Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 2013 - 2018 Intel Corporation. */
   3
   4#include <linux/bitfield.h>
   5#include <linux/net/intel/libie/rx.h>
   6#include <linux/prefetch.h>
   7
   8#include "iavf.h"
   9#include "iavf_trace.h"
  10#include "iavf_prototype.h"
  11
  12static __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
  13			 u32 td_tag)
  14{
  15	return cpu_to_le64(IAVF_TX_DESC_DTYPE_DATA |
  16			   ((u64)td_cmd  << IAVF_TXD_QW1_CMD_SHIFT) |
  17			   ((u64)td_offset << IAVF_TXD_QW1_OFFSET_SHIFT) |
  18			   ((u64)size  << IAVF_TXD_QW1_TX_BUF_SZ_SHIFT) |
  19			   ((u64)td_tag  << IAVF_TXD_QW1_L2TAG1_SHIFT));
  20}
  21
  22#define IAVF_TXD_CMD (IAVF_TX_DESC_CMD_EOP | IAVF_TX_DESC_CMD_RS)
  23
  24/**
  25 * iavf_unmap_and_free_tx_resource - Release a Tx buffer
  26 * @ring:      the ring that owns the buffer
  27 * @tx_buffer: the buffer to free
  28 **/
  29static void iavf_unmap_and_free_tx_resource(struct iavf_ring *ring,
  30					    struct iavf_tx_buffer *tx_buffer)
  31{
  32	if (tx_buffer->skb) {
  33		if (tx_buffer->tx_flags & IAVF_TX_FLAGS_FD_SB)
  34			kfree(tx_buffer->raw_buf);
  35		else
  36			dev_kfree_skb_any(tx_buffer->skb);
  37		if (dma_unmap_len(tx_buffer, len))
  38			dma_unmap_single(ring->dev,
  39					 dma_unmap_addr(tx_buffer, dma),
  40					 dma_unmap_len(tx_buffer, len),
  41					 DMA_TO_DEVICE);
  42	} else if (dma_unmap_len(tx_buffer, len)) {
  43		dma_unmap_page(ring->dev,
  44			       dma_unmap_addr(tx_buffer, dma),
  45			       dma_unmap_len(tx_buffer, len),
  46			       DMA_TO_DEVICE);
  47	}
  48
  49	tx_buffer->next_to_watch = NULL;
  50	tx_buffer->skb = NULL;
  51	dma_unmap_len_set(tx_buffer, len, 0);
  52	/* tx_buffer must be completely set up in the transmit path */
  53}
  54
  55/**
  56 * iavf_clean_tx_ring - Free any empty Tx buffers
  57 * @tx_ring: ring to be cleaned
  58 **/
  59static void iavf_clean_tx_ring(struct iavf_ring *tx_ring)
  60{
  61	unsigned long bi_size;
  62	u16 i;
  63
  64	/* ring already cleared, nothing to do */
  65	if (!tx_ring->tx_bi)
  66		return;
  67
  68	/* Free all the Tx ring sk_buffs */
  69	for (i = 0; i < tx_ring->count; i++)
  70		iavf_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
  71
  72	bi_size = sizeof(struct iavf_tx_buffer) * tx_ring->count;
  73	memset(tx_ring->tx_bi, 0, bi_size);
  74
  75	/* Zero out the descriptor ring */
  76	memset(tx_ring->desc, 0, tx_ring->size);
  77
  78	tx_ring->next_to_use = 0;
  79	tx_ring->next_to_clean = 0;
  80
  81	if (!tx_ring->netdev)
  82		return;
  83
  84	/* cleanup Tx queue statistics */
  85	netdev_tx_reset_queue(txring_txq(tx_ring));
  86}
  87
  88/**
  89 * iavf_free_tx_resources - Free Tx resources per queue
  90 * @tx_ring: Tx descriptor ring for a specific queue
  91 *
  92 * Free all transmit software resources
  93 **/
  94void iavf_free_tx_resources(struct iavf_ring *tx_ring)
  95{
  96	iavf_clean_tx_ring(tx_ring);
  97	kfree(tx_ring->tx_bi);
  98	tx_ring->tx_bi = NULL;
  99
 100	if (tx_ring->desc) {
 101		dma_free_coherent(tx_ring->dev, tx_ring->size,
 102				  tx_ring->desc, tx_ring->dma);
 103		tx_ring->desc = NULL;
 104	}
 105}
 106
 107/**
 108 * iavf_get_tx_pending - how many Tx descriptors not processed
 109 * @ring: the ring of descriptors
 110 * @in_sw: is tx_pending being checked in SW or HW
 111 *
 112 * Since there is no access to the ring head register
 113 * in XL710, we need to use our local copies
 114 **/
 115static u32 iavf_get_tx_pending(struct iavf_ring *ring, bool in_sw)
 116{
 117	u32 head, tail;
 118
 119	/* underlying hardware might not allow access and/or always return
 120	 * 0 for the head/tail registers so just use the cached values
 121	 */
 122	head = ring->next_to_clean;
 123	tail = ring->next_to_use;
 124
 125	if (head != tail)
 126		return (head < tail) ?
 127			tail - head : (tail + ring->count - head);
 128
 129	return 0;
 130}
 131
 132/**
 133 * iavf_force_wb - Issue SW Interrupt so HW does a wb
 134 * @vsi: the VSI we care about
 135 * @q_vector: the vector on which to force writeback
 136 **/
 137static void iavf_force_wb(struct iavf_vsi *vsi, struct iavf_q_vector *q_vector)
 138{
 139	u32 val = IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
 140		  IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK | /* set noitr */
 141		  IAVF_VFINT_DYN_CTLN1_SWINT_TRIG_MASK |
 142		  IAVF_VFINT_DYN_CTLN1_SW_ITR_INDX_ENA_MASK
 143		  /* allow 00 to be written to the index */;
 144
 145	wr32(&vsi->back->hw,
 146	     IAVF_VFINT_DYN_CTLN1(q_vector->reg_idx),
 147	     val);
 148}
 149
 150/**
 151 * iavf_detect_recover_hung - Function to detect and recover hung_queues
 152 * @vsi:  pointer to vsi struct with tx queues
 153 *
 154 * VSI has netdev and netdev has TX queues. This function is to check each of
 155 * those TX queues if they are hung, trigger recovery by issuing SW interrupt.
 156 **/
 157void iavf_detect_recover_hung(struct iavf_vsi *vsi)
 158{
 159	struct iavf_ring *tx_ring = NULL;
 160	struct net_device *netdev;
 161	unsigned int i;
 162	int packets;
 163
 164	if (!vsi)
 165		return;
 166
 167	if (test_bit(__IAVF_VSI_DOWN, vsi->state))
 168		return;
 169
 170	netdev = vsi->netdev;
 171	if (!netdev)
 172		return;
 173
 174	if (!netif_carrier_ok(netdev))
 175		return;
 176
 177	for (i = 0; i < vsi->back->num_active_queues; i++) {
 178		tx_ring = &vsi->back->tx_rings[i];
 179		if (tx_ring && tx_ring->desc) {
 180			/* If packet counter has not changed the queue is
 181			 * likely stalled, so force an interrupt for this
 182			 * queue.
 183			 *
 184			 * prev_pkt_ctr would be negative if there was no
 185			 * pending work.
 186			 */
 187			packets = tx_ring->stats.packets & INT_MAX;
 188			if (tx_ring->prev_pkt_ctr == packets) {
 189				iavf_force_wb(vsi, tx_ring->q_vector);
 190				continue;
 191			}
 192
 193			/* Memory barrier between read of packet count and call
 194			 * to iavf_get_tx_pending()
 195			 */
 196			smp_rmb();
 197			tx_ring->prev_pkt_ctr =
 198			  iavf_get_tx_pending(tx_ring, true) ? packets : -1;
 199		}
 200	}
 201}
 202
 203#define WB_STRIDE 4
 204
 205/**
 206 * iavf_clean_tx_irq - Reclaim resources after transmit completes
 207 * @vsi: the VSI we care about
 208 * @tx_ring: Tx ring to clean
 209 * @napi_budget: Used to determine if we are in netpoll
 210 *
 211 * Returns true if there's any budget left (e.g. the clean is finished)
 212 **/
 213static bool iavf_clean_tx_irq(struct iavf_vsi *vsi,
 214			      struct iavf_ring *tx_ring, int napi_budget)
 215{
 216	int i = tx_ring->next_to_clean;
 217	struct iavf_tx_buffer *tx_buf;
 218	struct iavf_tx_desc *tx_desc;
 219	unsigned int total_bytes = 0, total_packets = 0;
 220	unsigned int budget = IAVF_DEFAULT_IRQ_WORK;
 221
 222	tx_buf = &tx_ring->tx_bi[i];
 223	tx_desc = IAVF_TX_DESC(tx_ring, i);
 224	i -= tx_ring->count;
 225
 226	do {
 227		struct iavf_tx_desc *eop_desc = tx_buf->next_to_watch;
 228
 229		/* if next_to_watch is not set then there is no work pending */
 230		if (!eop_desc)
 231			break;
 232
 233		/* prevent any other reads prior to eop_desc */
 234		smp_rmb();
 235
 236		iavf_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
 237		/* if the descriptor isn't done, no work yet to do */
 238		if (!(eop_desc->cmd_type_offset_bsz &
 239		      cpu_to_le64(IAVF_TX_DESC_DTYPE_DESC_DONE)))
 240			break;
 241
 242		/* clear next_to_watch to prevent false hangs */
 243		tx_buf->next_to_watch = NULL;
 244
 245		/* update the statistics for this packet */
 246		total_bytes += tx_buf->bytecount;
 247		total_packets += tx_buf->gso_segs;
 248
 249		/* free the skb */
 250		napi_consume_skb(tx_buf->skb, napi_budget);
 251
 252		/* unmap skb header data */
 253		dma_unmap_single(tx_ring->dev,
 254				 dma_unmap_addr(tx_buf, dma),
 255				 dma_unmap_len(tx_buf, len),
 256				 DMA_TO_DEVICE);
 257
 258		/* clear tx_buffer data */
 259		tx_buf->skb = NULL;
 260		dma_unmap_len_set(tx_buf, len, 0);
 261
 262		/* unmap remaining buffers */
 263		while (tx_desc != eop_desc) {
 264			iavf_trace(clean_tx_irq_unmap,
 265				   tx_ring, tx_desc, tx_buf);
 266
 267			tx_buf++;
 268			tx_desc++;
 269			i++;
 270			if (unlikely(!i)) {
 271				i -= tx_ring->count;
 272				tx_buf = tx_ring->tx_bi;
 273				tx_desc = IAVF_TX_DESC(tx_ring, 0);
 274			}
 275
 276			/* unmap any remaining paged data */
 277			if (dma_unmap_len(tx_buf, len)) {
 278				dma_unmap_page(tx_ring->dev,
 279					       dma_unmap_addr(tx_buf, dma),
 280					       dma_unmap_len(tx_buf, len),
 281					       DMA_TO_DEVICE);
 282				dma_unmap_len_set(tx_buf, len, 0);
 283			}
 284		}
 285
 286		/* move us one more past the eop_desc for start of next pkt */
 287		tx_buf++;
 288		tx_desc++;
 289		i++;
 290		if (unlikely(!i)) {
 291			i -= tx_ring->count;
 292			tx_buf = tx_ring->tx_bi;
 293			tx_desc = IAVF_TX_DESC(tx_ring, 0);
 294		}
 295
 296		prefetch(tx_desc);
 297
 298		/* update budget accounting */
 299		budget--;
 300	} while (likely(budget));
 301
 302	i += tx_ring->count;
 303	tx_ring->next_to_clean = i;
 304	u64_stats_update_begin(&tx_ring->syncp);
 305	tx_ring->stats.bytes += total_bytes;
 306	tx_ring->stats.packets += total_packets;
 307	u64_stats_update_end(&tx_ring->syncp);
 308	tx_ring->q_vector->tx.total_bytes += total_bytes;
 309	tx_ring->q_vector->tx.total_packets += total_packets;
 310
 311	if (tx_ring->flags & IAVF_TXR_FLAGS_WB_ON_ITR) {
 312		/* check to see if there are < 4 descriptors
 313		 * waiting to be written back, then kick the hardware to force
 314		 * them to be written back in case we stay in NAPI.
 315		 * In this mode on X722 we do not enable Interrupt.
 316		 */
 317		unsigned int j = iavf_get_tx_pending(tx_ring, false);
 318
 319		if (budget &&
 320		    ((j / WB_STRIDE) == 0) && (j > 0) &&
 321		    !test_bit(__IAVF_VSI_DOWN, vsi->state) &&
 322		    (IAVF_DESC_UNUSED(tx_ring) != tx_ring->count))
 323			tx_ring->flags |= IAVF_TXR_FLAGS_ARM_WB;
 324	}
 325
 326	/* notify netdev of completed buffers */
 327	netdev_tx_completed_queue(txring_txq(tx_ring),
 328				  total_packets, total_bytes);
 329
 330#define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
 331	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
 332		     (IAVF_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
 333		/* Make sure that anybody stopping the queue after this
 334		 * sees the new next_to_clean.
 335		 */
 336		smp_mb();
 337		if (__netif_subqueue_stopped(tx_ring->netdev,
 338					     tx_ring->queue_index) &&
 339		   !test_bit(__IAVF_VSI_DOWN, vsi->state)) {
 340			netif_wake_subqueue(tx_ring->netdev,
 341					    tx_ring->queue_index);
 342			++tx_ring->tx_stats.restart_queue;
 343		}
 344	}
 345
 346	return !!budget;
 347}
 348
 349/**
 350 * iavf_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
 351 * @vsi: the VSI we care about
 352 * @q_vector: the vector on which to enable writeback
 353 *
 354 **/
 355static void iavf_enable_wb_on_itr(struct iavf_vsi *vsi,
 356				  struct iavf_q_vector *q_vector)
 357{
 358	u16 flags = q_vector->tx.ring[0].flags;
 359	u32 val;
 360
 361	if (!(flags & IAVF_TXR_FLAGS_WB_ON_ITR))
 362		return;
 363
 364	if (q_vector->arm_wb_state)
 365		return;
 366
 367	val = IAVF_VFINT_DYN_CTLN1_WB_ON_ITR_MASK |
 368	      IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK; /* set noitr */
 369
 370	wr32(&vsi->back->hw,
 371	     IAVF_VFINT_DYN_CTLN1(q_vector->reg_idx), val);
 372	q_vector->arm_wb_state = true;
 373}
 374
 375static bool iavf_container_is_rx(struct iavf_q_vector *q_vector,
 376				 struct iavf_ring_container *rc)
 
 
 
 
 
 377{
 378	return &q_vector->rx == rc;
 
 
 
 
 
 
 
 
 379}
 380
 381#define IAVF_AIM_MULTIPLIER_100G	2560
 382#define IAVF_AIM_MULTIPLIER_50G		1280
 383#define IAVF_AIM_MULTIPLIER_40G		1024
 384#define IAVF_AIM_MULTIPLIER_20G		512
 385#define IAVF_AIM_MULTIPLIER_10G		256
 386#define IAVF_AIM_MULTIPLIER_1G		32
 387
 388static unsigned int iavf_mbps_itr_multiplier(u32 speed_mbps)
 389{
 390	switch (speed_mbps) {
 391	case SPEED_100000:
 392		return IAVF_AIM_MULTIPLIER_100G;
 393	case SPEED_50000:
 394		return IAVF_AIM_MULTIPLIER_50G;
 395	case SPEED_40000:
 396		return IAVF_AIM_MULTIPLIER_40G;
 397	case SPEED_25000:
 398	case SPEED_20000:
 399		return IAVF_AIM_MULTIPLIER_20G;
 400	case SPEED_10000:
 401	default:
 402		return IAVF_AIM_MULTIPLIER_10G;
 403	case SPEED_1000:
 404	case SPEED_100:
 405		return IAVF_AIM_MULTIPLIER_1G;
 406	}
 407}
 408
 409static unsigned int
 410iavf_virtchnl_itr_multiplier(enum virtchnl_link_speed speed_virtchnl)
 411{
 412	switch (speed_virtchnl) {
 
 
 413	case VIRTCHNL_LINK_SPEED_40GB:
 414		return IAVF_AIM_MULTIPLIER_40G;
 
 415	case VIRTCHNL_LINK_SPEED_25GB:
 416	case VIRTCHNL_LINK_SPEED_20GB:
 417		return IAVF_AIM_MULTIPLIER_20G;
 418	case VIRTCHNL_LINK_SPEED_10GB:
 419	default:
 420		return IAVF_AIM_MULTIPLIER_10G;
 
 
 421	case VIRTCHNL_LINK_SPEED_1GB:
 422	case VIRTCHNL_LINK_SPEED_100MB:
 423		return IAVF_AIM_MULTIPLIER_1G;
 
 424	}
 425}
 426
 427static unsigned int iavf_itr_divisor(struct iavf_adapter *adapter)
 428{
 429	if (ADV_LINK_SUPPORT(adapter))
 430		return IAVF_ITR_ADAPTIVE_MIN_INC *
 431			iavf_mbps_itr_multiplier(adapter->link_speed_mbps);
 432	else
 433		return IAVF_ITR_ADAPTIVE_MIN_INC *
 434			iavf_virtchnl_itr_multiplier(adapter->link_speed);
 435}
 436
 437/**
 438 * iavf_update_itr - update the dynamic ITR value based on statistics
 439 * @q_vector: structure containing interrupt and ring information
 440 * @rc: structure containing ring performance data
 441 *
 442 * Stores a new ITR value based on packets and byte
 443 * counts during the last interrupt.  The advantage of per interrupt
 444 * computation is faster updates and more accurate ITR for the current
 445 * traffic pattern.  Constants in this function were computed
 446 * based on theoretical maximum wire speed and thresholds were set based
 447 * on testing data as well as attempting to minimize response time
 448 * while increasing bulk throughput.
 449 **/
 450static void iavf_update_itr(struct iavf_q_vector *q_vector,
 451			    struct iavf_ring_container *rc)
 452{
 453	unsigned int avg_wire_size, packets, bytes, itr;
 454	unsigned long next_update = jiffies;
 455
 456	/* If we don't have any rings just leave ourselves set for maximum
 457	 * possible latency so we take ourselves out of the equation.
 458	 */
 459	if (!rc->ring || !ITR_IS_DYNAMIC(rc->ring->itr_setting))
 460		return;
 461
 462	/* For Rx we want to push the delay up and default to low latency.
 463	 * for Tx we want to pull the delay down and default to high latency.
 464	 */
 465	itr = iavf_container_is_rx(q_vector, rc) ?
 466	      IAVF_ITR_ADAPTIVE_MIN_USECS | IAVF_ITR_ADAPTIVE_LATENCY :
 467	      IAVF_ITR_ADAPTIVE_MAX_USECS | IAVF_ITR_ADAPTIVE_LATENCY;
 468
 469	/* If we didn't update within up to 1 - 2 jiffies we can assume
 470	 * that either packets are coming in so slow there hasn't been
 471	 * any work, or that there is so much work that NAPI is dealing
 472	 * with interrupt moderation and we don't need to do anything.
 473	 */
 474	if (time_after(next_update, rc->next_update))
 475		goto clear_counts;
 476
 477	/* If itr_countdown is set it means we programmed an ITR within
 478	 * the last 4 interrupt cycles. This has a side effect of us
 479	 * potentially firing an early interrupt. In order to work around
 480	 * this we need to throw out any data received for a few
 481	 * interrupts following the update.
 482	 */
 483	if (q_vector->itr_countdown) {
 484		itr = rc->target_itr;
 485		goto clear_counts;
 486	}
 487
 488	packets = rc->total_packets;
 489	bytes = rc->total_bytes;
 490
 491	if (iavf_container_is_rx(q_vector, rc)) {
 492		/* If Rx there are 1 to 4 packets and bytes are less than
 493		 * 9000 assume insufficient data to use bulk rate limiting
 494		 * approach unless Tx is already in bulk rate limiting. We
 495		 * are likely latency driven.
 496		 */
 497		if (packets && packets < 4 && bytes < 9000 &&
 498		    (q_vector->tx.target_itr & IAVF_ITR_ADAPTIVE_LATENCY)) {
 499			itr = IAVF_ITR_ADAPTIVE_LATENCY;
 500			goto adjust_by_size;
 501		}
 502	} else if (packets < 4) {
 503		/* If we have Tx and Rx ITR maxed and Tx ITR is running in
 504		 * bulk mode and we are receiving 4 or fewer packets just
 505		 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
 506		 * that the Rx can relax.
 507		 */
 508		if (rc->target_itr == IAVF_ITR_ADAPTIVE_MAX_USECS &&
 509		    (q_vector->rx.target_itr & IAVF_ITR_MASK) ==
 510		     IAVF_ITR_ADAPTIVE_MAX_USECS)
 511			goto clear_counts;
 512	} else if (packets > 32) {
 513		/* If we have processed over 32 packets in a single interrupt
 514		 * for Tx assume we need to switch over to "bulk" mode.
 515		 */
 516		rc->target_itr &= ~IAVF_ITR_ADAPTIVE_LATENCY;
 517	}
 518
 519	/* We have no packets to actually measure against. This means
 520	 * either one of the other queues on this vector is active or
 521	 * we are a Tx queue doing TSO with too high of an interrupt rate.
 522	 *
 523	 * Between 4 and 56 we can assume that our current interrupt delay
 524	 * is only slightly too low. As such we should increase it by a small
 525	 * fixed amount.
 526	 */
 527	if (packets < 56) {
 528		itr = rc->target_itr + IAVF_ITR_ADAPTIVE_MIN_INC;
 529		if ((itr & IAVF_ITR_MASK) > IAVF_ITR_ADAPTIVE_MAX_USECS) {
 530			itr &= IAVF_ITR_ADAPTIVE_LATENCY;
 531			itr += IAVF_ITR_ADAPTIVE_MAX_USECS;
 532		}
 533		goto clear_counts;
 534	}
 535
 536	if (packets <= 256) {
 537		itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
 538		itr &= IAVF_ITR_MASK;
 539
 540		/* Between 56 and 112 is our "goldilocks" zone where we are
 541		 * working out "just right". Just report that our current
 542		 * ITR is good for us.
 543		 */
 544		if (packets <= 112)
 545			goto clear_counts;
 546
 547		/* If packet count is 128 or greater we are likely looking
 548		 * at a slight overrun of the delay we want. Try halving
 549		 * our delay to see if that will cut the number of packets
 550		 * in half per interrupt.
 551		 */
 552		itr /= 2;
 553		itr &= IAVF_ITR_MASK;
 554		if (itr < IAVF_ITR_ADAPTIVE_MIN_USECS)
 555			itr = IAVF_ITR_ADAPTIVE_MIN_USECS;
 556
 557		goto clear_counts;
 558	}
 559
 560	/* The paths below assume we are dealing with a bulk ITR since
 561	 * number of packets is greater than 256. We are just going to have
 562	 * to compute a value and try to bring the count under control,
 563	 * though for smaller packet sizes there isn't much we can do as
 564	 * NAPI polling will likely be kicking in sooner rather than later.
 565	 */
 566	itr = IAVF_ITR_ADAPTIVE_BULK;
 567
 568adjust_by_size:
 569	/* If packet counts are 256 or greater we can assume we have a gross
 570	 * overestimation of what the rate should be. Instead of trying to fine
 571	 * tune it just use the formula below to try and dial in an exact value
 572	 * give the current packet size of the frame.
 573	 */
 574	avg_wire_size = bytes / packets;
 575
 576	/* The following is a crude approximation of:
 577	 *  wmem_default / (size + overhead) = desired_pkts_per_int
 578	 *  rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
 579	 *  (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
 580	 *
 581	 * Assuming wmem_default is 212992 and overhead is 640 bytes per
 582	 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
 583	 * formula down to
 584	 *
 585	 *  (170 * (size + 24)) / (size + 640) = ITR
 586	 *
 587	 * We first do some math on the packet size and then finally bitshift
 588	 * by 8 after rounding up. We also have to account for PCIe link speed
 589	 * difference as ITR scales based on this.
 590	 */
 591	if (avg_wire_size <= 60) {
 592		/* Start at 250k ints/sec */
 593		avg_wire_size = 4096;
 594	} else if (avg_wire_size <= 380) {
 595		/* 250K ints/sec to 60K ints/sec */
 596		avg_wire_size *= 40;
 597		avg_wire_size += 1696;
 598	} else if (avg_wire_size <= 1084) {
 599		/* 60K ints/sec to 36K ints/sec */
 600		avg_wire_size *= 15;
 601		avg_wire_size += 11452;
 602	} else if (avg_wire_size <= 1980) {
 603		/* 36K ints/sec to 30K ints/sec */
 604		avg_wire_size *= 5;
 605		avg_wire_size += 22420;
 606	} else {
 607		/* plateau at a limit of 30K ints/sec */
 608		avg_wire_size = 32256;
 609	}
 610
 611	/* If we are in low latency mode halve our delay which doubles the
 612	 * rate to somewhere between 100K to 16K ints/sec
 613	 */
 614	if (itr & IAVF_ITR_ADAPTIVE_LATENCY)
 615		avg_wire_size /= 2;
 616
 617	/* Resultant value is 256 times larger than it needs to be. This
 618	 * gives us room to adjust the value as needed to either increase
 619	 * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc.
 620	 *
 621	 * Use addition as we have already recorded the new latency flag
 622	 * for the ITR value.
 623	 */
 624	itr += DIV_ROUND_UP(avg_wire_size,
 625			    iavf_itr_divisor(q_vector->adapter)) *
 626		IAVF_ITR_ADAPTIVE_MIN_INC;
 627
 628	if ((itr & IAVF_ITR_MASK) > IAVF_ITR_ADAPTIVE_MAX_USECS) {
 629		itr &= IAVF_ITR_ADAPTIVE_LATENCY;
 630		itr += IAVF_ITR_ADAPTIVE_MAX_USECS;
 631	}
 632
 633clear_counts:
 634	/* write back value */
 635	rc->target_itr = itr;
 636
 637	/* next update should occur within next jiffy */
 638	rc->next_update = next_update + 1;
 639
 640	rc->total_bytes = 0;
 641	rc->total_packets = 0;
 642}
 643
 644/**
 645 * iavf_setup_tx_descriptors - Allocate the Tx descriptors
 646 * @tx_ring: the tx ring to set up
 647 *
 648 * Return 0 on success, negative on error
 649 **/
 650int iavf_setup_tx_descriptors(struct iavf_ring *tx_ring)
 651{
 652	struct device *dev = tx_ring->dev;
 653	int bi_size;
 654
 655	if (!dev)
 656		return -ENOMEM;
 657
 658	/* warn if we are about to overwrite the pointer */
 659	WARN_ON(tx_ring->tx_bi);
 660	bi_size = sizeof(struct iavf_tx_buffer) * tx_ring->count;
 661	tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
 662	if (!tx_ring->tx_bi)
 663		goto err;
 664
 665	/* round up to nearest 4K */
 666	tx_ring->size = tx_ring->count * sizeof(struct iavf_tx_desc);
 667	tx_ring->size = ALIGN(tx_ring->size, 4096);
 668	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
 669					   &tx_ring->dma, GFP_KERNEL);
 670	if (!tx_ring->desc) {
 671		dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
 672			 tx_ring->size);
 673		goto err;
 674	}
 675
 676	tx_ring->next_to_use = 0;
 677	tx_ring->next_to_clean = 0;
 678	tx_ring->prev_pkt_ctr = -1;
 679	return 0;
 680
 681err:
 682	kfree(tx_ring->tx_bi);
 683	tx_ring->tx_bi = NULL;
 684	return -ENOMEM;
 685}
 686
 687/**
 688 * iavf_clean_rx_ring - Free Rx buffers
 689 * @rx_ring: ring to be cleaned
 690 **/
 691static void iavf_clean_rx_ring(struct iavf_ring *rx_ring)
 692{
 
 
 
 693	/* ring already cleared, nothing to do */
 694	if (!rx_ring->rx_fqes)
 695		return;
 696
 697	if (rx_ring->skb) {
 698		dev_kfree_skb(rx_ring->skb);
 699		rx_ring->skb = NULL;
 700	}
 701
 702	/* Free all the Rx ring buffers */
 703	for (u32 i = rx_ring->next_to_clean; i != rx_ring->next_to_use; ) {
 704		const struct libeth_fqe *rx_fqes = &rx_ring->rx_fqes[i];
 705
 706		page_pool_put_full_page(rx_ring->pp, rx_fqes->page, false);
 
 707
 708		if (unlikely(++i == rx_ring->count))
 709			i = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 710	}
 711
 
 
 
 
 
 
 
 712	rx_ring->next_to_clean = 0;
 713	rx_ring->next_to_use = 0;
 714}
 715
 716/**
 717 * iavf_free_rx_resources - Free Rx resources
 718 * @rx_ring: ring to clean the resources from
 719 *
 720 * Free all receive software resources
 721 **/
 722void iavf_free_rx_resources(struct iavf_ring *rx_ring)
 723{
 724	struct libeth_fq fq = {
 725		.fqes	= rx_ring->rx_fqes,
 726		.pp	= rx_ring->pp,
 727	};
 728
 729	iavf_clean_rx_ring(rx_ring);
 
 
 730
 731	if (rx_ring->desc) {
 732		dma_free_coherent(rx_ring->pp->p.dev, rx_ring->size,
 733				  rx_ring->desc, rx_ring->dma);
 734		rx_ring->desc = NULL;
 735	}
 736
 737	libeth_rx_fq_destroy(&fq);
 738	rx_ring->rx_fqes = NULL;
 739	rx_ring->pp = NULL;
 740}
 741
 742/**
 743 * iavf_setup_rx_descriptors - Allocate Rx descriptors
 744 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
 745 *
 746 * Returns 0 on success, negative on failure
 747 **/
 748int iavf_setup_rx_descriptors(struct iavf_ring *rx_ring)
 749{
 750	struct libeth_fq fq = {
 751		.count		= rx_ring->count,
 752		.buf_len	= LIBIE_MAX_RX_BUF_LEN,
 753		.nid		= NUMA_NO_NODE,
 754	};
 755	int ret;
 756
 757	ret = libeth_rx_fq_create(&fq, &rx_ring->q_vector->napi);
 758	if (ret)
 759		return ret;
 760
 761	rx_ring->pp = fq.pp;
 762	rx_ring->rx_fqes = fq.fqes;
 763	rx_ring->truesize = fq.truesize;
 764	rx_ring->rx_buf_len = fq.buf_len;
 765
 766	u64_stats_init(&rx_ring->syncp);
 767
 768	/* Round up to nearest 4K */
 769	rx_ring->size = rx_ring->count * sizeof(union iavf_32byte_rx_desc);
 770	rx_ring->size = ALIGN(rx_ring->size, 4096);
 771	rx_ring->desc = dma_alloc_coherent(fq.pp->p.dev, rx_ring->size,
 772					   &rx_ring->dma, GFP_KERNEL);
 773
 774	if (!rx_ring->desc) {
 775		dev_info(fq.pp->p.dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
 776			 rx_ring->size);
 777		goto err;
 778	}
 779
 
 780	rx_ring->next_to_clean = 0;
 781	rx_ring->next_to_use = 0;
 782
 783	return 0;
 784
 785err:
 786	libeth_rx_fq_destroy(&fq);
 787	rx_ring->rx_fqes = NULL;
 788	rx_ring->pp = NULL;
 789
 790	return -ENOMEM;
 791}
 792
 793/**
 794 * iavf_release_rx_desc - Store the new tail and head values
 795 * @rx_ring: ring to bump
 796 * @val: new head index
 797 **/
 798static void iavf_release_rx_desc(struct iavf_ring *rx_ring, u32 val)
 799{
 800	rx_ring->next_to_use = val;
 801
 
 
 
 802	/* Force memory writes to complete before letting h/w
 803	 * know there are new descriptors to fetch.  (Only
 804	 * applicable for weak-ordered memory model archs,
 805	 * such as IA-64).
 806	 */
 807	wmb();
 808	writel(val, rx_ring->tail);
 809}
 810
 811/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 812 * iavf_receive_skb - Send a completed packet up the stack
 813 * @rx_ring:  rx ring in play
 814 * @skb: packet to send up
 815 * @vlan_tag: vlan tag for packet
 816 **/
 817static void iavf_receive_skb(struct iavf_ring *rx_ring,
 818			     struct sk_buff *skb, u16 vlan_tag)
 819{
 820	struct iavf_q_vector *q_vector = rx_ring->q_vector;
 821
 822	if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
 823	    (vlan_tag & VLAN_VID_MASK))
 824		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
 825	else if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_STAG_RX) &&
 826		 vlan_tag & VLAN_VID_MASK)
 827		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021AD), vlan_tag);
 828
 829	napi_gro_receive(&q_vector->napi, skb);
 830}
 831
 832/**
 833 * iavf_alloc_rx_buffers - Replace used receive buffers
 834 * @rx_ring: ring to place buffers on
 835 * @cleaned_count: number of buffers to replace
 836 *
 837 * Returns false if all allocations were successful, true if any fail
 838 **/
 839bool iavf_alloc_rx_buffers(struct iavf_ring *rx_ring, u16 cleaned_count)
 840{
 841	const struct libeth_fq_fp fq = {
 842		.pp		= rx_ring->pp,
 843		.fqes		= rx_ring->rx_fqes,
 844		.truesize	= rx_ring->truesize,
 845		.count		= rx_ring->count,
 846	};
 847	u16 ntu = rx_ring->next_to_use;
 848	union iavf_rx_desc *rx_desc;
 
 849
 850	/* do nothing if no valid netdev defined */
 851	if (!rx_ring->netdev || !cleaned_count)
 852		return false;
 853
 854	rx_desc = IAVF_RX_DESC(rx_ring, ntu);
 
 855
 856	do {
 857		dma_addr_t addr;
 858
 859		addr = libeth_rx_alloc(&fq, ntu);
 860		if (addr == DMA_MAPPING_ERROR)
 861			goto no_buffers;
 862
 
 
 
 
 
 
 863		/* Refresh the desc even if buffer_addrs didn't change
 864		 * because each write-back erases this info.
 865		 */
 866		rx_desc->read.pkt_addr = cpu_to_le64(addr);
 867
 868		rx_desc++;
 
 869		ntu++;
 870		if (unlikely(ntu == rx_ring->count)) {
 871			rx_desc = IAVF_RX_DESC(rx_ring, 0);
 
 872			ntu = 0;
 873		}
 874
 875		/* clear the status bits for the next_to_use descriptor */
 876		rx_desc->wb.qword1.status_error_len = 0;
 877
 878		cleaned_count--;
 879	} while (cleaned_count);
 880
 881	if (rx_ring->next_to_use != ntu)
 882		iavf_release_rx_desc(rx_ring, ntu);
 883
 884	return false;
 885
 886no_buffers:
 887	if (rx_ring->next_to_use != ntu)
 888		iavf_release_rx_desc(rx_ring, ntu);
 889
 890	rx_ring->rx_stats.alloc_page_failed++;
 891
 892	/* make sure to come back via polling to try again after
 893	 * allocation failure
 894	 */
 895	return true;
 896}
 897
 898/**
 899 * iavf_rx_checksum - Indicate in skb if hw indicated a good cksum
 900 * @vsi: the VSI we care about
 901 * @skb: skb currently being received and modified
 902 * @rx_desc: the receive descriptor
 903 **/
 904static void iavf_rx_checksum(struct iavf_vsi *vsi,
 905			     struct sk_buff *skb,
 906			     union iavf_rx_desc *rx_desc)
 907{
 908	struct libeth_rx_pt decoded;
 909	u32 rx_error, rx_status;
 910	bool ipv4, ipv6;
 911	u8 ptype;
 912	u64 qword;
 913
 
 
 
 
 
 
 
 
 914	skb->ip_summed = CHECKSUM_NONE;
 915
 916	qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
 917	ptype = FIELD_GET(IAVF_RXD_QW1_PTYPE_MASK, qword);
 918
 919	decoded = libie_rx_pt_parse(ptype);
 920	if (!libeth_rx_pt_has_checksum(vsi->netdev, decoded))
 921		return;
 922
 923	rx_error = FIELD_GET(IAVF_RXD_QW1_ERROR_MASK, qword);
 924	rx_status = FIELD_GET(IAVF_RXD_QW1_STATUS_MASK, qword);
 925
 926	/* did the hardware decode the packet and checksum? */
 927	if (!(rx_status & BIT(IAVF_RX_DESC_STATUS_L3L4P_SHIFT)))
 928		return;
 929
 930	ipv4 = libeth_rx_pt_get_ip_ver(decoded) == LIBETH_RX_PT_OUTER_IPV4;
 931	ipv6 = libeth_rx_pt_get_ip_ver(decoded) == LIBETH_RX_PT_OUTER_IPV6;
 
 
 
 
 
 
 932
 933	if (ipv4 &&
 934	    (rx_error & (BIT(IAVF_RX_DESC_ERROR_IPE_SHIFT) |
 935			 BIT(IAVF_RX_DESC_ERROR_EIPE_SHIFT))))
 936		goto checksum_fail;
 937
 938	/* likely incorrect csum if alternate IP extension headers found */
 939	if (ipv6 &&
 940	    rx_status & BIT(IAVF_RX_DESC_STATUS_IPV6EXADD_SHIFT))
 941		/* don't increment checksum err here, non-fatal err */
 942		return;
 943
 944	/* there was some L4 error, count error and punt packet to the stack */
 945	if (rx_error & BIT(IAVF_RX_DESC_ERROR_L4E_SHIFT))
 946		goto checksum_fail;
 947
 948	/* handle packets that were not able to be checksummed due
 949	 * to arrival speed, in this case the stack can compute
 950	 * the csum.
 951	 */
 952	if (rx_error & BIT(IAVF_RX_DESC_ERROR_PPRS_SHIFT))
 953		return;
 954
 955	skb->ip_summed = CHECKSUM_UNNECESSARY;
 
 
 
 
 
 
 
 
 
 
 956	return;
 957
 958checksum_fail:
 959	vsi->back->hw_csum_rx_error++;
 960}
 961
 962/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 963 * iavf_rx_hash - set the hash value in the skb
 964 * @ring: descriptor ring
 965 * @rx_desc: specific descriptor
 966 * @skb: skb currently being received and modified
 967 * @rx_ptype: Rx packet type
 968 **/
 969static void iavf_rx_hash(struct iavf_ring *ring,
 970			 union iavf_rx_desc *rx_desc,
 971			 struct sk_buff *skb,
 972			 u8 rx_ptype)
 973{
 974	struct libeth_rx_pt decoded;
 975	u32 hash;
 976	const __le64 rss_mask =
 977		cpu_to_le64((u64)IAVF_RX_DESC_FLTSTAT_RSS_HASH <<
 978			    IAVF_RX_DESC_STATUS_FLTSTAT_SHIFT);
 979
 980	decoded = libie_rx_pt_parse(rx_ptype);
 981	if (!libeth_rx_pt_has_hash(ring->netdev, decoded))
 982		return;
 983
 984	if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
 985		hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
 986		libeth_rx_pt_set_hash(skb, hash, decoded);
 987	}
 988}
 989
 990/**
 991 * iavf_process_skb_fields - Populate skb header fields from Rx descriptor
 992 * @rx_ring: rx descriptor ring packet is being transacted on
 993 * @rx_desc: pointer to the EOP Rx descriptor
 994 * @skb: pointer to current skb being populated
 995 * @rx_ptype: the packet type decoded by hardware
 996 *
 997 * This function checks the ring, descriptor, and packet information in
 998 * order to populate the hash, checksum, VLAN, protocol, and
 999 * other fields within the skb.
1000 **/
1001static void
1002iavf_process_skb_fields(struct iavf_ring *rx_ring,
1003			union iavf_rx_desc *rx_desc, struct sk_buff *skb,
1004			u8 rx_ptype)
1005{
1006	iavf_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1007
1008	iavf_rx_checksum(rx_ring->vsi, skb, rx_desc);
1009
1010	skb_record_rx_queue(skb, rx_ring->queue_index);
1011
1012	/* modifies the skb - consumes the enet header */
1013	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1014}
1015
1016/**
1017 * iavf_cleanup_headers - Correct empty headers
1018 * @rx_ring: rx descriptor ring packet is being transacted on
1019 * @skb: pointer to current skb being fixed
1020 *
1021 * Also address the case where we are pulling data in on pages only
1022 * and as such no data is present in the skb header.
1023 *
1024 * In addition if skb is not at least 60 bytes we need to pad it so that
1025 * it is large enough to qualify as a valid Ethernet frame.
1026 *
1027 * Returns true if an error was encountered and skb was freed.
1028 **/
1029static bool iavf_cleanup_headers(struct iavf_ring *rx_ring, struct sk_buff *skb)
1030{
1031	/* if eth_skb_pad returns an error the skb was freed */
1032	if (eth_skb_pad(skb))
1033		return true;
1034
1035	return false;
1036}
1037
1038/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1039 * iavf_add_rx_frag - Add contents of Rx buffer to sk_buff
1040 * @skb: sk_buff to place the data into
1041 * @rx_buffer: buffer containing page to add
 
1042 * @size: packet length from rx_desc
1043 *
1044 * This function will add the data contained in rx_buffer->page to the skb.
1045 * It will just attach the page as a frag to the skb.
1046 *
1047 * The function will then update the page offset.
1048 **/
1049static void iavf_add_rx_frag(struct sk_buff *skb,
1050			     const struct libeth_fqe *rx_buffer,
 
1051			     unsigned int size)
1052{
1053	u32 hr = rx_buffer->page->pp->p.offset;
 
 
 
 
 
 
 
1054
1055	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1056			rx_buffer->offset + hr, size, rx_buffer->truesize);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1057}
1058
1059/**
1060 * iavf_build_skb - Build skb around an existing buffer
 
1061 * @rx_buffer: Rx buffer to pull data from
1062 * @size: size of buffer to add to skb
1063 *
1064 * This function builds an skb around an existing Rx buffer, taking care
1065 * to set up the skb correctly and avoid any memcpy overhead.
1066 */
1067static struct sk_buff *iavf_build_skb(const struct libeth_fqe *rx_buffer,
 
1068				      unsigned int size)
1069{
1070	u32 hr = rx_buffer->page->pp->p.offset;
1071	struct sk_buff *skb;
1072	void *va;
 
 
 
 
 
 
 
1073
 
 
1074	/* prefetch first cache line of first page */
1075	va = page_address(rx_buffer->page) + rx_buffer->offset;
1076	net_prefetch(va + hr);
1077
1078	/* build an skb around the page buffer */
1079	skb = napi_build_skb(va, rx_buffer->truesize);
1080	if (unlikely(!skb))
1081		return NULL;
1082
1083	skb_mark_for_recycle(skb);
1084
1085	/* update pointers within the skb to store the data */
1086	skb_reserve(skb, hr);
1087	__skb_put(skb, size);
1088
 
 
 
 
 
 
 
1089	return skb;
1090}
1091
1092/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1093 * iavf_is_non_eop - process handling of non-EOP buffers
1094 * @rx_ring: Rx ring being processed
1095 * @rx_desc: Rx descriptor for current buffer
1096 * @skb: Current socket buffer containing buffer in progress
1097 *
1098 * This function updates next to clean.  If the buffer is an EOP buffer
1099 * this function exits returning false, otherwise it will place the
1100 * sk_buff in the next buffer to be chained and return true indicating
1101 * that this is in fact a non-EOP buffer.
1102 **/
1103static bool iavf_is_non_eop(struct iavf_ring *rx_ring,
1104			    union iavf_rx_desc *rx_desc,
1105			    struct sk_buff *skb)
1106{
1107	u32 ntc = rx_ring->next_to_clean + 1;
1108
1109	/* fetch, update, and store next to clean */
1110	ntc = (ntc < rx_ring->count) ? ntc : 0;
1111	rx_ring->next_to_clean = ntc;
1112
1113	prefetch(IAVF_RX_DESC(rx_ring, ntc));
1114
1115	/* if we are the last buffer then there is nothing else to do */
1116#define IAVF_RXD_EOF BIT(IAVF_RX_DESC_STATUS_EOF_SHIFT)
1117	if (likely(iavf_test_staterr(rx_desc, IAVF_RXD_EOF)))
1118		return false;
1119
1120	rx_ring->rx_stats.non_eop_descs++;
1121
1122	return true;
1123}
1124
1125/**
1126 * iavf_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
1127 * @rx_ring: rx descriptor ring to transact packets on
1128 * @budget: Total limit on number of packets to process
1129 *
1130 * This function provides a "bounce buffer" approach to Rx interrupt
1131 * processing.  The advantage to this is that on systems that have
1132 * expensive overhead for IOMMU access this provides a means of avoiding
1133 * it by maintaining the mapping of the page to the system.
1134 *
1135 * Returns amount of work completed
1136 **/
1137static int iavf_clean_rx_irq(struct iavf_ring *rx_ring, int budget)
1138{
1139	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1140	struct sk_buff *skb = rx_ring->skb;
1141	u16 cleaned_count = IAVF_DESC_UNUSED(rx_ring);
1142	bool failure = false;
1143
1144	while (likely(total_rx_packets < (unsigned int)budget)) {
1145		struct libeth_fqe *rx_buffer;
1146		union iavf_rx_desc *rx_desc;
1147		unsigned int size;
1148		u16 vlan_tag = 0;
1149		u8 rx_ptype;
1150		u64 qword;
1151
1152		/* return some buffers to hardware, one at a time is too slow */
1153		if (cleaned_count >= IAVF_RX_BUFFER_WRITE) {
1154			failure = failure ||
1155				  iavf_alloc_rx_buffers(rx_ring, cleaned_count);
1156			cleaned_count = 0;
1157		}
1158
1159		rx_desc = IAVF_RX_DESC(rx_ring, rx_ring->next_to_clean);
1160
1161		/* status_error_len will always be zero for unused descriptors
1162		 * because it's cleared in cleanup, and overlaps with hdr_addr
1163		 * which is always zero because packet split isn't used, if the
1164		 * hardware wrote DD then the length will be non-zero
1165		 */
1166		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1167
1168		/* This memory barrier is needed to keep us from reading
1169		 * any other fields out of the rx_desc until we have
1170		 * verified the descriptor has been written back.
1171		 */
1172		dma_rmb();
1173#define IAVF_RXD_DD BIT(IAVF_RX_DESC_STATUS_DD_SHIFT)
1174		if (!iavf_test_staterr(rx_desc, IAVF_RXD_DD))
1175			break;
1176
1177		size = FIELD_GET(IAVF_RXD_QW1_LENGTH_PBUF_MASK, qword);
 
1178
1179		iavf_trace(clean_rx_irq, rx_ring, rx_desc, skb);
1180
1181		rx_buffer = &rx_ring->rx_fqes[rx_ring->next_to_clean];
1182		if (!libeth_rx_sync_for_cpu(rx_buffer, size))
1183			goto skip_data;
1184
1185		/* retrieve a buffer from the ring */
1186		if (skb)
1187			iavf_add_rx_frag(skb, rx_buffer, size);
 
 
1188		else
1189			skb = iavf_build_skb(rx_buffer, size);
1190
1191		/* exit if we failed to retrieve a buffer */
1192		if (!skb) {
1193			rx_ring->rx_stats.alloc_buff_failed++;
 
 
1194			break;
1195		}
1196
1197skip_data:
1198		cleaned_count++;
1199
1200		if (iavf_is_non_eop(rx_ring, rx_desc, skb) || unlikely(!skb))
1201			continue;
1202
1203		/* ERR_MASK will only have valid bits if EOP set, and
1204		 * what we are doing here is actually checking
1205		 * IAVF_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
1206		 * the error field
1207		 */
1208		if (unlikely(iavf_test_staterr(rx_desc, BIT(IAVF_RXD_QW1_ERROR_SHIFT)))) {
1209			dev_kfree_skb_any(skb);
1210			skb = NULL;
1211			continue;
1212		}
1213
1214		if (iavf_cleanup_headers(rx_ring, skb)) {
1215			skb = NULL;
1216			continue;
1217		}
1218
1219		/* probably a little skewed due to removing CRC */
1220		total_rx_bytes += skb->len;
1221
1222		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1223		rx_ptype = FIELD_GET(IAVF_RXD_QW1_PTYPE_MASK, qword);
 
1224
1225		/* populate checksum, VLAN, and protocol */
1226		iavf_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
1227
1228		if (qword & BIT(IAVF_RX_DESC_STATUS_L2TAG1P_SHIFT) &&
1229		    rx_ring->flags & IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1)
1230			vlan_tag = le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1);
1231		if (rx_desc->wb.qword2.ext_status &
1232		    cpu_to_le16(BIT(IAVF_RX_DESC_EXT_STATUS_L2TAG2P_SHIFT)) &&
1233		    rx_ring->flags & IAVF_RXR_FLAGS_VLAN_TAG_LOC_L2TAG2_2)
1234			vlan_tag = le16_to_cpu(rx_desc->wb.qword2.l2tag2_2);
1235
1236		iavf_trace(clean_rx_irq_rx, rx_ring, rx_desc, skb);
1237		iavf_receive_skb(rx_ring, skb, vlan_tag);
1238		skb = NULL;
1239
1240		/* update budget accounting */
1241		total_rx_packets++;
1242	}
1243
1244	rx_ring->skb = skb;
1245
1246	u64_stats_update_begin(&rx_ring->syncp);
1247	rx_ring->stats.packets += total_rx_packets;
1248	rx_ring->stats.bytes += total_rx_bytes;
1249	u64_stats_update_end(&rx_ring->syncp);
1250	rx_ring->q_vector->rx.total_packets += total_rx_packets;
1251	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1252
1253	/* guarantee a trip back through this routine if there was a failure */
1254	return failure ? budget : (int)total_rx_packets;
1255}
1256
1257static inline u32 iavf_buildreg_itr(const int type, u16 itr)
1258{
1259	u32 val;
1260
1261	/* We don't bother with setting the CLEARPBA bit as the data sheet
1262	 * points out doing so is "meaningless since it was already
1263	 * auto-cleared". The auto-clearing happens when the interrupt is
1264	 * asserted.
1265	 *
1266	 * Hardware errata 28 for also indicates that writing to a
1267	 * xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear
1268	 * an event in the PBA anyway so we need to rely on the automask
1269	 * to hold pending events for us until the interrupt is re-enabled
1270	 *
1271	 * The itr value is reported in microseconds, and the register
1272	 * value is recorded in 2 microsecond units. For this reason we
1273	 * only need to shift by the interval shift - 1 instead of the
1274	 * full value.
1275	 */
1276	itr &= IAVF_ITR_MASK;
1277
1278	val = IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
1279	      (type << IAVF_VFINT_DYN_CTLN1_ITR_INDX_SHIFT) |
1280	      (itr << (IAVF_VFINT_DYN_CTLN1_INTERVAL_SHIFT - 1));
1281
1282	return val;
1283}
1284
1285/* a small macro to shorten up some long lines */
1286#define INTREG IAVF_VFINT_DYN_CTLN1
1287
1288/* The act of updating the ITR will cause it to immediately trigger. In order
1289 * to prevent this from throwing off adaptive update statistics we defer the
1290 * update so that it can only happen so often. So after either Tx or Rx are
1291 * updated we make the adaptive scheme wait until either the ITR completely
1292 * expires via the next_update expiration or we have been through at least
1293 * 3 interrupts.
1294 */
1295#define ITR_COUNTDOWN_START 3
1296
1297/**
1298 * iavf_update_enable_itr - Update itr and re-enable MSIX interrupt
1299 * @vsi: the VSI we care about
1300 * @q_vector: q_vector for which itr is being updated and interrupt enabled
1301 *
1302 **/
1303static void iavf_update_enable_itr(struct iavf_vsi *vsi,
1304				   struct iavf_q_vector *q_vector)
1305{
1306	struct iavf_hw *hw = &vsi->back->hw;
1307	u32 intval;
1308
1309	/* These will do nothing if dynamic updates are not enabled */
1310	iavf_update_itr(q_vector, &q_vector->tx);
1311	iavf_update_itr(q_vector, &q_vector->rx);
1312
1313	/* This block of logic allows us to get away with only updating
1314	 * one ITR value with each interrupt. The idea is to perform a
1315	 * pseudo-lazy update with the following criteria.
1316	 *
1317	 * 1. Rx is given higher priority than Tx if both are in same state
1318	 * 2. If we must reduce an ITR that is given highest priority.
1319	 * 3. We then give priority to increasing ITR based on amount.
1320	 */
1321	if (q_vector->rx.target_itr < q_vector->rx.current_itr) {
1322		/* Rx ITR needs to be reduced, this is highest priority */
1323		intval = iavf_buildreg_itr(IAVF_RX_ITR,
1324					   q_vector->rx.target_itr);
1325		q_vector->rx.current_itr = q_vector->rx.target_itr;
1326		q_vector->itr_countdown = ITR_COUNTDOWN_START;
1327	} else if ((q_vector->tx.target_itr < q_vector->tx.current_itr) ||
1328		   ((q_vector->rx.target_itr - q_vector->rx.current_itr) <
1329		    (q_vector->tx.target_itr - q_vector->tx.current_itr))) {
1330		/* Tx ITR needs to be reduced, this is second priority
1331		 * Tx ITR needs to be increased more than Rx, fourth priority
1332		 */
1333		intval = iavf_buildreg_itr(IAVF_TX_ITR,
1334					   q_vector->tx.target_itr);
1335		q_vector->tx.current_itr = q_vector->tx.target_itr;
1336		q_vector->itr_countdown = ITR_COUNTDOWN_START;
1337	} else if (q_vector->rx.current_itr != q_vector->rx.target_itr) {
1338		/* Rx ITR needs to be increased, third priority */
1339		intval = iavf_buildreg_itr(IAVF_RX_ITR,
1340					   q_vector->rx.target_itr);
1341		q_vector->rx.current_itr = q_vector->rx.target_itr;
1342		q_vector->itr_countdown = ITR_COUNTDOWN_START;
1343	} else {
1344		/* No ITR update, lowest priority */
1345		intval = iavf_buildreg_itr(IAVF_ITR_NONE, 0);
1346		if (q_vector->itr_countdown)
1347			q_vector->itr_countdown--;
1348	}
1349
1350	if (!test_bit(__IAVF_VSI_DOWN, vsi->state))
1351		wr32(hw, INTREG(q_vector->reg_idx), intval);
1352}
1353
1354/**
1355 * iavf_napi_poll - NAPI polling Rx/Tx cleanup routine
1356 * @napi: napi struct with our devices info in it
1357 * @budget: amount of work driver is allowed to do this pass, in packets
1358 *
1359 * This function will clean all queues associated with a q_vector.
1360 *
1361 * Returns the amount of work done
1362 **/
1363int iavf_napi_poll(struct napi_struct *napi, int budget)
1364{
1365	struct iavf_q_vector *q_vector =
1366			       container_of(napi, struct iavf_q_vector, napi);
1367	struct iavf_vsi *vsi = q_vector->vsi;
1368	struct iavf_ring *ring;
1369	bool clean_complete = true;
1370	bool arm_wb = false;
1371	int budget_per_ring;
1372	int work_done = 0;
1373
1374	if (test_bit(__IAVF_VSI_DOWN, vsi->state)) {
1375		napi_complete(napi);
1376		return 0;
1377	}
1378
1379	/* Since the actual Tx work is minimal, we can give the Tx a larger
1380	 * budget and be more aggressive about cleaning up the Tx descriptors.
1381	 */
1382	iavf_for_each_ring(ring, q_vector->tx) {
1383		if (!iavf_clean_tx_irq(vsi, ring, budget)) {
1384			clean_complete = false;
1385			continue;
1386		}
1387		arm_wb |= !!(ring->flags & IAVF_TXR_FLAGS_ARM_WB);
1388		ring->flags &= ~IAVF_TXR_FLAGS_ARM_WB;
1389	}
1390
1391	/* Handle case where we are called by netpoll with a budget of 0 */
1392	if (budget <= 0)
1393		goto tx_only;
1394
1395	/* We attempt to distribute budget to each Rx queue fairly, but don't
1396	 * allow the budget to go below 1 because that would exit polling early.
1397	 */
1398	budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
1399
1400	iavf_for_each_ring(ring, q_vector->rx) {
1401		int cleaned = iavf_clean_rx_irq(ring, budget_per_ring);
1402
1403		work_done += cleaned;
1404		/* if we clean as many as budgeted, we must not be done */
1405		if (cleaned >= budget_per_ring)
1406			clean_complete = false;
1407	}
1408
1409	/* If work not completed, return budget and polling will return */
1410	if (!clean_complete) {
1411		int cpu_id = smp_processor_id();
1412
1413		/* It is possible that the interrupt affinity has changed but,
1414		 * if the cpu is pegged at 100%, polling will never exit while
1415		 * traffic continues and the interrupt will be stuck on this
1416		 * cpu.  We check to make sure affinity is correct before we
1417		 * continue to poll, otherwise we must stop polling so the
1418		 * interrupt can move to the correct cpu.
1419		 */
1420		if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) {
1421			/* Tell napi that we are done polling */
1422			napi_complete_done(napi, work_done);
1423
1424			/* Force an interrupt */
1425			iavf_force_wb(vsi, q_vector);
1426
1427			/* Return budget-1 so that polling stops */
1428			return budget - 1;
1429		}
1430tx_only:
1431		if (arm_wb) {
1432			q_vector->tx.ring[0].tx_stats.tx_force_wb++;
1433			iavf_enable_wb_on_itr(vsi, q_vector);
1434		}
1435		return budget;
1436	}
1437
1438	if (vsi->back->flags & IAVF_TXR_FLAGS_WB_ON_ITR)
1439		q_vector->arm_wb_state = false;
1440
1441	/* Exit the polling mode, but don't re-enable interrupts if stack might
1442	 * poll us due to busy-polling
1443	 */
1444	if (likely(napi_complete_done(napi, work_done)))
1445		iavf_update_enable_itr(vsi, q_vector);
1446
1447	return min_t(int, work_done, budget - 1);
1448}
1449
1450/**
1451 * iavf_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
1452 * @skb:     send buffer
1453 * @tx_ring: ring to send buffer on
1454 * @flags:   the tx flags to be set
1455 *
1456 * Checks the skb and set up correspondingly several generic transmit flags
1457 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
1458 *
1459 * Returns error code indicate the frame should be dropped upon error and the
1460 * otherwise  returns 0 to indicate the flags has been set properly.
1461 **/
1462static void iavf_tx_prepare_vlan_flags(struct sk_buff *skb,
1463				       struct iavf_ring *tx_ring, u32 *flags)
 
1464{
 
1465	u32  tx_flags = 0;
1466
 
 
 
 
 
 
 
 
 
 
 
 
1467
1468	/* stack will only request hardware VLAN insertion offload for protocols
1469	 * that the driver supports and has enabled
1470	 */
1471	if (!skb_vlan_tag_present(skb))
1472		return;
1473
1474	tx_flags |= skb_vlan_tag_get(skb) << IAVF_TX_FLAGS_VLAN_SHIFT;
1475	if (tx_ring->flags & IAVF_TXR_FLAGS_VLAN_TAG_LOC_L2TAG2) {
1476		tx_flags |= IAVF_TX_FLAGS_HW_OUTER_SINGLE_VLAN;
1477	} else if (tx_ring->flags & IAVF_TXRX_FLAGS_VLAN_TAG_LOC_L2TAG1) {
1478		tx_flags |= IAVF_TX_FLAGS_HW_VLAN;
1479	} else {
1480		dev_dbg(tx_ring->dev, "Unsupported Tx VLAN tag location requested\n");
1481		return;
 
 
 
 
 
 
 
 
1482	}
1483
 
1484	*flags = tx_flags;
 
1485}
1486
1487/**
1488 * iavf_tso - set up the tso context descriptor
1489 * @first:    pointer to first Tx buffer for xmit
1490 * @hdr_len:  ptr to the size of the packet header
1491 * @cd_type_cmd_tso_mss: Quad Word 1
1492 *
1493 * Returns 0 if no TSO can happen, 1 if tso is going, or error
1494 **/
1495static int iavf_tso(struct iavf_tx_buffer *first, u8 *hdr_len,
1496		    u64 *cd_type_cmd_tso_mss)
1497{
1498	struct sk_buff *skb = first->skb;
1499	u64 cd_cmd, cd_tso_len, cd_mss;
1500	union {
1501		struct iphdr *v4;
1502		struct ipv6hdr *v6;
1503		unsigned char *hdr;
1504	} ip;
1505	union {
1506		struct tcphdr *tcp;
1507		struct udphdr *udp;
1508		unsigned char *hdr;
1509	} l4;
1510	u32 paylen, l4_offset;
1511	u16 gso_segs, gso_size;
1512	int err;
1513
1514	if (skb->ip_summed != CHECKSUM_PARTIAL)
1515		return 0;
1516
1517	if (!skb_is_gso(skb))
1518		return 0;
1519
1520	err = skb_cow_head(skb, 0);
1521	if (err < 0)
1522		return err;
1523
1524	ip.hdr = skb_network_header(skb);
1525	l4.hdr = skb_transport_header(skb);
1526
1527	/* initialize outer IP header fields */
1528	if (ip.v4->version == 4) {
1529		ip.v4->tot_len = 0;
1530		ip.v4->check = 0;
1531	} else {
1532		ip.v6->payload_len = 0;
1533	}
1534
1535	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
1536					 SKB_GSO_GRE_CSUM |
1537					 SKB_GSO_IPXIP4 |
1538					 SKB_GSO_IPXIP6 |
1539					 SKB_GSO_UDP_TUNNEL |
1540					 SKB_GSO_UDP_TUNNEL_CSUM)) {
1541		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
1542		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
1543			l4.udp->len = 0;
1544
1545			/* determine offset of outer transport header */
1546			l4_offset = l4.hdr - skb->data;
1547
1548			/* remove payload length from outer checksum */
1549			paylen = skb->len - l4_offset;
1550			csum_replace_by_diff(&l4.udp->check,
1551					     (__force __wsum)htonl(paylen));
1552		}
1553
1554		/* reset pointers to inner headers */
1555		ip.hdr = skb_inner_network_header(skb);
1556		l4.hdr = skb_inner_transport_header(skb);
1557
1558		/* initialize inner IP header fields */
1559		if (ip.v4->version == 4) {
1560			ip.v4->tot_len = 0;
1561			ip.v4->check = 0;
1562		} else {
1563			ip.v6->payload_len = 0;
1564		}
1565	}
1566
1567	/* determine offset of inner transport header */
1568	l4_offset = l4.hdr - skb->data;
1569	/* remove payload length from inner checksum */
1570	paylen = skb->len - l4_offset;
1571
1572	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
1573		csum_replace_by_diff(&l4.udp->check,
1574				     (__force __wsum)htonl(paylen));
1575		/* compute length of UDP segmentation header */
1576		*hdr_len = (u8)sizeof(l4.udp) + l4_offset;
1577	} else {
1578		csum_replace_by_diff(&l4.tcp->check,
1579				     (__force __wsum)htonl(paylen));
1580		/* compute length of TCP segmentation header */
1581		*hdr_len = (u8)((l4.tcp->doff * 4) + l4_offset);
1582	}
1583
1584	/* pull values out of skb_shinfo */
1585	gso_size = skb_shinfo(skb)->gso_size;
1586	gso_segs = skb_shinfo(skb)->gso_segs;
1587
1588	/* update GSO size and bytecount with header size */
1589	first->gso_segs = gso_segs;
1590	first->bytecount += (first->gso_segs - 1) * *hdr_len;
1591
1592	/* find the field values */
1593	cd_cmd = IAVF_TX_CTX_DESC_TSO;
1594	cd_tso_len = skb->len - *hdr_len;
1595	cd_mss = gso_size;
1596	*cd_type_cmd_tso_mss |= (cd_cmd << IAVF_TXD_CTX_QW1_CMD_SHIFT) |
1597				(cd_tso_len << IAVF_TXD_CTX_QW1_TSO_LEN_SHIFT) |
1598				(cd_mss << IAVF_TXD_CTX_QW1_MSS_SHIFT);
1599	return 1;
1600}
1601
1602/**
1603 * iavf_tx_enable_csum - Enable Tx checksum offloads
1604 * @skb: send buffer
1605 * @tx_flags: pointer to Tx flags currently set
1606 * @td_cmd: Tx descriptor command bits to set
1607 * @td_offset: Tx descriptor header offsets to set
1608 * @tx_ring: Tx descriptor ring
1609 * @cd_tunneling: ptr to context desc bits
1610 **/
1611static int iavf_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
1612			       u32 *td_cmd, u32 *td_offset,
1613			       struct iavf_ring *tx_ring,
1614			       u32 *cd_tunneling)
1615{
1616	union {
1617		struct iphdr *v4;
1618		struct ipv6hdr *v6;
1619		unsigned char *hdr;
1620	} ip;
1621	union {
1622		struct tcphdr *tcp;
1623		struct udphdr *udp;
1624		unsigned char *hdr;
1625	} l4;
1626	unsigned char *exthdr;
1627	u32 offset, cmd = 0;
1628	__be16 frag_off;
1629	u8 l4_proto = 0;
1630
1631	if (skb->ip_summed != CHECKSUM_PARTIAL)
1632		return 0;
1633
1634	ip.hdr = skb_network_header(skb);
1635	l4.hdr = skb_transport_header(skb);
1636
1637	/* compute outer L2 header size */
1638	offset = ((ip.hdr - skb->data) / 2) << IAVF_TX_DESC_LENGTH_MACLEN_SHIFT;
1639
1640	if (skb->encapsulation) {
1641		u32 tunnel = 0;
1642		/* define outer network header type */
1643		if (*tx_flags & IAVF_TX_FLAGS_IPV4) {
1644			tunnel |= (*tx_flags & IAVF_TX_FLAGS_TSO) ?
1645				  IAVF_TX_CTX_EXT_IP_IPV4 :
1646				  IAVF_TX_CTX_EXT_IP_IPV4_NO_CSUM;
1647
1648			l4_proto = ip.v4->protocol;
1649		} else if (*tx_flags & IAVF_TX_FLAGS_IPV6) {
1650			tunnel |= IAVF_TX_CTX_EXT_IP_IPV6;
1651
1652			exthdr = ip.hdr + sizeof(*ip.v6);
1653			l4_proto = ip.v6->nexthdr;
1654			if (l4.hdr != exthdr)
1655				ipv6_skip_exthdr(skb, exthdr - skb->data,
1656						 &l4_proto, &frag_off);
1657		}
1658
1659		/* define outer transport */
1660		switch (l4_proto) {
1661		case IPPROTO_UDP:
1662			tunnel |= IAVF_TXD_CTX_UDP_TUNNELING;
1663			*tx_flags |= IAVF_TX_FLAGS_VXLAN_TUNNEL;
1664			break;
1665		case IPPROTO_GRE:
1666			tunnel |= IAVF_TXD_CTX_GRE_TUNNELING;
1667			*tx_flags |= IAVF_TX_FLAGS_VXLAN_TUNNEL;
1668			break;
1669		case IPPROTO_IPIP:
1670		case IPPROTO_IPV6:
1671			*tx_flags |= IAVF_TX_FLAGS_VXLAN_TUNNEL;
1672			l4.hdr = skb_inner_network_header(skb);
1673			break;
1674		default:
1675			if (*tx_flags & IAVF_TX_FLAGS_TSO)
1676				return -1;
1677
1678			skb_checksum_help(skb);
1679			return 0;
1680		}
1681
1682		/* compute outer L3 header size */
1683		tunnel |= ((l4.hdr - ip.hdr) / 4) <<
1684			  IAVF_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
1685
1686		/* switch IP header pointer from outer to inner header */
1687		ip.hdr = skb_inner_network_header(skb);
1688
1689		/* compute tunnel header size */
1690		tunnel |= ((ip.hdr - l4.hdr) / 2) <<
1691			  IAVF_TXD_CTX_QW0_NATLEN_SHIFT;
1692
1693		/* indicate if we need to offload outer UDP header */
1694		if ((*tx_flags & IAVF_TX_FLAGS_TSO) &&
1695		    !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
1696		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
1697			tunnel |= IAVF_TXD_CTX_QW0_L4T_CS_MASK;
1698
1699		/* record tunnel offload values */
1700		*cd_tunneling |= tunnel;
1701
1702		/* switch L4 header pointer from outer to inner */
1703		l4.hdr = skb_inner_transport_header(skb);
1704		l4_proto = 0;
1705
1706		/* reset type as we transition from outer to inner headers */
1707		*tx_flags &= ~(IAVF_TX_FLAGS_IPV4 | IAVF_TX_FLAGS_IPV6);
1708		if (ip.v4->version == 4)
1709			*tx_flags |= IAVF_TX_FLAGS_IPV4;
1710		if (ip.v6->version == 6)
1711			*tx_flags |= IAVF_TX_FLAGS_IPV6;
1712	}
1713
1714	/* Enable IP checksum offloads */
1715	if (*tx_flags & IAVF_TX_FLAGS_IPV4) {
1716		l4_proto = ip.v4->protocol;
1717		/* the stack computes the IP header already, the only time we
1718		 * need the hardware to recompute it is in the case of TSO.
1719		 */
1720		cmd |= (*tx_flags & IAVF_TX_FLAGS_TSO) ?
1721		       IAVF_TX_DESC_CMD_IIPT_IPV4_CSUM :
1722		       IAVF_TX_DESC_CMD_IIPT_IPV4;
1723	} else if (*tx_flags & IAVF_TX_FLAGS_IPV6) {
1724		cmd |= IAVF_TX_DESC_CMD_IIPT_IPV6;
1725
1726		exthdr = ip.hdr + sizeof(*ip.v6);
1727		l4_proto = ip.v6->nexthdr;
1728		if (l4.hdr != exthdr)
1729			ipv6_skip_exthdr(skb, exthdr - skb->data,
1730					 &l4_proto, &frag_off);
1731	}
1732
1733	/* compute inner L3 header size */
1734	offset |= ((l4.hdr - ip.hdr) / 4) << IAVF_TX_DESC_LENGTH_IPLEN_SHIFT;
1735
1736	/* Enable L4 checksum offloads */
1737	switch (l4_proto) {
1738	case IPPROTO_TCP:
1739		/* enable checksum offloads */
1740		cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_TCP;
1741		offset |= l4.tcp->doff << IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1742		break;
1743	case IPPROTO_SCTP:
1744		/* enable SCTP checksum offload */
1745		cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_SCTP;
1746		offset |= (sizeof(struct sctphdr) >> 2) <<
1747			  IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1748		break;
1749	case IPPROTO_UDP:
1750		/* enable UDP checksum offload */
1751		cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_UDP;
1752		offset |= (sizeof(struct udphdr) >> 2) <<
1753			  IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1754		break;
1755	default:
1756		if (*tx_flags & IAVF_TX_FLAGS_TSO)
1757			return -1;
1758		skb_checksum_help(skb);
1759		return 0;
1760	}
1761
1762	*td_cmd |= cmd;
1763	*td_offset |= offset;
1764
1765	return 1;
1766}
1767
1768/**
1769 * iavf_create_tx_ctx - Build the Tx context descriptor
1770 * @tx_ring:  ring to create the descriptor on
1771 * @cd_type_cmd_tso_mss: Quad Word 1
1772 * @cd_tunneling: Quad Word 0 - bits 0-31
1773 * @cd_l2tag2: Quad Word 0 - bits 32-63
1774 **/
1775static void iavf_create_tx_ctx(struct iavf_ring *tx_ring,
1776			       const u64 cd_type_cmd_tso_mss,
1777			       const u32 cd_tunneling, const u32 cd_l2tag2)
1778{
1779	struct iavf_tx_context_desc *context_desc;
1780	int i = tx_ring->next_to_use;
1781
1782	if ((cd_type_cmd_tso_mss == IAVF_TX_DESC_DTYPE_CONTEXT) &&
1783	    !cd_tunneling && !cd_l2tag2)
1784		return;
1785
1786	/* grab the next descriptor */
1787	context_desc = IAVF_TX_CTXTDESC(tx_ring, i);
1788
1789	i++;
1790	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1791
1792	/* cpu_to_le32 and assign to struct fields */
1793	context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
1794	context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
1795	context_desc->rsvd = cpu_to_le16(0);
1796	context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
1797}
1798
1799/**
1800 * __iavf_chk_linearize - Check if there are more than 8 buffers per packet
1801 * @skb:      send buffer
1802 *
1803 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
1804 * and so we need to figure out the cases where we need to linearize the skb.
1805 *
1806 * For TSO we need to count the TSO header and segment payload separately.
1807 * As such we need to check cases where we have 7 fragments or more as we
1808 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
1809 * the segment payload in the first descriptor, and another 7 for the
1810 * fragments.
1811 **/
1812bool __iavf_chk_linearize(struct sk_buff *skb)
1813{
1814	const skb_frag_t *frag, *stale;
1815	int nr_frags, sum;
1816
1817	/* no need to check if number of frags is less than 7 */
1818	nr_frags = skb_shinfo(skb)->nr_frags;
1819	if (nr_frags < (IAVF_MAX_BUFFER_TXD - 1))
1820		return false;
1821
1822	/* We need to walk through the list and validate that each group
1823	 * of 6 fragments totals at least gso_size.
1824	 */
1825	nr_frags -= IAVF_MAX_BUFFER_TXD - 2;
1826	frag = &skb_shinfo(skb)->frags[0];
1827
1828	/* Initialize size to the negative value of gso_size minus 1.  We
1829	 * use this as the worst case scenerio in which the frag ahead
1830	 * of us only provides one byte which is why we are limited to 6
1831	 * descriptors for a single transmit as the header and previous
1832	 * fragment are already consuming 2 descriptors.
1833	 */
1834	sum = 1 - skb_shinfo(skb)->gso_size;
1835
1836	/* Add size of frags 0 through 4 to create our initial sum */
1837	sum += skb_frag_size(frag++);
1838	sum += skb_frag_size(frag++);
1839	sum += skb_frag_size(frag++);
1840	sum += skb_frag_size(frag++);
1841	sum += skb_frag_size(frag++);
1842
1843	/* Walk through fragments adding latest fragment, testing it, and
1844	 * then removing stale fragments from the sum.
1845	 */
1846	for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
1847		int stale_size = skb_frag_size(stale);
1848
1849		sum += skb_frag_size(frag++);
1850
1851		/* The stale fragment may present us with a smaller
1852		 * descriptor than the actual fragment size. To account
1853		 * for that we need to remove all the data on the front and
1854		 * figure out what the remainder would be in the last
1855		 * descriptor associated with the fragment.
1856		 */
1857		if (stale_size > IAVF_MAX_DATA_PER_TXD) {
1858			int align_pad = -(skb_frag_off(stale)) &
1859					(IAVF_MAX_READ_REQ_SIZE - 1);
1860
1861			sum -= align_pad;
1862			stale_size -= align_pad;
1863
1864			do {
1865				sum -= IAVF_MAX_DATA_PER_TXD_ALIGNED;
1866				stale_size -= IAVF_MAX_DATA_PER_TXD_ALIGNED;
1867			} while (stale_size > IAVF_MAX_DATA_PER_TXD);
1868		}
1869
1870		/* if sum is negative we failed to make sufficient progress */
1871		if (sum < 0)
1872			return true;
1873
1874		if (!nr_frags--)
1875			break;
1876
1877		sum -= stale_size;
1878	}
1879
1880	return false;
1881}
1882
1883/**
1884 * __iavf_maybe_stop_tx - 2nd level check for tx stop conditions
1885 * @tx_ring: the ring to be checked
1886 * @size:    the size buffer we want to assure is available
1887 *
1888 * Returns -EBUSY if a stop is needed, else 0
1889 **/
1890int __iavf_maybe_stop_tx(struct iavf_ring *tx_ring, int size)
1891{
1892	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
1893	/* Memory barrier before checking head and tail */
1894	smp_mb();
1895
1896	/* Check again in a case another CPU has just made room available. */
1897	if (likely(IAVF_DESC_UNUSED(tx_ring) < size))
1898		return -EBUSY;
1899
1900	/* A reprieve! - use start_queue because it doesn't call schedule */
1901	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
1902	++tx_ring->tx_stats.restart_queue;
1903	return 0;
1904}
1905
1906/**
1907 * iavf_tx_map - Build the Tx descriptor
1908 * @tx_ring:  ring to send buffer on
1909 * @skb:      send buffer
1910 * @first:    first buffer info buffer to use
1911 * @tx_flags: collected send information
1912 * @hdr_len:  size of the packet header
1913 * @td_cmd:   the command field in the descriptor
1914 * @td_offset: offset for checksum or crc
1915 **/
1916static void iavf_tx_map(struct iavf_ring *tx_ring, struct sk_buff *skb,
1917			struct iavf_tx_buffer *first, u32 tx_flags,
1918			const u8 hdr_len, u32 td_cmd, u32 td_offset)
1919{
1920	unsigned int data_len = skb->data_len;
1921	unsigned int size = skb_headlen(skb);
1922	skb_frag_t *frag;
1923	struct iavf_tx_buffer *tx_bi;
1924	struct iavf_tx_desc *tx_desc;
1925	u16 i = tx_ring->next_to_use;
1926	u32 td_tag = 0;
1927	dma_addr_t dma;
1928
1929	if (tx_flags & IAVF_TX_FLAGS_HW_VLAN) {
1930		td_cmd |= IAVF_TX_DESC_CMD_IL2TAG1;
1931		td_tag = FIELD_GET(IAVF_TX_FLAGS_VLAN_MASK, tx_flags);
 
1932	}
1933
1934	first->tx_flags = tx_flags;
1935
1936	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1937
1938	tx_desc = IAVF_TX_DESC(tx_ring, i);
1939	tx_bi = first;
1940
1941	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1942		unsigned int max_data = IAVF_MAX_DATA_PER_TXD_ALIGNED;
1943
1944		if (dma_mapping_error(tx_ring->dev, dma))
1945			goto dma_error;
1946
1947		/* record length, and DMA address */
1948		dma_unmap_len_set(tx_bi, len, size);
1949		dma_unmap_addr_set(tx_bi, dma, dma);
1950
1951		/* align size to end of page */
1952		max_data += -dma & (IAVF_MAX_READ_REQ_SIZE - 1);
1953		tx_desc->buffer_addr = cpu_to_le64(dma);
1954
1955		while (unlikely(size > IAVF_MAX_DATA_PER_TXD)) {
1956			tx_desc->cmd_type_offset_bsz =
1957				build_ctob(td_cmd, td_offset,
1958					   max_data, td_tag);
1959
1960			tx_desc++;
1961			i++;
1962
1963			if (i == tx_ring->count) {
1964				tx_desc = IAVF_TX_DESC(tx_ring, 0);
1965				i = 0;
1966			}
1967
1968			dma += max_data;
1969			size -= max_data;
1970
1971			max_data = IAVF_MAX_DATA_PER_TXD_ALIGNED;
1972			tx_desc->buffer_addr = cpu_to_le64(dma);
1973		}
1974
1975		if (likely(!data_len))
1976			break;
1977
1978		tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
1979							  size, td_tag);
1980
1981		tx_desc++;
1982		i++;
1983
1984		if (i == tx_ring->count) {
1985			tx_desc = IAVF_TX_DESC(tx_ring, 0);
1986			i = 0;
1987		}
1988
1989		size = skb_frag_size(frag);
1990		data_len -= size;
1991
1992		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1993				       DMA_TO_DEVICE);
1994
1995		tx_bi = &tx_ring->tx_bi[i];
1996	}
1997
1998	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1999
2000	i++;
2001	if (i == tx_ring->count)
2002		i = 0;
2003
2004	tx_ring->next_to_use = i;
2005
2006	iavf_maybe_stop_tx(tx_ring, DESC_NEEDED);
2007
2008	/* write last descriptor with RS and EOP bits */
2009	td_cmd |= IAVF_TXD_CMD;
2010	tx_desc->cmd_type_offset_bsz =
2011			build_ctob(td_cmd, td_offset, size, td_tag);
2012
2013	skb_tx_timestamp(skb);
2014
2015	/* Force memory writes to complete before letting h/w know there
2016	 * are new descriptors to fetch.
2017	 *
2018	 * We also use this memory barrier to make certain all of the
2019	 * status bits have been updated before next_to_watch is written.
2020	 */
2021	wmb();
2022
2023	/* set next_to_watch value indicating a packet is present */
2024	first->next_to_watch = tx_desc;
2025
2026	/* notify HW of packet */
2027	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
2028		writel(i, tx_ring->tail);
2029	}
2030
2031	return;
2032
2033dma_error:
2034	dev_info(tx_ring->dev, "TX DMA map failed\n");
2035
2036	/* clear dma mappings for failed tx_bi map */
2037	for (;;) {
2038		tx_bi = &tx_ring->tx_bi[i];
2039		iavf_unmap_and_free_tx_resource(tx_ring, tx_bi);
2040		if (tx_bi == first)
2041			break;
2042		if (i == 0)
2043			i = tx_ring->count;
2044		i--;
2045	}
2046
2047	tx_ring->next_to_use = i;
2048}
2049
2050/**
2051 * iavf_xmit_frame_ring - Sends buffer on Tx ring
2052 * @skb:     send buffer
2053 * @tx_ring: ring to send buffer on
2054 *
2055 * Returns NETDEV_TX_OK if sent, else an error code
2056 **/
2057static netdev_tx_t iavf_xmit_frame_ring(struct sk_buff *skb,
2058					struct iavf_ring *tx_ring)
2059{
2060	u64 cd_type_cmd_tso_mss = IAVF_TX_DESC_DTYPE_CONTEXT;
2061	u32 cd_tunneling = 0, cd_l2tag2 = 0;
2062	struct iavf_tx_buffer *first;
2063	u32 td_offset = 0;
2064	u32 tx_flags = 0;
2065	__be16 protocol;
2066	u32 td_cmd = 0;
2067	u8 hdr_len = 0;
2068	int tso, count;
2069
2070	/* prefetch the data, we'll need it later */
2071	prefetch(skb->data);
2072
2073	iavf_trace(xmit_frame_ring, skb, tx_ring);
2074
2075	count = iavf_xmit_descriptor_count(skb);
2076	if (iavf_chk_linearize(skb, count)) {
2077		if (__skb_linearize(skb)) {
2078			dev_kfree_skb_any(skb);
2079			return NETDEV_TX_OK;
2080		}
2081		count = iavf_txd_use_count(skb->len);
2082		tx_ring->tx_stats.tx_linearize++;
2083	}
2084
2085	/* need: 1 descriptor per page * PAGE_SIZE/IAVF_MAX_DATA_PER_TXD,
2086	 *       + 1 desc for skb_head_len/IAVF_MAX_DATA_PER_TXD,
2087	 *       + 4 desc gap to avoid the cache line where head is,
2088	 *       + 1 desc for context descriptor,
2089	 * otherwise try next time
2090	 */
2091	if (iavf_maybe_stop_tx(tx_ring, count + 4 + 1)) {
2092		tx_ring->tx_stats.tx_busy++;
2093		return NETDEV_TX_BUSY;
2094	}
2095
2096	/* record the location of the first descriptor for this packet */
2097	first = &tx_ring->tx_bi[tx_ring->next_to_use];
2098	first->skb = skb;
2099	first->bytecount = skb->len;
2100	first->gso_segs = 1;
2101
2102	/* prepare the xmit flags */
2103	iavf_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags);
2104	if (tx_flags & IAVF_TX_FLAGS_HW_OUTER_SINGLE_VLAN) {
2105		cd_type_cmd_tso_mss |= IAVF_TX_CTX_DESC_IL2TAG2 <<
2106			IAVF_TXD_CTX_QW1_CMD_SHIFT;
2107		cd_l2tag2 = FIELD_GET(IAVF_TX_FLAGS_VLAN_MASK, tx_flags);
2108	}
2109
2110	/* obtain protocol of skb */
2111	protocol = vlan_get_protocol(skb);
2112
2113	/* setup IPv4/IPv6 offloads */
2114	if (protocol == htons(ETH_P_IP))
2115		tx_flags |= IAVF_TX_FLAGS_IPV4;
2116	else if (protocol == htons(ETH_P_IPV6))
2117		tx_flags |= IAVF_TX_FLAGS_IPV6;
2118
2119	tso = iavf_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
2120
2121	if (tso < 0)
2122		goto out_drop;
2123	else if (tso)
2124		tx_flags |= IAVF_TX_FLAGS_TSO;
2125
2126	/* Always offload the checksum, since it's in the data descriptor */
2127	tso = iavf_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
2128				  tx_ring, &cd_tunneling);
2129	if (tso < 0)
2130		goto out_drop;
2131
2132	/* always enable CRC insertion offload */
2133	td_cmd |= IAVF_TX_DESC_CMD_ICRC;
2134
2135	iavf_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
2136			   cd_tunneling, cd_l2tag2);
2137
2138	iavf_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
2139		    td_cmd, td_offset);
2140
2141	return NETDEV_TX_OK;
2142
2143out_drop:
2144	iavf_trace(xmit_frame_ring_drop, first->skb, tx_ring);
2145	dev_kfree_skb_any(first->skb);
2146	first->skb = NULL;
2147	return NETDEV_TX_OK;
2148}
2149
2150/**
2151 * iavf_xmit_frame - Selects the correct VSI and Tx queue to send buffer
2152 * @skb:    send buffer
2153 * @netdev: network interface device structure
2154 *
2155 * Returns NETDEV_TX_OK if sent, else an error code
2156 **/
2157netdev_tx_t iavf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2158{
2159	struct iavf_adapter *adapter = netdev_priv(netdev);
2160	struct iavf_ring *tx_ring = &adapter->tx_rings[skb->queue_mapping];
2161
2162	/* hardware can't handle really short frames, hardware padding works
2163	 * beyond this point
2164	 */
2165	if (unlikely(skb->len < IAVF_MIN_TX_LEN)) {
2166		if (skb_pad(skb, IAVF_MIN_TX_LEN - skb->len))
2167			return NETDEV_TX_OK;
2168		skb->len = IAVF_MIN_TX_LEN;
2169		skb_set_tail_pointer(skb, IAVF_MIN_TX_LEN);
2170	}
2171
2172	return iavf_xmit_frame_ring(skb, tx_ring);
2173}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 2013 - 2018 Intel Corporation. */
   3
 
 
   4#include <linux/prefetch.h>
   5
   6#include "iavf.h"
   7#include "iavf_trace.h"
   8#include "iavf_prototype.h"
   9
  10static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
  11				u32 td_tag)
  12{
  13	return cpu_to_le64(IAVF_TX_DESC_DTYPE_DATA |
  14			   ((u64)td_cmd  << IAVF_TXD_QW1_CMD_SHIFT) |
  15			   ((u64)td_offset << IAVF_TXD_QW1_OFFSET_SHIFT) |
  16			   ((u64)size  << IAVF_TXD_QW1_TX_BUF_SZ_SHIFT) |
  17			   ((u64)td_tag  << IAVF_TXD_QW1_L2TAG1_SHIFT));
  18}
  19
  20#define IAVF_TXD_CMD (IAVF_TX_DESC_CMD_EOP | IAVF_TX_DESC_CMD_RS)
  21
  22/**
  23 * iavf_unmap_and_free_tx_resource - Release a Tx buffer
  24 * @ring:      the ring that owns the buffer
  25 * @tx_buffer: the buffer to free
  26 **/
  27static void iavf_unmap_and_free_tx_resource(struct iavf_ring *ring,
  28					    struct iavf_tx_buffer *tx_buffer)
  29{
  30	if (tx_buffer->skb) {
  31		if (tx_buffer->tx_flags & IAVF_TX_FLAGS_FD_SB)
  32			kfree(tx_buffer->raw_buf);
  33		else
  34			dev_kfree_skb_any(tx_buffer->skb);
  35		if (dma_unmap_len(tx_buffer, len))
  36			dma_unmap_single(ring->dev,
  37					 dma_unmap_addr(tx_buffer, dma),
  38					 dma_unmap_len(tx_buffer, len),
  39					 DMA_TO_DEVICE);
  40	} else if (dma_unmap_len(tx_buffer, len)) {
  41		dma_unmap_page(ring->dev,
  42			       dma_unmap_addr(tx_buffer, dma),
  43			       dma_unmap_len(tx_buffer, len),
  44			       DMA_TO_DEVICE);
  45	}
  46
  47	tx_buffer->next_to_watch = NULL;
  48	tx_buffer->skb = NULL;
  49	dma_unmap_len_set(tx_buffer, len, 0);
  50	/* tx_buffer must be completely set up in the transmit path */
  51}
  52
  53/**
  54 * iavf_clean_tx_ring - Free any empty Tx buffers
  55 * @tx_ring: ring to be cleaned
  56 **/
  57void iavf_clean_tx_ring(struct iavf_ring *tx_ring)
  58{
  59	unsigned long bi_size;
  60	u16 i;
  61
  62	/* ring already cleared, nothing to do */
  63	if (!tx_ring->tx_bi)
  64		return;
  65
  66	/* Free all the Tx ring sk_buffs */
  67	for (i = 0; i < tx_ring->count; i++)
  68		iavf_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
  69
  70	bi_size = sizeof(struct iavf_tx_buffer) * tx_ring->count;
  71	memset(tx_ring->tx_bi, 0, bi_size);
  72
  73	/* Zero out the descriptor ring */
  74	memset(tx_ring->desc, 0, tx_ring->size);
  75
  76	tx_ring->next_to_use = 0;
  77	tx_ring->next_to_clean = 0;
  78
  79	if (!tx_ring->netdev)
  80		return;
  81
  82	/* cleanup Tx queue statistics */
  83	netdev_tx_reset_queue(txring_txq(tx_ring));
  84}
  85
  86/**
  87 * iavf_free_tx_resources - Free Tx resources per queue
  88 * @tx_ring: Tx descriptor ring for a specific queue
  89 *
  90 * Free all transmit software resources
  91 **/
  92void iavf_free_tx_resources(struct iavf_ring *tx_ring)
  93{
  94	iavf_clean_tx_ring(tx_ring);
  95	kfree(tx_ring->tx_bi);
  96	tx_ring->tx_bi = NULL;
  97
  98	if (tx_ring->desc) {
  99		dma_free_coherent(tx_ring->dev, tx_ring->size,
 100				  tx_ring->desc, tx_ring->dma);
 101		tx_ring->desc = NULL;
 102	}
 103}
 104
 105/**
 106 * iavf_get_tx_pending - how many Tx descriptors not processed
 107 * @ring: the ring of descriptors
 108 * @in_sw: is tx_pending being checked in SW or HW
 109 *
 110 * Since there is no access to the ring head register
 111 * in XL710, we need to use our local copies
 112 **/
 113u32 iavf_get_tx_pending(struct iavf_ring *ring, bool in_sw)
 114{
 115	u32 head, tail;
 116
 
 
 
 117	head = ring->next_to_clean;
 118	tail = readl(ring->tail);
 119
 120	if (head != tail)
 121		return (head < tail) ?
 122			tail - head : (tail + ring->count - head);
 123
 124	return 0;
 125}
 126
 127/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 128 * iavf_detect_recover_hung - Function to detect and recover hung_queues
 129 * @vsi:  pointer to vsi struct with tx queues
 130 *
 131 * VSI has netdev and netdev has TX queues. This function is to check each of
 132 * those TX queues if they are hung, trigger recovery by issuing SW interrupt.
 133 **/
 134void iavf_detect_recover_hung(struct iavf_vsi *vsi)
 135{
 136	struct iavf_ring *tx_ring = NULL;
 137	struct net_device *netdev;
 138	unsigned int i;
 139	int packets;
 140
 141	if (!vsi)
 142		return;
 143
 144	if (test_bit(__IAVF_VSI_DOWN, vsi->state))
 145		return;
 146
 147	netdev = vsi->netdev;
 148	if (!netdev)
 149		return;
 150
 151	if (!netif_carrier_ok(netdev))
 152		return;
 153
 154	for (i = 0; i < vsi->back->num_active_queues; i++) {
 155		tx_ring = &vsi->back->tx_rings[i];
 156		if (tx_ring && tx_ring->desc) {
 157			/* If packet counter has not changed the queue is
 158			 * likely stalled, so force an interrupt for this
 159			 * queue.
 160			 *
 161			 * prev_pkt_ctr would be negative if there was no
 162			 * pending work.
 163			 */
 164			packets = tx_ring->stats.packets & INT_MAX;
 165			if (tx_ring->tx_stats.prev_pkt_ctr == packets) {
 166				iavf_force_wb(vsi, tx_ring->q_vector);
 167				continue;
 168			}
 169
 170			/* Memory barrier between read of packet count and call
 171			 * to iavf_get_tx_pending()
 172			 */
 173			smp_rmb();
 174			tx_ring->tx_stats.prev_pkt_ctr =
 175			  iavf_get_tx_pending(tx_ring, true) ? packets : -1;
 176		}
 177	}
 178}
 179
 180#define WB_STRIDE 4
 181
 182/**
 183 * iavf_clean_tx_irq - Reclaim resources after transmit completes
 184 * @vsi: the VSI we care about
 185 * @tx_ring: Tx ring to clean
 186 * @napi_budget: Used to determine if we are in netpoll
 187 *
 188 * Returns true if there's any budget left (e.g. the clean is finished)
 189 **/
 190static bool iavf_clean_tx_irq(struct iavf_vsi *vsi,
 191			      struct iavf_ring *tx_ring, int napi_budget)
 192{
 193	int i = tx_ring->next_to_clean;
 194	struct iavf_tx_buffer *tx_buf;
 195	struct iavf_tx_desc *tx_desc;
 196	unsigned int total_bytes = 0, total_packets = 0;
 197	unsigned int budget = vsi->work_limit;
 198
 199	tx_buf = &tx_ring->tx_bi[i];
 200	tx_desc = IAVF_TX_DESC(tx_ring, i);
 201	i -= tx_ring->count;
 202
 203	do {
 204		struct iavf_tx_desc *eop_desc = tx_buf->next_to_watch;
 205
 206		/* if next_to_watch is not set then there is no work pending */
 207		if (!eop_desc)
 208			break;
 209
 210		/* prevent any other reads prior to eop_desc */
 211		smp_rmb();
 212
 213		iavf_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
 214		/* if the descriptor isn't done, no work yet to do */
 215		if (!(eop_desc->cmd_type_offset_bsz &
 216		      cpu_to_le64(IAVF_TX_DESC_DTYPE_DESC_DONE)))
 217			break;
 218
 219		/* clear next_to_watch to prevent false hangs */
 220		tx_buf->next_to_watch = NULL;
 221
 222		/* update the statistics for this packet */
 223		total_bytes += tx_buf->bytecount;
 224		total_packets += tx_buf->gso_segs;
 225
 226		/* free the skb */
 227		napi_consume_skb(tx_buf->skb, napi_budget);
 228
 229		/* unmap skb header data */
 230		dma_unmap_single(tx_ring->dev,
 231				 dma_unmap_addr(tx_buf, dma),
 232				 dma_unmap_len(tx_buf, len),
 233				 DMA_TO_DEVICE);
 234
 235		/* clear tx_buffer data */
 236		tx_buf->skb = NULL;
 237		dma_unmap_len_set(tx_buf, len, 0);
 238
 239		/* unmap remaining buffers */
 240		while (tx_desc != eop_desc) {
 241			iavf_trace(clean_tx_irq_unmap,
 242				   tx_ring, tx_desc, tx_buf);
 243
 244			tx_buf++;
 245			tx_desc++;
 246			i++;
 247			if (unlikely(!i)) {
 248				i -= tx_ring->count;
 249				tx_buf = tx_ring->tx_bi;
 250				tx_desc = IAVF_TX_DESC(tx_ring, 0);
 251			}
 252
 253			/* unmap any remaining paged data */
 254			if (dma_unmap_len(tx_buf, len)) {
 255				dma_unmap_page(tx_ring->dev,
 256					       dma_unmap_addr(tx_buf, dma),
 257					       dma_unmap_len(tx_buf, len),
 258					       DMA_TO_DEVICE);
 259				dma_unmap_len_set(tx_buf, len, 0);
 260			}
 261		}
 262
 263		/* move us one more past the eop_desc for start of next pkt */
 264		tx_buf++;
 265		tx_desc++;
 266		i++;
 267		if (unlikely(!i)) {
 268			i -= tx_ring->count;
 269			tx_buf = tx_ring->tx_bi;
 270			tx_desc = IAVF_TX_DESC(tx_ring, 0);
 271		}
 272
 273		prefetch(tx_desc);
 274
 275		/* update budget accounting */
 276		budget--;
 277	} while (likely(budget));
 278
 279	i += tx_ring->count;
 280	tx_ring->next_to_clean = i;
 281	u64_stats_update_begin(&tx_ring->syncp);
 282	tx_ring->stats.bytes += total_bytes;
 283	tx_ring->stats.packets += total_packets;
 284	u64_stats_update_end(&tx_ring->syncp);
 285	tx_ring->q_vector->tx.total_bytes += total_bytes;
 286	tx_ring->q_vector->tx.total_packets += total_packets;
 287
 288	if (tx_ring->flags & IAVF_TXR_FLAGS_WB_ON_ITR) {
 289		/* check to see if there are < 4 descriptors
 290		 * waiting to be written back, then kick the hardware to force
 291		 * them to be written back in case we stay in NAPI.
 292		 * In this mode on X722 we do not enable Interrupt.
 293		 */
 294		unsigned int j = iavf_get_tx_pending(tx_ring, false);
 295
 296		if (budget &&
 297		    ((j / WB_STRIDE) == 0) && (j > 0) &&
 298		    !test_bit(__IAVF_VSI_DOWN, vsi->state) &&
 299		    (IAVF_DESC_UNUSED(tx_ring) != tx_ring->count))
 300			tx_ring->arm_wb = true;
 301	}
 302
 303	/* notify netdev of completed buffers */
 304	netdev_tx_completed_queue(txring_txq(tx_ring),
 305				  total_packets, total_bytes);
 306
 307#define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
 308	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
 309		     (IAVF_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
 310		/* Make sure that anybody stopping the queue after this
 311		 * sees the new next_to_clean.
 312		 */
 313		smp_mb();
 314		if (__netif_subqueue_stopped(tx_ring->netdev,
 315					     tx_ring->queue_index) &&
 316		   !test_bit(__IAVF_VSI_DOWN, vsi->state)) {
 317			netif_wake_subqueue(tx_ring->netdev,
 318					    tx_ring->queue_index);
 319			++tx_ring->tx_stats.restart_queue;
 320		}
 321	}
 322
 323	return !!budget;
 324}
 325
 326/**
 327 * iavf_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
 328 * @vsi: the VSI we care about
 329 * @q_vector: the vector on which to enable writeback
 330 *
 331 **/
 332static void iavf_enable_wb_on_itr(struct iavf_vsi *vsi,
 333				  struct iavf_q_vector *q_vector)
 334{
 335	u16 flags = q_vector->tx.ring[0].flags;
 336	u32 val;
 337
 338	if (!(flags & IAVF_TXR_FLAGS_WB_ON_ITR))
 339		return;
 340
 341	if (q_vector->arm_wb_state)
 342		return;
 343
 344	val = IAVF_VFINT_DYN_CTLN1_WB_ON_ITR_MASK |
 345	      IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK; /* set noitr */
 346
 347	wr32(&vsi->back->hw,
 348	     IAVF_VFINT_DYN_CTLN1(q_vector->reg_idx), val);
 349	q_vector->arm_wb_state = true;
 350}
 351
 352/**
 353 * iavf_force_wb - Issue SW Interrupt so HW does a wb
 354 * @vsi: the VSI we care about
 355 * @q_vector: the vector  on which to force writeback
 356 *
 357 **/
 358void iavf_force_wb(struct iavf_vsi *vsi, struct iavf_q_vector *q_vector)
 359{
 360	u32 val = IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
 361		  IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK | /* set noitr */
 362		  IAVF_VFINT_DYN_CTLN1_SWINT_TRIG_MASK |
 363		  IAVF_VFINT_DYN_CTLN1_SW_ITR_INDX_ENA_MASK
 364		  /* allow 00 to be written to the index */;
 365
 366	wr32(&vsi->back->hw,
 367	     IAVF_VFINT_DYN_CTLN1(q_vector->reg_idx),
 368	     val);
 369}
 370
 371static inline bool iavf_container_is_rx(struct iavf_q_vector *q_vector,
 372					struct iavf_ring_container *rc)
 373{
 374	return &q_vector->rx == rc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 375}
 376
 377static inline unsigned int iavf_itr_divisor(struct iavf_q_vector *q_vector)
 
 378{
 379	unsigned int divisor;
 380
 381	switch (q_vector->adapter->link_speed) {
 382	case VIRTCHNL_LINK_SPEED_40GB:
 383		divisor = IAVF_ITR_ADAPTIVE_MIN_INC * 1024;
 384		break;
 385	case VIRTCHNL_LINK_SPEED_25GB:
 386	case VIRTCHNL_LINK_SPEED_20GB:
 387		divisor = IAVF_ITR_ADAPTIVE_MIN_INC * 512;
 388		break;
 389	default:
 390	case VIRTCHNL_LINK_SPEED_10GB:
 391		divisor = IAVF_ITR_ADAPTIVE_MIN_INC * 256;
 392		break;
 393	case VIRTCHNL_LINK_SPEED_1GB:
 394	case VIRTCHNL_LINK_SPEED_100MB:
 395		divisor = IAVF_ITR_ADAPTIVE_MIN_INC * 32;
 396		break;
 397	}
 
 398
 399	return divisor;
 
 
 
 
 
 
 
 400}
 401
 402/**
 403 * iavf_update_itr - update the dynamic ITR value based on statistics
 404 * @q_vector: structure containing interrupt and ring information
 405 * @rc: structure containing ring performance data
 406 *
 407 * Stores a new ITR value based on packets and byte
 408 * counts during the last interrupt.  The advantage of per interrupt
 409 * computation is faster updates and more accurate ITR for the current
 410 * traffic pattern.  Constants in this function were computed
 411 * based on theoretical maximum wire speed and thresholds were set based
 412 * on testing data as well as attempting to minimize response time
 413 * while increasing bulk throughput.
 414 **/
 415static void iavf_update_itr(struct iavf_q_vector *q_vector,
 416			    struct iavf_ring_container *rc)
 417{
 418	unsigned int avg_wire_size, packets, bytes, itr;
 419	unsigned long next_update = jiffies;
 420
 421	/* If we don't have any rings just leave ourselves set for maximum
 422	 * possible latency so we take ourselves out of the equation.
 423	 */
 424	if (!rc->ring || !ITR_IS_DYNAMIC(rc->ring->itr_setting))
 425		return;
 426
 427	/* For Rx we want to push the delay up and default to low latency.
 428	 * for Tx we want to pull the delay down and default to high latency.
 429	 */
 430	itr = iavf_container_is_rx(q_vector, rc) ?
 431	      IAVF_ITR_ADAPTIVE_MIN_USECS | IAVF_ITR_ADAPTIVE_LATENCY :
 432	      IAVF_ITR_ADAPTIVE_MAX_USECS | IAVF_ITR_ADAPTIVE_LATENCY;
 433
 434	/* If we didn't update within up to 1 - 2 jiffies we can assume
 435	 * that either packets are coming in so slow there hasn't been
 436	 * any work, or that there is so much work that NAPI is dealing
 437	 * with interrupt moderation and we don't need to do anything.
 438	 */
 439	if (time_after(next_update, rc->next_update))
 440		goto clear_counts;
 441
 442	/* If itr_countdown is set it means we programmed an ITR within
 443	 * the last 4 interrupt cycles. This has a side effect of us
 444	 * potentially firing an early interrupt. In order to work around
 445	 * this we need to throw out any data received for a few
 446	 * interrupts following the update.
 447	 */
 448	if (q_vector->itr_countdown) {
 449		itr = rc->target_itr;
 450		goto clear_counts;
 451	}
 452
 453	packets = rc->total_packets;
 454	bytes = rc->total_bytes;
 455
 456	if (iavf_container_is_rx(q_vector, rc)) {
 457		/* If Rx there are 1 to 4 packets and bytes are less than
 458		 * 9000 assume insufficient data to use bulk rate limiting
 459		 * approach unless Tx is already in bulk rate limiting. We
 460		 * are likely latency driven.
 461		 */
 462		if (packets && packets < 4 && bytes < 9000 &&
 463		    (q_vector->tx.target_itr & IAVF_ITR_ADAPTIVE_LATENCY)) {
 464			itr = IAVF_ITR_ADAPTIVE_LATENCY;
 465			goto adjust_by_size;
 466		}
 467	} else if (packets < 4) {
 468		/* If we have Tx and Rx ITR maxed and Tx ITR is running in
 469		 * bulk mode and we are receiving 4 or fewer packets just
 470		 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
 471		 * that the Rx can relax.
 472		 */
 473		if (rc->target_itr == IAVF_ITR_ADAPTIVE_MAX_USECS &&
 474		    (q_vector->rx.target_itr & IAVF_ITR_MASK) ==
 475		     IAVF_ITR_ADAPTIVE_MAX_USECS)
 476			goto clear_counts;
 477	} else if (packets > 32) {
 478		/* If we have processed over 32 packets in a single interrupt
 479		 * for Tx assume we need to switch over to "bulk" mode.
 480		 */
 481		rc->target_itr &= ~IAVF_ITR_ADAPTIVE_LATENCY;
 482	}
 483
 484	/* We have no packets to actually measure against. This means
 485	 * either one of the other queues on this vector is active or
 486	 * we are a Tx queue doing TSO with too high of an interrupt rate.
 487	 *
 488	 * Between 4 and 56 we can assume that our current interrupt delay
 489	 * is only slightly too low. As such we should increase it by a small
 490	 * fixed amount.
 491	 */
 492	if (packets < 56) {
 493		itr = rc->target_itr + IAVF_ITR_ADAPTIVE_MIN_INC;
 494		if ((itr & IAVF_ITR_MASK) > IAVF_ITR_ADAPTIVE_MAX_USECS) {
 495			itr &= IAVF_ITR_ADAPTIVE_LATENCY;
 496			itr += IAVF_ITR_ADAPTIVE_MAX_USECS;
 497		}
 498		goto clear_counts;
 499	}
 500
 501	if (packets <= 256) {
 502		itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
 503		itr &= IAVF_ITR_MASK;
 504
 505		/* Between 56 and 112 is our "goldilocks" zone where we are
 506		 * working out "just right". Just report that our current
 507		 * ITR is good for us.
 508		 */
 509		if (packets <= 112)
 510			goto clear_counts;
 511
 512		/* If packet count is 128 or greater we are likely looking
 513		 * at a slight overrun of the delay we want. Try halving
 514		 * our delay to see if that will cut the number of packets
 515		 * in half per interrupt.
 516		 */
 517		itr /= 2;
 518		itr &= IAVF_ITR_MASK;
 519		if (itr < IAVF_ITR_ADAPTIVE_MIN_USECS)
 520			itr = IAVF_ITR_ADAPTIVE_MIN_USECS;
 521
 522		goto clear_counts;
 523	}
 524
 525	/* The paths below assume we are dealing with a bulk ITR since
 526	 * number of packets is greater than 256. We are just going to have
 527	 * to compute a value and try to bring the count under control,
 528	 * though for smaller packet sizes there isn't much we can do as
 529	 * NAPI polling will likely be kicking in sooner rather than later.
 530	 */
 531	itr = IAVF_ITR_ADAPTIVE_BULK;
 532
 533adjust_by_size:
 534	/* If packet counts are 256 or greater we can assume we have a gross
 535	 * overestimation of what the rate should be. Instead of trying to fine
 536	 * tune it just use the formula below to try and dial in an exact value
 537	 * give the current packet size of the frame.
 538	 */
 539	avg_wire_size = bytes / packets;
 540
 541	/* The following is a crude approximation of:
 542	 *  wmem_default / (size + overhead) = desired_pkts_per_int
 543	 *  rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
 544	 *  (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
 545	 *
 546	 * Assuming wmem_default is 212992 and overhead is 640 bytes per
 547	 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
 548	 * formula down to
 549	 *
 550	 *  (170 * (size + 24)) / (size + 640) = ITR
 551	 *
 552	 * We first do some math on the packet size and then finally bitshift
 553	 * by 8 after rounding up. We also have to account for PCIe link speed
 554	 * difference as ITR scales based on this.
 555	 */
 556	if (avg_wire_size <= 60) {
 557		/* Start at 250k ints/sec */
 558		avg_wire_size = 4096;
 559	} else if (avg_wire_size <= 380) {
 560		/* 250K ints/sec to 60K ints/sec */
 561		avg_wire_size *= 40;
 562		avg_wire_size += 1696;
 563	} else if (avg_wire_size <= 1084) {
 564		/* 60K ints/sec to 36K ints/sec */
 565		avg_wire_size *= 15;
 566		avg_wire_size += 11452;
 567	} else if (avg_wire_size <= 1980) {
 568		/* 36K ints/sec to 30K ints/sec */
 569		avg_wire_size *= 5;
 570		avg_wire_size += 22420;
 571	} else {
 572		/* plateau at a limit of 30K ints/sec */
 573		avg_wire_size = 32256;
 574	}
 575
 576	/* If we are in low latency mode halve our delay which doubles the
 577	 * rate to somewhere between 100K to 16K ints/sec
 578	 */
 579	if (itr & IAVF_ITR_ADAPTIVE_LATENCY)
 580		avg_wire_size /= 2;
 581
 582	/* Resultant value is 256 times larger than it needs to be. This
 583	 * gives us room to adjust the value as needed to either increase
 584	 * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc.
 585	 *
 586	 * Use addition as we have already recorded the new latency flag
 587	 * for the ITR value.
 588	 */
 589	itr += DIV_ROUND_UP(avg_wire_size, iavf_itr_divisor(q_vector)) *
 590	       IAVF_ITR_ADAPTIVE_MIN_INC;
 
 591
 592	if ((itr & IAVF_ITR_MASK) > IAVF_ITR_ADAPTIVE_MAX_USECS) {
 593		itr &= IAVF_ITR_ADAPTIVE_LATENCY;
 594		itr += IAVF_ITR_ADAPTIVE_MAX_USECS;
 595	}
 596
 597clear_counts:
 598	/* write back value */
 599	rc->target_itr = itr;
 600
 601	/* next update should occur within next jiffy */
 602	rc->next_update = next_update + 1;
 603
 604	rc->total_bytes = 0;
 605	rc->total_packets = 0;
 606}
 607
 608/**
 609 * iavf_setup_tx_descriptors - Allocate the Tx descriptors
 610 * @tx_ring: the tx ring to set up
 611 *
 612 * Return 0 on success, negative on error
 613 **/
 614int iavf_setup_tx_descriptors(struct iavf_ring *tx_ring)
 615{
 616	struct device *dev = tx_ring->dev;
 617	int bi_size;
 618
 619	if (!dev)
 620		return -ENOMEM;
 621
 622	/* warn if we are about to overwrite the pointer */
 623	WARN_ON(tx_ring->tx_bi);
 624	bi_size = sizeof(struct iavf_tx_buffer) * tx_ring->count;
 625	tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
 626	if (!tx_ring->tx_bi)
 627		goto err;
 628
 629	/* round up to nearest 4K */
 630	tx_ring->size = tx_ring->count * sizeof(struct iavf_tx_desc);
 631	tx_ring->size = ALIGN(tx_ring->size, 4096);
 632	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
 633					   &tx_ring->dma, GFP_KERNEL);
 634	if (!tx_ring->desc) {
 635		dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
 636			 tx_ring->size);
 637		goto err;
 638	}
 639
 640	tx_ring->next_to_use = 0;
 641	tx_ring->next_to_clean = 0;
 642	tx_ring->tx_stats.prev_pkt_ctr = -1;
 643	return 0;
 644
 645err:
 646	kfree(tx_ring->tx_bi);
 647	tx_ring->tx_bi = NULL;
 648	return -ENOMEM;
 649}
 650
 651/**
 652 * iavf_clean_rx_ring - Free Rx buffers
 653 * @rx_ring: ring to be cleaned
 654 **/
 655void iavf_clean_rx_ring(struct iavf_ring *rx_ring)
 656{
 657	unsigned long bi_size;
 658	u16 i;
 659
 660	/* ring already cleared, nothing to do */
 661	if (!rx_ring->rx_bi)
 662		return;
 663
 664	if (rx_ring->skb) {
 665		dev_kfree_skb(rx_ring->skb);
 666		rx_ring->skb = NULL;
 667	}
 668
 669	/* Free all the Rx ring sk_buffs */
 670	for (i = 0; i < rx_ring->count; i++) {
 671		struct iavf_rx_buffer *rx_bi = &rx_ring->rx_bi[i];
 672
 673		if (!rx_bi->page)
 674			continue;
 675
 676		/* Invalidate cache lines that may have been written to by
 677		 * device so that we avoid corrupting memory.
 678		 */
 679		dma_sync_single_range_for_cpu(rx_ring->dev,
 680					      rx_bi->dma,
 681					      rx_bi->page_offset,
 682					      rx_ring->rx_buf_len,
 683					      DMA_FROM_DEVICE);
 684
 685		/* free resources associated with mapping */
 686		dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
 687				     iavf_rx_pg_size(rx_ring),
 688				     DMA_FROM_DEVICE,
 689				     IAVF_RX_DMA_ATTR);
 690
 691		__page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
 692
 693		rx_bi->page = NULL;
 694		rx_bi->page_offset = 0;
 695	}
 696
 697	bi_size = sizeof(struct iavf_rx_buffer) * rx_ring->count;
 698	memset(rx_ring->rx_bi, 0, bi_size);
 699
 700	/* Zero out the descriptor ring */
 701	memset(rx_ring->desc, 0, rx_ring->size);
 702
 703	rx_ring->next_to_alloc = 0;
 704	rx_ring->next_to_clean = 0;
 705	rx_ring->next_to_use = 0;
 706}
 707
 708/**
 709 * iavf_free_rx_resources - Free Rx resources
 710 * @rx_ring: ring to clean the resources from
 711 *
 712 * Free all receive software resources
 713 **/
 714void iavf_free_rx_resources(struct iavf_ring *rx_ring)
 715{
 
 
 
 
 
 716	iavf_clean_rx_ring(rx_ring);
 717	kfree(rx_ring->rx_bi);
 718	rx_ring->rx_bi = NULL;
 719
 720	if (rx_ring->desc) {
 721		dma_free_coherent(rx_ring->dev, rx_ring->size,
 722				  rx_ring->desc, rx_ring->dma);
 723		rx_ring->desc = NULL;
 724	}
 
 
 
 
 725}
 726
 727/**
 728 * iavf_setup_rx_descriptors - Allocate Rx descriptors
 729 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
 730 *
 731 * Returns 0 on success, negative on failure
 732 **/
 733int iavf_setup_rx_descriptors(struct iavf_ring *rx_ring)
 734{
 735	struct device *dev = rx_ring->dev;
 736	int bi_size;
 737
 738	/* warn if we are about to overwrite the pointer */
 739	WARN_ON(rx_ring->rx_bi);
 740	bi_size = sizeof(struct iavf_rx_buffer) * rx_ring->count;
 741	rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
 742	if (!rx_ring->rx_bi)
 743		goto err;
 
 
 
 
 
 
 744
 745	u64_stats_init(&rx_ring->syncp);
 746
 747	/* Round up to nearest 4K */
 748	rx_ring->size = rx_ring->count * sizeof(union iavf_32byte_rx_desc);
 749	rx_ring->size = ALIGN(rx_ring->size, 4096);
 750	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
 751					   &rx_ring->dma, GFP_KERNEL);
 752
 753	if (!rx_ring->desc) {
 754		dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
 755			 rx_ring->size);
 756		goto err;
 757	}
 758
 759	rx_ring->next_to_alloc = 0;
 760	rx_ring->next_to_clean = 0;
 761	rx_ring->next_to_use = 0;
 762
 763	return 0;
 
 764err:
 765	kfree(rx_ring->rx_bi);
 766	rx_ring->rx_bi = NULL;
 
 
 767	return -ENOMEM;
 768}
 769
 770/**
 771 * iavf_release_rx_desc - Store the new tail and head values
 772 * @rx_ring: ring to bump
 773 * @val: new head index
 774 **/
 775static inline void iavf_release_rx_desc(struct iavf_ring *rx_ring, u32 val)
 776{
 777	rx_ring->next_to_use = val;
 778
 779	/* update next to alloc since we have filled the ring */
 780	rx_ring->next_to_alloc = val;
 781
 782	/* Force memory writes to complete before letting h/w
 783	 * know there are new descriptors to fetch.  (Only
 784	 * applicable for weak-ordered memory model archs,
 785	 * such as IA-64).
 786	 */
 787	wmb();
 788	writel(val, rx_ring->tail);
 789}
 790
 791/**
 792 * iavf_rx_offset - Return expected offset into page to access data
 793 * @rx_ring: Ring we are requesting offset of
 794 *
 795 * Returns the offset value for ring into the data buffer.
 796 */
 797static inline unsigned int iavf_rx_offset(struct iavf_ring *rx_ring)
 798{
 799	return ring_uses_build_skb(rx_ring) ? IAVF_SKB_PAD : 0;
 800}
 801
 802/**
 803 * iavf_alloc_mapped_page - recycle or make a new page
 804 * @rx_ring: ring to use
 805 * @bi: rx_buffer struct to modify
 806 *
 807 * Returns true if the page was successfully allocated or
 808 * reused.
 809 **/
 810static bool iavf_alloc_mapped_page(struct iavf_ring *rx_ring,
 811				   struct iavf_rx_buffer *bi)
 812{
 813	struct page *page = bi->page;
 814	dma_addr_t dma;
 815
 816	/* since we are recycling buffers we should seldom need to alloc */
 817	if (likely(page)) {
 818		rx_ring->rx_stats.page_reuse_count++;
 819		return true;
 820	}
 821
 822	/* alloc new page for storage */
 823	page = dev_alloc_pages(iavf_rx_pg_order(rx_ring));
 824	if (unlikely(!page)) {
 825		rx_ring->rx_stats.alloc_page_failed++;
 826		return false;
 827	}
 828
 829	/* map page for use */
 830	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
 831				 iavf_rx_pg_size(rx_ring),
 832				 DMA_FROM_DEVICE,
 833				 IAVF_RX_DMA_ATTR);
 834
 835	/* if mapping failed free memory back to system since
 836	 * there isn't much point in holding memory we can't use
 837	 */
 838	if (dma_mapping_error(rx_ring->dev, dma)) {
 839		__free_pages(page, iavf_rx_pg_order(rx_ring));
 840		rx_ring->rx_stats.alloc_page_failed++;
 841		return false;
 842	}
 843
 844	bi->dma = dma;
 845	bi->page = page;
 846	bi->page_offset = iavf_rx_offset(rx_ring);
 847
 848	/* initialize pagecnt_bias to 1 representing we fully own page */
 849	bi->pagecnt_bias = 1;
 850
 851	return true;
 852}
 853
 854/**
 855 * iavf_receive_skb - Send a completed packet up the stack
 856 * @rx_ring:  rx ring in play
 857 * @skb: packet to send up
 858 * @vlan_tag: vlan tag for packet
 859 **/
 860static void iavf_receive_skb(struct iavf_ring *rx_ring,
 861			     struct sk_buff *skb, u16 vlan_tag)
 862{
 863	struct iavf_q_vector *q_vector = rx_ring->q_vector;
 864
 865	if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
 866	    (vlan_tag & VLAN_VID_MASK))
 867		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
 
 
 
 868
 869	napi_gro_receive(&q_vector->napi, skb);
 870}
 871
 872/**
 873 * iavf_alloc_rx_buffers - Replace used receive buffers
 874 * @rx_ring: ring to place buffers on
 875 * @cleaned_count: number of buffers to replace
 876 *
 877 * Returns false if all allocations were successful, true if any fail
 878 **/
 879bool iavf_alloc_rx_buffers(struct iavf_ring *rx_ring, u16 cleaned_count)
 880{
 
 
 
 
 
 
 881	u16 ntu = rx_ring->next_to_use;
 882	union iavf_rx_desc *rx_desc;
 883	struct iavf_rx_buffer *bi;
 884
 885	/* do nothing if no valid netdev defined */
 886	if (!rx_ring->netdev || !cleaned_count)
 887		return false;
 888
 889	rx_desc = IAVF_RX_DESC(rx_ring, ntu);
 890	bi = &rx_ring->rx_bi[ntu];
 891
 892	do {
 893		if (!iavf_alloc_mapped_page(rx_ring, bi))
 
 
 
 894			goto no_buffers;
 895
 896		/* sync the buffer for use by the device */
 897		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
 898						 bi->page_offset,
 899						 rx_ring->rx_buf_len,
 900						 DMA_FROM_DEVICE);
 901
 902		/* Refresh the desc even if buffer_addrs didn't change
 903		 * because each write-back erases this info.
 904		 */
 905		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
 906
 907		rx_desc++;
 908		bi++;
 909		ntu++;
 910		if (unlikely(ntu == rx_ring->count)) {
 911			rx_desc = IAVF_RX_DESC(rx_ring, 0);
 912			bi = rx_ring->rx_bi;
 913			ntu = 0;
 914		}
 915
 916		/* clear the status bits for the next_to_use descriptor */
 917		rx_desc->wb.qword1.status_error_len = 0;
 918
 919		cleaned_count--;
 920	} while (cleaned_count);
 921
 922	if (rx_ring->next_to_use != ntu)
 923		iavf_release_rx_desc(rx_ring, ntu);
 924
 925	return false;
 926
 927no_buffers:
 928	if (rx_ring->next_to_use != ntu)
 929		iavf_release_rx_desc(rx_ring, ntu);
 930
 
 
 931	/* make sure to come back via polling to try again after
 932	 * allocation failure
 933	 */
 934	return true;
 935}
 936
 937/**
 938 * iavf_rx_checksum - Indicate in skb if hw indicated a good cksum
 939 * @vsi: the VSI we care about
 940 * @skb: skb currently being received and modified
 941 * @rx_desc: the receive descriptor
 942 **/
 943static inline void iavf_rx_checksum(struct iavf_vsi *vsi,
 944				    struct sk_buff *skb,
 945				    union iavf_rx_desc *rx_desc)
 946{
 947	struct iavf_rx_ptype_decoded decoded;
 948	u32 rx_error, rx_status;
 949	bool ipv4, ipv6;
 950	u8 ptype;
 951	u64 qword;
 952
 953	qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
 954	ptype = (qword & IAVF_RXD_QW1_PTYPE_MASK) >> IAVF_RXD_QW1_PTYPE_SHIFT;
 955	rx_error = (qword & IAVF_RXD_QW1_ERROR_MASK) >>
 956		   IAVF_RXD_QW1_ERROR_SHIFT;
 957	rx_status = (qword & IAVF_RXD_QW1_STATUS_MASK) >>
 958		    IAVF_RXD_QW1_STATUS_SHIFT;
 959	decoded = decode_rx_desc_ptype(ptype);
 960
 961	skb->ip_summed = CHECKSUM_NONE;
 962
 963	skb_checksum_none_assert(skb);
 
 964
 965	/* Rx csum enabled and ip headers found? */
 966	if (!(vsi->netdev->features & NETIF_F_RXCSUM))
 967		return;
 968
 
 
 
 969	/* did the hardware decode the packet and checksum? */
 970	if (!(rx_status & BIT(IAVF_RX_DESC_STATUS_L3L4P_SHIFT)))
 971		return;
 972
 973	/* both known and outer_ip must be set for the below code to work */
 974	if (!(decoded.known && decoded.outer_ip))
 975		return;
 976
 977	ipv4 = (decoded.outer_ip == IAVF_RX_PTYPE_OUTER_IP) &&
 978	       (decoded.outer_ip_ver == IAVF_RX_PTYPE_OUTER_IPV4);
 979	ipv6 = (decoded.outer_ip == IAVF_RX_PTYPE_OUTER_IP) &&
 980	       (decoded.outer_ip_ver == IAVF_RX_PTYPE_OUTER_IPV6);
 981
 982	if (ipv4 &&
 983	    (rx_error & (BIT(IAVF_RX_DESC_ERROR_IPE_SHIFT) |
 984			 BIT(IAVF_RX_DESC_ERROR_EIPE_SHIFT))))
 985		goto checksum_fail;
 986
 987	/* likely incorrect csum if alternate IP extension headers found */
 988	if (ipv6 &&
 989	    rx_status & BIT(IAVF_RX_DESC_STATUS_IPV6EXADD_SHIFT))
 990		/* don't increment checksum err here, non-fatal err */
 991		return;
 992
 993	/* there was some L4 error, count error and punt packet to the stack */
 994	if (rx_error & BIT(IAVF_RX_DESC_ERROR_L4E_SHIFT))
 995		goto checksum_fail;
 996
 997	/* handle packets that were not able to be checksummed due
 998	 * to arrival speed, in this case the stack can compute
 999	 * the csum.
1000	 */
1001	if (rx_error & BIT(IAVF_RX_DESC_ERROR_PPRS_SHIFT))
1002		return;
1003
1004	/* Only report checksum unnecessary for TCP, UDP, or SCTP */
1005	switch (decoded.inner_prot) {
1006	case IAVF_RX_PTYPE_INNER_PROT_TCP:
1007	case IAVF_RX_PTYPE_INNER_PROT_UDP:
1008	case IAVF_RX_PTYPE_INNER_PROT_SCTP:
1009		skb->ip_summed = CHECKSUM_UNNECESSARY;
1010		fallthrough;
1011	default:
1012		break;
1013	}
1014
1015	return;
1016
1017checksum_fail:
1018	vsi->back->hw_csum_rx_error++;
1019}
1020
1021/**
1022 * iavf_ptype_to_htype - get a hash type
1023 * @ptype: the ptype value from the descriptor
1024 *
1025 * Returns a hash type to be used by skb_set_hash
1026 **/
1027static inline int iavf_ptype_to_htype(u8 ptype)
1028{
1029	struct iavf_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1030
1031	if (!decoded.known)
1032		return PKT_HASH_TYPE_NONE;
1033
1034	if (decoded.outer_ip == IAVF_RX_PTYPE_OUTER_IP &&
1035	    decoded.payload_layer == IAVF_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1036		return PKT_HASH_TYPE_L4;
1037	else if (decoded.outer_ip == IAVF_RX_PTYPE_OUTER_IP &&
1038		 decoded.payload_layer == IAVF_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1039		return PKT_HASH_TYPE_L3;
1040	else
1041		return PKT_HASH_TYPE_L2;
1042}
1043
1044/**
1045 * iavf_rx_hash - set the hash value in the skb
1046 * @ring: descriptor ring
1047 * @rx_desc: specific descriptor
1048 * @skb: skb currently being received and modified
1049 * @rx_ptype: Rx packet type
1050 **/
1051static inline void iavf_rx_hash(struct iavf_ring *ring,
1052				union iavf_rx_desc *rx_desc,
1053				struct sk_buff *skb,
1054				u8 rx_ptype)
1055{
 
1056	u32 hash;
1057	const __le64 rss_mask =
1058		cpu_to_le64((u64)IAVF_RX_DESC_FLTSTAT_RSS_HASH <<
1059			    IAVF_RX_DESC_STATUS_FLTSTAT_SHIFT);
1060
1061	if (ring->netdev->features & NETIF_F_RXHASH)
 
1062		return;
1063
1064	if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
1065		hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1066		skb_set_hash(skb, hash, iavf_ptype_to_htype(rx_ptype));
1067	}
1068}
1069
1070/**
1071 * iavf_process_skb_fields - Populate skb header fields from Rx descriptor
1072 * @rx_ring: rx descriptor ring packet is being transacted on
1073 * @rx_desc: pointer to the EOP Rx descriptor
1074 * @skb: pointer to current skb being populated
1075 * @rx_ptype: the packet type decoded by hardware
1076 *
1077 * This function checks the ring, descriptor, and packet information in
1078 * order to populate the hash, checksum, VLAN, protocol, and
1079 * other fields within the skb.
1080 **/
1081static inline
1082void iavf_process_skb_fields(struct iavf_ring *rx_ring,
1083			     union iavf_rx_desc *rx_desc, struct sk_buff *skb,
1084			     u8 rx_ptype)
1085{
1086	iavf_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1087
1088	iavf_rx_checksum(rx_ring->vsi, skb, rx_desc);
1089
1090	skb_record_rx_queue(skb, rx_ring->queue_index);
1091
1092	/* modifies the skb - consumes the enet header */
1093	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1094}
1095
1096/**
1097 * iavf_cleanup_headers - Correct empty headers
1098 * @rx_ring: rx descriptor ring packet is being transacted on
1099 * @skb: pointer to current skb being fixed
1100 *
1101 * Also address the case where we are pulling data in on pages only
1102 * and as such no data is present in the skb header.
1103 *
1104 * In addition if skb is not at least 60 bytes we need to pad it so that
1105 * it is large enough to qualify as a valid Ethernet frame.
1106 *
1107 * Returns true if an error was encountered and skb was freed.
1108 **/
1109static bool iavf_cleanup_headers(struct iavf_ring *rx_ring, struct sk_buff *skb)
1110{
1111	/* if eth_skb_pad returns an error the skb was freed */
1112	if (eth_skb_pad(skb))
1113		return true;
1114
1115	return false;
1116}
1117
1118/**
1119 * iavf_reuse_rx_page - page flip buffer and store it back on the ring
1120 * @rx_ring: rx descriptor ring to store buffers on
1121 * @old_buff: donor buffer to have page reused
1122 *
1123 * Synchronizes page for reuse by the adapter
1124 **/
1125static void iavf_reuse_rx_page(struct iavf_ring *rx_ring,
1126			       struct iavf_rx_buffer *old_buff)
1127{
1128	struct iavf_rx_buffer *new_buff;
1129	u16 nta = rx_ring->next_to_alloc;
1130
1131	new_buff = &rx_ring->rx_bi[nta];
1132
1133	/* update, and store next to alloc */
1134	nta++;
1135	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1136
1137	/* transfer page from old buffer to new buffer */
1138	new_buff->dma		= old_buff->dma;
1139	new_buff->page		= old_buff->page;
1140	new_buff->page_offset	= old_buff->page_offset;
1141	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
1142}
1143
1144/**
1145 * iavf_can_reuse_rx_page - Determine if this page can be reused by
1146 * the adapter for another receive
1147 *
1148 * @rx_buffer: buffer containing the page
1149 *
1150 * If page is reusable, rx_buffer->page_offset is adjusted to point to
1151 * an unused region in the page.
1152 *
1153 * For small pages, @truesize will be a constant value, half the size
1154 * of the memory at page.  We'll attempt to alternate between high and
1155 * low halves of the page, with one half ready for use by the hardware
1156 * and the other half being consumed by the stack.  We use the page
1157 * ref count to determine whether the stack has finished consuming the
1158 * portion of this page that was passed up with a previous packet.  If
1159 * the page ref count is >1, we'll assume the "other" half page is
1160 * still busy, and this page cannot be reused.
1161 *
1162 * For larger pages, @truesize will be the actual space used by the
1163 * received packet (adjusted upward to an even multiple of the cache
1164 * line size).  This will advance through the page by the amount
1165 * actually consumed by the received packets while there is still
1166 * space for a buffer.  Each region of larger pages will be used at
1167 * most once, after which the page will not be reused.
1168 *
1169 * In either case, if the page is reusable its refcount is increased.
1170 **/
1171static bool iavf_can_reuse_rx_page(struct iavf_rx_buffer *rx_buffer)
1172{
1173	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1174	struct page *page = rx_buffer->page;
1175
1176	/* Is any reuse possible? */
1177	if (!dev_page_is_reusable(page))
1178		return false;
1179
1180#if (PAGE_SIZE < 8192)
1181	/* if we are only owner of page we can reuse it */
1182	if (unlikely((page_count(page) - pagecnt_bias) > 1))
1183		return false;
1184#else
1185#define IAVF_LAST_OFFSET \
1186	(SKB_WITH_OVERHEAD(PAGE_SIZE) - IAVF_RXBUFFER_2048)
1187	if (rx_buffer->page_offset > IAVF_LAST_OFFSET)
1188		return false;
1189#endif
1190
1191	/* If we have drained the page fragment pool we need to update
1192	 * the pagecnt_bias and page count so that we fully restock the
1193	 * number of references the driver holds.
1194	 */
1195	if (unlikely(!pagecnt_bias)) {
1196		page_ref_add(page, USHRT_MAX);
1197		rx_buffer->pagecnt_bias = USHRT_MAX;
1198	}
1199
1200	return true;
1201}
1202
1203/**
1204 * iavf_add_rx_frag - Add contents of Rx buffer to sk_buff
1205 * @rx_ring: rx descriptor ring to transact packets on
1206 * @rx_buffer: buffer containing page to add
1207 * @skb: sk_buff to place the data into
1208 * @size: packet length from rx_desc
1209 *
1210 * This function will add the data contained in rx_buffer->page to the skb.
1211 * It will just attach the page as a frag to the skb.
1212 *
1213 * The function will then update the page offset.
1214 **/
1215static void iavf_add_rx_frag(struct iavf_ring *rx_ring,
1216			     struct iavf_rx_buffer *rx_buffer,
1217			     struct sk_buff *skb,
1218			     unsigned int size)
1219{
1220#if (PAGE_SIZE < 8192)
1221	unsigned int truesize = iavf_rx_pg_size(rx_ring) / 2;
1222#else
1223	unsigned int truesize = SKB_DATA_ALIGN(size + iavf_rx_offset(rx_ring));
1224#endif
1225
1226	if (!size)
1227		return;
1228
1229	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1230			rx_buffer->page_offset, size, truesize);
1231
1232	/* page is being used so we must update the page offset */
1233#if (PAGE_SIZE < 8192)
1234	rx_buffer->page_offset ^= truesize;
1235#else
1236	rx_buffer->page_offset += truesize;
1237#endif
1238}
1239
1240/**
1241 * iavf_get_rx_buffer - Fetch Rx buffer and synchronize data for use
1242 * @rx_ring: rx descriptor ring to transact packets on
1243 * @size: size of buffer to add to skb
1244 *
1245 * This function will pull an Rx buffer from the ring and synchronize it
1246 * for use by the CPU.
1247 */
1248static struct iavf_rx_buffer *iavf_get_rx_buffer(struct iavf_ring *rx_ring,
1249						 const unsigned int size)
1250{
1251	struct iavf_rx_buffer *rx_buffer;
1252
1253	if (!size)
1254		return NULL;
1255
1256	rx_buffer = &rx_ring->rx_bi[rx_ring->next_to_clean];
1257	prefetchw(rx_buffer->page);
1258
1259	/* we are reusing so sync this buffer for CPU use */
1260	dma_sync_single_range_for_cpu(rx_ring->dev,
1261				      rx_buffer->dma,
1262				      rx_buffer->page_offset,
1263				      size,
1264				      DMA_FROM_DEVICE);
1265
1266	/* We have pulled a buffer for use, so decrement pagecnt_bias */
1267	rx_buffer->pagecnt_bias--;
1268
1269	return rx_buffer;
1270}
1271
1272/**
1273 * iavf_construct_skb - Allocate skb and populate it
1274 * @rx_ring: rx descriptor ring to transact packets on
1275 * @rx_buffer: rx buffer to pull data from
1276 * @size: size of buffer to add to skb
1277 *
1278 * This function allocates an skb.  It then populates it with the page
1279 * data from the current receive descriptor, taking care to set up the
1280 * skb correctly.
1281 */
1282static struct sk_buff *iavf_construct_skb(struct iavf_ring *rx_ring,
1283					  struct iavf_rx_buffer *rx_buffer,
1284					  unsigned int size)
1285{
1286	void *va;
1287#if (PAGE_SIZE < 8192)
1288	unsigned int truesize = iavf_rx_pg_size(rx_ring) / 2;
1289#else
1290	unsigned int truesize = SKB_DATA_ALIGN(size);
1291#endif
1292	unsigned int headlen;
1293	struct sk_buff *skb;
1294
1295	if (!rx_buffer)
1296		return NULL;
1297	/* prefetch first cache line of first page */
1298	va = page_address(rx_buffer->page) + rx_buffer->page_offset;
1299	net_prefetch(va);
1300
1301	/* allocate a skb to store the frags */
1302	skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
1303			       IAVF_RX_HDR_SIZE,
1304			       GFP_ATOMIC | __GFP_NOWARN);
1305	if (unlikely(!skb))
1306		return NULL;
1307
1308	/* Determine available headroom for copy */
1309	headlen = size;
1310	if (headlen > IAVF_RX_HDR_SIZE)
1311		headlen = eth_get_headlen(skb->dev, va, IAVF_RX_HDR_SIZE);
1312
1313	/* align pull length to size of long to optimize memcpy performance */
1314	memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long)));
1315
1316	/* update all of the pointers */
1317	size -= headlen;
1318	if (size) {
1319		skb_add_rx_frag(skb, 0, rx_buffer->page,
1320				rx_buffer->page_offset + headlen,
1321				size, truesize);
1322
1323		/* buffer is used by skb, update page_offset */
1324#if (PAGE_SIZE < 8192)
1325		rx_buffer->page_offset ^= truesize;
1326#else
1327		rx_buffer->page_offset += truesize;
1328#endif
1329	} else {
1330		/* buffer is unused, reset bias back to rx_buffer */
1331		rx_buffer->pagecnt_bias++;
1332	}
1333
1334	return skb;
1335}
1336
1337/**
1338 * iavf_build_skb - Build skb around an existing buffer
1339 * @rx_ring: Rx descriptor ring to transact packets on
1340 * @rx_buffer: Rx buffer to pull data from
1341 * @size: size of buffer to add to skb
1342 *
1343 * This function builds an skb around an existing Rx buffer, taking care
1344 * to set up the skb correctly and avoid any memcpy overhead.
1345 */
1346static struct sk_buff *iavf_build_skb(struct iavf_ring *rx_ring,
1347				      struct iavf_rx_buffer *rx_buffer,
1348				      unsigned int size)
1349{
 
 
1350	void *va;
1351#if (PAGE_SIZE < 8192)
1352	unsigned int truesize = iavf_rx_pg_size(rx_ring) / 2;
1353#else
1354	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1355				SKB_DATA_ALIGN(IAVF_SKB_PAD + size);
1356#endif
1357	struct sk_buff *skb;
1358
1359	if (!rx_buffer)
1360		return NULL;
1361	/* prefetch first cache line of first page */
1362	va = page_address(rx_buffer->page) + rx_buffer->page_offset;
1363	net_prefetch(va);
1364
1365	/* build an skb around the page buffer */
1366	skb = build_skb(va - IAVF_SKB_PAD, truesize);
1367	if (unlikely(!skb))
1368		return NULL;
1369
 
 
1370	/* update pointers within the skb to store the data */
1371	skb_reserve(skb, IAVF_SKB_PAD);
1372	__skb_put(skb, size);
1373
1374	/* buffer is used by skb, update page_offset */
1375#if (PAGE_SIZE < 8192)
1376	rx_buffer->page_offset ^= truesize;
1377#else
1378	rx_buffer->page_offset += truesize;
1379#endif
1380
1381	return skb;
1382}
1383
1384/**
1385 * iavf_put_rx_buffer - Clean up used buffer and either recycle or free
1386 * @rx_ring: rx descriptor ring to transact packets on
1387 * @rx_buffer: rx buffer to pull data from
1388 *
1389 * This function will clean up the contents of the rx_buffer.  It will
1390 * either recycle the buffer or unmap it and free the associated resources.
1391 */
1392static void iavf_put_rx_buffer(struct iavf_ring *rx_ring,
1393			       struct iavf_rx_buffer *rx_buffer)
1394{
1395	if (!rx_buffer)
1396		return;
1397
1398	if (iavf_can_reuse_rx_page(rx_buffer)) {
1399		/* hand second half of page back to the ring */
1400		iavf_reuse_rx_page(rx_ring, rx_buffer);
1401		rx_ring->rx_stats.page_reuse_count++;
1402	} else {
1403		/* we are not reusing the buffer so unmap it */
1404		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
1405				     iavf_rx_pg_size(rx_ring),
1406				     DMA_FROM_DEVICE, IAVF_RX_DMA_ATTR);
1407		__page_frag_cache_drain(rx_buffer->page,
1408					rx_buffer->pagecnt_bias);
1409	}
1410
1411	/* clear contents of buffer_info */
1412	rx_buffer->page = NULL;
1413}
1414
1415/**
1416 * iavf_is_non_eop - process handling of non-EOP buffers
1417 * @rx_ring: Rx ring being processed
1418 * @rx_desc: Rx descriptor for current buffer
1419 * @skb: Current socket buffer containing buffer in progress
1420 *
1421 * This function updates next to clean.  If the buffer is an EOP buffer
1422 * this function exits returning false, otherwise it will place the
1423 * sk_buff in the next buffer to be chained and return true indicating
1424 * that this is in fact a non-EOP buffer.
1425 **/
1426static bool iavf_is_non_eop(struct iavf_ring *rx_ring,
1427			    union iavf_rx_desc *rx_desc,
1428			    struct sk_buff *skb)
1429{
1430	u32 ntc = rx_ring->next_to_clean + 1;
1431
1432	/* fetch, update, and store next to clean */
1433	ntc = (ntc < rx_ring->count) ? ntc : 0;
1434	rx_ring->next_to_clean = ntc;
1435
1436	prefetch(IAVF_RX_DESC(rx_ring, ntc));
1437
1438	/* if we are the last buffer then there is nothing else to do */
1439#define IAVF_RXD_EOF BIT(IAVF_RX_DESC_STATUS_EOF_SHIFT)
1440	if (likely(iavf_test_staterr(rx_desc, IAVF_RXD_EOF)))
1441		return false;
1442
1443	rx_ring->rx_stats.non_eop_descs++;
1444
1445	return true;
1446}
1447
1448/**
1449 * iavf_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
1450 * @rx_ring: rx descriptor ring to transact packets on
1451 * @budget: Total limit on number of packets to process
1452 *
1453 * This function provides a "bounce buffer" approach to Rx interrupt
1454 * processing.  The advantage to this is that on systems that have
1455 * expensive overhead for IOMMU access this provides a means of avoiding
1456 * it by maintaining the mapping of the page to the system.
1457 *
1458 * Returns amount of work completed
1459 **/
1460static int iavf_clean_rx_irq(struct iavf_ring *rx_ring, int budget)
1461{
1462	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1463	struct sk_buff *skb = rx_ring->skb;
1464	u16 cleaned_count = IAVF_DESC_UNUSED(rx_ring);
1465	bool failure = false;
1466
1467	while (likely(total_rx_packets < (unsigned int)budget)) {
1468		struct iavf_rx_buffer *rx_buffer;
1469		union iavf_rx_desc *rx_desc;
1470		unsigned int size;
1471		u16 vlan_tag;
1472		u8 rx_ptype;
1473		u64 qword;
1474
1475		/* return some buffers to hardware, one at a time is too slow */
1476		if (cleaned_count >= IAVF_RX_BUFFER_WRITE) {
1477			failure = failure ||
1478				  iavf_alloc_rx_buffers(rx_ring, cleaned_count);
1479			cleaned_count = 0;
1480		}
1481
1482		rx_desc = IAVF_RX_DESC(rx_ring, rx_ring->next_to_clean);
1483
1484		/* status_error_len will always be zero for unused descriptors
1485		 * because it's cleared in cleanup, and overlaps with hdr_addr
1486		 * which is always zero because packet split isn't used, if the
1487		 * hardware wrote DD then the length will be non-zero
1488		 */
1489		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1490
1491		/* This memory barrier is needed to keep us from reading
1492		 * any other fields out of the rx_desc until we have
1493		 * verified the descriptor has been written back.
1494		 */
1495		dma_rmb();
1496#define IAVF_RXD_DD BIT(IAVF_RX_DESC_STATUS_DD_SHIFT)
1497		if (!iavf_test_staterr(rx_desc, IAVF_RXD_DD))
1498			break;
1499
1500		size = (qword & IAVF_RXD_QW1_LENGTH_PBUF_MASK) >>
1501		       IAVF_RXD_QW1_LENGTH_PBUF_SHIFT;
1502
1503		iavf_trace(clean_rx_irq, rx_ring, rx_desc, skb);
1504		rx_buffer = iavf_get_rx_buffer(rx_ring, size);
 
 
 
1505
1506		/* retrieve a buffer from the ring */
1507		if (skb)
1508			iavf_add_rx_frag(rx_ring, rx_buffer, skb, size);
1509		else if (ring_uses_build_skb(rx_ring))
1510			skb = iavf_build_skb(rx_ring, rx_buffer, size);
1511		else
1512			skb = iavf_construct_skb(rx_ring, rx_buffer, size);
1513
1514		/* exit if we failed to retrieve a buffer */
1515		if (!skb) {
1516			rx_ring->rx_stats.alloc_buff_failed++;
1517			if (rx_buffer)
1518				rx_buffer->pagecnt_bias++;
1519			break;
1520		}
1521
1522		iavf_put_rx_buffer(rx_ring, rx_buffer);
1523		cleaned_count++;
1524
1525		if (iavf_is_non_eop(rx_ring, rx_desc, skb))
1526			continue;
1527
1528		/* ERR_MASK will only have valid bits if EOP set, and
1529		 * what we are doing here is actually checking
1530		 * IAVF_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
1531		 * the error field
1532		 */
1533		if (unlikely(iavf_test_staterr(rx_desc, BIT(IAVF_RXD_QW1_ERROR_SHIFT)))) {
1534			dev_kfree_skb_any(skb);
1535			skb = NULL;
1536			continue;
1537		}
1538
1539		if (iavf_cleanup_headers(rx_ring, skb)) {
1540			skb = NULL;
1541			continue;
1542		}
1543
1544		/* probably a little skewed due to removing CRC */
1545		total_rx_bytes += skb->len;
1546
1547		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1548		rx_ptype = (qword & IAVF_RXD_QW1_PTYPE_MASK) >>
1549			   IAVF_RXD_QW1_PTYPE_SHIFT;
1550
1551		/* populate checksum, VLAN, and protocol */
1552		iavf_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
1553
1554
1555		vlan_tag = (qword & BIT(IAVF_RX_DESC_STATUS_L2TAG1P_SHIFT)) ?
1556			   le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1) : 0;
 
 
 
 
1557
1558		iavf_trace(clean_rx_irq_rx, rx_ring, rx_desc, skb);
1559		iavf_receive_skb(rx_ring, skb, vlan_tag);
1560		skb = NULL;
1561
1562		/* update budget accounting */
1563		total_rx_packets++;
1564	}
1565
1566	rx_ring->skb = skb;
1567
1568	u64_stats_update_begin(&rx_ring->syncp);
1569	rx_ring->stats.packets += total_rx_packets;
1570	rx_ring->stats.bytes += total_rx_bytes;
1571	u64_stats_update_end(&rx_ring->syncp);
1572	rx_ring->q_vector->rx.total_packets += total_rx_packets;
1573	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1574
1575	/* guarantee a trip back through this routine if there was a failure */
1576	return failure ? budget : (int)total_rx_packets;
1577}
1578
1579static inline u32 iavf_buildreg_itr(const int type, u16 itr)
1580{
1581	u32 val;
1582
1583	/* We don't bother with setting the CLEARPBA bit as the data sheet
1584	 * points out doing so is "meaningless since it was already
1585	 * auto-cleared". The auto-clearing happens when the interrupt is
1586	 * asserted.
1587	 *
1588	 * Hardware errata 28 for also indicates that writing to a
1589	 * xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear
1590	 * an event in the PBA anyway so we need to rely on the automask
1591	 * to hold pending events for us until the interrupt is re-enabled
1592	 *
1593	 * The itr value is reported in microseconds, and the register
1594	 * value is recorded in 2 microsecond units. For this reason we
1595	 * only need to shift by the interval shift - 1 instead of the
1596	 * full value.
1597	 */
1598	itr &= IAVF_ITR_MASK;
1599
1600	val = IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
1601	      (type << IAVF_VFINT_DYN_CTLN1_ITR_INDX_SHIFT) |
1602	      (itr << (IAVF_VFINT_DYN_CTLN1_INTERVAL_SHIFT - 1));
1603
1604	return val;
1605}
1606
1607/* a small macro to shorten up some long lines */
1608#define INTREG IAVF_VFINT_DYN_CTLN1
1609
1610/* The act of updating the ITR will cause it to immediately trigger. In order
1611 * to prevent this from throwing off adaptive update statistics we defer the
1612 * update so that it can only happen so often. So after either Tx or Rx are
1613 * updated we make the adaptive scheme wait until either the ITR completely
1614 * expires via the next_update expiration or we have been through at least
1615 * 3 interrupts.
1616 */
1617#define ITR_COUNTDOWN_START 3
1618
1619/**
1620 * iavf_update_enable_itr - Update itr and re-enable MSIX interrupt
1621 * @vsi: the VSI we care about
1622 * @q_vector: q_vector for which itr is being updated and interrupt enabled
1623 *
1624 **/
1625static inline void iavf_update_enable_itr(struct iavf_vsi *vsi,
1626					  struct iavf_q_vector *q_vector)
1627{
1628	struct iavf_hw *hw = &vsi->back->hw;
1629	u32 intval;
1630
1631	/* These will do nothing if dynamic updates are not enabled */
1632	iavf_update_itr(q_vector, &q_vector->tx);
1633	iavf_update_itr(q_vector, &q_vector->rx);
1634
1635	/* This block of logic allows us to get away with only updating
1636	 * one ITR value with each interrupt. The idea is to perform a
1637	 * pseudo-lazy update with the following criteria.
1638	 *
1639	 * 1. Rx is given higher priority than Tx if both are in same state
1640	 * 2. If we must reduce an ITR that is given highest priority.
1641	 * 3. We then give priority to increasing ITR based on amount.
1642	 */
1643	if (q_vector->rx.target_itr < q_vector->rx.current_itr) {
1644		/* Rx ITR needs to be reduced, this is highest priority */
1645		intval = iavf_buildreg_itr(IAVF_RX_ITR,
1646					   q_vector->rx.target_itr);
1647		q_vector->rx.current_itr = q_vector->rx.target_itr;
1648		q_vector->itr_countdown = ITR_COUNTDOWN_START;
1649	} else if ((q_vector->tx.target_itr < q_vector->tx.current_itr) ||
1650		   ((q_vector->rx.target_itr - q_vector->rx.current_itr) <
1651		    (q_vector->tx.target_itr - q_vector->tx.current_itr))) {
1652		/* Tx ITR needs to be reduced, this is second priority
1653		 * Tx ITR needs to be increased more than Rx, fourth priority
1654		 */
1655		intval = iavf_buildreg_itr(IAVF_TX_ITR,
1656					   q_vector->tx.target_itr);
1657		q_vector->tx.current_itr = q_vector->tx.target_itr;
1658		q_vector->itr_countdown = ITR_COUNTDOWN_START;
1659	} else if (q_vector->rx.current_itr != q_vector->rx.target_itr) {
1660		/* Rx ITR needs to be increased, third priority */
1661		intval = iavf_buildreg_itr(IAVF_RX_ITR,
1662					   q_vector->rx.target_itr);
1663		q_vector->rx.current_itr = q_vector->rx.target_itr;
1664		q_vector->itr_countdown = ITR_COUNTDOWN_START;
1665	} else {
1666		/* No ITR update, lowest priority */
1667		intval = iavf_buildreg_itr(IAVF_ITR_NONE, 0);
1668		if (q_vector->itr_countdown)
1669			q_vector->itr_countdown--;
1670	}
1671
1672	if (!test_bit(__IAVF_VSI_DOWN, vsi->state))
1673		wr32(hw, INTREG(q_vector->reg_idx), intval);
1674}
1675
1676/**
1677 * iavf_napi_poll - NAPI polling Rx/Tx cleanup routine
1678 * @napi: napi struct with our devices info in it
1679 * @budget: amount of work driver is allowed to do this pass, in packets
1680 *
1681 * This function will clean all queues associated with a q_vector.
1682 *
1683 * Returns the amount of work done
1684 **/
1685int iavf_napi_poll(struct napi_struct *napi, int budget)
1686{
1687	struct iavf_q_vector *q_vector =
1688			       container_of(napi, struct iavf_q_vector, napi);
1689	struct iavf_vsi *vsi = q_vector->vsi;
1690	struct iavf_ring *ring;
1691	bool clean_complete = true;
1692	bool arm_wb = false;
1693	int budget_per_ring;
1694	int work_done = 0;
1695
1696	if (test_bit(__IAVF_VSI_DOWN, vsi->state)) {
1697		napi_complete(napi);
1698		return 0;
1699	}
1700
1701	/* Since the actual Tx work is minimal, we can give the Tx a larger
1702	 * budget and be more aggressive about cleaning up the Tx descriptors.
1703	 */
1704	iavf_for_each_ring(ring, q_vector->tx) {
1705		if (!iavf_clean_tx_irq(vsi, ring, budget)) {
1706			clean_complete = false;
1707			continue;
1708		}
1709		arm_wb |= ring->arm_wb;
1710		ring->arm_wb = false;
1711	}
1712
1713	/* Handle case where we are called by netpoll with a budget of 0 */
1714	if (budget <= 0)
1715		goto tx_only;
1716
1717	/* We attempt to distribute budget to each Rx queue fairly, but don't
1718	 * allow the budget to go below 1 because that would exit polling early.
1719	 */
1720	budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
1721
1722	iavf_for_each_ring(ring, q_vector->rx) {
1723		int cleaned = iavf_clean_rx_irq(ring, budget_per_ring);
1724
1725		work_done += cleaned;
1726		/* if we clean as many as budgeted, we must not be done */
1727		if (cleaned >= budget_per_ring)
1728			clean_complete = false;
1729	}
1730
1731	/* If work not completed, return budget and polling will return */
1732	if (!clean_complete) {
1733		int cpu_id = smp_processor_id();
1734
1735		/* It is possible that the interrupt affinity has changed but,
1736		 * if the cpu is pegged at 100%, polling will never exit while
1737		 * traffic continues and the interrupt will be stuck on this
1738		 * cpu.  We check to make sure affinity is correct before we
1739		 * continue to poll, otherwise we must stop polling so the
1740		 * interrupt can move to the correct cpu.
1741		 */
1742		if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) {
1743			/* Tell napi that we are done polling */
1744			napi_complete_done(napi, work_done);
1745
1746			/* Force an interrupt */
1747			iavf_force_wb(vsi, q_vector);
1748
1749			/* Return budget-1 so that polling stops */
1750			return budget - 1;
1751		}
1752tx_only:
1753		if (arm_wb) {
1754			q_vector->tx.ring[0].tx_stats.tx_force_wb++;
1755			iavf_enable_wb_on_itr(vsi, q_vector);
1756		}
1757		return budget;
1758	}
1759
1760	if (vsi->back->flags & IAVF_TXR_FLAGS_WB_ON_ITR)
1761		q_vector->arm_wb_state = false;
1762
1763	/* Exit the polling mode, but don't re-enable interrupts if stack might
1764	 * poll us due to busy-polling
1765	 */
1766	if (likely(napi_complete_done(napi, work_done)))
1767		iavf_update_enable_itr(vsi, q_vector);
1768
1769	return min(work_done, budget - 1);
1770}
1771
1772/**
1773 * iavf_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
1774 * @skb:     send buffer
1775 * @tx_ring: ring to send buffer on
1776 * @flags:   the tx flags to be set
1777 *
1778 * Checks the skb and set up correspondingly several generic transmit flags
1779 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
1780 *
1781 * Returns error code indicate the frame should be dropped upon error and the
1782 * otherwise  returns 0 to indicate the flags has been set properly.
1783 **/
1784static inline int iavf_tx_prepare_vlan_flags(struct sk_buff *skb,
1785					     struct iavf_ring *tx_ring,
1786					     u32 *flags)
1787{
1788	__be16 protocol = skb->protocol;
1789	u32  tx_flags = 0;
1790
1791	if (protocol == htons(ETH_P_8021Q) &&
1792	    !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
1793		/* When HW VLAN acceleration is turned off by the user the
1794		 * stack sets the protocol to 8021q so that the driver
1795		 * can take any steps required to support the SW only
1796		 * VLAN handling.  In our case the driver doesn't need
1797		 * to take any further steps so just set the protocol
1798		 * to the encapsulated ethertype.
1799		 */
1800		skb->protocol = vlan_get_protocol(skb);
1801		goto out;
1802	}
1803
1804	/* if we have a HW VLAN tag being added, default to the HW one */
1805	if (skb_vlan_tag_present(skb)) {
1806		tx_flags |= skb_vlan_tag_get(skb) << IAVF_TX_FLAGS_VLAN_SHIFT;
 
 
 
 
 
 
 
1807		tx_flags |= IAVF_TX_FLAGS_HW_VLAN;
1808	/* else if it is a SW VLAN, check the next protocol and store the tag */
1809	} else if (protocol == htons(ETH_P_8021Q)) {
1810		struct vlan_hdr *vhdr, _vhdr;
1811
1812		vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
1813		if (!vhdr)
1814			return -EINVAL;
1815
1816		protocol = vhdr->h_vlan_encapsulated_proto;
1817		tx_flags |= ntohs(vhdr->h_vlan_TCI) << IAVF_TX_FLAGS_VLAN_SHIFT;
1818		tx_flags |= IAVF_TX_FLAGS_SW_VLAN;
1819	}
1820
1821out:
1822	*flags = tx_flags;
1823	return 0;
1824}
1825
1826/**
1827 * iavf_tso - set up the tso context descriptor
1828 * @first:    pointer to first Tx buffer for xmit
1829 * @hdr_len:  ptr to the size of the packet header
1830 * @cd_type_cmd_tso_mss: Quad Word 1
1831 *
1832 * Returns 0 if no TSO can happen, 1 if tso is going, or error
1833 **/
1834static int iavf_tso(struct iavf_tx_buffer *first, u8 *hdr_len,
1835		    u64 *cd_type_cmd_tso_mss)
1836{
1837	struct sk_buff *skb = first->skb;
1838	u64 cd_cmd, cd_tso_len, cd_mss;
1839	union {
1840		struct iphdr *v4;
1841		struct ipv6hdr *v6;
1842		unsigned char *hdr;
1843	} ip;
1844	union {
1845		struct tcphdr *tcp;
1846		struct udphdr *udp;
1847		unsigned char *hdr;
1848	} l4;
1849	u32 paylen, l4_offset;
1850	u16 gso_segs, gso_size;
1851	int err;
1852
1853	if (skb->ip_summed != CHECKSUM_PARTIAL)
1854		return 0;
1855
1856	if (!skb_is_gso(skb))
1857		return 0;
1858
1859	err = skb_cow_head(skb, 0);
1860	if (err < 0)
1861		return err;
1862
1863	ip.hdr = skb_network_header(skb);
1864	l4.hdr = skb_transport_header(skb);
1865
1866	/* initialize outer IP header fields */
1867	if (ip.v4->version == 4) {
1868		ip.v4->tot_len = 0;
1869		ip.v4->check = 0;
1870	} else {
1871		ip.v6->payload_len = 0;
1872	}
1873
1874	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
1875					 SKB_GSO_GRE_CSUM |
1876					 SKB_GSO_IPXIP4 |
1877					 SKB_GSO_IPXIP6 |
1878					 SKB_GSO_UDP_TUNNEL |
1879					 SKB_GSO_UDP_TUNNEL_CSUM)) {
1880		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
1881		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
1882			l4.udp->len = 0;
1883
1884			/* determine offset of outer transport header */
1885			l4_offset = l4.hdr - skb->data;
1886
1887			/* remove payload length from outer checksum */
1888			paylen = skb->len - l4_offset;
1889			csum_replace_by_diff(&l4.udp->check,
1890					     (__force __wsum)htonl(paylen));
1891		}
1892
1893		/* reset pointers to inner headers */
1894		ip.hdr = skb_inner_network_header(skb);
1895		l4.hdr = skb_inner_transport_header(skb);
1896
1897		/* initialize inner IP header fields */
1898		if (ip.v4->version == 4) {
1899			ip.v4->tot_len = 0;
1900			ip.v4->check = 0;
1901		} else {
1902			ip.v6->payload_len = 0;
1903		}
1904	}
1905
1906	/* determine offset of inner transport header */
1907	l4_offset = l4.hdr - skb->data;
1908	/* remove payload length from inner checksum */
1909	paylen = skb->len - l4_offset;
1910
1911	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
1912		csum_replace_by_diff(&l4.udp->check,
1913				     (__force __wsum)htonl(paylen));
1914		/* compute length of UDP segmentation header */
1915		*hdr_len = (u8)sizeof(l4.udp) + l4_offset;
1916	} else {
1917		csum_replace_by_diff(&l4.tcp->check,
1918				     (__force __wsum)htonl(paylen));
1919		/* compute length of TCP segmentation header */
1920		*hdr_len = (u8)((l4.tcp->doff * 4) + l4_offset);
1921	}
1922
1923	/* pull values out of skb_shinfo */
1924	gso_size = skb_shinfo(skb)->gso_size;
1925	gso_segs = skb_shinfo(skb)->gso_segs;
1926
1927	/* update GSO size and bytecount with header size */
1928	first->gso_segs = gso_segs;
1929	first->bytecount += (first->gso_segs - 1) * *hdr_len;
1930
1931	/* find the field values */
1932	cd_cmd = IAVF_TX_CTX_DESC_TSO;
1933	cd_tso_len = skb->len - *hdr_len;
1934	cd_mss = gso_size;
1935	*cd_type_cmd_tso_mss |= (cd_cmd << IAVF_TXD_CTX_QW1_CMD_SHIFT) |
1936				(cd_tso_len << IAVF_TXD_CTX_QW1_TSO_LEN_SHIFT) |
1937				(cd_mss << IAVF_TXD_CTX_QW1_MSS_SHIFT);
1938	return 1;
1939}
1940
1941/**
1942 * iavf_tx_enable_csum - Enable Tx checksum offloads
1943 * @skb: send buffer
1944 * @tx_flags: pointer to Tx flags currently set
1945 * @td_cmd: Tx descriptor command bits to set
1946 * @td_offset: Tx descriptor header offsets to set
1947 * @tx_ring: Tx descriptor ring
1948 * @cd_tunneling: ptr to context desc bits
1949 **/
1950static int iavf_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
1951			       u32 *td_cmd, u32 *td_offset,
1952			       struct iavf_ring *tx_ring,
1953			       u32 *cd_tunneling)
1954{
1955	union {
1956		struct iphdr *v4;
1957		struct ipv6hdr *v6;
1958		unsigned char *hdr;
1959	} ip;
1960	union {
1961		struct tcphdr *tcp;
1962		struct udphdr *udp;
1963		unsigned char *hdr;
1964	} l4;
1965	unsigned char *exthdr;
1966	u32 offset, cmd = 0;
1967	__be16 frag_off;
1968	u8 l4_proto = 0;
1969
1970	if (skb->ip_summed != CHECKSUM_PARTIAL)
1971		return 0;
1972
1973	ip.hdr = skb_network_header(skb);
1974	l4.hdr = skb_transport_header(skb);
1975
1976	/* compute outer L2 header size */
1977	offset = ((ip.hdr - skb->data) / 2) << IAVF_TX_DESC_LENGTH_MACLEN_SHIFT;
1978
1979	if (skb->encapsulation) {
1980		u32 tunnel = 0;
1981		/* define outer network header type */
1982		if (*tx_flags & IAVF_TX_FLAGS_IPV4) {
1983			tunnel |= (*tx_flags & IAVF_TX_FLAGS_TSO) ?
1984				  IAVF_TX_CTX_EXT_IP_IPV4 :
1985				  IAVF_TX_CTX_EXT_IP_IPV4_NO_CSUM;
1986
1987			l4_proto = ip.v4->protocol;
1988		} else if (*tx_flags & IAVF_TX_FLAGS_IPV6) {
1989			tunnel |= IAVF_TX_CTX_EXT_IP_IPV6;
1990
1991			exthdr = ip.hdr + sizeof(*ip.v6);
1992			l4_proto = ip.v6->nexthdr;
1993			if (l4.hdr != exthdr)
1994				ipv6_skip_exthdr(skb, exthdr - skb->data,
1995						 &l4_proto, &frag_off);
1996		}
1997
1998		/* define outer transport */
1999		switch (l4_proto) {
2000		case IPPROTO_UDP:
2001			tunnel |= IAVF_TXD_CTX_UDP_TUNNELING;
2002			*tx_flags |= IAVF_TX_FLAGS_VXLAN_TUNNEL;
2003			break;
2004		case IPPROTO_GRE:
2005			tunnel |= IAVF_TXD_CTX_GRE_TUNNELING;
2006			*tx_flags |= IAVF_TX_FLAGS_VXLAN_TUNNEL;
2007			break;
2008		case IPPROTO_IPIP:
2009		case IPPROTO_IPV6:
2010			*tx_flags |= IAVF_TX_FLAGS_VXLAN_TUNNEL;
2011			l4.hdr = skb_inner_network_header(skb);
2012			break;
2013		default:
2014			if (*tx_flags & IAVF_TX_FLAGS_TSO)
2015				return -1;
2016
2017			skb_checksum_help(skb);
2018			return 0;
2019		}
2020
2021		/* compute outer L3 header size */
2022		tunnel |= ((l4.hdr - ip.hdr) / 4) <<
2023			  IAVF_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
2024
2025		/* switch IP header pointer from outer to inner header */
2026		ip.hdr = skb_inner_network_header(skb);
2027
2028		/* compute tunnel header size */
2029		tunnel |= ((ip.hdr - l4.hdr) / 2) <<
2030			  IAVF_TXD_CTX_QW0_NATLEN_SHIFT;
2031
2032		/* indicate if we need to offload outer UDP header */
2033		if ((*tx_flags & IAVF_TX_FLAGS_TSO) &&
2034		    !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
2035		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
2036			tunnel |= IAVF_TXD_CTX_QW0_L4T_CS_MASK;
2037
2038		/* record tunnel offload values */
2039		*cd_tunneling |= tunnel;
2040
2041		/* switch L4 header pointer from outer to inner */
2042		l4.hdr = skb_inner_transport_header(skb);
2043		l4_proto = 0;
2044
2045		/* reset type as we transition from outer to inner headers */
2046		*tx_flags &= ~(IAVF_TX_FLAGS_IPV4 | IAVF_TX_FLAGS_IPV6);
2047		if (ip.v4->version == 4)
2048			*tx_flags |= IAVF_TX_FLAGS_IPV4;
2049		if (ip.v6->version == 6)
2050			*tx_flags |= IAVF_TX_FLAGS_IPV6;
2051	}
2052
2053	/* Enable IP checksum offloads */
2054	if (*tx_flags & IAVF_TX_FLAGS_IPV4) {
2055		l4_proto = ip.v4->protocol;
2056		/* the stack computes the IP header already, the only time we
2057		 * need the hardware to recompute it is in the case of TSO.
2058		 */
2059		cmd |= (*tx_flags & IAVF_TX_FLAGS_TSO) ?
2060		       IAVF_TX_DESC_CMD_IIPT_IPV4_CSUM :
2061		       IAVF_TX_DESC_CMD_IIPT_IPV4;
2062	} else if (*tx_flags & IAVF_TX_FLAGS_IPV6) {
2063		cmd |= IAVF_TX_DESC_CMD_IIPT_IPV6;
2064
2065		exthdr = ip.hdr + sizeof(*ip.v6);
2066		l4_proto = ip.v6->nexthdr;
2067		if (l4.hdr != exthdr)
2068			ipv6_skip_exthdr(skb, exthdr - skb->data,
2069					 &l4_proto, &frag_off);
2070	}
2071
2072	/* compute inner L3 header size */
2073	offset |= ((l4.hdr - ip.hdr) / 4) << IAVF_TX_DESC_LENGTH_IPLEN_SHIFT;
2074
2075	/* Enable L4 checksum offloads */
2076	switch (l4_proto) {
2077	case IPPROTO_TCP:
2078		/* enable checksum offloads */
2079		cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_TCP;
2080		offset |= l4.tcp->doff << IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2081		break;
2082	case IPPROTO_SCTP:
2083		/* enable SCTP checksum offload */
2084		cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_SCTP;
2085		offset |= (sizeof(struct sctphdr) >> 2) <<
2086			  IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2087		break;
2088	case IPPROTO_UDP:
2089		/* enable UDP checksum offload */
2090		cmd |= IAVF_TX_DESC_CMD_L4T_EOFT_UDP;
2091		offset |= (sizeof(struct udphdr) >> 2) <<
2092			  IAVF_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2093		break;
2094	default:
2095		if (*tx_flags & IAVF_TX_FLAGS_TSO)
2096			return -1;
2097		skb_checksum_help(skb);
2098		return 0;
2099	}
2100
2101	*td_cmd |= cmd;
2102	*td_offset |= offset;
2103
2104	return 1;
2105}
2106
2107/**
2108 * iavf_create_tx_ctx - Build the Tx context descriptor
2109 * @tx_ring:  ring to create the descriptor on
2110 * @cd_type_cmd_tso_mss: Quad Word 1
2111 * @cd_tunneling: Quad Word 0 - bits 0-31
2112 * @cd_l2tag2: Quad Word 0 - bits 32-63
2113 **/
2114static void iavf_create_tx_ctx(struct iavf_ring *tx_ring,
2115			       const u64 cd_type_cmd_tso_mss,
2116			       const u32 cd_tunneling, const u32 cd_l2tag2)
2117{
2118	struct iavf_tx_context_desc *context_desc;
2119	int i = tx_ring->next_to_use;
2120
2121	if ((cd_type_cmd_tso_mss == IAVF_TX_DESC_DTYPE_CONTEXT) &&
2122	    !cd_tunneling && !cd_l2tag2)
2123		return;
2124
2125	/* grab the next descriptor */
2126	context_desc = IAVF_TX_CTXTDESC(tx_ring, i);
2127
2128	i++;
2129	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2130
2131	/* cpu_to_le32 and assign to struct fields */
2132	context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
2133	context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
2134	context_desc->rsvd = cpu_to_le16(0);
2135	context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
2136}
2137
2138/**
2139 * __iavf_chk_linearize - Check if there are more than 8 buffers per packet
2140 * @skb:      send buffer
2141 *
2142 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
2143 * and so we need to figure out the cases where we need to linearize the skb.
2144 *
2145 * For TSO we need to count the TSO header and segment payload separately.
2146 * As such we need to check cases where we have 7 fragments or more as we
2147 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
2148 * the segment payload in the first descriptor, and another 7 for the
2149 * fragments.
2150 **/
2151bool __iavf_chk_linearize(struct sk_buff *skb)
2152{
2153	const skb_frag_t *frag, *stale;
2154	int nr_frags, sum;
2155
2156	/* no need to check if number of frags is less than 7 */
2157	nr_frags = skb_shinfo(skb)->nr_frags;
2158	if (nr_frags < (IAVF_MAX_BUFFER_TXD - 1))
2159		return false;
2160
2161	/* We need to walk through the list and validate that each group
2162	 * of 6 fragments totals at least gso_size.
2163	 */
2164	nr_frags -= IAVF_MAX_BUFFER_TXD - 2;
2165	frag = &skb_shinfo(skb)->frags[0];
2166
2167	/* Initialize size to the negative value of gso_size minus 1.  We
2168	 * use this as the worst case scenerio in which the frag ahead
2169	 * of us only provides one byte which is why we are limited to 6
2170	 * descriptors for a single transmit as the header and previous
2171	 * fragment are already consuming 2 descriptors.
2172	 */
2173	sum = 1 - skb_shinfo(skb)->gso_size;
2174
2175	/* Add size of frags 0 through 4 to create our initial sum */
2176	sum += skb_frag_size(frag++);
2177	sum += skb_frag_size(frag++);
2178	sum += skb_frag_size(frag++);
2179	sum += skb_frag_size(frag++);
2180	sum += skb_frag_size(frag++);
2181
2182	/* Walk through fragments adding latest fragment, testing it, and
2183	 * then removing stale fragments from the sum.
2184	 */
2185	for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
2186		int stale_size = skb_frag_size(stale);
2187
2188		sum += skb_frag_size(frag++);
2189
2190		/* The stale fragment may present us with a smaller
2191		 * descriptor than the actual fragment size. To account
2192		 * for that we need to remove all the data on the front and
2193		 * figure out what the remainder would be in the last
2194		 * descriptor associated with the fragment.
2195		 */
2196		if (stale_size > IAVF_MAX_DATA_PER_TXD) {
2197			int align_pad = -(skb_frag_off(stale)) &
2198					(IAVF_MAX_READ_REQ_SIZE - 1);
2199
2200			sum -= align_pad;
2201			stale_size -= align_pad;
2202
2203			do {
2204				sum -= IAVF_MAX_DATA_PER_TXD_ALIGNED;
2205				stale_size -= IAVF_MAX_DATA_PER_TXD_ALIGNED;
2206			} while (stale_size > IAVF_MAX_DATA_PER_TXD);
2207		}
2208
2209		/* if sum is negative we failed to make sufficient progress */
2210		if (sum < 0)
2211			return true;
2212
2213		if (!nr_frags--)
2214			break;
2215
2216		sum -= stale_size;
2217	}
2218
2219	return false;
2220}
2221
2222/**
2223 * __iavf_maybe_stop_tx - 2nd level check for tx stop conditions
2224 * @tx_ring: the ring to be checked
2225 * @size:    the size buffer we want to assure is available
2226 *
2227 * Returns -EBUSY if a stop is needed, else 0
2228 **/
2229int __iavf_maybe_stop_tx(struct iavf_ring *tx_ring, int size)
2230{
2231	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
2232	/* Memory barrier before checking head and tail */
2233	smp_mb();
2234
2235	/* Check again in a case another CPU has just made room available. */
2236	if (likely(IAVF_DESC_UNUSED(tx_ring) < size))
2237		return -EBUSY;
2238
2239	/* A reprieve! - use start_queue because it doesn't call schedule */
2240	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
2241	++tx_ring->tx_stats.restart_queue;
2242	return 0;
2243}
2244
2245/**
2246 * iavf_tx_map - Build the Tx descriptor
2247 * @tx_ring:  ring to send buffer on
2248 * @skb:      send buffer
2249 * @first:    first buffer info buffer to use
2250 * @tx_flags: collected send information
2251 * @hdr_len:  size of the packet header
2252 * @td_cmd:   the command field in the descriptor
2253 * @td_offset: offset for checksum or crc
2254 **/
2255static inline void iavf_tx_map(struct iavf_ring *tx_ring, struct sk_buff *skb,
2256			       struct iavf_tx_buffer *first, u32 tx_flags,
2257			       const u8 hdr_len, u32 td_cmd, u32 td_offset)
2258{
2259	unsigned int data_len = skb->data_len;
2260	unsigned int size = skb_headlen(skb);
2261	skb_frag_t *frag;
2262	struct iavf_tx_buffer *tx_bi;
2263	struct iavf_tx_desc *tx_desc;
2264	u16 i = tx_ring->next_to_use;
2265	u32 td_tag = 0;
2266	dma_addr_t dma;
2267
2268	if (tx_flags & IAVF_TX_FLAGS_HW_VLAN) {
2269		td_cmd |= IAVF_TX_DESC_CMD_IL2TAG1;
2270		td_tag = (tx_flags & IAVF_TX_FLAGS_VLAN_MASK) >>
2271			 IAVF_TX_FLAGS_VLAN_SHIFT;
2272	}
2273
2274	first->tx_flags = tx_flags;
2275
2276	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
2277
2278	tx_desc = IAVF_TX_DESC(tx_ring, i);
2279	tx_bi = first;
2280
2281	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
2282		unsigned int max_data = IAVF_MAX_DATA_PER_TXD_ALIGNED;
2283
2284		if (dma_mapping_error(tx_ring->dev, dma))
2285			goto dma_error;
2286
2287		/* record length, and DMA address */
2288		dma_unmap_len_set(tx_bi, len, size);
2289		dma_unmap_addr_set(tx_bi, dma, dma);
2290
2291		/* align size to end of page */
2292		max_data += -dma & (IAVF_MAX_READ_REQ_SIZE - 1);
2293		tx_desc->buffer_addr = cpu_to_le64(dma);
2294
2295		while (unlikely(size > IAVF_MAX_DATA_PER_TXD)) {
2296			tx_desc->cmd_type_offset_bsz =
2297				build_ctob(td_cmd, td_offset,
2298					   max_data, td_tag);
2299
2300			tx_desc++;
2301			i++;
2302
2303			if (i == tx_ring->count) {
2304				tx_desc = IAVF_TX_DESC(tx_ring, 0);
2305				i = 0;
2306			}
2307
2308			dma += max_data;
2309			size -= max_data;
2310
2311			max_data = IAVF_MAX_DATA_PER_TXD_ALIGNED;
2312			tx_desc->buffer_addr = cpu_to_le64(dma);
2313		}
2314
2315		if (likely(!data_len))
2316			break;
2317
2318		tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
2319							  size, td_tag);
2320
2321		tx_desc++;
2322		i++;
2323
2324		if (i == tx_ring->count) {
2325			tx_desc = IAVF_TX_DESC(tx_ring, 0);
2326			i = 0;
2327		}
2328
2329		size = skb_frag_size(frag);
2330		data_len -= size;
2331
2332		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
2333				       DMA_TO_DEVICE);
2334
2335		tx_bi = &tx_ring->tx_bi[i];
2336	}
2337
2338	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
2339
2340	i++;
2341	if (i == tx_ring->count)
2342		i = 0;
2343
2344	tx_ring->next_to_use = i;
2345
2346	iavf_maybe_stop_tx(tx_ring, DESC_NEEDED);
2347
2348	/* write last descriptor with RS and EOP bits */
2349	td_cmd |= IAVF_TXD_CMD;
2350	tx_desc->cmd_type_offset_bsz =
2351			build_ctob(td_cmd, td_offset, size, td_tag);
2352
2353	skb_tx_timestamp(skb);
2354
2355	/* Force memory writes to complete before letting h/w know there
2356	 * are new descriptors to fetch.
2357	 *
2358	 * We also use this memory barrier to make certain all of the
2359	 * status bits have been updated before next_to_watch is written.
2360	 */
2361	wmb();
2362
2363	/* set next_to_watch value indicating a packet is present */
2364	first->next_to_watch = tx_desc;
2365
2366	/* notify HW of packet */
2367	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
2368		writel(i, tx_ring->tail);
2369	}
2370
2371	return;
2372
2373dma_error:
2374	dev_info(tx_ring->dev, "TX DMA map failed\n");
2375
2376	/* clear dma mappings for failed tx_bi map */
2377	for (;;) {
2378		tx_bi = &tx_ring->tx_bi[i];
2379		iavf_unmap_and_free_tx_resource(tx_ring, tx_bi);
2380		if (tx_bi == first)
2381			break;
2382		if (i == 0)
2383			i = tx_ring->count;
2384		i--;
2385	}
2386
2387	tx_ring->next_to_use = i;
2388}
2389
2390/**
2391 * iavf_xmit_frame_ring - Sends buffer on Tx ring
2392 * @skb:     send buffer
2393 * @tx_ring: ring to send buffer on
2394 *
2395 * Returns NETDEV_TX_OK if sent, else an error code
2396 **/
2397static netdev_tx_t iavf_xmit_frame_ring(struct sk_buff *skb,
2398					struct iavf_ring *tx_ring)
2399{
2400	u64 cd_type_cmd_tso_mss = IAVF_TX_DESC_DTYPE_CONTEXT;
2401	u32 cd_tunneling = 0, cd_l2tag2 = 0;
2402	struct iavf_tx_buffer *first;
2403	u32 td_offset = 0;
2404	u32 tx_flags = 0;
2405	__be16 protocol;
2406	u32 td_cmd = 0;
2407	u8 hdr_len = 0;
2408	int tso, count;
2409
2410	/* prefetch the data, we'll need it later */
2411	prefetch(skb->data);
2412
2413	iavf_trace(xmit_frame_ring, skb, tx_ring);
2414
2415	count = iavf_xmit_descriptor_count(skb);
2416	if (iavf_chk_linearize(skb, count)) {
2417		if (__skb_linearize(skb)) {
2418			dev_kfree_skb_any(skb);
2419			return NETDEV_TX_OK;
2420		}
2421		count = iavf_txd_use_count(skb->len);
2422		tx_ring->tx_stats.tx_linearize++;
2423	}
2424
2425	/* need: 1 descriptor per page * PAGE_SIZE/IAVF_MAX_DATA_PER_TXD,
2426	 *       + 1 desc for skb_head_len/IAVF_MAX_DATA_PER_TXD,
2427	 *       + 4 desc gap to avoid the cache line where head is,
2428	 *       + 1 desc for context descriptor,
2429	 * otherwise try next time
2430	 */
2431	if (iavf_maybe_stop_tx(tx_ring, count + 4 + 1)) {
2432		tx_ring->tx_stats.tx_busy++;
2433		return NETDEV_TX_BUSY;
2434	}
2435
2436	/* record the location of the first descriptor for this packet */
2437	first = &tx_ring->tx_bi[tx_ring->next_to_use];
2438	first->skb = skb;
2439	first->bytecount = skb->len;
2440	first->gso_segs = 1;
2441
2442	/* prepare the xmit flags */
2443	if (iavf_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
2444		goto out_drop;
 
 
 
 
2445
2446	/* obtain protocol of skb */
2447	protocol = vlan_get_protocol(skb);
2448
2449	/* setup IPv4/IPv6 offloads */
2450	if (protocol == htons(ETH_P_IP))
2451		tx_flags |= IAVF_TX_FLAGS_IPV4;
2452	else if (protocol == htons(ETH_P_IPV6))
2453		tx_flags |= IAVF_TX_FLAGS_IPV6;
2454
2455	tso = iavf_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
2456
2457	if (tso < 0)
2458		goto out_drop;
2459	else if (tso)
2460		tx_flags |= IAVF_TX_FLAGS_TSO;
2461
2462	/* Always offload the checksum, since it's in the data descriptor */
2463	tso = iavf_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
2464				  tx_ring, &cd_tunneling);
2465	if (tso < 0)
2466		goto out_drop;
2467
2468	/* always enable CRC insertion offload */
2469	td_cmd |= IAVF_TX_DESC_CMD_ICRC;
2470
2471	iavf_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
2472			   cd_tunneling, cd_l2tag2);
2473
2474	iavf_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
2475		    td_cmd, td_offset);
2476
2477	return NETDEV_TX_OK;
2478
2479out_drop:
2480	iavf_trace(xmit_frame_ring_drop, first->skb, tx_ring);
2481	dev_kfree_skb_any(first->skb);
2482	first->skb = NULL;
2483	return NETDEV_TX_OK;
2484}
2485
2486/**
2487 * iavf_xmit_frame - Selects the correct VSI and Tx queue to send buffer
2488 * @skb:    send buffer
2489 * @netdev: network interface device structure
2490 *
2491 * Returns NETDEV_TX_OK if sent, else an error code
2492 **/
2493netdev_tx_t iavf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2494{
2495	struct iavf_adapter *adapter = netdev_priv(netdev);
2496	struct iavf_ring *tx_ring = &adapter->tx_rings[skb->queue_mapping];
2497
2498	/* hardware can't handle really short frames, hardware padding works
2499	 * beyond this point
2500	 */
2501	if (unlikely(skb->len < IAVF_MIN_TX_LEN)) {
2502		if (skb_pad(skb, IAVF_MIN_TX_LEN - skb->len))
2503			return NETDEV_TX_OK;
2504		skb->len = IAVF_MIN_TX_LEN;
2505		skb_set_tail_pointer(skb, IAVF_MIN_TX_LEN);
2506	}
2507
2508	return iavf_xmit_frame_ring(skb, tx_ring);
2509}