Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (c) 2006, Intel Corporation.
4 *
5 * Copyright (C) 2006-2008 Intel Corporation
6 * Author: Ashok Raj <ashok.raj@intel.com>
7 * Author: Shaohua Li <shaohua.li@intel.com>
8 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
9 *
10 * This file implements early detection/parsing of Remapping Devices
11 * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI
12 * tables.
13 *
14 * These routines are used by both DMA-remapping and Interrupt-remapping
15 */
16
17#define pr_fmt(fmt) "DMAR: " fmt
18
19#include <linux/pci.h>
20#include <linux/dmar.h>
21#include <linux/iova.h>
22#include <linux/timer.h>
23#include <linux/irq.h>
24#include <linux/interrupt.h>
25#include <linux/tboot.h>
26#include <linux/dmi.h>
27#include <linux/slab.h>
28#include <linux/iommu.h>
29#include <linux/numa.h>
30#include <linux/limits.h>
31#include <asm/irq_remapping.h>
32
33#include "iommu.h"
34#include "../irq_remapping.h"
35#include "../iommu-pages.h"
36#include "perf.h"
37#include "trace.h"
38#include "perfmon.h"
39
40typedef int (*dmar_res_handler_t)(struct acpi_dmar_header *, void *);
41struct dmar_res_callback {
42 dmar_res_handler_t cb[ACPI_DMAR_TYPE_RESERVED];
43 void *arg[ACPI_DMAR_TYPE_RESERVED];
44 bool ignore_unhandled;
45 bool print_entry;
46};
47
48/*
49 * Assumptions:
50 * 1) The hotplug framework guarentees that DMAR unit will be hot-added
51 * before IO devices managed by that unit.
52 * 2) The hotplug framework guarantees that DMAR unit will be hot-removed
53 * after IO devices managed by that unit.
54 * 3) Hotplug events are rare.
55 *
56 * Locking rules for DMA and interrupt remapping related global data structures:
57 * 1) Use dmar_global_lock in process context
58 * 2) Use RCU in interrupt context
59 */
60DECLARE_RWSEM(dmar_global_lock);
61LIST_HEAD(dmar_drhd_units);
62
63struct acpi_table_header * __initdata dmar_tbl;
64static int dmar_dev_scope_status = 1;
65static DEFINE_IDA(dmar_seq_ids);
66
67static int alloc_iommu(struct dmar_drhd_unit *drhd);
68static void free_iommu(struct intel_iommu *iommu);
69
70static void dmar_register_drhd_unit(struct dmar_drhd_unit *drhd)
71{
72 /*
73 * add INCLUDE_ALL at the tail, so scan the list will find it at
74 * the very end.
75 */
76 if (drhd->include_all)
77 list_add_tail_rcu(&drhd->list, &dmar_drhd_units);
78 else
79 list_add_rcu(&drhd->list, &dmar_drhd_units);
80}
81
82void *dmar_alloc_dev_scope(void *start, void *end, int *cnt)
83{
84 struct acpi_dmar_device_scope *scope;
85
86 *cnt = 0;
87 while (start < end) {
88 scope = start;
89 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_NAMESPACE ||
90 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
91 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE)
92 (*cnt)++;
93 else if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_IOAPIC &&
94 scope->entry_type != ACPI_DMAR_SCOPE_TYPE_HPET) {
95 pr_warn("Unsupported device scope\n");
96 }
97 start += scope->length;
98 }
99 if (*cnt == 0)
100 return NULL;
101
102 return kcalloc(*cnt, sizeof(struct dmar_dev_scope), GFP_KERNEL);
103}
104
105void dmar_free_dev_scope(struct dmar_dev_scope **devices, int *cnt)
106{
107 int i;
108 struct device *tmp_dev;
109
110 if (*devices && *cnt) {
111 for_each_active_dev_scope(*devices, *cnt, i, tmp_dev)
112 put_device(tmp_dev);
113 kfree(*devices);
114 }
115
116 *devices = NULL;
117 *cnt = 0;
118}
119
120/* Optimize out kzalloc()/kfree() for normal cases */
121static char dmar_pci_notify_info_buf[64];
122
123static struct dmar_pci_notify_info *
124dmar_alloc_pci_notify_info(struct pci_dev *dev, unsigned long event)
125{
126 int level = 0;
127 size_t size;
128 struct pci_dev *tmp;
129 struct dmar_pci_notify_info *info;
130
131 /*
132 * Ignore devices that have a domain number higher than what can
133 * be looked up in DMAR, e.g. VMD subdevices with domain 0x10000
134 */
135 if (pci_domain_nr(dev->bus) > U16_MAX)
136 return NULL;
137
138 /* Only generate path[] for device addition event */
139 if (event == BUS_NOTIFY_ADD_DEVICE)
140 for (tmp = dev; tmp; tmp = tmp->bus->self)
141 level++;
142
143 size = struct_size(info, path, level);
144 if (size <= sizeof(dmar_pci_notify_info_buf)) {
145 info = (struct dmar_pci_notify_info *)dmar_pci_notify_info_buf;
146 } else {
147 info = kzalloc(size, GFP_KERNEL);
148 if (!info) {
149 if (dmar_dev_scope_status == 0)
150 dmar_dev_scope_status = -ENOMEM;
151 return NULL;
152 }
153 }
154
155 info->event = event;
156 info->dev = dev;
157 info->seg = pci_domain_nr(dev->bus);
158 info->level = level;
159 if (event == BUS_NOTIFY_ADD_DEVICE) {
160 for (tmp = dev; tmp; tmp = tmp->bus->self) {
161 level--;
162 info->path[level].bus = tmp->bus->number;
163 info->path[level].device = PCI_SLOT(tmp->devfn);
164 info->path[level].function = PCI_FUNC(tmp->devfn);
165 if (pci_is_root_bus(tmp->bus))
166 info->bus = tmp->bus->number;
167 }
168 }
169
170 return info;
171}
172
173static inline void dmar_free_pci_notify_info(struct dmar_pci_notify_info *info)
174{
175 if ((void *)info != dmar_pci_notify_info_buf)
176 kfree(info);
177}
178
179static bool dmar_match_pci_path(struct dmar_pci_notify_info *info, int bus,
180 struct acpi_dmar_pci_path *path, int count)
181{
182 int i;
183
184 if (info->bus != bus)
185 goto fallback;
186 if (info->level != count)
187 goto fallback;
188
189 for (i = 0; i < count; i++) {
190 if (path[i].device != info->path[i].device ||
191 path[i].function != info->path[i].function)
192 goto fallback;
193 }
194
195 return true;
196
197fallback:
198
199 if (count != 1)
200 return false;
201
202 i = info->level - 1;
203 if (bus == info->path[i].bus &&
204 path[0].device == info->path[i].device &&
205 path[0].function == info->path[i].function) {
206 pr_info(FW_BUG "RMRR entry for device %02x:%02x.%x is broken - applying workaround\n",
207 bus, path[0].device, path[0].function);
208 return true;
209 }
210
211 return false;
212}
213
214/* Return: > 0 if match found, 0 if no match found, < 0 if error happens */
215int dmar_insert_dev_scope(struct dmar_pci_notify_info *info,
216 void *start, void*end, u16 segment,
217 struct dmar_dev_scope *devices,
218 int devices_cnt)
219{
220 int i, level;
221 struct device *tmp, *dev = &info->dev->dev;
222 struct acpi_dmar_device_scope *scope;
223 struct acpi_dmar_pci_path *path;
224
225 if (segment != info->seg)
226 return 0;
227
228 for (; start < end; start += scope->length) {
229 scope = start;
230 if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_ENDPOINT &&
231 scope->entry_type != ACPI_DMAR_SCOPE_TYPE_BRIDGE)
232 continue;
233
234 path = (struct acpi_dmar_pci_path *)(scope + 1);
235 level = (scope->length - sizeof(*scope)) / sizeof(*path);
236 if (!dmar_match_pci_path(info, scope->bus, path, level))
237 continue;
238
239 /*
240 * We expect devices with endpoint scope to have normal PCI
241 * headers, and devices with bridge scope to have bridge PCI
242 * headers. However PCI NTB devices may be listed in the
243 * DMAR table with bridge scope, even though they have a
244 * normal PCI header. NTB devices are identified by class
245 * "BRIDGE_OTHER" (0680h) - we don't declare a socpe mismatch
246 * for this special case.
247 */
248 if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT &&
249 info->dev->hdr_type != PCI_HEADER_TYPE_NORMAL) ||
250 (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE &&
251 (info->dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
252 info->dev->class >> 16 != PCI_BASE_CLASS_BRIDGE))) {
253 pr_warn("Device scope type does not match for %s\n",
254 pci_name(info->dev));
255 return -EINVAL;
256 }
257
258 for_each_dev_scope(devices, devices_cnt, i, tmp)
259 if (tmp == NULL) {
260 devices[i].bus = info->dev->bus->number;
261 devices[i].devfn = info->dev->devfn;
262 rcu_assign_pointer(devices[i].dev,
263 get_device(dev));
264 return 1;
265 }
266 if (WARN_ON(i >= devices_cnt))
267 return -EINVAL;
268 }
269
270 return 0;
271}
272
273int dmar_remove_dev_scope(struct dmar_pci_notify_info *info, u16 segment,
274 struct dmar_dev_scope *devices, int count)
275{
276 int index;
277 struct device *tmp;
278
279 if (info->seg != segment)
280 return 0;
281
282 for_each_active_dev_scope(devices, count, index, tmp)
283 if (tmp == &info->dev->dev) {
284 RCU_INIT_POINTER(devices[index].dev, NULL);
285 synchronize_rcu();
286 put_device(tmp);
287 return 1;
288 }
289
290 return 0;
291}
292
293static int dmar_pci_bus_add_dev(struct dmar_pci_notify_info *info)
294{
295 int ret = 0;
296 struct dmar_drhd_unit *dmaru;
297 struct acpi_dmar_hardware_unit *drhd;
298
299 for_each_drhd_unit(dmaru) {
300 if (dmaru->include_all)
301 continue;
302
303 drhd = container_of(dmaru->hdr,
304 struct acpi_dmar_hardware_unit, header);
305 ret = dmar_insert_dev_scope(info, (void *)(drhd + 1),
306 ((void *)drhd) + drhd->header.length,
307 dmaru->segment,
308 dmaru->devices, dmaru->devices_cnt);
309 if (ret)
310 break;
311 }
312 if (ret >= 0)
313 ret = dmar_iommu_notify_scope_dev(info);
314 if (ret < 0 && dmar_dev_scope_status == 0)
315 dmar_dev_scope_status = ret;
316
317 if (ret >= 0)
318 intel_irq_remap_add_device(info);
319
320 return ret;
321}
322
323static void dmar_pci_bus_del_dev(struct dmar_pci_notify_info *info)
324{
325 struct dmar_drhd_unit *dmaru;
326
327 for_each_drhd_unit(dmaru)
328 if (dmar_remove_dev_scope(info, dmaru->segment,
329 dmaru->devices, dmaru->devices_cnt))
330 break;
331 dmar_iommu_notify_scope_dev(info);
332}
333
334static inline void vf_inherit_msi_domain(struct pci_dev *pdev)
335{
336 struct pci_dev *physfn = pci_physfn(pdev);
337
338 dev_set_msi_domain(&pdev->dev, dev_get_msi_domain(&physfn->dev));
339}
340
341static int dmar_pci_bus_notifier(struct notifier_block *nb,
342 unsigned long action, void *data)
343{
344 struct pci_dev *pdev = to_pci_dev(data);
345 struct dmar_pci_notify_info *info;
346
347 /* Only care about add/remove events for physical functions.
348 * For VFs we actually do the lookup based on the corresponding
349 * PF in device_to_iommu() anyway. */
350 if (pdev->is_virtfn) {
351 /*
352 * Ensure that the VF device inherits the irq domain of the
353 * PF device. Ideally the device would inherit the domain
354 * from the bus, but DMAR can have multiple units per bus
355 * which makes this impossible. The VF 'bus' could inherit
356 * from the PF device, but that's yet another x86'sism to
357 * inflict on everybody else.
358 */
359 if (action == BUS_NOTIFY_ADD_DEVICE)
360 vf_inherit_msi_domain(pdev);
361 return NOTIFY_DONE;
362 }
363
364 if (action != BUS_NOTIFY_ADD_DEVICE &&
365 action != BUS_NOTIFY_REMOVED_DEVICE)
366 return NOTIFY_DONE;
367
368 info = dmar_alloc_pci_notify_info(pdev, action);
369 if (!info)
370 return NOTIFY_DONE;
371
372 down_write(&dmar_global_lock);
373 if (action == BUS_NOTIFY_ADD_DEVICE)
374 dmar_pci_bus_add_dev(info);
375 else if (action == BUS_NOTIFY_REMOVED_DEVICE)
376 dmar_pci_bus_del_dev(info);
377 up_write(&dmar_global_lock);
378
379 dmar_free_pci_notify_info(info);
380
381 return NOTIFY_OK;
382}
383
384static struct notifier_block dmar_pci_bus_nb = {
385 .notifier_call = dmar_pci_bus_notifier,
386 .priority = 1,
387};
388
389static struct dmar_drhd_unit *
390dmar_find_dmaru(struct acpi_dmar_hardware_unit *drhd)
391{
392 struct dmar_drhd_unit *dmaru;
393
394 list_for_each_entry_rcu(dmaru, &dmar_drhd_units, list,
395 dmar_rcu_check())
396 if (dmaru->segment == drhd->segment &&
397 dmaru->reg_base_addr == drhd->address)
398 return dmaru;
399
400 return NULL;
401}
402
403/*
404 * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition
405 * structure which uniquely represent one DMA remapping hardware unit
406 * present in the platform
407 */
408static int dmar_parse_one_drhd(struct acpi_dmar_header *header, void *arg)
409{
410 struct acpi_dmar_hardware_unit *drhd;
411 struct dmar_drhd_unit *dmaru;
412 int ret;
413
414 drhd = (struct acpi_dmar_hardware_unit *)header;
415 dmaru = dmar_find_dmaru(drhd);
416 if (dmaru)
417 goto out;
418
419 dmaru = kzalloc(sizeof(*dmaru) + header->length, GFP_KERNEL);
420 if (!dmaru)
421 return -ENOMEM;
422
423 /*
424 * If header is allocated from slab by ACPI _DSM method, we need to
425 * copy the content because the memory buffer will be freed on return.
426 */
427 dmaru->hdr = (void *)(dmaru + 1);
428 memcpy(dmaru->hdr, header, header->length);
429 dmaru->reg_base_addr = drhd->address;
430 dmaru->segment = drhd->segment;
431 /* The size of the register set is 2 ^ N 4 KB pages. */
432 dmaru->reg_size = 1UL << (drhd->size + 12);
433 dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */
434 dmaru->devices = dmar_alloc_dev_scope((void *)(drhd + 1),
435 ((void *)drhd) + drhd->header.length,
436 &dmaru->devices_cnt);
437 if (dmaru->devices_cnt && dmaru->devices == NULL) {
438 kfree(dmaru);
439 return -ENOMEM;
440 }
441
442 ret = alloc_iommu(dmaru);
443 if (ret) {
444 dmar_free_dev_scope(&dmaru->devices,
445 &dmaru->devices_cnt);
446 kfree(dmaru);
447 return ret;
448 }
449 dmar_register_drhd_unit(dmaru);
450
451out:
452 if (arg)
453 (*(int *)arg)++;
454
455 return 0;
456}
457
458static void dmar_free_drhd(struct dmar_drhd_unit *dmaru)
459{
460 if (dmaru->devices && dmaru->devices_cnt)
461 dmar_free_dev_scope(&dmaru->devices, &dmaru->devices_cnt);
462 if (dmaru->iommu)
463 free_iommu(dmaru->iommu);
464 kfree(dmaru);
465}
466
467static int __init dmar_parse_one_andd(struct acpi_dmar_header *header,
468 void *arg)
469{
470 struct acpi_dmar_andd *andd = (void *)header;
471
472 /* Check for NUL termination within the designated length */
473 if (strnlen(andd->device_name, header->length - 8) == header->length - 8) {
474 pr_warn(FW_BUG
475 "Your BIOS is broken; ANDD object name is not NUL-terminated\n"
476 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
477 dmi_get_system_info(DMI_BIOS_VENDOR),
478 dmi_get_system_info(DMI_BIOS_VERSION),
479 dmi_get_system_info(DMI_PRODUCT_VERSION));
480 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
481 return -EINVAL;
482 }
483 pr_info("ANDD device: %x name: %s\n", andd->device_number,
484 andd->device_name);
485
486 return 0;
487}
488
489#ifdef CONFIG_ACPI_NUMA
490static int dmar_parse_one_rhsa(struct acpi_dmar_header *header, void *arg)
491{
492 struct acpi_dmar_rhsa *rhsa;
493 struct dmar_drhd_unit *drhd;
494
495 rhsa = (struct acpi_dmar_rhsa *)header;
496 for_each_drhd_unit(drhd) {
497 if (drhd->reg_base_addr == rhsa->base_address) {
498 int node = pxm_to_node(rhsa->proximity_domain);
499
500 if (node != NUMA_NO_NODE && !node_online(node))
501 node = NUMA_NO_NODE;
502 drhd->iommu->node = node;
503 return 0;
504 }
505 }
506 pr_warn(FW_BUG
507 "Your BIOS is broken; RHSA refers to non-existent DMAR unit at %llx\n"
508 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
509 rhsa->base_address,
510 dmi_get_system_info(DMI_BIOS_VENDOR),
511 dmi_get_system_info(DMI_BIOS_VERSION),
512 dmi_get_system_info(DMI_PRODUCT_VERSION));
513 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
514
515 return 0;
516}
517#else
518#define dmar_parse_one_rhsa dmar_res_noop
519#endif
520
521static void
522dmar_table_print_dmar_entry(struct acpi_dmar_header *header)
523{
524 struct acpi_dmar_hardware_unit *drhd;
525 struct acpi_dmar_reserved_memory *rmrr;
526 struct acpi_dmar_atsr *atsr;
527 struct acpi_dmar_rhsa *rhsa;
528 struct acpi_dmar_satc *satc;
529
530 switch (header->type) {
531 case ACPI_DMAR_TYPE_HARDWARE_UNIT:
532 drhd = container_of(header, struct acpi_dmar_hardware_unit,
533 header);
534 pr_info("DRHD base: %#016Lx flags: %#x\n",
535 (unsigned long long)drhd->address, drhd->flags);
536 break;
537 case ACPI_DMAR_TYPE_RESERVED_MEMORY:
538 rmrr = container_of(header, struct acpi_dmar_reserved_memory,
539 header);
540 pr_info("RMRR base: %#016Lx end: %#016Lx\n",
541 (unsigned long long)rmrr->base_address,
542 (unsigned long long)rmrr->end_address);
543 break;
544 case ACPI_DMAR_TYPE_ROOT_ATS:
545 atsr = container_of(header, struct acpi_dmar_atsr, header);
546 pr_info("ATSR flags: %#x\n", atsr->flags);
547 break;
548 case ACPI_DMAR_TYPE_HARDWARE_AFFINITY:
549 rhsa = container_of(header, struct acpi_dmar_rhsa, header);
550 pr_info("RHSA base: %#016Lx proximity domain: %#x\n",
551 (unsigned long long)rhsa->base_address,
552 rhsa->proximity_domain);
553 break;
554 case ACPI_DMAR_TYPE_NAMESPACE:
555 /* We don't print this here because we need to sanity-check
556 it first. So print it in dmar_parse_one_andd() instead. */
557 break;
558 case ACPI_DMAR_TYPE_SATC:
559 satc = container_of(header, struct acpi_dmar_satc, header);
560 pr_info("SATC flags: 0x%x\n", satc->flags);
561 break;
562 }
563}
564
565/**
566 * dmar_table_detect - checks to see if the platform supports DMAR devices
567 */
568static int __init dmar_table_detect(void)
569{
570 acpi_status status = AE_OK;
571
572 /* if we could find DMAR table, then there are DMAR devices */
573 status = acpi_get_table(ACPI_SIG_DMAR, 0, &dmar_tbl);
574
575 if (ACPI_SUCCESS(status) && !dmar_tbl) {
576 pr_warn("Unable to map DMAR\n");
577 status = AE_NOT_FOUND;
578 }
579
580 return ACPI_SUCCESS(status) ? 0 : -ENOENT;
581}
582
583static int dmar_walk_remapping_entries(struct acpi_dmar_header *start,
584 size_t len, struct dmar_res_callback *cb)
585{
586 struct acpi_dmar_header *iter, *next;
587 struct acpi_dmar_header *end = ((void *)start) + len;
588
589 for (iter = start; iter < end; iter = next) {
590 next = (void *)iter + iter->length;
591 if (iter->length == 0) {
592 /* Avoid looping forever on bad ACPI tables */
593 pr_debug(FW_BUG "Invalid 0-length structure\n");
594 break;
595 } else if (next > end) {
596 /* Avoid passing table end */
597 pr_warn(FW_BUG "Record passes table end\n");
598 return -EINVAL;
599 }
600
601 if (cb->print_entry)
602 dmar_table_print_dmar_entry(iter);
603
604 if (iter->type >= ACPI_DMAR_TYPE_RESERVED) {
605 /* continue for forward compatibility */
606 pr_debug("Unknown DMAR structure type %d\n",
607 iter->type);
608 } else if (cb->cb[iter->type]) {
609 int ret;
610
611 ret = cb->cb[iter->type](iter, cb->arg[iter->type]);
612 if (ret)
613 return ret;
614 } else if (!cb->ignore_unhandled) {
615 pr_warn("No handler for DMAR structure type %d\n",
616 iter->type);
617 return -EINVAL;
618 }
619 }
620
621 return 0;
622}
623
624static inline int dmar_walk_dmar_table(struct acpi_table_dmar *dmar,
625 struct dmar_res_callback *cb)
626{
627 return dmar_walk_remapping_entries((void *)(dmar + 1),
628 dmar->header.length - sizeof(*dmar), cb);
629}
630
631/**
632 * parse_dmar_table - parses the DMA reporting table
633 */
634static int __init
635parse_dmar_table(void)
636{
637 struct acpi_table_dmar *dmar;
638 int drhd_count = 0;
639 int ret;
640 struct dmar_res_callback cb = {
641 .print_entry = true,
642 .ignore_unhandled = true,
643 .arg[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &drhd_count,
644 .cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_parse_one_drhd,
645 .cb[ACPI_DMAR_TYPE_RESERVED_MEMORY] = &dmar_parse_one_rmrr,
646 .cb[ACPI_DMAR_TYPE_ROOT_ATS] = &dmar_parse_one_atsr,
647 .cb[ACPI_DMAR_TYPE_HARDWARE_AFFINITY] = &dmar_parse_one_rhsa,
648 .cb[ACPI_DMAR_TYPE_NAMESPACE] = &dmar_parse_one_andd,
649 .cb[ACPI_DMAR_TYPE_SATC] = &dmar_parse_one_satc,
650 };
651
652 /*
653 * Do it again, earlier dmar_tbl mapping could be mapped with
654 * fixed map.
655 */
656 dmar_table_detect();
657
658 /*
659 * ACPI tables may not be DMA protected by tboot, so use DMAR copy
660 * SINIT saved in SinitMleData in TXT heap (which is DMA protected)
661 */
662 dmar_tbl = tboot_get_dmar_table(dmar_tbl);
663
664 dmar = (struct acpi_table_dmar *)dmar_tbl;
665 if (!dmar)
666 return -ENODEV;
667
668 if (dmar->width < PAGE_SHIFT - 1) {
669 pr_warn("Invalid DMAR haw\n");
670 return -EINVAL;
671 }
672
673 pr_info("Host address width %d\n", dmar->width + 1);
674 ret = dmar_walk_dmar_table(dmar, &cb);
675 if (ret == 0 && drhd_count == 0)
676 pr_warn(FW_BUG "No DRHD structure found in DMAR table\n");
677
678 return ret;
679}
680
681static int dmar_pci_device_match(struct dmar_dev_scope devices[],
682 int cnt, struct pci_dev *dev)
683{
684 int index;
685 struct device *tmp;
686
687 while (dev) {
688 for_each_active_dev_scope(devices, cnt, index, tmp)
689 if (dev_is_pci(tmp) && dev == to_pci_dev(tmp))
690 return 1;
691
692 /* Check our parent */
693 dev = dev->bus->self;
694 }
695
696 return 0;
697}
698
699struct dmar_drhd_unit *
700dmar_find_matched_drhd_unit(struct pci_dev *dev)
701{
702 struct dmar_drhd_unit *dmaru;
703 struct acpi_dmar_hardware_unit *drhd;
704
705 dev = pci_physfn(dev);
706
707 rcu_read_lock();
708 for_each_drhd_unit(dmaru) {
709 drhd = container_of(dmaru->hdr,
710 struct acpi_dmar_hardware_unit,
711 header);
712
713 if (dmaru->include_all &&
714 drhd->segment == pci_domain_nr(dev->bus))
715 goto out;
716
717 if (dmar_pci_device_match(dmaru->devices,
718 dmaru->devices_cnt, dev))
719 goto out;
720 }
721 dmaru = NULL;
722out:
723 rcu_read_unlock();
724
725 return dmaru;
726}
727
728static void __init dmar_acpi_insert_dev_scope(u8 device_number,
729 struct acpi_device *adev)
730{
731 struct dmar_drhd_unit *dmaru;
732 struct acpi_dmar_hardware_unit *drhd;
733 struct acpi_dmar_device_scope *scope;
734 struct device *tmp;
735 int i;
736 struct acpi_dmar_pci_path *path;
737
738 for_each_drhd_unit(dmaru) {
739 drhd = container_of(dmaru->hdr,
740 struct acpi_dmar_hardware_unit,
741 header);
742
743 for (scope = (void *)(drhd + 1);
744 (unsigned long)scope < ((unsigned long)drhd) + drhd->header.length;
745 scope = ((void *)scope) + scope->length) {
746 if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_NAMESPACE)
747 continue;
748 if (scope->enumeration_id != device_number)
749 continue;
750
751 path = (void *)(scope + 1);
752 pr_info("ACPI device \"%s\" under DMAR at %llx as %02x:%02x.%d\n",
753 dev_name(&adev->dev), dmaru->reg_base_addr,
754 scope->bus, path->device, path->function);
755 for_each_dev_scope(dmaru->devices, dmaru->devices_cnt, i, tmp)
756 if (tmp == NULL) {
757 dmaru->devices[i].bus = scope->bus;
758 dmaru->devices[i].devfn = PCI_DEVFN(path->device,
759 path->function);
760 rcu_assign_pointer(dmaru->devices[i].dev,
761 get_device(&adev->dev));
762 return;
763 }
764 BUG_ON(i >= dmaru->devices_cnt);
765 }
766 }
767 pr_warn("No IOMMU scope found for ANDD enumeration ID %d (%s)\n",
768 device_number, dev_name(&adev->dev));
769}
770
771static int __init dmar_acpi_dev_scope_init(void)
772{
773 struct acpi_dmar_andd *andd;
774
775 if (dmar_tbl == NULL)
776 return -ENODEV;
777
778 for (andd = (void *)dmar_tbl + sizeof(struct acpi_table_dmar);
779 ((unsigned long)andd) < ((unsigned long)dmar_tbl) + dmar_tbl->length;
780 andd = ((void *)andd) + andd->header.length) {
781 if (andd->header.type == ACPI_DMAR_TYPE_NAMESPACE) {
782 acpi_handle h;
783 struct acpi_device *adev;
784
785 if (!ACPI_SUCCESS(acpi_get_handle(ACPI_ROOT_OBJECT,
786 andd->device_name,
787 &h))) {
788 pr_err("Failed to find handle for ACPI object %s\n",
789 andd->device_name);
790 continue;
791 }
792 adev = acpi_fetch_acpi_dev(h);
793 if (!adev) {
794 pr_err("Failed to get device for ACPI object %s\n",
795 andd->device_name);
796 continue;
797 }
798 dmar_acpi_insert_dev_scope(andd->device_number, adev);
799 }
800 }
801 return 0;
802}
803
804int __init dmar_dev_scope_init(void)
805{
806 struct pci_dev *dev = NULL;
807 struct dmar_pci_notify_info *info;
808
809 if (dmar_dev_scope_status != 1)
810 return dmar_dev_scope_status;
811
812 if (list_empty(&dmar_drhd_units)) {
813 dmar_dev_scope_status = -ENODEV;
814 } else {
815 dmar_dev_scope_status = 0;
816
817 dmar_acpi_dev_scope_init();
818
819 for_each_pci_dev(dev) {
820 if (dev->is_virtfn)
821 continue;
822
823 info = dmar_alloc_pci_notify_info(dev,
824 BUS_NOTIFY_ADD_DEVICE);
825 if (!info) {
826 pci_dev_put(dev);
827 return dmar_dev_scope_status;
828 } else {
829 dmar_pci_bus_add_dev(info);
830 dmar_free_pci_notify_info(info);
831 }
832 }
833 }
834
835 return dmar_dev_scope_status;
836}
837
838void __init dmar_register_bus_notifier(void)
839{
840 bus_register_notifier(&pci_bus_type, &dmar_pci_bus_nb);
841}
842
843
844int __init dmar_table_init(void)
845{
846 static int dmar_table_initialized;
847 int ret;
848
849 if (dmar_table_initialized == 0) {
850 ret = parse_dmar_table();
851 if (ret < 0) {
852 if (ret != -ENODEV)
853 pr_info("Parse DMAR table failure.\n");
854 } else if (list_empty(&dmar_drhd_units)) {
855 pr_info("No DMAR devices found\n");
856 ret = -ENODEV;
857 }
858
859 if (ret < 0)
860 dmar_table_initialized = ret;
861 else
862 dmar_table_initialized = 1;
863 }
864
865 return dmar_table_initialized < 0 ? dmar_table_initialized : 0;
866}
867
868static void warn_invalid_dmar(u64 addr, const char *message)
869{
870 pr_warn_once(FW_BUG
871 "Your BIOS is broken; DMAR reported at address %llx%s!\n"
872 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
873 addr, message,
874 dmi_get_system_info(DMI_BIOS_VENDOR),
875 dmi_get_system_info(DMI_BIOS_VERSION),
876 dmi_get_system_info(DMI_PRODUCT_VERSION));
877 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
878}
879
880static int __ref
881dmar_validate_one_drhd(struct acpi_dmar_header *entry, void *arg)
882{
883 struct acpi_dmar_hardware_unit *drhd;
884 void __iomem *addr;
885 u64 cap, ecap;
886
887 drhd = (void *)entry;
888 if (!drhd->address) {
889 warn_invalid_dmar(0, "");
890 return -EINVAL;
891 }
892
893 if (arg)
894 addr = ioremap(drhd->address, VTD_PAGE_SIZE);
895 else
896 addr = early_ioremap(drhd->address, VTD_PAGE_SIZE);
897 if (!addr) {
898 pr_warn("Can't validate DRHD address: %llx\n", drhd->address);
899 return -EINVAL;
900 }
901
902 cap = dmar_readq(addr + DMAR_CAP_REG);
903 ecap = dmar_readq(addr + DMAR_ECAP_REG);
904
905 if (arg)
906 iounmap(addr);
907 else
908 early_iounmap(addr, VTD_PAGE_SIZE);
909
910 if (cap == (uint64_t)-1 && ecap == (uint64_t)-1) {
911 warn_invalid_dmar(drhd->address, " returns all ones");
912 return -EINVAL;
913 }
914
915 return 0;
916}
917
918void __init detect_intel_iommu(void)
919{
920 int ret;
921 struct dmar_res_callback validate_drhd_cb = {
922 .cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_validate_one_drhd,
923 .ignore_unhandled = true,
924 };
925
926 down_write(&dmar_global_lock);
927 ret = dmar_table_detect();
928 if (!ret)
929 ret = dmar_walk_dmar_table((struct acpi_table_dmar *)dmar_tbl,
930 &validate_drhd_cb);
931 if (!ret && !no_iommu && !iommu_detected &&
932 (!dmar_disabled || dmar_platform_optin())) {
933 iommu_detected = 1;
934 /* Make sure ACS will be enabled */
935 pci_request_acs();
936 }
937
938#ifdef CONFIG_X86
939 if (!ret) {
940 x86_init.iommu.iommu_init = intel_iommu_init;
941 x86_platform.iommu_shutdown = intel_iommu_shutdown;
942 }
943
944#endif
945
946 if (dmar_tbl) {
947 acpi_put_table(dmar_tbl);
948 dmar_tbl = NULL;
949 }
950 up_write(&dmar_global_lock);
951}
952
953static void unmap_iommu(struct intel_iommu *iommu)
954{
955 iounmap(iommu->reg);
956 release_mem_region(iommu->reg_phys, iommu->reg_size);
957}
958
959/**
960 * map_iommu: map the iommu's registers
961 * @iommu: the iommu to map
962 * @drhd: DMA remapping hardware definition structure
963 *
964 * Memory map the iommu's registers. Start w/ a single page, and
965 * possibly expand if that turns out to be insufficent.
966 */
967static int map_iommu(struct intel_iommu *iommu, struct dmar_drhd_unit *drhd)
968{
969 u64 phys_addr = drhd->reg_base_addr;
970 int map_size, err=0;
971
972 iommu->reg_phys = phys_addr;
973 iommu->reg_size = drhd->reg_size;
974
975 if (!request_mem_region(iommu->reg_phys, iommu->reg_size, iommu->name)) {
976 pr_err("Can't reserve memory\n");
977 err = -EBUSY;
978 goto out;
979 }
980
981 iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
982 if (!iommu->reg) {
983 pr_err("Can't map the region\n");
984 err = -ENOMEM;
985 goto release;
986 }
987
988 iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
989 iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);
990
991 if (iommu->cap == (uint64_t)-1 && iommu->ecap == (uint64_t)-1) {
992 err = -EINVAL;
993 warn_invalid_dmar(phys_addr, " returns all ones");
994 goto unmap;
995 }
996
997 /* the registers might be more than one page */
998 map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
999 cap_max_fault_reg_offset(iommu->cap));
1000 map_size = VTD_PAGE_ALIGN(map_size);
1001 if (map_size > iommu->reg_size) {
1002 iounmap(iommu->reg);
1003 release_mem_region(iommu->reg_phys, iommu->reg_size);
1004 iommu->reg_size = map_size;
1005 if (!request_mem_region(iommu->reg_phys, iommu->reg_size,
1006 iommu->name)) {
1007 pr_err("Can't reserve memory\n");
1008 err = -EBUSY;
1009 goto out;
1010 }
1011 iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
1012 if (!iommu->reg) {
1013 pr_err("Can't map the region\n");
1014 err = -ENOMEM;
1015 goto release;
1016 }
1017 }
1018
1019 if (cap_ecmds(iommu->cap)) {
1020 int i;
1021
1022 for (i = 0; i < DMA_MAX_NUM_ECMDCAP; i++) {
1023 iommu->ecmdcap[i] = dmar_readq(iommu->reg + DMAR_ECCAP_REG +
1024 i * DMA_ECMD_REG_STEP);
1025 }
1026 }
1027
1028 err = 0;
1029 goto out;
1030
1031unmap:
1032 iounmap(iommu->reg);
1033release:
1034 release_mem_region(iommu->reg_phys, iommu->reg_size);
1035out:
1036 return err;
1037}
1038
1039static int alloc_iommu(struct dmar_drhd_unit *drhd)
1040{
1041 struct intel_iommu *iommu;
1042 u32 ver, sts;
1043 int agaw = -1;
1044 int msagaw = -1;
1045 int err;
1046
1047 if (!drhd->reg_base_addr) {
1048 warn_invalid_dmar(0, "");
1049 return -EINVAL;
1050 }
1051
1052 iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
1053 if (!iommu)
1054 return -ENOMEM;
1055
1056 iommu->seq_id = ida_alloc_range(&dmar_seq_ids, 0,
1057 DMAR_UNITS_SUPPORTED - 1, GFP_KERNEL);
1058 if (iommu->seq_id < 0) {
1059 pr_err("Failed to allocate seq_id\n");
1060 err = iommu->seq_id;
1061 goto error;
1062 }
1063 snprintf(iommu->name, sizeof(iommu->name), "dmar%d", iommu->seq_id);
1064
1065 err = map_iommu(iommu, drhd);
1066 if (err) {
1067 pr_err("Failed to map %s\n", iommu->name);
1068 goto error_free_seq_id;
1069 }
1070
1071 if (!cap_sagaw(iommu->cap) &&
1072 (!ecap_smts(iommu->ecap) || ecap_slts(iommu->ecap))) {
1073 pr_info("%s: No supported address widths. Not attempting DMA translation.\n",
1074 iommu->name);
1075 drhd->ignored = 1;
1076 }
1077
1078 if (!drhd->ignored) {
1079 agaw = iommu_calculate_agaw(iommu);
1080 if (agaw < 0) {
1081 pr_err("Cannot get a valid agaw for iommu (seq_id = %d)\n",
1082 iommu->seq_id);
1083 drhd->ignored = 1;
1084 }
1085 }
1086 if (!drhd->ignored) {
1087 msagaw = iommu_calculate_max_sagaw(iommu);
1088 if (msagaw < 0) {
1089 pr_err("Cannot get a valid max agaw for iommu (seq_id = %d)\n",
1090 iommu->seq_id);
1091 drhd->ignored = 1;
1092 agaw = -1;
1093 }
1094 }
1095 iommu->agaw = agaw;
1096 iommu->msagaw = msagaw;
1097 iommu->segment = drhd->segment;
1098 iommu->device_rbtree = RB_ROOT;
1099 spin_lock_init(&iommu->device_rbtree_lock);
1100 mutex_init(&iommu->iopf_lock);
1101 iommu->node = NUMA_NO_NODE;
1102
1103 ver = readl(iommu->reg + DMAR_VER_REG);
1104 pr_info("%s: reg_base_addr %llx ver %d:%d cap %llx ecap %llx\n",
1105 iommu->name,
1106 (unsigned long long)drhd->reg_base_addr,
1107 DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
1108 (unsigned long long)iommu->cap,
1109 (unsigned long long)iommu->ecap);
1110
1111 /* Reflect status in gcmd */
1112 sts = readl(iommu->reg + DMAR_GSTS_REG);
1113 if (sts & DMA_GSTS_IRES)
1114 iommu->gcmd |= DMA_GCMD_IRE;
1115 if (sts & DMA_GSTS_TES)
1116 iommu->gcmd |= DMA_GCMD_TE;
1117 if (sts & DMA_GSTS_QIES)
1118 iommu->gcmd |= DMA_GCMD_QIE;
1119
1120 if (alloc_iommu_pmu(iommu))
1121 pr_debug("Cannot alloc PMU for iommu (seq_id = %d)\n", iommu->seq_id);
1122
1123 raw_spin_lock_init(&iommu->register_lock);
1124
1125 /*
1126 * A value of N in PSS field of eCap register indicates hardware
1127 * supports PASID field of N+1 bits.
1128 */
1129 if (pasid_supported(iommu))
1130 iommu->iommu.max_pasids = 2UL << ecap_pss(iommu->ecap);
1131
1132 /*
1133 * This is only for hotplug; at boot time intel_iommu_enabled won't
1134 * be set yet. When intel_iommu_init() runs, it registers the units
1135 * present at boot time, then sets intel_iommu_enabled.
1136 */
1137 if (intel_iommu_enabled && !drhd->ignored) {
1138 err = iommu_device_sysfs_add(&iommu->iommu, NULL,
1139 intel_iommu_groups,
1140 "%s", iommu->name);
1141 if (err)
1142 goto err_unmap;
1143
1144 err = iommu_device_register(&iommu->iommu, &intel_iommu_ops, NULL);
1145 if (err)
1146 goto err_sysfs;
1147
1148 iommu_pmu_register(iommu);
1149 }
1150
1151 drhd->iommu = iommu;
1152 iommu->drhd = drhd;
1153
1154 return 0;
1155
1156err_sysfs:
1157 iommu_device_sysfs_remove(&iommu->iommu);
1158err_unmap:
1159 free_iommu_pmu(iommu);
1160 unmap_iommu(iommu);
1161error_free_seq_id:
1162 ida_free(&dmar_seq_ids, iommu->seq_id);
1163error:
1164 kfree(iommu);
1165 return err;
1166}
1167
1168static void free_iommu(struct intel_iommu *iommu)
1169{
1170 if (intel_iommu_enabled && !iommu->drhd->ignored) {
1171 iommu_pmu_unregister(iommu);
1172 iommu_device_unregister(&iommu->iommu);
1173 iommu_device_sysfs_remove(&iommu->iommu);
1174 }
1175
1176 free_iommu_pmu(iommu);
1177
1178 if (iommu->irq) {
1179 if (iommu->pr_irq) {
1180 free_irq(iommu->pr_irq, iommu);
1181 dmar_free_hwirq(iommu->pr_irq);
1182 iommu->pr_irq = 0;
1183 }
1184 free_irq(iommu->irq, iommu);
1185 dmar_free_hwirq(iommu->irq);
1186 iommu->irq = 0;
1187 }
1188
1189 if (iommu->qi) {
1190 iommu_free_page(iommu->qi->desc);
1191 kfree(iommu->qi->desc_status);
1192 kfree(iommu->qi);
1193 }
1194
1195 if (iommu->reg)
1196 unmap_iommu(iommu);
1197
1198 ida_free(&dmar_seq_ids, iommu->seq_id);
1199 kfree(iommu);
1200}
1201
1202/*
1203 * Reclaim all the submitted descriptors which have completed its work.
1204 */
1205static inline void reclaim_free_desc(struct q_inval *qi)
1206{
1207 while (qi->desc_status[qi->free_tail] == QI_FREE && qi->free_tail != qi->free_head) {
1208 qi->free_tail = (qi->free_tail + 1) % QI_LENGTH;
1209 qi->free_cnt++;
1210 }
1211}
1212
1213static const char *qi_type_string(u8 type)
1214{
1215 switch (type) {
1216 case QI_CC_TYPE:
1217 return "Context-cache Invalidation";
1218 case QI_IOTLB_TYPE:
1219 return "IOTLB Invalidation";
1220 case QI_DIOTLB_TYPE:
1221 return "Device-TLB Invalidation";
1222 case QI_IEC_TYPE:
1223 return "Interrupt Entry Cache Invalidation";
1224 case QI_IWD_TYPE:
1225 return "Invalidation Wait";
1226 case QI_EIOTLB_TYPE:
1227 return "PASID-based IOTLB Invalidation";
1228 case QI_PC_TYPE:
1229 return "PASID-cache Invalidation";
1230 case QI_DEIOTLB_TYPE:
1231 return "PASID-based Device-TLB Invalidation";
1232 case QI_PGRP_RESP_TYPE:
1233 return "Page Group Response";
1234 default:
1235 return "UNKNOWN";
1236 }
1237}
1238
1239static void qi_dump_fault(struct intel_iommu *iommu, u32 fault)
1240{
1241 unsigned int head = dmar_readl(iommu->reg + DMAR_IQH_REG);
1242 u64 iqe_err = dmar_readq(iommu->reg + DMAR_IQER_REG);
1243 struct qi_desc *desc = iommu->qi->desc + head;
1244
1245 if (fault & DMA_FSTS_IQE)
1246 pr_err("VT-d detected Invalidation Queue Error: Reason %llx",
1247 DMAR_IQER_REG_IQEI(iqe_err));
1248 if (fault & DMA_FSTS_ITE)
1249 pr_err("VT-d detected Invalidation Time-out Error: SID %llx",
1250 DMAR_IQER_REG_ITESID(iqe_err));
1251 if (fault & DMA_FSTS_ICE)
1252 pr_err("VT-d detected Invalidation Completion Error: SID %llx",
1253 DMAR_IQER_REG_ICESID(iqe_err));
1254
1255 pr_err("QI HEAD: %s qw0 = 0x%llx, qw1 = 0x%llx\n",
1256 qi_type_string(desc->qw0 & 0xf),
1257 (unsigned long long)desc->qw0,
1258 (unsigned long long)desc->qw1);
1259
1260 head = ((head >> qi_shift(iommu)) + QI_LENGTH - 1) % QI_LENGTH;
1261 head <<= qi_shift(iommu);
1262 desc = iommu->qi->desc + head;
1263
1264 pr_err("QI PRIOR: %s qw0 = 0x%llx, qw1 = 0x%llx\n",
1265 qi_type_string(desc->qw0 & 0xf),
1266 (unsigned long long)desc->qw0,
1267 (unsigned long long)desc->qw1);
1268}
1269
1270static int qi_check_fault(struct intel_iommu *iommu, int index, int wait_index)
1271{
1272 u32 fault;
1273 int head, tail;
1274 struct device *dev;
1275 u64 iqe_err, ite_sid;
1276 struct q_inval *qi = iommu->qi;
1277 int shift = qi_shift(iommu);
1278
1279 if (qi->desc_status[wait_index] == QI_ABORT)
1280 return -EAGAIN;
1281
1282 fault = readl(iommu->reg + DMAR_FSTS_REG);
1283 if (fault & (DMA_FSTS_IQE | DMA_FSTS_ITE | DMA_FSTS_ICE))
1284 qi_dump_fault(iommu, fault);
1285
1286 /*
1287 * If IQE happens, the head points to the descriptor associated
1288 * with the error. No new descriptors are fetched until the IQE
1289 * is cleared.
1290 */
1291 if (fault & DMA_FSTS_IQE) {
1292 head = readl(iommu->reg + DMAR_IQH_REG);
1293 if ((head >> shift) == index) {
1294 struct qi_desc *desc = qi->desc + head;
1295
1296 /*
1297 * desc->qw2 and desc->qw3 are either reserved or
1298 * used by software as private data. We won't print
1299 * out these two qw's for security consideration.
1300 */
1301 memcpy(desc, qi->desc + (wait_index << shift),
1302 1 << shift);
1303 writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG);
1304 pr_info("Invalidation Queue Error (IQE) cleared\n");
1305 return -EINVAL;
1306 }
1307 }
1308
1309 /*
1310 * If ITE happens, all pending wait_desc commands are aborted.
1311 * No new descriptors are fetched until the ITE is cleared.
1312 */
1313 if (fault & DMA_FSTS_ITE) {
1314 head = readl(iommu->reg + DMAR_IQH_REG);
1315 head = ((head >> shift) - 1 + QI_LENGTH) % QI_LENGTH;
1316 head |= 1;
1317 tail = readl(iommu->reg + DMAR_IQT_REG);
1318 tail = ((tail >> shift) - 1 + QI_LENGTH) % QI_LENGTH;
1319
1320 /*
1321 * SID field is valid only when the ITE field is Set in FSTS_REG
1322 * see Intel VT-d spec r4.1, section 11.4.9.9
1323 */
1324 iqe_err = dmar_readq(iommu->reg + DMAR_IQER_REG);
1325 ite_sid = DMAR_IQER_REG_ITESID(iqe_err);
1326
1327 writel(DMA_FSTS_ITE, iommu->reg + DMAR_FSTS_REG);
1328 pr_info("Invalidation Time-out Error (ITE) cleared\n");
1329
1330 do {
1331 if (qi->desc_status[head] == QI_IN_USE)
1332 qi->desc_status[head] = QI_ABORT;
1333 head = (head - 2 + QI_LENGTH) % QI_LENGTH;
1334 } while (head != tail);
1335
1336 /*
1337 * If device was released or isn't present, no need to retry
1338 * the ATS invalidate request anymore.
1339 *
1340 * 0 value of ite_sid means old VT-d device, no ite_sid value.
1341 * see Intel VT-d spec r4.1, section 11.4.9.9
1342 */
1343 if (ite_sid) {
1344 dev = device_rbtree_find(iommu, ite_sid);
1345 if (!dev || !dev_is_pci(dev) ||
1346 !pci_device_is_present(to_pci_dev(dev)))
1347 return -ETIMEDOUT;
1348 }
1349 if (qi->desc_status[wait_index] == QI_ABORT)
1350 return -EAGAIN;
1351 }
1352
1353 if (fault & DMA_FSTS_ICE) {
1354 writel(DMA_FSTS_ICE, iommu->reg + DMAR_FSTS_REG);
1355 pr_info("Invalidation Completion Error (ICE) cleared\n");
1356 }
1357
1358 return 0;
1359}
1360
1361/*
1362 * Function to submit invalidation descriptors of all types to the queued
1363 * invalidation interface(QI). Multiple descriptors can be submitted at a
1364 * time, a wait descriptor will be appended to each submission to ensure
1365 * hardware has completed the invalidation before return. Wait descriptors
1366 * can be part of the submission but it will not be polled for completion.
1367 */
1368int qi_submit_sync(struct intel_iommu *iommu, struct qi_desc *desc,
1369 unsigned int count, unsigned long options)
1370{
1371 struct q_inval *qi = iommu->qi;
1372 s64 devtlb_start_ktime = 0;
1373 s64 iotlb_start_ktime = 0;
1374 s64 iec_start_ktime = 0;
1375 struct qi_desc wait_desc;
1376 int wait_index, index;
1377 unsigned long flags;
1378 int offset, shift;
1379 int rc, i;
1380 u64 type;
1381
1382 if (!qi)
1383 return 0;
1384
1385 type = desc->qw0 & GENMASK_ULL(3, 0);
1386
1387 if ((type == QI_IOTLB_TYPE || type == QI_EIOTLB_TYPE) &&
1388 dmar_latency_enabled(iommu, DMAR_LATENCY_INV_IOTLB))
1389 iotlb_start_ktime = ktime_to_ns(ktime_get());
1390
1391 if ((type == QI_DIOTLB_TYPE || type == QI_DEIOTLB_TYPE) &&
1392 dmar_latency_enabled(iommu, DMAR_LATENCY_INV_DEVTLB))
1393 devtlb_start_ktime = ktime_to_ns(ktime_get());
1394
1395 if (type == QI_IEC_TYPE &&
1396 dmar_latency_enabled(iommu, DMAR_LATENCY_INV_IEC))
1397 iec_start_ktime = ktime_to_ns(ktime_get());
1398
1399restart:
1400 rc = 0;
1401
1402 raw_spin_lock_irqsave(&qi->q_lock, flags);
1403 /*
1404 * Check if we have enough empty slots in the queue to submit,
1405 * the calculation is based on:
1406 * # of desc + 1 wait desc + 1 space between head and tail
1407 */
1408 while (qi->free_cnt < count + 2) {
1409 raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1410 cpu_relax();
1411 raw_spin_lock_irqsave(&qi->q_lock, flags);
1412 }
1413
1414 index = qi->free_head;
1415 wait_index = (index + count) % QI_LENGTH;
1416 shift = qi_shift(iommu);
1417
1418 for (i = 0; i < count; i++) {
1419 offset = ((index + i) % QI_LENGTH) << shift;
1420 memcpy(qi->desc + offset, &desc[i], 1 << shift);
1421 qi->desc_status[(index + i) % QI_LENGTH] = QI_IN_USE;
1422 trace_qi_submit(iommu, desc[i].qw0, desc[i].qw1,
1423 desc[i].qw2, desc[i].qw3);
1424 }
1425 qi->desc_status[wait_index] = QI_IN_USE;
1426
1427 wait_desc.qw0 = QI_IWD_STATUS_DATA(QI_DONE) |
1428 QI_IWD_STATUS_WRITE | QI_IWD_TYPE;
1429 if (options & QI_OPT_WAIT_DRAIN)
1430 wait_desc.qw0 |= QI_IWD_PRQ_DRAIN;
1431 wait_desc.qw1 = virt_to_phys(&qi->desc_status[wait_index]);
1432 wait_desc.qw2 = 0;
1433 wait_desc.qw3 = 0;
1434
1435 offset = wait_index << shift;
1436 memcpy(qi->desc + offset, &wait_desc, 1 << shift);
1437
1438 qi->free_head = (qi->free_head + count + 1) % QI_LENGTH;
1439 qi->free_cnt -= count + 1;
1440
1441 /*
1442 * update the HW tail register indicating the presence of
1443 * new descriptors.
1444 */
1445 writel(qi->free_head << shift, iommu->reg + DMAR_IQT_REG);
1446
1447 while (READ_ONCE(qi->desc_status[wait_index]) != QI_DONE) {
1448 /*
1449 * We will leave the interrupts disabled, to prevent interrupt
1450 * context to queue another cmd while a cmd is already submitted
1451 * and waiting for completion on this cpu. This is to avoid
1452 * a deadlock where the interrupt context can wait indefinitely
1453 * for free slots in the queue.
1454 */
1455 rc = qi_check_fault(iommu, index, wait_index);
1456 if (rc)
1457 break;
1458
1459 raw_spin_unlock(&qi->q_lock);
1460 cpu_relax();
1461 raw_spin_lock(&qi->q_lock);
1462 }
1463
1464 /*
1465 * The reclaim code can free descriptors from multiple submissions
1466 * starting from the tail of the queue. When count == 0, the
1467 * status of the standalone wait descriptor at the tail of the queue
1468 * must be set to QI_FREE to allow the reclaim code to proceed.
1469 * It is also possible that descriptors from one of the previous
1470 * submissions has to be reclaimed by a subsequent submission.
1471 */
1472 for (i = 0; i <= count; i++)
1473 qi->desc_status[(index + i) % QI_LENGTH] = QI_FREE;
1474
1475 reclaim_free_desc(qi);
1476 raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1477
1478 if (rc == -EAGAIN)
1479 goto restart;
1480
1481 if (iotlb_start_ktime)
1482 dmar_latency_update(iommu, DMAR_LATENCY_INV_IOTLB,
1483 ktime_to_ns(ktime_get()) - iotlb_start_ktime);
1484
1485 if (devtlb_start_ktime)
1486 dmar_latency_update(iommu, DMAR_LATENCY_INV_DEVTLB,
1487 ktime_to_ns(ktime_get()) - devtlb_start_ktime);
1488
1489 if (iec_start_ktime)
1490 dmar_latency_update(iommu, DMAR_LATENCY_INV_IEC,
1491 ktime_to_ns(ktime_get()) - iec_start_ktime);
1492
1493 return rc;
1494}
1495
1496/*
1497 * Flush the global interrupt entry cache.
1498 */
1499void qi_global_iec(struct intel_iommu *iommu)
1500{
1501 struct qi_desc desc;
1502
1503 desc.qw0 = QI_IEC_TYPE;
1504 desc.qw1 = 0;
1505 desc.qw2 = 0;
1506 desc.qw3 = 0;
1507
1508 /* should never fail */
1509 qi_submit_sync(iommu, &desc, 1, 0);
1510}
1511
1512void qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm,
1513 u64 type)
1514{
1515 struct qi_desc desc;
1516
1517 desc.qw0 = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did)
1518 | QI_CC_GRAN(type) | QI_CC_TYPE;
1519 desc.qw1 = 0;
1520 desc.qw2 = 0;
1521 desc.qw3 = 0;
1522
1523 qi_submit_sync(iommu, &desc, 1, 0);
1524}
1525
1526void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
1527 unsigned int size_order, u64 type)
1528{
1529 struct qi_desc desc;
1530
1531 qi_desc_iotlb(iommu, did, addr, size_order, type, &desc);
1532 qi_submit_sync(iommu, &desc, 1, 0);
1533}
1534
1535void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 pfsid,
1536 u16 qdep, u64 addr, unsigned mask)
1537{
1538 struct qi_desc desc;
1539
1540 /*
1541 * VT-d spec, section 4.3:
1542 *
1543 * Software is recommended to not submit any Device-TLB invalidation
1544 * requests while address remapping hardware is disabled.
1545 */
1546 if (!(iommu->gcmd & DMA_GCMD_TE))
1547 return;
1548
1549 qi_desc_dev_iotlb(sid, pfsid, qdep, addr, mask, &desc);
1550 qi_submit_sync(iommu, &desc, 1, 0);
1551}
1552
1553/* PASID-based IOTLB invalidation */
1554void qi_flush_piotlb(struct intel_iommu *iommu, u16 did, u32 pasid, u64 addr,
1555 unsigned long npages, bool ih)
1556{
1557 struct qi_desc desc = {.qw2 = 0, .qw3 = 0};
1558
1559 /*
1560 * npages == -1 means a PASID-selective invalidation, otherwise,
1561 * a positive value for Page-selective-within-PASID invalidation.
1562 * 0 is not a valid input.
1563 */
1564 if (WARN_ON(!npages)) {
1565 pr_err("Invalid input npages = %ld\n", npages);
1566 return;
1567 }
1568
1569 qi_desc_piotlb(did, pasid, addr, npages, ih, &desc);
1570 qi_submit_sync(iommu, &desc, 1, 0);
1571}
1572
1573/* PASID-based device IOTLB Invalidate */
1574void qi_flush_dev_iotlb_pasid(struct intel_iommu *iommu, u16 sid, u16 pfsid,
1575 u32 pasid, u16 qdep, u64 addr, unsigned int size_order)
1576{
1577 struct qi_desc desc = {.qw1 = 0, .qw2 = 0, .qw3 = 0};
1578
1579 /*
1580 * VT-d spec, section 4.3:
1581 *
1582 * Software is recommended to not submit any Device-TLB invalidation
1583 * requests while address remapping hardware is disabled.
1584 */
1585 if (!(iommu->gcmd & DMA_GCMD_TE))
1586 return;
1587
1588 qi_desc_dev_iotlb_pasid(sid, pfsid, pasid,
1589 qdep, addr, size_order,
1590 &desc);
1591 qi_submit_sync(iommu, &desc, 1, 0);
1592}
1593
1594void qi_flush_pasid_cache(struct intel_iommu *iommu, u16 did,
1595 u64 granu, u32 pasid)
1596{
1597 struct qi_desc desc = {.qw1 = 0, .qw2 = 0, .qw3 = 0};
1598
1599 desc.qw0 = QI_PC_PASID(pasid) | QI_PC_DID(did) |
1600 QI_PC_GRAN(granu) | QI_PC_TYPE;
1601 qi_submit_sync(iommu, &desc, 1, 0);
1602}
1603
1604/*
1605 * Disable Queued Invalidation interface.
1606 */
1607void dmar_disable_qi(struct intel_iommu *iommu)
1608{
1609 unsigned long flags;
1610 u32 sts;
1611 cycles_t start_time = get_cycles();
1612
1613 if (!ecap_qis(iommu->ecap))
1614 return;
1615
1616 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1617
1618 sts = readl(iommu->reg + DMAR_GSTS_REG);
1619 if (!(sts & DMA_GSTS_QIES))
1620 goto end;
1621
1622 /*
1623 * Give a chance to HW to complete the pending invalidation requests.
1624 */
1625 while ((readl(iommu->reg + DMAR_IQT_REG) !=
1626 readl(iommu->reg + DMAR_IQH_REG)) &&
1627 (DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time)))
1628 cpu_relax();
1629
1630 iommu->gcmd &= ~DMA_GCMD_QIE;
1631 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1632
1633 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl,
1634 !(sts & DMA_GSTS_QIES), sts);
1635end:
1636 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1637}
1638
1639/*
1640 * Enable queued invalidation.
1641 */
1642static void __dmar_enable_qi(struct intel_iommu *iommu)
1643{
1644 u32 sts;
1645 unsigned long flags;
1646 struct q_inval *qi = iommu->qi;
1647 u64 val = virt_to_phys(qi->desc);
1648
1649 qi->free_head = qi->free_tail = 0;
1650 qi->free_cnt = QI_LENGTH;
1651
1652 /*
1653 * Set DW=1 and QS=1 in IQA_REG when Scalable Mode capability
1654 * is present.
1655 */
1656 if (ecap_smts(iommu->ecap))
1657 val |= BIT_ULL(11) | BIT_ULL(0);
1658
1659 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1660
1661 /* write zero to the tail reg */
1662 writel(0, iommu->reg + DMAR_IQT_REG);
1663
1664 dmar_writeq(iommu->reg + DMAR_IQA_REG, val);
1665
1666 iommu->gcmd |= DMA_GCMD_QIE;
1667 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1668
1669 /* Make sure hardware complete it */
1670 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts);
1671
1672 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1673}
1674
1675/*
1676 * Enable Queued Invalidation interface. This is a must to support
1677 * interrupt-remapping. Also used by DMA-remapping, which replaces
1678 * register based IOTLB invalidation.
1679 */
1680int dmar_enable_qi(struct intel_iommu *iommu)
1681{
1682 struct q_inval *qi;
1683 void *desc;
1684 int order;
1685
1686 if (!ecap_qis(iommu->ecap))
1687 return -ENOENT;
1688
1689 /*
1690 * queued invalidation is already setup and enabled.
1691 */
1692 if (iommu->qi)
1693 return 0;
1694
1695 iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC);
1696 if (!iommu->qi)
1697 return -ENOMEM;
1698
1699 qi = iommu->qi;
1700
1701 /*
1702 * Need two pages to accommodate 256 descriptors of 256 bits each
1703 * if the remapping hardware supports scalable mode translation.
1704 */
1705 order = ecap_smts(iommu->ecap) ? 1 : 0;
1706 desc = iommu_alloc_pages_node(iommu->node, GFP_ATOMIC, order);
1707 if (!desc) {
1708 kfree(qi);
1709 iommu->qi = NULL;
1710 return -ENOMEM;
1711 }
1712
1713 qi->desc = desc;
1714
1715 qi->desc_status = kcalloc(QI_LENGTH, sizeof(int), GFP_ATOMIC);
1716 if (!qi->desc_status) {
1717 iommu_free_page(qi->desc);
1718 kfree(qi);
1719 iommu->qi = NULL;
1720 return -ENOMEM;
1721 }
1722
1723 raw_spin_lock_init(&qi->q_lock);
1724
1725 __dmar_enable_qi(iommu);
1726
1727 return 0;
1728}
1729
1730/* iommu interrupt handling. Most stuff are MSI-like. */
1731
1732enum faulttype {
1733 DMA_REMAP,
1734 INTR_REMAP,
1735 UNKNOWN,
1736};
1737
1738static const char *dma_remap_fault_reasons[] =
1739{
1740 "Software",
1741 "Present bit in root entry is clear",
1742 "Present bit in context entry is clear",
1743 "Invalid context entry",
1744 "Access beyond MGAW",
1745 "PTE Write access is not set",
1746 "PTE Read access is not set",
1747 "Next page table ptr is invalid",
1748 "Root table address invalid",
1749 "Context table ptr is invalid",
1750 "non-zero reserved fields in RTP",
1751 "non-zero reserved fields in CTP",
1752 "non-zero reserved fields in PTE",
1753 "PCE for translation request specifies blocking",
1754};
1755
1756static const char * const dma_remap_sm_fault_reasons[] = {
1757 "SM: Invalid Root Table Address",
1758 "SM: TTM 0 for request with PASID",
1759 "SM: TTM 0 for page group request",
1760 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x33-0x37 */
1761 "SM: Error attempting to access Root Entry",
1762 "SM: Present bit in Root Entry is clear",
1763 "SM: Non-zero reserved field set in Root Entry",
1764 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x3B-0x3F */
1765 "SM: Error attempting to access Context Entry",
1766 "SM: Present bit in Context Entry is clear",
1767 "SM: Non-zero reserved field set in the Context Entry",
1768 "SM: Invalid Context Entry",
1769 "SM: DTE field in Context Entry is clear",
1770 "SM: PASID Enable field in Context Entry is clear",
1771 "SM: PASID is larger than the max in Context Entry",
1772 "SM: PRE field in Context-Entry is clear",
1773 "SM: RID_PASID field error in Context-Entry",
1774 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x49-0x4F */
1775 "SM: Error attempting to access the PASID Directory Entry",
1776 "SM: Present bit in Directory Entry is clear",
1777 "SM: Non-zero reserved field set in PASID Directory Entry",
1778 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x53-0x57 */
1779 "SM: Error attempting to access PASID Table Entry",
1780 "SM: Present bit in PASID Table Entry is clear",
1781 "SM: Non-zero reserved field set in PASID Table Entry",
1782 "SM: Invalid Scalable-Mode PASID Table Entry",
1783 "SM: ERE field is clear in PASID Table Entry",
1784 "SM: SRE field is clear in PASID Table Entry",
1785 "Unknown", "Unknown",/* 0x5E-0x5F */
1786 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x60-0x67 */
1787 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x68-0x6F */
1788 "SM: Error attempting to access first-level paging entry",
1789 "SM: Present bit in first-level paging entry is clear",
1790 "SM: Non-zero reserved field set in first-level paging entry",
1791 "SM: Error attempting to access FL-PML4 entry",
1792 "SM: First-level entry address beyond MGAW in Nested translation",
1793 "SM: Read permission error in FL-PML4 entry in Nested translation",
1794 "SM: Read permission error in first-level paging entry in Nested translation",
1795 "SM: Write permission error in first-level paging entry in Nested translation",
1796 "SM: Error attempting to access second-level paging entry",
1797 "SM: Read/Write permission error in second-level paging entry",
1798 "SM: Non-zero reserved field set in second-level paging entry",
1799 "SM: Invalid second-level page table pointer",
1800 "SM: A/D bit update needed in second-level entry when set up in no snoop",
1801 "Unknown", "Unknown", "Unknown", /* 0x7D-0x7F */
1802 "SM: Address in first-level translation is not canonical",
1803 "SM: U/S set 0 for first-level translation with user privilege",
1804 "SM: No execute permission for request with PASID and ER=1",
1805 "SM: Address beyond the DMA hardware max",
1806 "SM: Second-level entry address beyond the max",
1807 "SM: No write permission for Write/AtomicOp request",
1808 "SM: No read permission for Read/AtomicOp request",
1809 "SM: Invalid address-interrupt address",
1810 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x88-0x8F */
1811 "SM: A/D bit update needed in first-level entry when set up in no snoop",
1812};
1813
1814static const char *irq_remap_fault_reasons[] =
1815{
1816 "Detected reserved fields in the decoded interrupt-remapped request",
1817 "Interrupt index exceeded the interrupt-remapping table size",
1818 "Present field in the IRTE entry is clear",
1819 "Error accessing interrupt-remapping table pointed by IRTA_REG",
1820 "Detected reserved fields in the IRTE entry",
1821 "Blocked a compatibility format interrupt request",
1822 "Blocked an interrupt request due to source-id verification failure",
1823};
1824
1825static const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type)
1826{
1827 if (fault_reason >= 0x20 && (fault_reason - 0x20 <
1828 ARRAY_SIZE(irq_remap_fault_reasons))) {
1829 *fault_type = INTR_REMAP;
1830 return irq_remap_fault_reasons[fault_reason - 0x20];
1831 } else if (fault_reason >= 0x30 && (fault_reason - 0x30 <
1832 ARRAY_SIZE(dma_remap_sm_fault_reasons))) {
1833 *fault_type = DMA_REMAP;
1834 return dma_remap_sm_fault_reasons[fault_reason - 0x30];
1835 } else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) {
1836 *fault_type = DMA_REMAP;
1837 return dma_remap_fault_reasons[fault_reason];
1838 } else {
1839 *fault_type = UNKNOWN;
1840 return "Unknown";
1841 }
1842}
1843
1844
1845static inline int dmar_msi_reg(struct intel_iommu *iommu, int irq)
1846{
1847 if (iommu->irq == irq)
1848 return DMAR_FECTL_REG;
1849 else if (iommu->pr_irq == irq)
1850 return DMAR_PECTL_REG;
1851 else if (iommu->perf_irq == irq)
1852 return DMAR_PERFINTRCTL_REG;
1853 else
1854 BUG();
1855}
1856
1857void dmar_msi_unmask(struct irq_data *data)
1858{
1859 struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1860 int reg = dmar_msi_reg(iommu, data->irq);
1861 unsigned long flag;
1862
1863 /* unmask it */
1864 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1865 writel(0, iommu->reg + reg);
1866 /* Read a reg to force flush the post write */
1867 readl(iommu->reg + reg);
1868 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1869}
1870
1871void dmar_msi_mask(struct irq_data *data)
1872{
1873 struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1874 int reg = dmar_msi_reg(iommu, data->irq);
1875 unsigned long flag;
1876
1877 /* mask it */
1878 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1879 writel(DMA_FECTL_IM, iommu->reg + reg);
1880 /* Read a reg to force flush the post write */
1881 readl(iommu->reg + reg);
1882 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1883}
1884
1885void dmar_msi_write(int irq, struct msi_msg *msg)
1886{
1887 struct intel_iommu *iommu = irq_get_handler_data(irq);
1888 int reg = dmar_msi_reg(iommu, irq);
1889 unsigned long flag;
1890
1891 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1892 writel(msg->data, iommu->reg + reg + 4);
1893 writel(msg->address_lo, iommu->reg + reg + 8);
1894 writel(msg->address_hi, iommu->reg + reg + 12);
1895 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1896}
1897
1898static int dmar_fault_do_one(struct intel_iommu *iommu, int type,
1899 u8 fault_reason, u32 pasid, u16 source_id,
1900 unsigned long long addr)
1901{
1902 const char *reason;
1903 int fault_type;
1904
1905 reason = dmar_get_fault_reason(fault_reason, &fault_type);
1906
1907 if (fault_type == INTR_REMAP) {
1908 pr_err("[INTR-REMAP] Request device [%02x:%02x.%d] fault index 0x%llx [fault reason 0x%02x] %s\n",
1909 source_id >> 8, PCI_SLOT(source_id & 0xFF),
1910 PCI_FUNC(source_id & 0xFF), addr >> 48,
1911 fault_reason, reason);
1912
1913 return 0;
1914 }
1915
1916 if (pasid == IOMMU_PASID_INVALID)
1917 pr_err("[%s NO_PASID] Request device [%02x:%02x.%d] fault addr 0x%llx [fault reason 0x%02x] %s\n",
1918 type ? "DMA Read" : "DMA Write",
1919 source_id >> 8, PCI_SLOT(source_id & 0xFF),
1920 PCI_FUNC(source_id & 0xFF), addr,
1921 fault_reason, reason);
1922 else
1923 pr_err("[%s PASID 0x%x] Request device [%02x:%02x.%d] fault addr 0x%llx [fault reason 0x%02x] %s\n",
1924 type ? "DMA Read" : "DMA Write", pasid,
1925 source_id >> 8, PCI_SLOT(source_id & 0xFF),
1926 PCI_FUNC(source_id & 0xFF), addr,
1927 fault_reason, reason);
1928
1929 dmar_fault_dump_ptes(iommu, source_id, addr, pasid);
1930
1931 return 0;
1932}
1933
1934#define PRIMARY_FAULT_REG_LEN (16)
1935irqreturn_t dmar_fault(int irq, void *dev_id)
1936{
1937 struct intel_iommu *iommu = dev_id;
1938 int reg, fault_index;
1939 u32 fault_status;
1940 unsigned long flag;
1941 static DEFINE_RATELIMIT_STATE(rs,
1942 DEFAULT_RATELIMIT_INTERVAL,
1943 DEFAULT_RATELIMIT_BURST);
1944
1945 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1946 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1947 if (fault_status && __ratelimit(&rs))
1948 pr_err("DRHD: handling fault status reg %x\n", fault_status);
1949
1950 /* TBD: ignore advanced fault log currently */
1951 if (!(fault_status & DMA_FSTS_PPF))
1952 goto unlock_exit;
1953
1954 fault_index = dma_fsts_fault_record_index(fault_status);
1955 reg = cap_fault_reg_offset(iommu->cap);
1956 while (1) {
1957 /* Disable printing, simply clear the fault when ratelimited */
1958 bool ratelimited = !__ratelimit(&rs);
1959 u8 fault_reason;
1960 u16 source_id;
1961 u64 guest_addr;
1962 u32 pasid;
1963 int type;
1964 u32 data;
1965 bool pasid_present;
1966
1967 /* highest 32 bits */
1968 data = readl(iommu->reg + reg +
1969 fault_index * PRIMARY_FAULT_REG_LEN + 12);
1970 if (!(data & DMA_FRCD_F))
1971 break;
1972
1973 if (!ratelimited) {
1974 fault_reason = dma_frcd_fault_reason(data);
1975 type = dma_frcd_type(data);
1976
1977 pasid = dma_frcd_pasid_value(data);
1978 data = readl(iommu->reg + reg +
1979 fault_index * PRIMARY_FAULT_REG_LEN + 8);
1980 source_id = dma_frcd_source_id(data);
1981
1982 pasid_present = dma_frcd_pasid_present(data);
1983 guest_addr = dmar_readq(iommu->reg + reg +
1984 fault_index * PRIMARY_FAULT_REG_LEN);
1985 guest_addr = dma_frcd_page_addr(guest_addr);
1986 }
1987
1988 /* clear the fault */
1989 writel(DMA_FRCD_F, iommu->reg + reg +
1990 fault_index * PRIMARY_FAULT_REG_LEN + 12);
1991
1992 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1993
1994 if (!ratelimited)
1995 /* Using pasid -1 if pasid is not present */
1996 dmar_fault_do_one(iommu, type, fault_reason,
1997 pasid_present ? pasid : IOMMU_PASID_INVALID,
1998 source_id, guest_addr);
1999
2000 fault_index++;
2001 if (fault_index >= cap_num_fault_regs(iommu->cap))
2002 fault_index = 0;
2003 raw_spin_lock_irqsave(&iommu->register_lock, flag);
2004 }
2005
2006 writel(DMA_FSTS_PFO | DMA_FSTS_PPF | DMA_FSTS_PRO,
2007 iommu->reg + DMAR_FSTS_REG);
2008
2009unlock_exit:
2010 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
2011 return IRQ_HANDLED;
2012}
2013
2014int dmar_set_interrupt(struct intel_iommu *iommu)
2015{
2016 int irq, ret;
2017
2018 /*
2019 * Check if the fault interrupt is already initialized.
2020 */
2021 if (iommu->irq)
2022 return 0;
2023
2024 irq = dmar_alloc_hwirq(iommu->seq_id, iommu->node, iommu);
2025 if (irq > 0) {
2026 iommu->irq = irq;
2027 } else {
2028 pr_err("No free IRQ vectors\n");
2029 return -EINVAL;
2030 }
2031
2032 ret = request_irq(irq, dmar_fault, IRQF_NO_THREAD, iommu->name, iommu);
2033 if (ret)
2034 pr_err("Can't request irq\n");
2035 return ret;
2036}
2037
2038int enable_drhd_fault_handling(unsigned int cpu)
2039{
2040 struct dmar_drhd_unit *drhd;
2041 struct intel_iommu *iommu;
2042
2043 /*
2044 * Enable fault control interrupt.
2045 */
2046 guard(rwsem_read)(&dmar_global_lock);
2047 for_each_iommu(iommu, drhd) {
2048 u32 fault_status;
2049 int ret;
2050
2051 if (iommu->irq || iommu->node != cpu_to_node(cpu))
2052 continue;
2053
2054 ret = dmar_set_interrupt(iommu);
2055
2056 if (ret) {
2057 pr_err("DRHD %Lx: failed to enable fault, interrupt, ret %d\n",
2058 (unsigned long long)drhd->reg_base_addr, ret);
2059 return -1;
2060 }
2061
2062 /*
2063 * Clear any previous faults.
2064 */
2065 dmar_fault(iommu->irq, iommu);
2066 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
2067 writel(fault_status, iommu->reg + DMAR_FSTS_REG);
2068 }
2069
2070 return 0;
2071}
2072
2073/*
2074 * Re-enable Queued Invalidation interface.
2075 */
2076int dmar_reenable_qi(struct intel_iommu *iommu)
2077{
2078 if (!ecap_qis(iommu->ecap))
2079 return -ENOENT;
2080
2081 if (!iommu->qi)
2082 return -ENOENT;
2083
2084 /*
2085 * First disable queued invalidation.
2086 */
2087 dmar_disable_qi(iommu);
2088 /*
2089 * Then enable queued invalidation again. Since there is no pending
2090 * invalidation requests now, it's safe to re-enable queued
2091 * invalidation.
2092 */
2093 __dmar_enable_qi(iommu);
2094
2095 return 0;
2096}
2097
2098/*
2099 * Check interrupt remapping support in DMAR table description.
2100 */
2101int __init dmar_ir_support(void)
2102{
2103 struct acpi_table_dmar *dmar;
2104 dmar = (struct acpi_table_dmar *)dmar_tbl;
2105 if (!dmar)
2106 return 0;
2107 return dmar->flags & 0x1;
2108}
2109
2110/* Check whether DMAR units are in use */
2111static inline bool dmar_in_use(void)
2112{
2113 return irq_remapping_enabled || intel_iommu_enabled;
2114}
2115
2116static int __init dmar_free_unused_resources(void)
2117{
2118 struct dmar_drhd_unit *dmaru, *dmaru_n;
2119
2120 if (dmar_in_use())
2121 return 0;
2122
2123 if (dmar_dev_scope_status != 1 && !list_empty(&dmar_drhd_units))
2124 bus_unregister_notifier(&pci_bus_type, &dmar_pci_bus_nb);
2125
2126 down_write(&dmar_global_lock);
2127 list_for_each_entry_safe(dmaru, dmaru_n, &dmar_drhd_units, list) {
2128 list_del(&dmaru->list);
2129 dmar_free_drhd(dmaru);
2130 }
2131 up_write(&dmar_global_lock);
2132
2133 return 0;
2134}
2135
2136late_initcall(dmar_free_unused_resources);
2137
2138/*
2139 * DMAR Hotplug Support
2140 * For more details, please refer to Intel(R) Virtualization Technology
2141 * for Directed-IO Architecture Specifiction, Rev 2.2, Section 8.8
2142 * "Remapping Hardware Unit Hot Plug".
2143 */
2144static guid_t dmar_hp_guid =
2145 GUID_INIT(0xD8C1A3A6, 0xBE9B, 0x4C9B,
2146 0x91, 0xBF, 0xC3, 0xCB, 0x81, 0xFC, 0x5D, 0xAF);
2147
2148/*
2149 * Currently there's only one revision and BIOS will not check the revision id,
2150 * so use 0 for safety.
2151 */
2152#define DMAR_DSM_REV_ID 0
2153#define DMAR_DSM_FUNC_DRHD 1
2154#define DMAR_DSM_FUNC_ATSR 2
2155#define DMAR_DSM_FUNC_RHSA 3
2156#define DMAR_DSM_FUNC_SATC 4
2157
2158static inline bool dmar_detect_dsm(acpi_handle handle, int func)
2159{
2160 return acpi_check_dsm(handle, &dmar_hp_guid, DMAR_DSM_REV_ID, 1 << func);
2161}
2162
2163static int dmar_walk_dsm_resource(acpi_handle handle, int func,
2164 dmar_res_handler_t handler, void *arg)
2165{
2166 int ret = -ENODEV;
2167 union acpi_object *obj;
2168 struct acpi_dmar_header *start;
2169 struct dmar_res_callback callback;
2170 static int res_type[] = {
2171 [DMAR_DSM_FUNC_DRHD] = ACPI_DMAR_TYPE_HARDWARE_UNIT,
2172 [DMAR_DSM_FUNC_ATSR] = ACPI_DMAR_TYPE_ROOT_ATS,
2173 [DMAR_DSM_FUNC_RHSA] = ACPI_DMAR_TYPE_HARDWARE_AFFINITY,
2174 [DMAR_DSM_FUNC_SATC] = ACPI_DMAR_TYPE_SATC,
2175 };
2176
2177 if (!dmar_detect_dsm(handle, func))
2178 return 0;
2179
2180 obj = acpi_evaluate_dsm_typed(handle, &dmar_hp_guid, DMAR_DSM_REV_ID,
2181 func, NULL, ACPI_TYPE_BUFFER);
2182 if (!obj)
2183 return -ENODEV;
2184
2185 memset(&callback, 0, sizeof(callback));
2186 callback.cb[res_type[func]] = handler;
2187 callback.arg[res_type[func]] = arg;
2188 start = (struct acpi_dmar_header *)obj->buffer.pointer;
2189 ret = dmar_walk_remapping_entries(start, obj->buffer.length, &callback);
2190
2191 ACPI_FREE(obj);
2192
2193 return ret;
2194}
2195
2196static int dmar_hp_add_drhd(struct acpi_dmar_header *header, void *arg)
2197{
2198 int ret;
2199 struct dmar_drhd_unit *dmaru;
2200
2201 dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
2202 if (!dmaru)
2203 return -ENODEV;
2204
2205 ret = dmar_ir_hotplug(dmaru, true);
2206 if (ret == 0)
2207 ret = dmar_iommu_hotplug(dmaru, true);
2208
2209 return ret;
2210}
2211
2212static int dmar_hp_remove_drhd(struct acpi_dmar_header *header, void *arg)
2213{
2214 int i, ret;
2215 struct device *dev;
2216 struct dmar_drhd_unit *dmaru;
2217
2218 dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
2219 if (!dmaru)
2220 return 0;
2221
2222 /*
2223 * All PCI devices managed by this unit should have been destroyed.
2224 */
2225 if (!dmaru->include_all && dmaru->devices && dmaru->devices_cnt) {
2226 for_each_active_dev_scope(dmaru->devices,
2227 dmaru->devices_cnt, i, dev)
2228 return -EBUSY;
2229 }
2230
2231 ret = dmar_ir_hotplug(dmaru, false);
2232 if (ret == 0)
2233 ret = dmar_iommu_hotplug(dmaru, false);
2234
2235 return ret;
2236}
2237
2238static int dmar_hp_release_drhd(struct acpi_dmar_header *header, void *arg)
2239{
2240 struct dmar_drhd_unit *dmaru;
2241
2242 dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
2243 if (dmaru) {
2244 list_del_rcu(&dmaru->list);
2245 synchronize_rcu();
2246 dmar_free_drhd(dmaru);
2247 }
2248
2249 return 0;
2250}
2251
2252static int dmar_hotplug_insert(acpi_handle handle)
2253{
2254 int ret;
2255 int drhd_count = 0;
2256
2257 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2258 &dmar_validate_one_drhd, (void *)1);
2259 if (ret)
2260 goto out;
2261
2262 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2263 &dmar_parse_one_drhd, (void *)&drhd_count);
2264 if (ret == 0 && drhd_count == 0) {
2265 pr_warn(FW_BUG "No DRHD structures in buffer returned by _DSM method\n");
2266 goto out;
2267 } else if (ret) {
2268 goto release_drhd;
2269 }
2270
2271 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_RHSA,
2272 &dmar_parse_one_rhsa, NULL);
2273 if (ret)
2274 goto release_drhd;
2275
2276 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2277 &dmar_parse_one_atsr, NULL);
2278 if (ret)
2279 goto release_atsr;
2280
2281 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2282 &dmar_hp_add_drhd, NULL);
2283 if (!ret)
2284 return 0;
2285
2286 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2287 &dmar_hp_remove_drhd, NULL);
2288release_atsr:
2289 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2290 &dmar_release_one_atsr, NULL);
2291release_drhd:
2292 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2293 &dmar_hp_release_drhd, NULL);
2294out:
2295 return ret;
2296}
2297
2298static int dmar_hotplug_remove(acpi_handle handle)
2299{
2300 int ret;
2301
2302 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2303 &dmar_check_one_atsr, NULL);
2304 if (ret)
2305 return ret;
2306
2307 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2308 &dmar_hp_remove_drhd, NULL);
2309 if (ret == 0) {
2310 WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2311 &dmar_release_one_atsr, NULL));
2312 WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2313 &dmar_hp_release_drhd, NULL));
2314 } else {
2315 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2316 &dmar_hp_add_drhd, NULL);
2317 }
2318
2319 return ret;
2320}
2321
2322static acpi_status dmar_get_dsm_handle(acpi_handle handle, u32 lvl,
2323 void *context, void **retval)
2324{
2325 acpi_handle *phdl = retval;
2326
2327 if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) {
2328 *phdl = handle;
2329 return AE_CTRL_TERMINATE;
2330 }
2331
2332 return AE_OK;
2333}
2334
2335static int dmar_device_hotplug(acpi_handle handle, bool insert)
2336{
2337 int ret;
2338 acpi_handle tmp = NULL;
2339 acpi_status status;
2340
2341 if (!dmar_in_use())
2342 return 0;
2343
2344 if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) {
2345 tmp = handle;
2346 } else {
2347 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
2348 ACPI_UINT32_MAX,
2349 dmar_get_dsm_handle,
2350 NULL, NULL, &tmp);
2351 if (ACPI_FAILURE(status)) {
2352 pr_warn("Failed to locate _DSM method.\n");
2353 return -ENXIO;
2354 }
2355 }
2356 if (tmp == NULL)
2357 return 0;
2358
2359 down_write(&dmar_global_lock);
2360 if (insert)
2361 ret = dmar_hotplug_insert(tmp);
2362 else
2363 ret = dmar_hotplug_remove(tmp);
2364 up_write(&dmar_global_lock);
2365
2366 return ret;
2367}
2368
2369int dmar_device_add(acpi_handle handle)
2370{
2371 return dmar_device_hotplug(handle, true);
2372}
2373
2374int dmar_device_remove(acpi_handle handle)
2375{
2376 return dmar_device_hotplug(handle, false);
2377}
2378
2379/*
2380 * dmar_platform_optin - Is %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in DMAR table
2381 *
2382 * Returns true if the platform has %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in
2383 * the ACPI DMAR table. This means that the platform boot firmware has made
2384 * sure no device can issue DMA outside of RMRR regions.
2385 */
2386bool dmar_platform_optin(void)
2387{
2388 struct acpi_table_dmar *dmar;
2389 acpi_status status;
2390 bool ret;
2391
2392 status = acpi_get_table(ACPI_SIG_DMAR, 0,
2393 (struct acpi_table_header **)&dmar);
2394 if (ACPI_FAILURE(status))
2395 return false;
2396
2397 ret = !!(dmar->flags & DMAR_PLATFORM_OPT_IN);
2398 acpi_put_table((struct acpi_table_header *)dmar);
2399
2400 return ret;
2401}
2402EXPORT_SYMBOL_GPL(dmar_platform_optin);
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (c) 2006, Intel Corporation.
4 *
5 * Copyright (C) 2006-2008 Intel Corporation
6 * Author: Ashok Raj <ashok.raj@intel.com>
7 * Author: Shaohua Li <shaohua.li@intel.com>
8 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
9 *
10 * This file implements early detection/parsing of Remapping Devices
11 * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI
12 * tables.
13 *
14 * These routines are used by both DMA-remapping and Interrupt-remapping
15 */
16
17#define pr_fmt(fmt) "DMAR: " fmt
18
19#include <linux/pci.h>
20#include <linux/dmar.h>
21#include <linux/iova.h>
22#include <linux/intel-iommu.h>
23#include <linux/timer.h>
24#include <linux/irq.h>
25#include <linux/interrupt.h>
26#include <linux/tboot.h>
27#include <linux/dmi.h>
28#include <linux/slab.h>
29#include <linux/iommu.h>
30#include <linux/numa.h>
31#include <linux/limits.h>
32#include <asm/irq_remapping.h>
33#include <asm/iommu_table.h>
34#include <trace/events/intel_iommu.h>
35
36#include "../irq_remapping.h"
37#include "perf.h"
38
39typedef int (*dmar_res_handler_t)(struct acpi_dmar_header *, void *);
40struct dmar_res_callback {
41 dmar_res_handler_t cb[ACPI_DMAR_TYPE_RESERVED];
42 void *arg[ACPI_DMAR_TYPE_RESERVED];
43 bool ignore_unhandled;
44 bool print_entry;
45};
46
47/*
48 * Assumptions:
49 * 1) The hotplug framework guarentees that DMAR unit will be hot-added
50 * before IO devices managed by that unit.
51 * 2) The hotplug framework guarantees that DMAR unit will be hot-removed
52 * after IO devices managed by that unit.
53 * 3) Hotplug events are rare.
54 *
55 * Locking rules for DMA and interrupt remapping related global data structures:
56 * 1) Use dmar_global_lock in process context
57 * 2) Use RCU in interrupt context
58 */
59DECLARE_RWSEM(dmar_global_lock);
60LIST_HEAD(dmar_drhd_units);
61
62struct acpi_table_header * __initdata dmar_tbl;
63static int dmar_dev_scope_status = 1;
64static unsigned long dmar_seq_ids[BITS_TO_LONGS(DMAR_UNITS_SUPPORTED)];
65
66static int alloc_iommu(struct dmar_drhd_unit *drhd);
67static void free_iommu(struct intel_iommu *iommu);
68
69extern const struct iommu_ops intel_iommu_ops;
70
71static void dmar_register_drhd_unit(struct dmar_drhd_unit *drhd)
72{
73 /*
74 * add INCLUDE_ALL at the tail, so scan the list will find it at
75 * the very end.
76 */
77 if (drhd->include_all)
78 list_add_tail_rcu(&drhd->list, &dmar_drhd_units);
79 else
80 list_add_rcu(&drhd->list, &dmar_drhd_units);
81}
82
83void *dmar_alloc_dev_scope(void *start, void *end, int *cnt)
84{
85 struct acpi_dmar_device_scope *scope;
86
87 *cnt = 0;
88 while (start < end) {
89 scope = start;
90 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_NAMESPACE ||
91 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
92 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE)
93 (*cnt)++;
94 else if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_IOAPIC &&
95 scope->entry_type != ACPI_DMAR_SCOPE_TYPE_HPET) {
96 pr_warn("Unsupported device scope\n");
97 }
98 start += scope->length;
99 }
100 if (*cnt == 0)
101 return NULL;
102
103 return kcalloc(*cnt, sizeof(struct dmar_dev_scope), GFP_KERNEL);
104}
105
106void dmar_free_dev_scope(struct dmar_dev_scope **devices, int *cnt)
107{
108 int i;
109 struct device *tmp_dev;
110
111 if (*devices && *cnt) {
112 for_each_active_dev_scope(*devices, *cnt, i, tmp_dev)
113 put_device(tmp_dev);
114 kfree(*devices);
115 }
116
117 *devices = NULL;
118 *cnt = 0;
119}
120
121/* Optimize out kzalloc()/kfree() for normal cases */
122static char dmar_pci_notify_info_buf[64];
123
124static struct dmar_pci_notify_info *
125dmar_alloc_pci_notify_info(struct pci_dev *dev, unsigned long event)
126{
127 int level = 0;
128 size_t size;
129 struct pci_dev *tmp;
130 struct dmar_pci_notify_info *info;
131
132 BUG_ON(dev->is_virtfn);
133
134 /*
135 * Ignore devices that have a domain number higher than what can
136 * be looked up in DMAR, e.g. VMD subdevices with domain 0x10000
137 */
138 if (pci_domain_nr(dev->bus) > U16_MAX)
139 return NULL;
140
141 /* Only generate path[] for device addition event */
142 if (event == BUS_NOTIFY_ADD_DEVICE)
143 for (tmp = dev; tmp; tmp = tmp->bus->self)
144 level++;
145
146 size = struct_size(info, path, level);
147 if (size <= sizeof(dmar_pci_notify_info_buf)) {
148 info = (struct dmar_pci_notify_info *)dmar_pci_notify_info_buf;
149 } else {
150 info = kzalloc(size, GFP_KERNEL);
151 if (!info) {
152 pr_warn("Out of memory when allocating notify_info "
153 "for %s.\n", pci_name(dev));
154 if (dmar_dev_scope_status == 0)
155 dmar_dev_scope_status = -ENOMEM;
156 return NULL;
157 }
158 }
159
160 info->event = event;
161 info->dev = dev;
162 info->seg = pci_domain_nr(dev->bus);
163 info->level = level;
164 if (event == BUS_NOTIFY_ADD_DEVICE) {
165 for (tmp = dev; tmp; tmp = tmp->bus->self) {
166 level--;
167 info->path[level].bus = tmp->bus->number;
168 info->path[level].device = PCI_SLOT(tmp->devfn);
169 info->path[level].function = PCI_FUNC(tmp->devfn);
170 if (pci_is_root_bus(tmp->bus))
171 info->bus = tmp->bus->number;
172 }
173 }
174
175 return info;
176}
177
178static inline void dmar_free_pci_notify_info(struct dmar_pci_notify_info *info)
179{
180 if ((void *)info != dmar_pci_notify_info_buf)
181 kfree(info);
182}
183
184static bool dmar_match_pci_path(struct dmar_pci_notify_info *info, int bus,
185 struct acpi_dmar_pci_path *path, int count)
186{
187 int i;
188
189 if (info->bus != bus)
190 goto fallback;
191 if (info->level != count)
192 goto fallback;
193
194 for (i = 0; i < count; i++) {
195 if (path[i].device != info->path[i].device ||
196 path[i].function != info->path[i].function)
197 goto fallback;
198 }
199
200 return true;
201
202fallback:
203
204 if (count != 1)
205 return false;
206
207 i = info->level - 1;
208 if (bus == info->path[i].bus &&
209 path[0].device == info->path[i].device &&
210 path[0].function == info->path[i].function) {
211 pr_info(FW_BUG "RMRR entry for device %02x:%02x.%x is broken - applying workaround\n",
212 bus, path[0].device, path[0].function);
213 return true;
214 }
215
216 return false;
217}
218
219/* Return: > 0 if match found, 0 if no match found, < 0 if error happens */
220int dmar_insert_dev_scope(struct dmar_pci_notify_info *info,
221 void *start, void*end, u16 segment,
222 struct dmar_dev_scope *devices,
223 int devices_cnt)
224{
225 int i, level;
226 struct device *tmp, *dev = &info->dev->dev;
227 struct acpi_dmar_device_scope *scope;
228 struct acpi_dmar_pci_path *path;
229
230 if (segment != info->seg)
231 return 0;
232
233 for (; start < end; start += scope->length) {
234 scope = start;
235 if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_ENDPOINT &&
236 scope->entry_type != ACPI_DMAR_SCOPE_TYPE_BRIDGE)
237 continue;
238
239 path = (struct acpi_dmar_pci_path *)(scope + 1);
240 level = (scope->length - sizeof(*scope)) / sizeof(*path);
241 if (!dmar_match_pci_path(info, scope->bus, path, level))
242 continue;
243
244 /*
245 * We expect devices with endpoint scope to have normal PCI
246 * headers, and devices with bridge scope to have bridge PCI
247 * headers. However PCI NTB devices may be listed in the
248 * DMAR table with bridge scope, even though they have a
249 * normal PCI header. NTB devices are identified by class
250 * "BRIDGE_OTHER" (0680h) - we don't declare a socpe mismatch
251 * for this special case.
252 */
253 if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT &&
254 info->dev->hdr_type != PCI_HEADER_TYPE_NORMAL) ||
255 (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE &&
256 (info->dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
257 info->dev->class >> 16 != PCI_BASE_CLASS_BRIDGE))) {
258 pr_warn("Device scope type does not match for %s\n",
259 pci_name(info->dev));
260 return -EINVAL;
261 }
262
263 for_each_dev_scope(devices, devices_cnt, i, tmp)
264 if (tmp == NULL) {
265 devices[i].bus = info->dev->bus->number;
266 devices[i].devfn = info->dev->devfn;
267 rcu_assign_pointer(devices[i].dev,
268 get_device(dev));
269 return 1;
270 }
271 BUG_ON(i >= devices_cnt);
272 }
273
274 return 0;
275}
276
277int dmar_remove_dev_scope(struct dmar_pci_notify_info *info, u16 segment,
278 struct dmar_dev_scope *devices, int count)
279{
280 int index;
281 struct device *tmp;
282
283 if (info->seg != segment)
284 return 0;
285
286 for_each_active_dev_scope(devices, count, index, tmp)
287 if (tmp == &info->dev->dev) {
288 RCU_INIT_POINTER(devices[index].dev, NULL);
289 synchronize_rcu();
290 put_device(tmp);
291 return 1;
292 }
293
294 return 0;
295}
296
297static int dmar_pci_bus_add_dev(struct dmar_pci_notify_info *info)
298{
299 int ret = 0;
300 struct dmar_drhd_unit *dmaru;
301 struct acpi_dmar_hardware_unit *drhd;
302
303 for_each_drhd_unit(dmaru) {
304 if (dmaru->include_all)
305 continue;
306
307 drhd = container_of(dmaru->hdr,
308 struct acpi_dmar_hardware_unit, header);
309 ret = dmar_insert_dev_scope(info, (void *)(drhd + 1),
310 ((void *)drhd) + drhd->header.length,
311 dmaru->segment,
312 dmaru->devices, dmaru->devices_cnt);
313 if (ret)
314 break;
315 }
316 if (ret >= 0)
317 ret = dmar_iommu_notify_scope_dev(info);
318 if (ret < 0 && dmar_dev_scope_status == 0)
319 dmar_dev_scope_status = ret;
320
321 if (ret >= 0)
322 intel_irq_remap_add_device(info);
323
324 return ret;
325}
326
327static void dmar_pci_bus_del_dev(struct dmar_pci_notify_info *info)
328{
329 struct dmar_drhd_unit *dmaru;
330
331 for_each_drhd_unit(dmaru)
332 if (dmar_remove_dev_scope(info, dmaru->segment,
333 dmaru->devices, dmaru->devices_cnt))
334 break;
335 dmar_iommu_notify_scope_dev(info);
336}
337
338static inline void vf_inherit_msi_domain(struct pci_dev *pdev)
339{
340 struct pci_dev *physfn = pci_physfn(pdev);
341
342 dev_set_msi_domain(&pdev->dev, dev_get_msi_domain(&physfn->dev));
343}
344
345static int dmar_pci_bus_notifier(struct notifier_block *nb,
346 unsigned long action, void *data)
347{
348 struct pci_dev *pdev = to_pci_dev(data);
349 struct dmar_pci_notify_info *info;
350
351 /* Only care about add/remove events for physical functions.
352 * For VFs we actually do the lookup based on the corresponding
353 * PF in device_to_iommu() anyway. */
354 if (pdev->is_virtfn) {
355 /*
356 * Ensure that the VF device inherits the irq domain of the
357 * PF device. Ideally the device would inherit the domain
358 * from the bus, but DMAR can have multiple units per bus
359 * which makes this impossible. The VF 'bus' could inherit
360 * from the PF device, but that's yet another x86'sism to
361 * inflict on everybody else.
362 */
363 if (action == BUS_NOTIFY_ADD_DEVICE)
364 vf_inherit_msi_domain(pdev);
365 return NOTIFY_DONE;
366 }
367
368 if (action != BUS_NOTIFY_ADD_DEVICE &&
369 action != BUS_NOTIFY_REMOVED_DEVICE)
370 return NOTIFY_DONE;
371
372 info = dmar_alloc_pci_notify_info(pdev, action);
373 if (!info)
374 return NOTIFY_DONE;
375
376 down_write(&dmar_global_lock);
377 if (action == BUS_NOTIFY_ADD_DEVICE)
378 dmar_pci_bus_add_dev(info);
379 else if (action == BUS_NOTIFY_REMOVED_DEVICE)
380 dmar_pci_bus_del_dev(info);
381 up_write(&dmar_global_lock);
382
383 dmar_free_pci_notify_info(info);
384
385 return NOTIFY_OK;
386}
387
388static struct notifier_block dmar_pci_bus_nb = {
389 .notifier_call = dmar_pci_bus_notifier,
390 .priority = INT_MIN,
391};
392
393static struct dmar_drhd_unit *
394dmar_find_dmaru(struct acpi_dmar_hardware_unit *drhd)
395{
396 struct dmar_drhd_unit *dmaru;
397
398 list_for_each_entry_rcu(dmaru, &dmar_drhd_units, list,
399 dmar_rcu_check())
400 if (dmaru->segment == drhd->segment &&
401 dmaru->reg_base_addr == drhd->address)
402 return dmaru;
403
404 return NULL;
405}
406
407/*
408 * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition
409 * structure which uniquely represent one DMA remapping hardware unit
410 * present in the platform
411 */
412static int dmar_parse_one_drhd(struct acpi_dmar_header *header, void *arg)
413{
414 struct acpi_dmar_hardware_unit *drhd;
415 struct dmar_drhd_unit *dmaru;
416 int ret;
417
418 drhd = (struct acpi_dmar_hardware_unit *)header;
419 dmaru = dmar_find_dmaru(drhd);
420 if (dmaru)
421 goto out;
422
423 dmaru = kzalloc(sizeof(*dmaru) + header->length, GFP_KERNEL);
424 if (!dmaru)
425 return -ENOMEM;
426
427 /*
428 * If header is allocated from slab by ACPI _DSM method, we need to
429 * copy the content because the memory buffer will be freed on return.
430 */
431 dmaru->hdr = (void *)(dmaru + 1);
432 memcpy(dmaru->hdr, header, header->length);
433 dmaru->reg_base_addr = drhd->address;
434 dmaru->segment = drhd->segment;
435 dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */
436 dmaru->devices = dmar_alloc_dev_scope((void *)(drhd + 1),
437 ((void *)drhd) + drhd->header.length,
438 &dmaru->devices_cnt);
439 if (dmaru->devices_cnt && dmaru->devices == NULL) {
440 kfree(dmaru);
441 return -ENOMEM;
442 }
443
444 ret = alloc_iommu(dmaru);
445 if (ret) {
446 dmar_free_dev_scope(&dmaru->devices,
447 &dmaru->devices_cnt);
448 kfree(dmaru);
449 return ret;
450 }
451 dmar_register_drhd_unit(dmaru);
452
453out:
454 if (arg)
455 (*(int *)arg)++;
456
457 return 0;
458}
459
460static void dmar_free_drhd(struct dmar_drhd_unit *dmaru)
461{
462 if (dmaru->devices && dmaru->devices_cnt)
463 dmar_free_dev_scope(&dmaru->devices, &dmaru->devices_cnt);
464 if (dmaru->iommu)
465 free_iommu(dmaru->iommu);
466 kfree(dmaru);
467}
468
469static int __init dmar_parse_one_andd(struct acpi_dmar_header *header,
470 void *arg)
471{
472 struct acpi_dmar_andd *andd = (void *)header;
473
474 /* Check for NUL termination within the designated length */
475 if (strnlen(andd->device_name, header->length - 8) == header->length - 8) {
476 pr_warn(FW_BUG
477 "Your BIOS is broken; ANDD object name is not NUL-terminated\n"
478 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
479 dmi_get_system_info(DMI_BIOS_VENDOR),
480 dmi_get_system_info(DMI_BIOS_VERSION),
481 dmi_get_system_info(DMI_PRODUCT_VERSION));
482 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
483 return -EINVAL;
484 }
485 pr_info("ANDD device: %x name: %s\n", andd->device_number,
486 andd->device_name);
487
488 return 0;
489}
490
491#ifdef CONFIG_ACPI_NUMA
492static int dmar_parse_one_rhsa(struct acpi_dmar_header *header, void *arg)
493{
494 struct acpi_dmar_rhsa *rhsa;
495 struct dmar_drhd_unit *drhd;
496
497 rhsa = (struct acpi_dmar_rhsa *)header;
498 for_each_drhd_unit(drhd) {
499 if (drhd->reg_base_addr == rhsa->base_address) {
500 int node = pxm_to_node(rhsa->proximity_domain);
501
502 if (!node_online(node))
503 node = NUMA_NO_NODE;
504 drhd->iommu->node = node;
505 return 0;
506 }
507 }
508 pr_warn(FW_BUG
509 "Your BIOS is broken; RHSA refers to non-existent DMAR unit at %llx\n"
510 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
511 rhsa->base_address,
512 dmi_get_system_info(DMI_BIOS_VENDOR),
513 dmi_get_system_info(DMI_BIOS_VERSION),
514 dmi_get_system_info(DMI_PRODUCT_VERSION));
515 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
516
517 return 0;
518}
519#else
520#define dmar_parse_one_rhsa dmar_res_noop
521#endif
522
523static void
524dmar_table_print_dmar_entry(struct acpi_dmar_header *header)
525{
526 struct acpi_dmar_hardware_unit *drhd;
527 struct acpi_dmar_reserved_memory *rmrr;
528 struct acpi_dmar_atsr *atsr;
529 struct acpi_dmar_rhsa *rhsa;
530 struct acpi_dmar_satc *satc;
531
532 switch (header->type) {
533 case ACPI_DMAR_TYPE_HARDWARE_UNIT:
534 drhd = container_of(header, struct acpi_dmar_hardware_unit,
535 header);
536 pr_info("DRHD base: %#016Lx flags: %#x\n",
537 (unsigned long long)drhd->address, drhd->flags);
538 break;
539 case ACPI_DMAR_TYPE_RESERVED_MEMORY:
540 rmrr = container_of(header, struct acpi_dmar_reserved_memory,
541 header);
542 pr_info("RMRR base: %#016Lx end: %#016Lx\n",
543 (unsigned long long)rmrr->base_address,
544 (unsigned long long)rmrr->end_address);
545 break;
546 case ACPI_DMAR_TYPE_ROOT_ATS:
547 atsr = container_of(header, struct acpi_dmar_atsr, header);
548 pr_info("ATSR flags: %#x\n", atsr->flags);
549 break;
550 case ACPI_DMAR_TYPE_HARDWARE_AFFINITY:
551 rhsa = container_of(header, struct acpi_dmar_rhsa, header);
552 pr_info("RHSA base: %#016Lx proximity domain: %#x\n",
553 (unsigned long long)rhsa->base_address,
554 rhsa->proximity_domain);
555 break;
556 case ACPI_DMAR_TYPE_NAMESPACE:
557 /* We don't print this here because we need to sanity-check
558 it first. So print it in dmar_parse_one_andd() instead. */
559 break;
560 case ACPI_DMAR_TYPE_SATC:
561 satc = container_of(header, struct acpi_dmar_satc, header);
562 pr_info("SATC flags: 0x%x\n", satc->flags);
563 break;
564 }
565}
566
567/**
568 * dmar_table_detect - checks to see if the platform supports DMAR devices
569 */
570static int __init dmar_table_detect(void)
571{
572 acpi_status status = AE_OK;
573
574 /* if we could find DMAR table, then there are DMAR devices */
575 status = acpi_get_table(ACPI_SIG_DMAR, 0, &dmar_tbl);
576
577 if (ACPI_SUCCESS(status) && !dmar_tbl) {
578 pr_warn("Unable to map DMAR\n");
579 status = AE_NOT_FOUND;
580 }
581
582 return ACPI_SUCCESS(status) ? 0 : -ENOENT;
583}
584
585static int dmar_walk_remapping_entries(struct acpi_dmar_header *start,
586 size_t len, struct dmar_res_callback *cb)
587{
588 struct acpi_dmar_header *iter, *next;
589 struct acpi_dmar_header *end = ((void *)start) + len;
590
591 for (iter = start; iter < end; iter = next) {
592 next = (void *)iter + iter->length;
593 if (iter->length == 0) {
594 /* Avoid looping forever on bad ACPI tables */
595 pr_debug(FW_BUG "Invalid 0-length structure\n");
596 break;
597 } else if (next > end) {
598 /* Avoid passing table end */
599 pr_warn(FW_BUG "Record passes table end\n");
600 return -EINVAL;
601 }
602
603 if (cb->print_entry)
604 dmar_table_print_dmar_entry(iter);
605
606 if (iter->type >= ACPI_DMAR_TYPE_RESERVED) {
607 /* continue for forward compatibility */
608 pr_debug("Unknown DMAR structure type %d\n",
609 iter->type);
610 } else if (cb->cb[iter->type]) {
611 int ret;
612
613 ret = cb->cb[iter->type](iter, cb->arg[iter->type]);
614 if (ret)
615 return ret;
616 } else if (!cb->ignore_unhandled) {
617 pr_warn("No handler for DMAR structure type %d\n",
618 iter->type);
619 return -EINVAL;
620 }
621 }
622
623 return 0;
624}
625
626static inline int dmar_walk_dmar_table(struct acpi_table_dmar *dmar,
627 struct dmar_res_callback *cb)
628{
629 return dmar_walk_remapping_entries((void *)(dmar + 1),
630 dmar->header.length - sizeof(*dmar), cb);
631}
632
633/**
634 * parse_dmar_table - parses the DMA reporting table
635 */
636static int __init
637parse_dmar_table(void)
638{
639 struct acpi_table_dmar *dmar;
640 int drhd_count = 0;
641 int ret;
642 struct dmar_res_callback cb = {
643 .print_entry = true,
644 .ignore_unhandled = true,
645 .arg[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &drhd_count,
646 .cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_parse_one_drhd,
647 .cb[ACPI_DMAR_TYPE_RESERVED_MEMORY] = &dmar_parse_one_rmrr,
648 .cb[ACPI_DMAR_TYPE_ROOT_ATS] = &dmar_parse_one_atsr,
649 .cb[ACPI_DMAR_TYPE_HARDWARE_AFFINITY] = &dmar_parse_one_rhsa,
650 .cb[ACPI_DMAR_TYPE_NAMESPACE] = &dmar_parse_one_andd,
651 .cb[ACPI_DMAR_TYPE_SATC] = &dmar_parse_one_satc,
652 };
653
654 /*
655 * Do it again, earlier dmar_tbl mapping could be mapped with
656 * fixed map.
657 */
658 dmar_table_detect();
659
660 /*
661 * ACPI tables may not be DMA protected by tboot, so use DMAR copy
662 * SINIT saved in SinitMleData in TXT heap (which is DMA protected)
663 */
664 dmar_tbl = tboot_get_dmar_table(dmar_tbl);
665
666 dmar = (struct acpi_table_dmar *)dmar_tbl;
667 if (!dmar)
668 return -ENODEV;
669
670 if (dmar->width < PAGE_SHIFT - 1) {
671 pr_warn("Invalid DMAR haw\n");
672 return -EINVAL;
673 }
674
675 pr_info("Host address width %d\n", dmar->width + 1);
676 ret = dmar_walk_dmar_table(dmar, &cb);
677 if (ret == 0 && drhd_count == 0)
678 pr_warn(FW_BUG "No DRHD structure found in DMAR table\n");
679
680 return ret;
681}
682
683static int dmar_pci_device_match(struct dmar_dev_scope devices[],
684 int cnt, struct pci_dev *dev)
685{
686 int index;
687 struct device *tmp;
688
689 while (dev) {
690 for_each_active_dev_scope(devices, cnt, index, tmp)
691 if (dev_is_pci(tmp) && dev == to_pci_dev(tmp))
692 return 1;
693
694 /* Check our parent */
695 dev = dev->bus->self;
696 }
697
698 return 0;
699}
700
701struct dmar_drhd_unit *
702dmar_find_matched_drhd_unit(struct pci_dev *dev)
703{
704 struct dmar_drhd_unit *dmaru;
705 struct acpi_dmar_hardware_unit *drhd;
706
707 dev = pci_physfn(dev);
708
709 rcu_read_lock();
710 for_each_drhd_unit(dmaru) {
711 drhd = container_of(dmaru->hdr,
712 struct acpi_dmar_hardware_unit,
713 header);
714
715 if (dmaru->include_all &&
716 drhd->segment == pci_domain_nr(dev->bus))
717 goto out;
718
719 if (dmar_pci_device_match(dmaru->devices,
720 dmaru->devices_cnt, dev))
721 goto out;
722 }
723 dmaru = NULL;
724out:
725 rcu_read_unlock();
726
727 return dmaru;
728}
729
730static void __init dmar_acpi_insert_dev_scope(u8 device_number,
731 struct acpi_device *adev)
732{
733 struct dmar_drhd_unit *dmaru;
734 struct acpi_dmar_hardware_unit *drhd;
735 struct acpi_dmar_device_scope *scope;
736 struct device *tmp;
737 int i;
738 struct acpi_dmar_pci_path *path;
739
740 for_each_drhd_unit(dmaru) {
741 drhd = container_of(dmaru->hdr,
742 struct acpi_dmar_hardware_unit,
743 header);
744
745 for (scope = (void *)(drhd + 1);
746 (unsigned long)scope < ((unsigned long)drhd) + drhd->header.length;
747 scope = ((void *)scope) + scope->length) {
748 if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_NAMESPACE)
749 continue;
750 if (scope->enumeration_id != device_number)
751 continue;
752
753 path = (void *)(scope + 1);
754 pr_info("ACPI device \"%s\" under DMAR at %llx as %02x:%02x.%d\n",
755 dev_name(&adev->dev), dmaru->reg_base_addr,
756 scope->bus, path->device, path->function);
757 for_each_dev_scope(dmaru->devices, dmaru->devices_cnt, i, tmp)
758 if (tmp == NULL) {
759 dmaru->devices[i].bus = scope->bus;
760 dmaru->devices[i].devfn = PCI_DEVFN(path->device,
761 path->function);
762 rcu_assign_pointer(dmaru->devices[i].dev,
763 get_device(&adev->dev));
764 return;
765 }
766 BUG_ON(i >= dmaru->devices_cnt);
767 }
768 }
769 pr_warn("No IOMMU scope found for ANDD enumeration ID %d (%s)\n",
770 device_number, dev_name(&adev->dev));
771}
772
773static int __init dmar_acpi_dev_scope_init(void)
774{
775 struct acpi_dmar_andd *andd;
776
777 if (dmar_tbl == NULL)
778 return -ENODEV;
779
780 for (andd = (void *)dmar_tbl + sizeof(struct acpi_table_dmar);
781 ((unsigned long)andd) < ((unsigned long)dmar_tbl) + dmar_tbl->length;
782 andd = ((void *)andd) + andd->header.length) {
783 if (andd->header.type == ACPI_DMAR_TYPE_NAMESPACE) {
784 acpi_handle h;
785 struct acpi_device *adev;
786
787 if (!ACPI_SUCCESS(acpi_get_handle(ACPI_ROOT_OBJECT,
788 andd->device_name,
789 &h))) {
790 pr_err("Failed to find handle for ACPI object %s\n",
791 andd->device_name);
792 continue;
793 }
794 if (acpi_bus_get_device(h, &adev)) {
795 pr_err("Failed to get device for ACPI object %s\n",
796 andd->device_name);
797 continue;
798 }
799 dmar_acpi_insert_dev_scope(andd->device_number, adev);
800 }
801 }
802 return 0;
803}
804
805int __init dmar_dev_scope_init(void)
806{
807 struct pci_dev *dev = NULL;
808 struct dmar_pci_notify_info *info;
809
810 if (dmar_dev_scope_status != 1)
811 return dmar_dev_scope_status;
812
813 if (list_empty(&dmar_drhd_units)) {
814 dmar_dev_scope_status = -ENODEV;
815 } else {
816 dmar_dev_scope_status = 0;
817
818 dmar_acpi_dev_scope_init();
819
820 for_each_pci_dev(dev) {
821 if (dev->is_virtfn)
822 continue;
823
824 info = dmar_alloc_pci_notify_info(dev,
825 BUS_NOTIFY_ADD_DEVICE);
826 if (!info) {
827 return dmar_dev_scope_status;
828 } else {
829 dmar_pci_bus_add_dev(info);
830 dmar_free_pci_notify_info(info);
831 }
832 }
833 }
834
835 return dmar_dev_scope_status;
836}
837
838void __init dmar_register_bus_notifier(void)
839{
840 bus_register_notifier(&pci_bus_type, &dmar_pci_bus_nb);
841}
842
843
844int __init dmar_table_init(void)
845{
846 static int dmar_table_initialized;
847 int ret;
848
849 if (dmar_table_initialized == 0) {
850 ret = parse_dmar_table();
851 if (ret < 0) {
852 if (ret != -ENODEV)
853 pr_info("Parse DMAR table failure.\n");
854 } else if (list_empty(&dmar_drhd_units)) {
855 pr_info("No DMAR devices found\n");
856 ret = -ENODEV;
857 }
858
859 if (ret < 0)
860 dmar_table_initialized = ret;
861 else
862 dmar_table_initialized = 1;
863 }
864
865 return dmar_table_initialized < 0 ? dmar_table_initialized : 0;
866}
867
868static void warn_invalid_dmar(u64 addr, const char *message)
869{
870 pr_warn_once(FW_BUG
871 "Your BIOS is broken; DMAR reported at address %llx%s!\n"
872 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
873 addr, message,
874 dmi_get_system_info(DMI_BIOS_VENDOR),
875 dmi_get_system_info(DMI_BIOS_VERSION),
876 dmi_get_system_info(DMI_PRODUCT_VERSION));
877 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
878}
879
880static int __ref
881dmar_validate_one_drhd(struct acpi_dmar_header *entry, void *arg)
882{
883 struct acpi_dmar_hardware_unit *drhd;
884 void __iomem *addr;
885 u64 cap, ecap;
886
887 drhd = (void *)entry;
888 if (!drhd->address) {
889 warn_invalid_dmar(0, "");
890 return -EINVAL;
891 }
892
893 if (arg)
894 addr = ioremap(drhd->address, VTD_PAGE_SIZE);
895 else
896 addr = early_ioremap(drhd->address, VTD_PAGE_SIZE);
897 if (!addr) {
898 pr_warn("Can't validate DRHD address: %llx\n", drhd->address);
899 return -EINVAL;
900 }
901
902 cap = dmar_readq(addr + DMAR_CAP_REG);
903 ecap = dmar_readq(addr + DMAR_ECAP_REG);
904
905 if (arg)
906 iounmap(addr);
907 else
908 early_iounmap(addr, VTD_PAGE_SIZE);
909
910 if (cap == (uint64_t)-1 && ecap == (uint64_t)-1) {
911 warn_invalid_dmar(drhd->address, " returns all ones");
912 return -EINVAL;
913 }
914
915 return 0;
916}
917
918int __init detect_intel_iommu(void)
919{
920 int ret;
921 struct dmar_res_callback validate_drhd_cb = {
922 .cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_validate_one_drhd,
923 .ignore_unhandled = true,
924 };
925
926 down_write(&dmar_global_lock);
927 ret = dmar_table_detect();
928 if (!ret)
929 ret = dmar_walk_dmar_table((struct acpi_table_dmar *)dmar_tbl,
930 &validate_drhd_cb);
931 if (!ret && !no_iommu && !iommu_detected &&
932 (!dmar_disabled || dmar_platform_optin())) {
933 iommu_detected = 1;
934 /* Make sure ACS will be enabled */
935 pci_request_acs();
936 }
937
938#ifdef CONFIG_X86
939 if (!ret) {
940 x86_init.iommu.iommu_init = intel_iommu_init;
941 x86_platform.iommu_shutdown = intel_iommu_shutdown;
942 }
943
944#endif
945
946 if (dmar_tbl) {
947 acpi_put_table(dmar_tbl);
948 dmar_tbl = NULL;
949 }
950 up_write(&dmar_global_lock);
951
952 return ret ? ret : 1;
953}
954
955static void unmap_iommu(struct intel_iommu *iommu)
956{
957 iounmap(iommu->reg);
958 release_mem_region(iommu->reg_phys, iommu->reg_size);
959}
960
961/**
962 * map_iommu: map the iommu's registers
963 * @iommu: the iommu to map
964 * @phys_addr: the physical address of the base resgister
965 *
966 * Memory map the iommu's registers. Start w/ a single page, and
967 * possibly expand if that turns out to be insufficent.
968 */
969static int map_iommu(struct intel_iommu *iommu, u64 phys_addr)
970{
971 int map_size, err=0;
972
973 iommu->reg_phys = phys_addr;
974 iommu->reg_size = VTD_PAGE_SIZE;
975
976 if (!request_mem_region(iommu->reg_phys, iommu->reg_size, iommu->name)) {
977 pr_err("Can't reserve memory\n");
978 err = -EBUSY;
979 goto out;
980 }
981
982 iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
983 if (!iommu->reg) {
984 pr_err("Can't map the region\n");
985 err = -ENOMEM;
986 goto release;
987 }
988
989 iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
990 iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);
991
992 if (iommu->cap == (uint64_t)-1 && iommu->ecap == (uint64_t)-1) {
993 err = -EINVAL;
994 warn_invalid_dmar(phys_addr, " returns all ones");
995 goto unmap;
996 }
997 if (ecap_vcs(iommu->ecap))
998 iommu->vccap = dmar_readq(iommu->reg + DMAR_VCCAP_REG);
999
1000 /* the registers might be more than one page */
1001 map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
1002 cap_max_fault_reg_offset(iommu->cap));
1003 map_size = VTD_PAGE_ALIGN(map_size);
1004 if (map_size > iommu->reg_size) {
1005 iounmap(iommu->reg);
1006 release_mem_region(iommu->reg_phys, iommu->reg_size);
1007 iommu->reg_size = map_size;
1008 if (!request_mem_region(iommu->reg_phys, iommu->reg_size,
1009 iommu->name)) {
1010 pr_err("Can't reserve memory\n");
1011 err = -EBUSY;
1012 goto out;
1013 }
1014 iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
1015 if (!iommu->reg) {
1016 pr_err("Can't map the region\n");
1017 err = -ENOMEM;
1018 goto release;
1019 }
1020 }
1021 err = 0;
1022 goto out;
1023
1024unmap:
1025 iounmap(iommu->reg);
1026release:
1027 release_mem_region(iommu->reg_phys, iommu->reg_size);
1028out:
1029 return err;
1030}
1031
1032static int dmar_alloc_seq_id(struct intel_iommu *iommu)
1033{
1034 iommu->seq_id = find_first_zero_bit(dmar_seq_ids,
1035 DMAR_UNITS_SUPPORTED);
1036 if (iommu->seq_id >= DMAR_UNITS_SUPPORTED) {
1037 iommu->seq_id = -1;
1038 } else {
1039 set_bit(iommu->seq_id, dmar_seq_ids);
1040 sprintf(iommu->name, "dmar%d", iommu->seq_id);
1041 }
1042
1043 return iommu->seq_id;
1044}
1045
1046static void dmar_free_seq_id(struct intel_iommu *iommu)
1047{
1048 if (iommu->seq_id >= 0) {
1049 clear_bit(iommu->seq_id, dmar_seq_ids);
1050 iommu->seq_id = -1;
1051 }
1052}
1053
1054static int alloc_iommu(struct dmar_drhd_unit *drhd)
1055{
1056 struct intel_iommu *iommu;
1057 u32 ver, sts;
1058 int agaw = -1;
1059 int msagaw = -1;
1060 int err;
1061
1062 if (!drhd->reg_base_addr) {
1063 warn_invalid_dmar(0, "");
1064 return -EINVAL;
1065 }
1066
1067 iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
1068 if (!iommu)
1069 return -ENOMEM;
1070
1071 if (dmar_alloc_seq_id(iommu) < 0) {
1072 pr_err("Failed to allocate seq_id\n");
1073 err = -ENOSPC;
1074 goto error;
1075 }
1076
1077 err = map_iommu(iommu, drhd->reg_base_addr);
1078 if (err) {
1079 pr_err("Failed to map %s\n", iommu->name);
1080 goto error_free_seq_id;
1081 }
1082
1083 err = -EINVAL;
1084 if (cap_sagaw(iommu->cap) == 0) {
1085 pr_info("%s: No supported address widths. Not attempting DMA translation.\n",
1086 iommu->name);
1087 drhd->ignored = 1;
1088 }
1089
1090 if (!drhd->ignored) {
1091 agaw = iommu_calculate_agaw(iommu);
1092 if (agaw < 0) {
1093 pr_err("Cannot get a valid agaw for iommu (seq_id = %d)\n",
1094 iommu->seq_id);
1095 drhd->ignored = 1;
1096 }
1097 }
1098 if (!drhd->ignored) {
1099 msagaw = iommu_calculate_max_sagaw(iommu);
1100 if (msagaw < 0) {
1101 pr_err("Cannot get a valid max agaw for iommu (seq_id = %d)\n",
1102 iommu->seq_id);
1103 drhd->ignored = 1;
1104 agaw = -1;
1105 }
1106 }
1107 iommu->agaw = agaw;
1108 iommu->msagaw = msagaw;
1109 iommu->segment = drhd->segment;
1110
1111 iommu->node = NUMA_NO_NODE;
1112
1113 ver = readl(iommu->reg + DMAR_VER_REG);
1114 pr_info("%s: reg_base_addr %llx ver %d:%d cap %llx ecap %llx\n",
1115 iommu->name,
1116 (unsigned long long)drhd->reg_base_addr,
1117 DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
1118 (unsigned long long)iommu->cap,
1119 (unsigned long long)iommu->ecap);
1120
1121 /* Reflect status in gcmd */
1122 sts = readl(iommu->reg + DMAR_GSTS_REG);
1123 if (sts & DMA_GSTS_IRES)
1124 iommu->gcmd |= DMA_GCMD_IRE;
1125 if (sts & DMA_GSTS_TES)
1126 iommu->gcmd |= DMA_GCMD_TE;
1127 if (sts & DMA_GSTS_QIES)
1128 iommu->gcmd |= DMA_GCMD_QIE;
1129
1130 raw_spin_lock_init(&iommu->register_lock);
1131
1132 /*
1133 * This is only for hotplug; at boot time intel_iommu_enabled won't
1134 * be set yet. When intel_iommu_init() runs, it registers the units
1135 * present at boot time, then sets intel_iommu_enabled.
1136 */
1137 if (intel_iommu_enabled && !drhd->ignored) {
1138 err = iommu_device_sysfs_add(&iommu->iommu, NULL,
1139 intel_iommu_groups,
1140 "%s", iommu->name);
1141 if (err)
1142 goto err_unmap;
1143
1144 err = iommu_device_register(&iommu->iommu, &intel_iommu_ops, NULL);
1145 if (err)
1146 goto err_sysfs;
1147 }
1148
1149 drhd->iommu = iommu;
1150 iommu->drhd = drhd;
1151
1152 return 0;
1153
1154err_sysfs:
1155 iommu_device_sysfs_remove(&iommu->iommu);
1156err_unmap:
1157 unmap_iommu(iommu);
1158error_free_seq_id:
1159 dmar_free_seq_id(iommu);
1160error:
1161 kfree(iommu);
1162 return err;
1163}
1164
1165static void free_iommu(struct intel_iommu *iommu)
1166{
1167 if (intel_iommu_enabled && !iommu->drhd->ignored) {
1168 iommu_device_unregister(&iommu->iommu);
1169 iommu_device_sysfs_remove(&iommu->iommu);
1170 }
1171
1172 if (iommu->irq) {
1173 if (iommu->pr_irq) {
1174 free_irq(iommu->pr_irq, iommu);
1175 dmar_free_hwirq(iommu->pr_irq);
1176 iommu->pr_irq = 0;
1177 }
1178 free_irq(iommu->irq, iommu);
1179 dmar_free_hwirq(iommu->irq);
1180 iommu->irq = 0;
1181 }
1182
1183 if (iommu->qi) {
1184 free_page((unsigned long)iommu->qi->desc);
1185 kfree(iommu->qi->desc_status);
1186 kfree(iommu->qi);
1187 }
1188
1189 if (iommu->reg)
1190 unmap_iommu(iommu);
1191
1192 dmar_free_seq_id(iommu);
1193 kfree(iommu);
1194}
1195
1196/*
1197 * Reclaim all the submitted descriptors which have completed its work.
1198 */
1199static inline void reclaim_free_desc(struct q_inval *qi)
1200{
1201 while (qi->desc_status[qi->free_tail] == QI_DONE ||
1202 qi->desc_status[qi->free_tail] == QI_ABORT) {
1203 qi->desc_status[qi->free_tail] = QI_FREE;
1204 qi->free_tail = (qi->free_tail + 1) % QI_LENGTH;
1205 qi->free_cnt++;
1206 }
1207}
1208
1209static const char *qi_type_string(u8 type)
1210{
1211 switch (type) {
1212 case QI_CC_TYPE:
1213 return "Context-cache Invalidation";
1214 case QI_IOTLB_TYPE:
1215 return "IOTLB Invalidation";
1216 case QI_DIOTLB_TYPE:
1217 return "Device-TLB Invalidation";
1218 case QI_IEC_TYPE:
1219 return "Interrupt Entry Cache Invalidation";
1220 case QI_IWD_TYPE:
1221 return "Invalidation Wait";
1222 case QI_EIOTLB_TYPE:
1223 return "PASID-based IOTLB Invalidation";
1224 case QI_PC_TYPE:
1225 return "PASID-cache Invalidation";
1226 case QI_DEIOTLB_TYPE:
1227 return "PASID-based Device-TLB Invalidation";
1228 case QI_PGRP_RESP_TYPE:
1229 return "Page Group Response";
1230 default:
1231 return "UNKNOWN";
1232 }
1233}
1234
1235static void qi_dump_fault(struct intel_iommu *iommu, u32 fault)
1236{
1237 unsigned int head = dmar_readl(iommu->reg + DMAR_IQH_REG);
1238 u64 iqe_err = dmar_readq(iommu->reg + DMAR_IQER_REG);
1239 struct qi_desc *desc = iommu->qi->desc + head;
1240
1241 if (fault & DMA_FSTS_IQE)
1242 pr_err("VT-d detected Invalidation Queue Error: Reason %llx",
1243 DMAR_IQER_REG_IQEI(iqe_err));
1244 if (fault & DMA_FSTS_ITE)
1245 pr_err("VT-d detected Invalidation Time-out Error: SID %llx",
1246 DMAR_IQER_REG_ITESID(iqe_err));
1247 if (fault & DMA_FSTS_ICE)
1248 pr_err("VT-d detected Invalidation Completion Error: SID %llx",
1249 DMAR_IQER_REG_ICESID(iqe_err));
1250
1251 pr_err("QI HEAD: %s qw0 = 0x%llx, qw1 = 0x%llx\n",
1252 qi_type_string(desc->qw0 & 0xf),
1253 (unsigned long long)desc->qw0,
1254 (unsigned long long)desc->qw1);
1255
1256 head = ((head >> qi_shift(iommu)) + QI_LENGTH - 1) % QI_LENGTH;
1257 head <<= qi_shift(iommu);
1258 desc = iommu->qi->desc + head;
1259
1260 pr_err("QI PRIOR: %s qw0 = 0x%llx, qw1 = 0x%llx\n",
1261 qi_type_string(desc->qw0 & 0xf),
1262 (unsigned long long)desc->qw0,
1263 (unsigned long long)desc->qw1);
1264}
1265
1266static int qi_check_fault(struct intel_iommu *iommu, int index, int wait_index)
1267{
1268 u32 fault;
1269 int head, tail;
1270 struct q_inval *qi = iommu->qi;
1271 int shift = qi_shift(iommu);
1272
1273 if (qi->desc_status[wait_index] == QI_ABORT)
1274 return -EAGAIN;
1275
1276 fault = readl(iommu->reg + DMAR_FSTS_REG);
1277 if (fault & (DMA_FSTS_IQE | DMA_FSTS_ITE | DMA_FSTS_ICE))
1278 qi_dump_fault(iommu, fault);
1279
1280 /*
1281 * If IQE happens, the head points to the descriptor associated
1282 * with the error. No new descriptors are fetched until the IQE
1283 * is cleared.
1284 */
1285 if (fault & DMA_FSTS_IQE) {
1286 head = readl(iommu->reg + DMAR_IQH_REG);
1287 if ((head >> shift) == index) {
1288 struct qi_desc *desc = qi->desc + head;
1289
1290 /*
1291 * desc->qw2 and desc->qw3 are either reserved or
1292 * used by software as private data. We won't print
1293 * out these two qw's for security consideration.
1294 */
1295 memcpy(desc, qi->desc + (wait_index << shift),
1296 1 << shift);
1297 writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG);
1298 pr_info("Invalidation Queue Error (IQE) cleared\n");
1299 return -EINVAL;
1300 }
1301 }
1302
1303 /*
1304 * If ITE happens, all pending wait_desc commands are aborted.
1305 * No new descriptors are fetched until the ITE is cleared.
1306 */
1307 if (fault & DMA_FSTS_ITE) {
1308 head = readl(iommu->reg + DMAR_IQH_REG);
1309 head = ((head >> shift) - 1 + QI_LENGTH) % QI_LENGTH;
1310 head |= 1;
1311 tail = readl(iommu->reg + DMAR_IQT_REG);
1312 tail = ((tail >> shift) - 1 + QI_LENGTH) % QI_LENGTH;
1313
1314 writel(DMA_FSTS_ITE, iommu->reg + DMAR_FSTS_REG);
1315 pr_info("Invalidation Time-out Error (ITE) cleared\n");
1316
1317 do {
1318 if (qi->desc_status[head] == QI_IN_USE)
1319 qi->desc_status[head] = QI_ABORT;
1320 head = (head - 2 + QI_LENGTH) % QI_LENGTH;
1321 } while (head != tail);
1322
1323 if (qi->desc_status[wait_index] == QI_ABORT)
1324 return -EAGAIN;
1325 }
1326
1327 if (fault & DMA_FSTS_ICE) {
1328 writel(DMA_FSTS_ICE, iommu->reg + DMAR_FSTS_REG);
1329 pr_info("Invalidation Completion Error (ICE) cleared\n");
1330 }
1331
1332 return 0;
1333}
1334
1335/*
1336 * Function to submit invalidation descriptors of all types to the queued
1337 * invalidation interface(QI). Multiple descriptors can be submitted at a
1338 * time, a wait descriptor will be appended to each submission to ensure
1339 * hardware has completed the invalidation before return. Wait descriptors
1340 * can be part of the submission but it will not be polled for completion.
1341 */
1342int qi_submit_sync(struct intel_iommu *iommu, struct qi_desc *desc,
1343 unsigned int count, unsigned long options)
1344{
1345 struct q_inval *qi = iommu->qi;
1346 s64 devtlb_start_ktime = 0;
1347 s64 iotlb_start_ktime = 0;
1348 s64 iec_start_ktime = 0;
1349 struct qi_desc wait_desc;
1350 int wait_index, index;
1351 unsigned long flags;
1352 int offset, shift;
1353 int rc, i;
1354 u64 type;
1355
1356 if (!qi)
1357 return 0;
1358
1359 type = desc->qw0 & GENMASK_ULL(3, 0);
1360
1361 if ((type == QI_IOTLB_TYPE || type == QI_EIOTLB_TYPE) &&
1362 dmar_latency_enabled(iommu, DMAR_LATENCY_INV_IOTLB))
1363 iotlb_start_ktime = ktime_to_ns(ktime_get());
1364
1365 if ((type == QI_DIOTLB_TYPE || type == QI_DEIOTLB_TYPE) &&
1366 dmar_latency_enabled(iommu, DMAR_LATENCY_INV_DEVTLB))
1367 devtlb_start_ktime = ktime_to_ns(ktime_get());
1368
1369 if (type == QI_IEC_TYPE &&
1370 dmar_latency_enabled(iommu, DMAR_LATENCY_INV_IEC))
1371 iec_start_ktime = ktime_to_ns(ktime_get());
1372
1373restart:
1374 rc = 0;
1375
1376 raw_spin_lock_irqsave(&qi->q_lock, flags);
1377 /*
1378 * Check if we have enough empty slots in the queue to submit,
1379 * the calculation is based on:
1380 * # of desc + 1 wait desc + 1 space between head and tail
1381 */
1382 while (qi->free_cnt < count + 2) {
1383 raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1384 cpu_relax();
1385 raw_spin_lock_irqsave(&qi->q_lock, flags);
1386 }
1387
1388 index = qi->free_head;
1389 wait_index = (index + count) % QI_LENGTH;
1390 shift = qi_shift(iommu);
1391
1392 for (i = 0; i < count; i++) {
1393 offset = ((index + i) % QI_LENGTH) << shift;
1394 memcpy(qi->desc + offset, &desc[i], 1 << shift);
1395 qi->desc_status[(index + i) % QI_LENGTH] = QI_IN_USE;
1396 trace_qi_submit(iommu, desc[i].qw0, desc[i].qw1,
1397 desc[i].qw2, desc[i].qw3);
1398 }
1399 qi->desc_status[wait_index] = QI_IN_USE;
1400
1401 wait_desc.qw0 = QI_IWD_STATUS_DATA(QI_DONE) |
1402 QI_IWD_STATUS_WRITE | QI_IWD_TYPE;
1403 if (options & QI_OPT_WAIT_DRAIN)
1404 wait_desc.qw0 |= QI_IWD_PRQ_DRAIN;
1405 wait_desc.qw1 = virt_to_phys(&qi->desc_status[wait_index]);
1406 wait_desc.qw2 = 0;
1407 wait_desc.qw3 = 0;
1408
1409 offset = wait_index << shift;
1410 memcpy(qi->desc + offset, &wait_desc, 1 << shift);
1411
1412 qi->free_head = (qi->free_head + count + 1) % QI_LENGTH;
1413 qi->free_cnt -= count + 1;
1414
1415 /*
1416 * update the HW tail register indicating the presence of
1417 * new descriptors.
1418 */
1419 writel(qi->free_head << shift, iommu->reg + DMAR_IQT_REG);
1420
1421 while (qi->desc_status[wait_index] != QI_DONE) {
1422 /*
1423 * We will leave the interrupts disabled, to prevent interrupt
1424 * context to queue another cmd while a cmd is already submitted
1425 * and waiting for completion on this cpu. This is to avoid
1426 * a deadlock where the interrupt context can wait indefinitely
1427 * for free slots in the queue.
1428 */
1429 rc = qi_check_fault(iommu, index, wait_index);
1430 if (rc)
1431 break;
1432
1433 raw_spin_unlock(&qi->q_lock);
1434 cpu_relax();
1435 raw_spin_lock(&qi->q_lock);
1436 }
1437
1438 for (i = 0; i < count; i++)
1439 qi->desc_status[(index + i) % QI_LENGTH] = QI_DONE;
1440
1441 reclaim_free_desc(qi);
1442 raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1443
1444 if (rc == -EAGAIN)
1445 goto restart;
1446
1447 if (iotlb_start_ktime)
1448 dmar_latency_update(iommu, DMAR_LATENCY_INV_IOTLB,
1449 ktime_to_ns(ktime_get()) - iotlb_start_ktime);
1450
1451 if (devtlb_start_ktime)
1452 dmar_latency_update(iommu, DMAR_LATENCY_INV_DEVTLB,
1453 ktime_to_ns(ktime_get()) - devtlb_start_ktime);
1454
1455 if (iec_start_ktime)
1456 dmar_latency_update(iommu, DMAR_LATENCY_INV_IEC,
1457 ktime_to_ns(ktime_get()) - iec_start_ktime);
1458
1459 return rc;
1460}
1461
1462/*
1463 * Flush the global interrupt entry cache.
1464 */
1465void qi_global_iec(struct intel_iommu *iommu)
1466{
1467 struct qi_desc desc;
1468
1469 desc.qw0 = QI_IEC_TYPE;
1470 desc.qw1 = 0;
1471 desc.qw2 = 0;
1472 desc.qw3 = 0;
1473
1474 /* should never fail */
1475 qi_submit_sync(iommu, &desc, 1, 0);
1476}
1477
1478void qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm,
1479 u64 type)
1480{
1481 struct qi_desc desc;
1482
1483 desc.qw0 = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did)
1484 | QI_CC_GRAN(type) | QI_CC_TYPE;
1485 desc.qw1 = 0;
1486 desc.qw2 = 0;
1487 desc.qw3 = 0;
1488
1489 qi_submit_sync(iommu, &desc, 1, 0);
1490}
1491
1492void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
1493 unsigned int size_order, u64 type)
1494{
1495 u8 dw = 0, dr = 0;
1496
1497 struct qi_desc desc;
1498 int ih = 0;
1499
1500 if (cap_write_drain(iommu->cap))
1501 dw = 1;
1502
1503 if (cap_read_drain(iommu->cap))
1504 dr = 1;
1505
1506 desc.qw0 = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw)
1507 | QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE;
1508 desc.qw1 = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih)
1509 | QI_IOTLB_AM(size_order);
1510 desc.qw2 = 0;
1511 desc.qw3 = 0;
1512
1513 qi_submit_sync(iommu, &desc, 1, 0);
1514}
1515
1516void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 pfsid,
1517 u16 qdep, u64 addr, unsigned mask)
1518{
1519 struct qi_desc desc;
1520
1521 if (mask) {
1522 addr |= (1ULL << (VTD_PAGE_SHIFT + mask - 1)) - 1;
1523 desc.qw1 = QI_DEV_IOTLB_ADDR(addr) | QI_DEV_IOTLB_SIZE;
1524 } else
1525 desc.qw1 = QI_DEV_IOTLB_ADDR(addr);
1526
1527 if (qdep >= QI_DEV_IOTLB_MAX_INVS)
1528 qdep = 0;
1529
1530 desc.qw0 = QI_DEV_IOTLB_SID(sid) | QI_DEV_IOTLB_QDEP(qdep) |
1531 QI_DIOTLB_TYPE | QI_DEV_IOTLB_PFSID(pfsid);
1532 desc.qw2 = 0;
1533 desc.qw3 = 0;
1534
1535 qi_submit_sync(iommu, &desc, 1, 0);
1536}
1537
1538/* PASID-based IOTLB invalidation */
1539void qi_flush_piotlb(struct intel_iommu *iommu, u16 did, u32 pasid, u64 addr,
1540 unsigned long npages, bool ih)
1541{
1542 struct qi_desc desc = {.qw2 = 0, .qw3 = 0};
1543
1544 /*
1545 * npages == -1 means a PASID-selective invalidation, otherwise,
1546 * a positive value for Page-selective-within-PASID invalidation.
1547 * 0 is not a valid input.
1548 */
1549 if (WARN_ON(!npages)) {
1550 pr_err("Invalid input npages = %ld\n", npages);
1551 return;
1552 }
1553
1554 if (npages == -1) {
1555 desc.qw0 = QI_EIOTLB_PASID(pasid) |
1556 QI_EIOTLB_DID(did) |
1557 QI_EIOTLB_GRAN(QI_GRAN_NONG_PASID) |
1558 QI_EIOTLB_TYPE;
1559 desc.qw1 = 0;
1560 } else {
1561 int mask = ilog2(__roundup_pow_of_two(npages));
1562 unsigned long align = (1ULL << (VTD_PAGE_SHIFT + mask));
1563
1564 if (WARN_ON_ONCE(!IS_ALIGNED(addr, align)))
1565 addr = ALIGN_DOWN(addr, align);
1566
1567 desc.qw0 = QI_EIOTLB_PASID(pasid) |
1568 QI_EIOTLB_DID(did) |
1569 QI_EIOTLB_GRAN(QI_GRAN_PSI_PASID) |
1570 QI_EIOTLB_TYPE;
1571 desc.qw1 = QI_EIOTLB_ADDR(addr) |
1572 QI_EIOTLB_IH(ih) |
1573 QI_EIOTLB_AM(mask);
1574 }
1575
1576 qi_submit_sync(iommu, &desc, 1, 0);
1577}
1578
1579/* PASID-based device IOTLB Invalidate */
1580void qi_flush_dev_iotlb_pasid(struct intel_iommu *iommu, u16 sid, u16 pfsid,
1581 u32 pasid, u16 qdep, u64 addr, unsigned int size_order)
1582{
1583 unsigned long mask = 1UL << (VTD_PAGE_SHIFT + size_order - 1);
1584 struct qi_desc desc = {.qw1 = 0, .qw2 = 0, .qw3 = 0};
1585
1586 desc.qw0 = QI_DEV_EIOTLB_PASID(pasid) | QI_DEV_EIOTLB_SID(sid) |
1587 QI_DEV_EIOTLB_QDEP(qdep) | QI_DEIOTLB_TYPE |
1588 QI_DEV_IOTLB_PFSID(pfsid);
1589
1590 /*
1591 * If S bit is 0, we only flush a single page. If S bit is set,
1592 * The least significant zero bit indicates the invalidation address
1593 * range. VT-d spec 6.5.2.6.
1594 * e.g. address bit 12[0] indicates 8KB, 13[0] indicates 16KB.
1595 * size order = 0 is PAGE_SIZE 4KB
1596 * Max Invs Pending (MIP) is set to 0 for now until we have DIT in
1597 * ECAP.
1598 */
1599 if (!IS_ALIGNED(addr, VTD_PAGE_SIZE << size_order))
1600 pr_warn_ratelimited("Invalidate non-aligned address %llx, order %d\n",
1601 addr, size_order);
1602
1603 /* Take page address */
1604 desc.qw1 = QI_DEV_EIOTLB_ADDR(addr);
1605
1606 if (size_order) {
1607 /*
1608 * Existing 0s in address below size_order may be the least
1609 * significant bit, we must set them to 1s to avoid having
1610 * smaller size than desired.
1611 */
1612 desc.qw1 |= GENMASK_ULL(size_order + VTD_PAGE_SHIFT - 1,
1613 VTD_PAGE_SHIFT);
1614 /* Clear size_order bit to indicate size */
1615 desc.qw1 &= ~mask;
1616 /* Set the S bit to indicate flushing more than 1 page */
1617 desc.qw1 |= QI_DEV_EIOTLB_SIZE;
1618 }
1619
1620 qi_submit_sync(iommu, &desc, 1, 0);
1621}
1622
1623void qi_flush_pasid_cache(struct intel_iommu *iommu, u16 did,
1624 u64 granu, u32 pasid)
1625{
1626 struct qi_desc desc = {.qw1 = 0, .qw2 = 0, .qw3 = 0};
1627
1628 desc.qw0 = QI_PC_PASID(pasid) | QI_PC_DID(did) |
1629 QI_PC_GRAN(granu) | QI_PC_TYPE;
1630 qi_submit_sync(iommu, &desc, 1, 0);
1631}
1632
1633/*
1634 * Disable Queued Invalidation interface.
1635 */
1636void dmar_disable_qi(struct intel_iommu *iommu)
1637{
1638 unsigned long flags;
1639 u32 sts;
1640 cycles_t start_time = get_cycles();
1641
1642 if (!ecap_qis(iommu->ecap))
1643 return;
1644
1645 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1646
1647 sts = readl(iommu->reg + DMAR_GSTS_REG);
1648 if (!(sts & DMA_GSTS_QIES))
1649 goto end;
1650
1651 /*
1652 * Give a chance to HW to complete the pending invalidation requests.
1653 */
1654 while ((readl(iommu->reg + DMAR_IQT_REG) !=
1655 readl(iommu->reg + DMAR_IQH_REG)) &&
1656 (DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time)))
1657 cpu_relax();
1658
1659 iommu->gcmd &= ~DMA_GCMD_QIE;
1660 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1661
1662 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl,
1663 !(sts & DMA_GSTS_QIES), sts);
1664end:
1665 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1666}
1667
1668/*
1669 * Enable queued invalidation.
1670 */
1671static void __dmar_enable_qi(struct intel_iommu *iommu)
1672{
1673 u32 sts;
1674 unsigned long flags;
1675 struct q_inval *qi = iommu->qi;
1676 u64 val = virt_to_phys(qi->desc);
1677
1678 qi->free_head = qi->free_tail = 0;
1679 qi->free_cnt = QI_LENGTH;
1680
1681 /*
1682 * Set DW=1 and QS=1 in IQA_REG when Scalable Mode capability
1683 * is present.
1684 */
1685 if (ecap_smts(iommu->ecap))
1686 val |= (1 << 11) | 1;
1687
1688 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1689
1690 /* write zero to the tail reg */
1691 writel(0, iommu->reg + DMAR_IQT_REG);
1692
1693 dmar_writeq(iommu->reg + DMAR_IQA_REG, val);
1694
1695 iommu->gcmd |= DMA_GCMD_QIE;
1696 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1697
1698 /* Make sure hardware complete it */
1699 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts);
1700
1701 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1702}
1703
1704/*
1705 * Enable Queued Invalidation interface. This is a must to support
1706 * interrupt-remapping. Also used by DMA-remapping, which replaces
1707 * register based IOTLB invalidation.
1708 */
1709int dmar_enable_qi(struct intel_iommu *iommu)
1710{
1711 struct q_inval *qi;
1712 struct page *desc_page;
1713
1714 if (!ecap_qis(iommu->ecap))
1715 return -ENOENT;
1716
1717 /*
1718 * queued invalidation is already setup and enabled.
1719 */
1720 if (iommu->qi)
1721 return 0;
1722
1723 iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC);
1724 if (!iommu->qi)
1725 return -ENOMEM;
1726
1727 qi = iommu->qi;
1728
1729 /*
1730 * Need two pages to accommodate 256 descriptors of 256 bits each
1731 * if the remapping hardware supports scalable mode translation.
1732 */
1733 desc_page = alloc_pages_node(iommu->node, GFP_ATOMIC | __GFP_ZERO,
1734 !!ecap_smts(iommu->ecap));
1735 if (!desc_page) {
1736 kfree(qi);
1737 iommu->qi = NULL;
1738 return -ENOMEM;
1739 }
1740
1741 qi->desc = page_address(desc_page);
1742
1743 qi->desc_status = kcalloc(QI_LENGTH, sizeof(int), GFP_ATOMIC);
1744 if (!qi->desc_status) {
1745 free_page((unsigned long) qi->desc);
1746 kfree(qi);
1747 iommu->qi = NULL;
1748 return -ENOMEM;
1749 }
1750
1751 raw_spin_lock_init(&qi->q_lock);
1752
1753 __dmar_enable_qi(iommu);
1754
1755 return 0;
1756}
1757
1758/* iommu interrupt handling. Most stuff are MSI-like. */
1759
1760enum faulttype {
1761 DMA_REMAP,
1762 INTR_REMAP,
1763 UNKNOWN,
1764};
1765
1766static const char *dma_remap_fault_reasons[] =
1767{
1768 "Software",
1769 "Present bit in root entry is clear",
1770 "Present bit in context entry is clear",
1771 "Invalid context entry",
1772 "Access beyond MGAW",
1773 "PTE Write access is not set",
1774 "PTE Read access is not set",
1775 "Next page table ptr is invalid",
1776 "Root table address invalid",
1777 "Context table ptr is invalid",
1778 "non-zero reserved fields in RTP",
1779 "non-zero reserved fields in CTP",
1780 "non-zero reserved fields in PTE",
1781 "PCE for translation request specifies blocking",
1782};
1783
1784static const char * const dma_remap_sm_fault_reasons[] = {
1785 "SM: Invalid Root Table Address",
1786 "SM: TTM 0 for request with PASID",
1787 "SM: TTM 0 for page group request",
1788 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x33-0x37 */
1789 "SM: Error attempting to access Root Entry",
1790 "SM: Present bit in Root Entry is clear",
1791 "SM: Non-zero reserved field set in Root Entry",
1792 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x3B-0x3F */
1793 "SM: Error attempting to access Context Entry",
1794 "SM: Present bit in Context Entry is clear",
1795 "SM: Non-zero reserved field set in the Context Entry",
1796 "SM: Invalid Context Entry",
1797 "SM: DTE field in Context Entry is clear",
1798 "SM: PASID Enable field in Context Entry is clear",
1799 "SM: PASID is larger than the max in Context Entry",
1800 "SM: PRE field in Context-Entry is clear",
1801 "SM: RID_PASID field error in Context-Entry",
1802 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x49-0x4F */
1803 "SM: Error attempting to access the PASID Directory Entry",
1804 "SM: Present bit in Directory Entry is clear",
1805 "SM: Non-zero reserved field set in PASID Directory Entry",
1806 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x53-0x57 */
1807 "SM: Error attempting to access PASID Table Entry",
1808 "SM: Present bit in PASID Table Entry is clear",
1809 "SM: Non-zero reserved field set in PASID Table Entry",
1810 "SM: Invalid Scalable-Mode PASID Table Entry",
1811 "SM: ERE field is clear in PASID Table Entry",
1812 "SM: SRE field is clear in PASID Table Entry",
1813 "Unknown", "Unknown",/* 0x5E-0x5F */
1814 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x60-0x67 */
1815 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x68-0x6F */
1816 "SM: Error attempting to access first-level paging entry",
1817 "SM: Present bit in first-level paging entry is clear",
1818 "SM: Non-zero reserved field set in first-level paging entry",
1819 "SM: Error attempting to access FL-PML4 entry",
1820 "SM: First-level entry address beyond MGAW in Nested translation",
1821 "SM: Read permission error in FL-PML4 entry in Nested translation",
1822 "SM: Read permission error in first-level paging entry in Nested translation",
1823 "SM: Write permission error in first-level paging entry in Nested translation",
1824 "SM: Error attempting to access second-level paging entry",
1825 "SM: Read/Write permission error in second-level paging entry",
1826 "SM: Non-zero reserved field set in second-level paging entry",
1827 "SM: Invalid second-level page table pointer",
1828 "SM: A/D bit update needed in second-level entry when set up in no snoop",
1829 "Unknown", "Unknown", "Unknown", /* 0x7D-0x7F */
1830 "SM: Address in first-level translation is not canonical",
1831 "SM: U/S set 0 for first-level translation with user privilege",
1832 "SM: No execute permission for request with PASID and ER=1",
1833 "SM: Address beyond the DMA hardware max",
1834 "SM: Second-level entry address beyond the max",
1835 "SM: No write permission for Write/AtomicOp request",
1836 "SM: No read permission for Read/AtomicOp request",
1837 "SM: Invalid address-interrupt address",
1838 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x88-0x8F */
1839 "SM: A/D bit update needed in first-level entry when set up in no snoop",
1840};
1841
1842static const char *irq_remap_fault_reasons[] =
1843{
1844 "Detected reserved fields in the decoded interrupt-remapped request",
1845 "Interrupt index exceeded the interrupt-remapping table size",
1846 "Present field in the IRTE entry is clear",
1847 "Error accessing interrupt-remapping table pointed by IRTA_REG",
1848 "Detected reserved fields in the IRTE entry",
1849 "Blocked a compatibility format interrupt request",
1850 "Blocked an interrupt request due to source-id verification failure",
1851};
1852
1853static const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type)
1854{
1855 if (fault_reason >= 0x20 && (fault_reason - 0x20 <
1856 ARRAY_SIZE(irq_remap_fault_reasons))) {
1857 *fault_type = INTR_REMAP;
1858 return irq_remap_fault_reasons[fault_reason - 0x20];
1859 } else if (fault_reason >= 0x30 && (fault_reason - 0x30 <
1860 ARRAY_SIZE(dma_remap_sm_fault_reasons))) {
1861 *fault_type = DMA_REMAP;
1862 return dma_remap_sm_fault_reasons[fault_reason - 0x30];
1863 } else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) {
1864 *fault_type = DMA_REMAP;
1865 return dma_remap_fault_reasons[fault_reason];
1866 } else {
1867 *fault_type = UNKNOWN;
1868 return "Unknown";
1869 }
1870}
1871
1872
1873static inline int dmar_msi_reg(struct intel_iommu *iommu, int irq)
1874{
1875 if (iommu->irq == irq)
1876 return DMAR_FECTL_REG;
1877 else if (iommu->pr_irq == irq)
1878 return DMAR_PECTL_REG;
1879 else
1880 BUG();
1881}
1882
1883void dmar_msi_unmask(struct irq_data *data)
1884{
1885 struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1886 int reg = dmar_msi_reg(iommu, data->irq);
1887 unsigned long flag;
1888
1889 /* unmask it */
1890 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1891 writel(0, iommu->reg + reg);
1892 /* Read a reg to force flush the post write */
1893 readl(iommu->reg + reg);
1894 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1895}
1896
1897void dmar_msi_mask(struct irq_data *data)
1898{
1899 struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1900 int reg = dmar_msi_reg(iommu, data->irq);
1901 unsigned long flag;
1902
1903 /* mask it */
1904 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1905 writel(DMA_FECTL_IM, iommu->reg + reg);
1906 /* Read a reg to force flush the post write */
1907 readl(iommu->reg + reg);
1908 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1909}
1910
1911void dmar_msi_write(int irq, struct msi_msg *msg)
1912{
1913 struct intel_iommu *iommu = irq_get_handler_data(irq);
1914 int reg = dmar_msi_reg(iommu, irq);
1915 unsigned long flag;
1916
1917 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1918 writel(msg->data, iommu->reg + reg + 4);
1919 writel(msg->address_lo, iommu->reg + reg + 8);
1920 writel(msg->address_hi, iommu->reg + reg + 12);
1921 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1922}
1923
1924void dmar_msi_read(int irq, struct msi_msg *msg)
1925{
1926 struct intel_iommu *iommu = irq_get_handler_data(irq);
1927 int reg = dmar_msi_reg(iommu, irq);
1928 unsigned long flag;
1929
1930 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1931 msg->data = readl(iommu->reg + reg + 4);
1932 msg->address_lo = readl(iommu->reg + reg + 8);
1933 msg->address_hi = readl(iommu->reg + reg + 12);
1934 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1935}
1936
1937static int dmar_fault_do_one(struct intel_iommu *iommu, int type,
1938 u8 fault_reason, u32 pasid, u16 source_id,
1939 unsigned long long addr)
1940{
1941 const char *reason;
1942 int fault_type;
1943
1944 reason = dmar_get_fault_reason(fault_reason, &fault_type);
1945
1946 if (fault_type == INTR_REMAP)
1947 pr_err("[INTR-REMAP] Request device [0x%02x:0x%02x.%d] fault index 0x%llx [fault reason 0x%02x] %s\n",
1948 source_id >> 8, PCI_SLOT(source_id & 0xFF),
1949 PCI_FUNC(source_id & 0xFF), addr >> 48,
1950 fault_reason, reason);
1951 else if (pasid == INVALID_IOASID)
1952 pr_err("[%s NO_PASID] Request device [0x%02x:0x%02x.%d] fault addr 0x%llx [fault reason 0x%02x] %s\n",
1953 type ? "DMA Read" : "DMA Write",
1954 source_id >> 8, PCI_SLOT(source_id & 0xFF),
1955 PCI_FUNC(source_id & 0xFF), addr,
1956 fault_reason, reason);
1957 else
1958 pr_err("[%s PASID 0x%x] Request device [0x%02x:0x%02x.%d] fault addr 0x%llx [fault reason 0x%02x] %s\n",
1959 type ? "DMA Read" : "DMA Write", pasid,
1960 source_id >> 8, PCI_SLOT(source_id & 0xFF),
1961 PCI_FUNC(source_id & 0xFF), addr,
1962 fault_reason, reason);
1963
1964 return 0;
1965}
1966
1967#define PRIMARY_FAULT_REG_LEN (16)
1968irqreturn_t dmar_fault(int irq, void *dev_id)
1969{
1970 struct intel_iommu *iommu = dev_id;
1971 int reg, fault_index;
1972 u32 fault_status;
1973 unsigned long flag;
1974 static DEFINE_RATELIMIT_STATE(rs,
1975 DEFAULT_RATELIMIT_INTERVAL,
1976 DEFAULT_RATELIMIT_BURST);
1977
1978 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1979 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1980 if (fault_status && __ratelimit(&rs))
1981 pr_err("DRHD: handling fault status reg %x\n", fault_status);
1982
1983 /* TBD: ignore advanced fault log currently */
1984 if (!(fault_status & DMA_FSTS_PPF))
1985 goto unlock_exit;
1986
1987 fault_index = dma_fsts_fault_record_index(fault_status);
1988 reg = cap_fault_reg_offset(iommu->cap);
1989 while (1) {
1990 /* Disable printing, simply clear the fault when ratelimited */
1991 bool ratelimited = !__ratelimit(&rs);
1992 u8 fault_reason;
1993 u16 source_id;
1994 u64 guest_addr;
1995 u32 pasid;
1996 int type;
1997 u32 data;
1998 bool pasid_present;
1999
2000 /* highest 32 bits */
2001 data = readl(iommu->reg + reg +
2002 fault_index * PRIMARY_FAULT_REG_LEN + 12);
2003 if (!(data & DMA_FRCD_F))
2004 break;
2005
2006 if (!ratelimited) {
2007 fault_reason = dma_frcd_fault_reason(data);
2008 type = dma_frcd_type(data);
2009
2010 pasid = dma_frcd_pasid_value(data);
2011 data = readl(iommu->reg + reg +
2012 fault_index * PRIMARY_FAULT_REG_LEN + 8);
2013 source_id = dma_frcd_source_id(data);
2014
2015 pasid_present = dma_frcd_pasid_present(data);
2016 guest_addr = dmar_readq(iommu->reg + reg +
2017 fault_index * PRIMARY_FAULT_REG_LEN);
2018 guest_addr = dma_frcd_page_addr(guest_addr);
2019 }
2020
2021 /* clear the fault */
2022 writel(DMA_FRCD_F, iommu->reg + reg +
2023 fault_index * PRIMARY_FAULT_REG_LEN + 12);
2024
2025 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
2026
2027 if (!ratelimited)
2028 /* Using pasid -1 if pasid is not present */
2029 dmar_fault_do_one(iommu, type, fault_reason,
2030 pasid_present ? pasid : INVALID_IOASID,
2031 source_id, guest_addr);
2032
2033 fault_index++;
2034 if (fault_index >= cap_num_fault_regs(iommu->cap))
2035 fault_index = 0;
2036 raw_spin_lock_irqsave(&iommu->register_lock, flag);
2037 }
2038
2039 writel(DMA_FSTS_PFO | DMA_FSTS_PPF | DMA_FSTS_PRO,
2040 iommu->reg + DMAR_FSTS_REG);
2041
2042unlock_exit:
2043 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
2044 return IRQ_HANDLED;
2045}
2046
2047int dmar_set_interrupt(struct intel_iommu *iommu)
2048{
2049 int irq, ret;
2050
2051 /*
2052 * Check if the fault interrupt is already initialized.
2053 */
2054 if (iommu->irq)
2055 return 0;
2056
2057 irq = dmar_alloc_hwirq(iommu->seq_id, iommu->node, iommu);
2058 if (irq > 0) {
2059 iommu->irq = irq;
2060 } else {
2061 pr_err("No free IRQ vectors\n");
2062 return -EINVAL;
2063 }
2064
2065 ret = request_irq(irq, dmar_fault, IRQF_NO_THREAD, iommu->name, iommu);
2066 if (ret)
2067 pr_err("Can't request irq\n");
2068 return ret;
2069}
2070
2071int __init enable_drhd_fault_handling(void)
2072{
2073 struct dmar_drhd_unit *drhd;
2074 struct intel_iommu *iommu;
2075
2076 /*
2077 * Enable fault control interrupt.
2078 */
2079 for_each_iommu(iommu, drhd) {
2080 u32 fault_status;
2081 int ret = dmar_set_interrupt(iommu);
2082
2083 if (ret) {
2084 pr_err("DRHD %Lx: failed to enable fault, interrupt, ret %d\n",
2085 (unsigned long long)drhd->reg_base_addr, ret);
2086 return -1;
2087 }
2088
2089 /*
2090 * Clear any previous faults.
2091 */
2092 dmar_fault(iommu->irq, iommu);
2093 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
2094 writel(fault_status, iommu->reg + DMAR_FSTS_REG);
2095 }
2096
2097 return 0;
2098}
2099
2100/*
2101 * Re-enable Queued Invalidation interface.
2102 */
2103int dmar_reenable_qi(struct intel_iommu *iommu)
2104{
2105 if (!ecap_qis(iommu->ecap))
2106 return -ENOENT;
2107
2108 if (!iommu->qi)
2109 return -ENOENT;
2110
2111 /*
2112 * First disable queued invalidation.
2113 */
2114 dmar_disable_qi(iommu);
2115 /*
2116 * Then enable queued invalidation again. Since there is no pending
2117 * invalidation requests now, it's safe to re-enable queued
2118 * invalidation.
2119 */
2120 __dmar_enable_qi(iommu);
2121
2122 return 0;
2123}
2124
2125/*
2126 * Check interrupt remapping support in DMAR table description.
2127 */
2128int __init dmar_ir_support(void)
2129{
2130 struct acpi_table_dmar *dmar;
2131 dmar = (struct acpi_table_dmar *)dmar_tbl;
2132 if (!dmar)
2133 return 0;
2134 return dmar->flags & 0x1;
2135}
2136
2137/* Check whether DMAR units are in use */
2138static inline bool dmar_in_use(void)
2139{
2140 return irq_remapping_enabled || intel_iommu_enabled;
2141}
2142
2143static int __init dmar_free_unused_resources(void)
2144{
2145 struct dmar_drhd_unit *dmaru, *dmaru_n;
2146
2147 if (dmar_in_use())
2148 return 0;
2149
2150 if (dmar_dev_scope_status != 1 && !list_empty(&dmar_drhd_units))
2151 bus_unregister_notifier(&pci_bus_type, &dmar_pci_bus_nb);
2152
2153 down_write(&dmar_global_lock);
2154 list_for_each_entry_safe(dmaru, dmaru_n, &dmar_drhd_units, list) {
2155 list_del(&dmaru->list);
2156 dmar_free_drhd(dmaru);
2157 }
2158 up_write(&dmar_global_lock);
2159
2160 return 0;
2161}
2162
2163late_initcall(dmar_free_unused_resources);
2164IOMMU_INIT_POST(detect_intel_iommu);
2165
2166/*
2167 * DMAR Hotplug Support
2168 * For more details, please refer to Intel(R) Virtualization Technology
2169 * for Directed-IO Architecture Specifiction, Rev 2.2, Section 8.8
2170 * "Remapping Hardware Unit Hot Plug".
2171 */
2172static guid_t dmar_hp_guid =
2173 GUID_INIT(0xD8C1A3A6, 0xBE9B, 0x4C9B,
2174 0x91, 0xBF, 0xC3, 0xCB, 0x81, 0xFC, 0x5D, 0xAF);
2175
2176/*
2177 * Currently there's only one revision and BIOS will not check the revision id,
2178 * so use 0 for safety.
2179 */
2180#define DMAR_DSM_REV_ID 0
2181#define DMAR_DSM_FUNC_DRHD 1
2182#define DMAR_DSM_FUNC_ATSR 2
2183#define DMAR_DSM_FUNC_RHSA 3
2184#define DMAR_DSM_FUNC_SATC 4
2185
2186static inline bool dmar_detect_dsm(acpi_handle handle, int func)
2187{
2188 return acpi_check_dsm(handle, &dmar_hp_guid, DMAR_DSM_REV_ID, 1 << func);
2189}
2190
2191static int dmar_walk_dsm_resource(acpi_handle handle, int func,
2192 dmar_res_handler_t handler, void *arg)
2193{
2194 int ret = -ENODEV;
2195 union acpi_object *obj;
2196 struct acpi_dmar_header *start;
2197 struct dmar_res_callback callback;
2198 static int res_type[] = {
2199 [DMAR_DSM_FUNC_DRHD] = ACPI_DMAR_TYPE_HARDWARE_UNIT,
2200 [DMAR_DSM_FUNC_ATSR] = ACPI_DMAR_TYPE_ROOT_ATS,
2201 [DMAR_DSM_FUNC_RHSA] = ACPI_DMAR_TYPE_HARDWARE_AFFINITY,
2202 [DMAR_DSM_FUNC_SATC] = ACPI_DMAR_TYPE_SATC,
2203 };
2204
2205 if (!dmar_detect_dsm(handle, func))
2206 return 0;
2207
2208 obj = acpi_evaluate_dsm_typed(handle, &dmar_hp_guid, DMAR_DSM_REV_ID,
2209 func, NULL, ACPI_TYPE_BUFFER);
2210 if (!obj)
2211 return -ENODEV;
2212
2213 memset(&callback, 0, sizeof(callback));
2214 callback.cb[res_type[func]] = handler;
2215 callback.arg[res_type[func]] = arg;
2216 start = (struct acpi_dmar_header *)obj->buffer.pointer;
2217 ret = dmar_walk_remapping_entries(start, obj->buffer.length, &callback);
2218
2219 ACPI_FREE(obj);
2220
2221 return ret;
2222}
2223
2224static int dmar_hp_add_drhd(struct acpi_dmar_header *header, void *arg)
2225{
2226 int ret;
2227 struct dmar_drhd_unit *dmaru;
2228
2229 dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
2230 if (!dmaru)
2231 return -ENODEV;
2232
2233 ret = dmar_ir_hotplug(dmaru, true);
2234 if (ret == 0)
2235 ret = dmar_iommu_hotplug(dmaru, true);
2236
2237 return ret;
2238}
2239
2240static int dmar_hp_remove_drhd(struct acpi_dmar_header *header, void *arg)
2241{
2242 int i, ret;
2243 struct device *dev;
2244 struct dmar_drhd_unit *dmaru;
2245
2246 dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
2247 if (!dmaru)
2248 return 0;
2249
2250 /*
2251 * All PCI devices managed by this unit should have been destroyed.
2252 */
2253 if (!dmaru->include_all && dmaru->devices && dmaru->devices_cnt) {
2254 for_each_active_dev_scope(dmaru->devices,
2255 dmaru->devices_cnt, i, dev)
2256 return -EBUSY;
2257 }
2258
2259 ret = dmar_ir_hotplug(dmaru, false);
2260 if (ret == 0)
2261 ret = dmar_iommu_hotplug(dmaru, false);
2262
2263 return ret;
2264}
2265
2266static int dmar_hp_release_drhd(struct acpi_dmar_header *header, void *arg)
2267{
2268 struct dmar_drhd_unit *dmaru;
2269
2270 dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
2271 if (dmaru) {
2272 list_del_rcu(&dmaru->list);
2273 synchronize_rcu();
2274 dmar_free_drhd(dmaru);
2275 }
2276
2277 return 0;
2278}
2279
2280static int dmar_hotplug_insert(acpi_handle handle)
2281{
2282 int ret;
2283 int drhd_count = 0;
2284
2285 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2286 &dmar_validate_one_drhd, (void *)1);
2287 if (ret)
2288 goto out;
2289
2290 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2291 &dmar_parse_one_drhd, (void *)&drhd_count);
2292 if (ret == 0 && drhd_count == 0) {
2293 pr_warn(FW_BUG "No DRHD structures in buffer returned by _DSM method\n");
2294 goto out;
2295 } else if (ret) {
2296 goto release_drhd;
2297 }
2298
2299 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_RHSA,
2300 &dmar_parse_one_rhsa, NULL);
2301 if (ret)
2302 goto release_drhd;
2303
2304 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2305 &dmar_parse_one_atsr, NULL);
2306 if (ret)
2307 goto release_atsr;
2308
2309 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2310 &dmar_hp_add_drhd, NULL);
2311 if (!ret)
2312 return 0;
2313
2314 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2315 &dmar_hp_remove_drhd, NULL);
2316release_atsr:
2317 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2318 &dmar_release_one_atsr, NULL);
2319release_drhd:
2320 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2321 &dmar_hp_release_drhd, NULL);
2322out:
2323 return ret;
2324}
2325
2326static int dmar_hotplug_remove(acpi_handle handle)
2327{
2328 int ret;
2329
2330 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2331 &dmar_check_one_atsr, NULL);
2332 if (ret)
2333 return ret;
2334
2335 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2336 &dmar_hp_remove_drhd, NULL);
2337 if (ret == 0) {
2338 WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2339 &dmar_release_one_atsr, NULL));
2340 WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2341 &dmar_hp_release_drhd, NULL));
2342 } else {
2343 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2344 &dmar_hp_add_drhd, NULL);
2345 }
2346
2347 return ret;
2348}
2349
2350static acpi_status dmar_get_dsm_handle(acpi_handle handle, u32 lvl,
2351 void *context, void **retval)
2352{
2353 acpi_handle *phdl = retval;
2354
2355 if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) {
2356 *phdl = handle;
2357 return AE_CTRL_TERMINATE;
2358 }
2359
2360 return AE_OK;
2361}
2362
2363static int dmar_device_hotplug(acpi_handle handle, bool insert)
2364{
2365 int ret;
2366 acpi_handle tmp = NULL;
2367 acpi_status status;
2368
2369 if (!dmar_in_use())
2370 return 0;
2371
2372 if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) {
2373 tmp = handle;
2374 } else {
2375 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
2376 ACPI_UINT32_MAX,
2377 dmar_get_dsm_handle,
2378 NULL, NULL, &tmp);
2379 if (ACPI_FAILURE(status)) {
2380 pr_warn("Failed to locate _DSM method.\n");
2381 return -ENXIO;
2382 }
2383 }
2384 if (tmp == NULL)
2385 return 0;
2386
2387 down_write(&dmar_global_lock);
2388 if (insert)
2389 ret = dmar_hotplug_insert(tmp);
2390 else
2391 ret = dmar_hotplug_remove(tmp);
2392 up_write(&dmar_global_lock);
2393
2394 return ret;
2395}
2396
2397int dmar_device_add(acpi_handle handle)
2398{
2399 return dmar_device_hotplug(handle, true);
2400}
2401
2402int dmar_device_remove(acpi_handle handle)
2403{
2404 return dmar_device_hotplug(handle, false);
2405}
2406
2407/*
2408 * dmar_platform_optin - Is %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in DMAR table
2409 *
2410 * Returns true if the platform has %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in
2411 * the ACPI DMAR table. This means that the platform boot firmware has made
2412 * sure no device can issue DMA outside of RMRR regions.
2413 */
2414bool dmar_platform_optin(void)
2415{
2416 struct acpi_table_dmar *dmar;
2417 acpi_status status;
2418 bool ret;
2419
2420 status = acpi_get_table(ACPI_SIG_DMAR, 0,
2421 (struct acpi_table_header **)&dmar);
2422 if (ACPI_FAILURE(status))
2423 return false;
2424
2425 ret = !!(dmar->flags & DMAR_PLATFORM_OPT_IN);
2426 acpi_put_table((struct acpi_table_header *)dmar);
2427
2428 return ret;
2429}
2430EXPORT_SYMBOL_GPL(dmar_platform_optin);