Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * This is for all the tests related to logic bugs (e.g. bad dereferences,
4 * bad alignment, bad loops, bad locking, bad scheduling, deep stacks, and
5 * lockups) along with other things that don't fit well into existing LKDTM
6 * test source files.
7 */
8#include "lkdtm.h"
9#include <linux/cpu.h>
10#include <linux/list.h>
11#include <linux/sched.h>
12#include <linux/sched/signal.h>
13#include <linux/sched/task_stack.h>
14#include <linux/slab.h>
15#include <linux/stop_machine.h>
16#include <linux/uaccess.h>
17
18#if IS_ENABLED(CONFIG_X86_32) && !IS_ENABLED(CONFIG_UML)
19#include <asm/desc.h>
20#endif
21
22struct lkdtm_list {
23 struct list_head node;
24};
25
26/*
27 * Make sure our attempts to over run the kernel stack doesn't trigger
28 * a compiler warning when CONFIG_FRAME_WARN is set. Then make sure we
29 * recurse past the end of THREAD_SIZE by default.
30 */
31#if defined(CONFIG_FRAME_WARN) && (CONFIG_FRAME_WARN > 0)
32#define REC_STACK_SIZE (_AC(CONFIG_FRAME_WARN, UL) / 2)
33#else
34#define REC_STACK_SIZE (THREAD_SIZE / 8UL)
35#endif
36#define REC_NUM_DEFAULT ((THREAD_SIZE / REC_STACK_SIZE) * 2)
37
38static int recur_count = REC_NUM_DEFAULT;
39
40static DEFINE_SPINLOCK(lock_me_up);
41
42/*
43 * Make sure compiler does not optimize this function or stack frame away:
44 * - function marked noinline
45 * - stack variables are marked volatile
46 * - stack variables are written (memset()) and read (buf[..] passed as arg)
47 * - function may have external effects (memzero_explicit())
48 * - no tail recursion possible
49 */
50static int noinline recursive_loop(int remaining)
51{
52 volatile char buf[REC_STACK_SIZE];
53 volatile int ret;
54
55 memset((void *)buf, remaining & 0xFF, sizeof(buf));
56 if (!remaining)
57 ret = 0;
58 else
59 ret = recursive_loop((int)buf[remaining % sizeof(buf)] - 1);
60 memzero_explicit((void *)buf, sizeof(buf));
61 return ret;
62}
63
64/* If the depth is negative, use the default, otherwise keep parameter. */
65void __init lkdtm_bugs_init(int *recur_param)
66{
67 if (*recur_param < 0)
68 *recur_param = recur_count;
69 else
70 recur_count = *recur_param;
71}
72
73static void lkdtm_PANIC(void)
74{
75 panic("dumptest");
76}
77
78static int panic_stop_irqoff_fn(void *arg)
79{
80 atomic_t *v = arg;
81
82 /*
83 * As stop_machine() disables interrupts, all CPUs within this function
84 * have interrupts disabled and cannot take a regular IPI.
85 *
86 * The last CPU which enters here will trigger a panic, and as all CPUs
87 * cannot take a regular IPI, we'll only be able to stop secondaries if
88 * smp_send_stop() or crash_smp_send_stop() uses an NMI.
89 */
90 if (atomic_inc_return(v) == num_online_cpus())
91 panic("panic stop irqoff test");
92
93 for (;;)
94 cpu_relax();
95}
96
97static void lkdtm_PANIC_STOP_IRQOFF(void)
98{
99 atomic_t v = ATOMIC_INIT(0);
100 stop_machine(panic_stop_irqoff_fn, &v, cpu_online_mask);
101}
102
103static void lkdtm_BUG(void)
104{
105 BUG();
106}
107
108static int warn_counter;
109
110static void lkdtm_WARNING(void)
111{
112 WARN_ON(++warn_counter);
113}
114
115static void lkdtm_WARNING_MESSAGE(void)
116{
117 WARN(1, "Warning message trigger count: %d\n", ++warn_counter);
118}
119
120static void lkdtm_EXCEPTION(void)
121{
122 *((volatile int *) 0) = 0;
123}
124
125static void lkdtm_LOOP(void)
126{
127 for (;;)
128 ;
129}
130
131static void lkdtm_EXHAUST_STACK(void)
132{
133 pr_info("Calling function with %lu frame size to depth %d ...\n",
134 REC_STACK_SIZE, recur_count);
135 recursive_loop(recur_count);
136 pr_info("FAIL: survived without exhausting stack?!\n");
137}
138
139static noinline void __lkdtm_CORRUPT_STACK(void *stack)
140{
141 memset(stack, '\xff', 64);
142}
143
144/* This should trip the stack canary, not corrupt the return address. */
145static noinline void lkdtm_CORRUPT_STACK(void)
146{
147 /* Use default char array length that triggers stack protection. */
148 char data[8] __aligned(sizeof(void *));
149
150 pr_info("Corrupting stack containing char array ...\n");
151 __lkdtm_CORRUPT_STACK((void *)&data);
152}
153
154/* Same as above but will only get a canary with -fstack-protector-strong */
155static noinline void lkdtm_CORRUPT_STACK_STRONG(void)
156{
157 union {
158 unsigned short shorts[4];
159 unsigned long *ptr;
160 } data __aligned(sizeof(void *));
161
162 pr_info("Corrupting stack containing union ...\n");
163 __lkdtm_CORRUPT_STACK((void *)&data);
164}
165
166static pid_t stack_pid;
167static unsigned long stack_addr;
168
169static void lkdtm_REPORT_STACK(void)
170{
171 volatile uintptr_t magic;
172 pid_t pid = task_pid_nr(current);
173
174 if (pid != stack_pid) {
175 pr_info("Starting stack offset tracking for pid %d\n", pid);
176 stack_pid = pid;
177 stack_addr = (uintptr_t)&magic;
178 }
179
180 pr_info("Stack offset: %d\n", (int)(stack_addr - (uintptr_t)&magic));
181}
182
183static pid_t stack_canary_pid;
184static unsigned long stack_canary;
185static unsigned long stack_canary_offset;
186
187static noinline void __lkdtm_REPORT_STACK_CANARY(void *stack)
188{
189 int i = 0;
190 pid_t pid = task_pid_nr(current);
191 unsigned long *canary = (unsigned long *)stack;
192 unsigned long current_offset = 0, init_offset = 0;
193
194 /* Do our best to find the canary in a 16 word window ... */
195 for (i = 1; i < 16; i++) {
196 canary = (unsigned long *)stack + i;
197#ifdef CONFIG_STACKPROTECTOR
198 if (*canary == current->stack_canary)
199 current_offset = i;
200 if (*canary == init_task.stack_canary)
201 init_offset = i;
202#endif
203 }
204
205 if (current_offset == 0) {
206 /*
207 * If the canary doesn't match what's in the task_struct,
208 * we're either using a global canary or the stack frame
209 * layout changed.
210 */
211 if (init_offset != 0) {
212 pr_err("FAIL: global stack canary found at offset %ld (canary for pid %d matches init_task's)!\n",
213 init_offset, pid);
214 } else {
215 pr_warn("FAIL: did not correctly locate stack canary :(\n");
216 pr_expected_config(CONFIG_STACKPROTECTOR);
217 }
218
219 return;
220 } else if (init_offset != 0) {
221 pr_warn("WARNING: found both current and init_task canaries nearby?!\n");
222 }
223
224 canary = (unsigned long *)stack + current_offset;
225 if (stack_canary_pid == 0) {
226 stack_canary = *canary;
227 stack_canary_pid = pid;
228 stack_canary_offset = current_offset;
229 pr_info("Recorded stack canary for pid %d at offset %ld\n",
230 stack_canary_pid, stack_canary_offset);
231 } else if (pid == stack_canary_pid) {
232 pr_warn("ERROR: saw pid %d again -- please use a new pid\n", pid);
233 } else {
234 if (current_offset != stack_canary_offset) {
235 pr_warn("ERROR: canary offset changed from %ld to %ld!?\n",
236 stack_canary_offset, current_offset);
237 return;
238 }
239
240 if (*canary == stack_canary) {
241 pr_warn("FAIL: canary identical for pid %d and pid %d at offset %ld!\n",
242 stack_canary_pid, pid, current_offset);
243 } else {
244 pr_info("ok: stack canaries differ between pid %d and pid %d at offset %ld.\n",
245 stack_canary_pid, pid, current_offset);
246 /* Reset the test. */
247 stack_canary_pid = 0;
248 }
249 }
250}
251
252static void lkdtm_REPORT_STACK_CANARY(void)
253{
254 /* Use default char array length that triggers stack protection. */
255 char data[8] __aligned(sizeof(void *)) = { };
256
257 __lkdtm_REPORT_STACK_CANARY((void *)&data);
258}
259
260static void lkdtm_UNALIGNED_LOAD_STORE_WRITE(void)
261{
262 static u8 data[5] __attribute__((aligned(4))) = {1, 2, 3, 4, 5};
263 u32 *p;
264 u32 val = 0x12345678;
265
266 p = (u32 *)(data + 1);
267 if (*p == 0)
268 val = 0x87654321;
269 *p = val;
270
271 if (IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
272 pr_err("XFAIL: arch has CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS\n");
273}
274
275static void lkdtm_SOFTLOCKUP(void)
276{
277 preempt_disable();
278 for (;;)
279 cpu_relax();
280}
281
282static void lkdtm_HARDLOCKUP(void)
283{
284 local_irq_disable();
285 for (;;)
286 cpu_relax();
287}
288
289static void __lkdtm_SMP_CALL_LOCKUP(void *unused)
290{
291 for (;;)
292 cpu_relax();
293}
294
295static void lkdtm_SMP_CALL_LOCKUP(void)
296{
297 unsigned int cpu, target;
298
299 cpus_read_lock();
300
301 cpu = get_cpu();
302 target = cpumask_any_but(cpu_online_mask, cpu);
303
304 if (target >= nr_cpu_ids) {
305 pr_err("FAIL: no other online CPUs\n");
306 goto out_put_cpus;
307 }
308
309 smp_call_function_single(target, __lkdtm_SMP_CALL_LOCKUP, NULL, 1);
310
311 pr_err("FAIL: did not hang\n");
312
313out_put_cpus:
314 put_cpu();
315 cpus_read_unlock();
316}
317
318static void lkdtm_SPINLOCKUP(void)
319{
320 /* Must be called twice to trigger. */
321 spin_lock(&lock_me_up);
322 /* Let sparse know we intended to exit holding the lock. */
323 __release(&lock_me_up);
324}
325
326static void __noreturn lkdtm_HUNG_TASK(void)
327{
328 set_current_state(TASK_UNINTERRUPTIBLE);
329 schedule();
330 BUG();
331}
332
333static volatile unsigned int huge = INT_MAX - 2;
334static volatile unsigned int ignored;
335
336static void lkdtm_OVERFLOW_SIGNED(void)
337{
338 int value;
339
340 value = huge;
341 pr_info("Normal signed addition ...\n");
342 value += 1;
343 ignored = value;
344
345 pr_info("Overflowing signed addition ...\n");
346 value += 4;
347 ignored = value;
348}
349
350
351static void lkdtm_OVERFLOW_UNSIGNED(void)
352{
353 unsigned int value;
354
355 value = huge;
356 pr_info("Normal unsigned addition ...\n");
357 value += 1;
358 ignored = value;
359
360 pr_info("Overflowing unsigned addition ...\n");
361 value += 4;
362 ignored = value;
363}
364
365/* Intentionally using unannotated flex array definition. */
366struct array_bounds_flex_array {
367 int one;
368 int two;
369 char data[];
370};
371
372struct array_bounds {
373 int one;
374 int two;
375 char data[8];
376 int three;
377};
378
379static void lkdtm_ARRAY_BOUNDS(void)
380{
381 struct array_bounds_flex_array *not_checked;
382 struct array_bounds *checked;
383 volatile int i;
384
385 not_checked = kmalloc(sizeof(*not_checked) * 2, GFP_KERNEL);
386 checked = kmalloc(sizeof(*checked) * 2, GFP_KERNEL);
387 if (!not_checked || !checked) {
388 kfree(not_checked);
389 kfree(checked);
390 return;
391 }
392
393 pr_info("Array access within bounds ...\n");
394 /* For both, touch all bytes in the actual member size. */
395 for (i = 0; i < sizeof(checked->data); i++)
396 checked->data[i] = 'A';
397 /*
398 * For the uninstrumented flex array member, also touch 1 byte
399 * beyond to verify it is correctly uninstrumented.
400 */
401 for (i = 0; i < 2; i++)
402 not_checked->data[i] = 'A';
403
404 pr_info("Array access beyond bounds ...\n");
405 for (i = 0; i < sizeof(checked->data) + 1; i++)
406 checked->data[i] = 'B';
407
408 kfree(not_checked);
409 kfree(checked);
410 pr_err("FAIL: survived array bounds overflow!\n");
411 if (IS_ENABLED(CONFIG_UBSAN_BOUNDS))
412 pr_expected_config(CONFIG_UBSAN_TRAP);
413 else
414 pr_expected_config(CONFIG_UBSAN_BOUNDS);
415}
416
417struct lkdtm_annotated {
418 unsigned long flags;
419 int count;
420 int array[] __counted_by(count);
421};
422
423static volatile int fam_count = 4;
424
425static void lkdtm_FAM_BOUNDS(void)
426{
427 struct lkdtm_annotated *inst;
428
429 inst = kzalloc(struct_size(inst, array, fam_count + 1), GFP_KERNEL);
430 if (!inst) {
431 pr_err("FAIL: could not allocate test struct!\n");
432 return;
433 }
434
435 inst->count = fam_count;
436 pr_info("Array access within bounds ...\n");
437 inst->array[1] = fam_count;
438 ignored = inst->array[1];
439
440 pr_info("Array access beyond bounds ...\n");
441 inst->array[fam_count] = fam_count;
442 ignored = inst->array[fam_count];
443
444 kfree(inst);
445
446 pr_err("FAIL: survived access of invalid flexible array member index!\n");
447
448 if (!IS_ENABLED(CONFIG_CC_HAS_COUNTED_BY))
449 pr_warn("This is expected since this %s was built with a compiler that does not support __counted_by\n",
450 lkdtm_kernel_info);
451 else if (IS_ENABLED(CONFIG_UBSAN_BOUNDS))
452 pr_expected_config(CONFIG_UBSAN_TRAP);
453 else
454 pr_expected_config(CONFIG_UBSAN_BOUNDS);
455}
456
457static void lkdtm_CORRUPT_LIST_ADD(void)
458{
459 /*
460 * Initially, an empty list via LIST_HEAD:
461 * test_head.next = &test_head
462 * test_head.prev = &test_head
463 */
464 LIST_HEAD(test_head);
465 struct lkdtm_list good, bad;
466 void *target[2] = { };
467 void *redirection = ⌖
468
469 pr_info("attempting good list addition\n");
470
471 /*
472 * Adding to the list performs these actions:
473 * test_head.next->prev = &good.node
474 * good.node.next = test_head.next
475 * good.node.prev = test_head
476 * test_head.next = good.node
477 */
478 list_add(&good.node, &test_head);
479
480 pr_info("attempting corrupted list addition\n");
481 /*
482 * In simulating this "write what where" primitive, the "what" is
483 * the address of &bad.node, and the "where" is the address held
484 * by "redirection".
485 */
486 test_head.next = redirection;
487 list_add(&bad.node, &test_head);
488
489 if (target[0] == NULL && target[1] == NULL)
490 pr_err("Overwrite did not happen, but no BUG?!\n");
491 else {
492 pr_err("list_add() corruption not detected!\n");
493 pr_expected_config(CONFIG_LIST_HARDENED);
494 }
495}
496
497static void lkdtm_CORRUPT_LIST_DEL(void)
498{
499 LIST_HEAD(test_head);
500 struct lkdtm_list item;
501 void *target[2] = { };
502 void *redirection = ⌖
503
504 list_add(&item.node, &test_head);
505
506 pr_info("attempting good list removal\n");
507 list_del(&item.node);
508
509 pr_info("attempting corrupted list removal\n");
510 list_add(&item.node, &test_head);
511
512 /* As with the list_add() test above, this corrupts "next". */
513 item.node.next = redirection;
514 list_del(&item.node);
515
516 if (target[0] == NULL && target[1] == NULL)
517 pr_err("Overwrite did not happen, but no BUG?!\n");
518 else {
519 pr_err("list_del() corruption not detected!\n");
520 pr_expected_config(CONFIG_LIST_HARDENED);
521 }
522}
523
524/* Test that VMAP_STACK is actually allocating with a leading guard page */
525static void lkdtm_STACK_GUARD_PAGE_LEADING(void)
526{
527 const unsigned char *stack = task_stack_page(current);
528 const unsigned char *ptr = stack - 1;
529 volatile unsigned char byte;
530
531 pr_info("attempting bad read from page below current stack\n");
532
533 byte = *ptr;
534
535 pr_err("FAIL: accessed page before stack! (byte: %x)\n", byte);
536}
537
538/* Test that VMAP_STACK is actually allocating with a trailing guard page */
539static void lkdtm_STACK_GUARD_PAGE_TRAILING(void)
540{
541 const unsigned char *stack = task_stack_page(current);
542 const unsigned char *ptr = stack + THREAD_SIZE;
543 volatile unsigned char byte;
544
545 pr_info("attempting bad read from page above current stack\n");
546
547 byte = *ptr;
548
549 pr_err("FAIL: accessed page after stack! (byte: %x)\n", byte);
550}
551
552static void lkdtm_UNSET_SMEP(void)
553{
554#if IS_ENABLED(CONFIG_X86_64) && !IS_ENABLED(CONFIG_UML)
555#define MOV_CR4_DEPTH 64
556 void (*direct_write_cr4)(unsigned long val);
557 unsigned char *insn;
558 unsigned long cr4;
559 int i;
560
561 cr4 = native_read_cr4();
562
563 if ((cr4 & X86_CR4_SMEP) != X86_CR4_SMEP) {
564 pr_err("FAIL: SMEP not in use\n");
565 return;
566 }
567 cr4 &= ~(X86_CR4_SMEP);
568
569 pr_info("trying to clear SMEP normally\n");
570 native_write_cr4(cr4);
571 if (cr4 == native_read_cr4()) {
572 pr_err("FAIL: pinning SMEP failed!\n");
573 cr4 |= X86_CR4_SMEP;
574 pr_info("restoring SMEP\n");
575 native_write_cr4(cr4);
576 return;
577 }
578 pr_info("ok: SMEP did not get cleared\n");
579
580 /*
581 * To test the post-write pinning verification we need to call
582 * directly into the middle of native_write_cr4() where the
583 * cr4 write happens, skipping any pinning. This searches for
584 * the cr4 writing instruction.
585 */
586 insn = (unsigned char *)native_write_cr4;
587 OPTIMIZER_HIDE_VAR(insn);
588 for (i = 0; i < MOV_CR4_DEPTH; i++) {
589 /* mov %rdi, %cr4 */
590 if (insn[i] == 0x0f && insn[i+1] == 0x22 && insn[i+2] == 0xe7)
591 break;
592 /* mov %rdi,%rax; mov %rax, %cr4 */
593 if (insn[i] == 0x48 && insn[i+1] == 0x89 &&
594 insn[i+2] == 0xf8 && insn[i+3] == 0x0f &&
595 insn[i+4] == 0x22 && insn[i+5] == 0xe0)
596 break;
597 }
598 if (i >= MOV_CR4_DEPTH) {
599 pr_info("ok: cannot locate cr4 writing call gadget\n");
600 return;
601 }
602 direct_write_cr4 = (void *)(insn + i);
603
604 pr_info("trying to clear SMEP with call gadget\n");
605 direct_write_cr4(cr4);
606 if (native_read_cr4() & X86_CR4_SMEP) {
607 pr_info("ok: SMEP removal was reverted\n");
608 } else {
609 pr_err("FAIL: cleared SMEP not detected!\n");
610 cr4 |= X86_CR4_SMEP;
611 pr_info("restoring SMEP\n");
612 native_write_cr4(cr4);
613 }
614#else
615 pr_err("XFAIL: this test is x86_64-only\n");
616#endif
617}
618
619static void lkdtm_DOUBLE_FAULT(void)
620{
621#if IS_ENABLED(CONFIG_X86_32) && !IS_ENABLED(CONFIG_UML)
622 /*
623 * Trigger #DF by setting the stack limit to zero. This clobbers
624 * a GDT TLS slot, which is okay because the current task will die
625 * anyway due to the double fault.
626 */
627 struct desc_struct d = {
628 .type = 3, /* expand-up, writable, accessed data */
629 .p = 1, /* present */
630 .d = 1, /* 32-bit */
631 .g = 0, /* limit in bytes */
632 .s = 1, /* not system */
633 };
634
635 local_irq_disable();
636 write_gdt_entry(get_cpu_gdt_rw(smp_processor_id()),
637 GDT_ENTRY_TLS_MIN, &d, DESCTYPE_S);
638
639 /*
640 * Put our zero-limit segment in SS and then trigger a fault. The
641 * 4-byte access to (%esp) will fault with #SS, and the attempt to
642 * deliver the fault will recursively cause #SS and result in #DF.
643 * This whole process happens while NMIs and MCEs are blocked by the
644 * MOV SS window. This is nice because an NMI with an invalid SS
645 * would also double-fault, resulting in the NMI or MCE being lost.
646 */
647 asm volatile ("movw %0, %%ss; addl $0, (%%esp)" ::
648 "r" ((unsigned short)(GDT_ENTRY_TLS_MIN << 3)));
649
650 pr_err("FAIL: tried to double fault but didn't die\n");
651#else
652 pr_err("XFAIL: this test is ia32-only\n");
653#endif
654}
655
656#ifdef CONFIG_ARM64
657static noinline void change_pac_parameters(void)
658{
659 if (IS_ENABLED(CONFIG_ARM64_PTR_AUTH_KERNEL)) {
660 /* Reset the keys of current task */
661 ptrauth_thread_init_kernel(current);
662 ptrauth_thread_switch_kernel(current);
663 }
664}
665#endif
666
667static noinline void lkdtm_CORRUPT_PAC(void)
668{
669#ifdef CONFIG_ARM64
670#define CORRUPT_PAC_ITERATE 10
671 int i;
672
673 if (!IS_ENABLED(CONFIG_ARM64_PTR_AUTH_KERNEL))
674 pr_err("FAIL: kernel not built with CONFIG_ARM64_PTR_AUTH_KERNEL\n");
675
676 if (!system_supports_address_auth()) {
677 pr_err("FAIL: CPU lacks pointer authentication feature\n");
678 return;
679 }
680
681 pr_info("changing PAC parameters to force function return failure...\n");
682 /*
683 * PAC is a hash value computed from input keys, return address and
684 * stack pointer. As pac has fewer bits so there is a chance of
685 * collision, so iterate few times to reduce the collision probability.
686 */
687 for (i = 0; i < CORRUPT_PAC_ITERATE; i++)
688 change_pac_parameters();
689
690 pr_err("FAIL: survived PAC changes! Kernel may be unstable from here\n");
691#else
692 pr_err("XFAIL: this test is arm64-only\n");
693#endif
694}
695
696static struct crashtype crashtypes[] = {
697 CRASHTYPE(PANIC),
698 CRASHTYPE(PANIC_STOP_IRQOFF),
699 CRASHTYPE(BUG),
700 CRASHTYPE(WARNING),
701 CRASHTYPE(WARNING_MESSAGE),
702 CRASHTYPE(EXCEPTION),
703 CRASHTYPE(LOOP),
704 CRASHTYPE(EXHAUST_STACK),
705 CRASHTYPE(CORRUPT_STACK),
706 CRASHTYPE(CORRUPT_STACK_STRONG),
707 CRASHTYPE(REPORT_STACK),
708 CRASHTYPE(REPORT_STACK_CANARY),
709 CRASHTYPE(UNALIGNED_LOAD_STORE_WRITE),
710 CRASHTYPE(SOFTLOCKUP),
711 CRASHTYPE(HARDLOCKUP),
712 CRASHTYPE(SMP_CALL_LOCKUP),
713 CRASHTYPE(SPINLOCKUP),
714 CRASHTYPE(HUNG_TASK),
715 CRASHTYPE(OVERFLOW_SIGNED),
716 CRASHTYPE(OVERFLOW_UNSIGNED),
717 CRASHTYPE(ARRAY_BOUNDS),
718 CRASHTYPE(FAM_BOUNDS),
719 CRASHTYPE(CORRUPT_LIST_ADD),
720 CRASHTYPE(CORRUPT_LIST_DEL),
721 CRASHTYPE(STACK_GUARD_PAGE_LEADING),
722 CRASHTYPE(STACK_GUARD_PAGE_TRAILING),
723 CRASHTYPE(UNSET_SMEP),
724 CRASHTYPE(DOUBLE_FAULT),
725 CRASHTYPE(CORRUPT_PAC),
726};
727
728struct crashtype_category bugs_crashtypes = {
729 .crashtypes = crashtypes,
730 .len = ARRAY_SIZE(crashtypes),
731};
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * This is for all the tests related to logic bugs (e.g. bad dereferences,
4 * bad alignment, bad loops, bad locking, bad scheduling, deep stacks, and
5 * lockups) along with other things that don't fit well into existing LKDTM
6 * test source files.
7 */
8#include "lkdtm.h"
9#include <linux/list.h>
10#include <linux/sched.h>
11#include <linux/sched/signal.h>
12#include <linux/sched/task_stack.h>
13#include <linux/uaccess.h>
14#include <linux/slab.h>
15
16#if IS_ENABLED(CONFIG_X86_32) && !IS_ENABLED(CONFIG_UML)
17#include <asm/desc.h>
18#endif
19
20struct lkdtm_list {
21 struct list_head node;
22};
23
24/*
25 * Make sure our attempts to over run the kernel stack doesn't trigger
26 * a compiler warning when CONFIG_FRAME_WARN is set. Then make sure we
27 * recurse past the end of THREAD_SIZE by default.
28 */
29#if defined(CONFIG_FRAME_WARN) && (CONFIG_FRAME_WARN > 0)
30#define REC_STACK_SIZE (_AC(CONFIG_FRAME_WARN, UL) / 2)
31#else
32#define REC_STACK_SIZE (THREAD_SIZE / 8)
33#endif
34#define REC_NUM_DEFAULT ((THREAD_SIZE / REC_STACK_SIZE) * 2)
35
36static int recur_count = REC_NUM_DEFAULT;
37
38static DEFINE_SPINLOCK(lock_me_up);
39
40/*
41 * Make sure compiler does not optimize this function or stack frame away:
42 * - function marked noinline
43 * - stack variables are marked volatile
44 * - stack variables are written (memset()) and read (pr_info())
45 * - function has external effects (pr_info())
46 * */
47static int noinline recursive_loop(int remaining)
48{
49 volatile char buf[REC_STACK_SIZE];
50
51 memset((void *)buf, remaining & 0xFF, sizeof(buf));
52 pr_info("loop %d/%d ...\n", (int)buf[remaining % sizeof(buf)],
53 recur_count);
54 if (!remaining)
55 return 0;
56 else
57 return recursive_loop(remaining - 1);
58}
59
60/* If the depth is negative, use the default, otherwise keep parameter. */
61void __init lkdtm_bugs_init(int *recur_param)
62{
63 if (*recur_param < 0)
64 *recur_param = recur_count;
65 else
66 recur_count = *recur_param;
67}
68
69void lkdtm_PANIC(void)
70{
71 panic("dumptest");
72}
73
74void lkdtm_BUG(void)
75{
76 BUG();
77}
78
79static int warn_counter;
80
81void lkdtm_WARNING(void)
82{
83 WARN_ON(++warn_counter);
84}
85
86void lkdtm_WARNING_MESSAGE(void)
87{
88 WARN(1, "Warning message trigger count: %d\n", ++warn_counter);
89}
90
91void lkdtm_EXCEPTION(void)
92{
93 *((volatile int *) 0) = 0;
94}
95
96void lkdtm_LOOP(void)
97{
98 for (;;)
99 ;
100}
101
102void lkdtm_EXHAUST_STACK(void)
103{
104 pr_info("Calling function with %lu frame size to depth %d ...\n",
105 REC_STACK_SIZE, recur_count);
106 recursive_loop(recur_count);
107 pr_info("FAIL: survived without exhausting stack?!\n");
108}
109
110static noinline void __lkdtm_CORRUPT_STACK(void *stack)
111{
112 memset(stack, '\xff', 64);
113}
114
115/* This should trip the stack canary, not corrupt the return address. */
116noinline void lkdtm_CORRUPT_STACK(void)
117{
118 /* Use default char array length that triggers stack protection. */
119 char data[8] __aligned(sizeof(void *));
120
121 pr_info("Corrupting stack containing char array ...\n");
122 __lkdtm_CORRUPT_STACK((void *)&data);
123}
124
125/* Same as above but will only get a canary with -fstack-protector-strong */
126noinline void lkdtm_CORRUPT_STACK_STRONG(void)
127{
128 union {
129 unsigned short shorts[4];
130 unsigned long *ptr;
131 } data __aligned(sizeof(void *));
132
133 pr_info("Corrupting stack containing union ...\n");
134 __lkdtm_CORRUPT_STACK((void *)&data);
135}
136
137static pid_t stack_pid;
138static unsigned long stack_addr;
139
140void lkdtm_REPORT_STACK(void)
141{
142 volatile uintptr_t magic;
143 pid_t pid = task_pid_nr(current);
144
145 if (pid != stack_pid) {
146 pr_info("Starting stack offset tracking for pid %d\n", pid);
147 stack_pid = pid;
148 stack_addr = (uintptr_t)&magic;
149 }
150
151 pr_info("Stack offset: %d\n", (int)(stack_addr - (uintptr_t)&magic));
152}
153
154void lkdtm_UNALIGNED_LOAD_STORE_WRITE(void)
155{
156 static u8 data[5] __attribute__((aligned(4))) = {1, 2, 3, 4, 5};
157 u32 *p;
158 u32 val = 0x12345678;
159
160 p = (u32 *)(data + 1);
161 if (*p == 0)
162 val = 0x87654321;
163 *p = val;
164
165 if (IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
166 pr_err("XFAIL: arch has CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS\n");
167}
168
169void lkdtm_SOFTLOCKUP(void)
170{
171 preempt_disable();
172 for (;;)
173 cpu_relax();
174}
175
176void lkdtm_HARDLOCKUP(void)
177{
178 local_irq_disable();
179 for (;;)
180 cpu_relax();
181}
182
183void lkdtm_SPINLOCKUP(void)
184{
185 /* Must be called twice to trigger. */
186 spin_lock(&lock_me_up);
187 /* Let sparse know we intended to exit holding the lock. */
188 __release(&lock_me_up);
189}
190
191void lkdtm_HUNG_TASK(void)
192{
193 set_current_state(TASK_UNINTERRUPTIBLE);
194 schedule();
195}
196
197volatile unsigned int huge = INT_MAX - 2;
198volatile unsigned int ignored;
199
200void lkdtm_OVERFLOW_SIGNED(void)
201{
202 int value;
203
204 value = huge;
205 pr_info("Normal signed addition ...\n");
206 value += 1;
207 ignored = value;
208
209 pr_info("Overflowing signed addition ...\n");
210 value += 4;
211 ignored = value;
212}
213
214
215void lkdtm_OVERFLOW_UNSIGNED(void)
216{
217 unsigned int value;
218
219 value = huge;
220 pr_info("Normal unsigned addition ...\n");
221 value += 1;
222 ignored = value;
223
224 pr_info("Overflowing unsigned addition ...\n");
225 value += 4;
226 ignored = value;
227}
228
229/* Intentionally using old-style flex array definition of 1 byte. */
230struct array_bounds_flex_array {
231 int one;
232 int two;
233 char data[1];
234};
235
236struct array_bounds {
237 int one;
238 int two;
239 char data[8];
240 int three;
241};
242
243void lkdtm_ARRAY_BOUNDS(void)
244{
245 struct array_bounds_flex_array *not_checked;
246 struct array_bounds *checked;
247 volatile int i;
248
249 not_checked = kmalloc(sizeof(*not_checked) * 2, GFP_KERNEL);
250 checked = kmalloc(sizeof(*checked) * 2, GFP_KERNEL);
251
252 pr_info("Array access within bounds ...\n");
253 /* For both, touch all bytes in the actual member size. */
254 for (i = 0; i < sizeof(checked->data); i++)
255 checked->data[i] = 'A';
256 /*
257 * For the uninstrumented flex array member, also touch 1 byte
258 * beyond to verify it is correctly uninstrumented.
259 */
260 for (i = 0; i < sizeof(not_checked->data) + 1; i++)
261 not_checked->data[i] = 'A';
262
263 pr_info("Array access beyond bounds ...\n");
264 for (i = 0; i < sizeof(checked->data) + 1; i++)
265 checked->data[i] = 'B';
266
267 kfree(not_checked);
268 kfree(checked);
269 pr_err("FAIL: survived array bounds overflow!\n");
270}
271
272void lkdtm_CORRUPT_LIST_ADD(void)
273{
274 /*
275 * Initially, an empty list via LIST_HEAD:
276 * test_head.next = &test_head
277 * test_head.prev = &test_head
278 */
279 LIST_HEAD(test_head);
280 struct lkdtm_list good, bad;
281 void *target[2] = { };
282 void *redirection = ⌖
283
284 pr_info("attempting good list addition\n");
285
286 /*
287 * Adding to the list performs these actions:
288 * test_head.next->prev = &good.node
289 * good.node.next = test_head.next
290 * good.node.prev = test_head
291 * test_head.next = good.node
292 */
293 list_add(&good.node, &test_head);
294
295 pr_info("attempting corrupted list addition\n");
296 /*
297 * In simulating this "write what where" primitive, the "what" is
298 * the address of &bad.node, and the "where" is the address held
299 * by "redirection".
300 */
301 test_head.next = redirection;
302 list_add(&bad.node, &test_head);
303
304 if (target[0] == NULL && target[1] == NULL)
305 pr_err("Overwrite did not happen, but no BUG?!\n");
306 else {
307 pr_err("list_add() corruption not detected!\n");
308 pr_expected_config(CONFIG_DEBUG_LIST);
309 }
310}
311
312void lkdtm_CORRUPT_LIST_DEL(void)
313{
314 LIST_HEAD(test_head);
315 struct lkdtm_list item;
316 void *target[2] = { };
317 void *redirection = ⌖
318
319 list_add(&item.node, &test_head);
320
321 pr_info("attempting good list removal\n");
322 list_del(&item.node);
323
324 pr_info("attempting corrupted list removal\n");
325 list_add(&item.node, &test_head);
326
327 /* As with the list_add() test above, this corrupts "next". */
328 item.node.next = redirection;
329 list_del(&item.node);
330
331 if (target[0] == NULL && target[1] == NULL)
332 pr_err("Overwrite did not happen, but no BUG?!\n");
333 else {
334 pr_err("list_del() corruption not detected!\n");
335 pr_expected_config(CONFIG_DEBUG_LIST);
336 }
337}
338
339/* Test that VMAP_STACK is actually allocating with a leading guard page */
340void lkdtm_STACK_GUARD_PAGE_LEADING(void)
341{
342 const unsigned char *stack = task_stack_page(current);
343 const unsigned char *ptr = stack - 1;
344 volatile unsigned char byte;
345
346 pr_info("attempting bad read from page below current stack\n");
347
348 byte = *ptr;
349
350 pr_err("FAIL: accessed page before stack! (byte: %x)\n", byte);
351}
352
353/* Test that VMAP_STACK is actually allocating with a trailing guard page */
354void lkdtm_STACK_GUARD_PAGE_TRAILING(void)
355{
356 const unsigned char *stack = task_stack_page(current);
357 const unsigned char *ptr = stack + THREAD_SIZE;
358 volatile unsigned char byte;
359
360 pr_info("attempting bad read from page above current stack\n");
361
362 byte = *ptr;
363
364 pr_err("FAIL: accessed page after stack! (byte: %x)\n", byte);
365}
366
367void lkdtm_UNSET_SMEP(void)
368{
369#if IS_ENABLED(CONFIG_X86_64) && !IS_ENABLED(CONFIG_UML)
370#define MOV_CR4_DEPTH 64
371 void (*direct_write_cr4)(unsigned long val);
372 unsigned char *insn;
373 unsigned long cr4;
374 int i;
375
376 cr4 = native_read_cr4();
377
378 if ((cr4 & X86_CR4_SMEP) != X86_CR4_SMEP) {
379 pr_err("FAIL: SMEP not in use\n");
380 return;
381 }
382 cr4 &= ~(X86_CR4_SMEP);
383
384 pr_info("trying to clear SMEP normally\n");
385 native_write_cr4(cr4);
386 if (cr4 == native_read_cr4()) {
387 pr_err("FAIL: pinning SMEP failed!\n");
388 cr4 |= X86_CR4_SMEP;
389 pr_info("restoring SMEP\n");
390 native_write_cr4(cr4);
391 return;
392 }
393 pr_info("ok: SMEP did not get cleared\n");
394
395 /*
396 * To test the post-write pinning verification we need to call
397 * directly into the middle of native_write_cr4() where the
398 * cr4 write happens, skipping any pinning. This searches for
399 * the cr4 writing instruction.
400 */
401 insn = (unsigned char *)native_write_cr4;
402 for (i = 0; i < MOV_CR4_DEPTH; i++) {
403 /* mov %rdi, %cr4 */
404 if (insn[i] == 0x0f && insn[i+1] == 0x22 && insn[i+2] == 0xe7)
405 break;
406 /* mov %rdi,%rax; mov %rax, %cr4 */
407 if (insn[i] == 0x48 && insn[i+1] == 0x89 &&
408 insn[i+2] == 0xf8 && insn[i+3] == 0x0f &&
409 insn[i+4] == 0x22 && insn[i+5] == 0xe0)
410 break;
411 }
412 if (i >= MOV_CR4_DEPTH) {
413 pr_info("ok: cannot locate cr4 writing call gadget\n");
414 return;
415 }
416 direct_write_cr4 = (void *)(insn + i);
417
418 pr_info("trying to clear SMEP with call gadget\n");
419 direct_write_cr4(cr4);
420 if (native_read_cr4() & X86_CR4_SMEP) {
421 pr_info("ok: SMEP removal was reverted\n");
422 } else {
423 pr_err("FAIL: cleared SMEP not detected!\n");
424 cr4 |= X86_CR4_SMEP;
425 pr_info("restoring SMEP\n");
426 native_write_cr4(cr4);
427 }
428#else
429 pr_err("XFAIL: this test is x86_64-only\n");
430#endif
431}
432
433void lkdtm_DOUBLE_FAULT(void)
434{
435#if IS_ENABLED(CONFIG_X86_32) && !IS_ENABLED(CONFIG_UML)
436 /*
437 * Trigger #DF by setting the stack limit to zero. This clobbers
438 * a GDT TLS slot, which is okay because the current task will die
439 * anyway due to the double fault.
440 */
441 struct desc_struct d = {
442 .type = 3, /* expand-up, writable, accessed data */
443 .p = 1, /* present */
444 .d = 1, /* 32-bit */
445 .g = 0, /* limit in bytes */
446 .s = 1, /* not system */
447 };
448
449 local_irq_disable();
450 write_gdt_entry(get_cpu_gdt_rw(smp_processor_id()),
451 GDT_ENTRY_TLS_MIN, &d, DESCTYPE_S);
452
453 /*
454 * Put our zero-limit segment in SS and then trigger a fault. The
455 * 4-byte access to (%esp) will fault with #SS, and the attempt to
456 * deliver the fault will recursively cause #SS and result in #DF.
457 * This whole process happens while NMIs and MCEs are blocked by the
458 * MOV SS window. This is nice because an NMI with an invalid SS
459 * would also double-fault, resulting in the NMI or MCE being lost.
460 */
461 asm volatile ("movw %0, %%ss; addl $0, (%%esp)" ::
462 "r" ((unsigned short)(GDT_ENTRY_TLS_MIN << 3)));
463
464 pr_err("FAIL: tried to double fault but didn't die\n");
465#else
466 pr_err("XFAIL: this test is ia32-only\n");
467#endif
468}
469
470#ifdef CONFIG_ARM64
471static noinline void change_pac_parameters(void)
472{
473 if (IS_ENABLED(CONFIG_ARM64_PTR_AUTH_KERNEL)) {
474 /* Reset the keys of current task */
475 ptrauth_thread_init_kernel(current);
476 ptrauth_thread_switch_kernel(current);
477 }
478}
479#endif
480
481noinline void lkdtm_CORRUPT_PAC(void)
482{
483#ifdef CONFIG_ARM64
484#define CORRUPT_PAC_ITERATE 10
485 int i;
486
487 if (!IS_ENABLED(CONFIG_ARM64_PTR_AUTH_KERNEL))
488 pr_err("FAIL: kernel not built with CONFIG_ARM64_PTR_AUTH_KERNEL\n");
489
490 if (!system_supports_address_auth()) {
491 pr_err("FAIL: CPU lacks pointer authentication feature\n");
492 return;
493 }
494
495 pr_info("changing PAC parameters to force function return failure...\n");
496 /*
497 * PAC is a hash value computed from input keys, return address and
498 * stack pointer. As pac has fewer bits so there is a chance of
499 * collision, so iterate few times to reduce the collision probability.
500 */
501 for (i = 0; i < CORRUPT_PAC_ITERATE; i++)
502 change_pac_parameters();
503
504 pr_err("FAIL: survived PAC changes! Kernel may be unstable from here\n");
505#else
506 pr_err("XFAIL: this test is arm64-only\n");
507#endif
508}
509
510void lkdtm_FORTIFY_OBJECT(void)
511{
512 struct target {
513 char a[10];
514 } target[2] = {};
515 int result;
516
517 /*
518 * Using volatile prevents the compiler from determining the value of
519 * 'size' at compile time. Without that, we would get a compile error
520 * rather than a runtime error.
521 */
522 volatile int size = 11;
523
524 pr_info("trying to read past the end of a struct\n");
525
526 result = memcmp(&target[0], &target[1], size);
527
528 /* Print result to prevent the code from being eliminated */
529 pr_err("FAIL: fortify did not catch an object overread!\n"
530 "\"%d\" was the memcmp result.\n", result);
531}
532
533void lkdtm_FORTIFY_SUBOBJECT(void)
534{
535 struct target {
536 char a[10];
537 char b[10];
538 } target;
539 char *src;
540
541 src = kmalloc(20, GFP_KERNEL);
542 strscpy(src, "over ten bytes", 20);
543
544 pr_info("trying to strcpy past the end of a member of a struct\n");
545
546 /*
547 * strncpy(target.a, src, 20); will hit a compile error because the
548 * compiler knows at build time that target.a < 20 bytes. Use strcpy()
549 * to force a runtime error.
550 */
551 strcpy(target.a, src);
552
553 /* Use target.a to prevent the code from being eliminated */
554 pr_err("FAIL: fortify did not catch an sub-object overrun!\n"
555 "\"%s\" was copied.\n", target.a);
556
557 kfree(src);
558}