Linux Audio

Check our new training course

Loading...
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * This is for all the tests related to logic bugs (e.g. bad dereferences,
  4 * bad alignment, bad loops, bad locking, bad scheduling, deep stacks, and
  5 * lockups) along with other things that don't fit well into existing LKDTM
  6 * test source files.
  7 */
  8#include "lkdtm.h"
  9#include <linux/cpu.h>
 10#include <linux/list.h>
 11#include <linux/sched.h>
 12#include <linux/sched/signal.h>
 13#include <linux/sched/task_stack.h>
 14#include <linux/slab.h>
 15#include <linux/stop_machine.h>
 16#include <linux/uaccess.h>
 
 17
 18#if IS_ENABLED(CONFIG_X86_32) && !IS_ENABLED(CONFIG_UML)
 19#include <asm/desc.h>
 20#endif
 21
 22struct lkdtm_list {
 23	struct list_head node;
 24};
 25
 26/*
 27 * Make sure our attempts to over run the kernel stack doesn't trigger
 28 * a compiler warning when CONFIG_FRAME_WARN is set. Then make sure we
 29 * recurse past the end of THREAD_SIZE by default.
 30 */
 31#if defined(CONFIG_FRAME_WARN) && (CONFIG_FRAME_WARN > 0)
 32#define REC_STACK_SIZE (_AC(CONFIG_FRAME_WARN, UL) / 2)
 33#else
 34#define REC_STACK_SIZE (THREAD_SIZE / 8UL)
 35#endif
 36#define REC_NUM_DEFAULT ((THREAD_SIZE / REC_STACK_SIZE) * 2)
 37
 38static int recur_count = REC_NUM_DEFAULT;
 39
 40static DEFINE_SPINLOCK(lock_me_up);
 41
 42/*
 43 * Make sure compiler does not optimize this function or stack frame away:
 44 * - function marked noinline
 45 * - stack variables are marked volatile
 46 * - stack variables are written (memset()) and read (buf[..] passed as arg)
 47 * - function may have external effects (memzero_explicit())
 48 * - no tail recursion possible
 49 */
 50static int noinline recursive_loop(int remaining)
 51{
 52	volatile char buf[REC_STACK_SIZE];
 53	volatile int ret;
 54
 55	memset((void *)buf, remaining & 0xFF, sizeof(buf));
 
 
 56	if (!remaining)
 57		ret = 0;
 58	else
 59		ret = recursive_loop((int)buf[remaining % sizeof(buf)] - 1);
 60	memzero_explicit((void *)buf, sizeof(buf));
 61	return ret;
 62}
 63
 64/* If the depth is negative, use the default, otherwise keep parameter. */
 65void __init lkdtm_bugs_init(int *recur_param)
 66{
 67	if (*recur_param < 0)
 68		*recur_param = recur_count;
 69	else
 70		recur_count = *recur_param;
 71}
 72
 73static void lkdtm_PANIC(void)
 74{
 75	panic("dumptest");
 76}
 77
 78static int panic_stop_irqoff_fn(void *arg)
 79{
 80	atomic_t *v = arg;
 81
 82	/*
 83	 * As stop_machine() disables interrupts, all CPUs within this function
 84	 * have interrupts disabled and cannot take a regular IPI.
 85	 *
 86	 * The last CPU which enters here will trigger a panic, and as all CPUs
 87	 * cannot take a regular IPI, we'll only be able to stop secondaries if
 88	 * smp_send_stop() or crash_smp_send_stop() uses an NMI.
 89	 */
 90	if (atomic_inc_return(v) == num_online_cpus())
 91		panic("panic stop irqoff test");
 92
 93	for (;;)
 94		cpu_relax();
 95}
 96
 97static void lkdtm_PANIC_STOP_IRQOFF(void)
 98{
 99	atomic_t v = ATOMIC_INIT(0);
100	stop_machine(panic_stop_irqoff_fn, &v, cpu_online_mask);
101}
102
103static void lkdtm_BUG(void)
104{
105	BUG();
106}
107
108static int warn_counter;
109
110static void lkdtm_WARNING(void)
111{
112	WARN_ON(++warn_counter);
113}
114
115static void lkdtm_WARNING_MESSAGE(void)
116{
117	WARN(1, "Warning message trigger count: %d\n", ++warn_counter);
118}
119
120static void lkdtm_EXCEPTION(void)
121{
122	*((volatile int *) 0) = 0;
123}
124
125static void lkdtm_LOOP(void)
126{
127	for (;;)
128		;
129}
130
131static void lkdtm_EXHAUST_STACK(void)
132{
133	pr_info("Calling function with %lu frame size to depth %d ...\n",
134		REC_STACK_SIZE, recur_count);
135	recursive_loop(recur_count);
136	pr_info("FAIL: survived without exhausting stack?!\n");
137}
138
139static noinline void __lkdtm_CORRUPT_STACK(void *stack)
140{
141	memset(stack, '\xff', 64);
142}
143
144/* This should trip the stack canary, not corrupt the return address. */
145static noinline void lkdtm_CORRUPT_STACK(void)
146{
147	/* Use default char array length that triggers stack protection. */
148	char data[8] __aligned(sizeof(void *));
149
150	pr_info("Corrupting stack containing char array ...\n");
151	__lkdtm_CORRUPT_STACK((void *)&data);
152}
153
154/* Same as above but will only get a canary with -fstack-protector-strong */
155static noinline void lkdtm_CORRUPT_STACK_STRONG(void)
156{
157	union {
158		unsigned short shorts[4];
159		unsigned long *ptr;
160	} data __aligned(sizeof(void *));
161
162	pr_info("Corrupting stack containing union ...\n");
163	__lkdtm_CORRUPT_STACK((void *)&data);
164}
165
166static pid_t stack_pid;
167static unsigned long stack_addr;
168
169static void lkdtm_REPORT_STACK(void)
170{
171	volatile uintptr_t magic;
172	pid_t pid = task_pid_nr(current);
173
174	if (pid != stack_pid) {
175		pr_info("Starting stack offset tracking for pid %d\n", pid);
176		stack_pid = pid;
177		stack_addr = (uintptr_t)&magic;
178	}
179
180	pr_info("Stack offset: %d\n", (int)(stack_addr - (uintptr_t)&magic));
181}
182
183static pid_t stack_canary_pid;
184static unsigned long stack_canary;
185static unsigned long stack_canary_offset;
186
187static noinline void __lkdtm_REPORT_STACK_CANARY(void *stack)
188{
189	int i = 0;
190	pid_t pid = task_pid_nr(current);
191	unsigned long *canary = (unsigned long *)stack;
192	unsigned long current_offset = 0, init_offset = 0;
193
194	/* Do our best to find the canary in a 16 word window ... */
195	for (i = 1; i < 16; i++) {
196		canary = (unsigned long *)stack + i;
197#ifdef CONFIG_STACKPROTECTOR
198		if (*canary == current->stack_canary)
199			current_offset = i;
200		if (*canary == init_task.stack_canary)
201			init_offset = i;
202#endif
203	}
204
205	if (current_offset == 0) {
206		/*
207		 * If the canary doesn't match what's in the task_struct,
208		 * we're either using a global canary or the stack frame
209		 * layout changed.
210		 */
211		if (init_offset != 0) {
212			pr_err("FAIL: global stack canary found at offset %ld (canary for pid %d matches init_task's)!\n",
213			       init_offset, pid);
214		} else {
215			pr_warn("FAIL: did not correctly locate stack canary :(\n");
216			pr_expected_config(CONFIG_STACKPROTECTOR);
217		}
218
219		return;
220	} else if (init_offset != 0) {
221		pr_warn("WARNING: found both current and init_task canaries nearby?!\n");
222	}
223
224	canary = (unsigned long *)stack + current_offset;
225	if (stack_canary_pid == 0) {
226		stack_canary = *canary;
227		stack_canary_pid = pid;
228		stack_canary_offset = current_offset;
229		pr_info("Recorded stack canary for pid %d at offset %ld\n",
230			stack_canary_pid, stack_canary_offset);
231	} else if (pid == stack_canary_pid) {
232		pr_warn("ERROR: saw pid %d again -- please use a new pid\n", pid);
233	} else {
234		if (current_offset != stack_canary_offset) {
235			pr_warn("ERROR: canary offset changed from %ld to %ld!?\n",
236				stack_canary_offset, current_offset);
237			return;
238		}
239
240		if (*canary == stack_canary) {
241			pr_warn("FAIL: canary identical for pid %d and pid %d at offset %ld!\n",
242				stack_canary_pid, pid, current_offset);
243		} else {
244			pr_info("ok: stack canaries differ between pid %d and pid %d at offset %ld.\n",
245				stack_canary_pid, pid, current_offset);
246			/* Reset the test. */
247			stack_canary_pid = 0;
248		}
249	}
250}
251
252static void lkdtm_REPORT_STACK_CANARY(void)
253{
254	/* Use default char array length that triggers stack protection. */
255	char data[8] __aligned(sizeof(void *)) = { };
256
257	__lkdtm_REPORT_STACK_CANARY((void *)&data);
258}
259
260static void lkdtm_UNALIGNED_LOAD_STORE_WRITE(void)
261{
262	static u8 data[5] __attribute__((aligned(4))) = {1, 2, 3, 4, 5};
263	u32 *p;
264	u32 val = 0x12345678;
265
266	p = (u32 *)(data + 1);
267	if (*p == 0)
268		val = 0x87654321;
269	*p = val;
270
271	if (IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
272		pr_err("XFAIL: arch has CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS\n");
273}
274
275static void lkdtm_SOFTLOCKUP(void)
276{
277	preempt_disable();
278	for (;;)
279		cpu_relax();
280}
281
282static void lkdtm_HARDLOCKUP(void)
283{
284	local_irq_disable();
285	for (;;)
286		cpu_relax();
287}
288
289static void __lkdtm_SMP_CALL_LOCKUP(void *unused)
290{
291	for (;;)
292		cpu_relax();
293}
294
295static void lkdtm_SMP_CALL_LOCKUP(void)
296{
297	unsigned int cpu, target;
298
299	cpus_read_lock();
300
301	cpu = get_cpu();
302	target = cpumask_any_but(cpu_online_mask, cpu);
303
304	if (target >= nr_cpu_ids) {
305		pr_err("FAIL: no other online CPUs\n");
306		goto out_put_cpus;
307	}
308
309	smp_call_function_single(target, __lkdtm_SMP_CALL_LOCKUP, NULL, 1);
310
311	pr_err("FAIL: did not hang\n");
312
313out_put_cpus:
314	put_cpu();
315	cpus_read_unlock();
316}
317
318static void lkdtm_SPINLOCKUP(void)
319{
320	/* Must be called twice to trigger. */
321	spin_lock(&lock_me_up);
322	/* Let sparse know we intended to exit holding the lock. */
323	__release(&lock_me_up);
324}
325
326static void __noreturn lkdtm_HUNG_TASK(void)
327{
328	set_current_state(TASK_UNINTERRUPTIBLE);
329	schedule();
330	BUG();
331}
332
333static volatile unsigned int huge = INT_MAX - 2;
334static volatile unsigned int ignored;
335
336static void lkdtm_OVERFLOW_SIGNED(void)
337{
338	int value;
339
340	value = huge;
341	pr_info("Normal signed addition ...\n");
342	value += 1;
343	ignored = value;
344
345	pr_info("Overflowing signed addition ...\n");
346	value += 4;
347	ignored = value;
348}
349
350
351static void lkdtm_OVERFLOW_UNSIGNED(void)
352{
353	unsigned int value;
354
355	value = huge;
356	pr_info("Normal unsigned addition ...\n");
357	value += 1;
358	ignored = value;
359
360	pr_info("Overflowing unsigned addition ...\n");
361	value += 4;
362	ignored = value;
363}
364
365/* Intentionally using unannotated flex array definition. */
366struct array_bounds_flex_array {
367	int one;
368	int two;
369	char data[];
370};
371
372struct array_bounds {
373	int one;
374	int two;
375	char data[8];
376	int three;
377};
378
379static void lkdtm_ARRAY_BOUNDS(void)
380{
381	struct array_bounds_flex_array *not_checked;
382	struct array_bounds *checked;
383	volatile int i;
384
385	not_checked = kmalloc(sizeof(*not_checked) * 2, GFP_KERNEL);
386	checked = kmalloc(sizeof(*checked) * 2, GFP_KERNEL);
387	if (!not_checked || !checked) {
388		kfree(not_checked);
389		kfree(checked);
390		return;
391	}
392
393	pr_info("Array access within bounds ...\n");
394	/* For both, touch all bytes in the actual member size. */
395	for (i = 0; i < sizeof(checked->data); i++)
396		checked->data[i] = 'A';
397	/*
398	 * For the uninstrumented flex array member, also touch 1 byte
399	 * beyond to verify it is correctly uninstrumented.
400	 */
401	for (i = 0; i < 2; i++)
402		not_checked->data[i] = 'A';
403
404	pr_info("Array access beyond bounds ...\n");
405	for (i = 0; i < sizeof(checked->data) + 1; i++)
406		checked->data[i] = 'B';
407
408	kfree(not_checked);
409	kfree(checked);
410	pr_err("FAIL: survived array bounds overflow!\n");
411	if (IS_ENABLED(CONFIG_UBSAN_BOUNDS))
412		pr_expected_config(CONFIG_UBSAN_TRAP);
413	else
414		pr_expected_config(CONFIG_UBSAN_BOUNDS);
415}
416
417struct lkdtm_annotated {
418	unsigned long flags;
419	int count;
420	int array[] __counted_by(count);
421};
422
423static volatile int fam_count = 4;
424
425static void lkdtm_FAM_BOUNDS(void)
426{
427	struct lkdtm_annotated *inst;
428
429	inst = kzalloc(struct_size(inst, array, fam_count + 1), GFP_KERNEL);
430	if (!inst) {
431		pr_err("FAIL: could not allocate test struct!\n");
432		return;
433	}
434
435	inst->count = fam_count;
436	pr_info("Array access within bounds ...\n");
437	inst->array[1] = fam_count;
438	ignored = inst->array[1];
439
440	pr_info("Array access beyond bounds ...\n");
441	inst->array[fam_count] = fam_count;
442	ignored = inst->array[fam_count];
443
444	kfree(inst);
445
446	pr_err("FAIL: survived access of invalid flexible array member index!\n");
447
448	if (!IS_ENABLED(CONFIG_CC_HAS_COUNTED_BY))
449		pr_warn("This is expected since this %s was built with a compiler that does not support __counted_by\n",
450			lkdtm_kernel_info);
451	else if (IS_ENABLED(CONFIG_UBSAN_BOUNDS))
452		pr_expected_config(CONFIG_UBSAN_TRAP);
453	else
454		pr_expected_config(CONFIG_UBSAN_BOUNDS);
455}
456
457static void lkdtm_CORRUPT_LIST_ADD(void)
458{
459	/*
460	 * Initially, an empty list via LIST_HEAD:
461	 *	test_head.next = &test_head
462	 *	test_head.prev = &test_head
463	 */
464	LIST_HEAD(test_head);
465	struct lkdtm_list good, bad;
466	void *target[2] = { };
467	void *redirection = &target;
468
469	pr_info("attempting good list addition\n");
470
471	/*
472	 * Adding to the list performs these actions:
473	 *	test_head.next->prev = &good.node
474	 *	good.node.next = test_head.next
475	 *	good.node.prev = test_head
476	 *	test_head.next = good.node
477	 */
478	list_add(&good.node, &test_head);
479
480	pr_info("attempting corrupted list addition\n");
481	/*
482	 * In simulating this "write what where" primitive, the "what" is
483	 * the address of &bad.node, and the "where" is the address held
484	 * by "redirection".
485	 */
486	test_head.next = redirection;
487	list_add(&bad.node, &test_head);
488
489	if (target[0] == NULL && target[1] == NULL)
490		pr_err("Overwrite did not happen, but no BUG?!\n");
491	else {
492		pr_err("list_add() corruption not detected!\n");
493		pr_expected_config(CONFIG_LIST_HARDENED);
494	}
495}
496
497static void lkdtm_CORRUPT_LIST_DEL(void)
498{
499	LIST_HEAD(test_head);
500	struct lkdtm_list item;
501	void *target[2] = { };
502	void *redirection = &target;
503
504	list_add(&item.node, &test_head);
505
506	pr_info("attempting good list removal\n");
507	list_del(&item.node);
508
509	pr_info("attempting corrupted list removal\n");
510	list_add(&item.node, &test_head);
511
512	/* As with the list_add() test above, this corrupts "next". */
513	item.node.next = redirection;
514	list_del(&item.node);
515
516	if (target[0] == NULL && target[1] == NULL)
517		pr_err("Overwrite did not happen, but no BUG?!\n");
518	else {
519		pr_err("list_del() corruption not detected!\n");
520		pr_expected_config(CONFIG_LIST_HARDENED);
521	}
522}
523
524/* Test that VMAP_STACK is actually allocating with a leading guard page */
525static void lkdtm_STACK_GUARD_PAGE_LEADING(void)
526{
527	const unsigned char *stack = task_stack_page(current);
528	const unsigned char *ptr = stack - 1;
529	volatile unsigned char byte;
530
531	pr_info("attempting bad read from page below current stack\n");
532
533	byte = *ptr;
534
535	pr_err("FAIL: accessed page before stack! (byte: %x)\n", byte);
536}
537
538/* Test that VMAP_STACK is actually allocating with a trailing guard page */
539static void lkdtm_STACK_GUARD_PAGE_TRAILING(void)
540{
541	const unsigned char *stack = task_stack_page(current);
542	const unsigned char *ptr = stack + THREAD_SIZE;
543	volatile unsigned char byte;
544
545	pr_info("attempting bad read from page above current stack\n");
546
547	byte = *ptr;
548
549	pr_err("FAIL: accessed page after stack! (byte: %x)\n", byte);
550}
551
552static void lkdtm_UNSET_SMEP(void)
553{
554#if IS_ENABLED(CONFIG_X86_64) && !IS_ENABLED(CONFIG_UML)
555#define MOV_CR4_DEPTH	64
556	void (*direct_write_cr4)(unsigned long val);
557	unsigned char *insn;
558	unsigned long cr4;
559	int i;
560
561	cr4 = native_read_cr4();
562
563	if ((cr4 & X86_CR4_SMEP) != X86_CR4_SMEP) {
564		pr_err("FAIL: SMEP not in use\n");
565		return;
566	}
567	cr4 &= ~(X86_CR4_SMEP);
568
569	pr_info("trying to clear SMEP normally\n");
570	native_write_cr4(cr4);
571	if (cr4 == native_read_cr4()) {
572		pr_err("FAIL: pinning SMEP failed!\n");
573		cr4 |= X86_CR4_SMEP;
574		pr_info("restoring SMEP\n");
575		native_write_cr4(cr4);
576		return;
577	}
578	pr_info("ok: SMEP did not get cleared\n");
579
580	/*
581	 * To test the post-write pinning verification we need to call
582	 * directly into the middle of native_write_cr4() where the
583	 * cr4 write happens, skipping any pinning. This searches for
584	 * the cr4 writing instruction.
585	 */
586	insn = (unsigned char *)native_write_cr4;
587	OPTIMIZER_HIDE_VAR(insn);
588	for (i = 0; i < MOV_CR4_DEPTH; i++) {
589		/* mov %rdi, %cr4 */
590		if (insn[i] == 0x0f && insn[i+1] == 0x22 && insn[i+2] == 0xe7)
591			break;
592		/* mov %rdi,%rax; mov %rax, %cr4 */
593		if (insn[i]   == 0x48 && insn[i+1] == 0x89 &&
594		    insn[i+2] == 0xf8 && insn[i+3] == 0x0f &&
595		    insn[i+4] == 0x22 && insn[i+5] == 0xe0)
596			break;
597	}
598	if (i >= MOV_CR4_DEPTH) {
599		pr_info("ok: cannot locate cr4 writing call gadget\n");
600		return;
601	}
602	direct_write_cr4 = (void *)(insn + i);
603
604	pr_info("trying to clear SMEP with call gadget\n");
605	direct_write_cr4(cr4);
606	if (native_read_cr4() & X86_CR4_SMEP) {
607		pr_info("ok: SMEP removal was reverted\n");
608	} else {
609		pr_err("FAIL: cleared SMEP not detected!\n");
610		cr4 |= X86_CR4_SMEP;
611		pr_info("restoring SMEP\n");
612		native_write_cr4(cr4);
613	}
614#else
615	pr_err("XFAIL: this test is x86_64-only\n");
616#endif
617}
618
619static void lkdtm_DOUBLE_FAULT(void)
620{
621#if IS_ENABLED(CONFIG_X86_32) && !IS_ENABLED(CONFIG_UML)
622	/*
623	 * Trigger #DF by setting the stack limit to zero.  This clobbers
624	 * a GDT TLS slot, which is okay because the current task will die
625	 * anyway due to the double fault.
626	 */
627	struct desc_struct d = {
628		.type = 3,	/* expand-up, writable, accessed data */
629		.p = 1,		/* present */
630		.d = 1,		/* 32-bit */
631		.g = 0,		/* limit in bytes */
632		.s = 1,		/* not system */
633	};
634
635	local_irq_disable();
636	write_gdt_entry(get_cpu_gdt_rw(smp_processor_id()),
637			GDT_ENTRY_TLS_MIN, &d, DESCTYPE_S);
638
639	/*
640	 * Put our zero-limit segment in SS and then trigger a fault.  The
641	 * 4-byte access to (%esp) will fault with #SS, and the attempt to
642	 * deliver the fault will recursively cause #SS and result in #DF.
643	 * This whole process happens while NMIs and MCEs are blocked by the
644	 * MOV SS window.  This is nice because an NMI with an invalid SS
645	 * would also double-fault, resulting in the NMI or MCE being lost.
646	 */
647	asm volatile ("movw %0, %%ss; addl $0, (%%esp)" ::
648		      "r" ((unsigned short)(GDT_ENTRY_TLS_MIN << 3)));
649
650	pr_err("FAIL: tried to double fault but didn't die\n");
651#else
652	pr_err("XFAIL: this test is ia32-only\n");
653#endif
654}
655
656#ifdef CONFIG_ARM64
657static noinline void change_pac_parameters(void)
658{
659	if (IS_ENABLED(CONFIG_ARM64_PTR_AUTH_KERNEL)) {
660		/* Reset the keys of current task */
661		ptrauth_thread_init_kernel(current);
662		ptrauth_thread_switch_kernel(current);
663	}
664}
665#endif
666
667static noinline void lkdtm_CORRUPT_PAC(void)
668{
669#ifdef CONFIG_ARM64
670#define CORRUPT_PAC_ITERATE	10
671	int i;
672
673	if (!IS_ENABLED(CONFIG_ARM64_PTR_AUTH_KERNEL))
674		pr_err("FAIL: kernel not built with CONFIG_ARM64_PTR_AUTH_KERNEL\n");
675
676	if (!system_supports_address_auth()) {
677		pr_err("FAIL: CPU lacks pointer authentication feature\n");
678		return;
679	}
680
681	pr_info("changing PAC parameters to force function return failure...\n");
682	/*
683	 * PAC is a hash value computed from input keys, return address and
684	 * stack pointer. As pac has fewer bits so there is a chance of
685	 * collision, so iterate few times to reduce the collision probability.
686	 */
687	for (i = 0; i < CORRUPT_PAC_ITERATE; i++)
688		change_pac_parameters();
689
690	pr_err("FAIL: survived PAC changes! Kernel may be unstable from here\n");
691#else
692	pr_err("XFAIL: this test is arm64-only\n");
693#endif
694}
695
696static struct crashtype crashtypes[] = {
697	CRASHTYPE(PANIC),
698	CRASHTYPE(PANIC_STOP_IRQOFF),
699	CRASHTYPE(BUG),
700	CRASHTYPE(WARNING),
701	CRASHTYPE(WARNING_MESSAGE),
702	CRASHTYPE(EXCEPTION),
703	CRASHTYPE(LOOP),
704	CRASHTYPE(EXHAUST_STACK),
705	CRASHTYPE(CORRUPT_STACK),
706	CRASHTYPE(CORRUPT_STACK_STRONG),
707	CRASHTYPE(REPORT_STACK),
708	CRASHTYPE(REPORT_STACK_CANARY),
709	CRASHTYPE(UNALIGNED_LOAD_STORE_WRITE),
710	CRASHTYPE(SOFTLOCKUP),
711	CRASHTYPE(HARDLOCKUP),
712	CRASHTYPE(SMP_CALL_LOCKUP),
713	CRASHTYPE(SPINLOCKUP),
714	CRASHTYPE(HUNG_TASK),
715	CRASHTYPE(OVERFLOW_SIGNED),
716	CRASHTYPE(OVERFLOW_UNSIGNED),
717	CRASHTYPE(ARRAY_BOUNDS),
718	CRASHTYPE(FAM_BOUNDS),
719	CRASHTYPE(CORRUPT_LIST_ADD),
720	CRASHTYPE(CORRUPT_LIST_DEL),
721	CRASHTYPE(STACK_GUARD_PAGE_LEADING),
722	CRASHTYPE(STACK_GUARD_PAGE_TRAILING),
723	CRASHTYPE(UNSET_SMEP),
724	CRASHTYPE(DOUBLE_FAULT),
725	CRASHTYPE(CORRUPT_PAC),
726};
727
728struct crashtype_category bugs_crashtypes = {
729	.crashtypes = crashtypes,
730	.len	    = ARRAY_SIZE(crashtypes),
731};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * This is for all the tests related to logic bugs (e.g. bad dereferences,
  4 * bad alignment, bad loops, bad locking, bad scheduling, deep stacks, and
  5 * lockups) along with other things that don't fit well into existing LKDTM
  6 * test source files.
  7 */
  8#include "lkdtm.h"
 
  9#include <linux/list.h>
 10#include <linux/sched.h>
 11#include <linux/sched/signal.h>
 12#include <linux/sched/task_stack.h>
 
 
 13#include <linux/uaccess.h>
 14#include <linux/slab.h>
 15
 16#if IS_ENABLED(CONFIG_X86_32) && !IS_ENABLED(CONFIG_UML)
 17#include <asm/desc.h>
 18#endif
 19
 20struct lkdtm_list {
 21	struct list_head node;
 22};
 23
 24/*
 25 * Make sure our attempts to over run the kernel stack doesn't trigger
 26 * a compiler warning when CONFIG_FRAME_WARN is set. Then make sure we
 27 * recurse past the end of THREAD_SIZE by default.
 28 */
 29#if defined(CONFIG_FRAME_WARN) && (CONFIG_FRAME_WARN > 0)
 30#define REC_STACK_SIZE (_AC(CONFIG_FRAME_WARN, UL) / 2)
 31#else
 32#define REC_STACK_SIZE (THREAD_SIZE / 8)
 33#endif
 34#define REC_NUM_DEFAULT ((THREAD_SIZE / REC_STACK_SIZE) * 2)
 35
 36static int recur_count = REC_NUM_DEFAULT;
 37
 38static DEFINE_SPINLOCK(lock_me_up);
 39
 40/*
 41 * Make sure compiler does not optimize this function or stack frame away:
 42 * - function marked noinline
 43 * - stack variables are marked volatile
 44 * - stack variables are written (memset()) and read (pr_info())
 45 * - function has external effects (pr_info())
 46 * */
 
 47static int noinline recursive_loop(int remaining)
 48{
 49	volatile char buf[REC_STACK_SIZE];
 
 50
 51	memset((void *)buf, remaining & 0xFF, sizeof(buf));
 52	pr_info("loop %d/%d ...\n", (int)buf[remaining % sizeof(buf)],
 53		recur_count);
 54	if (!remaining)
 55		return 0;
 56	else
 57		return recursive_loop(remaining - 1);
 
 
 58}
 59
 60/* If the depth is negative, use the default, otherwise keep parameter. */
 61void __init lkdtm_bugs_init(int *recur_param)
 62{
 63	if (*recur_param < 0)
 64		*recur_param = recur_count;
 65	else
 66		recur_count = *recur_param;
 67}
 68
 69void lkdtm_PANIC(void)
 70{
 71	panic("dumptest");
 72}
 73
 74void lkdtm_BUG(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 75{
 76	BUG();
 77}
 78
 79static int warn_counter;
 80
 81void lkdtm_WARNING(void)
 82{
 83	WARN_ON(++warn_counter);
 84}
 85
 86void lkdtm_WARNING_MESSAGE(void)
 87{
 88	WARN(1, "Warning message trigger count: %d\n", ++warn_counter);
 89}
 90
 91void lkdtm_EXCEPTION(void)
 92{
 93	*((volatile int *) 0) = 0;
 94}
 95
 96void lkdtm_LOOP(void)
 97{
 98	for (;;)
 99		;
100}
101
102void lkdtm_EXHAUST_STACK(void)
103{
104	pr_info("Calling function with %lu frame size to depth %d ...\n",
105		REC_STACK_SIZE, recur_count);
106	recursive_loop(recur_count);
107	pr_info("FAIL: survived without exhausting stack?!\n");
108}
109
110static noinline void __lkdtm_CORRUPT_STACK(void *stack)
111{
112	memset(stack, '\xff', 64);
113}
114
115/* This should trip the stack canary, not corrupt the return address. */
116noinline void lkdtm_CORRUPT_STACK(void)
117{
118	/* Use default char array length that triggers stack protection. */
119	char data[8] __aligned(sizeof(void *));
120
121	pr_info("Corrupting stack containing char array ...\n");
122	__lkdtm_CORRUPT_STACK((void *)&data);
123}
124
125/* Same as above but will only get a canary with -fstack-protector-strong */
126noinline void lkdtm_CORRUPT_STACK_STRONG(void)
127{
128	union {
129		unsigned short shorts[4];
130		unsigned long *ptr;
131	} data __aligned(sizeof(void *));
132
133	pr_info("Corrupting stack containing union ...\n");
134	__lkdtm_CORRUPT_STACK((void *)&data);
135}
136
137static pid_t stack_pid;
138static unsigned long stack_addr;
139
140void lkdtm_REPORT_STACK(void)
141{
142	volatile uintptr_t magic;
143	pid_t pid = task_pid_nr(current);
144
145	if (pid != stack_pid) {
146		pr_info("Starting stack offset tracking for pid %d\n", pid);
147		stack_pid = pid;
148		stack_addr = (uintptr_t)&magic;
149	}
150
151	pr_info("Stack offset: %d\n", (int)(stack_addr - (uintptr_t)&magic));
152}
153
154void lkdtm_UNALIGNED_LOAD_STORE_WRITE(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
155{
156	static u8 data[5] __attribute__((aligned(4))) = {1, 2, 3, 4, 5};
157	u32 *p;
158	u32 val = 0x12345678;
159
160	p = (u32 *)(data + 1);
161	if (*p == 0)
162		val = 0x87654321;
163	*p = val;
164
165	if (IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
166		pr_err("XFAIL: arch has CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS\n");
167}
168
169void lkdtm_SOFTLOCKUP(void)
170{
171	preempt_disable();
172	for (;;)
173		cpu_relax();
174}
175
176void lkdtm_HARDLOCKUP(void)
177{
178	local_irq_disable();
179	for (;;)
180		cpu_relax();
181}
182
183void lkdtm_SPINLOCKUP(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
184{
185	/* Must be called twice to trigger. */
186	spin_lock(&lock_me_up);
187	/* Let sparse know we intended to exit holding the lock. */
188	__release(&lock_me_up);
189}
190
191void lkdtm_HUNG_TASK(void)
192{
193	set_current_state(TASK_UNINTERRUPTIBLE);
194	schedule();
 
195}
196
197volatile unsigned int huge = INT_MAX - 2;
198volatile unsigned int ignored;
199
200void lkdtm_OVERFLOW_SIGNED(void)
201{
202	int value;
203
204	value = huge;
205	pr_info("Normal signed addition ...\n");
206	value += 1;
207	ignored = value;
208
209	pr_info("Overflowing signed addition ...\n");
210	value += 4;
211	ignored = value;
212}
213
214
215void lkdtm_OVERFLOW_UNSIGNED(void)
216{
217	unsigned int value;
218
219	value = huge;
220	pr_info("Normal unsigned addition ...\n");
221	value += 1;
222	ignored = value;
223
224	pr_info("Overflowing unsigned addition ...\n");
225	value += 4;
226	ignored = value;
227}
228
229/* Intentionally using old-style flex array definition of 1 byte. */
230struct array_bounds_flex_array {
231	int one;
232	int two;
233	char data[1];
234};
235
236struct array_bounds {
237	int one;
238	int two;
239	char data[8];
240	int three;
241};
242
243void lkdtm_ARRAY_BOUNDS(void)
244{
245	struct array_bounds_flex_array *not_checked;
246	struct array_bounds *checked;
247	volatile int i;
248
249	not_checked = kmalloc(sizeof(*not_checked) * 2, GFP_KERNEL);
250	checked = kmalloc(sizeof(*checked) * 2, GFP_KERNEL);
 
 
 
 
 
251
252	pr_info("Array access within bounds ...\n");
253	/* For both, touch all bytes in the actual member size. */
254	for (i = 0; i < sizeof(checked->data); i++)
255		checked->data[i] = 'A';
256	/*
257	 * For the uninstrumented flex array member, also touch 1 byte
258	 * beyond to verify it is correctly uninstrumented.
259	 */
260	for (i = 0; i < sizeof(not_checked->data) + 1; i++)
261		not_checked->data[i] = 'A';
262
263	pr_info("Array access beyond bounds ...\n");
264	for (i = 0; i < sizeof(checked->data) + 1; i++)
265		checked->data[i] = 'B';
266
267	kfree(not_checked);
268	kfree(checked);
269	pr_err("FAIL: survived array bounds overflow!\n");
 
 
 
 
270}
271
272void lkdtm_CORRUPT_LIST_ADD(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
273{
274	/*
275	 * Initially, an empty list via LIST_HEAD:
276	 *	test_head.next = &test_head
277	 *	test_head.prev = &test_head
278	 */
279	LIST_HEAD(test_head);
280	struct lkdtm_list good, bad;
281	void *target[2] = { };
282	void *redirection = &target;
283
284	pr_info("attempting good list addition\n");
285
286	/*
287	 * Adding to the list performs these actions:
288	 *	test_head.next->prev = &good.node
289	 *	good.node.next = test_head.next
290	 *	good.node.prev = test_head
291	 *	test_head.next = good.node
292	 */
293	list_add(&good.node, &test_head);
294
295	pr_info("attempting corrupted list addition\n");
296	/*
297	 * In simulating this "write what where" primitive, the "what" is
298	 * the address of &bad.node, and the "where" is the address held
299	 * by "redirection".
300	 */
301	test_head.next = redirection;
302	list_add(&bad.node, &test_head);
303
304	if (target[0] == NULL && target[1] == NULL)
305		pr_err("Overwrite did not happen, but no BUG?!\n");
306	else {
307		pr_err("list_add() corruption not detected!\n");
308		pr_expected_config(CONFIG_DEBUG_LIST);
309	}
310}
311
312void lkdtm_CORRUPT_LIST_DEL(void)
313{
314	LIST_HEAD(test_head);
315	struct lkdtm_list item;
316	void *target[2] = { };
317	void *redirection = &target;
318
319	list_add(&item.node, &test_head);
320
321	pr_info("attempting good list removal\n");
322	list_del(&item.node);
323
324	pr_info("attempting corrupted list removal\n");
325	list_add(&item.node, &test_head);
326
327	/* As with the list_add() test above, this corrupts "next". */
328	item.node.next = redirection;
329	list_del(&item.node);
330
331	if (target[0] == NULL && target[1] == NULL)
332		pr_err("Overwrite did not happen, but no BUG?!\n");
333	else {
334		pr_err("list_del() corruption not detected!\n");
335		pr_expected_config(CONFIG_DEBUG_LIST);
336	}
337}
338
339/* Test that VMAP_STACK is actually allocating with a leading guard page */
340void lkdtm_STACK_GUARD_PAGE_LEADING(void)
341{
342	const unsigned char *stack = task_stack_page(current);
343	const unsigned char *ptr = stack - 1;
344	volatile unsigned char byte;
345
346	pr_info("attempting bad read from page below current stack\n");
347
348	byte = *ptr;
349
350	pr_err("FAIL: accessed page before stack! (byte: %x)\n", byte);
351}
352
353/* Test that VMAP_STACK is actually allocating with a trailing guard page */
354void lkdtm_STACK_GUARD_PAGE_TRAILING(void)
355{
356	const unsigned char *stack = task_stack_page(current);
357	const unsigned char *ptr = stack + THREAD_SIZE;
358	volatile unsigned char byte;
359
360	pr_info("attempting bad read from page above current stack\n");
361
362	byte = *ptr;
363
364	pr_err("FAIL: accessed page after stack! (byte: %x)\n", byte);
365}
366
367void lkdtm_UNSET_SMEP(void)
368{
369#if IS_ENABLED(CONFIG_X86_64) && !IS_ENABLED(CONFIG_UML)
370#define MOV_CR4_DEPTH	64
371	void (*direct_write_cr4)(unsigned long val);
372	unsigned char *insn;
373	unsigned long cr4;
374	int i;
375
376	cr4 = native_read_cr4();
377
378	if ((cr4 & X86_CR4_SMEP) != X86_CR4_SMEP) {
379		pr_err("FAIL: SMEP not in use\n");
380		return;
381	}
382	cr4 &= ~(X86_CR4_SMEP);
383
384	pr_info("trying to clear SMEP normally\n");
385	native_write_cr4(cr4);
386	if (cr4 == native_read_cr4()) {
387		pr_err("FAIL: pinning SMEP failed!\n");
388		cr4 |= X86_CR4_SMEP;
389		pr_info("restoring SMEP\n");
390		native_write_cr4(cr4);
391		return;
392	}
393	pr_info("ok: SMEP did not get cleared\n");
394
395	/*
396	 * To test the post-write pinning verification we need to call
397	 * directly into the middle of native_write_cr4() where the
398	 * cr4 write happens, skipping any pinning. This searches for
399	 * the cr4 writing instruction.
400	 */
401	insn = (unsigned char *)native_write_cr4;
 
402	for (i = 0; i < MOV_CR4_DEPTH; i++) {
403		/* mov %rdi, %cr4 */
404		if (insn[i] == 0x0f && insn[i+1] == 0x22 && insn[i+2] == 0xe7)
405			break;
406		/* mov %rdi,%rax; mov %rax, %cr4 */
407		if (insn[i]   == 0x48 && insn[i+1] == 0x89 &&
408		    insn[i+2] == 0xf8 && insn[i+3] == 0x0f &&
409		    insn[i+4] == 0x22 && insn[i+5] == 0xe0)
410			break;
411	}
412	if (i >= MOV_CR4_DEPTH) {
413		pr_info("ok: cannot locate cr4 writing call gadget\n");
414		return;
415	}
416	direct_write_cr4 = (void *)(insn + i);
417
418	pr_info("trying to clear SMEP with call gadget\n");
419	direct_write_cr4(cr4);
420	if (native_read_cr4() & X86_CR4_SMEP) {
421		pr_info("ok: SMEP removal was reverted\n");
422	} else {
423		pr_err("FAIL: cleared SMEP not detected!\n");
424		cr4 |= X86_CR4_SMEP;
425		pr_info("restoring SMEP\n");
426		native_write_cr4(cr4);
427	}
428#else
429	pr_err("XFAIL: this test is x86_64-only\n");
430#endif
431}
432
433void lkdtm_DOUBLE_FAULT(void)
434{
435#if IS_ENABLED(CONFIG_X86_32) && !IS_ENABLED(CONFIG_UML)
436	/*
437	 * Trigger #DF by setting the stack limit to zero.  This clobbers
438	 * a GDT TLS slot, which is okay because the current task will die
439	 * anyway due to the double fault.
440	 */
441	struct desc_struct d = {
442		.type = 3,	/* expand-up, writable, accessed data */
443		.p = 1,		/* present */
444		.d = 1,		/* 32-bit */
445		.g = 0,		/* limit in bytes */
446		.s = 1,		/* not system */
447	};
448
449	local_irq_disable();
450	write_gdt_entry(get_cpu_gdt_rw(smp_processor_id()),
451			GDT_ENTRY_TLS_MIN, &d, DESCTYPE_S);
452
453	/*
454	 * Put our zero-limit segment in SS and then trigger a fault.  The
455	 * 4-byte access to (%esp) will fault with #SS, and the attempt to
456	 * deliver the fault will recursively cause #SS and result in #DF.
457	 * This whole process happens while NMIs and MCEs are blocked by the
458	 * MOV SS window.  This is nice because an NMI with an invalid SS
459	 * would also double-fault, resulting in the NMI or MCE being lost.
460	 */
461	asm volatile ("movw %0, %%ss; addl $0, (%%esp)" ::
462		      "r" ((unsigned short)(GDT_ENTRY_TLS_MIN << 3)));
463
464	pr_err("FAIL: tried to double fault but didn't die\n");
465#else
466	pr_err("XFAIL: this test is ia32-only\n");
467#endif
468}
469
470#ifdef CONFIG_ARM64
471static noinline void change_pac_parameters(void)
472{
473	if (IS_ENABLED(CONFIG_ARM64_PTR_AUTH_KERNEL)) {
474		/* Reset the keys of current task */
475		ptrauth_thread_init_kernel(current);
476		ptrauth_thread_switch_kernel(current);
477	}
478}
479#endif
480
481noinline void lkdtm_CORRUPT_PAC(void)
482{
483#ifdef CONFIG_ARM64
484#define CORRUPT_PAC_ITERATE	10
485	int i;
486
487	if (!IS_ENABLED(CONFIG_ARM64_PTR_AUTH_KERNEL))
488		pr_err("FAIL: kernel not built with CONFIG_ARM64_PTR_AUTH_KERNEL\n");
489
490	if (!system_supports_address_auth()) {
491		pr_err("FAIL: CPU lacks pointer authentication feature\n");
492		return;
493	}
494
495	pr_info("changing PAC parameters to force function return failure...\n");
496	/*
497	 * PAC is a hash value computed from input keys, return address and
498	 * stack pointer. As pac has fewer bits so there is a chance of
499	 * collision, so iterate few times to reduce the collision probability.
500	 */
501	for (i = 0; i < CORRUPT_PAC_ITERATE; i++)
502		change_pac_parameters();
503
504	pr_err("FAIL: survived PAC changes! Kernel may be unstable from here\n");
505#else
506	pr_err("XFAIL: this test is arm64-only\n");
507#endif
508}
509
510void lkdtm_FORTIFY_OBJECT(void)
511{
512	struct target {
513		char a[10];
514	} target[2] = {};
515	int result;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
516
517	/*
518	 * Using volatile prevents the compiler from determining the value of
519	 * 'size' at compile time. Without that, we would get a compile error
520	 * rather than a runtime error.
521	 */
522	volatile int size = 11;
523
524	pr_info("trying to read past the end of a struct\n");
525
526	result = memcmp(&target[0], &target[1], size);
527
528	/* Print result to prevent the code from being eliminated */
529	pr_err("FAIL: fortify did not catch an object overread!\n"
530	       "\"%d\" was the memcmp result.\n", result);
531}
532
533void lkdtm_FORTIFY_SUBOBJECT(void)
534{
535	struct target {
536		char a[10];
537		char b[10];
538	} target;
539	char *src;
540
541	src = kmalloc(20, GFP_KERNEL);
542	strscpy(src, "over ten bytes", 20);
543
544	pr_info("trying to strcpy past the end of a member of a struct\n");
545
546	/*
547	 * strncpy(target.a, src, 20); will hit a compile error because the
548	 * compiler knows at build time that target.a < 20 bytes. Use strcpy()
549	 * to force a runtime error.
550	 */
551	strcpy(target.a, src);
552
553	/* Use target.a to prevent the code from being eliminated */
554	pr_err("FAIL: fortify did not catch an sub-object overrun!\n"
555	       "\"%s\" was copied.\n", target.a);
556
557	kfree(src);
558}