)
539{
540 int ret = 0;
541 int i;
542 struct iwl_sensitivity_data *data = NULL;
543 const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens;
544
545 if (priv->calib_disabled & IWL_SENSITIVITY_CALIB_DISABLED)
546 return;
547
548 IWL_DEBUG_CALIB(priv, "Start iwl_init_sensitivity\n");
549
550 /* Clear driver's sensitivity algo data */
551 data = &(priv->sensitivity_data);
552
553 if (ranges == NULL)
554 return;
555
556 memset(data, 0, sizeof(struct iwl_sensitivity_data));
557
558 data->num_in_cck_no_fa = 0;
559 data->nrg_curr_state = IWL_FA_TOO_MANY;
560 data->nrg_prev_state = IWL_FA_TOO_MANY;
561 data->nrg_silence_ref = 0;
562 data->nrg_silence_idx = 0;
563 data->nrg_energy_idx = 0;
564
565 for (i = 0; i < 10; i++)
566 data->nrg_value[i] = 0;
567
568 for (i = 0; i < NRG_NUM_PREV_STAT_L; i++)
569 data->nrg_silence_rssi[i] = 0;
570
571 data->auto_corr_ofdm = ranges->auto_corr_min_ofdm;
572 data->auto_corr_ofdm_mrc = ranges->auto_corr_min_ofdm_mrc;
573 data->auto_corr_ofdm_x1 = ranges->auto_corr_min_ofdm_x1;
574 data->auto_corr_ofdm_mrc_x1 = ranges->auto_corr_min_ofdm_mrc_x1;
575 data->auto_corr_cck = AUTO_CORR_CCK_MIN_VAL_DEF;
576 data->auto_corr_cck_mrc = ranges->auto_corr_min_cck_mrc;
577 data->nrg_th_cck = ranges->nrg_th_cck;
578 data->nrg_th_ofdm = ranges->nrg_th_ofdm;
579 data->barker_corr_th_min = ranges->barker_corr_th_min;
580 data->barker_corr_th_min_mrc = ranges->barker_corr_th_min_mrc;
581 data->nrg_th_cca = ranges->nrg_th_cca;
582
583 data->last_bad_plcp_cnt_ofdm = 0;
584 data->last_fa_cnt_ofdm = 0;
585 data->last_bad_plcp_cnt_cck = 0;
586 data->last_fa_cnt_cck = 0;
587
588 if (priv->fw->enhance_sensitivity_table)
589 ret |= iwl_enhance_sensitivity_write(priv);
590 else
591 ret |= iwl_sensitivity_write(priv);
592 IWL_DEBUG_CALIB(priv, "<<return 0x%X\n", ret);
593}
594
595void iwl_sensitivity_calibration(struct iwl_priv *priv)
596{
597 u32 rx_enable_time;
598 u32 fa_cck;
599 u32 fa_ofdm;
600 u32 bad_plcp_cck;
601 u32 bad_plcp_ofdm;
602 u32 norm_fa_ofdm;
603 u32 norm_fa_cck;
604 struct iwl_sensitivity_data *data = NULL;
605 struct statistics_rx_non_phy *rx_info;
606 struct statistics_rx_phy *ofdm, *cck;
607 struct statistics_general_data statis;
608
609 if (priv->calib_disabled & IWL_SENSITIVITY_CALIB_DISABLED)
610 return;
611
612 data = &(priv->sensitivity_data);
613
614 if (!iwl_is_any_associated(priv)) {
615 IWL_DEBUG_CALIB(priv, "<< - not associated\n");
616 return;
617 }
618
619 spin_lock_bh(&priv->statistics.lock);
620 rx_info = &priv->statistics.rx_non_phy;
621 ofdm = &priv->statistics.rx_ofdm;
622 cck = &priv->statistics.rx_cck;
623 if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) {
624 IWL_DEBUG_CALIB(priv, "<< invalid data.\n");
625 spin_unlock_bh(&priv->statistics.lock);
626 return;
627 }
628
629 /* Extract Statistics: */
630 rx_enable_time = le32_to_cpu(rx_info->channel_load);
631 fa_cck = le32_to_cpu(cck->false_alarm_cnt);
632 fa_ofdm = le32_to_cpu(ofdm->false_alarm_cnt);
633 bad_plcp_cck = le32_to_cpu(cck->plcp_err);
634 bad_plcp_ofdm = le32_to_cpu(ofdm->plcp_err);
635
636 statis.beacon_silence_rssi_a =
637 le32_to_cpu(rx_info->beacon_silence_rssi_a);
638 statis.beacon_silence_rssi_b =
639 le32_to_cpu(rx_info->beacon_silence_rssi_b);
640 statis.beacon_silence_rssi_c =
641 le32_to_cpu(rx_info->beacon_silence_rssi_c);
642 statis.beacon_energy_a =
643 le32_to_cpu(rx_info->beacon_energy_a);
644 statis.beacon_energy_b =
645 le32_to_cpu(rx_info->beacon_energy_b);
646 statis.beacon_energy_c =
647 le32_to_cpu(rx_info->beacon_energy_c);
648
649 spin_unlock_bh(&priv->statistics.lock);
650
651 IWL_DEBUG_CALIB(priv, "rx_enable_time = %u usecs\n", rx_enable_time);
652
653 if (!rx_enable_time) {
654 IWL_DEBUG_CALIB(priv, "<< RX Enable Time == 0!\n");
655 return;
656 }
657
658 /* These statistics increase monotonically, and do not reset
659 * at each beacon. Calculate difference from last value, or just
660 * use the new statistics value if it has reset or wrapped around. */
661 if (data->last_bad_plcp_cnt_cck > bad_plcp_cck)
662 data->last_bad_plcp_cnt_cck = bad_plcp_cck;
663 else {
664 bad_plcp_cck -= data->last_bad_plcp_cnt_cck;
665 data->last_bad_plcp_cnt_cck += bad_plcp_cck;
666 }
667
668 if (data->last_bad_plcp_cnt_ofdm > bad_plcp_ofdm)
669 data->last_bad_plcp_cnt_ofdm = bad_plcp_ofdm;
670 else {
671 bad_plcp_ofdm -= data->last_bad_plcp_cnt_ofdm;
672 data->last_bad_plcp_cnt_ofdm += bad_plcp_ofdm;
673 }
674
675 if (data->last_fa_cnt_ofdm > fa_ofdm)
676 data->last_fa_cnt_ofdm = fa_ofdm;
677 else {
678 fa_ofdm -= data->last_fa_cnt_ofdm;
679 data->last_fa_cnt_ofdm += fa_ofdm;
680 }
681
682 if (data->last_fa_cnt_cck > fa_cck)
683 data->last_fa_cnt_cck = fa_cck;
684 else {
685 fa_cck -= data->last_fa_cnt_cck;
686 data->last_fa_cnt_cck += fa_cck;
687 }
688
689 /* Total aborted signal locks */
690 norm_fa_ofdm = fa_ofdm + bad_plcp_ofdm;
691 norm_fa_cck = fa_cck + bad_plcp_cck;
692
693 IWL_DEBUG_CALIB(priv, "cck: fa %u badp %u ofdm: fa %u badp %u\n", fa_cck,
694 bad_plcp_cck, fa_ofdm, bad_plcp_ofdm);
695
696 iwl_sens_auto_corr_ofdm(priv, norm_fa_ofdm, rx_enable_time);
697 iwl_sens_energy_cck(priv, norm_fa_cck, rx_enable_time, &statis);
698 if (priv->fw->enhance_sensitivity_table)
699 iwl_enhance_sensitivity_write(priv);
700 else
701 iwl_sensitivity_write(priv);
702}
703
704static inline u8 find_first_chain(u8 mask)
705{
706 if (mask & ANT_A)
707 return CHAIN_A;
708 if (mask & ANT_B)
709 return CHAIN_B;
710 return CHAIN_C;
711}
712
713/*
714 * Run disconnected antenna algorithm to find out which antennas are
715 * disconnected.
716 */
717static void iwl_find_disconn_antenna(struct iwl_priv *priv, u32* average_sig,
718 struct iwl_chain_noise_data *data)
719{
720 u32 active_chains = 0;
721 u32 max_average_sig;
722 u16 max_average_sig_antenna_i;
723 u8 num_tx_chains;
724 u8 first_chain;
725 u16 i = 0;
726
727 average_sig[0] = data->chain_signal_a / IWL_CAL_NUM_BEACONS;
728 average_sig[1] = data->chain_signal_b / IWL_CAL_NUM_BEACONS;
729 average_sig[2] = data->chain_signal_c / IWL_CAL_NUM_BEACONS;
730
731 if (average_sig[0] >= average_sig[1]) {
732 max_average_sig = average_sig[0];
733 max_average_sig_antenna_i = 0;
734 active_chains = (1 << max_average_sig_antenna_i);
735 } else {
736 max_average_sig = average_sig[1];
737 max_average_sig_antenna_i = 1;
738 active_chains = (1 << max_average_sig_antenna_i);
739 }
740
741 if (average_sig[2] >= max_average_sig) {
742 max_average_sig = average_sig[2];
743 max_average_sig_antenna_i = 2;
744 active_chains = (1 << max_average_sig_antenna_i);
745 }
746
747 IWL_DEBUG_CALIB(priv, "average_sig: a %d b %d c %d\n",
748 average_sig[0], average_sig[1], average_sig[2]);
749 IWL_DEBUG_CALIB(priv, "max_average_sig = %d, antenna %d\n",
750 max_average_sig, max_average_sig_antenna_i);
751
752 /* Compare signal strengths for all 3 receivers. */
753 for (i = 0; i < NUM_RX_CHAINS; i++) {
754 if (i != max_average_sig_antenna_i) {
755 s32 rssi_delta = (max_average_sig - average_sig[i]);
756
757 /* If signal is very weak, compared with
758 * strongest, mark it as disconnected. */
759 if (rssi_delta > MAXIMUM_ALLOWED_PATHLOSS)
760 data->disconn_array[i] = 1;
761 else
762 active_chains |= (1 << i);
763 IWL_DEBUG_CALIB(priv, "i = %d rssiDelta = %d "
764 "disconn_array[i] = %d\n",
765 i, rssi_delta, data->disconn_array[i]);
766 }
767 }
768
769 /*
770 * The above algorithm sometimes fails when the ucode
771 * reports 0 for all chains. It's not clear why that
772 * happens to start with, but it is then causing trouble
773 * because this can make us enable more chains than the
774 * hardware really has.
775 *
776 * To be safe, simply mask out any chains that we know
777 * are not on the device.
778 */
779 active_chains &= priv->nvm_data->valid_rx_ant;
780
781 num_tx_chains = 0;
782 for (i = 0; i < NUM_RX_CHAINS; i++) {
783 /* loops on all the bits of
784 * priv->hw_setting.valid_tx_ant */
785 u8 ant_msk = (1 << i);
786 if (!(priv->nvm_data->valid_tx_ant & ant_msk))
787 continue;
788
789 num_tx_chains++;
790 if (data->disconn_array[i] == 0)
791 /* there is a Tx antenna connected */
792 break;
793 if (num_tx_chains == priv->hw_params.tx_chains_num &&
794 data->disconn_array[i]) {
795 /*
796 * If all chains are disconnected
797 * connect the first valid tx chain
798 */
799 first_chain =
800 find_first_chain(priv->nvm_data->valid_tx_ant);
801 data->disconn_array[first_chain] = 0;
802 active_chains |= BIT(first_chain);
803 IWL_DEBUG_CALIB(priv,
804 "All Tx chains are disconnected W/A - declare %d as connected\n",
805 first_chain);
806 break;
807 }
808 }
809
810 if (active_chains != priv->nvm_data->valid_rx_ant &&
811 active_chains != priv->chain_noise_data.active_chains)
812 IWL_DEBUG_CALIB(priv,
813 "Detected that not all antennas are connected! "
814 "Connected: %#x, valid: %#x.\n",
815 active_chains,
816 priv->nvm_data->valid_rx_ant);
817
818 /* Save for use within RXON, TX, SCAN commands, etc. */
819 data->active_chains = active_chains;
820 IWL_DEBUG_CALIB(priv, "active_chains (bitwise) = 0x%x\n",
821 active_chains);
822}
823
824static void iwlagn_gain_computation(struct iwl_priv *priv,
825 u32 average_noise[NUM_RX_CHAINS],
826 u8 default_chain)
827{
828 int i;
829 s32 delta_g;
830 struct iwl_chain_noise_data *data = &priv->chain_noise_data;
831
832 /*
833 * Find Gain Code for the chains based on "default chain"
834 */
835 for (i = default_chain + 1; i < NUM_RX_CHAINS; i++) {
836 if ((data->disconn_array[i])) {
837 data->delta_gain_code[i] = 0;
838 continue;
839 }
840
841 delta_g = (priv->lib->chain_noise_scale *
842 ((s32)average_noise[default_chain] -
843 (s32)average_noise[i])) / 1500;
844
845 /* bound gain by 2 bits value max, 3rd bit is sign */
846 data->delta_gain_code[i] =
847 min(abs(delta_g), CHAIN_NOISE_MAX_DELTA_GAIN_CODE);
848
849 if (delta_g < 0)
850 /*
851 * set negative sign ...
852 * note to Intel developers: This is uCode API format,
853 * not the format of any internal device registers.
854 * Do not change this format for e.g. 6050 or similar
855 * devices. Change format only if more resolution
856 * (i.e. more than 2 bits magnitude) is needed.
857 */
858 data->delta_gain_code[i] |= (1 << 2);
859 }
860
861 IWL_DEBUG_CALIB(priv, "Delta gains: ANT_B = %d ANT_C = %d\n",
862 data->delta_gain_code[1], data->delta_gain_code[2]);
863
864 if (!data->radio_write) {
865 struct iwl_calib_chain_noise_gain_cmd cmd;
866
867 memset(&cmd, 0, sizeof(cmd));
868
869 iwl_set_calib_hdr(&cmd.hdr,
870 priv->phy_calib_chain_noise_gain_cmd);
871 cmd.delta_gain_1 = data->delta_gain_code[1];
872 cmd.delta_gain_2 = data->delta_gain_code[2];
873 iwl_dvm_send_cmd_pdu(priv, REPLY_PHY_CALIBRATION_CMD,
874 CMD_ASYNC, sizeof(cmd), &cmd);
875
876 data->radio_write = 1;
877 data->state = IWL_CHAIN_NOISE_CALIBRATED;
878 }
879}
880
881/*
882 * Accumulate 16 beacons of signal and noise statistics for each of
883 * 3 receivers/antennas/rx-chains, then figure out:
884 * 1) Which antennas are connected.
885 * 2) Differential rx gain settings to balance the 3 receivers.
886 */
887void iwl_chain_noise_calibration(struct iwl_priv *priv)
888{
889 struct iwl_chain_noise_data *data = NULL;
890
891 u32 chain_noise_a;
892 u32 chain_noise_b;
893 u32 chain_noise_c;
894 u32 chain_sig_a;
895 u32 chain_sig_b;
896 u32 chain_sig_c;
897 u32 average_sig[NUM_RX_CHAINS] = {INITIALIZATION_VALUE};
898 u32 average_noise[NUM_RX_CHAINS] = {INITIALIZATION_VALUE};
899 u32 min_average_noise = MIN_AVERAGE_NOISE_MAX_VALUE;
900 u16 min_average_noise_antenna_i = INITIALIZATION_VALUE;
901 u16 i = 0;
902 u16 rxon_chnum = INITIALIZATION_VALUE;
903 u16 stat_chnum = INITIALIZATION_VALUE;
904 u8 rxon_band24;
905 u8 stat_band24;
906 struct statistics_rx_non_phy *rx_info;
907
908 /*
909 * MULTI-FIXME:
910 * When we support multiple interfaces on different channels,
911 * this must be modified/fixed.
912 */
913 struct iwl_rxon_context *ctx = &priv->contexts[IWL_RXON_CTX_BSS];
914
915 if (priv->calib_disabled & IWL_CHAIN_NOISE_CALIB_DISABLED)
916 return;
917
918 data = &(priv->chain_noise_data);
919
920 /*
921 * Accumulate just the first "chain_noise_num_beacons" after
922 * the first association, then we're done forever.
923 */
924 if (data->state != IWL_CHAIN_NOISE_ACCUMULATE) {
925 if (data->state == IWL_CHAIN_NOISE_ALIVE)
926 IWL_DEBUG_CALIB(priv, "Wait for noise calib reset\n");
927 return;
928 }
929
930 spin_lock_bh(&priv->statistics.lock);
931
932 rx_info = &priv->statistics.rx_non_phy;
933
934 if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) {
935 IWL_DEBUG_CALIB(priv, " << Interference data unavailable\n");
936 spin_unlock_bh(&priv->statistics.lock);
937 return;
938 }
939
940 rxon_band24 = !!(ctx->staging.flags & RXON_FLG_BAND_24G_MSK);
941 rxon_chnum = le16_to_cpu(ctx->staging.channel);
942 stat_band24 =
943 !!(priv->statistics.flag & STATISTICS_REPLY_FLG_BAND_24G_MSK);
944 stat_chnum = le32_to_cpu(priv->statistics.flag) >> 16;
945
946 /* Make sure we accumulate data for just the associated channel
947 * (even if scanning). */
948 if ((rxon_chnum != stat_chnum) || (rxon_band24 != stat_band24)) {
949 IWL_DEBUG_CALIB(priv, "Stats not from chan=%d, band24=%d\n",
950 rxon_chnum, rxon_band24);
951 spin_unlock_bh(&priv->statistics.lock);
952 return;
953 }
954
955 /*
956 * Accumulate beacon statistics values across
957 * "chain_noise_num_beacons"
958 */
959 chain_noise_a = le32_to_cpu(rx_info->beacon_silence_rssi_a) &
960 IN_BAND_FILTER;
961 chain_noise_b = le32_to_cpu(rx_info->beacon_silence_rssi_b) &
962 IN_BAND_FILTER;
963 chain_noise_c = le32_to_cpu(rx_info->beacon_silence_rssi_c) &
964 IN_BAND_FILTER;
965
966 chain_sig_a = le32_to_cpu(rx_info->beacon_rssi_a) & IN_BAND_FILTER;
967 chain_sig_b = le32_to_cpu(rx_info->beacon_rssi_b) & IN_BAND_FILTER;
968 chain_sig_c = le32_to_cpu(rx_info->beacon_rssi_c) & IN_BAND_FILTER;
969
970 spin_unlock_bh(&priv->statistics.lock);
971
972 data->beacon_count++;
973
974 data->chain_noise_a = (chain_noise_a + data->chain_noise_a);
975 data->chain_noise_b = (chain_noise_b + data->chain_noise_b);
976 data->chain_noise_c = (chain_noise_c + data->chain_noise_c);
977
978 data->chain_signal_a = (chain_sig_a + data->chain_signal_a);
979 data->chain_signal_b = (chain_sig_b + data->chain_signal_b);
980 data->chain_signal_c = (chain_sig_c + data->chain_signal_c);
981
982 IWL_DEBUG_CALIB(priv, "chan=%d, band24=%d, beacon=%d\n",
983 rxon_chnum, rxon_band24, data->beacon_count);
984 IWL_DEBUG_CALIB(priv, "chain_sig: a %d b %d c %d\n",
985 chain_sig_a, chain_sig_b, chain_sig_c);
986 IWL_DEBUG_CALIB(priv, "chain_noise: a %d b %d c %d\n",
987 chain_noise_a, chain_noise_b, chain_noise_c);
988
989 /* If this is the "chain_noise_num_beacons", determine:
990 * 1) Disconnected antennas (using signal strengths)
991 * 2) Differential gain (using silence noise) to balance receivers */
992 if (data->beacon_count != IWL_CAL_NUM_BEACONS)
993 return;
994
995 /* Analyze signal for disconnected antenna */
996 if (priv->lib->bt_params &&
997 priv->lib->bt_params->advanced_bt_coexist) {
998 /* Disable disconnected antenna algorithm for advanced
999 bt coex, assuming valid antennas are connected */
1000 data->active_chains = priv->nvm_data->valid_rx_ant;
1001 for (i = 0; i < NUM_RX_CHAINS; i++)
1002 if (!(data->active_chains & (1<<i)))
1003 data->disconn_array[i] = 1;
1004 } else
1005 iwl_find_disconn_antenna(priv, average_sig, data);
1006
1007 /* Analyze noise for rx balance */
1008 average_noise[0] = data->chain_noise_a / IWL_CAL_NUM_BEACONS;
1009 average_noise[1] = data->chain_noise_b / IWL_CAL_NUM_BEACONS;
1010 average_noise[2] = data->chain_noise_c / IWL_CAL_NUM_BEACONS;
1011
1012 for (i = 0; i < NUM_RX_CHAINS; i++) {
1013 if (!(data->disconn_array[i]) &&
1014 (average_noise[i] <= min_average_noise)) {
1015 /* This means that chain i is active and has
1016 * lower noise values so far: */
1017 min_average_noise = average_noise[i];
1018 min_average_noise_antenna_i = i;
1019 }
1020 }
1021
1022 IWL_DEBUG_CALIB(priv, "average_noise: a %d b %d c %d\n",
1023 average_noise[0], average_noise[1],
1024 average_noise[2]);
1025
1026 IWL_DEBUG_CALIB(priv, "min_average_noise = %d, antenna %d\n",
1027 min_average_noise, min_average_noise_antenna_i);
1028
1029 iwlagn_gain_computation(
1030 priv, average_noise,
1031 find_first_chain(priv->nvm_data->valid_rx_ant));
1032
1033 /* Some power changes may have been made during the calibration.
1034 * Update and commit the RXON
1035 */
1036 iwl_update_chain_flags(priv);
1037
1038 data->state = IWL_CHAIN_NOISE_DONE;
1039 iwl_power_update_mode(priv, false);
1040}
1041
1042void iwl_reset_run_time_calib(struct iwl_priv *priv)
1043{
1044 int i;
1045 memset(&(priv->sensitivity_data), 0,
1046 sizeof(struct iwl_sensitivity_data));
1047 memset(&(priv->chain_noise_data), 0,
1048 sizeof(struct iwl_chain_noise_data));
1049 for (i = 0; i < NUM_RX_CHAINS; i++)
1050 priv->chain_noise_data.delta_gain_code[i] =
1051 CHAIN_NOISE_DELTA_GAIN_INIT_VAL;
1052
1053 /* Ask for statistics now, the uCode will send notification
1054 * periodically after association */
1055 iwl_send_statistics_request(priv, CMD_ASYNC, true);
1056}
1// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2/*
3 * Copyright (C) 2005-2014 Intel Corporation
4 */
5#include <linux/slab.h>
6#include <net/mac80211.h>
7
8#include "iwl-trans.h"
9
10#include "dev.h"
11#include "calib.h"
12#include "agn.h"
13
14/*****************************************************************************
15 * INIT calibrations framework
16 *****************************************************************************/
17
18/* Opaque calibration results */
19struct iwl_calib_result {
20 struct list_head list;
21 size_t cmd_len;
22 struct iwl_calib_hdr hdr;
23 /* data follows */
24};
25
26struct statistics_general_data {
27 u32 beacon_silence_rssi_a;
28 u32 beacon_silence_rssi_b;
29 u32 beacon_silence_rssi_c;
30 u32 beacon_energy_a;
31 u32 beacon_energy_b;
32 u32 beacon_energy_c;
33};
34
35int iwl_send_calib_results(struct iwl_priv *priv)
36{
37 struct iwl_host_cmd hcmd = {
38 .id = REPLY_PHY_CALIBRATION_CMD,
39 };
40 struct iwl_calib_result *res;
41
42 list_for_each_entry(res, &priv->calib_results, list) {
43 int ret;
44
45 hcmd.len[0] = res->cmd_len;
46 hcmd.data[0] = &res->hdr;
47 hcmd.dataflags[0] = IWL_HCMD_DFL_NOCOPY;
48 ret = iwl_dvm_send_cmd(priv, &hcmd);
49 if (ret) {
50 IWL_ERR(priv, "Error %d on calib cmd %d\n",
51 ret, res->hdr.op_code);
52 return ret;
53 }
54 }
55
56 return 0;
57}
58
59int iwl_calib_set(struct iwl_priv *priv,
60 const struct iwl_calib_hdr *cmd, int len)
61{
62 struct iwl_calib_result *res, *tmp;
63
64 res = kmalloc(sizeof(*res) + len - sizeof(struct iwl_calib_hdr),
65 GFP_ATOMIC);
66 if (!res)
67 return -ENOMEM;
68 memcpy(&res->hdr, cmd, len);
69 res->cmd_len = len;
70
71 list_for_each_entry(tmp, &priv->calib_results, list) {
72 if (tmp->hdr.op_code == res->hdr.op_code) {
73 list_replace(&tmp->list, &res->list);
74 kfree(tmp);
75 return 0;
76 }
77 }
78
79 /* wasn't in list already */
80 list_add_tail(&res->list, &priv->calib_results);
81
82 return 0;
83}
84
85void iwl_calib_free_results(struct iwl_priv *priv)
86{
87 struct iwl_calib_result *res, *tmp;
88
89 list_for_each_entry_safe(res, tmp, &priv->calib_results, list) {
90 list_del(&res->list);
91 kfree(res);
92 }
93}
94
95/*****************************************************************************
96 * RUNTIME calibrations framework
97 *****************************************************************************/
98
99/* "false alarms" are signals that our DSP tries to lock onto,
100 * but then determines that they are either noise, or transmissions
101 * from a distant wireless network (also "noise", really) that get
102 * "stepped on" by stronger transmissions within our own network.
103 * This algorithm attempts to set a sensitivity level that is high
104 * enough to receive all of our own network traffic, but not so
105 * high that our DSP gets too busy trying to lock onto non-network
106 * activity/noise. */
107static int iwl_sens_energy_cck(struct iwl_priv *priv,
108 u32 norm_fa,
109 u32 rx_enable_time,
110 struct statistics_general_data *rx_info)
111{
112 u32 max_nrg_cck = 0;
113 int i = 0;
114 u8 max_silence_rssi = 0;
115 u32 silence_ref = 0;
116 u8 silence_rssi_a = 0;
117 u8 silence_rssi_b = 0;
118 u8 silence_rssi_c = 0;
119 u32 val;
120
121 /* "false_alarms" values below are cross-multiplications to assess the
122 * numbers of false alarms within the measured period of actual Rx
123 * (Rx is off when we're txing), vs the min/max expected false alarms
124 * (some should be expected if rx is sensitive enough) in a
125 * hypothetical listening period of 200 time units (TU), 204.8 msec:
126 *
127 * MIN_FA/fixed-time < false_alarms/actual-rx-time < MAX_FA/beacon-time
128 *
129 * */
130 u32 false_alarms = norm_fa * 200 * 1024;
131 u32 max_false_alarms = MAX_FA_CCK * rx_enable_time;
132 u32 min_false_alarms = MIN_FA_CCK * rx_enable_time;
133 struct iwl_sensitivity_data *data = NULL;
134 const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens;
135
136 data = &(priv->sensitivity_data);
137
138 data->nrg_auto_corr_silence_diff = 0;
139
140 /* Find max silence rssi among all 3 receivers.
141 * This is background noise, which may include transmissions from other
142 * networks, measured during silence before our network's beacon */
143 silence_rssi_a = (u8)((rx_info->beacon_silence_rssi_a &
144 ALL_BAND_FILTER) >> 8);
145 silence_rssi_b = (u8)((rx_info->beacon_silence_rssi_b &
146 ALL_BAND_FILTER) >> 8);
147 silence_rssi_c = (u8)((rx_info->beacon_silence_rssi_c &
148 ALL_BAND_FILTER) >> 8);
149
150 val = max(silence_rssi_b, silence_rssi_c);
151 max_silence_rssi = max(silence_rssi_a, (u8) val);
152
153 /* Store silence rssi in 20-beacon history table */
154 data->nrg_silence_rssi[data->nrg_silence_idx] = max_silence_rssi;
155 data->nrg_silence_idx++;
156 if (data->nrg_silence_idx >= NRG_NUM_PREV_STAT_L)
157 data->nrg_silence_idx = 0;
158
159 /* Find max silence rssi across 20 beacon history */
160 for (i = 0; i < NRG_NUM_PREV_STAT_L; i++) {
161 val = data->nrg_silence_rssi[i];
162 silence_ref = max(silence_ref, val);
163 }
164 IWL_DEBUG_CALIB(priv, "silence a %u, b %u, c %u, 20-bcn max %u\n",
165 silence_rssi_a, silence_rssi_b, silence_rssi_c,
166 silence_ref);
167
168 /* Find max rx energy (min value!) among all 3 receivers,
169 * measured during beacon frame.
170 * Save it in 10-beacon history table. */
171 i = data->nrg_energy_idx;
172 val = min(rx_info->beacon_energy_b, rx_info->beacon_energy_c);
173 data->nrg_value[i] = min(rx_info->beacon_energy_a, val);
174
175 data->nrg_energy_idx++;
176 if (data->nrg_energy_idx >= 10)
177 data->nrg_energy_idx = 0;
178
179 /* Find min rx energy (max value) across 10 beacon history.
180 * This is the minimum signal level that we want to receive well.
181 * Add backoff (margin so we don't miss slightly lower energy frames).
182 * This establishes an upper bound (min value) for energy threshold. */
183 max_nrg_cck = data->nrg_value[0];
184 for (i = 1; i < 10; i++)
185 max_nrg_cck = (u32) max(max_nrg_cck, (data->nrg_value[i]));
186 max_nrg_cck += 6;
187
188 IWL_DEBUG_CALIB(priv, "rx energy a %u, b %u, c %u, 10-bcn max/min %u\n",
189 rx_info->beacon_energy_a, rx_info->beacon_energy_b,
190 rx_info->beacon_energy_c, max_nrg_cck - 6);
191
192 /* Count number of consecutive beacons with fewer-than-desired
193 * false alarms. */
194 if (false_alarms < min_false_alarms)
195 data->num_in_cck_no_fa++;
196 else
197 data->num_in_cck_no_fa = 0;
198 IWL_DEBUG_CALIB(priv, "consecutive bcns with few false alarms = %u\n",
199 data->num_in_cck_no_fa);
200
201 /* If we got too many false alarms this time, reduce sensitivity */
202 if ((false_alarms > max_false_alarms) &&
203 (data->auto_corr_cck > AUTO_CORR_MAX_TH_CCK)) {
204 IWL_DEBUG_CALIB(priv, "norm FA %u > max FA %u\n",
205 false_alarms, max_false_alarms);
206 IWL_DEBUG_CALIB(priv, "... reducing sensitivity\n");
207 data->nrg_curr_state = IWL_FA_TOO_MANY;
208 /* Store for "fewer than desired" on later beacon */
209 data->nrg_silence_ref = silence_ref;
210
211 /* increase energy threshold (reduce nrg value)
212 * to decrease sensitivity */
213 data->nrg_th_cck = data->nrg_th_cck - NRG_STEP_CCK;
214 /* Else if we got fewer than desired, increase sensitivity */
215 } else if (false_alarms < min_false_alarms) {
216 data->nrg_curr_state = IWL_FA_TOO_FEW;
217
218 /* Compare silence level with silence level for most recent
219 * healthy number or too many false alarms */
220 data->nrg_auto_corr_silence_diff = (s32)data->nrg_silence_ref -
221 (s32)silence_ref;
222
223 IWL_DEBUG_CALIB(priv, "norm FA %u < min FA %u, silence diff %d\n",
224 false_alarms, min_false_alarms,
225 data->nrg_auto_corr_silence_diff);
226
227 /* Increase value to increase sensitivity, but only if:
228 * 1a) previous beacon did *not* have *too many* false alarms
229 * 1b) AND there's a significant difference in Rx levels
230 * from a previous beacon with too many, or healthy # FAs
231 * OR 2) We've seen a lot of beacons (100) with too few
232 * false alarms */
233 if ((data->nrg_prev_state != IWL_FA_TOO_MANY) &&
234 ((data->nrg_auto_corr_silence_diff > NRG_DIFF) ||
235 (data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA))) {
236
237 IWL_DEBUG_CALIB(priv, "... increasing sensitivity\n");
238 /* Increase nrg value to increase sensitivity */
239 val = data->nrg_th_cck + NRG_STEP_CCK;
240 data->nrg_th_cck = min((u32)ranges->min_nrg_cck, val);
241 } else {
242 IWL_DEBUG_CALIB(priv, "... but not changing sensitivity\n");
243 }
244
245 /* Else we got a healthy number of false alarms, keep status quo */
246 } else {
247 IWL_DEBUG_CALIB(priv, " FA in safe zone\n");
248 data->nrg_curr_state = IWL_FA_GOOD_RANGE;
249
250 /* Store for use in "fewer than desired" with later beacon */
251 data->nrg_silence_ref = silence_ref;
252
253 /* If previous beacon had too many false alarms,
254 * give it some extra margin by reducing sensitivity again
255 * (but don't go below measured energy of desired Rx) */
256 if (data->nrg_prev_state == IWL_FA_TOO_MANY) {
257 IWL_DEBUG_CALIB(priv, "... increasing margin\n");
258 if (data->nrg_th_cck > (max_nrg_cck + NRG_MARGIN))
259 data->nrg_th_cck -= NRG_MARGIN;
260 else
261 data->nrg_th_cck = max_nrg_cck;
262 }
263 }
264
265 /* Make sure the energy threshold does not go above the measured
266 * energy of the desired Rx signals (reduced by backoff margin),
267 * or else we might start missing Rx frames.
268 * Lower value is higher energy, so we use max()!
269 */
270 data->nrg_th_cck = max(max_nrg_cck, data->nrg_th_cck);
271 IWL_DEBUG_CALIB(priv, "new nrg_th_cck %u\n", data->nrg_th_cck);
272
273 data->nrg_prev_state = data->nrg_curr_state;
274
275 /* Auto-correlation CCK algorithm */
276 if (false_alarms > min_false_alarms) {
277
278 /* increase auto_corr values to decrease sensitivity
279 * so the DSP won't be disturbed by the noise
280 */
281 if (data->auto_corr_cck < AUTO_CORR_MAX_TH_CCK)
282 data->auto_corr_cck = AUTO_CORR_MAX_TH_CCK + 1;
283 else {
284 val = data->auto_corr_cck + AUTO_CORR_STEP_CCK;
285 data->auto_corr_cck =
286 min((u32)ranges->auto_corr_max_cck, val);
287 }
288 val = data->auto_corr_cck_mrc + AUTO_CORR_STEP_CCK;
289 data->auto_corr_cck_mrc =
290 min((u32)ranges->auto_corr_max_cck_mrc, val);
291 } else if ((false_alarms < min_false_alarms) &&
292 ((data->nrg_auto_corr_silence_diff > NRG_DIFF) ||
293 (data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA))) {
294
295 /* Decrease auto_corr values to increase sensitivity */
296 val = data->auto_corr_cck - AUTO_CORR_STEP_CCK;
297 data->auto_corr_cck =
298 max((u32)ranges->auto_corr_min_cck, val);
299 val = data->auto_corr_cck_mrc - AUTO_CORR_STEP_CCK;
300 data->auto_corr_cck_mrc =
301 max((u32)ranges->auto_corr_min_cck_mrc, val);
302 }
303
304 return 0;
305}
306
307
308static int iwl_sens_auto_corr_ofdm(struct iwl_priv *priv,
309 u32 norm_fa,
310 u32 rx_enable_time)
311{
312 u32 val;
313 u32 false_alarms = norm_fa * 200 * 1024;
314 u32 max_false_alarms = MAX_FA_OFDM * rx_enable_time;
315 u32 min_false_alarms = MIN_FA_OFDM * rx_enable_time;
316 struct iwl_sensitivity_data *data = NULL;
317 const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens;
318
319 data = &(priv->sensitivity_data);
320
321 /* If we got too many false alarms this time, reduce sensitivity */
322 if (false_alarms > max_false_alarms) {
323
324 IWL_DEBUG_CALIB(priv, "norm FA %u > max FA %u)\n",
325 false_alarms, max_false_alarms);
326
327 val = data->auto_corr_ofdm + AUTO_CORR_STEP_OFDM;
328 data->auto_corr_ofdm =
329 min((u32)ranges->auto_corr_max_ofdm, val);
330
331 val = data->auto_corr_ofdm_mrc + AUTO_CORR_STEP_OFDM;
332 data->auto_corr_ofdm_mrc =
333 min((u32)ranges->auto_corr_max_ofdm_mrc, val);
334
335 val = data->auto_corr_ofdm_x1 + AUTO_CORR_STEP_OFDM;
336 data->auto_corr_ofdm_x1 =
337 min((u32)ranges->auto_corr_max_ofdm_x1, val);
338
339 val = data->auto_corr_ofdm_mrc_x1 + AUTO_CORR_STEP_OFDM;
340 data->auto_corr_ofdm_mrc_x1 =
341 min((u32)ranges->auto_corr_max_ofdm_mrc_x1, val);
342 }
343
344 /* Else if we got fewer than desired, increase sensitivity */
345 else if (false_alarms < min_false_alarms) {
346
347 IWL_DEBUG_CALIB(priv, "norm FA %u < min FA %u\n",
348 false_alarms, min_false_alarms);
349
350 val = data->auto_corr_ofdm - AUTO_CORR_STEP_OFDM;
351 data->auto_corr_ofdm =
352 max((u32)ranges->auto_corr_min_ofdm, val);
353
354 val = data->auto_corr_ofdm_mrc - AUTO_CORR_STEP_OFDM;
355 data->auto_corr_ofdm_mrc =
356 max((u32)ranges->auto_corr_min_ofdm_mrc, val);
357
358 val = data->auto_corr_ofdm_x1 - AUTO_CORR_STEP_OFDM;
359 data->auto_corr_ofdm_x1 =
360 max((u32)ranges->auto_corr_min_ofdm_x1, val);
361
362 val = data->auto_corr_ofdm_mrc_x1 - AUTO_CORR_STEP_OFDM;
363 data->auto_corr_ofdm_mrc_x1 =
364 max((u32)ranges->auto_corr_min_ofdm_mrc_x1, val);
365 } else {
366 IWL_DEBUG_CALIB(priv, "min FA %u < norm FA %u < max FA %u OK\n",
367 min_false_alarms, false_alarms, max_false_alarms);
368 }
369 return 0;
370}
371
372static void iwl_prepare_legacy_sensitivity_tbl(struct iwl_priv *priv,
373 struct iwl_sensitivity_data *data,
374 __le16 *tbl)
375{
376 tbl[HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX] =
377 cpu_to_le16((u16)data->auto_corr_ofdm);
378 tbl[HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX] =
379 cpu_to_le16((u16)data->auto_corr_ofdm_mrc);
380 tbl[HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX] =
381 cpu_to_le16((u16)data->auto_corr_ofdm_x1);
382 tbl[HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX] =
383 cpu_to_le16((u16)data->auto_corr_ofdm_mrc_x1);
384
385 tbl[HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX] =
386 cpu_to_le16((u16)data->auto_corr_cck);
387 tbl[HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX] =
388 cpu_to_le16((u16)data->auto_corr_cck_mrc);
389
390 tbl[HD_MIN_ENERGY_CCK_DET_INDEX] =
391 cpu_to_le16((u16)data->nrg_th_cck);
392 tbl[HD_MIN_ENERGY_OFDM_DET_INDEX] =
393 cpu_to_le16((u16)data->nrg_th_ofdm);
394
395 tbl[HD_BARKER_CORR_TH_ADD_MIN_INDEX] =
396 cpu_to_le16(data->barker_corr_th_min);
397 tbl[HD_BARKER_CORR_TH_ADD_MIN_MRC_INDEX] =
398 cpu_to_le16(data->barker_corr_th_min_mrc);
399 tbl[HD_OFDM_ENERGY_TH_IN_INDEX] =
400 cpu_to_le16(data->nrg_th_cca);
401
402 IWL_DEBUG_CALIB(priv, "ofdm: ac %u mrc %u x1 %u mrc_x1 %u thresh %u\n",
403 data->auto_corr_ofdm, data->auto_corr_ofdm_mrc,
404 data->auto_corr_ofdm_x1, data->auto_corr_ofdm_mrc_x1,
405 data->nrg_th_ofdm);
406
407 IWL_DEBUG_CALIB(priv, "cck: ac %u mrc %u thresh %u\n",
408 data->auto_corr_cck, data->auto_corr_cck_mrc,
409 data->nrg_th_cck);
410}
411
412/* Prepare a SENSITIVITY_CMD, send to uCode if values have changed */
413static int iwl_sensitivity_write(struct iwl_priv *priv)
414{
415 struct iwl_sensitivity_cmd cmd;
416 struct iwl_sensitivity_data *data = NULL;
417 struct iwl_host_cmd cmd_out = {
418 .id = SENSITIVITY_CMD,
419 .len = { sizeof(struct iwl_sensitivity_cmd), },
420 .flags = CMD_ASYNC,
421 .data = { &cmd, },
422 };
423
424 data = &(priv->sensitivity_data);
425
426 memset(&cmd, 0, sizeof(cmd));
427
428 iwl_prepare_legacy_sensitivity_tbl(priv, data, &cmd.table[0]);
429
430 /* Update uCode's "work" table, and copy it to DSP */
431 cmd.control = SENSITIVITY_CMD_CONTROL_WORK_TABLE;
432
433 /* Don't send command to uCode if nothing has changed */
434 if (!memcmp(&cmd.table[0], &(priv->sensitivity_tbl[0]),
435 sizeof(u16)*HD_TABLE_SIZE)) {
436 IWL_DEBUG_CALIB(priv, "No change in SENSITIVITY_CMD\n");
437 return 0;
438 }
439
440 /* Copy table for comparison next time */
441 memcpy(&(priv->sensitivity_tbl[0]), &(cmd.table[0]),
442 sizeof(u16)*HD_TABLE_SIZE);
443
444 return iwl_dvm_send_cmd(priv, &cmd_out);
445}
446
447/* Prepare a SENSITIVITY_CMD, send to uCode if values have changed */
448static int iwl_enhance_sensitivity_write(struct iwl_priv *priv)
449{
450 struct iwl_enhance_sensitivity_cmd cmd;
451 struct iwl_sensitivity_data *data = NULL;
452 struct iwl_host_cmd cmd_out = {
453 .id = SENSITIVITY_CMD,
454 .len = { sizeof(struct iwl_enhance_sensitivity_cmd), },
455 .flags = CMD_ASYNC,
456 .data = { &cmd, },
457 };
458
459 data = &(priv->sensitivity_data);
460
461 memset(&cmd, 0, sizeof(cmd));
462
463 iwl_prepare_legacy_sensitivity_tbl(priv, data, &cmd.enhance_table[0]);
464
465 if (priv->lib->hd_v2) {
466 cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX] =
467 HD_INA_NON_SQUARE_DET_OFDM_DATA_V2;
468 cmd.enhance_table[HD_INA_NON_SQUARE_DET_CCK_INDEX] =
469 HD_INA_NON_SQUARE_DET_CCK_DATA_V2;
470 cmd.enhance_table[HD_CORR_11_INSTEAD_OF_CORR_9_EN_INDEX] =
471 HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V2;
472 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_INDEX] =
473 HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V2;
474 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] =
475 HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2;
476 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_INDEX] =
477 HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V2;
478 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_INDEX] =
479 HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V2;
480 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_MRC_INDEX] =
481 HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V2;
482 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] =
483 HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2;
484 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_INDEX] =
485 HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V2;
486 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_INDEX] =
487 HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V2;
488 } else {
489 cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX] =
490 HD_INA_NON_SQUARE_DET_OFDM_DATA_V1;
491 cmd.enhance_table[HD_INA_NON_SQUARE_DET_CCK_INDEX] =
492 HD_INA_NON_SQUARE_DET_CCK_DATA_V1;
493 cmd.enhance_table[HD_CORR_11_INSTEAD_OF_CORR_9_EN_INDEX] =
494 HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V1;
495 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_INDEX] =
496 HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V1;
497 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] =
498 HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1;
499 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_SLOPE_INDEX] =
500 HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V1;
501 cmd.enhance_table[HD_OFDM_NON_SQUARE_DET_INTERCEPT_INDEX] =
502 HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V1;
503 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_MRC_INDEX] =
504 HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V1;
505 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_INDEX] =
506 HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1;
507 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_SLOPE_INDEX] =
508 HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V1;
509 cmd.enhance_table[HD_CCK_NON_SQUARE_DET_INTERCEPT_INDEX] =
510 HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V1;
511 }
512
513 /* Update uCode's "work" table, and copy it to DSP */
514 cmd.control = SENSITIVITY_CMD_CONTROL_WORK_TABLE;
515
516 /* Don't send command to uCode if nothing has changed */
517 if (!memcmp(&cmd.enhance_table[0], &(priv->sensitivity_tbl[0]),
518 sizeof(u16)*HD_TABLE_SIZE) &&
519 !memcmp(&cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX],
520 &(priv->enhance_sensitivity_tbl[0]),
521 sizeof(u16)*ENHANCE_HD_TABLE_ENTRIES)) {
522 IWL_DEBUG_CALIB(priv, "No change in SENSITIVITY_CMD\n");
523 return 0;
524 }
525
526 /* Copy table for comparison next time */
527 memcpy(&(priv->sensitivity_tbl[0]), &(cmd.enhance_table[0]),
528 sizeof(u16)*HD_TABLE_SIZE);
529 memcpy(&(priv->enhance_sensitivity_tbl[0]),
530 &(cmd.enhance_table[HD_INA_NON_SQUARE_DET_OFDM_INDEX]),
531 sizeof(u16)*ENHANCE_HD_TABLE_ENTRIES);
532
533 return iwl_dvm_send_cmd(priv, &cmd_out);
534}
535
536void iwl_init_sensitivity(struct iwl_priv *priv)
537{
538 int ret = 0;
539 int i;
540 struct iwl_sensitivity_data *data = NULL;
541 const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens;
542
543 if (priv->calib_disabled & IWL_SENSITIVITY_CALIB_DISABLED)
544 return;
545
546 IWL_DEBUG_CALIB(priv, "Start iwl_init_sensitivity\n");
547
548 /* Clear driver's sensitivity algo data */
549 data = &(priv->sensitivity_data);
550
551 if (ranges == NULL)
552 return;
553
554 memset(data, 0, sizeof(struct iwl_sensitivity_data));
555
556 data->num_in_cck_no_fa = 0;
557 data->nrg_curr_state = IWL_FA_TOO_MANY;
558 data->nrg_prev_state = IWL_FA_TOO_MANY;
559 data->nrg_silence_ref = 0;
560 data->nrg_silence_idx = 0;
561 data->nrg_energy_idx = 0;
562
563 for (i = 0; i < 10; i++)
564 data->nrg_value[i] = 0;
565
566 for (i = 0; i < NRG_NUM_PREV_STAT_L; i++)
567 data->nrg_silence_rssi[i] = 0;
568
569 data->auto_corr_ofdm = ranges->auto_corr_min_ofdm;
570 data->auto_corr_ofdm_mrc = ranges->auto_corr_min_ofdm_mrc;
571 data->auto_corr_ofdm_x1 = ranges->auto_corr_min_ofdm_x1;
572 data->auto_corr_ofdm_mrc_x1 = ranges->auto_corr_min_ofdm_mrc_x1;
573 data->auto_corr_cck = AUTO_CORR_CCK_MIN_VAL_DEF;
574 data->auto_corr_cck_mrc = ranges->auto_corr_min_cck_mrc;
575 data->nrg_th_cck = ranges->nrg_th_cck;
576 data->nrg_th_ofdm = ranges->nrg_th_ofdm;
577 data->barker_corr_th_min = ranges->barker_corr_th_min;
578 data->barker_corr_th_min_mrc = ranges->barker_corr_th_min_mrc;
579 data->nrg_th_cca = ranges->nrg_th_cca;
580
581 data->last_bad_plcp_cnt_ofdm = 0;
582 data->last_fa_cnt_ofdm = 0;
583 data->last_bad_plcp_cnt_cck = 0;
584 data->last_fa_cnt_cck = 0;
585
586 if (priv->fw->enhance_sensitivity_table)
587 ret |= iwl_enhance_sensitivity_write(priv);
588 else
589 ret |= iwl_sensitivity_write(priv);
590 IWL_DEBUG_CALIB(priv, "<<return 0x%X\n", ret);
591}
592
593void iwl_sensitivity_calibration(struct iwl_priv *priv)
594{
595 u32 rx_enable_time;
596 u32 fa_cck;
597 u32 fa_ofdm;
598 u32 bad_plcp_cck;
599 u32 bad_plcp_ofdm;
600 u32 norm_fa_ofdm;
601 u32 norm_fa_cck;
602 struct iwl_sensitivity_data *data = NULL;
603 struct statistics_rx_non_phy *rx_info;
604 struct statistics_rx_phy *ofdm, *cck;
605 struct statistics_general_data statis;
606
607 if (priv->calib_disabled & IWL_SENSITIVITY_CALIB_DISABLED)
608 return;
609
610 data = &(priv->sensitivity_data);
611
612 if (!iwl_is_any_associated(priv)) {
613 IWL_DEBUG_CALIB(priv, "<< - not associated\n");
614 return;
615 }
616
617 spin_lock_bh(&priv->statistics.lock);
618 rx_info = &priv->statistics.rx_non_phy;
619 ofdm = &priv->statistics.rx_ofdm;
620 cck = &priv->statistics.rx_cck;
621 if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) {
622 IWL_DEBUG_CALIB(priv, "<< invalid data.\n");
623 spin_unlock_bh(&priv->statistics.lock);
624 return;
625 }
626
627 /* Extract Statistics: */
628 rx_enable_time = le32_to_cpu(rx_info->channel_load);
629 fa_cck = le32_to_cpu(cck->false_alarm_cnt);
630 fa_ofdm = le32_to_cpu(ofdm->false_alarm_cnt);
631 bad_plcp_cck = le32_to_cpu(cck->plcp_err);
632 bad_plcp_ofdm = le32_to_cpu(ofdm->plcp_err);
633
634 statis.beacon_silence_rssi_a =
635 le32_to_cpu(rx_info->beacon_silence_rssi_a);
636 statis.beacon_silence_rssi_b =
637 le32_to_cpu(rx_info->beacon_silence_rssi_b);
638 statis.beacon_silence_rssi_c =
639 le32_to_cpu(rx_info->beacon_silence_rssi_c);
640 statis.beacon_energy_a =
641 le32_to_cpu(rx_info->beacon_energy_a);
642 statis.beacon_energy_b =
643 le32_to_cpu(rx_info->beacon_energy_b);
644 statis.beacon_energy_c =
645 le32_to_cpu(rx_info->beacon_energy_c);
646
647 spin_unlock_bh(&priv->statistics.lock);
648
649 IWL_DEBUG_CALIB(priv, "rx_enable_time = %u usecs\n", rx_enable_time);
650
651 if (!rx_enable_time) {
652 IWL_DEBUG_CALIB(priv, "<< RX Enable Time == 0!\n");
653 return;
654 }
655
656 /* These statistics increase monotonically, and do not reset
657 * at each beacon. Calculate difference from last value, or just
658 * use the new statistics value if it has reset or wrapped around. */
659 if (data->last_bad_plcp_cnt_cck > bad_plcp_cck)
660 data->last_bad_plcp_cnt_cck = bad_plcp_cck;
661 else {
662 bad_plcp_cck -= data->last_bad_plcp_cnt_cck;
663 data->last_bad_plcp_cnt_cck += bad_plcp_cck;
664 }
665
666 if (data->last_bad_plcp_cnt_ofdm > bad_plcp_ofdm)
667 data->last_bad_plcp_cnt_ofdm = bad_plcp_ofdm;
668 else {
669 bad_plcp_ofdm -= data->last_bad_plcp_cnt_ofdm;
670 data->last_bad_plcp_cnt_ofdm += bad_plcp_ofdm;
671 }
672
673 if (data->last_fa_cnt_ofdm > fa_ofdm)
674 data->last_fa_cnt_ofdm = fa_ofdm;
675 else {
676 fa_ofdm -= data->last_fa_cnt_ofdm;
677 data->last_fa_cnt_ofdm += fa_ofdm;
678 }
679
680 if (data->last_fa_cnt_cck > fa_cck)
681 data->last_fa_cnt_cck = fa_cck;
682 else {
683 fa_cck -= data->last_fa_cnt_cck;
684 data->last_fa_cnt_cck += fa_cck;
685 }
686
687 /* Total aborted signal locks */
688 norm_fa_ofdm = fa_ofdm + bad_plcp_ofdm;
689 norm_fa_cck = fa_cck + bad_plcp_cck;
690
691 IWL_DEBUG_CALIB(priv, "cck: fa %u badp %u ofdm: fa %u badp %u\n", fa_cck,
692 bad_plcp_cck, fa_ofdm, bad_plcp_ofdm);
693
694 iwl_sens_auto_corr_ofdm(priv, norm_fa_ofdm, rx_enable_time);
695 iwl_sens_energy_cck(priv, norm_fa_cck, rx_enable_time, &statis);
696 if (priv->fw->enhance_sensitivity_table)
697 iwl_enhance_sensitivity_write(priv);
698 else
699 iwl_sensitivity_write(priv);
700}
701
702static inline u8 find_first_chain(u8 mask)
703{
704 if (mask & ANT_A)
705 return CHAIN_A;
706 if (mask & ANT_B)
707 return CHAIN_B;
708 return CHAIN_C;
709}
710
711/*
712 * Run disconnected antenna algorithm to find out which antennas are
713 * disconnected.
714 */
715static void iwl_find_disconn_antenna(struct iwl_priv *priv, u32* average_sig,
716 struct iwl_chain_noise_data *data)
717{
718 u32 active_chains = 0;
719 u32 max_average_sig;
720 u16 max_average_sig_antenna_i;
721 u8 num_tx_chains;
722 u8 first_chain;
723 u16 i = 0;
724
725 average_sig[0] = data->chain_signal_a / IWL_CAL_NUM_BEACONS;
726 average_sig[1] = data->chain_signal_b / IWL_CAL_NUM_BEACONS;
727 average_sig[2] = data->chain_signal_c / IWL_CAL_NUM_BEACONS;
728
729 if (average_sig[0] >= average_sig[1]) {
730 max_average_sig = average_sig[0];
731 max_average_sig_antenna_i = 0;
732 active_chains = (1 << max_average_sig_antenna_i);
733 } else {
734 max_average_sig = average_sig[1];
735 max_average_sig_antenna_i = 1;
736 active_chains = (1 << max_average_sig_antenna_i);
737 }
738
739 if (average_sig[2] >= max_average_sig) {
740 max_average_sig = average_sig[2];
741 max_average_sig_antenna_i = 2;
742 active_chains = (1 << max_average_sig_antenna_i);
743 }
744
745 IWL_DEBUG_CALIB(priv, "average_sig: a %d b %d c %d\n",
746 average_sig[0], average_sig[1], average_sig[2]);
747 IWL_DEBUG_CALIB(priv, "max_average_sig = %d, antenna %d\n",
748 max_average_sig, max_average_sig_antenna_i);
749
750 /* Compare signal strengths for all 3 receivers. */
751 for (i = 0; i < NUM_RX_CHAINS; i++) {
752 if (i != max_average_sig_antenna_i) {
753 s32 rssi_delta = (max_average_sig - average_sig[i]);
754
755 /* If signal is very weak, compared with
756 * strongest, mark it as disconnected. */
757 if (rssi_delta > MAXIMUM_ALLOWED_PATHLOSS)
758 data->disconn_array[i] = 1;
759 else
760 active_chains |= (1 << i);
761 IWL_DEBUG_CALIB(priv, "i = %d rssiDelta = %d "
762 "disconn_array[i] = %d\n",
763 i, rssi_delta, data->disconn_array[i]);
764 }
765 }
766
767 /*
768 * The above algorithm sometimes fails when the ucode
769 * reports 0 for all chains. It's not clear why that
770 * happens to start with, but it is then causing trouble
771 * because this can make us enable more chains than the
772 * hardware really has.
773 *
774 * To be safe, simply mask out any chains that we know
775 * are not on the device.
776 */
777 active_chains &= priv->nvm_data->valid_rx_ant;
778
779 num_tx_chains = 0;
780 for (i = 0; i < NUM_RX_CHAINS; i++) {
781 /* loops on all the bits of
782 * priv->hw_setting.valid_tx_ant */
783 u8 ant_msk = (1 << i);
784 if (!(priv->nvm_data->valid_tx_ant & ant_msk))
785 continue;
786
787 num_tx_chains++;
788 if (data->disconn_array[i] == 0)
789 /* there is a Tx antenna connected */
790 break;
791 if (num_tx_chains == priv->hw_params.tx_chains_num &&
792 data->disconn_array[i]) {
793 /*
794 * If all chains are disconnected
795 * connect the first valid tx chain
796 */
797 first_chain =
798 find_first_chain(priv->nvm_data->valid_tx_ant);
799 data->disconn_array[first_chain] = 0;
800 active_chains |= BIT(first_chain);
801 IWL_DEBUG_CALIB(priv,
802 "All Tx chains are disconnected W/A - declare %d as connected\n",
803 first_chain);
804 break;
805 }
806 }
807
808 if (active_chains != priv->nvm_data->valid_rx_ant &&
809 active_chains != priv->chain_noise_data.active_chains)
810 IWL_DEBUG_CALIB(priv,
811 "Detected that not all antennas are connected! "
812 "Connected: %#x, valid: %#x.\n",
813 active_chains,
814 priv->nvm_data->valid_rx_ant);
815
816 /* Save for use within RXON, TX, SCAN commands, etc. */
817 data->active_chains = active_chains;
818 IWL_DEBUG_CALIB(priv, "active_chains (bitwise) = 0x%x\n",
819 active_chains);
820}
821
822static void iwlagn_gain_computation(struct iwl_priv *priv,
823 u32 average_noise[NUM_RX_CHAINS],
824 u8 default_chain)
825{
826 int i;
827 s32 delta_g;
828 struct iwl_chain_noise_data *data = &priv->chain_noise_data;
829
830 /*
831 * Find Gain Code for the chains based on "default chain"
832 */
833 for (i = default_chain + 1; i < NUM_RX_CHAINS; i++) {
834 if ((data->disconn_array[i])) {
835 data->delta_gain_code[i] = 0;
836 continue;
837 }
838
839 delta_g = (priv->lib->chain_noise_scale *
840 ((s32)average_noise[default_chain] -
841 (s32)average_noise[i])) / 1500;
842
843 /* bound gain by 2 bits value max, 3rd bit is sign */
844 data->delta_gain_code[i] =
845 min(abs(delta_g), CHAIN_NOISE_MAX_DELTA_GAIN_CODE);
846
847 if (delta_g < 0)
848 /*
849 * set negative sign ...
850 * note to Intel developers: This is uCode API format,
851 * not the format of any internal device registers.
852 * Do not change this format for e.g. 6050 or similar
853 * devices. Change format only if more resolution
854 * (i.e. more than 2 bits magnitude) is needed.
855 */
856 data->delta_gain_code[i] |= (1 << 2);
857 }
858
859 IWL_DEBUG_CALIB(priv, "Delta gains: ANT_B = %d ANT_C = %d\n",
860 data->delta_gain_code[1], data->delta_gain_code[2]);
861
862 if (!data->radio_write) {
863 struct iwl_calib_chain_noise_gain_cmd cmd;
864
865 memset(&cmd, 0, sizeof(cmd));
866
867 iwl_set_calib_hdr(&cmd.hdr,
868 priv->phy_calib_chain_noise_gain_cmd);
869 cmd.delta_gain_1 = data->delta_gain_code[1];
870 cmd.delta_gain_2 = data->delta_gain_code[2];
871 iwl_dvm_send_cmd_pdu(priv, REPLY_PHY_CALIBRATION_CMD,
872 CMD_ASYNC, sizeof(cmd), &cmd);
873
874 data->radio_write = 1;
875 data->state = IWL_CHAIN_NOISE_CALIBRATED;
876 }
877}
878
879/*
880 * Accumulate 16 beacons of signal and noise statistics for each of
881 * 3 receivers/antennas/rx-chains, then figure out:
882 * 1) Which antennas are connected.
883 * 2) Differential rx gain settings to balance the 3 receivers.
884 */
885void iwl_chain_noise_calibration(struct iwl_priv *priv)
886{
887 struct iwl_chain_noise_data *data = NULL;
888
889 u32 chain_noise_a;
890 u32 chain_noise_b;
891 u32 chain_noise_c;
892 u32 chain_sig_a;
893 u32 chain_sig_b;
894 u32 chain_sig_c;
895 u32 average_sig[NUM_RX_CHAINS] = {INITIALIZATION_VALUE};
896 u32 average_noise[NUM_RX_CHAINS] = {INITIALIZATION_VALUE};
897 u32 min_average_noise = MIN_AVERAGE_NOISE_MAX_VALUE;
898 u16 min_average_noise_antenna_i = INITIALIZATION_VALUE;
899 u16 i = 0;
900 u16 rxon_chnum = INITIALIZATION_VALUE;
901 u16 stat_chnum = INITIALIZATION_VALUE;
902 u8 rxon_band24;
903 u8 stat_band24;
904 struct statistics_rx_non_phy *rx_info;
905
906 /*
907 * MULTI-FIXME:
908 * When we support multiple interfaces on different channels,
909 * this must be modified/fixed.
910 */
911 struct iwl_rxon_context *ctx = &priv->contexts[IWL_RXON_CTX_BSS];
912
913 if (priv->calib_disabled & IWL_CHAIN_NOISE_CALIB_DISABLED)
914 return;
915
916 data = &(priv->chain_noise_data);
917
918 /*
919 * Accumulate just the first "chain_noise_num_beacons" after
920 * the first association, then we're done forever.
921 */
922 if (data->state != IWL_CHAIN_NOISE_ACCUMULATE) {
923 if (data->state == IWL_CHAIN_NOISE_ALIVE)
924 IWL_DEBUG_CALIB(priv, "Wait for noise calib reset\n");
925 return;
926 }
927
928 spin_lock_bh(&priv->statistics.lock);
929
930 rx_info = &priv->statistics.rx_non_phy;
931
932 if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) {
933 IWL_DEBUG_CALIB(priv, " << Interference data unavailable\n");
934 spin_unlock_bh(&priv->statistics.lock);
935 return;
936 }
937
938 rxon_band24 = !!(ctx->staging.flags & RXON_FLG_BAND_24G_MSK);
939 rxon_chnum = le16_to_cpu(ctx->staging.channel);
940 stat_band24 =
941 !!(priv->statistics.flag & STATISTICS_REPLY_FLG_BAND_24G_MSK);
942 stat_chnum = le32_to_cpu(priv->statistics.flag) >> 16;
943
944 /* Make sure we accumulate data for just the associated channel
945 * (even if scanning). */
946 if ((rxon_chnum != stat_chnum) || (rxon_band24 != stat_band24)) {
947 IWL_DEBUG_CALIB(priv, "Stats not from chan=%d, band24=%d\n",
948 rxon_chnum, rxon_band24);
949 spin_unlock_bh(&priv->statistics.lock);
950 return;
951 }
952
953 /*
954 * Accumulate beacon statistics values across
955 * "chain_noise_num_beacons"
956 */
957 chain_noise_a = le32_to_cpu(rx_info->beacon_silence_rssi_a) &
958 IN_BAND_FILTER;
959 chain_noise_b = le32_to_cpu(rx_info->beacon_silence_rssi_b) &
960 IN_BAND_FILTER;
961 chain_noise_c = le32_to_cpu(rx_info->beacon_silence_rssi_c) &
962 IN_BAND_FILTER;
963
964 chain_sig_a = le32_to_cpu(rx_info->beacon_rssi_a) & IN_BAND_FILTER;
965 chain_sig_b = le32_to_cpu(rx_info->beacon_rssi_b) & IN_BAND_FILTER;
966 chain_sig_c = le32_to_cpu(rx_info->beacon_rssi_c) & IN_BAND_FILTER;
967
968 spin_unlock_bh(&priv->statistics.lock);
969
970 data->beacon_count++;
971
972 data->chain_noise_a = (chain_noise_a + data->chain_noise_a);
973 data->chain_noise_b = (chain_noise_b + data->chain_noise_b);
974 data->chain_noise_c = (chain_noise_c + data->chain_noise_c);
975
976 data->chain_signal_a = (chain_sig_a + data->chain_signal_a);
977 data->chain_signal_b = (chain_sig_b + data->chain_signal_b);
978 data->chain_signal_c = (chain_sig_c + data->chain_signal_c);
979
980 IWL_DEBUG_CALIB(priv, "chan=%d, band24=%d, beacon=%d\n",
981 rxon_chnum, rxon_band24, data->beacon_count);
982 IWL_DEBUG_CALIB(priv, "chain_sig: a %d b %d c %d\n",
983 chain_sig_a, chain_sig_b, chain_sig_c);
984 IWL_DEBUG_CALIB(priv, "chain_noise: a %d b %d c %d\n",
985 chain_noise_a, chain_noise_b, chain_noise_c);
986
987 /* If this is the "chain_noise_num_beacons", determine:
988 * 1) Disconnected antennas (using signal strengths)
989 * 2) Differential gain (using silence noise) to balance receivers */
990 if (data->beacon_count != IWL_CAL_NUM_BEACONS)
991 return;
992
993 /* Analyze signal for disconnected antenna */
994 if (priv->lib->bt_params &&
995 priv->lib->bt_params->advanced_bt_coexist) {
996 /* Disable disconnected antenna algorithm for advanced
997 bt coex, assuming valid antennas are connected */
998 data->active_chains = priv->nvm_data->valid_rx_ant;
999 for (i = 0; i < NUM_RX_CHAINS; i++)
1000 if (!(data->active_chains & (1<<i)))
1001 data->disconn_array[i] = 1;
1002 } else
1003 iwl_find_disconn_antenna(priv, average_sig, data);
1004
1005 /* Analyze noise for rx balance */
1006 average_noise[0] = data->chain_noise_a / IWL_CAL_NUM_BEACONS;
1007 average_noise[1] = data->chain_noise_b / IWL_CAL_NUM_BEACONS;
1008 average_noise[2] = data->chain_noise_c / IWL_CAL_NUM_BEACONS;
1009
1010 for (i = 0; i < NUM_RX_CHAINS; i++) {
1011 if (!(data->disconn_array[i]) &&
1012 (average_noise[i] <= min_average_noise)) {
1013 /* This means that chain i is active and has
1014 * lower noise values so far: */
1015 min_average_noise = average_noise[i];
1016 min_average_noise_antenna_i = i;
1017 }
1018 }
1019
1020 IWL_DEBUG_CALIB(priv, "average_noise: a %d b %d c %d\n",
1021 average_noise[0], average_noise[1],
1022 average_noise[2]);
1023
1024 IWL_DEBUG_CALIB(priv, "min_average_noise = %d, antenna %d\n",
1025 min_average_noise, min_average_noise_antenna_i);
1026
1027 iwlagn_gain_computation(
1028 priv, average_noise,
1029 find_first_chain(priv->nvm_data->valid_rx_ant));
1030
1031 /* Some power changes may have been made during the calibration.
1032 * Update and commit the RXON
1033 */
1034 iwl_update_chain_flags(priv);
1035
1036 data->state = IWL_CHAIN_NOISE_DONE;
1037 iwl_power_update_mode(priv, false);
1038}
1039
1040void iwl_reset_run_time_calib(struct iwl_priv *priv)
1041{
1042 int i;
1043 memset(&(priv->sensitivity_data), 0,
1044 sizeof(struct iwl_sensitivity_data));
1045 memset(&(priv->chain_noise_data), 0,
1046 sizeof(struct iwl_chain_noise_data));
1047 for (i = 0; i < NUM_RX_CHAINS; i++)
1048 priv->chain_noise_data.delta_gain_code[i] =
1049 CHAIN_NOISE_DELTA_GAIN_INIT_VAL;
1050
1051 /* Ask for statistics now, the uCode will send notification
1052 * periodically after association */
1053 iwl_send_statistics_request(priv, CMD_ASYNC, true);
1054}