Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 2013 - 2018 Intel Corporation. */
   3
   4#include <linux/ptp_classify.h>
   5#include <linux/posix-clock.h>
   6#include "i40e.h"
   7#include "i40e_devids.h"
   8
   9/* The XL710 timesync is very much like Intel's 82599 design when it comes to
  10 * the fundamental clock design. However, the clock operations are much simpler
  11 * in the XL710 because the device supports a full 64 bits of nanoseconds.
  12 * Because the field is so wide, we can forgo the cycle counter and just
  13 * operate with the nanosecond field directly without fear of overflow.
  14 *
  15 * Much like the 82599, the update period is dependent upon the link speed:
  16 * At 40Gb, 25Gb, or no link, the period is 1.6ns.
  17 * At 10Gb or 5Gb link, the period is multiplied by 2. (3.2ns)
  18 * At 1Gb link, the period is multiplied by 20. (32ns)
  19 * 1588 functionality is not supported at 100Mbps.
  20 */
  21#define I40E_PTP_40GB_INCVAL		0x0199999999ULL
  22#define I40E_PTP_10GB_INCVAL_MULT	2
  23#define I40E_PTP_5GB_INCVAL_MULT	2
  24#define I40E_PTP_1GB_INCVAL_MULT	20
  25#define I40E_ISGN			0x80000000
  26
  27#define I40E_PRTTSYN_CTL1_TSYNTYPE_V1  BIT(I40E_PRTTSYN_CTL1_TSYNTYPE_SHIFT)
  28#define I40E_PRTTSYN_CTL1_TSYNTYPE_V2  (2 << \
  29					I40E_PRTTSYN_CTL1_TSYNTYPE_SHIFT)
  30#define I40E_SUBDEV_ID_25G_PTP_PIN	0xB
  31
  32enum i40e_ptp_pin {
  33	SDP3_2 = 0,
  34	SDP3_3,
  35	GPIO_4
  36};
  37
  38enum i40e_can_set_pins {
  39	CANT_DO_PINS = -1,
  40	CAN_SET_PINS,
  41	CAN_DO_PINS
  42};
  43
  44static struct ptp_pin_desc sdp_desc[] = {
  45	/* name     idx      func      chan */
  46	{"SDP3_2", SDP3_2, PTP_PF_NONE, 0},
  47	{"SDP3_3", SDP3_3, PTP_PF_NONE, 1},
  48	{"GPIO_4", GPIO_4, PTP_PF_NONE, 1},
  49};
  50
  51enum i40e_ptp_gpio_pin_state {
  52	end = -2,
  53	invalid,
  54	off,
  55	in_A,
  56	in_B,
  57	out_A,
  58	out_B,
  59};
  60
  61static const char * const i40e_ptp_gpio_pin_state2str[] = {
  62	"off", "in_A", "in_B", "out_A", "out_B"
  63};
  64
  65enum i40e_ptp_led_pin_state {
  66	led_end = -2,
  67	low = 0,
  68	high,
  69};
  70
  71struct i40e_ptp_pins_settings {
  72	enum i40e_ptp_gpio_pin_state sdp3_2;
  73	enum i40e_ptp_gpio_pin_state sdp3_3;
  74	enum i40e_ptp_gpio_pin_state gpio_4;
  75	enum i40e_ptp_led_pin_state led2_0;
  76	enum i40e_ptp_led_pin_state led2_1;
  77	enum i40e_ptp_led_pin_state led3_0;
  78	enum i40e_ptp_led_pin_state led3_1;
  79};
  80
  81static const struct i40e_ptp_pins_settings
  82	i40e_ptp_pin_led_allowed_states[] = {
  83	{off,	off,	off,		high,	high,	high,	high},
  84	{off,	in_A,	off,		high,	high,	high,	low},
  85	{off,	out_A,	off,		high,	low,	high,	high},
  86	{off,	in_B,	off,		high,	high,	high,	low},
  87	{off,	out_B,	off,		high,	low,	high,	high},
  88	{in_A,	off,	off,		high,	high,	high,	low},
  89	{in_A,	in_B,	off,		high,	high,	high,	low},
  90	{in_A,	out_B,	off,		high,	low,	high,	high},
  91	{out_A,	off,	off,		high,	low,	high,	high},
  92	{out_A,	in_B,	off,		high,	low,	high,	high},
  93	{in_B,	off,	off,		high,	high,	high,	low},
  94	{in_B,	in_A,	off,		high,	high,	high,	low},
  95	{in_B,	out_A,	off,		high,	low,	high,	high},
  96	{out_B,	off,	off,		high,	low,	high,	high},
  97	{out_B,	in_A,	off,		high,	low,	high,	high},
  98	{off,	off,	in_A,		high,	high,	low,	high},
  99	{off,	out_A,	in_A,		high,	low,	low,	high},
 100	{off,	in_B,	in_A,		high,	high,	low,	low},
 101	{off,	out_B,	in_A,		high,	low,	low,	high},
 102	{out_A,	off,	in_A,		high,	low,	low,	high},
 103	{out_A,	in_B,	in_A,		high,	low,	low,	high},
 104	{in_B,	off,	in_A,		high,	high,	low,	low},
 105	{in_B,	out_A,	in_A,		high,	low,	low,	high},
 106	{out_B,	off,	in_A,		high,	low,	low,	high},
 107	{off,	off,	out_A,		low,	high,	high,	high},
 108	{off,	in_A,	out_A,		low,	high,	high,	low},
 109	{off,	in_B,	out_A,		low,	high,	high,	low},
 110	{off,	out_B,	out_A,		low,	low,	high,	high},
 111	{in_A,	off,	out_A,		low,	high,	high,	low},
 112	{in_A,	in_B,	out_A,		low,	high,	high,	low},
 113	{in_A,	out_B,	out_A,		low,	low,	high,	high},
 114	{in_B,	off,	out_A,		low,	high,	high,	low},
 115	{in_B,	in_A,	out_A,		low,	high,	high,	low},
 116	{out_B,	off,	out_A,		low,	low,	high,	high},
 117	{out_B,	in_A,	out_A,		low,	low,	high,	high},
 118	{off,	off,	in_B,		high,	high,	low,	high},
 119	{off,	in_A,	in_B,		high,	high,	low,	low},
 120	{off,	out_A,	in_B,		high,	low,	low,	high},
 121	{off,	out_B,	in_B,		high,	low,	low,	high},
 122	{in_A,	off,	in_B,		high,	high,	low,	low},
 123	{in_A,	out_B,	in_B,		high,	low,	low,	high},
 124	{out_A,	off,	in_B,		high,	low,	low,	high},
 125	{out_B,	off,	in_B,		high,	low,	low,	high},
 126	{out_B,	in_A,	in_B,		high,	low,	low,	high},
 127	{off,	off,	out_B,		low,	high,	high,	high},
 128	{off,	in_A,	out_B,		low,	high,	high,	low},
 129	{off,	out_A,	out_B,		low,	low,	high,	high},
 130	{off,	in_B,	out_B,		low,	high,	high,	low},
 131	{in_A,	off,	out_B,		low,	high,	high,	low},
 132	{in_A,	in_B,	out_B,		low,	high,	high,	low},
 133	{out_A,	off,	out_B,		low,	low,	high,	high},
 134	{out_A,	in_B,	out_B,		low,	low,	high,	high},
 135	{in_B,	off,	out_B,		low,	high,	high,	low},
 136	{in_B,	in_A,	out_B,		low,	high,	high,	low},
 137	{in_B,	out_A,	out_B,		low,	low,	high,	high},
 138	{end,	end,	end,	led_end, led_end, led_end, led_end}
 139};
 140
 141static int i40e_ptp_set_pins(struct i40e_pf *pf,
 142			     struct i40e_ptp_pins_settings *pins);
 143
 144/**
 145 * i40e_ptp_extts0_work - workqueue task function
 146 * @work: workqueue task structure
 147 *
 148 * Service for PTP external clock event
 149 **/
 150static void i40e_ptp_extts0_work(struct work_struct *work)
 151{
 152	struct i40e_pf *pf = container_of(work, struct i40e_pf,
 153					  ptp_extts0_work);
 154	struct i40e_hw *hw = &pf->hw;
 155	struct ptp_clock_event event;
 156	u32 hi, lo;
 157
 158	/* Event time is captured by one of the two matched registers
 159	 *      PRTTSYN_EVNT_L: 32 LSB of sampled time event
 160	 *      PRTTSYN_EVNT_H: 32 MSB of sampled time event
 161	 * Event is defined in PRTTSYN_EVNT_0 register
 162	 */
 163	lo = rd32(hw, I40E_PRTTSYN_EVNT_L(0));
 164	hi = rd32(hw, I40E_PRTTSYN_EVNT_H(0));
 165
 166	event.timestamp = (((u64)hi) << 32) | lo;
 167
 168	event.type = PTP_CLOCK_EXTTS;
 169	event.index = hw->pf_id;
 170
 171	/* fire event */
 172	ptp_clock_event(pf->ptp_clock, &event);
 173}
 174
 175/**
 176 * i40e_is_ptp_pin_dev - check if device supports PTP pins
 177 * @hw: pointer to the hardware structure
 178 *
 179 * Return true if device supports PTP pins, false otherwise.
 180 **/
 181static bool i40e_is_ptp_pin_dev(struct i40e_hw *hw)
 182{
 183	return hw->device_id == I40E_DEV_ID_25G_SFP28 &&
 184	       hw->subsystem_device_id == I40E_SUBDEV_ID_25G_PTP_PIN;
 185}
 186
 187/**
 188 * i40e_can_set_pins - check possibility of manipulating the pins
 189 * @pf: board private structure
 190 *
 191 * Check if all conditions are satisfied to manipulate PTP pins.
 192 * Return CAN_SET_PINS if pins can be set on a specific PF or
 193 * return CAN_DO_PINS if pins can be manipulated within a NIC or
 194 * return CANT_DO_PINS otherwise.
 195 **/
 196static enum i40e_can_set_pins i40e_can_set_pins(struct i40e_pf *pf)
 197{
 198	if (!i40e_is_ptp_pin_dev(&pf->hw)) {
 199		dev_warn(&pf->pdev->dev,
 200			 "PTP external clock not supported.\n");
 201		return CANT_DO_PINS;
 202	}
 203
 204	if (!pf->ptp_pins) {
 205		dev_warn(&pf->pdev->dev,
 206			 "PTP PIN manipulation not allowed.\n");
 207		return CANT_DO_PINS;
 208	}
 209
 210	if (pf->hw.pf_id) {
 211		dev_warn(&pf->pdev->dev,
 212			 "PTP PINs should be accessed via PF0.\n");
 213		return CAN_DO_PINS;
 214	}
 215
 216	return CAN_SET_PINS;
 217}
 218
 219/**
 220 * i40_ptp_reset_timing_events - Reset PTP timing events
 221 * @pf: Board private structure
 222 *
 223 * This function resets timing events for pf.
 224 **/
 225static void i40_ptp_reset_timing_events(struct i40e_pf *pf)
 226{
 227	u32 i;
 228
 229	spin_lock_bh(&pf->ptp_rx_lock);
 230	for (i = 0; i <= I40E_PRTTSYN_RXTIME_L_MAX_INDEX; i++) {
 231		/* reading and automatically clearing timing events registers */
 232		rd32(&pf->hw, I40E_PRTTSYN_RXTIME_L(i));
 233		rd32(&pf->hw, I40E_PRTTSYN_RXTIME_H(i));
 234		pf->latch_events[i] = 0;
 235	}
 236	/* reading and automatically clearing timing events registers */
 237	rd32(&pf->hw, I40E_PRTTSYN_TXTIME_L);
 238	rd32(&pf->hw, I40E_PRTTSYN_TXTIME_H);
 239
 240	pf->tx_hwtstamp_timeouts = 0;
 241	pf->tx_hwtstamp_skipped = 0;
 242	pf->rx_hwtstamp_cleared = 0;
 243	pf->latch_event_flags = 0;
 244	spin_unlock_bh(&pf->ptp_rx_lock);
 245}
 246
 247/**
 248 * i40e_ptp_verify - check pins
 249 * @ptp: ptp clock
 250 * @pin: pin index
 251 * @func: assigned function
 252 * @chan: channel
 253 *
 254 * Check pins consistency.
 255 * Return 0 on success or error on failure.
 256 **/
 257static int i40e_ptp_verify(struct ptp_clock_info *ptp, unsigned int pin,
 258			   enum ptp_pin_function func, unsigned int chan)
 259{
 260	switch (func) {
 261	case PTP_PF_NONE:
 262	case PTP_PF_EXTTS:
 263	case PTP_PF_PEROUT:
 264		break;
 265	case PTP_PF_PHYSYNC:
 266		return -EOPNOTSUPP;
 267	}
 268	return 0;
 269}
 270
 271/**
 272 * i40e_ptp_read - Read the PHC time from the device
 273 * @pf: Board private structure
 274 * @ts: timespec structure to hold the current time value
 275 * @sts: structure to hold the system time before and after reading the PHC
 276 *
 277 * This function reads the PRTTSYN_TIME registers and stores them in a
 278 * timespec. However, since the registers are 64 bits of nanoseconds, we must
 279 * convert the result to a timespec before we can return.
 280 **/
 281static void i40e_ptp_read(struct i40e_pf *pf, struct timespec64 *ts,
 282			  struct ptp_system_timestamp *sts)
 283{
 284	struct i40e_hw *hw = &pf->hw;
 285	u32 hi, lo;
 286	u64 ns;
 287
 288	/* The timer latches on the lowest register read. */
 289	ptp_read_system_prets(sts);
 290	lo = rd32(hw, I40E_PRTTSYN_TIME_L);
 291	ptp_read_system_postts(sts);
 292	hi = rd32(hw, I40E_PRTTSYN_TIME_H);
 293
 294	ns = (((u64)hi) << 32) | lo;
 295
 296	*ts = ns_to_timespec64(ns);
 297}
 298
 299/**
 300 * i40e_ptp_write - Write the PHC time to the device
 301 * @pf: Board private structure
 302 * @ts: timespec structure that holds the new time value
 303 *
 304 * This function writes the PRTTSYN_TIME registers with the user value. Since
 305 * we receive a timespec from the stack, we must convert that timespec into
 306 * nanoseconds before programming the registers.
 307 **/
 308static void i40e_ptp_write(struct i40e_pf *pf, const struct timespec64 *ts)
 309{
 310	struct i40e_hw *hw = &pf->hw;
 311	u64 ns = timespec64_to_ns(ts);
 312
 313	/* The timer will not update until the high register is written, so
 314	 * write the low register first.
 315	 */
 316	wr32(hw, I40E_PRTTSYN_TIME_L, ns & 0xFFFFFFFF);
 317	wr32(hw, I40E_PRTTSYN_TIME_H, ns >> 32);
 318}
 319
 320/**
 321 * i40e_ptp_convert_to_hwtstamp - Convert device clock to system time
 322 * @hwtstamps: Timestamp structure to update
 323 * @timestamp: Timestamp from the hardware
 324 *
 325 * We need to convert the NIC clock value into a hwtstamp which can be used by
 326 * the upper level timestamping functions. Since the timestamp is simply a 64-
 327 * bit nanosecond value, we can call ns_to_ktime directly to handle this.
 328 **/
 329static void i40e_ptp_convert_to_hwtstamp(struct skb_shared_hwtstamps *hwtstamps,
 330					 u64 timestamp)
 331{
 332	memset(hwtstamps, 0, sizeof(*hwtstamps));
 333
 334	hwtstamps->hwtstamp = ns_to_ktime(timestamp);
 335}
 336
 337/**
 338 * i40e_ptp_adjfine - Adjust the PHC frequency
 339 * @ptp: The PTP clock structure
 340 * @scaled_ppm: Scaled parts per million adjustment from base
 341 *
 342 * Adjust the frequency of the PHC by the indicated delta from the base
 343 * frequency.
 344 *
 345 * Scaled parts per million is ppm with a 16 bit binary fractional field.
 346 **/
 347static int i40e_ptp_adjfine(struct ptp_clock_info *ptp, long scaled_ppm)
 348{
 349	struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
 350	struct i40e_hw *hw = &pf->hw;
 351	u64 adj, base_adj;
 
 352
 353	smp_mb(); /* Force any pending update before accessing. */
 354	base_adj = I40E_PTP_40GB_INCVAL * READ_ONCE(pf->ptp_adj_mult);
 
 
 355
 356	adj = adjust_by_scaled_ppm(base_adj, scaled_ppm);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 357
 358	wr32(hw, I40E_PRTTSYN_INC_L, adj & 0xFFFFFFFF);
 359	wr32(hw, I40E_PRTTSYN_INC_H, adj >> 32);
 360
 361	return 0;
 362}
 363
 364/**
 365 * i40e_ptp_set_1pps_signal_hw - configure 1PPS PTP signal for pins
 366 * @pf: the PF private data structure
 367 *
 368 * Configure 1PPS signal used for PTP pins
 369 **/
 370static void i40e_ptp_set_1pps_signal_hw(struct i40e_pf *pf)
 371{
 372	struct i40e_hw *hw = &pf->hw;
 373	struct timespec64 now;
 374	u64 ns;
 375
 376	wr32(hw, I40E_PRTTSYN_AUX_0(1), 0);
 377	wr32(hw, I40E_PRTTSYN_AUX_1(1), I40E_PRTTSYN_AUX_1_INSTNT);
 378	wr32(hw, I40E_PRTTSYN_AUX_0(1), I40E_PRTTSYN_AUX_0_OUT_ENABLE);
 379
 380	i40e_ptp_read(pf, &now, NULL);
 381	now.tv_sec += I40E_PTP_2_SEC_DELAY;
 382	now.tv_nsec = 0;
 383	ns = timespec64_to_ns(&now);
 384
 385	/* I40E_PRTTSYN_TGT_L(1) */
 386	wr32(hw, I40E_PRTTSYN_TGT_L(1), ns & 0xFFFFFFFF);
 387	/* I40E_PRTTSYN_TGT_H(1) */
 388	wr32(hw, I40E_PRTTSYN_TGT_H(1), ns >> 32);
 389	wr32(hw, I40E_PRTTSYN_CLKO(1), I40E_PTP_HALF_SECOND);
 390	wr32(hw, I40E_PRTTSYN_AUX_1(1), I40E_PRTTSYN_AUX_1_INSTNT);
 391	wr32(hw, I40E_PRTTSYN_AUX_0(1),
 392	     I40E_PRTTSYN_AUX_0_OUT_ENABLE_CLK_MOD);
 393}
 394
 395/**
 396 * i40e_ptp_adjtime - Adjust the PHC time
 397 * @ptp: The PTP clock structure
 398 * @delta: Offset in nanoseconds to adjust the PHC time by
 399 *
 400 * Adjust the current clock time by a delta specified in nanoseconds.
 401 **/
 402static int i40e_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
 403{
 404	struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
 405	struct i40e_hw *hw = &pf->hw;
 406
 
 407	mutex_lock(&pf->tmreg_lock);
 408
 409	if (delta > -999999900LL && delta < 999999900LL) {
 410		int neg_adj = 0;
 411		u32 timadj;
 412		u64 tohw;
 413
 414		if (delta < 0) {
 415			neg_adj = 1;
 416			tohw = -delta;
 417		} else {
 418			tohw = delta;
 419		}
 420
 421		timadj = tohw & 0x3FFFFFFF;
 422		if (neg_adj)
 423			timadj |= I40E_ISGN;
 424		wr32(hw, I40E_PRTTSYN_ADJ, timadj);
 425	} else {
 426		struct timespec64 then, now;
 427
 428		then = ns_to_timespec64(delta);
 429		i40e_ptp_read(pf, &now, NULL);
 430		now = timespec64_add(now, then);
 431		i40e_ptp_write(pf, (const struct timespec64 *)&now);
 432		i40e_ptp_set_1pps_signal_hw(pf);
 433	}
 434
 435	mutex_unlock(&pf->tmreg_lock);
 436
 437	return 0;
 438}
 439
 440/**
 441 * i40e_ptp_gettimex - Get the time of the PHC
 442 * @ptp: The PTP clock structure
 443 * @ts: timespec structure to hold the current time value
 444 * @sts: structure to hold the system time before and after reading the PHC
 445 *
 446 * Read the device clock and return the correct value on ns, after converting it
 447 * into a timespec struct.
 448 **/
 449static int i40e_ptp_gettimex(struct ptp_clock_info *ptp, struct timespec64 *ts,
 450			     struct ptp_system_timestamp *sts)
 451{
 452	struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
 453
 454	mutex_lock(&pf->tmreg_lock);
 455	i40e_ptp_read(pf, ts, sts);
 456	mutex_unlock(&pf->tmreg_lock);
 457
 458	return 0;
 459}
 460
 461/**
 462 * i40e_ptp_settime - Set the time of the PHC
 463 * @ptp: The PTP clock structure
 464 * @ts: timespec64 structure that holds the new time value
 465 *
 466 * Set the device clock to the user input value. The conversion from timespec
 467 * to ns happens in the write function.
 468 **/
 469static int i40e_ptp_settime(struct ptp_clock_info *ptp,
 470			    const struct timespec64 *ts)
 471{
 472	struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
 473
 474	mutex_lock(&pf->tmreg_lock);
 475	i40e_ptp_write(pf, ts);
 476	mutex_unlock(&pf->tmreg_lock);
 477
 478	return 0;
 479}
 480
 481/**
 482 * i40e_pps_configure - configure PPS events
 483 * @ptp: ptp clock
 484 * @rq: clock request
 485 * @on: status
 486 *
 487 * Configure PPS events for external clock source.
 488 * Return 0 on success or error on failure.
 489 **/
 490static int i40e_pps_configure(struct ptp_clock_info *ptp,
 491			      struct ptp_clock_request *rq,
 492			      int on)
 493{
 494	struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
 495
 496	if (!!on)
 497		i40e_ptp_set_1pps_signal_hw(pf);
 498
 499	return 0;
 500}
 501
 502/**
 503 * i40e_pin_state - determine PIN state
 504 * @index: PIN index
 505 * @func: function assigned to PIN
 506 *
 507 * Determine PIN state based on PIN index and function assigned.
 508 * Return PIN state.
 509 **/
 510static enum i40e_ptp_gpio_pin_state i40e_pin_state(int index, int func)
 511{
 512	enum i40e_ptp_gpio_pin_state state = off;
 513
 514	if (index == 0 && func == PTP_PF_EXTTS)
 515		state = in_A;
 516	if (index == 1 && func == PTP_PF_EXTTS)
 517		state = in_B;
 518	if (index == 0 && func == PTP_PF_PEROUT)
 519		state = out_A;
 520	if (index == 1 && func == PTP_PF_PEROUT)
 521		state = out_B;
 522
 523	return state;
 524}
 525
 526/**
 527 * i40e_ptp_enable_pin - enable PINs.
 528 * @pf: private board structure
 529 * @chan: channel
 530 * @func: PIN function
 531 * @on: state
 532 *
 533 * Enable PTP pins for external clock source.
 534 * Return 0 on success or error code on failure.
 535 **/
 536static int i40e_ptp_enable_pin(struct i40e_pf *pf, unsigned int chan,
 537			       enum ptp_pin_function func, int on)
 538{
 539	enum i40e_ptp_gpio_pin_state *pin = NULL;
 540	struct i40e_ptp_pins_settings pins;
 541	int pin_index;
 542
 543	/* Use PF0 to set pins. Return success for user space tools */
 544	if (pf->hw.pf_id)
 545		return 0;
 546
 547	/* Preserve previous state of pins that we don't touch */
 548	pins.sdp3_2 = pf->ptp_pins->sdp3_2;
 549	pins.sdp3_3 = pf->ptp_pins->sdp3_3;
 550	pins.gpio_4 = pf->ptp_pins->gpio_4;
 551
 552	/* To turn on the pin - find the corresponding one based on
 553	 * the given index. To to turn the function off - find
 554	 * which pin had it assigned. Don't use ptp_find_pin here
 555	 * because it tries to lock the pincfg_mux which is locked by
 556	 * ptp_pin_store() that calls here.
 557	 */
 558	if (on) {
 559		pin_index = ptp_find_pin(pf->ptp_clock, func, chan);
 560		if (pin_index < 0)
 561			return -EBUSY;
 562
 563		switch (pin_index) {
 564		case SDP3_2:
 565			pin = &pins.sdp3_2;
 566			break;
 567		case SDP3_3:
 568			pin = &pins.sdp3_3;
 569			break;
 570		case GPIO_4:
 571			pin = &pins.gpio_4;
 572			break;
 573		default:
 574			return -EINVAL;
 575		}
 576
 577		*pin = i40e_pin_state(chan, func);
 578	} else {
 579		pins.sdp3_2 = off;
 580		pins.sdp3_3 = off;
 581		pins.gpio_4 = off;
 582	}
 583
 584	return i40e_ptp_set_pins(pf, &pins) ? -EINVAL : 0;
 585}
 586
 587/**
 588 * i40e_ptp_feature_enable - Enable external clock pins
 589 * @ptp: The PTP clock structure
 590 * @rq: The PTP clock request structure
 591 * @on: To turn feature on/off
 592 *
 593 * Setting on/off PTP PPS feature for pin.
 
 594 **/
 595static int i40e_ptp_feature_enable(struct ptp_clock_info *ptp,
 596				   struct ptp_clock_request *rq,
 597				   int on)
 598{
 599	struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
 600
 601	enum ptp_pin_function func;
 602	unsigned int chan;
 603
 604	/* TODO: Implement flags handling for EXTTS and PEROUT */
 605	switch (rq->type) {
 606	case PTP_CLK_REQ_EXTTS:
 607		func = PTP_PF_EXTTS;
 608		chan = rq->extts.index;
 609		break;
 610	case PTP_CLK_REQ_PEROUT:
 611		func = PTP_PF_PEROUT;
 612		chan = rq->perout.index;
 613		break;
 614	case PTP_CLK_REQ_PPS:
 615		return i40e_pps_configure(ptp, rq, on);
 616	default:
 617		return -EOPNOTSUPP;
 618	}
 619
 620	return i40e_ptp_enable_pin(pf, chan, func, on);
 621}
 622
 623/**
 624 * i40e_ptp_get_rx_events - Read I40E_PRTTSYN_STAT_1 and latch events
 625 * @pf: the PF data structure
 626 *
 627 * This function reads I40E_PRTTSYN_STAT_1 and updates the corresponding timers
 628 * for noticed latch events. This allows the driver to keep track of the first
 629 * time a latch event was noticed which will be used to help clear out Rx
 630 * timestamps for packets that got dropped or lost.
 631 *
 632 * This function will return the current value of I40E_PRTTSYN_STAT_1 and is
 633 * expected to be called only while under the ptp_rx_lock.
 634 **/
 635static u32 i40e_ptp_get_rx_events(struct i40e_pf *pf)
 636{
 637	struct i40e_hw *hw = &pf->hw;
 638	u32 prttsyn_stat, new_latch_events;
 639	int  i;
 640
 641	prttsyn_stat = rd32(hw, I40E_PRTTSYN_STAT_1);
 642	new_latch_events = prttsyn_stat & ~pf->latch_event_flags;
 643
 644	/* Update the jiffies time for any newly latched timestamp. This
 645	 * ensures that we store the time that we first discovered a timestamp
 646	 * was latched by the hardware. The service task will later determine
 647	 * if we should free the latch and drop that timestamp should too much
 648	 * time pass. This flow ensures that we only update jiffies for new
 649	 * events latched since the last time we checked, and not all events
 650	 * currently latched, so that the service task accounting remains
 651	 * accurate.
 652	 */
 653	for (i = 0; i < 4; i++) {
 654		if (new_latch_events & BIT(i))
 655			pf->latch_events[i] = jiffies;
 656	}
 657
 658	/* Finally, we store the current status of the Rx timestamp latches */
 659	pf->latch_event_flags = prttsyn_stat;
 660
 661	return prttsyn_stat;
 662}
 663
 664/**
 665 * i40e_ptp_rx_hang - Detect error case when Rx timestamp registers are hung
 666 * @pf: The PF private data structure
 667 *
 668 * This watchdog task is scheduled to detect error case where hardware has
 669 * dropped an Rx packet that was timestamped when the ring is full. The
 670 * particular error is rare but leaves the device in a state unable to timestamp
 671 * any future packets.
 672 **/
 673void i40e_ptp_rx_hang(struct i40e_pf *pf)
 674{
 675	struct i40e_hw *hw = &pf->hw;
 676	unsigned int i, cleared = 0;
 677
 678	/* Since we cannot turn off the Rx timestamp logic if the device is
 679	 * configured for Tx timestamping, we check if Rx timestamping is
 680	 * configured. We don't want to spuriously warn about Rx timestamp
 681	 * hangs if we don't care about the timestamps.
 682	 */
 683	if (!test_bit(I40E_FLAG_PTP_ENA, pf->flags) || !pf->ptp_rx)
 684		return;
 685
 686	spin_lock_bh(&pf->ptp_rx_lock);
 687
 688	/* Update current latch times for Rx events */
 689	i40e_ptp_get_rx_events(pf);
 690
 691	/* Check all the currently latched Rx events and see whether they have
 692	 * been latched for over a second. It is assumed that any timestamp
 693	 * should have been cleared within this time, or else it was captured
 694	 * for a dropped frame that the driver never received. Thus, we will
 695	 * clear any timestamp that has been latched for over 1 second.
 696	 */
 697	for (i = 0; i < 4; i++) {
 698		if ((pf->latch_event_flags & BIT(i)) &&
 699		    time_is_before_jiffies(pf->latch_events[i] + HZ)) {
 700			rd32(hw, I40E_PRTTSYN_RXTIME_H(i));
 701			pf->latch_event_flags &= ~BIT(i);
 702			cleared++;
 703		}
 704	}
 705
 706	spin_unlock_bh(&pf->ptp_rx_lock);
 707
 708	/* Log a warning if more than 2 timestamps got dropped in the same
 709	 * check. We don't want to warn about all drops because it can occur
 710	 * in normal scenarios such as PTP frames on multicast addresses we
 711	 * aren't listening to. However, administrator should know if this is
 712	 * the reason packets aren't receiving timestamps.
 713	 */
 714	if (cleared > 2)
 715		dev_dbg(&pf->pdev->dev,
 716			"Dropped %d missed RXTIME timestamp events\n",
 717			cleared);
 718
 719	/* Finally, update the rx_hwtstamp_cleared counter */
 720	pf->rx_hwtstamp_cleared += cleared;
 721}
 722
 723/**
 724 * i40e_ptp_tx_hang - Detect error case when Tx timestamp register is hung
 725 * @pf: The PF private data structure
 726 *
 727 * This watchdog task is run periodically to make sure that we clear the Tx
 728 * timestamp logic if we don't obtain a timestamp in a reasonable amount of
 729 * time. It is unexpected in the normal case but if it occurs it results in
 730 * permanently preventing timestamps of future packets.
 731 **/
 732void i40e_ptp_tx_hang(struct i40e_pf *pf)
 733{
 734	struct sk_buff *skb;
 735
 736	if (!test_bit(I40E_FLAG_PTP_ENA, pf->flags) || !pf->ptp_tx)
 737		return;
 738
 739	/* Nothing to do if we're not already waiting for a timestamp */
 740	if (!test_bit(__I40E_PTP_TX_IN_PROGRESS, pf->state))
 741		return;
 742
 743	/* We already have a handler routine which is run when we are notified
 744	 * of a Tx timestamp in the hardware. If we don't get an interrupt
 745	 * within a second it is reasonable to assume that we never will.
 746	 */
 747	if (time_is_before_jiffies(pf->ptp_tx_start + HZ)) {
 748		skb = pf->ptp_tx_skb;
 749		pf->ptp_tx_skb = NULL;
 750		clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
 751
 752		/* Free the skb after we clear the bitlock */
 753		dev_kfree_skb_any(skb);
 754		pf->tx_hwtstamp_timeouts++;
 755	}
 756}
 757
 758/**
 759 * i40e_ptp_tx_hwtstamp - Utility function which returns the Tx timestamp
 760 * @pf: Board private structure
 761 *
 762 * Read the value of the Tx timestamp from the registers, convert it into a
 763 * value consumable by the stack, and store that result into the shhwtstamps
 764 * struct before returning it up the stack.
 765 **/
 766void i40e_ptp_tx_hwtstamp(struct i40e_pf *pf)
 767{
 768	struct skb_shared_hwtstamps shhwtstamps;
 769	struct sk_buff *skb = pf->ptp_tx_skb;
 770	struct i40e_hw *hw = &pf->hw;
 771	u32 hi, lo;
 772	u64 ns;
 773
 774	if (!test_bit(I40E_FLAG_PTP_ENA, pf->flags) || !pf->ptp_tx)
 775		return;
 776
 777	/* don't attempt to timestamp if we don't have an skb */
 778	if (!pf->ptp_tx_skb)
 779		return;
 780
 781	lo = rd32(hw, I40E_PRTTSYN_TXTIME_L);
 782	hi = rd32(hw, I40E_PRTTSYN_TXTIME_H);
 783
 784	ns = (((u64)hi) << 32) | lo;
 785	i40e_ptp_convert_to_hwtstamp(&shhwtstamps, ns);
 786
 787	/* Clear the bit lock as soon as possible after reading the register,
 788	 * and prior to notifying the stack via skb_tstamp_tx(). Otherwise
 789	 * applications might wake up and attempt to request another transmit
 790	 * timestamp prior to the bit lock being cleared.
 791	 */
 792	pf->ptp_tx_skb = NULL;
 793	clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
 794
 795	/* Notify the stack and free the skb after we've unlocked */
 796	skb_tstamp_tx(skb, &shhwtstamps);
 797	dev_kfree_skb_any(skb);
 798}
 799
 800/**
 801 * i40e_ptp_rx_hwtstamp - Utility function which checks for an Rx timestamp
 802 * @pf: Board private structure
 803 * @skb: Particular skb to send timestamp with
 804 * @index: Index into the receive timestamp registers for the timestamp
 805 *
 806 * The XL710 receives a notification in the receive descriptor with an offset
 807 * into the set of RXTIME registers where the timestamp is for that skb. This
 808 * function goes and fetches the receive timestamp from that offset, if a valid
 809 * one exists. The RXTIME registers are in ns, so we must convert the result
 810 * first.
 811 **/
 812void i40e_ptp_rx_hwtstamp(struct i40e_pf *pf, struct sk_buff *skb, u8 index)
 813{
 814	u32 prttsyn_stat, hi, lo;
 815	struct i40e_hw *hw;
 816	u64 ns;
 817
 818	/* Since we cannot turn off the Rx timestamp logic if the device is
 819	 * doing Tx timestamping, check if Rx timestamping is configured.
 820	 */
 821	if (!test_bit(I40E_FLAG_PTP_ENA, pf->flags) || !pf->ptp_rx)
 822		return;
 823
 824	hw = &pf->hw;
 825
 826	spin_lock_bh(&pf->ptp_rx_lock);
 827
 828	/* Get current Rx events and update latch times */
 829	prttsyn_stat = i40e_ptp_get_rx_events(pf);
 830
 831	/* TODO: Should we warn about missing Rx timestamp event? */
 832	if (!(prttsyn_stat & BIT(index))) {
 833		spin_unlock_bh(&pf->ptp_rx_lock);
 834		return;
 835	}
 836
 837	/* Clear the latched event since we're about to read its register */
 838	pf->latch_event_flags &= ~BIT(index);
 839
 840	lo = rd32(hw, I40E_PRTTSYN_RXTIME_L(index));
 841	hi = rd32(hw, I40E_PRTTSYN_RXTIME_H(index));
 842
 843	spin_unlock_bh(&pf->ptp_rx_lock);
 844
 845	ns = (((u64)hi) << 32) | lo;
 846
 847	i40e_ptp_convert_to_hwtstamp(skb_hwtstamps(skb), ns);
 848}
 849
 850/**
 851 * i40e_ptp_set_increment - Utility function to update clock increment rate
 852 * @pf: Board private structure
 853 *
 854 * During a link change, the DMA frequency that drives the 1588 logic will
 855 * change. In order to keep the PRTTSYN_TIME registers in units of nanoseconds,
 856 * we must update the increment value per clock tick.
 857 **/
 858void i40e_ptp_set_increment(struct i40e_pf *pf)
 859{
 860	struct i40e_link_status *hw_link_info;
 861	struct i40e_hw *hw = &pf->hw;
 862	u64 incval;
 863	u32 mult;
 864
 865	hw_link_info = &hw->phy.link_info;
 866
 867	i40e_aq_get_link_info(&pf->hw, true, NULL, NULL);
 868
 869	switch (hw_link_info->link_speed) {
 870	case I40E_LINK_SPEED_10GB:
 871		mult = I40E_PTP_10GB_INCVAL_MULT;
 872		break;
 873	case I40E_LINK_SPEED_5GB:
 874		mult = I40E_PTP_5GB_INCVAL_MULT;
 875		break;
 876	case I40E_LINK_SPEED_1GB:
 877		mult = I40E_PTP_1GB_INCVAL_MULT;
 878		break;
 879	case I40E_LINK_SPEED_100MB:
 880	{
 881		static int warn_once;
 882
 883		if (!warn_once) {
 884			dev_warn(&pf->pdev->dev,
 885				 "1588 functionality is not supported at 100 Mbps. Stopping the PHC.\n");
 886			warn_once++;
 887		}
 888		mult = 0;
 889		break;
 890	}
 891	case I40E_LINK_SPEED_40GB:
 892	default:
 893		mult = 1;
 894		break;
 895	}
 896
 897	/* The increment value is calculated by taking the base 40GbE incvalue
 898	 * and multiplying it by a factor based on the link speed.
 899	 */
 900	incval = I40E_PTP_40GB_INCVAL * mult;
 901
 902	/* Write the new increment value into the increment register. The
 903	 * hardware will not update the clock until both registers have been
 904	 * written.
 905	 */
 906	wr32(hw, I40E_PRTTSYN_INC_L, incval & 0xFFFFFFFF);
 907	wr32(hw, I40E_PRTTSYN_INC_H, incval >> 32);
 908
 909	/* Update the base adjustement value. */
 910	WRITE_ONCE(pf->ptp_adj_mult, mult);
 911	smp_mb(); /* Force the above update. */
 912}
 913
 914/**
 915 * i40e_ptp_get_ts_config - ioctl interface to read the HW timestamping
 916 * @pf: Board private structure
 917 * @ifr: ioctl data
 918 *
 919 * Obtain the current hardware timestamping settigs as requested. To do this,
 920 * keep a shadow copy of the timestamp settings rather than attempting to
 921 * deconstruct it from the registers.
 922 **/
 923int i40e_ptp_get_ts_config(struct i40e_pf *pf, struct ifreq *ifr)
 924{
 925	struct hwtstamp_config *config = &pf->tstamp_config;
 926
 927	if (!test_bit(I40E_FLAG_PTP_ENA, pf->flags))
 928		return -EOPNOTSUPP;
 929
 930	return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
 931		-EFAULT : 0;
 932}
 933
 934/**
 935 * i40e_ptp_free_pins - free memory used by PTP pins
 936 * @pf: Board private structure
 937 *
 938 * Release memory allocated for PTP pins.
 939 **/
 940static void i40e_ptp_free_pins(struct i40e_pf *pf)
 941{
 942	if (i40e_is_ptp_pin_dev(&pf->hw)) {
 943		kfree(pf->ptp_pins);
 944		kfree(pf->ptp_caps.pin_config);
 945		pf->ptp_pins = NULL;
 946	}
 947}
 948
 949/**
 950 * i40e_ptp_set_pin_hw - Set HW GPIO pin
 951 * @hw: pointer to the hardware structure
 952 * @pin: pin index
 953 * @state: pin state
 954 *
 955 * Set status of GPIO pin for external clock handling.
 956 **/
 957static void i40e_ptp_set_pin_hw(struct i40e_hw *hw,
 958				unsigned int pin,
 959				enum i40e_ptp_gpio_pin_state state)
 960{
 961	switch (state) {
 962	case off:
 963		wr32(hw, I40E_GLGEN_GPIO_CTL(pin), 0);
 964		break;
 965	case in_A:
 966		wr32(hw, I40E_GLGEN_GPIO_CTL(pin),
 967		     I40E_GLGEN_GPIO_CTL_PORT_0_IN_TIMESYNC_0);
 968		break;
 969	case in_B:
 970		wr32(hw, I40E_GLGEN_GPIO_CTL(pin),
 971		     I40E_GLGEN_GPIO_CTL_PORT_1_IN_TIMESYNC_0);
 972		break;
 973	case out_A:
 974		wr32(hw, I40E_GLGEN_GPIO_CTL(pin),
 975		     I40E_GLGEN_GPIO_CTL_PORT_0_OUT_TIMESYNC_1);
 976		break;
 977	case out_B:
 978		wr32(hw, I40E_GLGEN_GPIO_CTL(pin),
 979		     I40E_GLGEN_GPIO_CTL_PORT_1_OUT_TIMESYNC_1);
 980		break;
 981	default:
 982		break;
 983	}
 984}
 985
 986/**
 987 * i40e_ptp_set_led_hw - Set HW GPIO led
 988 * @hw: pointer to the hardware structure
 989 * @led: led index
 990 * @state: led state
 991 *
 992 * Set status of GPIO led for external clock handling.
 993 **/
 994static void i40e_ptp_set_led_hw(struct i40e_hw *hw,
 995				unsigned int led,
 996				enum i40e_ptp_led_pin_state state)
 997{
 998	switch (state) {
 999	case low:
1000		wr32(hw, I40E_GLGEN_GPIO_SET,
1001		     I40E_GLGEN_GPIO_SET_DRV_SDP_DATA | led);
1002		break;
1003	case high:
1004		wr32(hw, I40E_GLGEN_GPIO_SET,
1005		     I40E_GLGEN_GPIO_SET_DRV_SDP_DATA |
1006		     I40E_GLGEN_GPIO_SET_SDP_DATA_HI | led);
1007		break;
1008	default:
1009		break;
1010	}
1011}
1012
1013/**
1014 * i40e_ptp_init_leds_hw - init LEDs
1015 * @hw: pointer to a hardware structure
1016 *
1017 * Set initial state of LEDs
1018 **/
1019static void i40e_ptp_init_leds_hw(struct i40e_hw *hw)
1020{
1021	wr32(hw, I40E_GLGEN_GPIO_CTL(I40E_LED2_0),
1022	     I40E_GLGEN_GPIO_CTL_LED_INIT);
1023	wr32(hw, I40E_GLGEN_GPIO_CTL(I40E_LED2_1),
1024	     I40E_GLGEN_GPIO_CTL_LED_INIT);
1025	wr32(hw, I40E_GLGEN_GPIO_CTL(I40E_LED3_0),
1026	     I40E_GLGEN_GPIO_CTL_LED_INIT);
1027	wr32(hw, I40E_GLGEN_GPIO_CTL(I40E_LED3_1),
1028	     I40E_GLGEN_GPIO_CTL_LED_INIT);
1029}
1030
1031/**
1032 * i40e_ptp_set_pins_hw - Set HW GPIO pins
1033 * @pf: Board private structure
1034 *
1035 * This function sets GPIO pins for PTP
1036 **/
1037static void i40e_ptp_set_pins_hw(struct i40e_pf *pf)
1038{
1039	const struct i40e_ptp_pins_settings *pins = pf->ptp_pins;
1040	struct i40e_hw *hw = &pf->hw;
1041
1042	/* pin must be disabled before it may be used */
1043	i40e_ptp_set_pin_hw(hw, I40E_SDP3_2, off);
1044	i40e_ptp_set_pin_hw(hw, I40E_SDP3_3, off);
1045	i40e_ptp_set_pin_hw(hw, I40E_GPIO_4, off);
1046
1047	i40e_ptp_set_pin_hw(hw, I40E_SDP3_2, pins->sdp3_2);
1048	i40e_ptp_set_pin_hw(hw, I40E_SDP3_3, pins->sdp3_3);
1049	i40e_ptp_set_pin_hw(hw, I40E_GPIO_4, pins->gpio_4);
1050
1051	i40e_ptp_set_led_hw(hw, I40E_LED2_0, pins->led2_0);
1052	i40e_ptp_set_led_hw(hw, I40E_LED2_1, pins->led2_1);
1053	i40e_ptp_set_led_hw(hw, I40E_LED3_0, pins->led3_0);
1054	i40e_ptp_set_led_hw(hw, I40E_LED3_1, pins->led3_1);
1055
1056	dev_info(&pf->pdev->dev,
1057		 "PTP configuration set to: SDP3_2: %s,  SDP3_3: %s,  GPIO_4: %s.\n",
1058		 i40e_ptp_gpio_pin_state2str[pins->sdp3_2],
1059		 i40e_ptp_gpio_pin_state2str[pins->sdp3_3],
1060		 i40e_ptp_gpio_pin_state2str[pins->gpio_4]);
1061}
1062
1063/**
1064 * i40e_ptp_set_pins - set PTP pins in HW
1065 * @pf: Board private structure
1066 * @pins: PTP pins to be applied
1067 *
1068 * Validate and set PTP pins in HW for specific PF.
1069 * Return 0 on success or negative value on error.
1070 **/
1071static int i40e_ptp_set_pins(struct i40e_pf *pf,
1072			     struct i40e_ptp_pins_settings *pins)
1073{
1074	enum i40e_can_set_pins pin_caps = i40e_can_set_pins(pf);
1075	int i = 0;
1076
1077	if (pin_caps == CANT_DO_PINS)
1078		return -EOPNOTSUPP;
1079	else if (pin_caps == CAN_DO_PINS)
1080		return 0;
1081
1082	if (pins->sdp3_2 == invalid)
1083		pins->sdp3_2 = pf->ptp_pins->sdp3_2;
1084	if (pins->sdp3_3 == invalid)
1085		pins->sdp3_3 = pf->ptp_pins->sdp3_3;
1086	if (pins->gpio_4 == invalid)
1087		pins->gpio_4 = pf->ptp_pins->gpio_4;
1088	while (i40e_ptp_pin_led_allowed_states[i].sdp3_2 != end) {
1089		if (pins->sdp3_2 == i40e_ptp_pin_led_allowed_states[i].sdp3_2 &&
1090		    pins->sdp3_3 == i40e_ptp_pin_led_allowed_states[i].sdp3_3 &&
1091		    pins->gpio_4 == i40e_ptp_pin_led_allowed_states[i].gpio_4) {
1092			pins->led2_0 =
1093				i40e_ptp_pin_led_allowed_states[i].led2_0;
1094			pins->led2_1 =
1095				i40e_ptp_pin_led_allowed_states[i].led2_1;
1096			pins->led3_0 =
1097				i40e_ptp_pin_led_allowed_states[i].led3_0;
1098			pins->led3_1 =
1099				i40e_ptp_pin_led_allowed_states[i].led3_1;
1100			break;
1101		}
1102		i++;
1103	}
1104	if (i40e_ptp_pin_led_allowed_states[i].sdp3_2 == end) {
1105		dev_warn(&pf->pdev->dev,
1106			 "Unsupported PTP pin configuration: SDP3_2: %s,  SDP3_3: %s,  GPIO_4: %s.\n",
1107			 i40e_ptp_gpio_pin_state2str[pins->sdp3_2],
1108			 i40e_ptp_gpio_pin_state2str[pins->sdp3_3],
1109			 i40e_ptp_gpio_pin_state2str[pins->gpio_4]);
1110
1111		return -EPERM;
1112	}
1113	memcpy(pf->ptp_pins, pins, sizeof(*pins));
1114	i40e_ptp_set_pins_hw(pf);
1115	i40_ptp_reset_timing_events(pf);
1116
1117	return 0;
1118}
1119
1120/**
1121 * i40e_ptp_alloc_pins - allocate PTP pins structure
1122 * @pf: Board private structure
1123 *
1124 * allocate PTP pins structure
1125 **/
1126int i40e_ptp_alloc_pins(struct i40e_pf *pf)
1127{
1128	if (!i40e_is_ptp_pin_dev(&pf->hw))
1129		return 0;
1130
1131	pf->ptp_pins =
1132		kzalloc(sizeof(struct i40e_ptp_pins_settings), GFP_KERNEL);
1133
1134	if (!pf->ptp_pins) {
1135		dev_warn(&pf->pdev->dev, "Cannot allocate memory for PTP pins structure.\n");
1136		return -ENOMEM;
1137	}
1138
1139	pf->ptp_pins->sdp3_2 = off;
1140	pf->ptp_pins->sdp3_3 = off;
1141	pf->ptp_pins->gpio_4 = off;
1142	pf->ptp_pins->led2_0 = high;
1143	pf->ptp_pins->led2_1 = high;
1144	pf->ptp_pins->led3_0 = high;
1145	pf->ptp_pins->led3_1 = high;
1146
1147	/* Use PF0 to set pins in HW. Return success for user space tools */
1148	if (pf->hw.pf_id)
1149		return 0;
1150
1151	i40e_ptp_init_leds_hw(&pf->hw);
1152	i40e_ptp_set_pins_hw(pf);
1153
1154	return 0;
1155}
1156
1157/**
1158 * i40e_ptp_set_timestamp_mode - setup hardware for requested timestamp mode
1159 * @pf: Board private structure
1160 * @config: hwtstamp settings requested or saved
1161 *
1162 * Control hardware registers to enter the specific mode requested by the
1163 * user. Also used during reset path to ensure that timestamp settings are
1164 * maintained.
1165 *
1166 * Note: modifies config in place, and may update the requested mode to be
1167 * more broad if the specific filter is not directly supported.
1168 **/
1169static int i40e_ptp_set_timestamp_mode(struct i40e_pf *pf,
1170				       struct hwtstamp_config *config)
1171{
1172	struct i40e_hw *hw = &pf->hw;
1173	u32 tsyntype, regval;
1174
1175	/* Selects external trigger to cause event */
1176	regval = rd32(hw, I40E_PRTTSYN_AUX_0(0));
1177	/* Bit 17:16 is EVNTLVL, 01B rising edge */
1178	regval &= 0;
1179	regval |= (1 << I40E_PRTTSYN_AUX_0_EVNTLVL_SHIFT);
1180	/* regval: 0001 0000 0000 0000 0000 */
1181	wr32(hw, I40E_PRTTSYN_AUX_0(0), regval);
1182
1183	/* Enabel interrupts */
1184	regval = rd32(hw, I40E_PRTTSYN_CTL0);
1185	regval |= 1 << I40E_PRTTSYN_CTL0_EVENT_INT_ENA_SHIFT;
1186	wr32(hw, I40E_PRTTSYN_CTL0, regval);
1187
1188	INIT_WORK(&pf->ptp_extts0_work, i40e_ptp_extts0_work);
1189
1190	switch (config->tx_type) {
1191	case HWTSTAMP_TX_OFF:
1192		pf->ptp_tx = false;
1193		break;
1194	case HWTSTAMP_TX_ON:
1195		pf->ptp_tx = true;
1196		break;
1197	default:
1198		return -ERANGE;
1199	}
1200
1201	switch (config->rx_filter) {
1202	case HWTSTAMP_FILTER_NONE:
1203		pf->ptp_rx = false;
1204		/* We set the type to V1, but do not enable UDP packet
1205		 * recognition. In this way, we should be as close to
1206		 * disabling PTP Rx timestamps as possible since V1 packets
1207		 * are always UDP, since L2 packets are a V2 feature.
1208		 */
1209		tsyntype = I40E_PRTTSYN_CTL1_TSYNTYPE_V1;
1210		break;
1211	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1212	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1213	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1214		if (!test_bit(I40E_HW_CAP_PTP_L4, pf->hw.caps))
1215			return -ERANGE;
1216		pf->ptp_rx = true;
1217		tsyntype = I40E_PRTTSYN_CTL1_V1MESSTYPE0_MASK |
1218			   I40E_PRTTSYN_CTL1_TSYNTYPE_V1 |
1219			   I40E_PRTTSYN_CTL1_UDP_ENA_MASK;
1220		config->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
1221		break;
1222	case HWTSTAMP_FILTER_PTP_V2_EVENT:
1223	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1224	case HWTSTAMP_FILTER_PTP_V2_SYNC:
1225	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1226	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1227	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1228		if (!test_bit(I40E_HW_CAP_PTP_L4, pf->hw.caps))
1229			return -ERANGE;
1230		fallthrough;
1231	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1232	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1233	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1234		pf->ptp_rx = true;
1235		tsyntype = I40E_PRTTSYN_CTL1_V2MESSTYPE0_MASK |
1236			   I40E_PRTTSYN_CTL1_TSYNTYPE_V2;
1237		if (test_bit(I40E_HW_CAP_PTP_L4, pf->hw.caps)) {
1238			tsyntype |= I40E_PRTTSYN_CTL1_UDP_ENA_MASK;
1239			config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
1240		} else {
1241			config->rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
1242		}
1243		break;
1244	case HWTSTAMP_FILTER_NTP_ALL:
1245	case HWTSTAMP_FILTER_ALL:
1246	default:
1247		return -ERANGE;
1248	}
1249
1250	/* Clear out all 1588-related registers to clear and unlatch them. */
1251	spin_lock_bh(&pf->ptp_rx_lock);
1252	rd32(hw, I40E_PRTTSYN_STAT_0);
1253	rd32(hw, I40E_PRTTSYN_TXTIME_H);
1254	rd32(hw, I40E_PRTTSYN_RXTIME_H(0));
1255	rd32(hw, I40E_PRTTSYN_RXTIME_H(1));
1256	rd32(hw, I40E_PRTTSYN_RXTIME_H(2));
1257	rd32(hw, I40E_PRTTSYN_RXTIME_H(3));
1258	pf->latch_event_flags = 0;
1259	spin_unlock_bh(&pf->ptp_rx_lock);
1260
1261	/* Enable/disable the Tx timestamp interrupt based on user input. */
1262	regval = rd32(hw, I40E_PRTTSYN_CTL0);
1263	if (pf->ptp_tx)
1264		regval |= I40E_PRTTSYN_CTL0_TXTIME_INT_ENA_MASK;
1265	else
1266		regval &= ~I40E_PRTTSYN_CTL0_TXTIME_INT_ENA_MASK;
1267	wr32(hw, I40E_PRTTSYN_CTL0, regval);
1268
1269	regval = rd32(hw, I40E_PFINT_ICR0_ENA);
1270	if (pf->ptp_tx)
1271		regval |= I40E_PFINT_ICR0_ENA_TIMESYNC_MASK;
1272	else
1273		regval &= ~I40E_PFINT_ICR0_ENA_TIMESYNC_MASK;
1274	wr32(hw, I40E_PFINT_ICR0_ENA, regval);
1275
1276	/* Although there is no simple on/off switch for Rx, we "disable" Rx
1277	 * timestamps by setting to V1 only mode and clear the UDP
1278	 * recognition. This ought to disable all PTP Rx timestamps as V1
1279	 * packets are always over UDP. Note that software is configured to
1280	 * ignore Rx timestamps via the pf->ptp_rx flag.
1281	 */
1282	regval = rd32(hw, I40E_PRTTSYN_CTL1);
1283	/* clear everything but the enable bit */
1284	regval &= I40E_PRTTSYN_CTL1_TSYNENA_MASK;
1285	/* now enable bits for desired Rx timestamps */
1286	regval |= tsyntype;
1287	wr32(hw, I40E_PRTTSYN_CTL1, regval);
1288
1289	return 0;
1290}
1291
1292/**
1293 * i40e_ptp_set_ts_config - ioctl interface to control the HW timestamping
1294 * @pf: Board private structure
1295 * @ifr: ioctl data
1296 *
1297 * Respond to the user filter requests and make the appropriate hardware
1298 * changes here. The XL710 cannot support splitting of the Tx/Rx timestamping
1299 * logic, so keep track in software of whether to indicate these timestamps
1300 * or not.
1301 *
1302 * It is permissible to "upgrade" the user request to a broader filter, as long
1303 * as the user receives the timestamps they care about and the user is notified
1304 * the filter has been broadened.
1305 **/
1306int i40e_ptp_set_ts_config(struct i40e_pf *pf, struct ifreq *ifr)
1307{
1308	struct hwtstamp_config config;
1309	int err;
1310
1311	if (!test_bit(I40E_FLAG_PTP_ENA, pf->flags))
1312		return -EOPNOTSUPP;
1313
1314	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1315		return -EFAULT;
1316
1317	err = i40e_ptp_set_timestamp_mode(pf, &config);
1318	if (err)
1319		return err;
1320
1321	/* save these settings for future reference */
1322	pf->tstamp_config = config;
1323
1324	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1325		-EFAULT : 0;
1326}
1327
1328/**
1329 * i40e_init_pin_config - initialize pins.
1330 * @pf: private board structure
1331 *
1332 * Initialize pins for external clock source.
1333 * Return 0 on success or error code on failure.
1334 **/
1335static int i40e_init_pin_config(struct i40e_pf *pf)
1336{
1337	int i;
1338
1339	pf->ptp_caps.n_pins = 3;
1340	pf->ptp_caps.n_ext_ts = 2;
1341	pf->ptp_caps.pps = 1;
1342	pf->ptp_caps.n_per_out = 2;
1343
1344	pf->ptp_caps.pin_config = kcalloc(pf->ptp_caps.n_pins,
1345					  sizeof(*pf->ptp_caps.pin_config),
1346					  GFP_KERNEL);
1347	if (!pf->ptp_caps.pin_config)
1348		return -ENOMEM;
1349
1350	for (i = 0; i < pf->ptp_caps.n_pins; i++) {
1351		snprintf(pf->ptp_caps.pin_config[i].name,
1352			 sizeof(pf->ptp_caps.pin_config[i].name),
1353			 "%s", sdp_desc[i].name);
1354		pf->ptp_caps.pin_config[i].index = sdp_desc[i].index;
1355		pf->ptp_caps.pin_config[i].func = PTP_PF_NONE;
1356		pf->ptp_caps.pin_config[i].chan = sdp_desc[i].chan;
1357	}
1358
1359	pf->ptp_caps.verify = i40e_ptp_verify;
1360	pf->ptp_caps.enable = i40e_ptp_feature_enable;
1361
1362	pf->ptp_caps.pps = 1;
1363
1364	return 0;
1365}
1366
1367/**
1368 * i40e_ptp_create_clock - Create PTP clock device for userspace
1369 * @pf: Board private structure
1370 *
1371 * This function creates a new PTP clock device. It only creates one if we
1372 * don't already have one, so it is safe to call. Will return error if it
1373 * can't create one, but success if we already have a device. Should be used
1374 * by i40e_ptp_init to create clock initially, and prevent global resets from
1375 * creating new clock devices.
1376 **/
1377static long i40e_ptp_create_clock(struct i40e_pf *pf)
1378{
1379	/* no need to create a clock device if we already have one */
1380	if (!IS_ERR_OR_NULL(pf->ptp_clock))
1381		return 0;
1382
1383	strscpy(pf->ptp_caps.name, i40e_driver_name,
1384		sizeof(pf->ptp_caps.name) - 1);
1385	pf->ptp_caps.owner = THIS_MODULE;
1386	pf->ptp_caps.max_adj = 999999999;
1387	pf->ptp_caps.adjfine = i40e_ptp_adjfine;
 
 
1388	pf->ptp_caps.adjtime = i40e_ptp_adjtime;
1389	pf->ptp_caps.gettimex64 = i40e_ptp_gettimex;
1390	pf->ptp_caps.settime64 = i40e_ptp_settime;
1391	if (i40e_is_ptp_pin_dev(&pf->hw)) {
1392		int err = i40e_init_pin_config(pf);
1393
1394		if (err)
1395			return err;
1396	}
1397
1398	/* Attempt to register the clock before enabling the hardware. */
1399	pf->ptp_clock = ptp_clock_register(&pf->ptp_caps, &pf->pdev->dev);
1400	if (IS_ERR(pf->ptp_clock))
1401		return PTR_ERR(pf->ptp_clock);
1402
1403	/* clear the hwtstamp settings here during clock create, instead of
1404	 * during regular init, so that we can maintain settings across a
1405	 * reset or suspend.
1406	 */
1407	pf->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
1408	pf->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
1409
1410	/* Set the previous "reset" time to the current Kernel clock time */
1411	ktime_get_real_ts64(&pf->ptp_prev_hw_time);
1412	pf->ptp_reset_start = ktime_get();
1413
1414	return 0;
1415}
1416
1417/**
1418 * i40e_ptp_save_hw_time - Save the current PTP time as ptp_prev_hw_time
1419 * @pf: Board private structure
1420 *
1421 * Read the current PTP time and save it into pf->ptp_prev_hw_time. This should
1422 * be called at the end of preparing to reset, just before hardware reset
1423 * occurs, in order to preserve the PTP time as close as possible across
1424 * resets.
1425 */
1426void i40e_ptp_save_hw_time(struct i40e_pf *pf)
1427{
1428	/* don't try to access the PTP clock if it's not enabled */
1429	if (!test_bit(I40E_FLAG_PTP_ENA, pf->flags))
1430		return;
1431
1432	i40e_ptp_gettimex(&pf->ptp_caps, &pf->ptp_prev_hw_time, NULL);
1433	/* Get a monotonic starting time for this reset */
1434	pf->ptp_reset_start = ktime_get();
1435}
1436
1437/**
1438 * i40e_ptp_restore_hw_time - Restore the ptp_prev_hw_time + delta to PTP regs
1439 * @pf: Board private structure
1440 *
1441 * Restore the PTP hardware clock registers. We previously cached the PTP
1442 * hardware time as pf->ptp_prev_hw_time. To be as accurate as possible,
1443 * update this value based on the time delta since the time was saved, using
1444 * CLOCK_MONOTONIC (via ktime_get()) to calculate the time difference.
1445 *
1446 * This ensures that the hardware clock is restored to nearly what it should
1447 * have been if a reset had not occurred.
1448 */
1449void i40e_ptp_restore_hw_time(struct i40e_pf *pf)
1450{
1451	ktime_t delta = ktime_sub(ktime_get(), pf->ptp_reset_start);
1452
1453	/* Update the previous HW time with the ktime delta */
1454	timespec64_add_ns(&pf->ptp_prev_hw_time, ktime_to_ns(delta));
1455
1456	/* Restore the hardware clock registers */
1457	i40e_ptp_settime(&pf->ptp_caps, &pf->ptp_prev_hw_time);
1458}
1459
1460/**
1461 * i40e_ptp_init - Initialize the 1588 support after device probe or reset
1462 * @pf: Board private structure
1463 *
1464 * This function sets device up for 1588 support. The first time it is run, it
1465 * will create a PHC clock device. It does not create a clock device if one
1466 * already exists. It also reconfigures the device after a reset.
1467 *
1468 * The first time a clock is created, i40e_ptp_create_clock will set
1469 * pf->ptp_prev_hw_time to the current system time. During resets, it is
1470 * expected that this timespec will be set to the last known PTP clock time,
1471 * in order to preserve the clock time as close as possible across a reset.
1472 **/
1473void i40e_ptp_init(struct i40e_pf *pf)
1474{
1475	struct i40e_vsi *vsi = i40e_pf_get_main_vsi(pf);
1476	struct net_device *netdev = vsi->netdev;
1477	struct i40e_hw *hw = &pf->hw;
1478	u32 pf_id;
1479	long err;
1480
1481	/* Only one PF is assigned to control 1588 logic per port. Do not
1482	 * enable any support for PFs not assigned via PRTTSYN_CTL0.PF_ID
1483	 */
1484	pf_id = FIELD_GET(I40E_PRTTSYN_CTL0_PF_ID_MASK,
1485			  rd32(hw, I40E_PRTTSYN_CTL0));
1486	if (hw->pf_id != pf_id) {
1487		clear_bit(I40E_FLAG_PTP_ENA, pf->flags);
1488		dev_info(&pf->pdev->dev, "%s: PTP not supported on %s\n",
1489			 __func__,
1490			 netdev->name);
1491		return;
1492	}
1493
1494	mutex_init(&pf->tmreg_lock);
1495	spin_lock_init(&pf->ptp_rx_lock);
1496
1497	/* ensure we have a clock device */
1498	err = i40e_ptp_create_clock(pf);
1499	if (err) {
1500		pf->ptp_clock = NULL;
1501		dev_err(&pf->pdev->dev, "%s: ptp_clock_register failed\n",
1502			__func__);
1503	} else if (pf->ptp_clock) {
1504		u32 regval;
1505
1506		if (pf->hw.debug_mask & I40E_DEBUG_LAN)
1507			dev_info(&pf->pdev->dev, "PHC enabled\n");
1508		set_bit(I40E_FLAG_PTP_ENA, pf->flags);
1509
1510		/* Ensure the clocks are running. */
1511		regval = rd32(hw, I40E_PRTTSYN_CTL0);
1512		regval |= I40E_PRTTSYN_CTL0_TSYNENA_MASK;
1513		wr32(hw, I40E_PRTTSYN_CTL0, regval);
1514		regval = rd32(hw, I40E_PRTTSYN_CTL1);
1515		regval |= I40E_PRTTSYN_CTL1_TSYNENA_MASK;
1516		wr32(hw, I40E_PRTTSYN_CTL1, regval);
1517
1518		/* Set the increment value per clock tick. */
1519		i40e_ptp_set_increment(pf);
1520
1521		/* reset timestamping mode */
1522		i40e_ptp_set_timestamp_mode(pf, &pf->tstamp_config);
1523
1524		/* Restore the clock time based on last known value */
1525		i40e_ptp_restore_hw_time(pf);
1526	}
1527
1528	i40e_ptp_set_1pps_signal_hw(pf);
1529}
1530
1531/**
1532 * i40e_ptp_stop - Disable the driver/hardware support and unregister the PHC
1533 * @pf: Board private structure
1534 *
1535 * This function handles the cleanup work required from the initialization by
1536 * clearing out the important information and unregistering the PHC.
1537 **/
1538void i40e_ptp_stop(struct i40e_pf *pf)
1539{
1540	struct i40e_vsi *main_vsi = i40e_pf_get_main_vsi(pf);
1541	struct i40e_hw *hw = &pf->hw;
1542	u32 regval;
1543
1544	clear_bit(I40E_FLAG_PTP_ENA, pf->flags);
1545	pf->ptp_tx = false;
1546	pf->ptp_rx = false;
1547
1548	if (pf->ptp_tx_skb) {
1549		struct sk_buff *skb = pf->ptp_tx_skb;
1550
1551		pf->ptp_tx_skb = NULL;
1552		clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
1553		dev_kfree_skb_any(skb);
1554	}
1555
1556	if (pf->ptp_clock) {
1557		ptp_clock_unregister(pf->ptp_clock);
1558		pf->ptp_clock = NULL;
1559		dev_info(&pf->pdev->dev, "%s: removed PHC on %s\n", __func__,
1560			 main_vsi->netdev->name);
1561	}
1562
1563	if (i40e_is_ptp_pin_dev(&pf->hw)) {
1564		i40e_ptp_set_pin_hw(hw, I40E_SDP3_2, off);
1565		i40e_ptp_set_pin_hw(hw, I40E_SDP3_3, off);
1566		i40e_ptp_set_pin_hw(hw, I40E_GPIO_4, off);
1567	}
1568
1569	regval = rd32(hw, I40E_PRTTSYN_AUX_0(0));
1570	regval &= ~I40E_PRTTSYN_AUX_0_PTPFLAG_MASK;
1571	wr32(hw, I40E_PRTTSYN_AUX_0(0), regval);
1572
1573	/* Disable interrupts */
1574	regval = rd32(hw, I40E_PRTTSYN_CTL0);
1575	regval &= ~I40E_PRTTSYN_CTL0_EVENT_INT_ENA_MASK;
1576	wr32(hw, I40E_PRTTSYN_CTL0, regval);
1577
1578	i40e_ptp_free_pins(pf);
1579}
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0
  2/* Copyright(c) 2013 - 2018 Intel Corporation. */
  3
 
 
  4#include "i40e.h"
  5#include <linux/ptp_classify.h>
  6
  7/* The XL710 timesync is very much like Intel's 82599 design when it comes to
  8 * the fundamental clock design. However, the clock operations are much simpler
  9 * in the XL710 because the device supports a full 64 bits of nanoseconds.
 10 * Because the field is so wide, we can forgo the cycle counter and just
 11 * operate with the nanosecond field directly without fear of overflow.
 12 *
 13 * Much like the 82599, the update period is dependent upon the link speed:
 14 * At 40Gb, 25Gb, or no link, the period is 1.6ns.
 15 * At 10Gb or 5Gb link, the period is multiplied by 2. (3.2ns)
 16 * At 1Gb link, the period is multiplied by 20. (32ns)
 17 * 1588 functionality is not supported at 100Mbps.
 18 */
 19#define I40E_PTP_40GB_INCVAL		0x0199999999ULL
 20#define I40E_PTP_10GB_INCVAL_MULT	2
 21#define I40E_PTP_5GB_INCVAL_MULT	2
 22#define I40E_PTP_1GB_INCVAL_MULT	20
 
 23
 24#define I40E_PRTTSYN_CTL1_TSYNTYPE_V1  BIT(I40E_PRTTSYN_CTL1_TSYNTYPE_SHIFT)
 25#define I40E_PRTTSYN_CTL1_TSYNTYPE_V2  (2 << \
 26					I40E_PRTTSYN_CTL1_TSYNTYPE_SHIFT)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 27
 28/**
 29 * i40e_ptp_read - Read the PHC time from the device
 30 * @pf: Board private structure
 31 * @ts: timespec structure to hold the current time value
 32 * @sts: structure to hold the system time before and after reading the PHC
 33 *
 34 * This function reads the PRTTSYN_TIME registers and stores them in a
 35 * timespec. However, since the registers are 64 bits of nanoseconds, we must
 36 * convert the result to a timespec before we can return.
 37 **/
 38static void i40e_ptp_read(struct i40e_pf *pf, struct timespec64 *ts,
 39			  struct ptp_system_timestamp *sts)
 40{
 41	struct i40e_hw *hw = &pf->hw;
 42	u32 hi, lo;
 43	u64 ns;
 44
 45	/* The timer latches on the lowest register read. */
 46	ptp_read_system_prets(sts);
 47	lo = rd32(hw, I40E_PRTTSYN_TIME_L);
 48	ptp_read_system_postts(sts);
 49	hi = rd32(hw, I40E_PRTTSYN_TIME_H);
 50
 51	ns = (((u64)hi) << 32) | lo;
 52
 53	*ts = ns_to_timespec64(ns);
 54}
 55
 56/**
 57 * i40e_ptp_write - Write the PHC time to the device
 58 * @pf: Board private structure
 59 * @ts: timespec structure that holds the new time value
 60 *
 61 * This function writes the PRTTSYN_TIME registers with the user value. Since
 62 * we receive a timespec from the stack, we must convert that timespec into
 63 * nanoseconds before programming the registers.
 64 **/
 65static void i40e_ptp_write(struct i40e_pf *pf, const struct timespec64 *ts)
 66{
 67	struct i40e_hw *hw = &pf->hw;
 68	u64 ns = timespec64_to_ns(ts);
 69
 70	/* The timer will not update until the high register is written, so
 71	 * write the low register first.
 72	 */
 73	wr32(hw, I40E_PRTTSYN_TIME_L, ns & 0xFFFFFFFF);
 74	wr32(hw, I40E_PRTTSYN_TIME_H, ns >> 32);
 75}
 76
 77/**
 78 * i40e_ptp_convert_to_hwtstamp - Convert device clock to system time
 79 * @hwtstamps: Timestamp structure to update
 80 * @timestamp: Timestamp from the hardware
 81 *
 82 * We need to convert the NIC clock value into a hwtstamp which can be used by
 83 * the upper level timestamping functions. Since the timestamp is simply a 64-
 84 * bit nanosecond value, we can call ns_to_ktime directly to handle this.
 85 **/
 86static void i40e_ptp_convert_to_hwtstamp(struct skb_shared_hwtstamps *hwtstamps,
 87					 u64 timestamp)
 88{
 89	memset(hwtstamps, 0, sizeof(*hwtstamps));
 90
 91	hwtstamps->hwtstamp = ns_to_ktime(timestamp);
 92}
 93
 94/**
 95 * i40e_ptp_adjfreq - Adjust the PHC frequency
 96 * @ptp: The PTP clock structure
 97 * @ppb: Parts per billion adjustment from the base
 98 *
 99 * Adjust the frequency of the PHC by the indicated parts per billion from the
100 * base frequency.
 
 
101 **/
102static int i40e_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
103{
104	struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
105	struct i40e_hw *hw = &pf->hw;
106	u64 adj, freq, diff;
107	int neg_adj = 0;
108
109	if (ppb < 0) {
110		neg_adj = 1;
111		ppb = -ppb;
112	}
113
114	freq = I40E_PTP_40GB_INCVAL;
115	freq *= ppb;
116	diff = div_u64(freq, 1000000000ULL);
117
118	if (neg_adj)
119		adj = I40E_PTP_40GB_INCVAL - diff;
120	else
121		adj = I40E_PTP_40GB_INCVAL + diff;
122
123	/* At some link speeds, the base incval is so large that directly
124	 * multiplying by ppb would result in arithmetic overflow even when
125	 * using a u64. Avoid this by instead calculating the new incval
126	 * always in terms of the 40GbE clock rate and then multiplying by the
127	 * link speed factor afterwards. This does result in slightly lower
128	 * precision at lower link speeds, but it is fairly minor.
129	 */
130	smp_mb(); /* Force any pending update before accessing. */
131	adj *= READ_ONCE(pf->ptp_adj_mult);
132
133	wr32(hw, I40E_PRTTSYN_INC_L, adj & 0xFFFFFFFF);
134	wr32(hw, I40E_PRTTSYN_INC_H, adj >> 32);
135
136	return 0;
137}
138
139/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
140 * i40e_ptp_adjtime - Adjust the PHC time
141 * @ptp: The PTP clock structure
142 * @delta: Offset in nanoseconds to adjust the PHC time by
143 *
144 * Adjust the current clock time by a delta specified in nanoseconds.
145 **/
146static int i40e_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
147{
148	struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
149	struct timespec64 now, then;
150
151	then = ns_to_timespec64(delta);
152	mutex_lock(&pf->tmreg_lock);
153
154	i40e_ptp_read(pf, &now, NULL);
155	now = timespec64_add(now, then);
156	i40e_ptp_write(pf, (const struct timespec64 *)&now);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
157
158	mutex_unlock(&pf->tmreg_lock);
159
160	return 0;
161}
162
163/**
164 * i40e_ptp_gettimex - Get the time of the PHC
165 * @ptp: The PTP clock structure
166 * @ts: timespec structure to hold the current time value
167 * @sts: structure to hold the system time before and after reading the PHC
168 *
169 * Read the device clock and return the correct value on ns, after converting it
170 * into a timespec struct.
171 **/
172static int i40e_ptp_gettimex(struct ptp_clock_info *ptp, struct timespec64 *ts,
173			     struct ptp_system_timestamp *sts)
174{
175	struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
176
177	mutex_lock(&pf->tmreg_lock);
178	i40e_ptp_read(pf, ts, sts);
179	mutex_unlock(&pf->tmreg_lock);
180
181	return 0;
182}
183
184/**
185 * i40e_ptp_settime - Set the time of the PHC
186 * @ptp: The PTP clock structure
187 * @ts: timespec structure that holds the new time value
188 *
189 * Set the device clock to the user input value. The conversion from timespec
190 * to ns happens in the write function.
191 **/
192static int i40e_ptp_settime(struct ptp_clock_info *ptp,
193			    const struct timespec64 *ts)
194{
195	struct i40e_pf *pf = container_of(ptp, struct i40e_pf, ptp_caps);
196
197	mutex_lock(&pf->tmreg_lock);
198	i40e_ptp_write(pf, ts);
199	mutex_unlock(&pf->tmreg_lock);
200
201	return 0;
202}
203
204/**
205 * i40e_ptp_feature_enable - Enable/disable ancillary features of the PHC subsystem
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
206 * @ptp: The PTP clock structure
207 * @rq: The requested feature to change
208 * @on: Enable/disable flag
209 *
210 * The XL710 does not support any of the ancillary features of the PHC
211 * subsystem, so this function may just return.
212 **/
213static int i40e_ptp_feature_enable(struct ptp_clock_info *ptp,
214				   struct ptp_clock_request *rq, int on)
 
215{
216	return -EOPNOTSUPP;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
217}
218
219/**
220 * i40e_ptp_get_rx_events - Read I40E_PRTTSYN_STAT_1 and latch events
221 * @pf: the PF data structure
222 *
223 * This function reads I40E_PRTTSYN_STAT_1 and updates the corresponding timers
224 * for noticed latch events. This allows the driver to keep track of the first
225 * time a latch event was noticed which will be used to help clear out Rx
226 * timestamps for packets that got dropped or lost.
227 *
228 * This function will return the current value of I40E_PRTTSYN_STAT_1 and is
229 * expected to be called only while under the ptp_rx_lock.
230 **/
231static u32 i40e_ptp_get_rx_events(struct i40e_pf *pf)
232{
233	struct i40e_hw *hw = &pf->hw;
234	u32 prttsyn_stat, new_latch_events;
235	int  i;
236
237	prttsyn_stat = rd32(hw, I40E_PRTTSYN_STAT_1);
238	new_latch_events = prttsyn_stat & ~pf->latch_event_flags;
239
240	/* Update the jiffies time for any newly latched timestamp. This
241	 * ensures that we store the time that we first discovered a timestamp
242	 * was latched by the hardware. The service task will later determine
243	 * if we should free the latch and drop that timestamp should too much
244	 * time pass. This flow ensures that we only update jiffies for new
245	 * events latched since the last time we checked, and not all events
246	 * currently latched, so that the service task accounting remains
247	 * accurate.
248	 */
249	for (i = 0; i < 4; i++) {
250		if (new_latch_events & BIT(i))
251			pf->latch_events[i] = jiffies;
252	}
253
254	/* Finally, we store the current status of the Rx timestamp latches */
255	pf->latch_event_flags = prttsyn_stat;
256
257	return prttsyn_stat;
258}
259
260/**
261 * i40e_ptp_rx_hang - Detect error case when Rx timestamp registers are hung
262 * @pf: The PF private data structure
263 *
264 * This watchdog task is scheduled to detect error case where hardware has
265 * dropped an Rx packet that was timestamped when the ring is full. The
266 * particular error is rare but leaves the device in a state unable to timestamp
267 * any future packets.
268 **/
269void i40e_ptp_rx_hang(struct i40e_pf *pf)
270{
271	struct i40e_hw *hw = &pf->hw;
272	unsigned int i, cleared = 0;
273
274	/* Since we cannot turn off the Rx timestamp logic if the device is
275	 * configured for Tx timestamping, we check if Rx timestamping is
276	 * configured. We don't want to spuriously warn about Rx timestamp
277	 * hangs if we don't care about the timestamps.
278	 */
279	if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_rx)
280		return;
281
282	spin_lock_bh(&pf->ptp_rx_lock);
283
284	/* Update current latch times for Rx events */
285	i40e_ptp_get_rx_events(pf);
286
287	/* Check all the currently latched Rx events and see whether they have
288	 * been latched for over a second. It is assumed that any timestamp
289	 * should have been cleared within this time, or else it was captured
290	 * for a dropped frame that the driver never received. Thus, we will
291	 * clear any timestamp that has been latched for over 1 second.
292	 */
293	for (i = 0; i < 4; i++) {
294		if ((pf->latch_event_flags & BIT(i)) &&
295		    time_is_before_jiffies(pf->latch_events[i] + HZ)) {
296			rd32(hw, I40E_PRTTSYN_RXTIME_H(i));
297			pf->latch_event_flags &= ~BIT(i);
298			cleared++;
299		}
300	}
301
302	spin_unlock_bh(&pf->ptp_rx_lock);
303
304	/* Log a warning if more than 2 timestamps got dropped in the same
305	 * check. We don't want to warn about all drops because it can occur
306	 * in normal scenarios such as PTP frames on multicast addresses we
307	 * aren't listening to. However, administrator should know if this is
308	 * the reason packets aren't receiving timestamps.
309	 */
310	if (cleared > 2)
311		dev_dbg(&pf->pdev->dev,
312			"Dropped %d missed RXTIME timestamp events\n",
313			cleared);
314
315	/* Finally, update the rx_hwtstamp_cleared counter */
316	pf->rx_hwtstamp_cleared += cleared;
317}
318
319/**
320 * i40e_ptp_tx_hang - Detect error case when Tx timestamp register is hung
321 * @pf: The PF private data structure
322 *
323 * This watchdog task is run periodically to make sure that we clear the Tx
324 * timestamp logic if we don't obtain a timestamp in a reasonable amount of
325 * time. It is unexpected in the normal case but if it occurs it results in
326 * permanently preventing timestamps of future packets.
327 **/
328void i40e_ptp_tx_hang(struct i40e_pf *pf)
329{
330	struct sk_buff *skb;
331
332	if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_tx)
333		return;
334
335	/* Nothing to do if we're not already waiting for a timestamp */
336	if (!test_bit(__I40E_PTP_TX_IN_PROGRESS, pf->state))
337		return;
338
339	/* We already have a handler routine which is run when we are notified
340	 * of a Tx timestamp in the hardware. If we don't get an interrupt
341	 * within a second it is reasonable to assume that we never will.
342	 */
343	if (time_is_before_jiffies(pf->ptp_tx_start + HZ)) {
344		skb = pf->ptp_tx_skb;
345		pf->ptp_tx_skb = NULL;
346		clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
347
348		/* Free the skb after we clear the bitlock */
349		dev_kfree_skb_any(skb);
350		pf->tx_hwtstamp_timeouts++;
351	}
352}
353
354/**
355 * i40e_ptp_tx_hwtstamp - Utility function which returns the Tx timestamp
356 * @pf: Board private structure
357 *
358 * Read the value of the Tx timestamp from the registers, convert it into a
359 * value consumable by the stack, and store that result into the shhwtstamps
360 * struct before returning it up the stack.
361 **/
362void i40e_ptp_tx_hwtstamp(struct i40e_pf *pf)
363{
364	struct skb_shared_hwtstamps shhwtstamps;
365	struct sk_buff *skb = pf->ptp_tx_skb;
366	struct i40e_hw *hw = &pf->hw;
367	u32 hi, lo;
368	u64 ns;
369
370	if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_tx)
371		return;
372
373	/* don't attempt to timestamp if we don't have an skb */
374	if (!pf->ptp_tx_skb)
375		return;
376
377	lo = rd32(hw, I40E_PRTTSYN_TXTIME_L);
378	hi = rd32(hw, I40E_PRTTSYN_TXTIME_H);
379
380	ns = (((u64)hi) << 32) | lo;
381	i40e_ptp_convert_to_hwtstamp(&shhwtstamps, ns);
382
383	/* Clear the bit lock as soon as possible after reading the register,
384	 * and prior to notifying the stack via skb_tstamp_tx(). Otherwise
385	 * applications might wake up and attempt to request another transmit
386	 * timestamp prior to the bit lock being cleared.
387	 */
388	pf->ptp_tx_skb = NULL;
389	clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
390
391	/* Notify the stack and free the skb after we've unlocked */
392	skb_tstamp_tx(skb, &shhwtstamps);
393	dev_kfree_skb_any(skb);
394}
395
396/**
397 * i40e_ptp_rx_hwtstamp - Utility function which checks for an Rx timestamp
398 * @pf: Board private structure
399 * @skb: Particular skb to send timestamp with
400 * @index: Index into the receive timestamp registers for the timestamp
401 *
402 * The XL710 receives a notification in the receive descriptor with an offset
403 * into the set of RXTIME registers where the timestamp is for that skb. This
404 * function goes and fetches the receive timestamp from that offset, if a valid
405 * one exists. The RXTIME registers are in ns, so we must convert the result
406 * first.
407 **/
408void i40e_ptp_rx_hwtstamp(struct i40e_pf *pf, struct sk_buff *skb, u8 index)
409{
410	u32 prttsyn_stat, hi, lo;
411	struct i40e_hw *hw;
412	u64 ns;
413
414	/* Since we cannot turn off the Rx timestamp logic if the device is
415	 * doing Tx timestamping, check if Rx timestamping is configured.
416	 */
417	if (!(pf->flags & I40E_FLAG_PTP) || !pf->ptp_rx)
418		return;
419
420	hw = &pf->hw;
421
422	spin_lock_bh(&pf->ptp_rx_lock);
423
424	/* Get current Rx events and update latch times */
425	prttsyn_stat = i40e_ptp_get_rx_events(pf);
426
427	/* TODO: Should we warn about missing Rx timestamp event? */
428	if (!(prttsyn_stat & BIT(index))) {
429		spin_unlock_bh(&pf->ptp_rx_lock);
430		return;
431	}
432
433	/* Clear the latched event since we're about to read its register */
434	pf->latch_event_flags &= ~BIT(index);
435
436	lo = rd32(hw, I40E_PRTTSYN_RXTIME_L(index));
437	hi = rd32(hw, I40E_PRTTSYN_RXTIME_H(index));
438
439	spin_unlock_bh(&pf->ptp_rx_lock);
440
441	ns = (((u64)hi) << 32) | lo;
442
443	i40e_ptp_convert_to_hwtstamp(skb_hwtstamps(skb), ns);
444}
445
446/**
447 * i40e_ptp_set_increment - Utility function to update clock increment rate
448 * @pf: Board private structure
449 *
450 * During a link change, the DMA frequency that drives the 1588 logic will
451 * change. In order to keep the PRTTSYN_TIME registers in units of nanoseconds,
452 * we must update the increment value per clock tick.
453 **/
454void i40e_ptp_set_increment(struct i40e_pf *pf)
455{
456	struct i40e_link_status *hw_link_info;
457	struct i40e_hw *hw = &pf->hw;
458	u64 incval;
459	u32 mult;
460
461	hw_link_info = &hw->phy.link_info;
462
463	i40e_aq_get_link_info(&pf->hw, true, NULL, NULL);
464
465	switch (hw_link_info->link_speed) {
466	case I40E_LINK_SPEED_10GB:
467		mult = I40E_PTP_10GB_INCVAL_MULT;
468		break;
469	case I40E_LINK_SPEED_5GB:
470		mult = I40E_PTP_5GB_INCVAL_MULT;
471		break;
472	case I40E_LINK_SPEED_1GB:
473		mult = I40E_PTP_1GB_INCVAL_MULT;
474		break;
475	case I40E_LINK_SPEED_100MB:
476	{
477		static int warn_once;
478
479		if (!warn_once) {
480			dev_warn(&pf->pdev->dev,
481				 "1588 functionality is not supported at 100 Mbps. Stopping the PHC.\n");
482			warn_once++;
483		}
484		mult = 0;
485		break;
486	}
487	case I40E_LINK_SPEED_40GB:
488	default:
489		mult = 1;
490		break;
491	}
492
493	/* The increment value is calculated by taking the base 40GbE incvalue
494	 * and multiplying it by a factor based on the link speed.
495	 */
496	incval = I40E_PTP_40GB_INCVAL * mult;
497
498	/* Write the new increment value into the increment register. The
499	 * hardware will not update the clock until both registers have been
500	 * written.
501	 */
502	wr32(hw, I40E_PRTTSYN_INC_L, incval & 0xFFFFFFFF);
503	wr32(hw, I40E_PRTTSYN_INC_H, incval >> 32);
504
505	/* Update the base adjustement value. */
506	WRITE_ONCE(pf->ptp_adj_mult, mult);
507	smp_mb(); /* Force the above update. */
508}
509
510/**
511 * i40e_ptp_get_ts_config - ioctl interface to read the HW timestamping
512 * @pf: Board private structure
513 * @ifr: ioctl data
514 *
515 * Obtain the current hardware timestamping settigs as requested. To do this,
516 * keep a shadow copy of the timestamp settings rather than attempting to
517 * deconstruct it from the registers.
518 **/
519int i40e_ptp_get_ts_config(struct i40e_pf *pf, struct ifreq *ifr)
520{
521	struct hwtstamp_config *config = &pf->tstamp_config;
522
523	if (!(pf->flags & I40E_FLAG_PTP))
524		return -EOPNOTSUPP;
525
526	return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
527		-EFAULT : 0;
528}
529
530/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
531 * i40e_ptp_set_timestamp_mode - setup hardware for requested timestamp mode
532 * @pf: Board private structure
533 * @config: hwtstamp settings requested or saved
534 *
535 * Control hardware registers to enter the specific mode requested by the
536 * user. Also used during reset path to ensure that timestamp settings are
537 * maintained.
538 *
539 * Note: modifies config in place, and may update the requested mode to be
540 * more broad if the specific filter is not directly supported.
541 **/
542static int i40e_ptp_set_timestamp_mode(struct i40e_pf *pf,
543				       struct hwtstamp_config *config)
544{
545	struct i40e_hw *hw = &pf->hw;
546	u32 tsyntype, regval;
547
548	/* Reserved for future extensions. */
549	if (config->flags)
550		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
551
552	switch (config->tx_type) {
553	case HWTSTAMP_TX_OFF:
554		pf->ptp_tx = false;
555		break;
556	case HWTSTAMP_TX_ON:
557		pf->ptp_tx = true;
558		break;
559	default:
560		return -ERANGE;
561	}
562
563	switch (config->rx_filter) {
564	case HWTSTAMP_FILTER_NONE:
565		pf->ptp_rx = false;
566		/* We set the type to V1, but do not enable UDP packet
567		 * recognition. In this way, we should be as close to
568		 * disabling PTP Rx timestamps as possible since V1 packets
569		 * are always UDP, since L2 packets are a V2 feature.
570		 */
571		tsyntype = I40E_PRTTSYN_CTL1_TSYNTYPE_V1;
572		break;
573	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
574	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
575	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
576		if (!(pf->hw_features & I40E_HW_PTP_L4_CAPABLE))
577			return -ERANGE;
578		pf->ptp_rx = true;
579		tsyntype = I40E_PRTTSYN_CTL1_V1MESSTYPE0_MASK |
580			   I40E_PRTTSYN_CTL1_TSYNTYPE_V1 |
581			   I40E_PRTTSYN_CTL1_UDP_ENA_MASK;
582		config->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
583		break;
584	case HWTSTAMP_FILTER_PTP_V2_EVENT:
585	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
586	case HWTSTAMP_FILTER_PTP_V2_SYNC:
587	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
588	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
589	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
590		if (!(pf->hw_features & I40E_HW_PTP_L4_CAPABLE))
591			return -ERANGE;
592		fallthrough;
593	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
594	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
595	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
596		pf->ptp_rx = true;
597		tsyntype = I40E_PRTTSYN_CTL1_V2MESSTYPE0_MASK |
598			   I40E_PRTTSYN_CTL1_TSYNTYPE_V2;
599		if (pf->hw_features & I40E_HW_PTP_L4_CAPABLE) {
600			tsyntype |= I40E_PRTTSYN_CTL1_UDP_ENA_MASK;
601			config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
602		} else {
603			config->rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
604		}
605		break;
606	case HWTSTAMP_FILTER_NTP_ALL:
607	case HWTSTAMP_FILTER_ALL:
608	default:
609		return -ERANGE;
610	}
611
612	/* Clear out all 1588-related registers to clear and unlatch them. */
613	spin_lock_bh(&pf->ptp_rx_lock);
614	rd32(hw, I40E_PRTTSYN_STAT_0);
615	rd32(hw, I40E_PRTTSYN_TXTIME_H);
616	rd32(hw, I40E_PRTTSYN_RXTIME_H(0));
617	rd32(hw, I40E_PRTTSYN_RXTIME_H(1));
618	rd32(hw, I40E_PRTTSYN_RXTIME_H(2));
619	rd32(hw, I40E_PRTTSYN_RXTIME_H(3));
620	pf->latch_event_flags = 0;
621	spin_unlock_bh(&pf->ptp_rx_lock);
622
623	/* Enable/disable the Tx timestamp interrupt based on user input. */
624	regval = rd32(hw, I40E_PRTTSYN_CTL0);
625	if (pf->ptp_tx)
626		regval |= I40E_PRTTSYN_CTL0_TXTIME_INT_ENA_MASK;
627	else
628		regval &= ~I40E_PRTTSYN_CTL0_TXTIME_INT_ENA_MASK;
629	wr32(hw, I40E_PRTTSYN_CTL0, regval);
630
631	regval = rd32(hw, I40E_PFINT_ICR0_ENA);
632	if (pf->ptp_tx)
633		regval |= I40E_PFINT_ICR0_ENA_TIMESYNC_MASK;
634	else
635		regval &= ~I40E_PFINT_ICR0_ENA_TIMESYNC_MASK;
636	wr32(hw, I40E_PFINT_ICR0_ENA, regval);
637
638	/* Although there is no simple on/off switch for Rx, we "disable" Rx
639	 * timestamps by setting to V1 only mode and clear the UDP
640	 * recognition. This ought to disable all PTP Rx timestamps as V1
641	 * packets are always over UDP. Note that software is configured to
642	 * ignore Rx timestamps via the pf->ptp_rx flag.
643	 */
644	regval = rd32(hw, I40E_PRTTSYN_CTL1);
645	/* clear everything but the enable bit */
646	regval &= I40E_PRTTSYN_CTL1_TSYNENA_MASK;
647	/* now enable bits for desired Rx timestamps */
648	regval |= tsyntype;
649	wr32(hw, I40E_PRTTSYN_CTL1, regval);
650
651	return 0;
652}
653
654/**
655 * i40e_ptp_set_ts_config - ioctl interface to control the HW timestamping
656 * @pf: Board private structure
657 * @ifr: ioctl data
658 *
659 * Respond to the user filter requests and make the appropriate hardware
660 * changes here. The XL710 cannot support splitting of the Tx/Rx timestamping
661 * logic, so keep track in software of whether to indicate these timestamps
662 * or not.
663 *
664 * It is permissible to "upgrade" the user request to a broader filter, as long
665 * as the user receives the timestamps they care about and the user is notified
666 * the filter has been broadened.
667 **/
668int i40e_ptp_set_ts_config(struct i40e_pf *pf, struct ifreq *ifr)
669{
670	struct hwtstamp_config config;
671	int err;
672
673	if (!(pf->flags & I40E_FLAG_PTP))
674		return -EOPNOTSUPP;
675
676	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
677		return -EFAULT;
678
679	err = i40e_ptp_set_timestamp_mode(pf, &config);
680	if (err)
681		return err;
682
683	/* save these settings for future reference */
684	pf->tstamp_config = config;
685
686	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
687		-EFAULT : 0;
688}
689
690/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
691 * i40e_ptp_create_clock - Create PTP clock device for userspace
692 * @pf: Board private structure
693 *
694 * This function creates a new PTP clock device. It only creates one if we
695 * don't already have one, so it is safe to call. Will return error if it
696 * can't create one, but success if we already have a device. Should be used
697 * by i40e_ptp_init to create clock initially, and prevent global resets from
698 * creating new clock devices.
699 **/
700static long i40e_ptp_create_clock(struct i40e_pf *pf)
701{
702	/* no need to create a clock device if we already have one */
703	if (!IS_ERR_OR_NULL(pf->ptp_clock))
704		return 0;
705
706	strlcpy(pf->ptp_caps.name, i40e_driver_name,
707		sizeof(pf->ptp_caps.name) - 1);
708	pf->ptp_caps.owner = THIS_MODULE;
709	pf->ptp_caps.max_adj = 999999999;
710	pf->ptp_caps.n_ext_ts = 0;
711	pf->ptp_caps.pps = 0;
712	pf->ptp_caps.adjfreq = i40e_ptp_adjfreq;
713	pf->ptp_caps.adjtime = i40e_ptp_adjtime;
714	pf->ptp_caps.gettimex64 = i40e_ptp_gettimex;
715	pf->ptp_caps.settime64 = i40e_ptp_settime;
716	pf->ptp_caps.enable = i40e_ptp_feature_enable;
 
 
 
 
 
717
718	/* Attempt to register the clock before enabling the hardware. */
719	pf->ptp_clock = ptp_clock_register(&pf->ptp_caps, &pf->pdev->dev);
720	if (IS_ERR(pf->ptp_clock))
721		return PTR_ERR(pf->ptp_clock);
722
723	/* clear the hwtstamp settings here during clock create, instead of
724	 * during regular init, so that we can maintain settings across a
725	 * reset or suspend.
726	 */
727	pf->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
728	pf->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
729
730	/* Set the previous "reset" time to the current Kernel clock time */
731	ktime_get_real_ts64(&pf->ptp_prev_hw_time);
732	pf->ptp_reset_start = ktime_get();
733
734	return 0;
735}
736
737/**
738 * i40e_ptp_save_hw_time - Save the current PTP time as ptp_prev_hw_time
739 * @pf: Board private structure
740 *
741 * Read the current PTP time and save it into pf->ptp_prev_hw_time. This should
742 * be called at the end of preparing to reset, just before hardware reset
743 * occurs, in order to preserve the PTP time as close as possible across
744 * resets.
745 */
746void i40e_ptp_save_hw_time(struct i40e_pf *pf)
747{
748	/* don't try to access the PTP clock if it's not enabled */
749	if (!(pf->flags & I40E_FLAG_PTP))
750		return;
751
752	i40e_ptp_gettimex(&pf->ptp_caps, &pf->ptp_prev_hw_time, NULL);
753	/* Get a monotonic starting time for this reset */
754	pf->ptp_reset_start = ktime_get();
755}
756
757/**
758 * i40e_ptp_restore_hw_time - Restore the ptp_prev_hw_time + delta to PTP regs
759 * @pf: Board private structure
760 *
761 * Restore the PTP hardware clock registers. We previously cached the PTP
762 * hardware time as pf->ptp_prev_hw_time. To be as accurate as possible,
763 * update this value based on the time delta since the time was saved, using
764 * CLOCK_MONOTONIC (via ktime_get()) to calculate the time difference.
765 *
766 * This ensures that the hardware clock is restored to nearly what it should
767 * have been if a reset had not occurred.
768 */
769void i40e_ptp_restore_hw_time(struct i40e_pf *pf)
770{
771	ktime_t delta = ktime_sub(ktime_get(), pf->ptp_reset_start);
772
773	/* Update the previous HW time with the ktime delta */
774	timespec64_add_ns(&pf->ptp_prev_hw_time, ktime_to_ns(delta));
775
776	/* Restore the hardware clock registers */
777	i40e_ptp_settime(&pf->ptp_caps, &pf->ptp_prev_hw_time);
778}
779
780/**
781 * i40e_ptp_init - Initialize the 1588 support after device probe or reset
782 * @pf: Board private structure
783 *
784 * This function sets device up for 1588 support. The first time it is run, it
785 * will create a PHC clock device. It does not create a clock device if one
786 * already exists. It also reconfigures the device after a reset.
787 *
788 * The first time a clock is created, i40e_ptp_create_clock will set
789 * pf->ptp_prev_hw_time to the current system time. During resets, it is
790 * expected that this timespec will be set to the last known PTP clock time,
791 * in order to preserve the clock time as close as possible across a reset.
792 **/
793void i40e_ptp_init(struct i40e_pf *pf)
794{
795	struct net_device *netdev = pf->vsi[pf->lan_vsi]->netdev;
 
796	struct i40e_hw *hw = &pf->hw;
797	u32 pf_id;
798	long err;
799
800	/* Only one PF is assigned to control 1588 logic per port. Do not
801	 * enable any support for PFs not assigned via PRTTSYN_CTL0.PF_ID
802	 */
803	pf_id = (rd32(hw, I40E_PRTTSYN_CTL0) & I40E_PRTTSYN_CTL0_PF_ID_MASK) >>
804		I40E_PRTTSYN_CTL0_PF_ID_SHIFT;
805	if (hw->pf_id != pf_id) {
806		pf->flags &= ~I40E_FLAG_PTP;
807		dev_info(&pf->pdev->dev, "%s: PTP not supported on %s\n",
808			 __func__,
809			 netdev->name);
810		return;
811	}
812
813	mutex_init(&pf->tmreg_lock);
814	spin_lock_init(&pf->ptp_rx_lock);
815
816	/* ensure we have a clock device */
817	err = i40e_ptp_create_clock(pf);
818	if (err) {
819		pf->ptp_clock = NULL;
820		dev_err(&pf->pdev->dev, "%s: ptp_clock_register failed\n",
821			__func__);
822	} else if (pf->ptp_clock) {
823		u32 regval;
824
825		if (pf->hw.debug_mask & I40E_DEBUG_LAN)
826			dev_info(&pf->pdev->dev, "PHC enabled\n");
827		pf->flags |= I40E_FLAG_PTP;
828
829		/* Ensure the clocks are running. */
830		regval = rd32(hw, I40E_PRTTSYN_CTL0);
831		regval |= I40E_PRTTSYN_CTL0_TSYNENA_MASK;
832		wr32(hw, I40E_PRTTSYN_CTL0, regval);
833		regval = rd32(hw, I40E_PRTTSYN_CTL1);
834		regval |= I40E_PRTTSYN_CTL1_TSYNENA_MASK;
835		wr32(hw, I40E_PRTTSYN_CTL1, regval);
836
837		/* Set the increment value per clock tick. */
838		i40e_ptp_set_increment(pf);
839
840		/* reset timestamping mode */
841		i40e_ptp_set_timestamp_mode(pf, &pf->tstamp_config);
842
843		/* Restore the clock time based on last known value */
844		i40e_ptp_restore_hw_time(pf);
845	}
 
 
846}
847
848/**
849 * i40e_ptp_stop - Disable the driver/hardware support and unregister the PHC
850 * @pf: Board private structure
851 *
852 * This function handles the cleanup work required from the initialization by
853 * clearing out the important information and unregistering the PHC.
854 **/
855void i40e_ptp_stop(struct i40e_pf *pf)
856{
857	pf->flags &= ~I40E_FLAG_PTP;
 
 
 
 
858	pf->ptp_tx = false;
859	pf->ptp_rx = false;
860
861	if (pf->ptp_tx_skb) {
862		struct sk_buff *skb = pf->ptp_tx_skb;
863
864		pf->ptp_tx_skb = NULL;
865		clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
866		dev_kfree_skb_any(skb);
867	}
868
869	if (pf->ptp_clock) {
870		ptp_clock_unregister(pf->ptp_clock);
871		pf->ptp_clock = NULL;
872		dev_info(&pf->pdev->dev, "%s: removed PHC on %s\n", __func__,
873			 pf->vsi[pf->lan_vsi]->netdev->name);
874	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
875}