Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 2013 - 2019 Intel Corporation. */
   3
   4#include <linux/module.h>
   5#include <linux/interrupt.h>
 
   6
   7#include "fm10k.h"
   8
   9static const struct fm10k_info *fm10k_info_tbl[] = {
  10	[fm10k_device_pf] = &fm10k_pf_info,
  11	[fm10k_device_vf] = &fm10k_vf_info,
  12};
  13
  14/*
  15 * fm10k_pci_tbl - PCI Device ID Table
  16 *
  17 * Wildcard entries (PCI_ANY_ID) should come last
  18 * Last entry must be all 0s
  19 *
  20 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
  21 *   Class, Class Mask, private data (not used) }
  22 */
  23static const struct pci_device_id fm10k_pci_tbl[] = {
  24	{ PCI_VDEVICE(INTEL, FM10K_DEV_ID_PF), fm10k_device_pf },
  25	{ PCI_VDEVICE(INTEL, FM10K_DEV_ID_SDI_FM10420_QDA2), fm10k_device_pf },
  26	{ PCI_VDEVICE(INTEL, FM10K_DEV_ID_SDI_FM10420_DA2), fm10k_device_pf },
  27	{ PCI_VDEVICE(INTEL, FM10K_DEV_ID_VF), fm10k_device_vf },
  28	/* required last entry */
  29	{ 0, }
  30};
  31MODULE_DEVICE_TABLE(pci, fm10k_pci_tbl);
  32
  33u16 fm10k_read_pci_cfg_word(struct fm10k_hw *hw, u32 reg)
  34{
  35	struct fm10k_intfc *interface = hw->back;
  36	u16 value = 0;
  37
  38	if (FM10K_REMOVED(hw->hw_addr))
  39		return ~value;
  40
  41	pci_read_config_word(interface->pdev, reg, &value);
  42	if (value == 0xFFFF)
  43		fm10k_write_flush(hw);
  44
  45	return value;
  46}
  47
  48u32 fm10k_read_reg(struct fm10k_hw *hw, int reg)
  49{
  50	u32 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
  51	u32 value = 0;
  52
  53	if (FM10K_REMOVED(hw_addr))
  54		return ~value;
  55
  56	value = readl(&hw_addr[reg]);
  57	if (!(~value) && (!reg || !(~readl(hw_addr)))) {
  58		struct fm10k_intfc *interface = hw->back;
  59		struct net_device *netdev = interface->netdev;
  60
  61		hw->hw_addr = NULL;
  62		netif_device_detach(netdev);
  63		netdev_err(netdev, "PCIe link lost, device now detached\n");
  64	}
  65
  66	return value;
  67}
  68
  69static int fm10k_hw_ready(struct fm10k_intfc *interface)
  70{
  71	struct fm10k_hw *hw = &interface->hw;
  72
  73	fm10k_write_flush(hw);
  74
  75	return FM10K_REMOVED(hw->hw_addr) ? -ENODEV : 0;
  76}
  77
  78/**
  79 * fm10k_macvlan_schedule - Schedule MAC/VLAN queue task
  80 * @interface: fm10k private interface structure
  81 *
  82 * Schedule the MAC/VLAN queue monitor task. If the MAC/VLAN task cannot be
  83 * started immediately, request that it be restarted when possible.
  84 */
  85void fm10k_macvlan_schedule(struct fm10k_intfc *interface)
  86{
  87	/* Avoid processing the MAC/VLAN queue when the service task is
  88	 * disabled, or when we're resetting the device.
  89	 */
  90	if (!test_bit(__FM10K_MACVLAN_DISABLE, interface->state) &&
  91	    !test_and_set_bit(__FM10K_MACVLAN_SCHED, interface->state)) {
  92		clear_bit(__FM10K_MACVLAN_REQUEST, interface->state);
  93		/* We delay the actual start of execution in order to allow
  94		 * multiple MAC/VLAN updates to accumulate before handling
  95		 * them, and to allow some time to let the mailbox drain
  96		 * between runs.
  97		 */
  98		queue_delayed_work(fm10k_workqueue,
  99				   &interface->macvlan_task, 10);
 100	} else {
 101		set_bit(__FM10K_MACVLAN_REQUEST, interface->state);
 102	}
 103}
 104
 105/**
 106 * fm10k_stop_macvlan_task - Stop the MAC/VLAN queue monitor
 107 * @interface: fm10k private interface structure
 108 *
 109 * Wait until the MAC/VLAN queue task has stopped, and cancel any future
 110 * requests.
 111 */
 112static void fm10k_stop_macvlan_task(struct fm10k_intfc *interface)
 113{
 114	/* Disable the MAC/VLAN work item */
 115	set_bit(__FM10K_MACVLAN_DISABLE, interface->state);
 116
 117	/* Make sure we waited until any current invocations have stopped */
 118	cancel_delayed_work_sync(&interface->macvlan_task);
 119
 120	/* We set the __FM10K_MACVLAN_SCHED bit when we schedule the task.
 121	 * However, it may not be unset of the MAC/VLAN task never actually
 122	 * got a chance to run. Since we've canceled the task here, and it
 123	 * cannot be rescheuled right now, we need to ensure the scheduled bit
 124	 * gets unset.
 125	 */
 126	clear_bit(__FM10K_MACVLAN_SCHED, interface->state);
 127}
 128
 129/**
 130 * fm10k_resume_macvlan_task - Restart the MAC/VLAN queue monitor
 131 * @interface: fm10k private interface structure
 132 *
 133 * Clear the __FM10K_MACVLAN_DISABLE bit and, if a request occurred, schedule
 134 * the MAC/VLAN work monitor.
 135 */
 136static void fm10k_resume_macvlan_task(struct fm10k_intfc *interface)
 137{
 138	/* Re-enable the MAC/VLAN work item */
 139	clear_bit(__FM10K_MACVLAN_DISABLE, interface->state);
 140
 141	/* We might have received a MAC/VLAN request while disabled. If so,
 142	 * kick off the queue now.
 143	 */
 144	if (test_bit(__FM10K_MACVLAN_REQUEST, interface->state))
 145		fm10k_macvlan_schedule(interface);
 146}
 147
 148void fm10k_service_event_schedule(struct fm10k_intfc *interface)
 149{
 150	if (!test_bit(__FM10K_SERVICE_DISABLE, interface->state) &&
 151	    !test_and_set_bit(__FM10K_SERVICE_SCHED, interface->state)) {
 152		clear_bit(__FM10K_SERVICE_REQUEST, interface->state);
 153		queue_work(fm10k_workqueue, &interface->service_task);
 154	} else {
 155		set_bit(__FM10K_SERVICE_REQUEST, interface->state);
 156	}
 157}
 158
 159static void fm10k_service_event_complete(struct fm10k_intfc *interface)
 160{
 161	WARN_ON(!test_bit(__FM10K_SERVICE_SCHED, interface->state));
 162
 163	/* flush memory to make sure state is correct before next watchog */
 164	smp_mb__before_atomic();
 165	clear_bit(__FM10K_SERVICE_SCHED, interface->state);
 166
 167	/* If a service event was requested since we started, immediately
 168	 * re-schedule now. This ensures we don't drop a request until the
 169	 * next timer event.
 170	 */
 171	if (test_bit(__FM10K_SERVICE_REQUEST, interface->state))
 172		fm10k_service_event_schedule(interface);
 173}
 174
 175static void fm10k_stop_service_event(struct fm10k_intfc *interface)
 176{
 177	set_bit(__FM10K_SERVICE_DISABLE, interface->state);
 178	cancel_work_sync(&interface->service_task);
 179
 180	/* It's possible that cancel_work_sync stopped the service task from
 181	 * running before it could actually start. In this case the
 182	 * __FM10K_SERVICE_SCHED bit will never be cleared. Since we know that
 183	 * the service task cannot be running at this point, we need to clear
 184	 * the scheduled bit, as otherwise the service task may never be
 185	 * restarted.
 186	 */
 187	clear_bit(__FM10K_SERVICE_SCHED, interface->state);
 188}
 189
 190static void fm10k_start_service_event(struct fm10k_intfc *interface)
 191{
 192	clear_bit(__FM10K_SERVICE_DISABLE, interface->state);
 193	fm10k_service_event_schedule(interface);
 194}
 195
 196/**
 197 * fm10k_service_timer - Timer Call-back
 198 * @t: pointer to timer data
 199 **/
 200static void fm10k_service_timer(struct timer_list *t)
 201{
 202	struct fm10k_intfc *interface = from_timer(interface, t,
 203						   service_timer);
 204
 205	/* Reset the timer */
 206	mod_timer(&interface->service_timer, (HZ * 2) + jiffies);
 207
 208	fm10k_service_event_schedule(interface);
 209}
 210
 211/**
 212 * fm10k_prepare_for_reset - Prepare the driver and device for a pending reset
 213 * @interface: fm10k private data structure
 214 *
 215 * This function prepares for a device reset by shutting as much down as we
 216 * can. It does nothing and returns false if __FM10K_RESETTING was already set
 217 * prior to calling this function. It returns true if it actually did work.
 218 */
 219static bool fm10k_prepare_for_reset(struct fm10k_intfc *interface)
 220{
 221	struct net_device *netdev = interface->netdev;
 222
 223	/* put off any impending NetWatchDogTimeout */
 224	netif_trans_update(netdev);
 225
 226	/* Nothing to do if a reset is already in progress */
 227	if (test_and_set_bit(__FM10K_RESETTING, interface->state))
 228		return false;
 229
 230	/* As the MAC/VLAN task will be accessing registers it must not be
 231	 * running while we reset. Although the task will not be scheduled
 232	 * once we start resetting it may already be running
 233	 */
 234	fm10k_stop_macvlan_task(interface);
 235
 236	rtnl_lock();
 237
 238	fm10k_iov_suspend(interface->pdev);
 239
 240	if (netif_running(netdev))
 241		fm10k_close(netdev);
 242
 243	fm10k_mbx_free_irq(interface);
 244
 245	/* free interrupts */
 246	fm10k_clear_queueing_scheme(interface);
 247
 248	/* delay any future reset requests */
 249	interface->last_reset = jiffies + (10 * HZ);
 250
 251	rtnl_unlock();
 252
 253	return true;
 254}
 255
 256static int fm10k_handle_reset(struct fm10k_intfc *interface)
 257{
 258	struct net_device *netdev = interface->netdev;
 259	struct fm10k_hw *hw = &interface->hw;
 260	int err;
 261
 262	WARN_ON(!test_bit(__FM10K_RESETTING, interface->state));
 263
 264	rtnl_lock();
 265
 266	pci_set_master(interface->pdev);
 267
 268	/* reset and initialize the hardware so it is in a known state */
 269	err = hw->mac.ops.reset_hw(hw);
 270	if (err) {
 271		dev_err(&interface->pdev->dev, "reset_hw failed: %d\n", err);
 272		goto reinit_err;
 273	}
 274
 275	err = hw->mac.ops.init_hw(hw);
 276	if (err) {
 277		dev_err(&interface->pdev->dev, "init_hw failed: %d\n", err);
 278		goto reinit_err;
 279	}
 280
 281	err = fm10k_init_queueing_scheme(interface);
 282	if (err) {
 283		dev_err(&interface->pdev->dev,
 284			"init_queueing_scheme failed: %d\n", err);
 285		goto reinit_err;
 286	}
 287
 288	/* re-associate interrupts */
 289	err = fm10k_mbx_request_irq(interface);
 290	if (err)
 291		goto err_mbx_irq;
 292
 293	err = fm10k_hw_ready(interface);
 294	if (err)
 295		goto err_open;
 296
 297	/* update hardware address for VFs if perm_addr has changed */
 298	if (hw->mac.type == fm10k_mac_vf) {
 299		if (is_valid_ether_addr(hw->mac.perm_addr)) {
 300			ether_addr_copy(hw->mac.addr, hw->mac.perm_addr);
 301			ether_addr_copy(netdev->perm_addr, hw->mac.perm_addr);
 302			eth_hw_addr_set(netdev, hw->mac.perm_addr);
 303			netdev->addr_assign_type &= ~NET_ADDR_RANDOM;
 304		}
 305
 306		if (hw->mac.vlan_override)
 307			netdev->features &= ~NETIF_F_HW_VLAN_CTAG_RX;
 308		else
 309			netdev->features |= NETIF_F_HW_VLAN_CTAG_RX;
 310	}
 311
 312	err = netif_running(netdev) ? fm10k_open(netdev) : 0;
 313	if (err)
 314		goto err_open;
 315
 316	fm10k_iov_resume(interface->pdev);
 317
 318	rtnl_unlock();
 319
 320	fm10k_resume_macvlan_task(interface);
 321
 322	clear_bit(__FM10K_RESETTING, interface->state);
 323
 324	return err;
 325err_open:
 326	fm10k_mbx_free_irq(interface);
 327err_mbx_irq:
 328	fm10k_clear_queueing_scheme(interface);
 329reinit_err:
 330	netif_device_detach(netdev);
 331
 332	rtnl_unlock();
 333
 334	clear_bit(__FM10K_RESETTING, interface->state);
 335
 336	return err;
 337}
 338
 339static void fm10k_detach_subtask(struct fm10k_intfc *interface)
 340{
 341	struct net_device *netdev = interface->netdev;
 342	u32 __iomem *hw_addr;
 343	u32 value;
 344
 345	/* do nothing if netdev is still present or hw_addr is set */
 346	if (netif_device_present(netdev) || interface->hw.hw_addr)
 347		return;
 348
 349	/* We've lost the PCIe register space, and can no longer access the
 350	 * device. Shut everything except the detach subtask down and prepare
 351	 * to reset the device in case we recover. If we actually prepare for
 352	 * reset, indicate that we're detached.
 353	 */
 354	if (fm10k_prepare_for_reset(interface))
 355		set_bit(__FM10K_RESET_DETACHED, interface->state);
 356
 357	/* check the real address space to see if we've recovered */
 358	hw_addr = READ_ONCE(interface->uc_addr);
 359	value = readl(hw_addr);
 360	if (~value) {
 361		int err;
 362
 363		/* Make sure the reset was initiated because we detached,
 364		 * otherwise we might race with a different reset flow.
 365		 */
 366		if (!test_and_clear_bit(__FM10K_RESET_DETACHED,
 367					interface->state))
 368			return;
 369
 370		/* Restore the hardware address */
 371		interface->hw.hw_addr = interface->uc_addr;
 372
 373		/* PCIe link has been restored, and the device is active
 374		 * again. Restore everything and reset the device.
 375		 */
 376		err = fm10k_handle_reset(interface);
 377		if (err) {
 378			netdev_err(netdev, "Unable to reset device: %d\n", err);
 379			interface->hw.hw_addr = NULL;
 380			return;
 381		}
 382
 383		/* Re-attach the netdev */
 384		netif_device_attach(netdev);
 385		netdev_warn(netdev, "PCIe link restored, device now attached\n");
 386		return;
 387	}
 388}
 389
 390static void fm10k_reset_subtask(struct fm10k_intfc *interface)
 391{
 392	int err;
 393
 394	if (!test_and_clear_bit(FM10K_FLAG_RESET_REQUESTED,
 395				interface->flags))
 396		return;
 397
 398	/* If another thread has already prepared to reset the device, we
 399	 * should not attempt to handle a reset here, since we'd race with
 400	 * that thread. This may happen if we suspend the device or if the
 401	 * PCIe link is lost. In this case, we'll just ignore the RESET
 402	 * request, as it will (eventually) be taken care of when the thread
 403	 * which actually started the reset is finished.
 404	 */
 405	if (!fm10k_prepare_for_reset(interface))
 406		return;
 407
 408	netdev_err(interface->netdev, "Reset interface\n");
 409
 410	err = fm10k_handle_reset(interface);
 411	if (err)
 412		dev_err(&interface->pdev->dev,
 413			"fm10k_handle_reset failed: %d\n", err);
 414}
 415
 416/**
 417 * fm10k_configure_swpri_map - Configure Receive SWPRI to PC mapping
 418 * @interface: board private structure
 419 *
 420 * Configure the SWPRI to PC mapping for the port.
 421 **/
 422static void fm10k_configure_swpri_map(struct fm10k_intfc *interface)
 423{
 424	struct net_device *netdev = interface->netdev;
 425	struct fm10k_hw *hw = &interface->hw;
 426	int i;
 427
 428	/* clear flag indicating update is needed */
 429	clear_bit(FM10K_FLAG_SWPRI_CONFIG, interface->flags);
 430
 431	/* these registers are only available on the PF */
 432	if (hw->mac.type != fm10k_mac_pf)
 433		return;
 434
 435	/* configure SWPRI to PC map */
 436	for (i = 0; i < FM10K_SWPRI_MAX; i++)
 437		fm10k_write_reg(hw, FM10K_SWPRI_MAP(i),
 438				netdev_get_prio_tc_map(netdev, i));
 439}
 440
 441/**
 442 * fm10k_watchdog_update_host_state - Update the link status based on host.
 443 * @interface: board private structure
 444 **/
 445static void fm10k_watchdog_update_host_state(struct fm10k_intfc *interface)
 446{
 447	struct fm10k_hw *hw = &interface->hw;
 448	s32 err;
 449
 450	if (test_bit(__FM10K_LINK_DOWN, interface->state)) {
 451		interface->host_ready = false;
 452		if (time_is_after_jiffies(interface->link_down_event))
 453			return;
 454		clear_bit(__FM10K_LINK_DOWN, interface->state);
 455	}
 456
 457	if (test_bit(FM10K_FLAG_SWPRI_CONFIG, interface->flags)) {
 458		if (rtnl_trylock()) {
 459			fm10k_configure_swpri_map(interface);
 460			rtnl_unlock();
 461		}
 462	}
 463
 464	/* lock the mailbox for transmit and receive */
 465	fm10k_mbx_lock(interface);
 466
 467	err = hw->mac.ops.get_host_state(hw, &interface->host_ready);
 468	if (err && time_is_before_jiffies(interface->last_reset))
 469		set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags);
 470
 471	/* free the lock */
 472	fm10k_mbx_unlock(interface);
 473}
 474
 475/**
 476 * fm10k_mbx_subtask - Process upstream and downstream mailboxes
 477 * @interface: board private structure
 478 *
 479 * This function will process both the upstream and downstream mailboxes.
 480 **/
 481static void fm10k_mbx_subtask(struct fm10k_intfc *interface)
 482{
 483	/* If we're resetting, bail out */
 484	if (test_bit(__FM10K_RESETTING, interface->state))
 485		return;
 486
 487	/* process upstream mailbox and update device state */
 488	fm10k_watchdog_update_host_state(interface);
 489
 490	/* process downstream mailboxes */
 491	fm10k_iov_mbx(interface);
 492}
 493
 494/**
 495 * fm10k_watchdog_host_is_ready - Update netdev status based on host ready
 496 * @interface: board private structure
 497 **/
 498static void fm10k_watchdog_host_is_ready(struct fm10k_intfc *interface)
 499{
 500	struct net_device *netdev = interface->netdev;
 501
 502	/* only continue if link state is currently down */
 503	if (netif_carrier_ok(netdev))
 504		return;
 505
 506	netif_info(interface, drv, netdev, "NIC Link is up\n");
 507
 508	netif_carrier_on(netdev);
 509	netif_tx_wake_all_queues(netdev);
 510}
 511
 512/**
 513 * fm10k_watchdog_host_not_ready - Update netdev status based on host not ready
 514 * @interface: board private structure
 515 **/
 516static void fm10k_watchdog_host_not_ready(struct fm10k_intfc *interface)
 517{
 518	struct net_device *netdev = interface->netdev;
 519
 520	/* only continue if link state is currently up */
 521	if (!netif_carrier_ok(netdev))
 522		return;
 523
 524	netif_info(interface, drv, netdev, "NIC Link is down\n");
 525
 526	netif_carrier_off(netdev);
 527	netif_tx_stop_all_queues(netdev);
 528}
 529
 530/**
 531 * fm10k_update_stats - Update the board statistics counters.
 532 * @interface: board private structure
 533 **/
 534void fm10k_update_stats(struct fm10k_intfc *interface)
 535{
 536	struct net_device_stats *net_stats = &interface->netdev->stats;
 537	struct fm10k_hw *hw = &interface->hw;
 538	u64 hw_csum_tx_good = 0, hw_csum_rx_good = 0, rx_length_errors = 0;
 539	u64 rx_switch_errors = 0, rx_drops = 0, rx_pp_errors = 0;
 540	u64 rx_link_errors = 0;
 541	u64 rx_errors = 0, rx_csum_errors = 0, tx_csum_errors = 0;
 542	u64 restart_queue = 0, tx_busy = 0, alloc_failed = 0;
 543	u64 rx_bytes_nic = 0, rx_pkts_nic = 0, rx_drops_nic = 0;
 544	u64 tx_bytes_nic = 0, tx_pkts_nic = 0;
 545	u64 bytes, pkts;
 546	int i;
 547
 548	/* ensure only one thread updates stats at a time */
 549	if (test_and_set_bit(__FM10K_UPDATING_STATS, interface->state))
 550		return;
 551
 552	/* do not allow stats update via service task for next second */
 553	interface->next_stats_update = jiffies + HZ;
 554
 555	/* gather some stats to the interface struct that are per queue */
 556	for (bytes = 0, pkts = 0, i = 0; i < interface->num_tx_queues; i++) {
 557		struct fm10k_ring *tx_ring = READ_ONCE(interface->tx_ring[i]);
 558
 559		if (!tx_ring)
 560			continue;
 561
 562		restart_queue += tx_ring->tx_stats.restart_queue;
 563		tx_busy += tx_ring->tx_stats.tx_busy;
 564		tx_csum_errors += tx_ring->tx_stats.csum_err;
 565		bytes += tx_ring->stats.bytes;
 566		pkts += tx_ring->stats.packets;
 567		hw_csum_tx_good += tx_ring->tx_stats.csum_good;
 568	}
 569
 570	interface->restart_queue = restart_queue;
 571	interface->tx_busy = tx_busy;
 572	net_stats->tx_bytes = bytes;
 573	net_stats->tx_packets = pkts;
 574	interface->tx_csum_errors = tx_csum_errors;
 575	interface->hw_csum_tx_good = hw_csum_tx_good;
 576
 577	/* gather some stats to the interface struct that are per queue */
 578	for (bytes = 0, pkts = 0, i = 0; i < interface->num_rx_queues; i++) {
 579		struct fm10k_ring *rx_ring = READ_ONCE(interface->rx_ring[i]);
 580
 581		if (!rx_ring)
 582			continue;
 583
 584		bytes += rx_ring->stats.bytes;
 585		pkts += rx_ring->stats.packets;
 586		alloc_failed += rx_ring->rx_stats.alloc_failed;
 587		rx_csum_errors += rx_ring->rx_stats.csum_err;
 588		rx_errors += rx_ring->rx_stats.errors;
 589		hw_csum_rx_good += rx_ring->rx_stats.csum_good;
 590		rx_switch_errors += rx_ring->rx_stats.switch_errors;
 591		rx_drops += rx_ring->rx_stats.drops;
 592		rx_pp_errors += rx_ring->rx_stats.pp_errors;
 593		rx_link_errors += rx_ring->rx_stats.link_errors;
 594		rx_length_errors += rx_ring->rx_stats.length_errors;
 595	}
 596
 597	net_stats->rx_bytes = bytes;
 598	net_stats->rx_packets = pkts;
 599	interface->alloc_failed = alloc_failed;
 600	interface->rx_csum_errors = rx_csum_errors;
 601	interface->hw_csum_rx_good = hw_csum_rx_good;
 602	interface->rx_switch_errors = rx_switch_errors;
 603	interface->rx_drops = rx_drops;
 604	interface->rx_pp_errors = rx_pp_errors;
 605	interface->rx_link_errors = rx_link_errors;
 606	interface->rx_length_errors = rx_length_errors;
 607
 608	hw->mac.ops.update_hw_stats(hw, &interface->stats);
 609
 610	for (i = 0; i < hw->mac.max_queues; i++) {
 611		struct fm10k_hw_stats_q *q = &interface->stats.q[i];
 612
 613		tx_bytes_nic += q->tx_bytes.count;
 614		tx_pkts_nic += q->tx_packets.count;
 615		rx_bytes_nic += q->rx_bytes.count;
 616		rx_pkts_nic += q->rx_packets.count;
 617		rx_drops_nic += q->rx_drops.count;
 618	}
 619
 620	interface->tx_bytes_nic = tx_bytes_nic;
 621	interface->tx_packets_nic = tx_pkts_nic;
 622	interface->rx_bytes_nic = rx_bytes_nic;
 623	interface->rx_packets_nic = rx_pkts_nic;
 624	interface->rx_drops_nic = rx_drops_nic;
 625
 626	/* Fill out the OS statistics structure */
 627	net_stats->rx_errors = rx_errors;
 628	net_stats->rx_dropped = interface->stats.nodesc_drop.count;
 629
 630	/* Update VF statistics */
 631	fm10k_iov_update_stats(interface);
 632
 633	clear_bit(__FM10K_UPDATING_STATS, interface->state);
 634}
 635
 636/**
 637 * fm10k_watchdog_flush_tx - flush queues on host not ready
 638 * @interface: pointer to the device interface structure
 639 **/
 640static void fm10k_watchdog_flush_tx(struct fm10k_intfc *interface)
 641{
 642	int some_tx_pending = 0;
 643	int i;
 644
 645	/* nothing to do if carrier is up */
 646	if (netif_carrier_ok(interface->netdev))
 647		return;
 648
 649	for (i = 0; i < interface->num_tx_queues; i++) {
 650		struct fm10k_ring *tx_ring = interface->tx_ring[i];
 651
 652		if (tx_ring->next_to_use != tx_ring->next_to_clean) {
 653			some_tx_pending = 1;
 654			break;
 655		}
 656	}
 657
 658	/* We've lost link, so the controller stops DMA, but we've got
 659	 * queued Tx work that's never going to get done, so reset
 660	 * controller to flush Tx.
 661	 */
 662	if (some_tx_pending)
 663		set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags);
 664}
 665
 666/**
 667 * fm10k_watchdog_subtask - check and bring link up
 668 * @interface: pointer to the device interface structure
 669 **/
 670static void fm10k_watchdog_subtask(struct fm10k_intfc *interface)
 671{
 672	/* if interface is down do nothing */
 673	if (test_bit(__FM10K_DOWN, interface->state) ||
 674	    test_bit(__FM10K_RESETTING, interface->state))
 675		return;
 676
 677	if (interface->host_ready)
 678		fm10k_watchdog_host_is_ready(interface);
 679	else
 680		fm10k_watchdog_host_not_ready(interface);
 681
 682	/* update stats only once every second */
 683	if (time_is_before_jiffies(interface->next_stats_update))
 684		fm10k_update_stats(interface);
 685
 686	/* flush any uncompleted work */
 687	fm10k_watchdog_flush_tx(interface);
 688}
 689
 690/**
 691 * fm10k_check_hang_subtask - check for hung queues and dropped interrupts
 692 * @interface: pointer to the device interface structure
 693 *
 694 * This function serves two purposes.  First it strobes the interrupt lines
 695 * in order to make certain interrupts are occurring.  Secondly it sets the
 696 * bits needed to check for TX hangs.  As a result we should immediately
 697 * determine if a hang has occurred.
 698 */
 699static void fm10k_check_hang_subtask(struct fm10k_intfc *interface)
 700{
 701	/* If we're down or resetting, just bail */
 702	if (test_bit(__FM10K_DOWN, interface->state) ||
 703	    test_bit(__FM10K_RESETTING, interface->state))
 704		return;
 705
 706	/* rate limit tx hang checks to only once every 2 seconds */
 707	if (time_is_after_eq_jiffies(interface->next_tx_hang_check))
 708		return;
 709	interface->next_tx_hang_check = jiffies + (2 * HZ);
 710
 711	if (netif_carrier_ok(interface->netdev)) {
 712		int i;
 713
 714		/* Force detection of hung controller */
 715		for (i = 0; i < interface->num_tx_queues; i++)
 716			set_check_for_tx_hang(interface->tx_ring[i]);
 717
 718		/* Rearm all in-use q_vectors for immediate firing */
 719		for (i = 0; i < interface->num_q_vectors; i++) {
 720			struct fm10k_q_vector *qv = interface->q_vector[i];
 721
 722			if (!qv->tx.count && !qv->rx.count)
 723				continue;
 724			writel(FM10K_ITR_ENABLE | FM10K_ITR_PENDING2, qv->itr);
 725		}
 726	}
 727}
 728
 729/**
 730 * fm10k_service_task - manages and runs subtasks
 731 * @work: pointer to work_struct containing our data
 732 **/
 733static void fm10k_service_task(struct work_struct *work)
 734{
 735	struct fm10k_intfc *interface;
 736
 737	interface = container_of(work, struct fm10k_intfc, service_task);
 738
 739	/* Check whether we're detached first */
 740	fm10k_detach_subtask(interface);
 741
 742	/* tasks run even when interface is down */
 743	fm10k_mbx_subtask(interface);
 744	fm10k_reset_subtask(interface);
 745
 746	/* tasks only run when interface is up */
 747	fm10k_watchdog_subtask(interface);
 748	fm10k_check_hang_subtask(interface);
 749
 750	/* release lock on service events to allow scheduling next event */
 751	fm10k_service_event_complete(interface);
 752}
 753
 754/**
 755 * fm10k_macvlan_task - send queued MAC/VLAN requests to switch manager
 756 * @work: pointer to work_struct containing our data
 757 *
 758 * This work item handles sending MAC/VLAN updates to the switch manager. When
 759 * the interface is up, it will attempt to queue mailbox messages to the
 760 * switch manager requesting updates for MAC/VLAN pairs. If the Tx fifo of the
 761 * mailbox is full, it will reschedule itself to try again in a short while.
 762 * This ensures that the driver does not overload the switch mailbox with too
 763 * many simultaneous requests, causing an unnecessary reset.
 764 **/
 765static void fm10k_macvlan_task(struct work_struct *work)
 766{
 767	struct fm10k_macvlan_request *item;
 768	struct fm10k_intfc *interface;
 769	struct delayed_work *dwork;
 770	struct list_head *requests;
 771	struct fm10k_hw *hw;
 772	unsigned long flags;
 773
 774	dwork = to_delayed_work(work);
 775	interface = container_of(dwork, struct fm10k_intfc, macvlan_task);
 776	hw = &interface->hw;
 777	requests = &interface->macvlan_requests;
 778
 779	do {
 780		/* Pop the first item off the list */
 781		spin_lock_irqsave(&interface->macvlan_lock, flags);
 782		item = list_first_entry_or_null(requests,
 783						struct fm10k_macvlan_request,
 784						list);
 785		if (item)
 786			list_del_init(&item->list);
 787
 788		spin_unlock_irqrestore(&interface->macvlan_lock, flags);
 789
 790		/* We have no more items to process */
 791		if (!item)
 792			goto done;
 793
 794		fm10k_mbx_lock(interface);
 795
 796		/* Check that we have plenty of space to send the message. We
 797		 * want to ensure that the mailbox stays low enough to avoid a
 798		 * change in the host state, otherwise we may see spurious
 799		 * link up / link down notifications.
 800		 */
 801		if (!hw->mbx.ops.tx_ready(&hw->mbx, FM10K_VFMBX_MSG_MTU + 5)) {
 802			hw->mbx.ops.process(hw, &hw->mbx);
 803			set_bit(__FM10K_MACVLAN_REQUEST, interface->state);
 804			fm10k_mbx_unlock(interface);
 805
 806			/* Put the request back on the list */
 807			spin_lock_irqsave(&interface->macvlan_lock, flags);
 808			list_add(&item->list, requests);
 809			spin_unlock_irqrestore(&interface->macvlan_lock, flags);
 810			break;
 811		}
 812
 813		switch (item->type) {
 814		case FM10K_MC_MAC_REQUEST:
 815			hw->mac.ops.update_mc_addr(hw,
 816						   item->mac.glort,
 817						   item->mac.addr,
 818						   item->mac.vid,
 819						   item->set);
 820			break;
 821		case FM10K_UC_MAC_REQUEST:
 822			hw->mac.ops.update_uc_addr(hw,
 823						   item->mac.glort,
 824						   item->mac.addr,
 825						   item->mac.vid,
 826						   item->set,
 827						   0);
 828			break;
 829		case FM10K_VLAN_REQUEST:
 830			hw->mac.ops.update_vlan(hw,
 831						item->vlan.vid,
 832						item->vlan.vsi,
 833						item->set);
 834			break;
 835		default:
 836			break;
 837		}
 838
 839		fm10k_mbx_unlock(interface);
 840
 841		/* Free the item now that we've sent the update */
 842		kfree(item);
 843	} while (true);
 844
 845done:
 846	WARN_ON(!test_bit(__FM10K_MACVLAN_SCHED, interface->state));
 847
 848	/* flush memory to make sure state is correct */
 849	smp_mb__before_atomic();
 850	clear_bit(__FM10K_MACVLAN_SCHED, interface->state);
 851
 852	/* If a MAC/VLAN request was scheduled since we started, we should
 853	 * re-schedule. However, there is no reason to re-schedule if there is
 854	 * no work to do.
 855	 */
 856	if (test_bit(__FM10K_MACVLAN_REQUEST, interface->state))
 857		fm10k_macvlan_schedule(interface);
 858}
 859
 860/**
 861 * fm10k_configure_tx_ring - Configure Tx ring after Reset
 862 * @interface: board private structure
 863 * @ring: structure containing ring specific data
 864 *
 865 * Configure the Tx descriptor ring after a reset.
 866 **/
 867static void fm10k_configure_tx_ring(struct fm10k_intfc *interface,
 868				    struct fm10k_ring *ring)
 869{
 870	struct fm10k_hw *hw = &interface->hw;
 871	u64 tdba = ring->dma;
 872	u32 size = ring->count * sizeof(struct fm10k_tx_desc);
 873	u32 txint = FM10K_INT_MAP_DISABLE;
 874	u32 txdctl = BIT(FM10K_TXDCTL_MAX_TIME_SHIFT) | FM10K_TXDCTL_ENABLE;
 875	u8 reg_idx = ring->reg_idx;
 876
 877	/* disable queue to avoid issues while updating state */
 878	fm10k_write_reg(hw, FM10K_TXDCTL(reg_idx), 0);
 879	fm10k_write_flush(hw);
 880
 881	/* possible poll here to verify ring resources have been cleaned */
 882
 883	/* set location and size for descriptor ring */
 884	fm10k_write_reg(hw, FM10K_TDBAL(reg_idx), tdba & DMA_BIT_MASK(32));
 885	fm10k_write_reg(hw, FM10K_TDBAH(reg_idx), tdba >> 32);
 886	fm10k_write_reg(hw, FM10K_TDLEN(reg_idx), size);
 887
 888	/* reset head and tail pointers */
 889	fm10k_write_reg(hw, FM10K_TDH(reg_idx), 0);
 890	fm10k_write_reg(hw, FM10K_TDT(reg_idx), 0);
 891
 892	/* store tail pointer */
 893	ring->tail = &interface->uc_addr[FM10K_TDT(reg_idx)];
 894
 895	/* reset ntu and ntc to place SW in sync with hardware */
 896	ring->next_to_clean = 0;
 897	ring->next_to_use = 0;
 898
 899	/* Map interrupt */
 900	if (ring->q_vector) {
 901		txint = ring->q_vector->v_idx + NON_Q_VECTORS;
 902		txint |= FM10K_INT_MAP_TIMER0;
 903	}
 904
 905	fm10k_write_reg(hw, FM10K_TXINT(reg_idx), txint);
 906
 907	/* enable use of FTAG bit in Tx descriptor, register is RO for VF */
 908	fm10k_write_reg(hw, FM10K_PFVTCTL(reg_idx),
 909			FM10K_PFVTCTL_FTAG_DESC_ENABLE);
 910
 911	/* Initialize XPS */
 912	if (!test_and_set_bit(__FM10K_TX_XPS_INIT_DONE, ring->state) &&
 913	    ring->q_vector)
 914		netif_set_xps_queue(ring->netdev,
 915				    &ring->q_vector->affinity_mask,
 916				    ring->queue_index);
 917
 918	/* enable queue */
 919	fm10k_write_reg(hw, FM10K_TXDCTL(reg_idx), txdctl);
 920}
 921
 922/**
 923 * fm10k_enable_tx_ring - Verify Tx ring is enabled after configuration
 924 * @interface: board private structure
 925 * @ring: structure containing ring specific data
 926 *
 927 * Verify the Tx descriptor ring is ready for transmit.
 928 **/
 929static void fm10k_enable_tx_ring(struct fm10k_intfc *interface,
 930				 struct fm10k_ring *ring)
 931{
 932	struct fm10k_hw *hw = &interface->hw;
 933	int wait_loop = 10;
 934	u32 txdctl;
 935	u8 reg_idx = ring->reg_idx;
 936
 937	/* if we are already enabled just exit */
 938	if (fm10k_read_reg(hw, FM10K_TXDCTL(reg_idx)) & FM10K_TXDCTL_ENABLE)
 939		return;
 940
 941	/* poll to verify queue is enabled */
 942	do {
 943		usleep_range(1000, 2000);
 944		txdctl = fm10k_read_reg(hw, FM10K_TXDCTL(reg_idx));
 945	} while (!(txdctl & FM10K_TXDCTL_ENABLE) && --wait_loop);
 946	if (!wait_loop)
 947		netif_err(interface, drv, interface->netdev,
 948			  "Could not enable Tx Queue %d\n", reg_idx);
 949}
 950
 951/**
 952 * fm10k_configure_tx - Configure Transmit Unit after Reset
 953 * @interface: board private structure
 954 *
 955 * Configure the Tx unit of the MAC after a reset.
 956 **/
 957static void fm10k_configure_tx(struct fm10k_intfc *interface)
 958{
 959	int i;
 960
 961	/* Setup the HW Tx Head and Tail descriptor pointers */
 962	for (i = 0; i < interface->num_tx_queues; i++)
 963		fm10k_configure_tx_ring(interface, interface->tx_ring[i]);
 964
 965	/* poll here to verify that Tx rings are now enabled */
 966	for (i = 0; i < interface->num_tx_queues; i++)
 967		fm10k_enable_tx_ring(interface, interface->tx_ring[i]);
 968}
 969
 970/**
 971 * fm10k_configure_rx_ring - Configure Rx ring after Reset
 972 * @interface: board private structure
 973 * @ring: structure containing ring specific data
 974 *
 975 * Configure the Rx descriptor ring after a reset.
 976 **/
 977static void fm10k_configure_rx_ring(struct fm10k_intfc *interface,
 978				    struct fm10k_ring *ring)
 979{
 980	u64 rdba = ring->dma;
 981	struct fm10k_hw *hw = &interface->hw;
 982	u32 size = ring->count * sizeof(union fm10k_rx_desc);
 983	u32 rxqctl, rxdctl = FM10K_RXDCTL_WRITE_BACK_MIN_DELAY;
 984	u32 srrctl = FM10K_SRRCTL_BUFFER_CHAINING_EN;
 985	u32 rxint = FM10K_INT_MAP_DISABLE;
 986	u8 rx_pause = interface->rx_pause;
 987	u8 reg_idx = ring->reg_idx;
 988
 989	/* disable queue to avoid issues while updating state */
 990	rxqctl = fm10k_read_reg(hw, FM10K_RXQCTL(reg_idx));
 991	rxqctl &= ~FM10K_RXQCTL_ENABLE;
 992	fm10k_write_reg(hw, FM10K_RXQCTL(reg_idx), rxqctl);
 993	fm10k_write_flush(hw);
 994
 995	/* possible poll here to verify ring resources have been cleaned */
 996
 997	/* set location and size for descriptor ring */
 998	fm10k_write_reg(hw, FM10K_RDBAL(reg_idx), rdba & DMA_BIT_MASK(32));
 999	fm10k_write_reg(hw, FM10K_RDBAH(reg_idx), rdba >> 32);
1000	fm10k_write_reg(hw, FM10K_RDLEN(reg_idx), size);
1001
1002	/* reset head and tail pointers */
1003	fm10k_write_reg(hw, FM10K_RDH(reg_idx), 0);
1004	fm10k_write_reg(hw, FM10K_RDT(reg_idx), 0);
1005
1006	/* store tail pointer */
1007	ring->tail = &interface->uc_addr[FM10K_RDT(reg_idx)];
1008
1009	/* reset ntu and ntc to place SW in sync with hardware */
1010	ring->next_to_clean = 0;
1011	ring->next_to_use = 0;
1012	ring->next_to_alloc = 0;
1013
1014	/* Configure the Rx buffer size for one buff without split */
1015	srrctl |= FM10K_RX_BUFSZ >> FM10K_SRRCTL_BSIZEPKT_SHIFT;
1016
1017	/* Configure the Rx ring to suppress loopback packets */
1018	srrctl |= FM10K_SRRCTL_LOOPBACK_SUPPRESS;
1019	fm10k_write_reg(hw, FM10K_SRRCTL(reg_idx), srrctl);
1020
1021	/* Enable drop on empty */
1022#ifdef CONFIG_DCB
1023	if (interface->pfc_en)
1024		rx_pause = interface->pfc_en;
1025#endif
1026	if (!(rx_pause & BIT(ring->qos_pc)))
1027		rxdctl |= FM10K_RXDCTL_DROP_ON_EMPTY;
1028
1029	fm10k_write_reg(hw, FM10K_RXDCTL(reg_idx), rxdctl);
1030
1031	/* assign default VLAN to queue */
1032	ring->vid = hw->mac.default_vid;
1033
1034	/* if we have an active VLAN, disable default VLAN ID */
1035	if (test_bit(hw->mac.default_vid, interface->active_vlans))
1036		ring->vid |= FM10K_VLAN_CLEAR;
1037
1038	/* Map interrupt */
1039	if (ring->q_vector) {
1040		rxint = ring->q_vector->v_idx + NON_Q_VECTORS;
1041		rxint |= FM10K_INT_MAP_TIMER1;
1042	}
1043
1044	fm10k_write_reg(hw, FM10K_RXINT(reg_idx), rxint);
1045
1046	/* enable queue */
1047	rxqctl = fm10k_read_reg(hw, FM10K_RXQCTL(reg_idx));
1048	rxqctl |= FM10K_RXQCTL_ENABLE;
1049	fm10k_write_reg(hw, FM10K_RXQCTL(reg_idx), rxqctl);
1050
1051	/* place buffers on ring for receive data */
1052	fm10k_alloc_rx_buffers(ring, fm10k_desc_unused(ring));
1053}
1054
1055/**
1056 * fm10k_update_rx_drop_en - Configures the drop enable bits for Rx rings
1057 * @interface: board private structure
1058 *
1059 * Configure the drop enable bits for the Rx rings.
1060 **/
1061void fm10k_update_rx_drop_en(struct fm10k_intfc *interface)
1062{
1063	struct fm10k_hw *hw = &interface->hw;
1064	u8 rx_pause = interface->rx_pause;
1065	int i;
1066
1067#ifdef CONFIG_DCB
1068	if (interface->pfc_en)
1069		rx_pause = interface->pfc_en;
1070
1071#endif
1072	for (i = 0; i < interface->num_rx_queues; i++) {
1073		struct fm10k_ring *ring = interface->rx_ring[i];
1074		u32 rxdctl = FM10K_RXDCTL_WRITE_BACK_MIN_DELAY;
1075		u8 reg_idx = ring->reg_idx;
1076
1077		if (!(rx_pause & BIT(ring->qos_pc)))
1078			rxdctl |= FM10K_RXDCTL_DROP_ON_EMPTY;
1079
1080		fm10k_write_reg(hw, FM10K_RXDCTL(reg_idx), rxdctl);
1081	}
1082}
1083
1084/**
1085 * fm10k_configure_dglort - Configure Receive DGLORT after reset
1086 * @interface: board private structure
1087 *
1088 * Configure the DGLORT description and RSS tables.
1089 **/
1090static void fm10k_configure_dglort(struct fm10k_intfc *interface)
1091{
1092	struct fm10k_dglort_cfg dglort = { 0 };
1093	struct fm10k_hw *hw = &interface->hw;
1094	int i;
1095	u32 mrqc;
1096
1097	/* Fill out hash function seeds */
1098	for (i = 0; i < FM10K_RSSRK_SIZE; i++)
1099		fm10k_write_reg(hw, FM10K_RSSRK(0, i), interface->rssrk[i]);
1100
1101	/* Write RETA table to hardware */
1102	for (i = 0; i < FM10K_RETA_SIZE; i++)
1103		fm10k_write_reg(hw, FM10K_RETA(0, i), interface->reta[i]);
1104
1105	/* Generate RSS hash based on packet types, TCP/UDP
1106	 * port numbers and/or IPv4/v6 src and dst addresses
1107	 */
1108	mrqc = FM10K_MRQC_IPV4 |
1109	       FM10K_MRQC_TCP_IPV4 |
1110	       FM10K_MRQC_IPV6 |
1111	       FM10K_MRQC_TCP_IPV6;
1112
1113	if (test_bit(FM10K_FLAG_RSS_FIELD_IPV4_UDP, interface->flags))
1114		mrqc |= FM10K_MRQC_UDP_IPV4;
1115	if (test_bit(FM10K_FLAG_RSS_FIELD_IPV6_UDP, interface->flags))
1116		mrqc |= FM10K_MRQC_UDP_IPV6;
1117
1118	fm10k_write_reg(hw, FM10K_MRQC(0), mrqc);
1119
1120	/* configure default DGLORT mapping for RSS/DCB */
1121	dglort.inner_rss = 1;
1122	dglort.rss_l = fls(interface->ring_feature[RING_F_RSS].mask);
1123	dglort.pc_l = fls(interface->ring_feature[RING_F_QOS].mask);
1124	hw->mac.ops.configure_dglort_map(hw, &dglort);
1125
1126	/* assign GLORT per queue for queue mapped testing */
1127	if (interface->glort_count > 64) {
1128		memset(&dglort, 0, sizeof(dglort));
1129		dglort.inner_rss = 1;
1130		dglort.glort = interface->glort + 64;
1131		dglort.idx = fm10k_dglort_pf_queue;
1132		dglort.queue_l = fls(interface->num_rx_queues - 1);
1133		hw->mac.ops.configure_dglort_map(hw, &dglort);
1134	}
1135
1136	/* assign glort value for RSS/DCB specific to this interface */
1137	memset(&dglort, 0, sizeof(dglort));
1138	dglort.inner_rss = 1;
1139	dglort.glort = interface->glort;
1140	dglort.rss_l = fls(interface->ring_feature[RING_F_RSS].mask);
1141	dglort.pc_l = fls(interface->ring_feature[RING_F_QOS].mask);
1142	/* configure DGLORT mapping for RSS/DCB */
1143	dglort.idx = fm10k_dglort_pf_rss;
1144	if (interface->l2_accel)
1145		dglort.shared_l = fls(interface->l2_accel->size);
1146	hw->mac.ops.configure_dglort_map(hw, &dglort);
1147}
1148
1149/**
1150 * fm10k_configure_rx - Configure Receive Unit after Reset
1151 * @interface: board private structure
1152 *
1153 * Configure the Rx unit of the MAC after a reset.
1154 **/
1155static void fm10k_configure_rx(struct fm10k_intfc *interface)
1156{
1157	int i;
1158
1159	/* Configure SWPRI to PC map */
1160	fm10k_configure_swpri_map(interface);
1161
1162	/* Configure RSS and DGLORT map */
1163	fm10k_configure_dglort(interface);
1164
1165	/* Setup the HW Rx Head and Tail descriptor pointers */
1166	for (i = 0; i < interface->num_rx_queues; i++)
1167		fm10k_configure_rx_ring(interface, interface->rx_ring[i]);
1168
1169	/* possible poll here to verify that Rx rings are now enabled */
1170}
1171
1172static void fm10k_napi_enable_all(struct fm10k_intfc *interface)
1173{
1174	struct fm10k_q_vector *q_vector;
1175	int q_idx;
1176
1177	for (q_idx = 0; q_idx < interface->num_q_vectors; q_idx++) {
1178		q_vector = interface->q_vector[q_idx];
1179		napi_enable(&q_vector->napi);
1180	}
1181}
1182
1183static irqreturn_t fm10k_msix_clean_rings(int __always_unused irq, void *data)
1184{
1185	struct fm10k_q_vector *q_vector = data;
1186
1187	if (q_vector->rx.count || q_vector->tx.count)
1188		napi_schedule_irqoff(&q_vector->napi);
1189
1190	return IRQ_HANDLED;
1191}
1192
1193static irqreturn_t fm10k_msix_mbx_vf(int __always_unused irq, void *data)
1194{
1195	struct fm10k_intfc *interface = data;
1196	struct fm10k_hw *hw = &interface->hw;
1197	struct fm10k_mbx_info *mbx = &hw->mbx;
1198
1199	/* re-enable mailbox interrupt and indicate 20us delay */
1200	fm10k_write_reg(hw, FM10K_VFITR(FM10K_MBX_VECTOR),
1201			(FM10K_MBX_INT_DELAY >> hw->mac.itr_scale) |
1202			FM10K_ITR_ENABLE);
1203
1204	/* service upstream mailbox */
1205	if (fm10k_mbx_trylock(interface)) {
1206		mbx->ops.process(hw, mbx);
1207		fm10k_mbx_unlock(interface);
1208	}
1209
1210	hw->mac.get_host_state = true;
1211	fm10k_service_event_schedule(interface);
1212
1213	return IRQ_HANDLED;
1214}
1215
1216#define FM10K_ERR_MSG(type) case (type): error = #type; break
1217static void fm10k_handle_fault(struct fm10k_intfc *interface, int type,
1218			       struct fm10k_fault *fault)
1219{
1220	struct pci_dev *pdev = interface->pdev;
1221	struct fm10k_hw *hw = &interface->hw;
1222	struct fm10k_iov_data *iov_data = interface->iov_data;
1223	char *error;
1224
1225	switch (type) {
1226	case FM10K_PCA_FAULT:
1227		switch (fault->type) {
1228		default:
1229			error = "Unknown PCA error";
1230			break;
1231		FM10K_ERR_MSG(PCA_NO_FAULT);
1232		FM10K_ERR_MSG(PCA_UNMAPPED_ADDR);
1233		FM10K_ERR_MSG(PCA_BAD_QACCESS_PF);
1234		FM10K_ERR_MSG(PCA_BAD_QACCESS_VF);
1235		FM10K_ERR_MSG(PCA_MALICIOUS_REQ);
1236		FM10K_ERR_MSG(PCA_POISONED_TLP);
1237		FM10K_ERR_MSG(PCA_TLP_ABORT);
1238		}
1239		break;
1240	case FM10K_THI_FAULT:
1241		switch (fault->type) {
1242		default:
1243			error = "Unknown THI error";
1244			break;
1245		FM10K_ERR_MSG(THI_NO_FAULT);
1246		FM10K_ERR_MSG(THI_MAL_DIS_Q_FAULT);
1247		}
1248		break;
1249	case FM10K_FUM_FAULT:
1250		switch (fault->type) {
1251		default:
1252			error = "Unknown FUM error";
1253			break;
1254		FM10K_ERR_MSG(FUM_NO_FAULT);
1255		FM10K_ERR_MSG(FUM_UNMAPPED_ADDR);
1256		FM10K_ERR_MSG(FUM_BAD_VF_QACCESS);
1257		FM10K_ERR_MSG(FUM_ADD_DECODE_ERR);
1258		FM10K_ERR_MSG(FUM_RO_ERROR);
1259		FM10K_ERR_MSG(FUM_QPRC_CRC_ERROR);
1260		FM10K_ERR_MSG(FUM_CSR_TIMEOUT);
1261		FM10K_ERR_MSG(FUM_INVALID_TYPE);
1262		FM10K_ERR_MSG(FUM_INVALID_LENGTH);
1263		FM10K_ERR_MSG(FUM_INVALID_BE);
1264		FM10K_ERR_MSG(FUM_INVALID_ALIGN);
1265		}
1266		break;
1267	default:
1268		error = "Undocumented fault";
1269		break;
1270	}
1271
1272	dev_warn(&pdev->dev,
1273		 "%s Address: 0x%llx SpecInfo: 0x%x Func: %02x.%0x\n",
1274		 error, fault->address, fault->specinfo,
1275		 PCI_SLOT(fault->func), PCI_FUNC(fault->func));
1276
1277	/* For VF faults, clear out the respective LPORT, reset the queue
1278	 * resources, and then reconnect to the mailbox. This allows the
1279	 * VF in question to resume behavior. For transient faults that are
1280	 * the result of non-malicious behavior this will log the fault and
1281	 * allow the VF to resume functionality. Obviously for malicious VFs
1282	 * they will be able to attempt malicious behavior again. In this
1283	 * case, the system administrator will need to step in and manually
1284	 * remove or disable the VF in question.
1285	 */
1286	if (fault->func && iov_data) {
1287		int vf = fault->func - 1;
1288		struct fm10k_vf_info *vf_info = &iov_data->vf_info[vf];
1289
1290		hw->iov.ops.reset_lport(hw, vf_info);
1291		hw->iov.ops.reset_resources(hw, vf_info);
1292
1293		/* reset_lport disables the VF, so re-enable it */
1294		hw->iov.ops.set_lport(hw, vf_info, vf,
1295				      FM10K_VF_FLAG_MULTI_CAPABLE);
1296
1297		/* reset_resources will disconnect from the mbx  */
1298		vf_info->mbx.ops.connect(hw, &vf_info->mbx);
1299	}
1300}
1301
1302static void fm10k_report_fault(struct fm10k_intfc *interface, u32 eicr)
1303{
1304	struct fm10k_hw *hw = &interface->hw;
1305	struct fm10k_fault fault = { 0 };
1306	int type, err;
1307
1308	for (eicr &= FM10K_EICR_FAULT_MASK, type = FM10K_PCA_FAULT;
1309	     eicr;
1310	     eicr >>= 1, type += FM10K_FAULT_SIZE) {
1311		/* only check if there is an error reported */
1312		if (!(eicr & 0x1))
1313			continue;
1314
1315		/* retrieve fault info */
1316		err = hw->mac.ops.get_fault(hw, type, &fault);
1317		if (err) {
1318			dev_err(&interface->pdev->dev,
1319				"error reading fault\n");
1320			continue;
1321		}
1322
1323		fm10k_handle_fault(interface, type, &fault);
1324	}
1325}
1326
1327static void fm10k_reset_drop_on_empty(struct fm10k_intfc *interface, u32 eicr)
1328{
1329	struct fm10k_hw *hw = &interface->hw;
1330	const u32 rxdctl = FM10K_RXDCTL_WRITE_BACK_MIN_DELAY;
1331	u32 maxholdq;
1332	int q;
1333
1334	if (!(eicr & FM10K_EICR_MAXHOLDTIME))
1335		return;
1336
1337	maxholdq = fm10k_read_reg(hw, FM10K_MAXHOLDQ(7));
1338	if (maxholdq)
1339		fm10k_write_reg(hw, FM10K_MAXHOLDQ(7), maxholdq);
1340	for (q = 255;;) {
1341		if (maxholdq & BIT(31)) {
1342			if (q < FM10K_MAX_QUEUES_PF) {
1343				interface->rx_overrun_pf++;
1344				fm10k_write_reg(hw, FM10K_RXDCTL(q), rxdctl);
1345			} else {
1346				interface->rx_overrun_vf++;
1347			}
1348		}
1349
1350		maxholdq *= 2;
1351		if (!maxholdq)
1352			q &= ~(32 - 1);
1353
1354		if (!q)
1355			break;
1356
1357		if (q-- % 32)
1358			continue;
1359
1360		maxholdq = fm10k_read_reg(hw, FM10K_MAXHOLDQ(q / 32));
1361		if (maxholdq)
1362			fm10k_write_reg(hw, FM10K_MAXHOLDQ(q / 32), maxholdq);
1363	}
1364}
1365
1366static irqreturn_t fm10k_msix_mbx_pf(int __always_unused irq, void *data)
1367{
1368	struct fm10k_intfc *interface = data;
1369	struct fm10k_hw *hw = &interface->hw;
1370	struct fm10k_mbx_info *mbx = &hw->mbx;
1371	u32 eicr;
1372
1373	/* unmask any set bits related to this interrupt */
1374	eicr = fm10k_read_reg(hw, FM10K_EICR);
1375	fm10k_write_reg(hw, FM10K_EICR, eicr & (FM10K_EICR_MAILBOX |
1376						FM10K_EICR_SWITCHREADY |
1377						FM10K_EICR_SWITCHNOTREADY));
1378
1379	/* report any faults found to the message log */
1380	fm10k_report_fault(interface, eicr);
1381
1382	/* reset any queues disabled due to receiver overrun */
1383	fm10k_reset_drop_on_empty(interface, eicr);
1384
1385	/* service mailboxes */
1386	if (fm10k_mbx_trylock(interface)) {
1387		s32 err = mbx->ops.process(hw, mbx);
1388
1389		if (err == FM10K_ERR_RESET_REQUESTED)
1390			set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags);
1391
1392		/* handle VFLRE events */
1393		fm10k_iov_event(interface);
1394		fm10k_mbx_unlock(interface);
1395	}
1396
1397	/* if switch toggled state we should reset GLORTs */
1398	if (eicr & FM10K_EICR_SWITCHNOTREADY) {
1399		/* force link down for at least 4 seconds */
1400		interface->link_down_event = jiffies + (4 * HZ);
1401		set_bit(__FM10K_LINK_DOWN, interface->state);
1402
1403		/* reset dglort_map back to no config */
1404		hw->mac.dglort_map = FM10K_DGLORTMAP_NONE;
1405	}
1406
1407	/* we should validate host state after interrupt event */
1408	hw->mac.get_host_state = true;
1409
1410	/* validate host state, and handle VF mailboxes in the service task */
1411	fm10k_service_event_schedule(interface);
1412
1413	/* re-enable mailbox interrupt and indicate 20us delay */
1414	fm10k_write_reg(hw, FM10K_ITR(FM10K_MBX_VECTOR),
1415			(FM10K_MBX_INT_DELAY >> hw->mac.itr_scale) |
1416			FM10K_ITR_ENABLE);
1417
1418	return IRQ_HANDLED;
1419}
1420
1421void fm10k_mbx_free_irq(struct fm10k_intfc *interface)
1422{
1423	struct fm10k_hw *hw = &interface->hw;
1424	struct msix_entry *entry;
1425	int itr_reg;
1426
1427	/* no mailbox IRQ to free if MSI-X is not enabled */
1428	if (!interface->msix_entries)
1429		return;
1430
1431	entry = &interface->msix_entries[FM10K_MBX_VECTOR];
1432
1433	/* disconnect the mailbox */
1434	hw->mbx.ops.disconnect(hw, &hw->mbx);
1435
1436	/* disable Mailbox cause */
1437	if (hw->mac.type == fm10k_mac_pf) {
1438		fm10k_write_reg(hw, FM10K_EIMR,
1439				FM10K_EIMR_DISABLE(PCA_FAULT) |
1440				FM10K_EIMR_DISABLE(FUM_FAULT) |
1441				FM10K_EIMR_DISABLE(MAILBOX) |
1442				FM10K_EIMR_DISABLE(SWITCHREADY) |
1443				FM10K_EIMR_DISABLE(SWITCHNOTREADY) |
1444				FM10K_EIMR_DISABLE(SRAMERROR) |
1445				FM10K_EIMR_DISABLE(VFLR) |
1446				FM10K_EIMR_DISABLE(MAXHOLDTIME));
1447		itr_reg = FM10K_ITR(FM10K_MBX_VECTOR);
1448	} else {
1449		itr_reg = FM10K_VFITR(FM10K_MBX_VECTOR);
1450	}
1451
1452	fm10k_write_reg(hw, itr_reg, FM10K_ITR_MASK_SET);
1453
1454	free_irq(entry->vector, interface);
1455}
1456
1457static s32 fm10k_mbx_mac_addr(struct fm10k_hw *hw, u32 **results,
1458			      struct fm10k_mbx_info *mbx)
1459{
1460	bool vlan_override = hw->mac.vlan_override;
1461	u16 default_vid = hw->mac.default_vid;
1462	struct fm10k_intfc *interface;
1463	s32 err;
1464
1465	err = fm10k_msg_mac_vlan_vf(hw, results, mbx);
1466	if (err)
1467		return err;
1468
1469	interface = container_of(hw, struct fm10k_intfc, hw);
1470
1471	/* MAC was changed so we need reset */
1472	if (is_valid_ether_addr(hw->mac.perm_addr) &&
1473	    !ether_addr_equal(hw->mac.perm_addr, hw->mac.addr))
1474		set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags);
1475
1476	/* VLAN override was changed, or default VLAN changed */
1477	if ((vlan_override != hw->mac.vlan_override) ||
1478	    (default_vid != hw->mac.default_vid))
1479		set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags);
1480
1481	return 0;
1482}
1483
1484/* generic error handler for mailbox issues */
1485static s32 fm10k_mbx_error(struct fm10k_hw *hw, u32 **results,
1486			   struct fm10k_mbx_info __always_unused *mbx)
1487{
1488	struct fm10k_intfc *interface;
1489	struct pci_dev *pdev;
1490
1491	interface = container_of(hw, struct fm10k_intfc, hw);
1492	pdev = interface->pdev;
1493
1494	dev_err(&pdev->dev, "Unknown message ID %u\n",
1495		**results & FM10K_TLV_ID_MASK);
1496
1497	return 0;
1498}
1499
1500static const struct fm10k_msg_data vf_mbx_data[] = {
1501	FM10K_TLV_MSG_TEST_HANDLER(fm10k_tlv_msg_test),
1502	FM10K_VF_MSG_MAC_VLAN_HANDLER(fm10k_mbx_mac_addr),
1503	FM10K_VF_MSG_LPORT_STATE_HANDLER(fm10k_msg_lport_state_vf),
1504	FM10K_TLV_MSG_ERROR_HANDLER(fm10k_mbx_error),
1505};
1506
1507static int fm10k_mbx_request_irq_vf(struct fm10k_intfc *interface)
1508{
1509	struct msix_entry *entry = &interface->msix_entries[FM10K_MBX_VECTOR];
1510	struct net_device *dev = interface->netdev;
1511	struct fm10k_hw *hw = &interface->hw;
1512	int err;
1513
1514	/* Use timer0 for interrupt moderation on the mailbox */
1515	u32 itr = entry->entry | FM10K_INT_MAP_TIMER0;
1516
1517	/* register mailbox handlers */
1518	err = hw->mbx.ops.register_handlers(&hw->mbx, vf_mbx_data);
1519	if (err)
1520		return err;
1521
1522	/* request the IRQ */
1523	err = request_irq(entry->vector, fm10k_msix_mbx_vf, 0,
1524			  dev->name, interface);
1525	if (err) {
1526		netif_err(interface, probe, dev,
1527			  "request_irq for msix_mbx failed: %d\n", err);
1528		return err;
1529	}
1530
1531	/* map all of the interrupt sources */
1532	fm10k_write_reg(hw, FM10K_VFINT_MAP, itr);
1533
1534	/* enable interrupt */
1535	fm10k_write_reg(hw, FM10K_VFITR(entry->entry), FM10K_ITR_ENABLE);
1536
1537	return 0;
1538}
1539
1540static s32 fm10k_lport_map(struct fm10k_hw *hw, u32 **results,
1541			   struct fm10k_mbx_info *mbx)
1542{
1543	struct fm10k_intfc *interface;
1544	u32 dglort_map = hw->mac.dglort_map;
1545	s32 err;
1546
1547	interface = container_of(hw, struct fm10k_intfc, hw);
1548
1549	err = fm10k_msg_err_pf(hw, results, mbx);
1550	if (!err && hw->swapi.status) {
1551		/* force link down for a reasonable delay */
1552		interface->link_down_event = jiffies + (2 * HZ);
1553		set_bit(__FM10K_LINK_DOWN, interface->state);
1554
1555		/* reset dglort_map back to no config */
1556		hw->mac.dglort_map = FM10K_DGLORTMAP_NONE;
1557
1558		fm10k_service_event_schedule(interface);
1559
1560		/* prevent overloading kernel message buffer */
1561		if (interface->lport_map_failed)
1562			return 0;
1563
1564		interface->lport_map_failed = true;
1565
1566		if (hw->swapi.status == FM10K_MSG_ERR_PEP_NOT_SCHEDULED)
1567			dev_warn(&interface->pdev->dev,
1568				 "cannot obtain link because the host interface is configured for a PCIe host interface bandwidth of zero\n");
1569		dev_warn(&interface->pdev->dev,
1570			 "request logical port map failed: %d\n",
1571			 hw->swapi.status);
1572
1573		return 0;
1574	}
1575
1576	err = fm10k_msg_lport_map_pf(hw, results, mbx);
1577	if (err)
1578		return err;
1579
1580	interface->lport_map_failed = false;
1581
1582	/* we need to reset if port count was just updated */
1583	if (dglort_map != hw->mac.dglort_map)
1584		set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags);
1585
1586	return 0;
1587}
1588
1589static s32 fm10k_update_pvid(struct fm10k_hw *hw, u32 **results,
1590			     struct fm10k_mbx_info __always_unused *mbx)
1591{
1592	struct fm10k_intfc *interface;
1593	u16 glort, pvid;
1594	u32 pvid_update;
1595	s32 err;
1596
1597	err = fm10k_tlv_attr_get_u32(results[FM10K_PF_ATTR_ID_UPDATE_PVID],
1598				     &pvid_update);
1599	if (err)
1600		return err;
1601
1602	/* extract values from the pvid update */
1603	glort = FM10K_MSG_HDR_FIELD_GET(pvid_update, UPDATE_PVID_GLORT);
1604	pvid = FM10K_MSG_HDR_FIELD_GET(pvid_update, UPDATE_PVID_PVID);
1605
1606	/* if glort is not valid return error */
1607	if (!fm10k_glort_valid_pf(hw, glort))
1608		return FM10K_ERR_PARAM;
1609
1610	/* verify VLAN ID is valid */
1611	if (pvid >= FM10K_VLAN_TABLE_VID_MAX)
1612		return FM10K_ERR_PARAM;
1613
1614	interface = container_of(hw, struct fm10k_intfc, hw);
1615
1616	/* check to see if this belongs to one of the VFs */
1617	err = fm10k_iov_update_pvid(interface, glort, pvid);
1618	if (!err)
1619		return 0;
1620
1621	/* we need to reset if default VLAN was just updated */
1622	if (pvid != hw->mac.default_vid)
1623		set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags);
1624
1625	hw->mac.default_vid = pvid;
1626
1627	return 0;
1628}
1629
1630static const struct fm10k_msg_data pf_mbx_data[] = {
1631	FM10K_PF_MSG_ERR_HANDLER(XCAST_MODES, fm10k_msg_err_pf),
1632	FM10K_PF_MSG_ERR_HANDLER(UPDATE_MAC_FWD_RULE, fm10k_msg_err_pf),
1633	FM10K_PF_MSG_LPORT_MAP_HANDLER(fm10k_lport_map),
1634	FM10K_PF_MSG_ERR_HANDLER(LPORT_CREATE, fm10k_msg_err_pf),
1635	FM10K_PF_MSG_ERR_HANDLER(LPORT_DELETE, fm10k_msg_err_pf),
1636	FM10K_PF_MSG_UPDATE_PVID_HANDLER(fm10k_update_pvid),
1637	FM10K_TLV_MSG_ERROR_HANDLER(fm10k_mbx_error),
1638};
1639
1640static int fm10k_mbx_request_irq_pf(struct fm10k_intfc *interface)
1641{
1642	struct msix_entry *entry = &interface->msix_entries[FM10K_MBX_VECTOR];
1643	struct net_device *dev = interface->netdev;
1644	struct fm10k_hw *hw = &interface->hw;
1645	int err;
1646
1647	/* Use timer0 for interrupt moderation on the mailbox */
1648	u32 mbx_itr = entry->entry | FM10K_INT_MAP_TIMER0;
1649	u32 other_itr = entry->entry | FM10K_INT_MAP_IMMEDIATE;
1650
1651	/* register mailbox handlers */
1652	err = hw->mbx.ops.register_handlers(&hw->mbx, pf_mbx_data);
1653	if (err)
1654		return err;
1655
1656	/* request the IRQ */
1657	err = request_irq(entry->vector, fm10k_msix_mbx_pf, 0,
1658			  dev->name, interface);
1659	if (err) {
1660		netif_err(interface, probe, dev,
1661			  "request_irq for msix_mbx failed: %d\n", err);
1662		return err;
1663	}
1664
1665	/* Enable interrupts w/ no moderation for "other" interrupts */
1666	fm10k_write_reg(hw, FM10K_INT_MAP(fm10k_int_pcie_fault), other_itr);
1667	fm10k_write_reg(hw, FM10K_INT_MAP(fm10k_int_switch_up_down), other_itr);
1668	fm10k_write_reg(hw, FM10K_INT_MAP(fm10k_int_sram), other_itr);
1669	fm10k_write_reg(hw, FM10K_INT_MAP(fm10k_int_max_hold_time), other_itr);
1670	fm10k_write_reg(hw, FM10K_INT_MAP(fm10k_int_vflr), other_itr);
1671
1672	/* Enable interrupts w/ moderation for mailbox */
1673	fm10k_write_reg(hw, FM10K_INT_MAP(fm10k_int_mailbox), mbx_itr);
1674
1675	/* Enable individual interrupt causes */
1676	fm10k_write_reg(hw, FM10K_EIMR, FM10K_EIMR_ENABLE(PCA_FAULT) |
1677					FM10K_EIMR_ENABLE(FUM_FAULT) |
1678					FM10K_EIMR_ENABLE(MAILBOX) |
1679					FM10K_EIMR_ENABLE(SWITCHREADY) |
1680					FM10K_EIMR_ENABLE(SWITCHNOTREADY) |
1681					FM10K_EIMR_ENABLE(SRAMERROR) |
1682					FM10K_EIMR_ENABLE(VFLR) |
1683					FM10K_EIMR_ENABLE(MAXHOLDTIME));
1684
1685	/* enable interrupt */
1686	fm10k_write_reg(hw, FM10K_ITR(entry->entry), FM10K_ITR_ENABLE);
1687
1688	return 0;
1689}
1690
1691int fm10k_mbx_request_irq(struct fm10k_intfc *interface)
1692{
1693	struct fm10k_hw *hw = &interface->hw;
1694	int err;
1695
1696	/* enable Mailbox cause */
1697	if (hw->mac.type == fm10k_mac_pf)
1698		err = fm10k_mbx_request_irq_pf(interface);
1699	else
1700		err = fm10k_mbx_request_irq_vf(interface);
1701	if (err)
1702		return err;
1703
1704	/* connect mailbox */
1705	err = hw->mbx.ops.connect(hw, &hw->mbx);
1706
1707	/* if the mailbox failed to connect, then free IRQ */
1708	if (err)
1709		fm10k_mbx_free_irq(interface);
1710
1711	return err;
1712}
1713
1714/**
1715 * fm10k_qv_free_irq - release interrupts associated with queue vectors
1716 * @interface: board private structure
1717 *
1718 * Release all interrupts associated with this interface
1719 **/
1720void fm10k_qv_free_irq(struct fm10k_intfc *interface)
1721{
1722	int vector = interface->num_q_vectors;
1723	struct msix_entry *entry;
1724
1725	entry = &interface->msix_entries[NON_Q_VECTORS + vector];
1726
1727	while (vector) {
1728		struct fm10k_q_vector *q_vector;
1729
1730		vector--;
1731		entry--;
1732		q_vector = interface->q_vector[vector];
1733
1734		if (!q_vector->tx.count && !q_vector->rx.count)
1735			continue;
1736
1737		/* clear the affinity_mask in the IRQ descriptor */
1738		irq_set_affinity_hint(entry->vector, NULL);
1739
1740		/* disable interrupts */
1741		writel(FM10K_ITR_MASK_SET, q_vector->itr);
1742
1743		free_irq(entry->vector, q_vector);
1744	}
1745}
1746
1747/**
1748 * fm10k_qv_request_irq - initialize interrupts for queue vectors
1749 * @interface: board private structure
1750 *
1751 * Attempts to configure interrupts using the best available
1752 * capabilities of the hardware and kernel.
1753 **/
1754int fm10k_qv_request_irq(struct fm10k_intfc *interface)
1755{
1756	struct net_device *dev = interface->netdev;
1757	struct fm10k_hw *hw = &interface->hw;
1758	struct msix_entry *entry;
1759	unsigned int ri = 0, ti = 0;
1760	int vector, err;
1761
1762	entry = &interface->msix_entries[NON_Q_VECTORS];
1763
1764	for (vector = 0; vector < interface->num_q_vectors; vector++) {
1765		struct fm10k_q_vector *q_vector = interface->q_vector[vector];
1766
1767		/* name the vector */
1768		if (q_vector->tx.count && q_vector->rx.count) {
1769			snprintf(q_vector->name, sizeof(q_vector->name),
1770				 "%s-TxRx-%u", dev->name, ri++);
1771			ti++;
1772		} else if (q_vector->rx.count) {
1773			snprintf(q_vector->name, sizeof(q_vector->name),
1774				 "%s-rx-%u", dev->name, ri++);
1775		} else if (q_vector->tx.count) {
1776			snprintf(q_vector->name, sizeof(q_vector->name),
1777				 "%s-tx-%u", dev->name, ti++);
1778		} else {
1779			/* skip this unused q_vector */
1780			continue;
1781		}
1782
1783		/* Assign ITR register to q_vector */
1784		q_vector->itr = (hw->mac.type == fm10k_mac_pf) ?
1785				&interface->uc_addr[FM10K_ITR(entry->entry)] :
1786				&interface->uc_addr[FM10K_VFITR(entry->entry)];
1787
1788		/* request the IRQ */
1789		err = request_irq(entry->vector, &fm10k_msix_clean_rings, 0,
1790				  q_vector->name, q_vector);
1791		if (err) {
1792			netif_err(interface, probe, dev,
1793				  "request_irq failed for MSIX interrupt Error: %d\n",
1794				  err);
1795			goto err_out;
1796		}
1797
1798		/* assign the mask for this irq */
1799		irq_set_affinity_hint(entry->vector, &q_vector->affinity_mask);
1800
1801		/* Enable q_vector */
1802		writel(FM10K_ITR_ENABLE, q_vector->itr);
1803
1804		entry++;
1805	}
1806
1807	return 0;
1808
1809err_out:
1810	/* wind through the ring freeing all entries and vectors */
1811	while (vector) {
1812		struct fm10k_q_vector *q_vector;
1813
1814		entry--;
1815		vector--;
1816		q_vector = interface->q_vector[vector];
1817
1818		if (!q_vector->tx.count && !q_vector->rx.count)
1819			continue;
1820
1821		/* clear the affinity_mask in the IRQ descriptor */
1822		irq_set_affinity_hint(entry->vector, NULL);
1823
1824		/* disable interrupts */
1825		writel(FM10K_ITR_MASK_SET, q_vector->itr);
1826
1827		free_irq(entry->vector, q_vector);
1828	}
1829
1830	return err;
1831}
1832
1833void fm10k_up(struct fm10k_intfc *interface)
1834{
1835	struct fm10k_hw *hw = &interface->hw;
1836
1837	/* Enable Tx/Rx DMA */
1838	hw->mac.ops.start_hw(hw);
1839
1840	/* configure Tx descriptor rings */
1841	fm10k_configure_tx(interface);
1842
1843	/* configure Rx descriptor rings */
1844	fm10k_configure_rx(interface);
1845
1846	/* configure interrupts */
1847	hw->mac.ops.update_int_moderator(hw);
1848
1849	/* enable statistics capture again */
1850	clear_bit(__FM10K_UPDATING_STATS, interface->state);
1851
1852	/* clear down bit to indicate we are ready to go */
1853	clear_bit(__FM10K_DOWN, interface->state);
1854
1855	/* enable polling cleanups */
1856	fm10k_napi_enable_all(interface);
1857
1858	/* re-establish Rx filters */
1859	fm10k_restore_rx_state(interface);
1860
1861	/* enable transmits */
1862	netif_tx_start_all_queues(interface->netdev);
1863
1864	/* kick off the service timer now */
1865	hw->mac.get_host_state = true;
1866	mod_timer(&interface->service_timer, jiffies);
1867}
1868
1869static void fm10k_napi_disable_all(struct fm10k_intfc *interface)
1870{
1871	struct fm10k_q_vector *q_vector;
1872	int q_idx;
1873
1874	for (q_idx = 0; q_idx < interface->num_q_vectors; q_idx++) {
1875		q_vector = interface->q_vector[q_idx];
1876		napi_disable(&q_vector->napi);
1877	}
1878}
1879
1880void fm10k_down(struct fm10k_intfc *interface)
1881{
1882	struct net_device *netdev = interface->netdev;
1883	struct fm10k_hw *hw = &interface->hw;
1884	int err, i = 0, count = 0;
1885
1886	/* signal that we are down to the interrupt handler and service task */
1887	if (test_and_set_bit(__FM10K_DOWN, interface->state))
1888		return;
1889
1890	/* call carrier off first to avoid false dev_watchdog timeouts */
1891	netif_carrier_off(netdev);
1892
1893	/* disable transmits */
1894	netif_tx_stop_all_queues(netdev);
1895	netif_tx_disable(netdev);
1896
1897	/* reset Rx filters */
1898	fm10k_reset_rx_state(interface);
1899
1900	/* disable polling routines */
1901	fm10k_napi_disable_all(interface);
1902
1903	/* capture stats one last time before stopping interface */
1904	fm10k_update_stats(interface);
1905
1906	/* prevent updating statistics while we're down */
1907	while (test_and_set_bit(__FM10K_UPDATING_STATS, interface->state))
1908		usleep_range(1000, 2000);
1909
1910	/* skip waiting for TX DMA if we lost PCIe link */
1911	if (FM10K_REMOVED(hw->hw_addr))
1912		goto skip_tx_dma_drain;
1913
1914	/* In some rare circumstances it can take a while for Tx queues to
1915	 * quiesce and be fully disabled. Attempt to .stop_hw() first, and
1916	 * then if we get ERR_REQUESTS_PENDING, go ahead and wait in a loop
1917	 * until the Tx queues have emptied, or until a number of retries. If
1918	 * we fail to clear within the retry loop, we will issue a warning
1919	 * indicating that Tx DMA is probably hung. Note this means we call
1920	 * .stop_hw() twice but this shouldn't cause any problems.
1921	 */
1922	err = hw->mac.ops.stop_hw(hw);
1923	if (err != FM10K_ERR_REQUESTS_PENDING)
1924		goto skip_tx_dma_drain;
1925
1926#define TX_DMA_DRAIN_RETRIES 25
1927	for (count = 0; count < TX_DMA_DRAIN_RETRIES; count++) {
1928		usleep_range(10000, 20000);
1929
1930		/* start checking at the last ring to have pending Tx */
1931		for (; i < interface->num_tx_queues; i++)
1932			if (fm10k_get_tx_pending(interface->tx_ring[i], false))
1933				break;
1934
1935		/* if all the queues are drained, we can break now */
1936		if (i == interface->num_tx_queues)
1937			break;
1938	}
1939
1940	if (count >= TX_DMA_DRAIN_RETRIES)
1941		dev_err(&interface->pdev->dev,
1942			"Tx queues failed to drain after %d tries. Tx DMA is probably hung.\n",
1943			count);
1944skip_tx_dma_drain:
1945	/* Disable DMA engine for Tx/Rx */
1946	err = hw->mac.ops.stop_hw(hw);
1947	if (err == FM10K_ERR_REQUESTS_PENDING)
1948		dev_err(&interface->pdev->dev,
1949			"due to pending requests hw was not shut down gracefully\n");
1950	else if (err)
1951		dev_err(&interface->pdev->dev, "stop_hw failed: %d\n", err);
1952
1953	/* free any buffers still on the rings */
1954	fm10k_clean_all_tx_rings(interface);
1955	fm10k_clean_all_rx_rings(interface);
1956}
1957
1958/**
1959 * fm10k_sw_init - Initialize general software structures
1960 * @interface: host interface private structure to initialize
1961 * @ent: PCI device ID entry
1962 *
1963 * fm10k_sw_init initializes the interface private data structure.
1964 * Fields are initialized based on PCI device information and
1965 * OS network device settings (MTU size).
1966 **/
1967static int fm10k_sw_init(struct fm10k_intfc *interface,
1968			 const struct pci_device_id *ent)
1969{
1970	const struct fm10k_info *fi = fm10k_info_tbl[ent->driver_data];
1971	struct fm10k_hw *hw = &interface->hw;
1972	struct pci_dev *pdev = interface->pdev;
1973	struct net_device *netdev = interface->netdev;
1974	u32 rss_key[FM10K_RSSRK_SIZE];
1975	unsigned int rss;
1976	int err;
1977
1978	/* initialize back pointer */
1979	hw->back = interface;
1980	hw->hw_addr = interface->uc_addr;
1981
1982	/* PCI config space info */
1983	hw->vendor_id = pdev->vendor;
1984	hw->device_id = pdev->device;
1985	hw->revision_id = pdev->revision;
1986	hw->subsystem_vendor_id = pdev->subsystem_vendor;
1987	hw->subsystem_device_id = pdev->subsystem_device;
1988
1989	/* Setup hw api */
1990	memcpy(&hw->mac.ops, fi->mac_ops, sizeof(hw->mac.ops));
1991	hw->mac.type = fi->mac;
1992
1993	/* Setup IOV handlers */
1994	if (fi->iov_ops)
1995		memcpy(&hw->iov.ops, fi->iov_ops, sizeof(hw->iov.ops));
1996
1997	/* Set common capability flags and settings */
1998	rss = min_t(int, FM10K_MAX_RSS_INDICES, num_online_cpus());
1999	interface->ring_feature[RING_F_RSS].limit = rss;
2000	fi->get_invariants(hw);
2001
2002	/* pick up the PCIe bus settings for reporting later */
2003	if (hw->mac.ops.get_bus_info)
2004		hw->mac.ops.get_bus_info(hw);
2005
2006	/* limit the usable DMA range */
2007	if (hw->mac.ops.set_dma_mask)
2008		hw->mac.ops.set_dma_mask(hw, dma_get_mask(&pdev->dev));
2009
2010	/* update netdev with DMA restrictions */
2011	if (dma_get_mask(&pdev->dev) > DMA_BIT_MASK(32)) {
2012		netdev->features |= NETIF_F_HIGHDMA;
2013		netdev->vlan_features |= NETIF_F_HIGHDMA;
2014	}
2015
2016	/* reset and initialize the hardware so it is in a known state */
2017	err = hw->mac.ops.reset_hw(hw);
2018	if (err) {
2019		dev_err(&pdev->dev, "reset_hw failed: %d\n", err);
2020		return err;
2021	}
2022
2023	err = hw->mac.ops.init_hw(hw);
2024	if (err) {
2025		dev_err(&pdev->dev, "init_hw failed: %d\n", err);
2026		return err;
2027	}
2028
2029	/* initialize hardware statistics */
2030	hw->mac.ops.update_hw_stats(hw, &interface->stats);
2031
2032	/* Set upper limit on IOV VFs that can be allocated */
2033	pci_sriov_set_totalvfs(pdev, hw->iov.total_vfs);
2034
2035	/* Start with random Ethernet address */
2036	eth_random_addr(hw->mac.addr);
2037
2038	/* Initialize MAC address from hardware */
2039	err = hw->mac.ops.read_mac_addr(hw);
2040	if (err) {
2041		dev_warn(&pdev->dev,
2042			 "Failed to obtain MAC address defaulting to random\n");
2043		/* tag address assignment as random */
2044		netdev->addr_assign_type |= NET_ADDR_RANDOM;
2045	}
2046
2047	eth_hw_addr_set(netdev, hw->mac.addr);
2048	ether_addr_copy(netdev->perm_addr, hw->mac.addr);
2049
2050	if (!is_valid_ether_addr(netdev->perm_addr)) {
2051		dev_err(&pdev->dev, "Invalid MAC Address\n");
2052		return -EIO;
2053	}
2054
2055	/* initialize DCBNL interface */
2056	fm10k_dcbnl_set_ops(netdev);
2057
2058	/* set default ring sizes */
2059	interface->tx_ring_count = FM10K_DEFAULT_TXD;
2060	interface->rx_ring_count = FM10K_DEFAULT_RXD;
2061
2062	/* set default interrupt moderation */
2063	interface->tx_itr = FM10K_TX_ITR_DEFAULT;
2064	interface->rx_itr = FM10K_ITR_ADAPTIVE | FM10K_RX_ITR_DEFAULT;
2065
2066	/* Initialize the MAC/VLAN queue */
2067	INIT_LIST_HEAD(&interface->macvlan_requests);
2068
2069	netdev_rss_key_fill(rss_key, sizeof(rss_key));
2070	memcpy(interface->rssrk, rss_key, sizeof(rss_key));
2071
2072	/* Initialize the mailbox lock */
2073	spin_lock_init(&interface->mbx_lock);
2074	spin_lock_init(&interface->macvlan_lock);
2075
2076	/* Start off interface as being down */
2077	set_bit(__FM10K_DOWN, interface->state);
2078	set_bit(__FM10K_UPDATING_STATS, interface->state);
2079
2080	return 0;
2081}
2082
2083/**
2084 * fm10k_probe - Device Initialization Routine
2085 * @pdev: PCI device information struct
2086 * @ent: entry in fm10k_pci_tbl
2087 *
2088 * Returns 0 on success, negative on failure
2089 *
2090 * fm10k_probe initializes an interface identified by a pci_dev structure.
2091 * The OS initialization, configuring of the interface private structure,
2092 * and a hardware reset occur.
2093 **/
2094static int fm10k_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2095{
2096	struct net_device *netdev;
2097	struct fm10k_intfc *interface;
2098	int err;
2099
2100	if (pdev->error_state != pci_channel_io_normal) {
2101		dev_err(&pdev->dev,
2102			"PCI device still in an error state. Unable to load...\n");
2103		return -EIO;
2104	}
2105
2106	err = pci_enable_device_mem(pdev);
2107	if (err) {
2108		dev_err(&pdev->dev,
2109			"PCI enable device failed: %d\n", err);
2110		return err;
2111	}
2112
2113	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(48));
2114	if (err)
2115		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2116	if (err) {
2117		dev_err(&pdev->dev,
2118			"DMA configuration failed: %d\n", err);
2119		goto err_dma;
2120	}
2121
2122	err = pci_request_mem_regions(pdev, fm10k_driver_name);
2123	if (err) {
2124		dev_err(&pdev->dev,
2125			"pci_request_selected_regions failed: %d\n", err);
2126		goto err_pci_reg;
2127	}
2128
 
 
2129	pci_set_master(pdev);
2130	pci_save_state(pdev);
2131
2132	netdev = fm10k_alloc_netdev(fm10k_info_tbl[ent->driver_data]);
2133	if (!netdev) {
2134		err = -ENOMEM;
2135		goto err_alloc_netdev;
2136	}
2137
2138	SET_NETDEV_DEV(netdev, &pdev->dev);
2139
2140	interface = netdev_priv(netdev);
2141	pci_set_drvdata(pdev, interface);
2142
2143	interface->netdev = netdev;
2144	interface->pdev = pdev;
2145
2146	interface->uc_addr = ioremap(pci_resource_start(pdev, 0),
2147				     FM10K_UC_ADDR_SIZE);
2148	if (!interface->uc_addr) {
2149		err = -EIO;
2150		goto err_ioremap;
2151	}
2152
2153	err = fm10k_sw_init(interface, ent);
2154	if (err)
2155		goto err_sw_init;
2156
2157	/* enable debugfs support */
2158	fm10k_dbg_intfc_init(interface);
2159
2160	err = fm10k_init_queueing_scheme(interface);
2161	if (err)
2162		goto err_sw_init;
2163
2164	/* the mbx interrupt might attempt to schedule the service task, so we
2165	 * must ensure it is disabled since we haven't yet requested the timer
2166	 * or work item.
2167	 */
2168	set_bit(__FM10K_SERVICE_DISABLE, interface->state);
2169
2170	err = fm10k_mbx_request_irq(interface);
2171	if (err)
2172		goto err_mbx_interrupt;
2173
2174	/* final check of hardware state before registering the interface */
2175	err = fm10k_hw_ready(interface);
2176	if (err)
2177		goto err_register;
2178
2179	err = register_netdev(netdev);
2180	if (err)
2181		goto err_register;
2182
2183	/* carrier off reporting is important to ethtool even BEFORE open */
2184	netif_carrier_off(netdev);
2185
2186	/* stop all the transmit queues from transmitting until link is up */
2187	netif_tx_stop_all_queues(netdev);
2188
2189	/* Initialize service timer and service task late in order to avoid
2190	 * cleanup issues.
2191	 */
2192	timer_setup(&interface->service_timer, fm10k_service_timer, 0);
2193	INIT_WORK(&interface->service_task, fm10k_service_task);
2194
2195	/* Setup the MAC/VLAN queue */
2196	INIT_DELAYED_WORK(&interface->macvlan_task, fm10k_macvlan_task);
2197
2198	/* kick off service timer now, even when interface is down */
2199	mod_timer(&interface->service_timer, (HZ * 2) + jiffies);
2200
2201	/* print warning for non-optimal configurations */
2202	pcie_print_link_status(interface->pdev);
2203
2204	/* report MAC address for logging */
2205	dev_info(&pdev->dev, "%pM\n", netdev->dev_addr);
2206
2207	/* enable SR-IOV after registering netdev to enforce PF/VF ordering */
2208	fm10k_iov_configure(pdev, 0);
2209
2210	/* clear the service task disable bit and kick off service task */
2211	clear_bit(__FM10K_SERVICE_DISABLE, interface->state);
2212	fm10k_service_event_schedule(interface);
2213
2214	return 0;
2215
2216err_register:
2217	fm10k_mbx_free_irq(interface);
2218err_mbx_interrupt:
2219	fm10k_clear_queueing_scheme(interface);
2220err_sw_init:
2221	if (interface->sw_addr)
2222		iounmap(interface->sw_addr);
2223	iounmap(interface->uc_addr);
2224err_ioremap:
2225	free_netdev(netdev);
2226err_alloc_netdev:
 
2227	pci_release_mem_regions(pdev);
2228err_pci_reg:
2229err_dma:
2230	pci_disable_device(pdev);
2231	return err;
2232}
2233
2234/**
2235 * fm10k_remove - Device Removal Routine
2236 * @pdev: PCI device information struct
2237 *
2238 * fm10k_remove is called by the PCI subsystem to alert the driver
2239 * that it should release a PCI device.  The could be caused by a
2240 * Hot-Plug event, or because the driver is going to be removed from
2241 * memory.
2242 **/
2243static void fm10k_remove(struct pci_dev *pdev)
2244{
2245	struct fm10k_intfc *interface = pci_get_drvdata(pdev);
2246	struct net_device *netdev = interface->netdev;
2247
2248	del_timer_sync(&interface->service_timer);
2249
2250	fm10k_stop_service_event(interface);
2251	fm10k_stop_macvlan_task(interface);
2252
2253	/* Remove all pending MAC/VLAN requests */
2254	fm10k_clear_macvlan_queue(interface, interface->glort, true);
2255
2256	/* free netdev, this may bounce the interrupts due to setup_tc */
2257	if (netdev->reg_state == NETREG_REGISTERED)
2258		unregister_netdev(netdev);
2259
2260	/* release VFs */
2261	fm10k_iov_disable(pdev);
2262
2263	/* disable mailbox interrupt */
2264	fm10k_mbx_free_irq(interface);
2265
2266	/* free interrupts */
2267	fm10k_clear_queueing_scheme(interface);
2268
2269	/* remove any debugfs interfaces */
2270	fm10k_dbg_intfc_exit(interface);
2271
2272	if (interface->sw_addr)
2273		iounmap(interface->sw_addr);
2274	iounmap(interface->uc_addr);
2275
2276	free_netdev(netdev);
2277
2278	pci_release_mem_regions(pdev);
2279
 
 
2280	pci_disable_device(pdev);
2281}
2282
2283static void fm10k_prepare_suspend(struct fm10k_intfc *interface)
2284{
2285	/* the watchdog task reads from registers, which might appear like
2286	 * a surprise remove if the PCIe device is disabled while we're
2287	 * stopped. We stop the watchdog task until after we resume software
2288	 * activity.
2289	 *
2290	 * Note that the MAC/VLAN task will be stopped as part of preparing
2291	 * for reset so we don't need to handle it here.
2292	 */
2293	fm10k_stop_service_event(interface);
2294
2295	if (fm10k_prepare_for_reset(interface))
2296		set_bit(__FM10K_RESET_SUSPENDED, interface->state);
2297}
2298
2299static int fm10k_handle_resume(struct fm10k_intfc *interface)
2300{
2301	struct fm10k_hw *hw = &interface->hw;
2302	int err;
2303
2304	/* Even if we didn't properly prepare for reset in
2305	 * fm10k_prepare_suspend, we'll attempt to resume anyways.
2306	 */
2307	if (!test_and_clear_bit(__FM10K_RESET_SUSPENDED, interface->state))
2308		dev_warn(&interface->pdev->dev,
2309			 "Device was shut down as part of suspend... Attempting to recover\n");
2310
2311	/* reset statistics starting values */
2312	hw->mac.ops.rebind_hw_stats(hw, &interface->stats);
2313
2314	err = fm10k_handle_reset(interface);
2315	if (err)
2316		return err;
2317
2318	/* assume host is not ready, to prevent race with watchdog in case we
2319	 * actually don't have connection to the switch
2320	 */
2321	interface->host_ready = false;
2322	fm10k_watchdog_host_not_ready(interface);
2323
2324	/* force link to stay down for a second to prevent link flutter */
2325	interface->link_down_event = jiffies + (HZ);
2326	set_bit(__FM10K_LINK_DOWN, interface->state);
2327
2328	/* restart the service task */
2329	fm10k_start_service_event(interface);
2330
2331	/* Restart the MAC/VLAN request queue in-case of outstanding events */
2332	fm10k_macvlan_schedule(interface);
2333
2334	return 0;
2335}
2336
2337/**
2338 * fm10k_resume - Generic PM resume hook
2339 * @dev: generic device structure
2340 *
2341 * Generic PM hook used when waking the device from a low power state after
2342 * suspend or hibernation. This function does not need to handle lower PCIe
2343 * device state as the stack takes care of that for us.
2344 **/
2345static int fm10k_resume(struct device *dev)
2346{
2347	struct fm10k_intfc *interface = dev_get_drvdata(dev);
2348	struct net_device *netdev = interface->netdev;
2349	struct fm10k_hw *hw = &interface->hw;
2350	int err;
2351
2352	/* refresh hw_addr in case it was dropped */
2353	hw->hw_addr = interface->uc_addr;
2354
2355	err = fm10k_handle_resume(interface);
2356	if (err)
2357		return err;
2358
2359	netif_device_attach(netdev);
2360
2361	return 0;
2362}
2363
2364/**
2365 * fm10k_suspend - Generic PM suspend hook
2366 * @dev: generic device structure
2367 *
2368 * Generic PM hook used when setting the device into a low power state for
2369 * system suspend or hibernation. This function does not need to handle lower
2370 * PCIe device state as the stack takes care of that for us.
2371 **/
2372static int fm10k_suspend(struct device *dev)
2373{
2374	struct fm10k_intfc *interface = dev_get_drvdata(dev);
2375	struct net_device *netdev = interface->netdev;
2376
2377	netif_device_detach(netdev);
2378
2379	fm10k_prepare_suspend(interface);
2380
2381	return 0;
2382}
2383
2384/**
2385 * fm10k_io_error_detected - called when PCI error is detected
2386 * @pdev: Pointer to PCI device
2387 * @state: The current pci connection state
2388 *
2389 * This function is called after a PCI bus error affecting
2390 * this device has been detected.
2391 */
2392static pci_ers_result_t fm10k_io_error_detected(struct pci_dev *pdev,
2393						pci_channel_state_t state)
2394{
2395	struct fm10k_intfc *interface = pci_get_drvdata(pdev);
2396	struct net_device *netdev = interface->netdev;
2397
2398	netif_device_detach(netdev);
2399
2400	if (state == pci_channel_io_perm_failure)
2401		return PCI_ERS_RESULT_DISCONNECT;
2402
2403	fm10k_prepare_suspend(interface);
2404
2405	/* Request a slot reset. */
2406	return PCI_ERS_RESULT_NEED_RESET;
2407}
2408
2409/**
2410 * fm10k_io_slot_reset - called after the pci bus has been reset.
2411 * @pdev: Pointer to PCI device
2412 *
2413 * Restart the card from scratch, as if from a cold-boot.
2414 */
2415static pci_ers_result_t fm10k_io_slot_reset(struct pci_dev *pdev)
2416{
2417	pci_ers_result_t result;
2418
2419	if (pci_reenable_device(pdev)) {
2420		dev_err(&pdev->dev,
2421			"Cannot re-enable PCI device after reset.\n");
2422		result = PCI_ERS_RESULT_DISCONNECT;
2423	} else {
2424		pci_set_master(pdev);
2425		pci_restore_state(pdev);
2426
2427		/* After second error pci->state_saved is false, this
2428		 * resets it so EEH doesn't break.
2429		 */
2430		pci_save_state(pdev);
2431
2432		pci_wake_from_d3(pdev, false);
2433
2434		result = PCI_ERS_RESULT_RECOVERED;
2435	}
2436
2437	return result;
2438}
2439
2440/**
2441 * fm10k_io_resume - called when traffic can start flowing again.
2442 * @pdev: Pointer to PCI device
2443 *
2444 * This callback is called when the error recovery driver tells us that
2445 * its OK to resume normal operation.
2446 */
2447static void fm10k_io_resume(struct pci_dev *pdev)
2448{
2449	struct fm10k_intfc *interface = pci_get_drvdata(pdev);
2450	struct net_device *netdev = interface->netdev;
2451	int err;
2452
2453	err = fm10k_handle_resume(interface);
2454
2455	if (err)
2456		dev_warn(&pdev->dev,
2457			 "%s failed: %d\n", __func__, err);
2458	else
2459		netif_device_attach(netdev);
2460}
2461
2462/**
2463 * fm10k_io_reset_prepare - called when PCI function is about to be reset
2464 * @pdev: Pointer to PCI device
2465 *
2466 * This callback is called when the PCI function is about to be reset,
2467 * allowing the device driver to prepare for it.
2468 */
2469static void fm10k_io_reset_prepare(struct pci_dev *pdev)
2470{
2471	/* warn incase we have any active VF devices */
2472	if (pci_num_vf(pdev))
2473		dev_warn(&pdev->dev,
2474			 "PCIe FLR may cause issues for any active VF devices\n");
2475	fm10k_prepare_suspend(pci_get_drvdata(pdev));
2476}
2477
2478/**
2479 * fm10k_io_reset_done - called when PCI function has finished resetting
2480 * @pdev: Pointer to PCI device
2481 *
2482 * This callback is called just after the PCI function is reset, such as via
2483 * /sys/class/net/<enpX>/device/reset or similar.
2484 */
2485static void fm10k_io_reset_done(struct pci_dev *pdev)
2486{
2487	struct fm10k_intfc *interface = pci_get_drvdata(pdev);
2488	int err = fm10k_handle_resume(interface);
2489
2490	if (err) {
2491		dev_warn(&pdev->dev,
2492			 "%s failed: %d\n", __func__, err);
2493		netif_device_detach(interface->netdev);
2494	}
2495}
2496
2497static const struct pci_error_handlers fm10k_err_handler = {
2498	.error_detected = fm10k_io_error_detected,
2499	.slot_reset = fm10k_io_slot_reset,
2500	.resume = fm10k_io_resume,
2501	.reset_prepare = fm10k_io_reset_prepare,
2502	.reset_done = fm10k_io_reset_done,
2503};
2504
2505static DEFINE_SIMPLE_DEV_PM_OPS(fm10k_pm_ops, fm10k_suspend, fm10k_resume);
2506
2507static struct pci_driver fm10k_driver = {
2508	.name			= fm10k_driver_name,
2509	.id_table		= fm10k_pci_tbl,
2510	.probe			= fm10k_probe,
2511	.remove			= fm10k_remove,
2512	.driver.pm		= pm_sleep_ptr(&fm10k_pm_ops),
 
 
2513	.sriov_configure	= fm10k_iov_configure,
2514	.err_handler		= &fm10k_err_handler
2515};
2516
2517/**
2518 * fm10k_register_pci_driver - register driver interface
2519 *
2520 * This function is called on module load in order to register the driver.
2521 **/
2522int fm10k_register_pci_driver(void)
2523{
2524	return pci_register_driver(&fm10k_driver);
2525}
2526
2527/**
2528 * fm10k_unregister_pci_driver - unregister driver interface
2529 *
2530 * This function is called on module unload in order to remove the driver.
2531 **/
2532void fm10k_unregister_pci_driver(void)
2533{
2534	pci_unregister_driver(&fm10k_driver);
2535}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 2013 - 2019 Intel Corporation. */
   3
   4#include <linux/module.h>
   5#include <linux/interrupt.h>
   6#include <linux/aer.h>
   7
   8#include "fm10k.h"
   9
  10static const struct fm10k_info *fm10k_info_tbl[] = {
  11	[fm10k_device_pf] = &fm10k_pf_info,
  12	[fm10k_device_vf] = &fm10k_vf_info,
  13};
  14
  15/*
  16 * fm10k_pci_tbl - PCI Device ID Table
  17 *
  18 * Wildcard entries (PCI_ANY_ID) should come last
  19 * Last entry must be all 0s
  20 *
  21 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
  22 *   Class, Class Mask, private data (not used) }
  23 */
  24static const struct pci_device_id fm10k_pci_tbl[] = {
  25	{ PCI_VDEVICE(INTEL, FM10K_DEV_ID_PF), fm10k_device_pf },
  26	{ PCI_VDEVICE(INTEL, FM10K_DEV_ID_SDI_FM10420_QDA2), fm10k_device_pf },
  27	{ PCI_VDEVICE(INTEL, FM10K_DEV_ID_SDI_FM10420_DA2), fm10k_device_pf },
  28	{ PCI_VDEVICE(INTEL, FM10K_DEV_ID_VF), fm10k_device_vf },
  29	/* required last entry */
  30	{ 0, }
  31};
  32MODULE_DEVICE_TABLE(pci, fm10k_pci_tbl);
  33
  34u16 fm10k_read_pci_cfg_word(struct fm10k_hw *hw, u32 reg)
  35{
  36	struct fm10k_intfc *interface = hw->back;
  37	u16 value = 0;
  38
  39	if (FM10K_REMOVED(hw->hw_addr))
  40		return ~value;
  41
  42	pci_read_config_word(interface->pdev, reg, &value);
  43	if (value == 0xFFFF)
  44		fm10k_write_flush(hw);
  45
  46	return value;
  47}
  48
  49u32 fm10k_read_reg(struct fm10k_hw *hw, int reg)
  50{
  51	u32 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
  52	u32 value = 0;
  53
  54	if (FM10K_REMOVED(hw_addr))
  55		return ~value;
  56
  57	value = readl(&hw_addr[reg]);
  58	if (!(~value) && (!reg || !(~readl(hw_addr)))) {
  59		struct fm10k_intfc *interface = hw->back;
  60		struct net_device *netdev = interface->netdev;
  61
  62		hw->hw_addr = NULL;
  63		netif_device_detach(netdev);
  64		netdev_err(netdev, "PCIe link lost, device now detached\n");
  65	}
  66
  67	return value;
  68}
  69
  70static int fm10k_hw_ready(struct fm10k_intfc *interface)
  71{
  72	struct fm10k_hw *hw = &interface->hw;
  73
  74	fm10k_write_flush(hw);
  75
  76	return FM10K_REMOVED(hw->hw_addr) ? -ENODEV : 0;
  77}
  78
  79/**
  80 * fm10k_macvlan_schedule - Schedule MAC/VLAN queue task
  81 * @interface: fm10k private interface structure
  82 *
  83 * Schedule the MAC/VLAN queue monitor task. If the MAC/VLAN task cannot be
  84 * started immediately, request that it be restarted when possible.
  85 */
  86void fm10k_macvlan_schedule(struct fm10k_intfc *interface)
  87{
  88	/* Avoid processing the MAC/VLAN queue when the service task is
  89	 * disabled, or when we're resetting the device.
  90	 */
  91	if (!test_bit(__FM10K_MACVLAN_DISABLE, interface->state) &&
  92	    !test_and_set_bit(__FM10K_MACVLAN_SCHED, interface->state)) {
  93		clear_bit(__FM10K_MACVLAN_REQUEST, interface->state);
  94		/* We delay the actual start of execution in order to allow
  95		 * multiple MAC/VLAN updates to accumulate before handling
  96		 * them, and to allow some time to let the mailbox drain
  97		 * between runs.
  98		 */
  99		queue_delayed_work(fm10k_workqueue,
 100				   &interface->macvlan_task, 10);
 101	} else {
 102		set_bit(__FM10K_MACVLAN_REQUEST, interface->state);
 103	}
 104}
 105
 106/**
 107 * fm10k_stop_macvlan_task - Stop the MAC/VLAN queue monitor
 108 * @interface: fm10k private interface structure
 109 *
 110 * Wait until the MAC/VLAN queue task has stopped, and cancel any future
 111 * requests.
 112 */
 113static void fm10k_stop_macvlan_task(struct fm10k_intfc *interface)
 114{
 115	/* Disable the MAC/VLAN work item */
 116	set_bit(__FM10K_MACVLAN_DISABLE, interface->state);
 117
 118	/* Make sure we waited until any current invocations have stopped */
 119	cancel_delayed_work_sync(&interface->macvlan_task);
 120
 121	/* We set the __FM10K_MACVLAN_SCHED bit when we schedule the task.
 122	 * However, it may not be unset of the MAC/VLAN task never actually
 123	 * got a chance to run. Since we've canceled the task here, and it
 124	 * cannot be rescheuled right now, we need to ensure the scheduled bit
 125	 * gets unset.
 126	 */
 127	clear_bit(__FM10K_MACVLAN_SCHED, interface->state);
 128}
 129
 130/**
 131 * fm10k_resume_macvlan_task - Restart the MAC/VLAN queue monitor
 132 * @interface: fm10k private interface structure
 133 *
 134 * Clear the __FM10K_MACVLAN_DISABLE bit and, if a request occurred, schedule
 135 * the MAC/VLAN work monitor.
 136 */
 137static void fm10k_resume_macvlan_task(struct fm10k_intfc *interface)
 138{
 139	/* Re-enable the MAC/VLAN work item */
 140	clear_bit(__FM10K_MACVLAN_DISABLE, interface->state);
 141
 142	/* We might have received a MAC/VLAN request while disabled. If so,
 143	 * kick off the queue now.
 144	 */
 145	if (test_bit(__FM10K_MACVLAN_REQUEST, interface->state))
 146		fm10k_macvlan_schedule(interface);
 147}
 148
 149void fm10k_service_event_schedule(struct fm10k_intfc *interface)
 150{
 151	if (!test_bit(__FM10K_SERVICE_DISABLE, interface->state) &&
 152	    !test_and_set_bit(__FM10K_SERVICE_SCHED, interface->state)) {
 153		clear_bit(__FM10K_SERVICE_REQUEST, interface->state);
 154		queue_work(fm10k_workqueue, &interface->service_task);
 155	} else {
 156		set_bit(__FM10K_SERVICE_REQUEST, interface->state);
 157	}
 158}
 159
 160static void fm10k_service_event_complete(struct fm10k_intfc *interface)
 161{
 162	WARN_ON(!test_bit(__FM10K_SERVICE_SCHED, interface->state));
 163
 164	/* flush memory to make sure state is correct before next watchog */
 165	smp_mb__before_atomic();
 166	clear_bit(__FM10K_SERVICE_SCHED, interface->state);
 167
 168	/* If a service event was requested since we started, immediately
 169	 * re-schedule now. This ensures we don't drop a request until the
 170	 * next timer event.
 171	 */
 172	if (test_bit(__FM10K_SERVICE_REQUEST, interface->state))
 173		fm10k_service_event_schedule(interface);
 174}
 175
 176static void fm10k_stop_service_event(struct fm10k_intfc *interface)
 177{
 178	set_bit(__FM10K_SERVICE_DISABLE, interface->state);
 179	cancel_work_sync(&interface->service_task);
 180
 181	/* It's possible that cancel_work_sync stopped the service task from
 182	 * running before it could actually start. In this case the
 183	 * __FM10K_SERVICE_SCHED bit will never be cleared. Since we know that
 184	 * the service task cannot be running at this point, we need to clear
 185	 * the scheduled bit, as otherwise the service task may never be
 186	 * restarted.
 187	 */
 188	clear_bit(__FM10K_SERVICE_SCHED, interface->state);
 189}
 190
 191static void fm10k_start_service_event(struct fm10k_intfc *interface)
 192{
 193	clear_bit(__FM10K_SERVICE_DISABLE, interface->state);
 194	fm10k_service_event_schedule(interface);
 195}
 196
 197/**
 198 * fm10k_service_timer - Timer Call-back
 199 * @t: pointer to timer data
 200 **/
 201static void fm10k_service_timer(struct timer_list *t)
 202{
 203	struct fm10k_intfc *interface = from_timer(interface, t,
 204						   service_timer);
 205
 206	/* Reset the timer */
 207	mod_timer(&interface->service_timer, (HZ * 2) + jiffies);
 208
 209	fm10k_service_event_schedule(interface);
 210}
 211
 212/**
 213 * fm10k_prepare_for_reset - Prepare the driver and device for a pending reset
 214 * @interface: fm10k private data structure
 215 *
 216 * This function prepares for a device reset by shutting as much down as we
 217 * can. It does nothing and returns false if __FM10K_RESETTING was already set
 218 * prior to calling this function. It returns true if it actually did work.
 219 */
 220static bool fm10k_prepare_for_reset(struct fm10k_intfc *interface)
 221{
 222	struct net_device *netdev = interface->netdev;
 223
 224	/* put off any impending NetWatchDogTimeout */
 225	netif_trans_update(netdev);
 226
 227	/* Nothing to do if a reset is already in progress */
 228	if (test_and_set_bit(__FM10K_RESETTING, interface->state))
 229		return false;
 230
 231	/* As the MAC/VLAN task will be accessing registers it must not be
 232	 * running while we reset. Although the task will not be scheduled
 233	 * once we start resetting it may already be running
 234	 */
 235	fm10k_stop_macvlan_task(interface);
 236
 237	rtnl_lock();
 238
 239	fm10k_iov_suspend(interface->pdev);
 240
 241	if (netif_running(netdev))
 242		fm10k_close(netdev);
 243
 244	fm10k_mbx_free_irq(interface);
 245
 246	/* free interrupts */
 247	fm10k_clear_queueing_scheme(interface);
 248
 249	/* delay any future reset requests */
 250	interface->last_reset = jiffies + (10 * HZ);
 251
 252	rtnl_unlock();
 253
 254	return true;
 255}
 256
 257static int fm10k_handle_reset(struct fm10k_intfc *interface)
 258{
 259	struct net_device *netdev = interface->netdev;
 260	struct fm10k_hw *hw = &interface->hw;
 261	int err;
 262
 263	WARN_ON(!test_bit(__FM10K_RESETTING, interface->state));
 264
 265	rtnl_lock();
 266
 267	pci_set_master(interface->pdev);
 268
 269	/* reset and initialize the hardware so it is in a known state */
 270	err = hw->mac.ops.reset_hw(hw);
 271	if (err) {
 272		dev_err(&interface->pdev->dev, "reset_hw failed: %d\n", err);
 273		goto reinit_err;
 274	}
 275
 276	err = hw->mac.ops.init_hw(hw);
 277	if (err) {
 278		dev_err(&interface->pdev->dev, "init_hw failed: %d\n", err);
 279		goto reinit_err;
 280	}
 281
 282	err = fm10k_init_queueing_scheme(interface);
 283	if (err) {
 284		dev_err(&interface->pdev->dev,
 285			"init_queueing_scheme failed: %d\n", err);
 286		goto reinit_err;
 287	}
 288
 289	/* re-associate interrupts */
 290	err = fm10k_mbx_request_irq(interface);
 291	if (err)
 292		goto err_mbx_irq;
 293
 294	err = fm10k_hw_ready(interface);
 295	if (err)
 296		goto err_open;
 297
 298	/* update hardware address for VFs if perm_addr has changed */
 299	if (hw->mac.type == fm10k_mac_vf) {
 300		if (is_valid_ether_addr(hw->mac.perm_addr)) {
 301			ether_addr_copy(hw->mac.addr, hw->mac.perm_addr);
 302			ether_addr_copy(netdev->perm_addr, hw->mac.perm_addr);
 303			ether_addr_copy(netdev->dev_addr, hw->mac.perm_addr);
 304			netdev->addr_assign_type &= ~NET_ADDR_RANDOM;
 305		}
 306
 307		if (hw->mac.vlan_override)
 308			netdev->features &= ~NETIF_F_HW_VLAN_CTAG_RX;
 309		else
 310			netdev->features |= NETIF_F_HW_VLAN_CTAG_RX;
 311	}
 312
 313	err = netif_running(netdev) ? fm10k_open(netdev) : 0;
 314	if (err)
 315		goto err_open;
 316
 317	fm10k_iov_resume(interface->pdev);
 318
 319	rtnl_unlock();
 320
 321	fm10k_resume_macvlan_task(interface);
 322
 323	clear_bit(__FM10K_RESETTING, interface->state);
 324
 325	return err;
 326err_open:
 327	fm10k_mbx_free_irq(interface);
 328err_mbx_irq:
 329	fm10k_clear_queueing_scheme(interface);
 330reinit_err:
 331	netif_device_detach(netdev);
 332
 333	rtnl_unlock();
 334
 335	clear_bit(__FM10K_RESETTING, interface->state);
 336
 337	return err;
 338}
 339
 340static void fm10k_detach_subtask(struct fm10k_intfc *interface)
 341{
 342	struct net_device *netdev = interface->netdev;
 343	u32 __iomem *hw_addr;
 344	u32 value;
 345
 346	/* do nothing if netdev is still present or hw_addr is set */
 347	if (netif_device_present(netdev) || interface->hw.hw_addr)
 348		return;
 349
 350	/* We've lost the PCIe register space, and can no longer access the
 351	 * device. Shut everything except the detach subtask down and prepare
 352	 * to reset the device in case we recover. If we actually prepare for
 353	 * reset, indicate that we're detached.
 354	 */
 355	if (fm10k_prepare_for_reset(interface))
 356		set_bit(__FM10K_RESET_DETACHED, interface->state);
 357
 358	/* check the real address space to see if we've recovered */
 359	hw_addr = READ_ONCE(interface->uc_addr);
 360	value = readl(hw_addr);
 361	if (~value) {
 362		int err;
 363
 364		/* Make sure the reset was initiated because we detached,
 365		 * otherwise we might race with a different reset flow.
 366		 */
 367		if (!test_and_clear_bit(__FM10K_RESET_DETACHED,
 368					interface->state))
 369			return;
 370
 371		/* Restore the hardware address */
 372		interface->hw.hw_addr = interface->uc_addr;
 373
 374		/* PCIe link has been restored, and the device is active
 375		 * again. Restore everything and reset the device.
 376		 */
 377		err = fm10k_handle_reset(interface);
 378		if (err) {
 379			netdev_err(netdev, "Unable to reset device: %d\n", err);
 380			interface->hw.hw_addr = NULL;
 381			return;
 382		}
 383
 384		/* Re-attach the netdev */
 385		netif_device_attach(netdev);
 386		netdev_warn(netdev, "PCIe link restored, device now attached\n");
 387		return;
 388	}
 389}
 390
 391static void fm10k_reset_subtask(struct fm10k_intfc *interface)
 392{
 393	int err;
 394
 395	if (!test_and_clear_bit(FM10K_FLAG_RESET_REQUESTED,
 396				interface->flags))
 397		return;
 398
 399	/* If another thread has already prepared to reset the device, we
 400	 * should not attempt to handle a reset here, since we'd race with
 401	 * that thread. This may happen if we suspend the device or if the
 402	 * PCIe link is lost. In this case, we'll just ignore the RESET
 403	 * request, as it will (eventually) be taken care of when the thread
 404	 * which actually started the reset is finished.
 405	 */
 406	if (!fm10k_prepare_for_reset(interface))
 407		return;
 408
 409	netdev_err(interface->netdev, "Reset interface\n");
 410
 411	err = fm10k_handle_reset(interface);
 412	if (err)
 413		dev_err(&interface->pdev->dev,
 414			"fm10k_handle_reset failed: %d\n", err);
 415}
 416
 417/**
 418 * fm10k_configure_swpri_map - Configure Receive SWPRI to PC mapping
 419 * @interface: board private structure
 420 *
 421 * Configure the SWPRI to PC mapping for the port.
 422 **/
 423static void fm10k_configure_swpri_map(struct fm10k_intfc *interface)
 424{
 425	struct net_device *netdev = interface->netdev;
 426	struct fm10k_hw *hw = &interface->hw;
 427	int i;
 428
 429	/* clear flag indicating update is needed */
 430	clear_bit(FM10K_FLAG_SWPRI_CONFIG, interface->flags);
 431
 432	/* these registers are only available on the PF */
 433	if (hw->mac.type != fm10k_mac_pf)
 434		return;
 435
 436	/* configure SWPRI to PC map */
 437	for (i = 0; i < FM10K_SWPRI_MAX; i++)
 438		fm10k_write_reg(hw, FM10K_SWPRI_MAP(i),
 439				netdev_get_prio_tc_map(netdev, i));
 440}
 441
 442/**
 443 * fm10k_watchdog_update_host_state - Update the link status based on host.
 444 * @interface: board private structure
 445 **/
 446static void fm10k_watchdog_update_host_state(struct fm10k_intfc *interface)
 447{
 448	struct fm10k_hw *hw = &interface->hw;
 449	s32 err;
 450
 451	if (test_bit(__FM10K_LINK_DOWN, interface->state)) {
 452		interface->host_ready = false;
 453		if (time_is_after_jiffies(interface->link_down_event))
 454			return;
 455		clear_bit(__FM10K_LINK_DOWN, interface->state);
 456	}
 457
 458	if (test_bit(FM10K_FLAG_SWPRI_CONFIG, interface->flags)) {
 459		if (rtnl_trylock()) {
 460			fm10k_configure_swpri_map(interface);
 461			rtnl_unlock();
 462		}
 463	}
 464
 465	/* lock the mailbox for transmit and receive */
 466	fm10k_mbx_lock(interface);
 467
 468	err = hw->mac.ops.get_host_state(hw, &interface->host_ready);
 469	if (err && time_is_before_jiffies(interface->last_reset))
 470		set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags);
 471
 472	/* free the lock */
 473	fm10k_mbx_unlock(interface);
 474}
 475
 476/**
 477 * fm10k_mbx_subtask - Process upstream and downstream mailboxes
 478 * @interface: board private structure
 479 *
 480 * This function will process both the upstream and downstream mailboxes.
 481 **/
 482static void fm10k_mbx_subtask(struct fm10k_intfc *interface)
 483{
 484	/* If we're resetting, bail out */
 485	if (test_bit(__FM10K_RESETTING, interface->state))
 486		return;
 487
 488	/* process upstream mailbox and update device state */
 489	fm10k_watchdog_update_host_state(interface);
 490
 491	/* process downstream mailboxes */
 492	fm10k_iov_mbx(interface);
 493}
 494
 495/**
 496 * fm10k_watchdog_host_is_ready - Update netdev status based on host ready
 497 * @interface: board private structure
 498 **/
 499static void fm10k_watchdog_host_is_ready(struct fm10k_intfc *interface)
 500{
 501	struct net_device *netdev = interface->netdev;
 502
 503	/* only continue if link state is currently down */
 504	if (netif_carrier_ok(netdev))
 505		return;
 506
 507	netif_info(interface, drv, netdev, "NIC Link is up\n");
 508
 509	netif_carrier_on(netdev);
 510	netif_tx_wake_all_queues(netdev);
 511}
 512
 513/**
 514 * fm10k_watchdog_host_not_ready - Update netdev status based on host not ready
 515 * @interface: board private structure
 516 **/
 517static void fm10k_watchdog_host_not_ready(struct fm10k_intfc *interface)
 518{
 519	struct net_device *netdev = interface->netdev;
 520
 521	/* only continue if link state is currently up */
 522	if (!netif_carrier_ok(netdev))
 523		return;
 524
 525	netif_info(interface, drv, netdev, "NIC Link is down\n");
 526
 527	netif_carrier_off(netdev);
 528	netif_tx_stop_all_queues(netdev);
 529}
 530
 531/**
 532 * fm10k_update_stats - Update the board statistics counters.
 533 * @interface: board private structure
 534 **/
 535void fm10k_update_stats(struct fm10k_intfc *interface)
 536{
 537	struct net_device_stats *net_stats = &interface->netdev->stats;
 538	struct fm10k_hw *hw = &interface->hw;
 539	u64 hw_csum_tx_good = 0, hw_csum_rx_good = 0, rx_length_errors = 0;
 540	u64 rx_switch_errors = 0, rx_drops = 0, rx_pp_errors = 0;
 541	u64 rx_link_errors = 0;
 542	u64 rx_errors = 0, rx_csum_errors = 0, tx_csum_errors = 0;
 543	u64 restart_queue = 0, tx_busy = 0, alloc_failed = 0;
 544	u64 rx_bytes_nic = 0, rx_pkts_nic = 0, rx_drops_nic = 0;
 545	u64 tx_bytes_nic = 0, tx_pkts_nic = 0;
 546	u64 bytes, pkts;
 547	int i;
 548
 549	/* ensure only one thread updates stats at a time */
 550	if (test_and_set_bit(__FM10K_UPDATING_STATS, interface->state))
 551		return;
 552
 553	/* do not allow stats update via service task for next second */
 554	interface->next_stats_update = jiffies + HZ;
 555
 556	/* gather some stats to the interface struct that are per queue */
 557	for (bytes = 0, pkts = 0, i = 0; i < interface->num_tx_queues; i++) {
 558		struct fm10k_ring *tx_ring = READ_ONCE(interface->tx_ring[i]);
 559
 560		if (!tx_ring)
 561			continue;
 562
 563		restart_queue += tx_ring->tx_stats.restart_queue;
 564		tx_busy += tx_ring->tx_stats.tx_busy;
 565		tx_csum_errors += tx_ring->tx_stats.csum_err;
 566		bytes += tx_ring->stats.bytes;
 567		pkts += tx_ring->stats.packets;
 568		hw_csum_tx_good += tx_ring->tx_stats.csum_good;
 569	}
 570
 571	interface->restart_queue = restart_queue;
 572	interface->tx_busy = tx_busy;
 573	net_stats->tx_bytes = bytes;
 574	net_stats->tx_packets = pkts;
 575	interface->tx_csum_errors = tx_csum_errors;
 576	interface->hw_csum_tx_good = hw_csum_tx_good;
 577
 578	/* gather some stats to the interface struct that are per queue */
 579	for (bytes = 0, pkts = 0, i = 0; i < interface->num_rx_queues; i++) {
 580		struct fm10k_ring *rx_ring = READ_ONCE(interface->rx_ring[i]);
 581
 582		if (!rx_ring)
 583			continue;
 584
 585		bytes += rx_ring->stats.bytes;
 586		pkts += rx_ring->stats.packets;
 587		alloc_failed += rx_ring->rx_stats.alloc_failed;
 588		rx_csum_errors += rx_ring->rx_stats.csum_err;
 589		rx_errors += rx_ring->rx_stats.errors;
 590		hw_csum_rx_good += rx_ring->rx_stats.csum_good;
 591		rx_switch_errors += rx_ring->rx_stats.switch_errors;
 592		rx_drops += rx_ring->rx_stats.drops;
 593		rx_pp_errors += rx_ring->rx_stats.pp_errors;
 594		rx_link_errors += rx_ring->rx_stats.link_errors;
 595		rx_length_errors += rx_ring->rx_stats.length_errors;
 596	}
 597
 598	net_stats->rx_bytes = bytes;
 599	net_stats->rx_packets = pkts;
 600	interface->alloc_failed = alloc_failed;
 601	interface->rx_csum_errors = rx_csum_errors;
 602	interface->hw_csum_rx_good = hw_csum_rx_good;
 603	interface->rx_switch_errors = rx_switch_errors;
 604	interface->rx_drops = rx_drops;
 605	interface->rx_pp_errors = rx_pp_errors;
 606	interface->rx_link_errors = rx_link_errors;
 607	interface->rx_length_errors = rx_length_errors;
 608
 609	hw->mac.ops.update_hw_stats(hw, &interface->stats);
 610
 611	for (i = 0; i < hw->mac.max_queues; i++) {
 612		struct fm10k_hw_stats_q *q = &interface->stats.q[i];
 613
 614		tx_bytes_nic += q->tx_bytes.count;
 615		tx_pkts_nic += q->tx_packets.count;
 616		rx_bytes_nic += q->rx_bytes.count;
 617		rx_pkts_nic += q->rx_packets.count;
 618		rx_drops_nic += q->rx_drops.count;
 619	}
 620
 621	interface->tx_bytes_nic = tx_bytes_nic;
 622	interface->tx_packets_nic = tx_pkts_nic;
 623	interface->rx_bytes_nic = rx_bytes_nic;
 624	interface->rx_packets_nic = rx_pkts_nic;
 625	interface->rx_drops_nic = rx_drops_nic;
 626
 627	/* Fill out the OS statistics structure */
 628	net_stats->rx_errors = rx_errors;
 629	net_stats->rx_dropped = interface->stats.nodesc_drop.count;
 630
 631	/* Update VF statistics */
 632	fm10k_iov_update_stats(interface);
 633
 634	clear_bit(__FM10K_UPDATING_STATS, interface->state);
 635}
 636
 637/**
 638 * fm10k_watchdog_flush_tx - flush queues on host not ready
 639 * @interface: pointer to the device interface structure
 640 **/
 641static void fm10k_watchdog_flush_tx(struct fm10k_intfc *interface)
 642{
 643	int some_tx_pending = 0;
 644	int i;
 645
 646	/* nothing to do if carrier is up */
 647	if (netif_carrier_ok(interface->netdev))
 648		return;
 649
 650	for (i = 0; i < interface->num_tx_queues; i++) {
 651		struct fm10k_ring *tx_ring = interface->tx_ring[i];
 652
 653		if (tx_ring->next_to_use != tx_ring->next_to_clean) {
 654			some_tx_pending = 1;
 655			break;
 656		}
 657	}
 658
 659	/* We've lost link, so the controller stops DMA, but we've got
 660	 * queued Tx work that's never going to get done, so reset
 661	 * controller to flush Tx.
 662	 */
 663	if (some_tx_pending)
 664		set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags);
 665}
 666
 667/**
 668 * fm10k_watchdog_subtask - check and bring link up
 669 * @interface: pointer to the device interface structure
 670 **/
 671static void fm10k_watchdog_subtask(struct fm10k_intfc *interface)
 672{
 673	/* if interface is down do nothing */
 674	if (test_bit(__FM10K_DOWN, interface->state) ||
 675	    test_bit(__FM10K_RESETTING, interface->state))
 676		return;
 677
 678	if (interface->host_ready)
 679		fm10k_watchdog_host_is_ready(interface);
 680	else
 681		fm10k_watchdog_host_not_ready(interface);
 682
 683	/* update stats only once every second */
 684	if (time_is_before_jiffies(interface->next_stats_update))
 685		fm10k_update_stats(interface);
 686
 687	/* flush any uncompleted work */
 688	fm10k_watchdog_flush_tx(interface);
 689}
 690
 691/**
 692 * fm10k_check_hang_subtask - check for hung queues and dropped interrupts
 693 * @interface: pointer to the device interface structure
 694 *
 695 * This function serves two purposes.  First it strobes the interrupt lines
 696 * in order to make certain interrupts are occurring.  Secondly it sets the
 697 * bits needed to check for TX hangs.  As a result we should immediately
 698 * determine if a hang has occurred.
 699 */
 700static void fm10k_check_hang_subtask(struct fm10k_intfc *interface)
 701{
 702	/* If we're down or resetting, just bail */
 703	if (test_bit(__FM10K_DOWN, interface->state) ||
 704	    test_bit(__FM10K_RESETTING, interface->state))
 705		return;
 706
 707	/* rate limit tx hang checks to only once every 2 seconds */
 708	if (time_is_after_eq_jiffies(interface->next_tx_hang_check))
 709		return;
 710	interface->next_tx_hang_check = jiffies + (2 * HZ);
 711
 712	if (netif_carrier_ok(interface->netdev)) {
 713		int i;
 714
 715		/* Force detection of hung controller */
 716		for (i = 0; i < interface->num_tx_queues; i++)
 717			set_check_for_tx_hang(interface->tx_ring[i]);
 718
 719		/* Rearm all in-use q_vectors for immediate firing */
 720		for (i = 0; i < interface->num_q_vectors; i++) {
 721			struct fm10k_q_vector *qv = interface->q_vector[i];
 722
 723			if (!qv->tx.count && !qv->rx.count)
 724				continue;
 725			writel(FM10K_ITR_ENABLE | FM10K_ITR_PENDING2, qv->itr);
 726		}
 727	}
 728}
 729
 730/**
 731 * fm10k_service_task - manages and runs subtasks
 732 * @work: pointer to work_struct containing our data
 733 **/
 734static void fm10k_service_task(struct work_struct *work)
 735{
 736	struct fm10k_intfc *interface;
 737
 738	interface = container_of(work, struct fm10k_intfc, service_task);
 739
 740	/* Check whether we're detached first */
 741	fm10k_detach_subtask(interface);
 742
 743	/* tasks run even when interface is down */
 744	fm10k_mbx_subtask(interface);
 745	fm10k_reset_subtask(interface);
 746
 747	/* tasks only run when interface is up */
 748	fm10k_watchdog_subtask(interface);
 749	fm10k_check_hang_subtask(interface);
 750
 751	/* release lock on service events to allow scheduling next event */
 752	fm10k_service_event_complete(interface);
 753}
 754
 755/**
 756 * fm10k_macvlan_task - send queued MAC/VLAN requests to switch manager
 757 * @work: pointer to work_struct containing our data
 758 *
 759 * This work item handles sending MAC/VLAN updates to the switch manager. When
 760 * the interface is up, it will attempt to queue mailbox messages to the
 761 * switch manager requesting updates for MAC/VLAN pairs. If the Tx fifo of the
 762 * mailbox is full, it will reschedule itself to try again in a short while.
 763 * This ensures that the driver does not overload the switch mailbox with too
 764 * many simultaneous requests, causing an unnecessary reset.
 765 **/
 766static void fm10k_macvlan_task(struct work_struct *work)
 767{
 768	struct fm10k_macvlan_request *item;
 769	struct fm10k_intfc *interface;
 770	struct delayed_work *dwork;
 771	struct list_head *requests;
 772	struct fm10k_hw *hw;
 773	unsigned long flags;
 774
 775	dwork = to_delayed_work(work);
 776	interface = container_of(dwork, struct fm10k_intfc, macvlan_task);
 777	hw = &interface->hw;
 778	requests = &interface->macvlan_requests;
 779
 780	do {
 781		/* Pop the first item off the list */
 782		spin_lock_irqsave(&interface->macvlan_lock, flags);
 783		item = list_first_entry_or_null(requests,
 784						struct fm10k_macvlan_request,
 785						list);
 786		if (item)
 787			list_del_init(&item->list);
 788
 789		spin_unlock_irqrestore(&interface->macvlan_lock, flags);
 790
 791		/* We have no more items to process */
 792		if (!item)
 793			goto done;
 794
 795		fm10k_mbx_lock(interface);
 796
 797		/* Check that we have plenty of space to send the message. We
 798		 * want to ensure that the mailbox stays low enough to avoid a
 799		 * change in the host state, otherwise we may see spurious
 800		 * link up / link down notifications.
 801		 */
 802		if (!hw->mbx.ops.tx_ready(&hw->mbx, FM10K_VFMBX_MSG_MTU + 5)) {
 803			hw->mbx.ops.process(hw, &hw->mbx);
 804			set_bit(__FM10K_MACVLAN_REQUEST, interface->state);
 805			fm10k_mbx_unlock(interface);
 806
 807			/* Put the request back on the list */
 808			spin_lock_irqsave(&interface->macvlan_lock, flags);
 809			list_add(&item->list, requests);
 810			spin_unlock_irqrestore(&interface->macvlan_lock, flags);
 811			break;
 812		}
 813
 814		switch (item->type) {
 815		case FM10K_MC_MAC_REQUEST:
 816			hw->mac.ops.update_mc_addr(hw,
 817						   item->mac.glort,
 818						   item->mac.addr,
 819						   item->mac.vid,
 820						   item->set);
 821			break;
 822		case FM10K_UC_MAC_REQUEST:
 823			hw->mac.ops.update_uc_addr(hw,
 824						   item->mac.glort,
 825						   item->mac.addr,
 826						   item->mac.vid,
 827						   item->set,
 828						   0);
 829			break;
 830		case FM10K_VLAN_REQUEST:
 831			hw->mac.ops.update_vlan(hw,
 832						item->vlan.vid,
 833						item->vlan.vsi,
 834						item->set);
 835			break;
 836		default:
 837			break;
 838		}
 839
 840		fm10k_mbx_unlock(interface);
 841
 842		/* Free the item now that we've sent the update */
 843		kfree(item);
 844	} while (true);
 845
 846done:
 847	WARN_ON(!test_bit(__FM10K_MACVLAN_SCHED, interface->state));
 848
 849	/* flush memory to make sure state is correct */
 850	smp_mb__before_atomic();
 851	clear_bit(__FM10K_MACVLAN_SCHED, interface->state);
 852
 853	/* If a MAC/VLAN request was scheduled since we started, we should
 854	 * re-schedule. However, there is no reason to re-schedule if there is
 855	 * no work to do.
 856	 */
 857	if (test_bit(__FM10K_MACVLAN_REQUEST, interface->state))
 858		fm10k_macvlan_schedule(interface);
 859}
 860
 861/**
 862 * fm10k_configure_tx_ring - Configure Tx ring after Reset
 863 * @interface: board private structure
 864 * @ring: structure containing ring specific data
 865 *
 866 * Configure the Tx descriptor ring after a reset.
 867 **/
 868static void fm10k_configure_tx_ring(struct fm10k_intfc *interface,
 869				    struct fm10k_ring *ring)
 870{
 871	struct fm10k_hw *hw = &interface->hw;
 872	u64 tdba = ring->dma;
 873	u32 size = ring->count * sizeof(struct fm10k_tx_desc);
 874	u32 txint = FM10K_INT_MAP_DISABLE;
 875	u32 txdctl = BIT(FM10K_TXDCTL_MAX_TIME_SHIFT) | FM10K_TXDCTL_ENABLE;
 876	u8 reg_idx = ring->reg_idx;
 877
 878	/* disable queue to avoid issues while updating state */
 879	fm10k_write_reg(hw, FM10K_TXDCTL(reg_idx), 0);
 880	fm10k_write_flush(hw);
 881
 882	/* possible poll here to verify ring resources have been cleaned */
 883
 884	/* set location and size for descriptor ring */
 885	fm10k_write_reg(hw, FM10K_TDBAL(reg_idx), tdba & DMA_BIT_MASK(32));
 886	fm10k_write_reg(hw, FM10K_TDBAH(reg_idx), tdba >> 32);
 887	fm10k_write_reg(hw, FM10K_TDLEN(reg_idx), size);
 888
 889	/* reset head and tail pointers */
 890	fm10k_write_reg(hw, FM10K_TDH(reg_idx), 0);
 891	fm10k_write_reg(hw, FM10K_TDT(reg_idx), 0);
 892
 893	/* store tail pointer */
 894	ring->tail = &interface->uc_addr[FM10K_TDT(reg_idx)];
 895
 896	/* reset ntu and ntc to place SW in sync with hardware */
 897	ring->next_to_clean = 0;
 898	ring->next_to_use = 0;
 899
 900	/* Map interrupt */
 901	if (ring->q_vector) {
 902		txint = ring->q_vector->v_idx + NON_Q_VECTORS;
 903		txint |= FM10K_INT_MAP_TIMER0;
 904	}
 905
 906	fm10k_write_reg(hw, FM10K_TXINT(reg_idx), txint);
 907
 908	/* enable use of FTAG bit in Tx descriptor, register is RO for VF */
 909	fm10k_write_reg(hw, FM10K_PFVTCTL(reg_idx),
 910			FM10K_PFVTCTL_FTAG_DESC_ENABLE);
 911
 912	/* Initialize XPS */
 913	if (!test_and_set_bit(__FM10K_TX_XPS_INIT_DONE, ring->state) &&
 914	    ring->q_vector)
 915		netif_set_xps_queue(ring->netdev,
 916				    &ring->q_vector->affinity_mask,
 917				    ring->queue_index);
 918
 919	/* enable queue */
 920	fm10k_write_reg(hw, FM10K_TXDCTL(reg_idx), txdctl);
 921}
 922
 923/**
 924 * fm10k_enable_tx_ring - Verify Tx ring is enabled after configuration
 925 * @interface: board private structure
 926 * @ring: structure containing ring specific data
 927 *
 928 * Verify the Tx descriptor ring is ready for transmit.
 929 **/
 930static void fm10k_enable_tx_ring(struct fm10k_intfc *interface,
 931				 struct fm10k_ring *ring)
 932{
 933	struct fm10k_hw *hw = &interface->hw;
 934	int wait_loop = 10;
 935	u32 txdctl;
 936	u8 reg_idx = ring->reg_idx;
 937
 938	/* if we are already enabled just exit */
 939	if (fm10k_read_reg(hw, FM10K_TXDCTL(reg_idx)) & FM10K_TXDCTL_ENABLE)
 940		return;
 941
 942	/* poll to verify queue is enabled */
 943	do {
 944		usleep_range(1000, 2000);
 945		txdctl = fm10k_read_reg(hw, FM10K_TXDCTL(reg_idx));
 946	} while (!(txdctl & FM10K_TXDCTL_ENABLE) && --wait_loop);
 947	if (!wait_loop)
 948		netif_err(interface, drv, interface->netdev,
 949			  "Could not enable Tx Queue %d\n", reg_idx);
 950}
 951
 952/**
 953 * fm10k_configure_tx - Configure Transmit Unit after Reset
 954 * @interface: board private structure
 955 *
 956 * Configure the Tx unit of the MAC after a reset.
 957 **/
 958static void fm10k_configure_tx(struct fm10k_intfc *interface)
 959{
 960	int i;
 961
 962	/* Setup the HW Tx Head and Tail descriptor pointers */
 963	for (i = 0; i < interface->num_tx_queues; i++)
 964		fm10k_configure_tx_ring(interface, interface->tx_ring[i]);
 965
 966	/* poll here to verify that Tx rings are now enabled */
 967	for (i = 0; i < interface->num_tx_queues; i++)
 968		fm10k_enable_tx_ring(interface, interface->tx_ring[i]);
 969}
 970
 971/**
 972 * fm10k_configure_rx_ring - Configure Rx ring after Reset
 973 * @interface: board private structure
 974 * @ring: structure containing ring specific data
 975 *
 976 * Configure the Rx descriptor ring after a reset.
 977 **/
 978static void fm10k_configure_rx_ring(struct fm10k_intfc *interface,
 979				    struct fm10k_ring *ring)
 980{
 981	u64 rdba = ring->dma;
 982	struct fm10k_hw *hw = &interface->hw;
 983	u32 size = ring->count * sizeof(union fm10k_rx_desc);
 984	u32 rxqctl, rxdctl = FM10K_RXDCTL_WRITE_BACK_MIN_DELAY;
 985	u32 srrctl = FM10K_SRRCTL_BUFFER_CHAINING_EN;
 986	u32 rxint = FM10K_INT_MAP_DISABLE;
 987	u8 rx_pause = interface->rx_pause;
 988	u8 reg_idx = ring->reg_idx;
 989
 990	/* disable queue to avoid issues while updating state */
 991	rxqctl = fm10k_read_reg(hw, FM10K_RXQCTL(reg_idx));
 992	rxqctl &= ~FM10K_RXQCTL_ENABLE;
 993	fm10k_write_reg(hw, FM10K_RXQCTL(reg_idx), rxqctl);
 994	fm10k_write_flush(hw);
 995
 996	/* possible poll here to verify ring resources have been cleaned */
 997
 998	/* set location and size for descriptor ring */
 999	fm10k_write_reg(hw, FM10K_RDBAL(reg_idx), rdba & DMA_BIT_MASK(32));
1000	fm10k_write_reg(hw, FM10K_RDBAH(reg_idx), rdba >> 32);
1001	fm10k_write_reg(hw, FM10K_RDLEN(reg_idx), size);
1002
1003	/* reset head and tail pointers */
1004	fm10k_write_reg(hw, FM10K_RDH(reg_idx), 0);
1005	fm10k_write_reg(hw, FM10K_RDT(reg_idx), 0);
1006
1007	/* store tail pointer */
1008	ring->tail = &interface->uc_addr[FM10K_RDT(reg_idx)];
1009
1010	/* reset ntu and ntc to place SW in sync with hardware */
1011	ring->next_to_clean = 0;
1012	ring->next_to_use = 0;
1013	ring->next_to_alloc = 0;
1014
1015	/* Configure the Rx buffer size for one buff without split */
1016	srrctl |= FM10K_RX_BUFSZ >> FM10K_SRRCTL_BSIZEPKT_SHIFT;
1017
1018	/* Configure the Rx ring to suppress loopback packets */
1019	srrctl |= FM10K_SRRCTL_LOOPBACK_SUPPRESS;
1020	fm10k_write_reg(hw, FM10K_SRRCTL(reg_idx), srrctl);
1021
1022	/* Enable drop on empty */
1023#ifdef CONFIG_DCB
1024	if (interface->pfc_en)
1025		rx_pause = interface->pfc_en;
1026#endif
1027	if (!(rx_pause & BIT(ring->qos_pc)))
1028		rxdctl |= FM10K_RXDCTL_DROP_ON_EMPTY;
1029
1030	fm10k_write_reg(hw, FM10K_RXDCTL(reg_idx), rxdctl);
1031
1032	/* assign default VLAN to queue */
1033	ring->vid = hw->mac.default_vid;
1034
1035	/* if we have an active VLAN, disable default VLAN ID */
1036	if (test_bit(hw->mac.default_vid, interface->active_vlans))
1037		ring->vid |= FM10K_VLAN_CLEAR;
1038
1039	/* Map interrupt */
1040	if (ring->q_vector) {
1041		rxint = ring->q_vector->v_idx + NON_Q_VECTORS;
1042		rxint |= FM10K_INT_MAP_TIMER1;
1043	}
1044
1045	fm10k_write_reg(hw, FM10K_RXINT(reg_idx), rxint);
1046
1047	/* enable queue */
1048	rxqctl = fm10k_read_reg(hw, FM10K_RXQCTL(reg_idx));
1049	rxqctl |= FM10K_RXQCTL_ENABLE;
1050	fm10k_write_reg(hw, FM10K_RXQCTL(reg_idx), rxqctl);
1051
1052	/* place buffers on ring for receive data */
1053	fm10k_alloc_rx_buffers(ring, fm10k_desc_unused(ring));
1054}
1055
1056/**
1057 * fm10k_update_rx_drop_en - Configures the drop enable bits for Rx rings
1058 * @interface: board private structure
1059 *
1060 * Configure the drop enable bits for the Rx rings.
1061 **/
1062void fm10k_update_rx_drop_en(struct fm10k_intfc *interface)
1063{
1064	struct fm10k_hw *hw = &interface->hw;
1065	u8 rx_pause = interface->rx_pause;
1066	int i;
1067
1068#ifdef CONFIG_DCB
1069	if (interface->pfc_en)
1070		rx_pause = interface->pfc_en;
1071
1072#endif
1073	for (i = 0; i < interface->num_rx_queues; i++) {
1074		struct fm10k_ring *ring = interface->rx_ring[i];
1075		u32 rxdctl = FM10K_RXDCTL_WRITE_BACK_MIN_DELAY;
1076		u8 reg_idx = ring->reg_idx;
1077
1078		if (!(rx_pause & BIT(ring->qos_pc)))
1079			rxdctl |= FM10K_RXDCTL_DROP_ON_EMPTY;
1080
1081		fm10k_write_reg(hw, FM10K_RXDCTL(reg_idx), rxdctl);
1082	}
1083}
1084
1085/**
1086 * fm10k_configure_dglort - Configure Receive DGLORT after reset
1087 * @interface: board private structure
1088 *
1089 * Configure the DGLORT description and RSS tables.
1090 **/
1091static void fm10k_configure_dglort(struct fm10k_intfc *interface)
1092{
1093	struct fm10k_dglort_cfg dglort = { 0 };
1094	struct fm10k_hw *hw = &interface->hw;
1095	int i;
1096	u32 mrqc;
1097
1098	/* Fill out hash function seeds */
1099	for (i = 0; i < FM10K_RSSRK_SIZE; i++)
1100		fm10k_write_reg(hw, FM10K_RSSRK(0, i), interface->rssrk[i]);
1101
1102	/* Write RETA table to hardware */
1103	for (i = 0; i < FM10K_RETA_SIZE; i++)
1104		fm10k_write_reg(hw, FM10K_RETA(0, i), interface->reta[i]);
1105
1106	/* Generate RSS hash based on packet types, TCP/UDP
1107	 * port numbers and/or IPv4/v6 src and dst addresses
1108	 */
1109	mrqc = FM10K_MRQC_IPV4 |
1110	       FM10K_MRQC_TCP_IPV4 |
1111	       FM10K_MRQC_IPV6 |
1112	       FM10K_MRQC_TCP_IPV6;
1113
1114	if (test_bit(FM10K_FLAG_RSS_FIELD_IPV4_UDP, interface->flags))
1115		mrqc |= FM10K_MRQC_UDP_IPV4;
1116	if (test_bit(FM10K_FLAG_RSS_FIELD_IPV6_UDP, interface->flags))
1117		mrqc |= FM10K_MRQC_UDP_IPV6;
1118
1119	fm10k_write_reg(hw, FM10K_MRQC(0), mrqc);
1120
1121	/* configure default DGLORT mapping for RSS/DCB */
1122	dglort.inner_rss = 1;
1123	dglort.rss_l = fls(interface->ring_feature[RING_F_RSS].mask);
1124	dglort.pc_l = fls(interface->ring_feature[RING_F_QOS].mask);
1125	hw->mac.ops.configure_dglort_map(hw, &dglort);
1126
1127	/* assign GLORT per queue for queue mapped testing */
1128	if (interface->glort_count > 64) {
1129		memset(&dglort, 0, sizeof(dglort));
1130		dglort.inner_rss = 1;
1131		dglort.glort = interface->glort + 64;
1132		dglort.idx = fm10k_dglort_pf_queue;
1133		dglort.queue_l = fls(interface->num_rx_queues - 1);
1134		hw->mac.ops.configure_dglort_map(hw, &dglort);
1135	}
1136
1137	/* assign glort value for RSS/DCB specific to this interface */
1138	memset(&dglort, 0, sizeof(dglort));
1139	dglort.inner_rss = 1;
1140	dglort.glort = interface->glort;
1141	dglort.rss_l = fls(interface->ring_feature[RING_F_RSS].mask);
1142	dglort.pc_l = fls(interface->ring_feature[RING_F_QOS].mask);
1143	/* configure DGLORT mapping for RSS/DCB */
1144	dglort.idx = fm10k_dglort_pf_rss;
1145	if (interface->l2_accel)
1146		dglort.shared_l = fls(interface->l2_accel->size);
1147	hw->mac.ops.configure_dglort_map(hw, &dglort);
1148}
1149
1150/**
1151 * fm10k_configure_rx - Configure Receive Unit after Reset
1152 * @interface: board private structure
1153 *
1154 * Configure the Rx unit of the MAC after a reset.
1155 **/
1156static void fm10k_configure_rx(struct fm10k_intfc *interface)
1157{
1158	int i;
1159
1160	/* Configure SWPRI to PC map */
1161	fm10k_configure_swpri_map(interface);
1162
1163	/* Configure RSS and DGLORT map */
1164	fm10k_configure_dglort(interface);
1165
1166	/* Setup the HW Rx Head and Tail descriptor pointers */
1167	for (i = 0; i < interface->num_rx_queues; i++)
1168		fm10k_configure_rx_ring(interface, interface->rx_ring[i]);
1169
1170	/* possible poll here to verify that Rx rings are now enabled */
1171}
1172
1173static void fm10k_napi_enable_all(struct fm10k_intfc *interface)
1174{
1175	struct fm10k_q_vector *q_vector;
1176	int q_idx;
1177
1178	for (q_idx = 0; q_idx < interface->num_q_vectors; q_idx++) {
1179		q_vector = interface->q_vector[q_idx];
1180		napi_enable(&q_vector->napi);
1181	}
1182}
1183
1184static irqreturn_t fm10k_msix_clean_rings(int __always_unused irq, void *data)
1185{
1186	struct fm10k_q_vector *q_vector = data;
1187
1188	if (q_vector->rx.count || q_vector->tx.count)
1189		napi_schedule_irqoff(&q_vector->napi);
1190
1191	return IRQ_HANDLED;
1192}
1193
1194static irqreturn_t fm10k_msix_mbx_vf(int __always_unused irq, void *data)
1195{
1196	struct fm10k_intfc *interface = data;
1197	struct fm10k_hw *hw = &interface->hw;
1198	struct fm10k_mbx_info *mbx = &hw->mbx;
1199
1200	/* re-enable mailbox interrupt and indicate 20us delay */
1201	fm10k_write_reg(hw, FM10K_VFITR(FM10K_MBX_VECTOR),
1202			(FM10K_MBX_INT_DELAY >> hw->mac.itr_scale) |
1203			FM10K_ITR_ENABLE);
1204
1205	/* service upstream mailbox */
1206	if (fm10k_mbx_trylock(interface)) {
1207		mbx->ops.process(hw, mbx);
1208		fm10k_mbx_unlock(interface);
1209	}
1210
1211	hw->mac.get_host_state = true;
1212	fm10k_service_event_schedule(interface);
1213
1214	return IRQ_HANDLED;
1215}
1216
1217#define FM10K_ERR_MSG(type) case (type): error = #type; break
1218static void fm10k_handle_fault(struct fm10k_intfc *interface, int type,
1219			       struct fm10k_fault *fault)
1220{
1221	struct pci_dev *pdev = interface->pdev;
1222	struct fm10k_hw *hw = &interface->hw;
1223	struct fm10k_iov_data *iov_data = interface->iov_data;
1224	char *error;
1225
1226	switch (type) {
1227	case FM10K_PCA_FAULT:
1228		switch (fault->type) {
1229		default:
1230			error = "Unknown PCA error";
1231			break;
1232		FM10K_ERR_MSG(PCA_NO_FAULT);
1233		FM10K_ERR_MSG(PCA_UNMAPPED_ADDR);
1234		FM10K_ERR_MSG(PCA_BAD_QACCESS_PF);
1235		FM10K_ERR_MSG(PCA_BAD_QACCESS_VF);
1236		FM10K_ERR_MSG(PCA_MALICIOUS_REQ);
1237		FM10K_ERR_MSG(PCA_POISONED_TLP);
1238		FM10K_ERR_MSG(PCA_TLP_ABORT);
1239		}
1240		break;
1241	case FM10K_THI_FAULT:
1242		switch (fault->type) {
1243		default:
1244			error = "Unknown THI error";
1245			break;
1246		FM10K_ERR_MSG(THI_NO_FAULT);
1247		FM10K_ERR_MSG(THI_MAL_DIS_Q_FAULT);
1248		}
1249		break;
1250	case FM10K_FUM_FAULT:
1251		switch (fault->type) {
1252		default:
1253			error = "Unknown FUM error";
1254			break;
1255		FM10K_ERR_MSG(FUM_NO_FAULT);
1256		FM10K_ERR_MSG(FUM_UNMAPPED_ADDR);
1257		FM10K_ERR_MSG(FUM_BAD_VF_QACCESS);
1258		FM10K_ERR_MSG(FUM_ADD_DECODE_ERR);
1259		FM10K_ERR_MSG(FUM_RO_ERROR);
1260		FM10K_ERR_MSG(FUM_QPRC_CRC_ERROR);
1261		FM10K_ERR_MSG(FUM_CSR_TIMEOUT);
1262		FM10K_ERR_MSG(FUM_INVALID_TYPE);
1263		FM10K_ERR_MSG(FUM_INVALID_LENGTH);
1264		FM10K_ERR_MSG(FUM_INVALID_BE);
1265		FM10K_ERR_MSG(FUM_INVALID_ALIGN);
1266		}
1267		break;
1268	default:
1269		error = "Undocumented fault";
1270		break;
1271	}
1272
1273	dev_warn(&pdev->dev,
1274		 "%s Address: 0x%llx SpecInfo: 0x%x Func: %02x.%0x\n",
1275		 error, fault->address, fault->specinfo,
1276		 PCI_SLOT(fault->func), PCI_FUNC(fault->func));
1277
1278	/* For VF faults, clear out the respective LPORT, reset the queue
1279	 * resources, and then reconnect to the mailbox. This allows the
1280	 * VF in question to resume behavior. For transient faults that are
1281	 * the result of non-malicious behavior this will log the fault and
1282	 * allow the VF to resume functionality. Obviously for malicious VFs
1283	 * they will be able to attempt malicious behavior again. In this
1284	 * case, the system administrator will need to step in and manually
1285	 * remove or disable the VF in question.
1286	 */
1287	if (fault->func && iov_data) {
1288		int vf = fault->func - 1;
1289		struct fm10k_vf_info *vf_info = &iov_data->vf_info[vf];
1290
1291		hw->iov.ops.reset_lport(hw, vf_info);
1292		hw->iov.ops.reset_resources(hw, vf_info);
1293
1294		/* reset_lport disables the VF, so re-enable it */
1295		hw->iov.ops.set_lport(hw, vf_info, vf,
1296				      FM10K_VF_FLAG_MULTI_CAPABLE);
1297
1298		/* reset_resources will disconnect from the mbx  */
1299		vf_info->mbx.ops.connect(hw, &vf_info->mbx);
1300	}
1301}
1302
1303static void fm10k_report_fault(struct fm10k_intfc *interface, u32 eicr)
1304{
1305	struct fm10k_hw *hw = &interface->hw;
1306	struct fm10k_fault fault = { 0 };
1307	int type, err;
1308
1309	for (eicr &= FM10K_EICR_FAULT_MASK, type = FM10K_PCA_FAULT;
1310	     eicr;
1311	     eicr >>= 1, type += FM10K_FAULT_SIZE) {
1312		/* only check if there is an error reported */
1313		if (!(eicr & 0x1))
1314			continue;
1315
1316		/* retrieve fault info */
1317		err = hw->mac.ops.get_fault(hw, type, &fault);
1318		if (err) {
1319			dev_err(&interface->pdev->dev,
1320				"error reading fault\n");
1321			continue;
1322		}
1323
1324		fm10k_handle_fault(interface, type, &fault);
1325	}
1326}
1327
1328static void fm10k_reset_drop_on_empty(struct fm10k_intfc *interface, u32 eicr)
1329{
1330	struct fm10k_hw *hw = &interface->hw;
1331	const u32 rxdctl = FM10K_RXDCTL_WRITE_BACK_MIN_DELAY;
1332	u32 maxholdq;
1333	int q;
1334
1335	if (!(eicr & FM10K_EICR_MAXHOLDTIME))
1336		return;
1337
1338	maxholdq = fm10k_read_reg(hw, FM10K_MAXHOLDQ(7));
1339	if (maxholdq)
1340		fm10k_write_reg(hw, FM10K_MAXHOLDQ(7), maxholdq);
1341	for (q = 255;;) {
1342		if (maxholdq & BIT(31)) {
1343			if (q < FM10K_MAX_QUEUES_PF) {
1344				interface->rx_overrun_pf++;
1345				fm10k_write_reg(hw, FM10K_RXDCTL(q), rxdctl);
1346			} else {
1347				interface->rx_overrun_vf++;
1348			}
1349		}
1350
1351		maxholdq *= 2;
1352		if (!maxholdq)
1353			q &= ~(32 - 1);
1354
1355		if (!q)
1356			break;
1357
1358		if (q-- % 32)
1359			continue;
1360
1361		maxholdq = fm10k_read_reg(hw, FM10K_MAXHOLDQ(q / 32));
1362		if (maxholdq)
1363			fm10k_write_reg(hw, FM10K_MAXHOLDQ(q / 32), maxholdq);
1364	}
1365}
1366
1367static irqreturn_t fm10k_msix_mbx_pf(int __always_unused irq, void *data)
1368{
1369	struct fm10k_intfc *interface = data;
1370	struct fm10k_hw *hw = &interface->hw;
1371	struct fm10k_mbx_info *mbx = &hw->mbx;
1372	u32 eicr;
1373
1374	/* unmask any set bits related to this interrupt */
1375	eicr = fm10k_read_reg(hw, FM10K_EICR);
1376	fm10k_write_reg(hw, FM10K_EICR, eicr & (FM10K_EICR_MAILBOX |
1377						FM10K_EICR_SWITCHREADY |
1378						FM10K_EICR_SWITCHNOTREADY));
1379
1380	/* report any faults found to the message log */
1381	fm10k_report_fault(interface, eicr);
1382
1383	/* reset any queues disabled due to receiver overrun */
1384	fm10k_reset_drop_on_empty(interface, eicr);
1385
1386	/* service mailboxes */
1387	if (fm10k_mbx_trylock(interface)) {
1388		s32 err = mbx->ops.process(hw, mbx);
1389
1390		if (err == FM10K_ERR_RESET_REQUESTED)
1391			set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags);
1392
1393		/* handle VFLRE events */
1394		fm10k_iov_event(interface);
1395		fm10k_mbx_unlock(interface);
1396	}
1397
1398	/* if switch toggled state we should reset GLORTs */
1399	if (eicr & FM10K_EICR_SWITCHNOTREADY) {
1400		/* force link down for at least 4 seconds */
1401		interface->link_down_event = jiffies + (4 * HZ);
1402		set_bit(__FM10K_LINK_DOWN, interface->state);
1403
1404		/* reset dglort_map back to no config */
1405		hw->mac.dglort_map = FM10K_DGLORTMAP_NONE;
1406	}
1407
1408	/* we should validate host state after interrupt event */
1409	hw->mac.get_host_state = true;
1410
1411	/* validate host state, and handle VF mailboxes in the service task */
1412	fm10k_service_event_schedule(interface);
1413
1414	/* re-enable mailbox interrupt and indicate 20us delay */
1415	fm10k_write_reg(hw, FM10K_ITR(FM10K_MBX_VECTOR),
1416			(FM10K_MBX_INT_DELAY >> hw->mac.itr_scale) |
1417			FM10K_ITR_ENABLE);
1418
1419	return IRQ_HANDLED;
1420}
1421
1422void fm10k_mbx_free_irq(struct fm10k_intfc *interface)
1423{
1424	struct fm10k_hw *hw = &interface->hw;
1425	struct msix_entry *entry;
1426	int itr_reg;
1427
1428	/* no mailbox IRQ to free if MSI-X is not enabled */
1429	if (!interface->msix_entries)
1430		return;
1431
1432	entry = &interface->msix_entries[FM10K_MBX_VECTOR];
1433
1434	/* disconnect the mailbox */
1435	hw->mbx.ops.disconnect(hw, &hw->mbx);
1436
1437	/* disable Mailbox cause */
1438	if (hw->mac.type == fm10k_mac_pf) {
1439		fm10k_write_reg(hw, FM10K_EIMR,
1440				FM10K_EIMR_DISABLE(PCA_FAULT) |
1441				FM10K_EIMR_DISABLE(FUM_FAULT) |
1442				FM10K_EIMR_DISABLE(MAILBOX) |
1443				FM10K_EIMR_DISABLE(SWITCHREADY) |
1444				FM10K_EIMR_DISABLE(SWITCHNOTREADY) |
1445				FM10K_EIMR_DISABLE(SRAMERROR) |
1446				FM10K_EIMR_DISABLE(VFLR) |
1447				FM10K_EIMR_DISABLE(MAXHOLDTIME));
1448		itr_reg = FM10K_ITR(FM10K_MBX_VECTOR);
1449	} else {
1450		itr_reg = FM10K_VFITR(FM10K_MBX_VECTOR);
1451	}
1452
1453	fm10k_write_reg(hw, itr_reg, FM10K_ITR_MASK_SET);
1454
1455	free_irq(entry->vector, interface);
1456}
1457
1458static s32 fm10k_mbx_mac_addr(struct fm10k_hw *hw, u32 **results,
1459			      struct fm10k_mbx_info *mbx)
1460{
1461	bool vlan_override = hw->mac.vlan_override;
1462	u16 default_vid = hw->mac.default_vid;
1463	struct fm10k_intfc *interface;
1464	s32 err;
1465
1466	err = fm10k_msg_mac_vlan_vf(hw, results, mbx);
1467	if (err)
1468		return err;
1469
1470	interface = container_of(hw, struct fm10k_intfc, hw);
1471
1472	/* MAC was changed so we need reset */
1473	if (is_valid_ether_addr(hw->mac.perm_addr) &&
1474	    !ether_addr_equal(hw->mac.perm_addr, hw->mac.addr))
1475		set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags);
1476
1477	/* VLAN override was changed, or default VLAN changed */
1478	if ((vlan_override != hw->mac.vlan_override) ||
1479	    (default_vid != hw->mac.default_vid))
1480		set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags);
1481
1482	return 0;
1483}
1484
1485/* generic error handler for mailbox issues */
1486static s32 fm10k_mbx_error(struct fm10k_hw *hw, u32 **results,
1487			   struct fm10k_mbx_info __always_unused *mbx)
1488{
1489	struct fm10k_intfc *interface;
1490	struct pci_dev *pdev;
1491
1492	interface = container_of(hw, struct fm10k_intfc, hw);
1493	pdev = interface->pdev;
1494
1495	dev_err(&pdev->dev, "Unknown message ID %u\n",
1496		**results & FM10K_TLV_ID_MASK);
1497
1498	return 0;
1499}
1500
1501static const struct fm10k_msg_data vf_mbx_data[] = {
1502	FM10K_TLV_MSG_TEST_HANDLER(fm10k_tlv_msg_test),
1503	FM10K_VF_MSG_MAC_VLAN_HANDLER(fm10k_mbx_mac_addr),
1504	FM10K_VF_MSG_LPORT_STATE_HANDLER(fm10k_msg_lport_state_vf),
1505	FM10K_TLV_MSG_ERROR_HANDLER(fm10k_mbx_error),
1506};
1507
1508static int fm10k_mbx_request_irq_vf(struct fm10k_intfc *interface)
1509{
1510	struct msix_entry *entry = &interface->msix_entries[FM10K_MBX_VECTOR];
1511	struct net_device *dev = interface->netdev;
1512	struct fm10k_hw *hw = &interface->hw;
1513	int err;
1514
1515	/* Use timer0 for interrupt moderation on the mailbox */
1516	u32 itr = entry->entry | FM10K_INT_MAP_TIMER0;
1517
1518	/* register mailbox handlers */
1519	err = hw->mbx.ops.register_handlers(&hw->mbx, vf_mbx_data);
1520	if (err)
1521		return err;
1522
1523	/* request the IRQ */
1524	err = request_irq(entry->vector, fm10k_msix_mbx_vf, 0,
1525			  dev->name, interface);
1526	if (err) {
1527		netif_err(interface, probe, dev,
1528			  "request_irq for msix_mbx failed: %d\n", err);
1529		return err;
1530	}
1531
1532	/* map all of the interrupt sources */
1533	fm10k_write_reg(hw, FM10K_VFINT_MAP, itr);
1534
1535	/* enable interrupt */
1536	fm10k_write_reg(hw, FM10K_VFITR(entry->entry), FM10K_ITR_ENABLE);
1537
1538	return 0;
1539}
1540
1541static s32 fm10k_lport_map(struct fm10k_hw *hw, u32 **results,
1542			   struct fm10k_mbx_info *mbx)
1543{
1544	struct fm10k_intfc *interface;
1545	u32 dglort_map = hw->mac.dglort_map;
1546	s32 err;
1547
1548	interface = container_of(hw, struct fm10k_intfc, hw);
1549
1550	err = fm10k_msg_err_pf(hw, results, mbx);
1551	if (!err && hw->swapi.status) {
1552		/* force link down for a reasonable delay */
1553		interface->link_down_event = jiffies + (2 * HZ);
1554		set_bit(__FM10K_LINK_DOWN, interface->state);
1555
1556		/* reset dglort_map back to no config */
1557		hw->mac.dglort_map = FM10K_DGLORTMAP_NONE;
1558
1559		fm10k_service_event_schedule(interface);
1560
1561		/* prevent overloading kernel message buffer */
1562		if (interface->lport_map_failed)
1563			return 0;
1564
1565		interface->lport_map_failed = true;
1566
1567		if (hw->swapi.status == FM10K_MSG_ERR_PEP_NOT_SCHEDULED)
1568			dev_warn(&interface->pdev->dev,
1569				 "cannot obtain link because the host interface is configured for a PCIe host interface bandwidth of zero\n");
1570		dev_warn(&interface->pdev->dev,
1571			 "request logical port map failed: %d\n",
1572			 hw->swapi.status);
1573
1574		return 0;
1575	}
1576
1577	err = fm10k_msg_lport_map_pf(hw, results, mbx);
1578	if (err)
1579		return err;
1580
1581	interface->lport_map_failed = false;
1582
1583	/* we need to reset if port count was just updated */
1584	if (dglort_map != hw->mac.dglort_map)
1585		set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags);
1586
1587	return 0;
1588}
1589
1590static s32 fm10k_update_pvid(struct fm10k_hw *hw, u32 **results,
1591			     struct fm10k_mbx_info __always_unused *mbx)
1592{
1593	struct fm10k_intfc *interface;
1594	u16 glort, pvid;
1595	u32 pvid_update;
1596	s32 err;
1597
1598	err = fm10k_tlv_attr_get_u32(results[FM10K_PF_ATTR_ID_UPDATE_PVID],
1599				     &pvid_update);
1600	if (err)
1601		return err;
1602
1603	/* extract values from the pvid update */
1604	glort = FM10K_MSG_HDR_FIELD_GET(pvid_update, UPDATE_PVID_GLORT);
1605	pvid = FM10K_MSG_HDR_FIELD_GET(pvid_update, UPDATE_PVID_PVID);
1606
1607	/* if glort is not valid return error */
1608	if (!fm10k_glort_valid_pf(hw, glort))
1609		return FM10K_ERR_PARAM;
1610
1611	/* verify VLAN ID is valid */
1612	if (pvid >= FM10K_VLAN_TABLE_VID_MAX)
1613		return FM10K_ERR_PARAM;
1614
1615	interface = container_of(hw, struct fm10k_intfc, hw);
1616
1617	/* check to see if this belongs to one of the VFs */
1618	err = fm10k_iov_update_pvid(interface, glort, pvid);
1619	if (!err)
1620		return 0;
1621
1622	/* we need to reset if default VLAN was just updated */
1623	if (pvid != hw->mac.default_vid)
1624		set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags);
1625
1626	hw->mac.default_vid = pvid;
1627
1628	return 0;
1629}
1630
1631static const struct fm10k_msg_data pf_mbx_data[] = {
1632	FM10K_PF_MSG_ERR_HANDLER(XCAST_MODES, fm10k_msg_err_pf),
1633	FM10K_PF_MSG_ERR_HANDLER(UPDATE_MAC_FWD_RULE, fm10k_msg_err_pf),
1634	FM10K_PF_MSG_LPORT_MAP_HANDLER(fm10k_lport_map),
1635	FM10K_PF_MSG_ERR_HANDLER(LPORT_CREATE, fm10k_msg_err_pf),
1636	FM10K_PF_MSG_ERR_HANDLER(LPORT_DELETE, fm10k_msg_err_pf),
1637	FM10K_PF_MSG_UPDATE_PVID_HANDLER(fm10k_update_pvid),
1638	FM10K_TLV_MSG_ERROR_HANDLER(fm10k_mbx_error),
1639};
1640
1641static int fm10k_mbx_request_irq_pf(struct fm10k_intfc *interface)
1642{
1643	struct msix_entry *entry = &interface->msix_entries[FM10K_MBX_VECTOR];
1644	struct net_device *dev = interface->netdev;
1645	struct fm10k_hw *hw = &interface->hw;
1646	int err;
1647
1648	/* Use timer0 for interrupt moderation on the mailbox */
1649	u32 mbx_itr = entry->entry | FM10K_INT_MAP_TIMER0;
1650	u32 other_itr = entry->entry | FM10K_INT_MAP_IMMEDIATE;
1651
1652	/* register mailbox handlers */
1653	err = hw->mbx.ops.register_handlers(&hw->mbx, pf_mbx_data);
1654	if (err)
1655		return err;
1656
1657	/* request the IRQ */
1658	err = request_irq(entry->vector, fm10k_msix_mbx_pf, 0,
1659			  dev->name, interface);
1660	if (err) {
1661		netif_err(interface, probe, dev,
1662			  "request_irq for msix_mbx failed: %d\n", err);
1663		return err;
1664	}
1665
1666	/* Enable interrupts w/ no moderation for "other" interrupts */
1667	fm10k_write_reg(hw, FM10K_INT_MAP(fm10k_int_pcie_fault), other_itr);
1668	fm10k_write_reg(hw, FM10K_INT_MAP(fm10k_int_switch_up_down), other_itr);
1669	fm10k_write_reg(hw, FM10K_INT_MAP(fm10k_int_sram), other_itr);
1670	fm10k_write_reg(hw, FM10K_INT_MAP(fm10k_int_max_hold_time), other_itr);
1671	fm10k_write_reg(hw, FM10K_INT_MAP(fm10k_int_vflr), other_itr);
1672
1673	/* Enable interrupts w/ moderation for mailbox */
1674	fm10k_write_reg(hw, FM10K_INT_MAP(fm10k_int_mailbox), mbx_itr);
1675
1676	/* Enable individual interrupt causes */
1677	fm10k_write_reg(hw, FM10K_EIMR, FM10K_EIMR_ENABLE(PCA_FAULT) |
1678					FM10K_EIMR_ENABLE(FUM_FAULT) |
1679					FM10K_EIMR_ENABLE(MAILBOX) |
1680					FM10K_EIMR_ENABLE(SWITCHREADY) |
1681					FM10K_EIMR_ENABLE(SWITCHNOTREADY) |
1682					FM10K_EIMR_ENABLE(SRAMERROR) |
1683					FM10K_EIMR_ENABLE(VFLR) |
1684					FM10K_EIMR_ENABLE(MAXHOLDTIME));
1685
1686	/* enable interrupt */
1687	fm10k_write_reg(hw, FM10K_ITR(entry->entry), FM10K_ITR_ENABLE);
1688
1689	return 0;
1690}
1691
1692int fm10k_mbx_request_irq(struct fm10k_intfc *interface)
1693{
1694	struct fm10k_hw *hw = &interface->hw;
1695	int err;
1696
1697	/* enable Mailbox cause */
1698	if (hw->mac.type == fm10k_mac_pf)
1699		err = fm10k_mbx_request_irq_pf(interface);
1700	else
1701		err = fm10k_mbx_request_irq_vf(interface);
1702	if (err)
1703		return err;
1704
1705	/* connect mailbox */
1706	err = hw->mbx.ops.connect(hw, &hw->mbx);
1707
1708	/* if the mailbox failed to connect, then free IRQ */
1709	if (err)
1710		fm10k_mbx_free_irq(interface);
1711
1712	return err;
1713}
1714
1715/**
1716 * fm10k_qv_free_irq - release interrupts associated with queue vectors
1717 * @interface: board private structure
1718 *
1719 * Release all interrupts associated with this interface
1720 **/
1721void fm10k_qv_free_irq(struct fm10k_intfc *interface)
1722{
1723	int vector = interface->num_q_vectors;
1724	struct msix_entry *entry;
1725
1726	entry = &interface->msix_entries[NON_Q_VECTORS + vector];
1727
1728	while (vector) {
1729		struct fm10k_q_vector *q_vector;
1730
1731		vector--;
1732		entry--;
1733		q_vector = interface->q_vector[vector];
1734
1735		if (!q_vector->tx.count && !q_vector->rx.count)
1736			continue;
1737
1738		/* clear the affinity_mask in the IRQ descriptor */
1739		irq_set_affinity_hint(entry->vector, NULL);
1740
1741		/* disable interrupts */
1742		writel(FM10K_ITR_MASK_SET, q_vector->itr);
1743
1744		free_irq(entry->vector, q_vector);
1745	}
1746}
1747
1748/**
1749 * fm10k_qv_request_irq - initialize interrupts for queue vectors
1750 * @interface: board private structure
1751 *
1752 * Attempts to configure interrupts using the best available
1753 * capabilities of the hardware and kernel.
1754 **/
1755int fm10k_qv_request_irq(struct fm10k_intfc *interface)
1756{
1757	struct net_device *dev = interface->netdev;
1758	struct fm10k_hw *hw = &interface->hw;
1759	struct msix_entry *entry;
1760	unsigned int ri = 0, ti = 0;
1761	int vector, err;
1762
1763	entry = &interface->msix_entries[NON_Q_VECTORS];
1764
1765	for (vector = 0; vector < interface->num_q_vectors; vector++) {
1766		struct fm10k_q_vector *q_vector = interface->q_vector[vector];
1767
1768		/* name the vector */
1769		if (q_vector->tx.count && q_vector->rx.count) {
1770			snprintf(q_vector->name, sizeof(q_vector->name),
1771				 "%s-TxRx-%u", dev->name, ri++);
1772			ti++;
1773		} else if (q_vector->rx.count) {
1774			snprintf(q_vector->name, sizeof(q_vector->name),
1775				 "%s-rx-%u", dev->name, ri++);
1776		} else if (q_vector->tx.count) {
1777			snprintf(q_vector->name, sizeof(q_vector->name),
1778				 "%s-tx-%u", dev->name, ti++);
1779		} else {
1780			/* skip this unused q_vector */
1781			continue;
1782		}
1783
1784		/* Assign ITR register to q_vector */
1785		q_vector->itr = (hw->mac.type == fm10k_mac_pf) ?
1786				&interface->uc_addr[FM10K_ITR(entry->entry)] :
1787				&interface->uc_addr[FM10K_VFITR(entry->entry)];
1788
1789		/* request the IRQ */
1790		err = request_irq(entry->vector, &fm10k_msix_clean_rings, 0,
1791				  q_vector->name, q_vector);
1792		if (err) {
1793			netif_err(interface, probe, dev,
1794				  "request_irq failed for MSIX interrupt Error: %d\n",
1795				  err);
1796			goto err_out;
1797		}
1798
1799		/* assign the mask for this irq */
1800		irq_set_affinity_hint(entry->vector, &q_vector->affinity_mask);
1801
1802		/* Enable q_vector */
1803		writel(FM10K_ITR_ENABLE, q_vector->itr);
1804
1805		entry++;
1806	}
1807
1808	return 0;
1809
1810err_out:
1811	/* wind through the ring freeing all entries and vectors */
1812	while (vector) {
1813		struct fm10k_q_vector *q_vector;
1814
1815		entry--;
1816		vector--;
1817		q_vector = interface->q_vector[vector];
1818
1819		if (!q_vector->tx.count && !q_vector->rx.count)
1820			continue;
1821
1822		/* clear the affinity_mask in the IRQ descriptor */
1823		irq_set_affinity_hint(entry->vector, NULL);
1824
1825		/* disable interrupts */
1826		writel(FM10K_ITR_MASK_SET, q_vector->itr);
1827
1828		free_irq(entry->vector, q_vector);
1829	}
1830
1831	return err;
1832}
1833
1834void fm10k_up(struct fm10k_intfc *interface)
1835{
1836	struct fm10k_hw *hw = &interface->hw;
1837
1838	/* Enable Tx/Rx DMA */
1839	hw->mac.ops.start_hw(hw);
1840
1841	/* configure Tx descriptor rings */
1842	fm10k_configure_tx(interface);
1843
1844	/* configure Rx descriptor rings */
1845	fm10k_configure_rx(interface);
1846
1847	/* configure interrupts */
1848	hw->mac.ops.update_int_moderator(hw);
1849
1850	/* enable statistics capture again */
1851	clear_bit(__FM10K_UPDATING_STATS, interface->state);
1852
1853	/* clear down bit to indicate we are ready to go */
1854	clear_bit(__FM10K_DOWN, interface->state);
1855
1856	/* enable polling cleanups */
1857	fm10k_napi_enable_all(interface);
1858
1859	/* re-establish Rx filters */
1860	fm10k_restore_rx_state(interface);
1861
1862	/* enable transmits */
1863	netif_tx_start_all_queues(interface->netdev);
1864
1865	/* kick off the service timer now */
1866	hw->mac.get_host_state = true;
1867	mod_timer(&interface->service_timer, jiffies);
1868}
1869
1870static void fm10k_napi_disable_all(struct fm10k_intfc *interface)
1871{
1872	struct fm10k_q_vector *q_vector;
1873	int q_idx;
1874
1875	for (q_idx = 0; q_idx < interface->num_q_vectors; q_idx++) {
1876		q_vector = interface->q_vector[q_idx];
1877		napi_disable(&q_vector->napi);
1878	}
1879}
1880
1881void fm10k_down(struct fm10k_intfc *interface)
1882{
1883	struct net_device *netdev = interface->netdev;
1884	struct fm10k_hw *hw = &interface->hw;
1885	int err, i = 0, count = 0;
1886
1887	/* signal that we are down to the interrupt handler and service task */
1888	if (test_and_set_bit(__FM10K_DOWN, interface->state))
1889		return;
1890
1891	/* call carrier off first to avoid false dev_watchdog timeouts */
1892	netif_carrier_off(netdev);
1893
1894	/* disable transmits */
1895	netif_tx_stop_all_queues(netdev);
1896	netif_tx_disable(netdev);
1897
1898	/* reset Rx filters */
1899	fm10k_reset_rx_state(interface);
1900
1901	/* disable polling routines */
1902	fm10k_napi_disable_all(interface);
1903
1904	/* capture stats one last time before stopping interface */
1905	fm10k_update_stats(interface);
1906
1907	/* prevent updating statistics while we're down */
1908	while (test_and_set_bit(__FM10K_UPDATING_STATS, interface->state))
1909		usleep_range(1000, 2000);
1910
1911	/* skip waiting for TX DMA if we lost PCIe link */
1912	if (FM10K_REMOVED(hw->hw_addr))
1913		goto skip_tx_dma_drain;
1914
1915	/* In some rare circumstances it can take a while for Tx queues to
1916	 * quiesce and be fully disabled. Attempt to .stop_hw() first, and
1917	 * then if we get ERR_REQUESTS_PENDING, go ahead and wait in a loop
1918	 * until the Tx queues have emptied, or until a number of retries. If
1919	 * we fail to clear within the retry loop, we will issue a warning
1920	 * indicating that Tx DMA is probably hung. Note this means we call
1921	 * .stop_hw() twice but this shouldn't cause any problems.
1922	 */
1923	err = hw->mac.ops.stop_hw(hw);
1924	if (err != FM10K_ERR_REQUESTS_PENDING)
1925		goto skip_tx_dma_drain;
1926
1927#define TX_DMA_DRAIN_RETRIES 25
1928	for (count = 0; count < TX_DMA_DRAIN_RETRIES; count++) {
1929		usleep_range(10000, 20000);
1930
1931		/* start checking at the last ring to have pending Tx */
1932		for (; i < interface->num_tx_queues; i++)
1933			if (fm10k_get_tx_pending(interface->tx_ring[i], false))
1934				break;
1935
1936		/* if all the queues are drained, we can break now */
1937		if (i == interface->num_tx_queues)
1938			break;
1939	}
1940
1941	if (count >= TX_DMA_DRAIN_RETRIES)
1942		dev_err(&interface->pdev->dev,
1943			"Tx queues failed to drain after %d tries. Tx DMA is probably hung.\n",
1944			count);
1945skip_tx_dma_drain:
1946	/* Disable DMA engine for Tx/Rx */
1947	err = hw->mac.ops.stop_hw(hw);
1948	if (err == FM10K_ERR_REQUESTS_PENDING)
1949		dev_err(&interface->pdev->dev,
1950			"due to pending requests hw was not shut down gracefully\n");
1951	else if (err)
1952		dev_err(&interface->pdev->dev, "stop_hw failed: %d\n", err);
1953
1954	/* free any buffers still on the rings */
1955	fm10k_clean_all_tx_rings(interface);
1956	fm10k_clean_all_rx_rings(interface);
1957}
1958
1959/**
1960 * fm10k_sw_init - Initialize general software structures
1961 * @interface: host interface private structure to initialize
1962 * @ent: PCI device ID entry
1963 *
1964 * fm10k_sw_init initializes the interface private data structure.
1965 * Fields are initialized based on PCI device information and
1966 * OS network device settings (MTU size).
1967 **/
1968static int fm10k_sw_init(struct fm10k_intfc *interface,
1969			 const struct pci_device_id *ent)
1970{
1971	const struct fm10k_info *fi = fm10k_info_tbl[ent->driver_data];
1972	struct fm10k_hw *hw = &interface->hw;
1973	struct pci_dev *pdev = interface->pdev;
1974	struct net_device *netdev = interface->netdev;
1975	u32 rss_key[FM10K_RSSRK_SIZE];
1976	unsigned int rss;
1977	int err;
1978
1979	/* initialize back pointer */
1980	hw->back = interface;
1981	hw->hw_addr = interface->uc_addr;
1982
1983	/* PCI config space info */
1984	hw->vendor_id = pdev->vendor;
1985	hw->device_id = pdev->device;
1986	hw->revision_id = pdev->revision;
1987	hw->subsystem_vendor_id = pdev->subsystem_vendor;
1988	hw->subsystem_device_id = pdev->subsystem_device;
1989
1990	/* Setup hw api */
1991	memcpy(&hw->mac.ops, fi->mac_ops, sizeof(hw->mac.ops));
1992	hw->mac.type = fi->mac;
1993
1994	/* Setup IOV handlers */
1995	if (fi->iov_ops)
1996		memcpy(&hw->iov.ops, fi->iov_ops, sizeof(hw->iov.ops));
1997
1998	/* Set common capability flags and settings */
1999	rss = min_t(int, FM10K_MAX_RSS_INDICES, num_online_cpus());
2000	interface->ring_feature[RING_F_RSS].limit = rss;
2001	fi->get_invariants(hw);
2002
2003	/* pick up the PCIe bus settings for reporting later */
2004	if (hw->mac.ops.get_bus_info)
2005		hw->mac.ops.get_bus_info(hw);
2006
2007	/* limit the usable DMA range */
2008	if (hw->mac.ops.set_dma_mask)
2009		hw->mac.ops.set_dma_mask(hw, dma_get_mask(&pdev->dev));
2010
2011	/* update netdev with DMA restrictions */
2012	if (dma_get_mask(&pdev->dev) > DMA_BIT_MASK(32)) {
2013		netdev->features |= NETIF_F_HIGHDMA;
2014		netdev->vlan_features |= NETIF_F_HIGHDMA;
2015	}
2016
2017	/* reset and initialize the hardware so it is in a known state */
2018	err = hw->mac.ops.reset_hw(hw);
2019	if (err) {
2020		dev_err(&pdev->dev, "reset_hw failed: %d\n", err);
2021		return err;
2022	}
2023
2024	err = hw->mac.ops.init_hw(hw);
2025	if (err) {
2026		dev_err(&pdev->dev, "init_hw failed: %d\n", err);
2027		return err;
2028	}
2029
2030	/* initialize hardware statistics */
2031	hw->mac.ops.update_hw_stats(hw, &interface->stats);
2032
2033	/* Set upper limit on IOV VFs that can be allocated */
2034	pci_sriov_set_totalvfs(pdev, hw->iov.total_vfs);
2035
2036	/* Start with random Ethernet address */
2037	eth_random_addr(hw->mac.addr);
2038
2039	/* Initialize MAC address from hardware */
2040	err = hw->mac.ops.read_mac_addr(hw);
2041	if (err) {
2042		dev_warn(&pdev->dev,
2043			 "Failed to obtain MAC address defaulting to random\n");
2044		/* tag address assignment as random */
2045		netdev->addr_assign_type |= NET_ADDR_RANDOM;
2046	}
2047
2048	ether_addr_copy(netdev->dev_addr, hw->mac.addr);
2049	ether_addr_copy(netdev->perm_addr, hw->mac.addr);
2050
2051	if (!is_valid_ether_addr(netdev->perm_addr)) {
2052		dev_err(&pdev->dev, "Invalid MAC Address\n");
2053		return -EIO;
2054	}
2055
2056	/* initialize DCBNL interface */
2057	fm10k_dcbnl_set_ops(netdev);
2058
2059	/* set default ring sizes */
2060	interface->tx_ring_count = FM10K_DEFAULT_TXD;
2061	interface->rx_ring_count = FM10K_DEFAULT_RXD;
2062
2063	/* set default interrupt moderation */
2064	interface->tx_itr = FM10K_TX_ITR_DEFAULT;
2065	interface->rx_itr = FM10K_ITR_ADAPTIVE | FM10K_RX_ITR_DEFAULT;
2066
2067	/* Initialize the MAC/VLAN queue */
2068	INIT_LIST_HEAD(&interface->macvlan_requests);
2069
2070	netdev_rss_key_fill(rss_key, sizeof(rss_key));
2071	memcpy(interface->rssrk, rss_key, sizeof(rss_key));
2072
2073	/* Initialize the mailbox lock */
2074	spin_lock_init(&interface->mbx_lock);
2075	spin_lock_init(&interface->macvlan_lock);
2076
2077	/* Start off interface as being down */
2078	set_bit(__FM10K_DOWN, interface->state);
2079	set_bit(__FM10K_UPDATING_STATS, interface->state);
2080
2081	return 0;
2082}
2083
2084/**
2085 * fm10k_probe - Device Initialization Routine
2086 * @pdev: PCI device information struct
2087 * @ent: entry in fm10k_pci_tbl
2088 *
2089 * Returns 0 on success, negative on failure
2090 *
2091 * fm10k_probe initializes an interface identified by a pci_dev structure.
2092 * The OS initialization, configuring of the interface private structure,
2093 * and a hardware reset occur.
2094 **/
2095static int fm10k_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2096{
2097	struct net_device *netdev;
2098	struct fm10k_intfc *interface;
2099	int err;
2100
2101	if (pdev->error_state != pci_channel_io_normal) {
2102		dev_err(&pdev->dev,
2103			"PCI device still in an error state. Unable to load...\n");
2104		return -EIO;
2105	}
2106
2107	err = pci_enable_device_mem(pdev);
2108	if (err) {
2109		dev_err(&pdev->dev,
2110			"PCI enable device failed: %d\n", err);
2111		return err;
2112	}
2113
2114	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(48));
2115	if (err)
2116		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2117	if (err) {
2118		dev_err(&pdev->dev,
2119			"DMA configuration failed: %d\n", err);
2120		goto err_dma;
2121	}
2122
2123	err = pci_request_mem_regions(pdev, fm10k_driver_name);
2124	if (err) {
2125		dev_err(&pdev->dev,
2126			"pci_request_selected_regions failed: %d\n", err);
2127		goto err_pci_reg;
2128	}
2129
2130	pci_enable_pcie_error_reporting(pdev);
2131
2132	pci_set_master(pdev);
2133	pci_save_state(pdev);
2134
2135	netdev = fm10k_alloc_netdev(fm10k_info_tbl[ent->driver_data]);
2136	if (!netdev) {
2137		err = -ENOMEM;
2138		goto err_alloc_netdev;
2139	}
2140
2141	SET_NETDEV_DEV(netdev, &pdev->dev);
2142
2143	interface = netdev_priv(netdev);
2144	pci_set_drvdata(pdev, interface);
2145
2146	interface->netdev = netdev;
2147	interface->pdev = pdev;
2148
2149	interface->uc_addr = ioremap(pci_resource_start(pdev, 0),
2150				     FM10K_UC_ADDR_SIZE);
2151	if (!interface->uc_addr) {
2152		err = -EIO;
2153		goto err_ioremap;
2154	}
2155
2156	err = fm10k_sw_init(interface, ent);
2157	if (err)
2158		goto err_sw_init;
2159
2160	/* enable debugfs support */
2161	fm10k_dbg_intfc_init(interface);
2162
2163	err = fm10k_init_queueing_scheme(interface);
2164	if (err)
2165		goto err_sw_init;
2166
2167	/* the mbx interrupt might attempt to schedule the service task, so we
2168	 * must ensure it is disabled since we haven't yet requested the timer
2169	 * or work item.
2170	 */
2171	set_bit(__FM10K_SERVICE_DISABLE, interface->state);
2172
2173	err = fm10k_mbx_request_irq(interface);
2174	if (err)
2175		goto err_mbx_interrupt;
2176
2177	/* final check of hardware state before registering the interface */
2178	err = fm10k_hw_ready(interface);
2179	if (err)
2180		goto err_register;
2181
2182	err = register_netdev(netdev);
2183	if (err)
2184		goto err_register;
2185
2186	/* carrier off reporting is important to ethtool even BEFORE open */
2187	netif_carrier_off(netdev);
2188
2189	/* stop all the transmit queues from transmitting until link is up */
2190	netif_tx_stop_all_queues(netdev);
2191
2192	/* Initialize service timer and service task late in order to avoid
2193	 * cleanup issues.
2194	 */
2195	timer_setup(&interface->service_timer, fm10k_service_timer, 0);
2196	INIT_WORK(&interface->service_task, fm10k_service_task);
2197
2198	/* Setup the MAC/VLAN queue */
2199	INIT_DELAYED_WORK(&interface->macvlan_task, fm10k_macvlan_task);
2200
2201	/* kick off service timer now, even when interface is down */
2202	mod_timer(&interface->service_timer, (HZ * 2) + jiffies);
2203
2204	/* print warning for non-optimal configurations */
2205	pcie_print_link_status(interface->pdev);
2206
2207	/* report MAC address for logging */
2208	dev_info(&pdev->dev, "%pM\n", netdev->dev_addr);
2209
2210	/* enable SR-IOV after registering netdev to enforce PF/VF ordering */
2211	fm10k_iov_configure(pdev, 0);
2212
2213	/* clear the service task disable bit and kick off service task */
2214	clear_bit(__FM10K_SERVICE_DISABLE, interface->state);
2215	fm10k_service_event_schedule(interface);
2216
2217	return 0;
2218
2219err_register:
2220	fm10k_mbx_free_irq(interface);
2221err_mbx_interrupt:
2222	fm10k_clear_queueing_scheme(interface);
2223err_sw_init:
2224	if (interface->sw_addr)
2225		iounmap(interface->sw_addr);
2226	iounmap(interface->uc_addr);
2227err_ioremap:
2228	free_netdev(netdev);
2229err_alloc_netdev:
2230	pci_disable_pcie_error_reporting(pdev);
2231	pci_release_mem_regions(pdev);
2232err_pci_reg:
2233err_dma:
2234	pci_disable_device(pdev);
2235	return err;
2236}
2237
2238/**
2239 * fm10k_remove - Device Removal Routine
2240 * @pdev: PCI device information struct
2241 *
2242 * fm10k_remove is called by the PCI subsystem to alert the driver
2243 * that it should release a PCI device.  The could be caused by a
2244 * Hot-Plug event, or because the driver is going to be removed from
2245 * memory.
2246 **/
2247static void fm10k_remove(struct pci_dev *pdev)
2248{
2249	struct fm10k_intfc *interface = pci_get_drvdata(pdev);
2250	struct net_device *netdev = interface->netdev;
2251
2252	del_timer_sync(&interface->service_timer);
2253
2254	fm10k_stop_service_event(interface);
2255	fm10k_stop_macvlan_task(interface);
2256
2257	/* Remove all pending MAC/VLAN requests */
2258	fm10k_clear_macvlan_queue(interface, interface->glort, true);
2259
2260	/* free netdev, this may bounce the interrupts due to setup_tc */
2261	if (netdev->reg_state == NETREG_REGISTERED)
2262		unregister_netdev(netdev);
2263
2264	/* release VFs */
2265	fm10k_iov_disable(pdev);
2266
2267	/* disable mailbox interrupt */
2268	fm10k_mbx_free_irq(interface);
2269
2270	/* free interrupts */
2271	fm10k_clear_queueing_scheme(interface);
2272
2273	/* remove any debugfs interfaces */
2274	fm10k_dbg_intfc_exit(interface);
2275
2276	if (interface->sw_addr)
2277		iounmap(interface->sw_addr);
2278	iounmap(interface->uc_addr);
2279
2280	free_netdev(netdev);
2281
2282	pci_release_mem_regions(pdev);
2283
2284	pci_disable_pcie_error_reporting(pdev);
2285
2286	pci_disable_device(pdev);
2287}
2288
2289static void fm10k_prepare_suspend(struct fm10k_intfc *interface)
2290{
2291	/* the watchdog task reads from registers, which might appear like
2292	 * a surprise remove if the PCIe device is disabled while we're
2293	 * stopped. We stop the watchdog task until after we resume software
2294	 * activity.
2295	 *
2296	 * Note that the MAC/VLAN task will be stopped as part of preparing
2297	 * for reset so we don't need to handle it here.
2298	 */
2299	fm10k_stop_service_event(interface);
2300
2301	if (fm10k_prepare_for_reset(interface))
2302		set_bit(__FM10K_RESET_SUSPENDED, interface->state);
2303}
2304
2305static int fm10k_handle_resume(struct fm10k_intfc *interface)
2306{
2307	struct fm10k_hw *hw = &interface->hw;
2308	int err;
2309
2310	/* Even if we didn't properly prepare for reset in
2311	 * fm10k_prepare_suspend, we'll attempt to resume anyways.
2312	 */
2313	if (!test_and_clear_bit(__FM10K_RESET_SUSPENDED, interface->state))
2314		dev_warn(&interface->pdev->dev,
2315			 "Device was shut down as part of suspend... Attempting to recover\n");
2316
2317	/* reset statistics starting values */
2318	hw->mac.ops.rebind_hw_stats(hw, &interface->stats);
2319
2320	err = fm10k_handle_reset(interface);
2321	if (err)
2322		return err;
2323
2324	/* assume host is not ready, to prevent race with watchdog in case we
2325	 * actually don't have connection to the switch
2326	 */
2327	interface->host_ready = false;
2328	fm10k_watchdog_host_not_ready(interface);
2329
2330	/* force link to stay down for a second to prevent link flutter */
2331	interface->link_down_event = jiffies + (HZ);
2332	set_bit(__FM10K_LINK_DOWN, interface->state);
2333
2334	/* restart the service task */
2335	fm10k_start_service_event(interface);
2336
2337	/* Restart the MAC/VLAN request queue in-case of outstanding events */
2338	fm10k_macvlan_schedule(interface);
2339
2340	return 0;
2341}
2342
2343/**
2344 * fm10k_resume - Generic PM resume hook
2345 * @dev: generic device structure
2346 *
2347 * Generic PM hook used when waking the device from a low power state after
2348 * suspend or hibernation. This function does not need to handle lower PCIe
2349 * device state as the stack takes care of that for us.
2350 **/
2351static int __maybe_unused fm10k_resume(struct device *dev)
2352{
2353	struct fm10k_intfc *interface = dev_get_drvdata(dev);
2354	struct net_device *netdev = interface->netdev;
2355	struct fm10k_hw *hw = &interface->hw;
2356	int err;
2357
2358	/* refresh hw_addr in case it was dropped */
2359	hw->hw_addr = interface->uc_addr;
2360
2361	err = fm10k_handle_resume(interface);
2362	if (err)
2363		return err;
2364
2365	netif_device_attach(netdev);
2366
2367	return 0;
2368}
2369
2370/**
2371 * fm10k_suspend - Generic PM suspend hook
2372 * @dev: generic device structure
2373 *
2374 * Generic PM hook used when setting the device into a low power state for
2375 * system suspend or hibernation. This function does not need to handle lower
2376 * PCIe device state as the stack takes care of that for us.
2377 **/
2378static int __maybe_unused fm10k_suspend(struct device *dev)
2379{
2380	struct fm10k_intfc *interface = dev_get_drvdata(dev);
2381	struct net_device *netdev = interface->netdev;
2382
2383	netif_device_detach(netdev);
2384
2385	fm10k_prepare_suspend(interface);
2386
2387	return 0;
2388}
2389
2390/**
2391 * fm10k_io_error_detected - called when PCI error is detected
2392 * @pdev: Pointer to PCI device
2393 * @state: The current pci connection state
2394 *
2395 * This function is called after a PCI bus error affecting
2396 * this device has been detected.
2397 */
2398static pci_ers_result_t fm10k_io_error_detected(struct pci_dev *pdev,
2399						pci_channel_state_t state)
2400{
2401	struct fm10k_intfc *interface = pci_get_drvdata(pdev);
2402	struct net_device *netdev = interface->netdev;
2403
2404	netif_device_detach(netdev);
2405
2406	if (state == pci_channel_io_perm_failure)
2407		return PCI_ERS_RESULT_DISCONNECT;
2408
2409	fm10k_prepare_suspend(interface);
2410
2411	/* Request a slot reset. */
2412	return PCI_ERS_RESULT_NEED_RESET;
2413}
2414
2415/**
2416 * fm10k_io_slot_reset - called after the pci bus has been reset.
2417 * @pdev: Pointer to PCI device
2418 *
2419 * Restart the card from scratch, as if from a cold-boot.
2420 */
2421static pci_ers_result_t fm10k_io_slot_reset(struct pci_dev *pdev)
2422{
2423	pci_ers_result_t result;
2424
2425	if (pci_reenable_device(pdev)) {
2426		dev_err(&pdev->dev,
2427			"Cannot re-enable PCI device after reset.\n");
2428		result = PCI_ERS_RESULT_DISCONNECT;
2429	} else {
2430		pci_set_master(pdev);
2431		pci_restore_state(pdev);
2432
2433		/* After second error pci->state_saved is false, this
2434		 * resets it so EEH doesn't break.
2435		 */
2436		pci_save_state(pdev);
2437
2438		pci_wake_from_d3(pdev, false);
2439
2440		result = PCI_ERS_RESULT_RECOVERED;
2441	}
2442
2443	return result;
2444}
2445
2446/**
2447 * fm10k_io_resume - called when traffic can start flowing again.
2448 * @pdev: Pointer to PCI device
2449 *
2450 * This callback is called when the error recovery driver tells us that
2451 * its OK to resume normal operation.
2452 */
2453static void fm10k_io_resume(struct pci_dev *pdev)
2454{
2455	struct fm10k_intfc *interface = pci_get_drvdata(pdev);
2456	struct net_device *netdev = interface->netdev;
2457	int err;
2458
2459	err = fm10k_handle_resume(interface);
2460
2461	if (err)
2462		dev_warn(&pdev->dev,
2463			 "%s failed: %d\n", __func__, err);
2464	else
2465		netif_device_attach(netdev);
2466}
2467
2468/**
2469 * fm10k_io_reset_prepare - called when PCI function is about to be reset
2470 * @pdev: Pointer to PCI device
2471 *
2472 * This callback is called when the PCI function is about to be reset,
2473 * allowing the device driver to prepare for it.
2474 */
2475static void fm10k_io_reset_prepare(struct pci_dev *pdev)
2476{
2477	/* warn incase we have any active VF devices */
2478	if (pci_num_vf(pdev))
2479		dev_warn(&pdev->dev,
2480			 "PCIe FLR may cause issues for any active VF devices\n");
2481	fm10k_prepare_suspend(pci_get_drvdata(pdev));
2482}
2483
2484/**
2485 * fm10k_io_reset_done - called when PCI function has finished resetting
2486 * @pdev: Pointer to PCI device
2487 *
2488 * This callback is called just after the PCI function is reset, such as via
2489 * /sys/class/net/<enpX>/device/reset or similar.
2490 */
2491static void fm10k_io_reset_done(struct pci_dev *pdev)
2492{
2493	struct fm10k_intfc *interface = pci_get_drvdata(pdev);
2494	int err = fm10k_handle_resume(interface);
2495
2496	if (err) {
2497		dev_warn(&pdev->dev,
2498			 "%s failed: %d\n", __func__, err);
2499		netif_device_detach(interface->netdev);
2500	}
2501}
2502
2503static const struct pci_error_handlers fm10k_err_handler = {
2504	.error_detected = fm10k_io_error_detected,
2505	.slot_reset = fm10k_io_slot_reset,
2506	.resume = fm10k_io_resume,
2507	.reset_prepare = fm10k_io_reset_prepare,
2508	.reset_done = fm10k_io_reset_done,
2509};
2510
2511static SIMPLE_DEV_PM_OPS(fm10k_pm_ops, fm10k_suspend, fm10k_resume);
2512
2513static struct pci_driver fm10k_driver = {
2514	.name			= fm10k_driver_name,
2515	.id_table		= fm10k_pci_tbl,
2516	.probe			= fm10k_probe,
2517	.remove			= fm10k_remove,
2518	.driver = {
2519		.pm		= &fm10k_pm_ops,
2520	},
2521	.sriov_configure	= fm10k_iov_configure,
2522	.err_handler		= &fm10k_err_handler
2523};
2524
2525/**
2526 * fm10k_register_pci_driver - register driver interface
2527 *
2528 * This function is called on module load in order to register the driver.
2529 **/
2530int fm10k_register_pci_driver(void)
2531{
2532	return pci_register_driver(&fm10k_driver);
2533}
2534
2535/**
2536 * fm10k_unregister_pci_driver - unregister driver interface
2537 *
2538 * This function is called on module unload in order to remove the driver.
2539 **/
2540void fm10k_unregister_pci_driver(void)
2541{
2542	pci_unregister_driver(&fm10k_driver);
2543}